当前位置: 仪器信息网 > 行业主题 > >

硫氧代吡啶并

仪器信息网硫氧代吡啶并专题为您提供2024年最新硫氧代吡啶并价格报价、厂家品牌的相关信息, 包括硫氧代吡啶并参数、型号等,不管是国产,还是进口品牌的硫氧代吡啶并您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硫氧代吡啶并相关的耗材配件、试剂标物,还有硫氧代吡啶并相关的最新资讯、资料,以及硫氧代吡啶并相关的解决方案。

硫氧代吡啶并相关的资讯

  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)
  • 中国化工学会关于《工业用2-氯-6-三氯甲基吡啶》等 4项团体标准征求意见的通知
    各有关单位及专家:由中国化工学会组织制定的《工业用2-氯-6-三氯甲基吡啶》等4项团体标准已完成征求意见稿,现公开征求意见。请于2023年4 月21日之前将征求意见表(见附件5)以电子邮件的形式反馈至中国化工学会。联系人:张颖 电话:010-64455951邮箱:zhangy@ciesc.cn附 件1.《工业用2-氯-6-三氯甲基吡啶》征求意见稿2.《电子级丙二醇甲醚》征求意见稿3.《电子级丙二醇甲醚醋酸酯》征求意见稿4.《啶氧菌酯原药》征求意见稿5. 征求意见表 中国化工学会2023年3月21日附件3《电子级丙二醇甲醚醋酸酯》征求意见稿.pdf附件1《工业用2-氯-6-三氯甲基吡啶》征求意见稿.pdf附件2《电子级丙二醇甲醚》征求意见稿.pdf附件5 征求意见表.doc《工业用2-氯-6-三氯甲基吡啶》等4项团体标准征求意见通知.pdf附件4《啶氧菌酯原药》征求意见稿.pdf
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0
  • 江西省生态环境厅公开征求《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》等五项地方生态环境标准意见
    各有关单位:根据《江西省市场监管局关于下达2023年第六批江西省地方标准制修订计划的通知》(赣市监标函〔2023〕20号)要求,我厅组织编制了《生态环境监测质量管理技术规范》等五项地方生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登陆我厅网站“政务公开-公示公告”(http://sthjt.jiangxi.gov.cn)栏目检索查阅。请于2024年7月12日前将意见建议书面反馈我厅,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:邓 磊、刘燕红;电 话:0791-86866660、0791-86866791;邮 箱:Fenzc2023@163.com。附件:1.生态环境监测质量管理技术规范(征求意见稿)2.《生态环境监测质量管理技术规范(征求意见稿)》编制说明3.水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)4.《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》编制说明5.水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)6.《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)》编制说明7.水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)8.《水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)》编制说明9.土壤和沉积物 碲的测定 酸溶/原子荧光法(征求意见稿)10.《土壤和沉积物 碲的测定 酸溶/原子荧光法》(征求意见稿)》编制说明11.意见反馈表12.征求意见单位名单江西省生态环境厅2024年6月11日(此件主动公开)
  • 江西省市场监督管理局发布《水质 吡啶的测定 顶空/气相色谱-质谱法》等6项江西省地方标准征求意见稿
    各有关单位及专家:《生态环境监测质量管理技术规范》《水质 吡啶的测定 顶空/气相色谱-质谱法》《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法》《水质 高锰酸盐指数的测定 氧化还原自动滴定法》《土壤和沉淀物 碲的测定 酸溶原子荧光法》《危险废物全过程监管物联网终端技术规范》地方标准现已形成征求意见稿,欢迎各有关单位及专家对标准进行审阅,并于2024年7月13日前返回具体的修改意见。审评中心联系人:高汉、胡昭君、刘磊联系电话:0791-85773380 电子邮箱:jxbzhy@126.com起草单位联系人:罗木根联系电话:18507000681地址:江西省标准技术审评中心,南昌市南昌县金沙二路1899号。 2024年6月13日附件:附件 (1).zip1.标准文本和编制说明2.省地方标准(征求意见稿)意见汇总表
  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿
    国家标准计划《保健食品中吡啶甲酸铬含量的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中吡啶甲酸铬含量的测定》编制说明.pdf国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿.pdf
  • 新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!
    新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!关于产品 DLM-10-10/氘代二甲亚砜/2206-27-1 的具体详情:CAS号:2206-27-1编号:DLM-10-10包装:10g纯度/规格:D, 99.9%品牌:美国CILDLM-10-10/氘代二甲亚砜/2206-27-1 公司为答谢新老客户对我们长期以来的支持,现有大量新品上市,低价优惠促销活动,欢迎新老客户前来咨询选购!企业其他相关产品推荐:bs-9642R,17号染色体开放阅读框57抗体|C17orf57抗体价格姜酮对照品/标准品CAS:2212-67-1,禾草知标准品/对照品价格CAS:53411-70-4,D-葡萄糖-6-磷酸三钠盐,6-磷酸葡萄糖三钠盐,6-磷酸葡萄糖酸三钠盐,G-6-P-Na32,4,5-三氯联苯标准品|对照品,cas:15862-07-42,6-(盐酸尼卡地平杂质)对照品/标准品次野鸢尾黄素标准品,cas:41743-73-1对照品CAS:9028-48-2,异柠檬酸脱氢酶,ICDH,Isocitrate dehydrogenasebs-2713R,肾损伤分子1抗体(甲型肝炎细胞受体1)|HAVCR1抗体价格CAS:10031-30-8,过磷酸钙价格重组人 HSPD1/HSP60 蛋白(His & GST 标签)/11322-H20E小鼠血小板衍生生长因子AB(PDGF-AB)ELISA检测试剂盒说明书铑标准溶液,cas:7440-16-6乌药醚内脂标准品,cas:13476-25-0对照品猪血管生成素1(ANG-1)ELISA试剂盒,96T/48T兔子肝细胞生长因子(HGF)ELISA检测试剂盒说明书CAS:61438-64-0,氯碘柳胺钠现货供应CAS:51503-28-7,固红片剂,固红-萘磺酸TR片剂,快红片剂,快红TR片剂,Fast red TR Tablets常山碱乙标准品,cas:24159-07-7对照品bs-15575R,kappa轻链可变区抗体|IGKV A18抗体价格人骨特异性碱性磷酸酶B(ALP-B)ELISA检测试剂盒说明书1,2-|CAS号306-37-6|1,2-Dimethylhydrazine dihydrochlorideCAS:41532-84-7,1,1,2-三甲基-1H-苯并[e]吲哚H-苯并[e]吲哚价格bs-13014R,DNA聚合酶δ2/DNA pol δ 2抗体|DNA polymerase delta p50抗体价格丙硫氧嘧啶对照品/标准品CAS:327-97-9,绿原酸价格CAS:18686-82-3,2-巯基-1,3,4-噻二唑价格沙苑子苷标准品,cas:116183-66-5对照品bs-2679R,细胞粘附分子CD112抗体|CD112抗体价格bs-2978R,硫氧还蛋白过氧化物酶Ⅱ/巯基抗氧化蛋白抗体|Peroxiredoxin 2抗体价格朝藿定A标准品,cas:110623-72-8对照品bs-11975R,周期蛋白结合蛋白抗体|CACYBP抗体价格CAS:1072-98-6,2-氨基-5-氯吡啶价格212304/琼脂,A级培养基厂家
  • 加拿大拟修订小麦炔草酯最大残留限量
    据加拿大卫生部消息,7月18日加拿大卫生部发布PMRL2013-51号通报,有害生物管理局提议修订炔草酯(Clodinafop-propargyl)在小麦中的最大残留限量不超过0.02 MRL(ppm)。   炔草酯属芳氧苯氧丙酸类除草剂,能有效抑制类酯的生物合成为乙酰辅敏A羟化酶抑制剂,本品在土壤中很快降解为游离酸苯基和吡啶部分进入土壤。本品能防治小麦田鼠尾看麦娘、燕麦草、黑麦草、普通早熟禾狗尾草等禾本科杂草。实验表明,该农药流失到环境中,将造成严重的环境污染,有时甚至造成极其危险的后果:1.污染大气、水环境,造成土壤板结 2.增强病菌、害虫对农药的抗药性 3.杀伤有益生物,极易致使野生生物和畜禽中毒。   检验检疫部门提醒相关企业:一是认真学习加拿大卫生部发布PMRL2013-51号最新通报,密切关注进口国质量标准及监管动态,并严格按照新标准进行生产工作。二是加强原材料采购管理,切勿贪图便宜使用质量不达标的原料,埋下质量隐患 产品出口时应加强与检验检疫部门的沟通和交流。三是建立完善的产品质量安全监管体系,提升企业质量管理水平,严格控制炔草酯等高毒高污染农药在实际生产中的用量,从源头杜绝超标现象的产生,尽量化解出口安全隐患。四是相关出口企业应加强与检验检疫部门联系,寻求技术和信息支持,共同探索低毒低残留的替代性农药。
  • 残留溶剂专题②|岛津SH-I-624Sil MS助力高效分析
    第二期 II类B残留溶剂上期回顾第一期I类残留溶剂和II类A残留溶剂的分析在残留溶剂专题①中我们介绍了I类残留溶剂和II类A残留溶剂的分析,我们对比了岛津SH-I-624Sil MS和市面某品牌624,岛津SH-I-624Sil MS对I类残留溶剂苯和1,2-二氯乙烷分离度更优,II类A残留溶剂整体峰形和灵敏度更好,同时溶剂峰DMSO和异丙基苯也展现出了更好的分离度。本期我们从II类B残留溶剂进一步展开介绍。方案设计参考方法:II类B:USP载气:N2色谱柱:适合顶空进样的残留溶剂:G43色谱柱(624) 适合直接进样的残留溶剂:G16色谱柱(PEG)溶剂:DMSO进样方式:顶空检测器:FIDII类B实验结果II类B残留溶剂标准溶液分离数据(岛津SH-I-624Sil MS)对于II类B残留溶剂,SH-I-624Sil MS整体分离效果良好。特别注意!# 吡啶容易出现响应不好的问题这是因为吡啶易与熔融石英表面硅羟基形成分子间氢键,从而导致吸附、拖尾、响应差等问题的出现。与此同时我们也发现甲苯和吡啶同时检测时容易共流出,干扰彼此定量。对于吡啶检测我们建议使用胺类专用柱SH-Volatil Amin(碱改性100%二甲基聚硅氧烷),碱处理色谱柱可有效改善胺类柱上吸附和峰形拖尾问题。(点击查看更多胺类专用柱相关)对甲苯和吡啶检测我们给出针对性测试方案:上:使用岛津SH-I-624Sil MS之前下:使用岛津SH-I-624Sil MS之后测试结果表明:使用岛津SH-I-624Sil MS之前甲苯和吡啶分离度仅为1.4,使用后该柱子后甲苯和吡啶分离度提升到1.9,吡啶响应良好。为提升吡啶响应,提供大家一种优化思路:小内径提升吡啶响应和灵敏度完整实验结果请查看“岛津实验器材”微信公众号或直接访问:https://mp.weixin.qq.com/s/PdHRKm8wcgxZrH-ItHEIEg 产品信息点击立即查看最新药斯卡排行榜
  • 废水监测:从生化需氧量BOD/化学需氧量COD到总有机碳TOC分析的转变
    图片来源:Avatar _023/Shutterstock.com随着全球人口水平的上升,包括制药、炼油和制造在内的各个行业也在不断发展和扩张。尽管存在差异,但每一个行业都应对所产生的水污染负责,并确保水质质量。无论是市政还是工业废水,都对人类健康构成很大风险并危害环境;因此,所有废水在排放前都必须经过仔细处理和密切监测。随着公众对健康和环境保护的不断推动,废水排放法规变得越来越严格。每个国家都有自己的废水管理机构和各种排放限制,因而开发和使用了各种监测方法。快速准确识别污染物的方法对防止有害物排放到公共水源中至关重要。世界卫生组织(WHO)于1948年应运而生,旨在帮助和促进全球健康[6]。2017年,WHO开展了一项涉及100个国家和275个国家标准的废水排放质量要求的研究。该研究确定了废水中五类最常见的污染物,即化学品、营养物、有机物、病原体和固体,其中有机物是最常监测的类别[28]。有机化合物占废水污染的很大一部分,并已监测了100多年。世界上测量有机物含量最常用的分析技术是生化需氧量BOD。[43]随着技术进步,法规允许使用其他方法,例如化学需氧量COD[44]和总有机碳TOC[45]来评估有机污染物。尽管BOD被普遍使用,但为了满足合规性和过程控制的要求,从BOD/COD转向TOC是一个新的趋势。有机污染参数有机污染物是一类污染物,由于其重要性,需要在废水中进行监测。然而,因为有多种有机化合物,单独测量它们中的每一种不切实际。因此,“总和参数”的概念用于将许多具有相似质量的化合物归为一类:BOD、COD和TOC是最常用于有机污染物检测的参数。生化需氧量BOD20世纪初期,大量污水和有机物释放至泰晤士河中,从英国排至大海大约需要五天时间。当微生物分解所含的有机物时,它们也会消耗水中的溶解氧含量,危害水生生物。[1, 48]因此,1908年发明了为期五天的生化需氧量BOD5测试,作为衡量水中有机污染物的一种方法。BOD5是用于确定废水中有机污染物含量最常用的总和参数之一。该技术依赖于微生物通过消耗样品中的氧气来分解有机物。水样中的大量有机物导致溶解氧消耗更大。BOD5测试通过测量20°C下五天培养期所消耗的氧气量,提供了有机污染物的间接指示。[43]BOD测试的需氧量通常包括碳质生化需氧量CBOD和含氮生化需氧量NBOD,这是由氨或其他含氮化合物的分解而产生的。氮需求会阻碍BOD5测试,因此通常使用替代的CBOD方法,这需要添加抑制性化合物。[43]由于该测试在过去的一个世纪中得到了长久认可,BOD5参数已纳入几乎所有全球废水法规中。虽然得到广泛使用,但生化需氧量仍存在许多问题。BOD5的一个主要缺点是取样和获得结果之间需要五天时间。该测试的持续时间使BOD5无法成为用于过程控制的参数。[2, 8]当污水处理厂意识到其已经超过了污水排放限定值时,实际上其不合规的排放已经经过了几天时间。[42]BOD5测试的另一个主要缺点是它依赖于微生物的生长。因此,阻碍生物生长的化合物(包括氯、重金属、碱或酸)都会影响结果。[8, 39]BOD仅测量可自然降解的物质,但有几种微生物无法分解的有机化合物,因此BOD5无法测定水中所有有机污染物。[8]由于取决于生物生长,该测试不仅遇到精度和准确度问题[8, 42],且灵敏度较差。[42]化学需氧量COD化学需氧量COD是另一种间接方法,用于确定废水中的有机污染物含量。在该测试中使用化学氧化分解水中的污染物,然后测量在该过程中排出的氧气。与BOD5测试类似,氧气消耗量的增加通常意味着样品中存在更高含量的有机物。[3]有许多不同的COD测试方法已获批准。开放式回流法要求样品在重铬酸钾强酸中回流。由于与氧化剂短暂接触,挥发物可能无法有效氧化。当样品中挥发物含量增加时,密闭滴定回流是一种令人满意的方法,因为它们与氧化剂长时间接触。任何可以吸收可见光的物质(例如不溶性悬浮固体和带色组分)都会影响结果。[44]与BOD5相比,COD测试有一些优势。其中一大优势是缩短了测试所需时间。BOD需要五天才能获得结果,但COD通常只需几个小时。[2, 44]另一个好处是该测试不需要微生物生长进行氧化,因此产生相对可靠和可重复的结果。[2]与BOD只能测定可生物降解有机物的需氧量不同,COD氧化的更为彻底,几乎可以氧化样品中的所有有机物。因此,COD测试结果更高,也提供了对水中有机物含量更准确的评估。COD测试的主要缺点是需要使用有毒化学品,并会产生更多危废,包括银、六价铬和汞:氯化物和其他卤化物会在不添加银或汞离子的情况下严重干扰测试。吡啶和类似的芳香族化合物可能会排斥氧化并导致假的低测量结果。[44]总有机碳TOC多年来的技术进步,诞生了总有机碳TOC分析仪,它提供了一种测量水中有机物含量的直接方法。与BOD5或COD不同,BOD5或COD使用需氧量来确定有机物含量,而TOC分析仪直接测量并定量分析样品中所含的碳。[42, 44, 45]所有TOC分析仪都是将有机物氧化成CO2,然后可以使用电导法或非色散红外检测(NDIR)对其进行测量。[45]样品氧化的不同方法包括燃烧、紫外线过硫酸盐和超临界水氧化 (SCWO)。[45]与传统的需氧量测试相比,TOC分析有许多优势。BOD5只能测量可生物降解的有机物的需氧量。TOC分析仪可快速氧化所有有机化合物,以测定样品中存在的有机物。与COD测试不同,TOC分析可以识别有机碳和无机碳之间的差异,包括碳酸盐、碳酸氢盐和二氧化碳。如果样品中挥发性有机物含量降低,分析仪可以酸化并置换出无机碳以定量分析不可置换的有机碳(NPOC)。[43]分析仪还可以独立评估总碳(TC)和总无机碳(TIC)以计算总有机碳。TOC分析仪的显着优势是具有更高的灵敏度和多功能性,它可以测定低至0.03 ppb和高达50000 ppm的有机物浓度。与传统的BOD和COD实验室方法相比,TOC可在短短几分钟内产生准确的结果。TOC仪器通常有实验室和在线型号,这使得它们成为合规性和过程控制中必不可少的工具。[43]标准方法5310指出,“总有机碳TOC是总有机物含量更方便和直接的表达方式… … TOC的测量对于水处理和废物处理厂的运行至关重要”。[45]全球有机物监测法规的转变每个地区或国家的管理机构都制定了废水排放中有机污染物可接受的排放限值。BOD5自1908年开始推广使用,几乎包含在全球所有法规中。然而,随着监测技术的进步,法规也在不断发展。一些国家允许使用BOD与TOC的相关性[4]甚至声明TOC将用作最佳可用技术。[7]北美的废水法规1999年,加拿大环境保护法(CEPA,Canadian Environmental Protection Act)实施,以管理污染和废物。根据渔业法案,还通过了废水系统排放法规。[13]也称为SOR/2012-139,该文件强调了排放限值并详细说明了监测和报告所需的条件。有机污染物的当前限值在碳质BOD参数中有详细说明。[13, 34]SOR声明:“废水中碳质生化需氧物质的数量,必须根据具有硝化抑制作用的五天生化需氧量测试来确定需求量。”[34]该文件确定了25 mg/L的CBOD限值,并要求运营商必须对废水样品建立一致的CBOD,但取样频率可以根据装置规模而波动。[34]在美国,由于公众对水污染的日益关注,制定了《1972清洁水法案》。该法案授权美国环境保护署(USEPA,US Environmental Protection Agency)确定废水标准并制定污染管理计划。[17, 29]该《清洁水法案》促成了美国污染物排放消除制度(NPDES,National Pollutant Discharge Elimination System)的建立,以规范排放污染物的点源。这些许可证制度建立了有关排放限值、监测和报告的要求。[26, 27]目前,根据《清洁水法案》第304(a)(4)节,BOD5归类为常规污染物。[22]尽管排放要求可能因行业和NPDES许可的不同而不同,但《联邦法规》40 CFR 133.102详细规定了公有处理厂的污水排放限制(表1),指出“根据NPDES许可机构的选择,代替参数BOD5… … CBOD参数可被代替...”[3]开发TOC与BOD
  • XPS科技校园行活动-锂硫电池研究
    2020年8月起,岛津开启科技校园行活动,产品经理联合公司多部门共同走进高校用户,与高校学者共同探讨分析仪器应用技术,分享应用成果。 吡啶氮掺杂碳纳米薄片应用于高稳定的锂硫电池中的促进硫释放反应的研究 论文背景介绍 … 锂硫电池因其理论能量密度高而受到人们的高度评价。除了多硫化锂的溶解、锂化过程中的体积膨胀和硫的绝缘性质导致硫利用率低外,最终放电产物锂的不可逆相变被认为是锂硫电池容量下降的主要原因之一。幸运的是,新兴的材料科学和纳米技术使解决上述挑战成为可能,建设碳硫复合材料阴极被认为是一种经济有效的方法。 目前,基体材料的多孔结构和吸附/扩散性能是复合硫阴极设计需要考虑的主要因素。然而,另一个重要的因素,Li2S的激活,却经常被忽略。最终放电产物Li2S的不可逆相变是导致锂电池容量下降的主要原因之一。 在本文研究中,作者开发了一种高效的螯合方法来合成具有可控浓度和可调氮结构的高度多孔N掺杂碳材料,基于吡啶氮N掺杂纳米片的复合硫阴极显示出更好的循环稳定性和更高的容量。其中,制备具有可控氮浓度和可调氮结构的高孔隙氮掺杂碳有挑战性。 使用XPS对合成的多空N掺杂碳材料进行了表面元素化学态的表征。 合成工艺中,使用5克尿素或2、3、3.5、4和5克三聚氰胺合成的氮掺杂碳的名称分别缩写为N5U-C或N2M-C,N3M-C,N3.5M-C,N4M-C和N5M-C。 使用XPS分析这6个样品的化学成分,谱图显示由C、N、O组成。XPS谱图显示,N5U-C和N3.5M-C的元素组成相似,有利于比较不同氮结构在Li-S电池中的工作机理。N5U-C、N3.5M-C和其他4个样品的高分辨率N1s谱可以分为吡啶N(≈ 398.4 eV)、吡咯N(≈ 399.8 eV)和石墨化N(≈ 401.5 eV)三个不同的峰。显然,N5U-C的主要掺杂结构是吡咯基N,N3.5M-C的主要结构为吡啶N。高分辨率C1 s谱图证明了碳氮键(285.8 eV)的存在,被认为可以提高LiPSs的捕获能力。 结果表明,通过改变氮源的类型和用量,可以实现氮浓度和氮结构的隧道化。 作者:袁华栋 浙江工业大学
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。   一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。   二、各兽药残留基准实验室药物检测范围   (一)国家兽药残留基准实验室(中国兽医药品监察所)   1.一般兽药品种   (1)抗微生物药   四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙   星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。   (2)抗寄生虫药   二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。   2.禁用药物清单品种   β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。   (二)国家兽药残留基准实验室(中国农业大学)   酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、   一般兽药品种抗微生物药   磺胺类:磺胺二甲嘧啶、磺胺甲   磺胺间甲氧嘧啶、甲氧苄啶。   抗寄生虫药   阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西   磺胺类:磺胺喹   钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、   癸氧喹酯、氢氢溴酸常山酮。   具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种   氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。   3.禁用药物品种   洛硝达唑   (三)国家兽药残留基准实验室(华南农业大学)   β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄   一般兽药品种抗微生物药一般兽药品种抗微生物药   西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。   咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡   啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、   氟胺氰菊酯。   性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。   杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。   群勃龙、醋酸氟孕酮。   (四)国家兽药残留基准实验室(华中农业大学)   氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。   苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。   糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。   喹噁啉类:卡巴氧   硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋   喃妥因、呋喃西林。   硝基化合物:硝基酚钠、硝呋烯腙。   杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动   物)。   砜类抑菌剂:氨苯砜。   三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。   二0一一年七月二十九日
  • 环氧树脂的羟值测定
    环氧树脂优良的物理机械和电绝缘性能、与各种材料的粘接性能、以及其使用工艺的灵活性是其他热固性塑料所不具备的。因此它能制成涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料,在国民经济的各个领域中得到广泛的应用。5月份,我们带来了环氧树脂水分含量检测的应用方案,现在我们带着环氧树脂羟值测定的应用方案与您见面了! 一、背景介绍羟值是指1g样品中羟基所相当的氢氧化钾的毫克数,以mgKOH/g表示。目前胶黏剂中的环氧树脂、聚酯多元醇和聚醚多元醇及聚氨酯等对羟值有要求。羟值是环氧树脂羟基含量的量度,可以直接反映出环氧树脂分子量的大小;在聚酯多元醇的合成过程中,利用羟值与酸值的测试来监控合成反应程度,用来检验树脂分子量是否符合产品出厂要求;在聚氨酯胶黏剂生成时,羟值与酸值大小,是异氰酸酯加入改性的重要依据。故我们需要对羟值进行检测。依据标准:GB/T 12008.3-2009 塑料 聚醚多元醇 第3部分:羟值的测定。 二、羟值测定方法1、测试原理用过量酸酐与产品中羟基反应生成酯和酸,多余的酸酐水解成酸,再用碱进行中和滴定。根据氢氧化钠的消耗量,可计算出产品的羟值。由于滴定终点颜色变化不易观察,因此通过电位来指示终点。 2、仪器及试剂:● ZDJ-5B型自动滴定仪● 231-01 pH玻璃电极+232-01参比电极● 咪唑、吡啶、邻苯二甲酸酐、0.5mol/L氢氧化钠标定滴定溶液 3、测试(1)样品前处理:● 向试料和空白锥形瓶中准确移取25ml邻苯二甲酸酐酰化试剂。摇动瓶子,至试料溶解,每个锥形瓶接上空气冷凝管,放在115+2℃油浴里30min。● 加热后,将装置从油浴中拿出并冷却至室温。用30ml吡啶冲洗冷凝管并取下冷凝管。将溶液定量转移到250ml烧杯中,用20mL吡啶冲洗锥形瓶。(2)空白测定:将空白样品置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。(3)样品测定:将试样置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。注意事项图1 样品测定曲线 (1)过量的水会破坏酯化试剂而干扰测定,试剂需要保持干燥,酰化试剂吸潮后需要重新配置。(2)酯化完成,冷却后,可以先加少量水,使过量的酸酐直接水解,在用氢氧化钠标准溶液进行滴定。(3)样品的取样量要进行估算,尽可能的使试料质量与理论计算值相近。 三、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 【新案例】产能700倍提升!不可不知的醇醛氧化新工艺!
    背景介绍酮类和醛类化合物在生物化学和香料工业中占有重要地位,通常是有机合成的关键中间体。最常见的是将醇直接氧化产生酮和酯。常用的氧化剂包括氯铬酸吡啶(PCC)、Jones试剂、重铬酸吡啶(PDC)、Swern、TEMPO、TPAP和Collins试剂。这些试剂或具有毒性或对环境不友好,与之相比,在相转移催化剂(PTC)作用下,使用次氯酸钠氧化醇类化合物具有以下优点:原料成本低;反应条件温和;能快速、高产地氧化伯、仲醇和醛;无重金属污染。应用该试剂氧化醇类的可行性很早之前就得到了证实,Lee和Freedman是最先利用次氯酸钠进行醇的两相催化氧化研究的人。该类反应使用间歇反应器进行放大有较多问题由于反应速率受反应器的大小、形状和搅拌速率等影响,通常收率较低;换热效率较低,局部的热量很容易导致氧化剂的热降解;氧化反应,存在安全隐患。缓解上述挑战的有效方法之一是使用连续流微反应器(图1a)连续流微反应器可以提供更好的传质和传热;无放大效应(康宁反应器具有);持液量相对较低,安全性高。Yanjie Zhang等人使用康宁微通道反应器,选择了三个PTC催化次氯酸盐氧化反应来验证该氧化反应从微量到中试级别的放大效果。结果显示:从流速每小时几微升的反应器放大到每分钟几十毫升的康宁反应器均能获得较好的反应效果;氧化反应的生产效率得到显著提高,得到一种安全有效的连续放大生产的方法 从螺旋微反应器优化条件通过康宁反应器放大通量提高了700倍,无明显放大效应。 一. 实验简介Yanjie Zhang等人使用康宁公司生产的低流量反应器(LFR)和高通量反应器G1(AFR)(图1b、c)进行实验.,选择了三个PTC催化次氯酸盐氧化反应来验证该氧化反应从微量到中试级别的放大效果。图1、 各种微反应结构(a)螺旋设计微反应器和螺旋反应器内丁醇/水的流动模式(b)康宁LFR套装(c)康宁AFR装置和AFR模块内正己烷/水的流动模式结果显示:在康宁微反应器中,从小试到中试其传质和传热效率并未发生明显改变 氧化反应的生产效率得到显著提高,得到一种安全有效的连续放大生产的方法  数据表明在从螺旋微反应器到LFR再到AFR的不同型号的反应器,生产效率提高了700倍,而没出现明显放大效应。关于传质传热的分析:在康宁微通道反应器独有的心形混合通道内反应物料快速流动,进行有效的非均相混合,有机相在水相中迅速分散成小液滴,从而产生较高的传质速率,所以其非均相流体的效率比螺旋盘管反应器更高(见图2)。图2、用水从正丁醇中提取丁二酸得到的液-液流动中单个模块停留时间与传质系数(kLa)的关系在这些反应模块中,反应区夹在两个玻璃传热板之间,传热路径变短,传热性能得到了很大的改善。图3. 康宁反应器反应模块结构 二、实验过程作者在小范围内进行了PTC催化的次氯酸钠溶液氧化反应的尝试(方案1),• 在螺旋微型反应器(图1a)中进行反应条件优化;• 随后将反应工艺条件在到康宁LFR和G1反应器中进行放大研究;图4. 方案1:(a)1-苯乙醇、(b)3-硝基苯甲醇、(c)苯甲醛氧化反应条件的优化1-苯基乙醇的氧化初步试验表明,最有效的加速反应的方法是将水相的pH值调整到9.3-9.5(图5a)。在该pH范围内,大多数次氯酸盐阴离子被质子化并形成次氯酸,然后用相转移催化剂将其萃取到含有次氯酸盐阴离子的有机相中,从而显著提高反应速率。使用14.6%次氯酸钠溶液与饱和碳酸氢钠,很容易获得pH 9.3~9.5的反应体系,这是一个比氢氯酸和乙酸效率更高的反应体系。饱和次氯酸钠溶液具有较高的离子强度,有助于有机盐从水相萃取到有机相 在相同的停留时间下,由于比表面积的增加,水相流速和有机相流速的比值(QA/QO)在控制整个反应速率方面也起着重要作用,因此随着QA/QO 的增加,传质速率有所提高(见图3b)。与螺旋反应器相比,康宁LFR系列具有更高的生产率,因为LRS持液体积较大,在相同的停留时间内,它的流量更高。图5. (a) 螺旋微反应器中1-苯乙醇在不同反应条件下的停留时间与转化率的关系(方案1a)。(b) 康宁AFR和螺旋微反应器中1-苯乙醇停留时间为1分钟的氧化转化率与流量比(QA/QO)的关系。1-苯乙醇浓度为0.8 M,NaOCl浓度为2 M。菱形,螺旋微反应器(pH 9,τ=1 M in);方块,康宁LFR(pH 9,τ=1 min)。3-硝基苄醇的氧化在甲醇存在下,3-硝基苄醇可以直接氧化成其甲酯(方案1b)。在此反应中,醇首先被氧化成相应的醛,醛与甲醇迅速形成半缩醛,并进一步氧化成相应的甲酯。 该反应受pH影响大,实验最优pH是9?9.5,最佳的水相与有机相比为2:1,浓度和停留时间分别为0.8M和1.5min。在康宁LRS和AFR反应器上,3-硝基苄醇氧化反应的停留时间在1min时产能达到最大,效率明显优于螺旋微反应器。图6. 不同反应物在康宁反应上的生产效率苯甲醛的氧化 在甲醇存在下,苯甲醛可以直接氧化为苯甲酸甲酯,而不需要经过酸的过渡态( 方案1c)。但Leduc和Jamison研究发现,一旦转化率达到60%,反应会停止。用甲醇取代乙酸乙酯作为溶剂,反应能够完全进行反应是均相,无需相转移催化剂苯甲醛的氧化在2.7min内在康宁反应器中可以100%转化,而在螺旋微反应器中3min后转化率仅为90%(图6c)图7. 螺旋微反应器与康宁LFR和AFR氧化(A)1-苯乙醇、(B)3-硝基苄醇和(C)苯甲醛的转化率和收率比较;蓝色,转化率(%);红色,产品收率(%)实验总结• 作者使用次氯酸钠溶液做了三种底物的氧化反应,从螺旋微反应器优化到康宁LFR和AFR系统均获得了较好的结果;• 这些物质的氧化反应为非均相反应,通过微反应器增强传质可以提高反应效果;• 工艺过程中替换溶剂或者使用传质更好的反应结构单元都可以起到提高传质的作用;• 和传统微反应器相比,康宁反应器可以实现更高的转化率且单台反应器可以获得更高的通量(生产效率);• 从螺旋微反应器到康宁G1反应器通量提高了700倍,同时保持了良好的传质传热效果。参考文献:dx.doi.org/10.1021/op500158h | Org. Process Res. Dev. 2014, 18, 1476?1481
  • 盘管还是微反?倍他司汀的连续流工艺研究
    倍他司汀(Betahistine 1)是临床上常用的药物。主要用于治疗缺血性脑血管病,血管性头疼、眩晕综合征和梅尼埃综合征。方案 1. 倍他司汀合成示意图目前常见合成方法之一是甲胺(3)和2-乙烯基吡啶(2)之间通过氮杂迈克尔(胺烯加成)反应得到。(方案1, (a)) 常规釜式工艺中,需要较长的反应时间(8小时)来提高转化率(方案1,(b)); 2-乙烯基吡啶受热易发生聚合产生杂质(化合物4、5、6),很难获得高纯度产品; 2-乙烯基吡啶为易燃危险化学品,其蒸气与空气混合,能形成爆炸性混合物,生产中存在不安全因素。为了提高生产过程的安全性以及产品质量,该过程的连续流工艺研究具有重要意义。本文将介绍华东理工大学药学院叶金星课题组于2021.5.15发表在OPR&D上,关于倍他司汀连续流工艺研究成果(方案1,(d))。 该工艺以2-乙烯基吡啶和饱和甲胺盐酸盐水溶液为起始原料,同时使用哈氏合金盘管反应器和碳化硅微反应器进行了连续流工艺研究。研究过程考虑到生产成本和安全性,作者选用盐酸甲胺作为胺化试剂。为了避免连续流合成过程产生沉淀堵塞反应通道,作者首先对溶剂进行了筛选。二甲基甲酰胺(DMF)、二甲亚砜(DMSO)、 i-PrOH、EtOH和水加热在110oC, 5 小时高压封管反应。如表1所示,在上述溶剂中均未观察到沉淀。实验表明,水作为溶剂可以得到较高的转化率和选择性(表1,entry 7)。表 1. 合成倍他司汀的溶剂筛选 二、哈氏合金盘管反应器连续流工艺研究1、研究者首先研究了在哈氏合金盘管反应器中的连续化工艺(如图1)。 图 1. 倍他司汀合成的连续流设置经过实验分析在3.0 mL哈氏合金反应器上,可连续合成倍他司汀。在反应温度170 °C ,停留时间为2.1分钟,系统压力7bar的条件下,反应转化率可达98%,选择性为94%。三、在 SiC微反应器中的连续流工艺研究由于在高温高压条件下反应体系中氯离子的强腐蚀作用,哈氏合金反应器盘管在长期工业生产中不可避免地会被腐蚀。高的流量可能会使加热操作变得更加困难和危险,需要更安全的保护。烧结碳化硅 (SiC) 的耐腐蚀性远远大于哈氏合金,可应用于更苛刻条件下的高腐蚀性试剂。故在倍他司汀的连续流放大合成中,作者使用了带有静态混合元件的市售模块化 SiC 反应器(图 2)。图 2. 在 SiC 反应器中合成倍他司汀的连续流设置使用SiC微反应器,在 45 mL min-1 的总流速下,将甲胺盐酸盐的量增加到 1.9 当量,可实现完全转化(99.94%,表 4 Entry4)。表 4. 在 SiC 反应器中连续流动合成倍他司汀的放大实验SiC 反应器中的优化条件:2-乙烯基吡啶(流速:15 mL min-1),甲胺盐酸盐 (9.0 M) 水溶液(流速:30 mL min-1),在 170 °C ,停留时间为 2.4 分钟的条件下,转化率 99.94%,选择性为 94%。在上述条件下长时间运行,过程稳定,没有发生堵塞现象。 连续流反应与釜式反应的比对研究者同时进行了纯化改进和杂质分析,得到高纯度产品(99.9%)。连续流工艺与间歇工艺的比较(表 5)。表 5. 合成 1.0 kg 倍他司汀的间歇法和连续流法的比较结果讨论本研究成功实现了倍他司汀的连续合成;在 SiC 反应器中, 170 oC, 2.4 分钟,总流速为 45 mL min-1 的条件下,实现了高转化率 (99.94%) 和高选择性 (94%) ,该结果优于盘管反应器的实验结果;长时间连续运行,过程稳定,产品质量可靠;通过优化精馏提纯工艺,得到高纯度产品(99.9%);以水作为溶剂的新工艺节能、省时且经济,与釜式工艺相比,PMI 降低了 50%。参考文献:OPR&D, 2021,5(15)
  • 月旭推出QuEChERS-GC-MS法快速检测茶叶中30种农药残留
    近日,家喻户晓的立顿绿茶、茉莉花茶、铁观音袋泡茶叶均被曝出含有17种禁用农药。 事实上,这已经是一个月内国际环保组织绿色和平处第二度向国内市场的茶叶&ldquo 发难&rdquo 了。4月11日,其发布了《2012年茶叶农药调查报告》, 声称包括吴裕泰、张一元、天福茗茶在内的九个茶叶品牌共计18+个茶叶样本上农药残留问题严重,不但有多种混合农药残留,更有超过半数样本检测出国家明令禁止使用在茶树上的高毒农药灭多威等。 为此,月旭科技推出快速农残检测法,此法采用QuEChERS-GC-MS,能够快速测定茶叶中30种农药残留。此外,月旭公司关于&ldquo 正确看待茶叶农残&rdquo 的讨论也成为论坛上的热点话题,见http://bbs.instrument.com.cn/shtml/20120425/3998498/ QuEChERS-GC-MS法快速测定茶叶中30种农药残留 1 适用范围 适用于茶叶中各种残留农药的检测(包括有机氯、有机磷等等)。 2 提取 称取5 g茶叶样品置于50 mL塑料离心管中,加入10 mL超纯水浸泡20 min后再加入10 mL乙腈,振荡5 min后加入Welchrom® QuEChERS盐析包(WEL-QE-04),迅速摇匀,振荡15 min,以4500 r/min的速度离心5 min,收集上清液以备净化。 3 净化 取1ml提取上清液加入Welchrom® QuEChERS 2ml净化管WEL-QC-1402,震荡涡旋2min使提取液充分与吸附剂作用,10000rpm离心3min,取上清液进样分析。 4 色谱质谱条件 4.1色谱条件 色谱柱:Welchrom® WM-5MS (30 m × 0.25 mm × 0.25 µ m); 柱温升温程序:40 ℃ (1 min) 130 ℃ (0 min) 280 ℃ (5 min); 进样口温度:290 ℃; 载气:氦气,纯度 99.999%,流速1.2 mL/min; 进样量:1.0 µ L; 进样方式:不分流进样,1.5 min后打开分流阀。 4.2 质谱条件 电离方式:EI; 电离能量:70 ev; 测定方式:选择离子监测方式(SIM); 离子源温度:230 ℃; 四级杆温度:150 ℃; 传输线温度:280 ℃; 溶剂延迟:5 min。 5 实验结果 5.1 GC-MS测定结果图 图1 30种农药残留的总离子流色谱图 色谱峰按出峰时间依次为:1.敌草腈;2.联苯;3.苯胺灵;4.四氯硝基苯;5.灭克磷;6.氟草胺;7. &alpha -六六六;8.&beta -六六六;9.扑灭津;10.五氯硝基苯;11. 特丁津;12.草达津;13.&delta -六六六;14.除线磷;15.异丙草胺;16.扑草净;17.苄草丹;18.甲基吡啶磷;19.异丙甲草胺;20.毒死稗;21.氯酞酸二甲酯;22.出螨酯;23.草乃敌;24.异戊乙净;25.乙基溴硫磷;26.多效唑;27.丙溴磷;28.噻嗪酮;29.氧环唑;30.氟硅唑 5.2 方法的回收率与精密度 在空白茶叶样品中分别添加适量农药混合标准溶液,按上述前处理步骤和检测方法测定各种农药的回收率。结果表明:30种农药的平均回收率范围为74%~108%,RSD范围为0%~10.38%,准确度和精密度均达到农药残留分析的要求。
  • 百灵威维生素标样 品种全 保平安 促健康
    维生素(vitamin)是人和动物为维持正常的生理功能而必需从食物中获得的y类微量有机物质,对生命机体的新陈代谢、生长发育和保持健康具有j重要作用。目前,市场上很多食品均含有维生素,其添加种类和成分的多寡,对身体健康与否显然起到举足轻重的关系。因此,百灵威为食品检测提供品种齐全的维生素标样,可协助相关部门快速精确地检测食品中维生素的营养成分及其比例,以保障人们的饮食安全与营养均衡。百灵威作为分析l域行业引l者,拥有全球化大型标样库,产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照物质都达到或c过了美g化学会z新的分析试剂规格标准,符合ACS 标准、NIST/NVLAP、ISO9001 认证的要求,可满足z高质量控制体系要求,每份标准样品均附带原批次质检报告、材料安全数据卡,确保实验可溯源,并且可以为用户提供专业标样的定制服务。 ■ 水溶性维生素系列标样 产品编号 产品名称 CAS 包装 目录价 VIT-001N 维生素B1盐酸盐 / 硫胺素 Vitamin B1 hydrochloride 67-03-8 1 g ¥195 C 17455500 硝酸硫胺 / 维生素B1硝酸盐 Thiamine mononitrate 532-43-4 0.25 g ¥432 C 17561000 硫代硫胺素 Thiothiamine 299-35-4 1 g ¥540 VIT-002N 维生素B2 / 核黄素 Vitamin B2 83-88-5 1 g ¥195 C 16813610 核黄素磷酸钠 Riboflavine-5 phosphate sodium 130-40-5 0.25 g ¥432 VIT-003N 维生素B6 / 盐酸吡哆辛 / 盐酸吡哆醇Vitamin B6 58-56-0 1 g ¥195 VIT-004N 抗坏血酸 / 维生素C Vitamin C 50-81-7 1 g ¥195 C 10303100 抗坏血酸钙盐 Ascorbic acid calcium salt 5743-28-2 0.25 g ¥432 C 10303900 抗坏血酸钠盐 / 维生素C钠盐 L-Ascorbic acid sodium salt 134-03-2 0.25 g ¥396C 10303930 维生素C棕榈酸酯 / L-抗坏血酸棕榈酸酯Ascorbyl palmitate 137-66-6 0.25 g ¥432 VIT-005N 烟酸 / 吡啶-3-羧酸 / 尼克酸 Vitamin B3 59-67-6 1 g ¥195 VIT-006N 烟酰胺 / 尼克酰胺 / 维生素B3 Nicotinamide 98-92-0 1 g ¥195 C 15521030 烟酸苄酯 Nicotinic acid-benzyl ester 94-44-0 0.25 g ¥360 VIT-007N 叶酸 Vitamin M 59-30-3 1 g ¥195 VIT-008N D-泛酸 / 维生素B5 D-Pantothenic acid 79-83-4 0.1 g ¥370 C 15844500 D-泛酰醇 D-Panthenol 81-13-0 0.5 g ¥936 CA15845000 泛酸钙单水合物 Pantothenic acid calcium salt 63409-48-3 0.25 g ¥360 VIT-009N-R1 D-生物素 / 维生素H / 辅酶R Vitamin H 58-85-5 0.1 g ¥195 VIT-010N-R1 维生素B12 Vitamin B12 68-19-9 0.025 g ¥234 VIT-WSK-R1-SET 水溶性维生素套装,包括:VIT-001N to VIT-010N 10 units ¥1,264 ■ 脂溶性维生素系列标样产品编号 产品名称 CAS号 规格 目录价 VIT-012N 维它命E Vitamin E 10191-41-0 0.1 g ¥273 CA17924320 维生素E醋酸酯 Vitamin E acetate 7695-91-2 0.5 g ¥540 VIT-013N 胆骨化醇 / 维生素D3 Vitamin D3 67-97-0 0.1 g ¥273 CA17924100 骨化二醇 Vitamin D3 25-hydroxy monohydrate 63283-36-3 0.05 g ¥1,134 VIT-014N 维生素A棕榈酸酯 Vitamin A palmitate79-81-2 0.1 g ¥1,206 VIT-015N 维生素E醋酸酯 Vitamin E acetate 7695-91-2 0.1 g ¥273 VIT-016N 维生素K1 / 2-甲基十六碳烯-1,4-萘二酮 Vitamin K1 84-80-0 0.1 g ¥273 VIT-017N 维生素K2 Vitamin K2 11032-49-8 0.1 g ¥1,556 VIT-018N 维生素K3 / 甲萘醌 Vitamin K3 58-27-5 0.1 g ¥273 VIT-019N BETA-胡萝卜素 b-Carotene 7235-40-7 0.01 g ¥389 CA10290900 beta-阿扑-8' -胡萝卜醛 8' -Apoaldehyde 1107-26-2 0.05 g ¥936 VIT-020N 维生素 E 琥珀酸酯 Vitamin E succinate 4345-03-3 0.1 g ¥273 VIT-022N 维生素D2 Vitamin D2 50-14-6 0.1 g ¥273 VIT-FSK-R2-SET 脂溶性维生素套装,包扩:VIT-012N to VIT-022N 10 units ¥2,457 ■ 相关分析耗材产品 产品编号产品名称 规格 目录价 116481 甲醇 99.9% [HPLC/ACS] 4 L ¥180 134752 乙腈 99.9% [HPLC/ACS] 4 L ¥400 187553 水 [HPLC] 4 L ¥375 904802 乙醇 95% 500 mL ¥22 S02001 C18 柱,150 mm× 4.6 mm, 5 &mu m 1 支¥2,500 S02302 C18 柱,250 mm× 4.6 mm, 5 &mu m 1 支 ¥2,800 S010125-3002 AB-1气相柱,30 m × 0.25 mm × 0.25 &mu m 1 支 ¥3,960 S010525-3002 AB-5气相柱,30 m × 0.25 mm × 0.25 &mu m 1 支 ¥3,960 ZTLMGL-4.1 针筒式滤膜过滤器 Ф13 0.2 &mu m(有机相) 100 片/包 ¥150 WKLM-4.2 微孔滤膜 Ф50 0.45 &mu m (有机相) 100 片/包 ¥210 901275 J&K 瓶口分配器(5.0-50.0 mL) 1 支 ¥2,000 958945 J&K单道手动可调移液器(100-1000 &mu L) 1 支 ¥645 928429 J&K磁力搅拌器(数显、加热、不锈钢) 1 台 ¥3,112 5182-0553 螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫) 100 个/包 ¥527 5182-0728 聚丙烯螺纹瓶盖(无隔垫) 100 个/包 ¥109 5183-4759 高j绿色隔垫(带预穿孔) 50 个/包 ¥699 CER-001-1 1.5 mL标准毛细储存瓶 1 个 ¥240 5183-2086 400 &mu L 脱活的玻璃平底内插管 500 个/包 ¥1,441 5183-4696 单细径锥不分流衬管 25 个/包 ¥6,030 5183-4693 单细径锥,带玻璃毛不分流衬管 5 个/包 ¥1,460 5188-5365 衬管O形圈 10 个/包 ¥143 5188-5367 进样口密封垫(配备垫圈,*金属铸模工艺,镀金密封工具包) 1 个 ¥389
  • 曝干辣椒硫黄熏制 二氧化硫超标50多倍
    黑加工厂位于长沙县跳马镇白竹村,其熏制的干辣椒二氧化硫残留量超标50多倍,被质监部门查处。 12月13日,长沙县跳马镇白竹村,非法使用硫黄熏制干辣椒的加工厂里,工人工作时都戴着防毒面罩。   在长沙县跳马镇白竹村一干辣椒加工厂,车间内蓝色帆布下堆放着数百袋正在熏制的干辣椒,白色的浓烟从帆布缝隙中不断往外冒出来。几百袋用硫黄熏制好的干辣椒成品密密麻麻地垒成小山,硫黄浓烟刺鼻的气味令人咳嗽不止,在车间里工作的工人都戴着防毒面罩。这些用硫黄熏制出来的干辣椒,外表金黄,颜色光鲜,保存期长,被送往高桥大市场农副产品城销往全省各地。12月13日晚,湖南省质量技术监督稽查总队查封了这家非法使用硫黄熏制干辣椒的黑加工厂。   现场暗访 气味刺鼻呛人,工人戴防毒面罩   近日,有知情人报料称在长沙县跳马镇白竹村,有一家干辣椒加工厂,每晚都会飘出很浓烈的气味,气味很呛人,“我怀疑他们是在用硫黄熏制辣椒。”   12月10日晚,在该知情人的指引下,记者找到这家隐藏在城乡接合部的加工厂,该工厂铁门紧闭,门口没有悬挂任何标志。刚靠近工厂,一股刺鼻的味道就扑面而来。   趁着工厂出货,记者混进厂房,工人穿梭在浓烟缭绕的厂房内,引人注意的是,他们每人都戴着一个防毒面罩。车间内冒出来的浓烟气味刺鼻,记者待了不足一分钟,被熏得透不过气来,两眼直流泪,只得赶紧跑出来透气。   记者注意到,该厂房面积有五六百平方米,共两间。其中一间厂房的一侧堆放着数百袋干辣椒成品,而蓝色帆布下则堆放着数百袋正在熏制的干辣椒,浓烟从帆布缝隙中不断往外冒。在另外一角落处,堆放着数袋尚未开封的编织袋,上面标着“硫黄”字样,一旁还堆放着半袋已经开封的硫黄。记者询问硫黄的用途,一名戴着防毒面罩的工人指了指蓝色帆布下正在熏制的干辣椒。在厂房另外一间车间内,工人们也正在用硫黄熏制干辣椒,而一台大货车则停放在厂房门口,几名工人正在发货装运已经熏制好的干辣椒。   辣椒流向 产品流向高桥大市场,老板称不熏不好卖   12月11日早上6点,记者再次来到该厂房附近,7点左右,两台货车开始装货,车厢内的白色编织袋中装满了熏制好的干辣椒。   记者尾随这两台货车,一路来到高桥大市场农副产品城。货车停在了14栋的一家干辣椒商行门口,几名工人开始卸货,该商行门口还摆放着数袋正在销售的干辣椒,记者上前购买了一些刚卸下来的干辣椒。   记者随机走进一家名叫宏发辣椒批发的批发店内。该店老板坦言,店里有些干辣椒是用硫黄熏制的,“不熏不好看,没人买啊。”他表示,没用硫黄熏过的干辣椒颜色不好看,保存期也短。   在一家名叫诚信干辣椒的批发商行,老板同样表示,没被硫黄熏制的干辣椒卖相不好,“这些干辣椒被发往全省各地。”   质监查处 干辣椒二氧化硫残留量超标50多倍   记者将购买的干辣椒送往湖南省质量技术监督局检测二氧化硫残留量,随后记者在检验报告中注意到,依据GB2760-2011食品安全国家标准、食品添加剂使用标准,干辣椒中二氧化硫残留量标准要求是≤0.2g/kg,而记者送检的干辣椒中二氧化硫残留量高达10.6g/kg。   12月13日晚7点,记者跟随省质量技术监督稽查总队执法人员来到该加工厂,车间内,一名男子正在熏制干辣椒,见到执法人员到来,男子显得很慌张。男子坦言,他们确实使用硫黄熏制干辣椒,干辣椒被销往高桥大市场农副产品城。   由于车间内正在用硫黄熏制干辣椒,执法人员忍受不了呛鼻的硫黄气味,纷纷外出透气。在检查中,执法人员查获50kg装尚未开封的硫黄20袋,干辣椒半成品1000袋、成品600袋。执法人员随即将该加工厂取缔,并暂扣其产品。   “经检测,该加工厂的干辣椒二氧化硫残留量高达10.6g/kg,超过国家标准50多倍。”湖南省质量技术监督稽查总队副总队长刘永胜称,在用硫黄熏制干辣椒过程中,会释放出二氧化硫有毒物质,这属于典型的非法添加使用,将对该非法使用硫黄熏制干辣椒的黑加工厂进行彻底捣毁。   危害   食用硫黄熏制干辣椒或可致癌   湖南省质量技术监督稽查总队副总队长刘永胜:经硫黄熏制过的干辣椒外表呈金黄色,但是一旦被人们食用,会对呼吸道、气管等呼吸系统造成刺激,导致呕吐、腹泻、恶心等症状,严重的会危害人的肝脏、肾脏,长期食用甚至会致癌,给人体造成很大的危害。   记者暗访数日后:双眼依然干涩,喉咙干痒,可见硫黄释放的浓烟具有很强的刺激作用。   提醒   干辣椒外表异常鲜亮要慎选   湖南省质量技术监督稽查总队七支队支队长万忠明:购买干辣椒时可以采取看、闻、捏等方法识别。硫黄熏制的辣椒表面看起来异常光亮,闻起来有一股硫黄余味,用手一捏有一种湿湿的黏手的感觉 而柴火烘烤或日光曝晒制作的干辣椒则呈暗褐色,不会有湿感,也没有刺鼻的异味。
  • 吉林大学材料学院能源化学研究综述:MOFs衍生的过渡金属单原子电催化剂用于高效氧还原反应
    电化学储存与转换系统主要包括金属离子电池、双离子电池、超级电容器、金属-空气电池和燃料电池等。后两种是清洁、安全、可靠的能源装置,具有环境友好、能量密度高、原料来源丰富、工作时间长等优点。氧还原反应(ORR)作为燃料电池的阴极反应,具有缓慢的反应动力学。因此,需要电催化剂来增强反应过程。近年来,过渡金属单原子电催化剂(TM-SACs)因其优异的催化活性(FeCoMnCuNi)、低成本和优异的稳定性而蓬勃发展。由于单原子在制备过程中容易团聚,因此载体材料的选择对于TM-SACs的形成尤为重要。载体也会影响催化反应中的电子输运和物质输运过程。MOFs具有结构可调、改性方法多样等优点,在TM-SACs的制备方面具有很大的潜力。图1. 基于MOFs的TM-SACs的制备策略和表征方法02成果展示金属有机骨架材料(Metal-organic frameworks, MOFs)由于其独特的结构和组成,在燃料电池和金属-空气电池的氧还原反应中得到了广泛的应用。近年来,以MOFs为前驱体或模板制备过渡金属单原子电催化剂(TM-SACs)的研究取得了很大进展。近期,吉林大学材料科学与工程学院郑伟涛团队对MOFs衍生的TM-SACs的制备方法和表征手段进行概述,并在此基础上归纳了TM-SACs的结构与性能的关系 (图1)。该综述旨在阐明大量的最新研究进展,来指导高活性、高负载量、高稳定性的TM-SACs的实现。第一作者为吉林大学材料科学与工程学院硕士生宋可心,通讯作者为张伟教授和郑伟涛教授。03图文导读1.ORR反应机制与优化原则ORR的反应过程如图2所示。由于反应条件的不同,导致酸性和碱性条件下的反应机制存在一定的差异。研究表明,酸性条件下较差的ORR性能主要是由于反应过程中吡啶-N质子化为吡啶-N-H结构,所以可以通过以下方式改善酸性条件下的ORR性能:1)防止质子和吡啶-N在酸性环境中快速结合;2) 增加本征活性和活性位点的数量。然而,在碱性条件下,大多数研究证明吡啶-N在催化过程中起着积极的作用。因此,增加吡啶-N的含量和增加金属活性中心数量是改善碱性条件下ORR性能的重要手段。此外,O2分子在活性位点上的吸附方式主要分为以下三种:Griffiths模式、Pauling模式和Yeager模式。不同的吸附模式也对催化机制产生一定的影响。图2.(a)酸性条件下ORR反应示意图。(b)碱性条件下ORR反应示意图。(c)O2在金属活性位点的三种吸附模式示意图2. 单原子催化剂的表征手段由于SACs的金属的尺寸很小,对表征技术提出了更高的要求。电镜技术和谱学技术的有效结合可以实现SACs的定性和定量分析。球差电镜利用其超高的空间分辨率可以直接观察到单原子的存在。结合EELS和EDS可以准确地确定材料的元素分布,有利于结构分析和物相识别。谱学技术,如(原位)X射线精细结构分析、穆斯堡尔光谱、红外光谱、原位拉曼光谱和原位漫反射红外傅里叶变换光谱(DRIFTS),有助于准确表征SACs并探究催化机理。这些表征技术从不同角度证实了SACs的存在,形成了完整的SACs表征体系。表征技术如图所示:图3.(a)FeSAC@FeSAC-N-C的不同放大倍数的像差校正STEM图像和EDS图像。(b)Co-pyridinic N-C的不同放大倍率的像差校正STEM图像和EELS光谱。(c) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像。(d) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像图4.(a)不同电位下Au L3边和Cu K边的XANES光谱和EXAFS拟合分析.(b)不同电位下的Pt1-N/C的XANES光谱和EXAFS拟合分析3. 基于MOFs制备TM-SACs的五大策略由于MOFs独特的空间结构,是制备TM-SACs的良好前驱体。在这一部分中,详细总结了使用MOFs制备TM-SACs的五种策略,并探讨了TM-SACs的结构特征和性能之间的相关性。所有这些策略都集中于如何保护过渡金属原子在热解过程中不发生团聚。由于MOFs后处理的方式不同,保护机制也存在一些差异。根据保护机制的不同,本部分将其分为以下五种策略:1) 表面限域策略:由于MOFs提供高度分散的金属位点,是制备TM-SACs的理想前驱体或模板。通过使用牺牲金属(SMs)的“空间栅栏”效应,可以调整过渡金属之间的距离,从而有效地避免高温下过渡金属原子的聚集。因为SMs的熔点相对较低,它们在热解过程中挥发。根据过渡金属的掺杂数量,主要可分为以下几类:1)单金属掺杂;2) 双/多金属掺杂。图5.(a)Fe掺杂ZIF-8衍生催化剂的合成过程示意图和不同粒径的Fe掺杂ZIF-8的SEM图像。(b)ZIF-8前驱体中Fe掺杂量对催化剂结构和活性影响示意图。(c)NC吸附铁离子的模型催化剂示意图及反应路径图。(d)通过调节Zn/Co的摩尔比制备Co-SAC/N-C的示意图。(e)负压热解法制备三维石墨烯骨架上的SACs示意图2) 空腔限域策略:利用MOFs独特的空腔结构优势,对金属前驱体进行封装。这种封装效应可以最大程度地减少热解过程中金属前驱体的聚集。对于ZIF结构,ZIF-8是一个具有菱形十二面体结构的三维空间纳米笼,由锌离子和二甲基咪唑配体组装而成。其具有孔径为3.4Å、空腔直径为11Å的空腔结构,金属前驱体可封装在里面来实现金属前驱体的空间隔离。高温碳化后,ZIF-8变成氮掺杂碳骨架,为金属位点的负载提供了载体。常见的金属前驱体可分为以下几类:1)金属无机化合物,如金属盐和金属氢氧化物;2) 金属有机化合物,如乙酰丙酮化合物和二茂铁;3) 金属大环化合物,如酞菁、卟啉和菲咯啉。图6.(a)Mn-SAS/CN催化剂的制备示意图和原位XANES光谱。(b)基于Kirkendall效应制备的(Fe,Co)/N-C催化剂示意图。(c)基于ZIF-8前驱体制备C-Cu(OH)2@ZIF-8-10%-1000的原理图。(d)Fe-ISA/CN催化剂制备示意图。(e)微孔限制和配体交换法制备Co(mIm)-NC催化剂示意图3) 外层保护策略:对MOFs的外层采取一些保护措施,以避免在热解过程中结构坍塌和金属原子的聚集。未热解MOFs表面的金属离子呈现高度分散的单原子态。但是在热解后由于单个原子的高比表面能,会发生团聚,这大大降低了金属活性位点的利用效率。此外,高温热解后,MOFs的孔结构坍塌,不利于催化剂传质过程和更多活性位点的暴露。因此,应采取措施对MOFs的外层进行保护,以促进高密度TM-SACs的形成,并保持热解后结构的稳定性。常用的保护策略主要分为以下两类:1)有机化合物(如表面活性剂、酶和聚合物)的保护策略;2) 主客体策略。图7. (a)原位约束热解法制备核壳结构的Co-N-C@surfactants催化剂示意图。CoN2+2活性位点构型和反应自由能演化图。(b)酚醛树脂辅助策略制备核壳结构1.0-ZIF-67@AF催化剂示意图。(c) CoNi-SAs/NC催化剂制备示意图。(d)配体交换策略制备C-AFC© ZIF-8催化剂示意图。(e) Fe-SAs/NPS-HC催化剂制备示意图4)相扩散策略:湿化学合成法通常用于制备以MOFs为前驱体的TM-SACs,即金属前驱体的合成在溶剂中完成。此外,由于单原子与其载体之间的弱相互作用,单原子在随后的制备和催化反应过程中不可避免地会团聚。如果使用MOFs衍生的碳载体作为前驱体,金属原子在高温下的扩散特性将被捕获并在碳载体上还原。这种强烈的相互作用可以提高催化剂的高温稳定性,也为TM-SACs的制备提供了一条新的途径。相扩散策略主要分为以下两种方法:1)球磨法(固相扩散法);2) 气相扩散法。图8.(a)固相合成法制备Fe掺杂ZIF-8的原理图。(b) M15-FeNC-NH3催化剂制备示意图。(c) Fe-N/C催化剂制备的示意图及ORR性能曲线。(d)气相扩散法制备Cu-SAs /N-C催化剂示意图。(e)金属氧化物热扩散法制备Cu ISA/NC催化剂原理图和Cu-N3-C、Cu-N3-V自由能演化图5)双模板策略:模板策略可以通过模板本身的空间约束效应来控制合成材料的形态、结构和几何尺寸。MOFs是合成TM-SACs的最佳前驱体或模板。外来模板的引入可以对MOFs的形态和尺寸进行一定的限制。三维骨架上的金属原子可以得到很好的保护,有效地避免了热解过程中单个原子的团聚。根据热解后是否需要额外繁琐的步骤去除外来模板,这种双模板策略主要分为以下两类:1)一步模板法:PS和盐模板法;2) 多步骤模板法:介孔SiO2、SiOX和有序介孔硅。图 9.(a)利用KCl模板制备了SCoNC催化剂的制备图和不同放大率的HAADF-STEM图像。(b)PS模板法制备具有分级多孔结构的FeN4/HOPC催化剂的制备示意图。(c)PS模板法制备Fe/Ni-NX-OC催化剂示意图04小结MOFs材料的优异特性为高负载量、高稳定性、高催化活性的单原子催化剂的制备提供了丰富的平台。目前还有许多需要解决的问题,主要包括以下几个方面:1)充分发挥MOF材料的结构多样性的优势,探索一些新的策略来制备TM-SACs。目前主要以ZIF结构为主来制备TM-SACs,可以充分挖掘其他结构的MOF材料来进行制备。2)TM-SACs的单原子活性位点通常以TM-N4为主,这种配位结构被认为具有良好的ORR活性。对活性中心的配位结构进行调整,可以使得它们的活性得到进一步提高。目前已有的调整方式主要包括构建双原子活性中心、引入非金属(S,P,B)、纳米粒子与单原子协同催化、构建客体基团等。3)提高过渡金属单原子的负载量。催化剂的活性与催化位点数目和本征活性息息相关。对于TM-SACs,在合成过程中最大程度地避免单原子的聚集,提高过渡金属的利用效率,将MOF前驱体中的金属位点最大程度地转变为TM-NX结构。 4)实现TM-SACs的大规模制备和通用策略制备。金属浓度过高会导致单原子催化剂在制备过程中极易发生团聚, 并且由于不同种类的金属的配位环境和物理化学性质不同,难以实现制备策略的通用化。因此,开发一种新的策略去实现TM-SACs的大规模制备和通用化制备显得尤为重要。5)利用先进的表征手段和原位技术,在原子水平上对催化剂的结构进行剖析,从而探究结构与性能的关系。这些技术为MOF材料为目标明确的TM-SACs的设计提供了指导。6)结合理论计算去探究TM-SACs的氧还原反应动力学和最佳反应路径,确定催化剂的真实活性位点和反应过程的决速步。这为催化剂的结构设计提供了理论支撑,从而更好地提高TM-SACs的性能。
  • 吉天仪器FIA 6000+ 全自动流动注射分析仪在河流污染中的应用
    水是生命之源,但是随着我国人口数量的几何增长、现代工业废水的乱排乱放、城市垃圾、农村农药喷洒等等,造成河流污染严重,本来已是极少的淡水资源加剧短缺,无法为人所用。  随着国务院“水十条”的颁布,实验室水质检测能力的提高迫在眉睫,新的环境标准也应运而生。2017年3月30日,环保部发布了七项国家环境保护标准(水质),其中的四项标准涉及流动注射仪器分析方法。  本文介绍了一种快速、准确、安全的流动分析技术,使用聚光科技下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)fia6000+全自动流动注射分析仪对河水中的挥发酚、氰化物、阴离子表面活性剂和硫化物进行分析及加标回收率的测定。该仪器应用非稳态fia理论,使用在线加热、蒸馏、冷凝、萃取等系统,完全符合环保部最新发布的国家环境保护标准。吉天仪器fia6000+为环境行业的水质分析提供了高效准确的溶液化学分析解决方案。吉天仪器fia6000+可以做什么?fia 6000+ 全自动流动注射分析仪方案优势  完全符合环境新标准hj 825-2017、hj 824-2017、hj 823-2017、hj 826-2017。  配有试剂包解决方案,提供了方便、快速、可靠、绿色的试剂配制方式。  检测过程高效,反应在密闭的管路中进行,避免接触有害试剂。  检测项目全面,广泛应用于水质分析、环境分析等多个领域。样品制备  挥发酚  采集河水样品,需现场检测有无游离氯等氧化剂存在,参照hj825-2017方法,“样品滴于淀粉-碘化钾试纸上出现蓝色,说明存在氧化剂”。氧化剂(如游离氯)能将一部分酚类化合物氧化使结果偏低,如有氧化剂存在(水样酸化后滴于碘化钾-淀粉试纸上出现蓝色),立即加入过量的硫酸亚铁铵消除干扰。(硫酸亚铁铵的配制方法:在500ml的容量瓶中,溶解0.55g硫酸亚铁铵[fe(nh4)2(so4)2?6h2o]于包含0.5ml浓硫酸的250ml去离子水,用去离子水定容,摇匀)。  现场未发现河水样品存在氧化剂。样品储存在硬质玻璃瓶中,采用氢氧化钠固定,冷藏(4℃),在采集后24h内进行测定。  氰化物  采集河水样品,首先检验是否有硫化物和活性氯等氧化剂的干扰,参照hj823-2017方法,“试样中存在活性氯等氧化性物质干扰测定,可在蒸馏前加亚硫酸钠(na2so3)溶液消除干扰”“试样中存在硫化物干扰测定,可在蒸馏前加碳酸镉(cdco3)或碳酸铅(pbco3)固体粉末消除干扰”。  采样现场滴一滴样品在乙酸铅试纸上,如果试纸变黑,则显示有硫化物存在于样品当中,加碳酸镉或碳酸铅固体粉末,生成黄色的硫化镉或黑色的硫化铅沉淀,再用乙酸铅试纸检测是否使试纸变黑,如果确定试纸不变黑,则过滤溶液除去硫化物。  采样现场滴一滴样品在淀粉-碘化钾试纸上,如果试纸显示蓝色,则样品需要预处理,加入一些抗坏血酸固体于水样中,过一段时间再用淀粉碘化钾试纸检测,如不显示蓝色证明干扰已被消除,然后在每升水样中加入0.6g抗坏血酸。亚砷酸钠和亚硫酸钠也用来消除此干扰。  现场未发现河水样品存在硫化物和活性氯等氧化剂。因此采取立即加氢氧化钠固定的方法,一般每升水加0.5g固体氢氧化钠,尽量使样品的ph12,并将样品存于聚乙烯塑料瓶或硬质玻璃瓶中,存放在暗处,避免紫外光的照射。  阴离子表面活性剂  采集河水样品,采样和保存样品应使用清洁的玻璃瓶,并事先经甲醇清洗过。  hj826-2017说明“主要干扰物为有机的磺酸盐、羧酸盐、酚类以及无机的硫酸盐、亚硫酸盐、硝酸盐、氰酸盐、硫氰酸盐等”,可以通过水溶液反洗,消除这些正干扰,未能除去的可用气提萃取法,参见gb7494。  在测量前,将水样经0.45μm的滤膜过滤,以除去悬浮物。吸附在悬浮物上的表面活性剂不计在内。  硫化物  采集河水样品。现场采集并固定的样品应保存在棕色瓶内。为了消除样品采集过程中的损失,首先对于每100ml样品,加入10 滴15m naoh(大约0.5ml)和400mg 抗坏血酸于容器中,然后加样品于容器中(样品的ph11)。冷却至4oc,马上进行分析。  为防止采集的河水样品中大颗粒堵塞管路,所有采集的样品都使用0.45μm的膜过滤后再进行分析。 仪器  吉天仪器fia6000+流动注射仪:包括自动进样器、挥发酚、氰化物、阴离子表面活性剂和硫化物4个化学反应模块(预处理通道、注入泵、反应通道及流通检测池)、数据处理系统。  分析天平:精度为0.1mg。  超声波仪:频率 40 khz。试剂配置  吉天仪器和安谱实验强强联合,为仪器配有专门的试剂包方案,是适用于全自动流动注射分析仪fia6000+的配套产品,方便、快速、可靠、绿色的试剂配置方式。试剂无需称量,开包溶解即用。  挥发酚  hj825-2017规定了测定水中挥发酚的流动注射-4-氨基安替比林分光光度法。表1 吉天挥发酚试剂包与hj825试剂配制比较试剂类型吉天仪器试剂包hj825要求比较蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾溶液ph=10.3铁氰化钾溶液ph=10.3配制过程完全相同显色剂4-氨基安替比林溶液ρ=0.64 g/l4-氨基安替比林溶液:ρ=0.64 g/l配制过程完全相同  氰化物  hj823-2017规定了测定水中氰化物的流动注射-分光光度法。其中包括异烟酸-巴比妥酸法和吡啶-巴比妥酸法。  由于吡啶剧毒,不建议采用,实际上异烟酸无吡啶的剧毒性,显色原理基本相同,因此采用异烟酸-巴比妥酸法进行检测。表2 吉天仪器氰化物试剂包与hj823试剂配制比较试剂类型吉天试剂包hj823要求比较载流、吸收液氢氧化钠c=0.025mol/l氢氧化钠c=0.025mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾缓冲液ph=10.3铁氰化钾缓冲液ph=10.3配制过程完全相同氯胺t氯胺t溶液ρ=4 g/l氯胺t溶液ρ=6 g/l或=2 g/l配制密度略有差异显色剂异烟酸-巴比妥酸试剂异烟酸-巴比妥酸试剂配制过程完全相同  阴离子表面活性剂  hj826-2017规定了测定水中阴离子表面活性剂的流动注射-亚甲基蓝分光光度法。  hj826-2017中的甲基蓝原液需净化萃取,将甲基蓝原液萃取6-7次,直至有机相澄清;吉天试剂包优化了试剂配制方法,甲基蓝原液无需净化萃取。 表3 吉天仪器阴离子试剂包与hj826试剂配制比较试剂类型吉天仪器试剂包hj826要求比较碱性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异酸性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异氯仿不含氯仿优级纯氯仿需要单独购买  硫化物  hj824-2017规定了测定水中硫化物的流动注射-亚甲基蓝分光光度法。表4吉天仪器硫化物试剂包与hj824试剂配制比较试剂类型吉天仪器试剂包hj824要求比较载流及吸收液氢氧化钠c=0.025 mol/l氢氧化钠c=0.025 mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异显色剂对氨基二甲基苯胺溶液对氨基二甲基苯胺溶液配制过程完全相同氯化铁氯化铁溶液ρ=13.3g/l氯化铁溶液ρ=13.3g/l配制过程完全相同标准曲线  新环境标准中的“标准系列的准备”将工作曲线的最高浓度设置为测定范围的最高值,本解决方案对于标准样品的配置浓度进行了优化,如表5所示。标准曲线的绘制按照新环境标准的要求“以信号值(峰面积)为纵坐标,对应的浓度为横坐标”进行绘制,所得到的曲线如图1所示,相关系数都可以达到0.999以上,说明相关性很好。表5 标准样品浓度对比表(μg/l)挥发酚总氰阴离子硫化物实验数据hj825推荐实验数据hj823推荐实验数据hj824推荐实验数据hj824推荐0.000.000.000.000.000.000.000.002.0010.02.002.025.010020.01005.0025.05.005.050.020050.020010.050.010.010.010050010050020.010020.050.02001000200100030.020050.01255002000500200050.0-100250800-1000-100-2005001000---四种方法的工作曲线检出限和精密度  计算了仪器测定4种方法的检出限和精密度,与新环境标准进行比较,数据见表6。其中,仪器检出限采用epa方法dl=t(n-1,α=0.99)*(s),当测定次数n=7时,t=3.14,计算结果;仪器的精密度则通过连续进样7次得到的数据进行计算。表6 仪器检出限、精密度与新环境标准对比项目检出限(μg/l)精密度rsdfia6000+新hj标准fia6000+新hj标准挥发酚0.31220.0μg/l0.77%20.0μg/l0.7-2.9%氰化物0.26120μg/l0.92%20μg/l0.7%-2.1%阴离子8.9540500.0μg/l1.11%500.0μg/l 1.1%-4.9%硫化物1.884200.0μg/l0.85%200.0μg/l1.5%-2.3%质量控制  以挥发酚为例:采用国家环境保护总局标准样品研究所的挥发酚质控样(200331,标准值49.8μg/l,不确定度±4.5μg/l),对方法及仪器进行检验,测定结果见表7。质量控制的结果符合要求,说明仪器稳定可靠。表7 挥发酚质控样的测定序号样品属性已知浓度(μg/l)回算浓度(μg/l)吸光度峰面积1质控样品49.8±4.548.00.872982质控样品49.8±4.548.80.887663质控样品49.8±4.548.10.87486实验结果  参照环境标准的方法,我们对采集的河水水样进行了分析,并进行了加表实验。实际样品并未检出挥发酚和硫化物,检出的氰化物和阴离子表面活性剂的浓度分别为11.8μg/l和1.20μg/l。  参照环境标准的要求,挥发酚、氰化物、硫化物的加标回收率应在70%~120%之间,阴离子表面活性剂的加标回收率应在80%~120%之间。实际的加标回收结果均符合要求。表8 实际样品检测结果及加标回收实验结果检测项目空白浓度(μg/l)加标浓度(μg/l)加标后回算浓度(μg/l)回收率挥发酚010098.098.0%氰化物11.820.032.2102.5%阴离子表面活性剂1.2020020097.8%硫化物0500498.599.7%结论  本文基于环保部最新发布的四项国家环境保护标准(水质),为测定环境水(河水)中的挥发酚、氰化物、阴离子表面活性剂和硫化物提供了解决方案。用fia6000+全自动流动注射分析仪测定这几种物质,完全符合环境标准方法,快速简便、灵敏度和准确度高,是未来环境行业水质检测的重要发展趋势。
  • 8000多斤春笋二氧化硫残留量超标
    疑是抹了过量“保鲜粉”导致二氧化硫过量   农贸批发市场大门外,一袋袋“鲜嫩”的春笋,全部投进垃圾压缩车,转眼化为一堆残渣……这到底是怎么回事?   原来,就在这春笋上市季节,温州菜篮子集团有限公司农副产品批发交易市场(以下简称“菜篮子”市场)日常检验中发现,有6批次春笋二氧化硫残留量超标,总数达到了8000多斤。上述一幕就是销毁这些春笋的场面。   这些“问题春笋”货源来自福建建瓯,相关食品安全专家推测,违规或过量添加“保鲜粉”等,可能是二氧化硫残留量超标诱因。   建议:春笋买回家,根部最好多切掉一点   昨天,温州菜篮子集团食品安全科科长、国家级食品安全师李克介绍,试着分辨问题春笋,可以先从颜色上留意,比如,一般的春笋外壳颜色呈黄褐色,而问题春笋外壳颜色,有可能是全橙黄的   还可以闻气味。正常的春笋,没什么异味的,而问题春笋有一股刺鼻的气味   再看春笋根部,如果不是正常的白中略带黄色,而是很白的那种,也得多留个心眼。   “菜篮子”市场副经理吴建淡说,其实辨别问题春笋,确实有点难度的,因为各地生长条件不同,笋的颜色和肉质各异,不好一下子说死。主要还是多闻气味,另外,正常的春笋一般比较脆,而抹过“保鲜粉”的,韧度会大一些。   “一般春笋买回家,根部多切掉一点,也会好一点的。”吴建淡说,要想真正辨析,还是送专业机构检测比较好。
  • 商贩为保质用硫磺熏银耳 二氧化硫超标6倍
    近日,本报接到读者反映,朝阳区十八里店乡二堡子村25号院内,有人为防腐防霉用硫磺熏制银耳,并运至附近的大洋路市场出售。   经过多日暗访,这一情况得以证实。经朝阳区产品质量监督检验所检测,这种经硫磺熏制的银耳,其二氧化硫残留量是允许值的6倍。专家指出,用硫磺熏银耳能起到保质作用,但长期食用二氧化硫高残留的银耳,会对身体有危害。   昨天,记者已将此情况举报给12315。   暗访   硫磺熏制银耳   7月底,记者来到二堡子村25号。这处大院居住着上百户居民,多为外地来京务工人员。   在院落靠东侧的一处角落里,记者看到,墙根下堆放着大量袋装银耳。用硫磺熏制银耳的商贩就居住在旁边的屋内,其屋门上标有37号字样。   记者连续六次暗访,终于摸清了商贩用硫磺熏制银耳的全过程。住在37号房内的一男一女,一般在每天傍晚六七点钟熏制银耳,有时还有其他人帮忙。邻居们介绍,这一男一女是对夫妻。   商贩将银耳放在直径10余厘米、长度近半米的长条塑料袋内。每次熏制大约10余袋银耳。装银耳的塑料袋上会被扎一些小口。熏制前,商贩会在地上铺一块塑料布,然后将这10余袋银耳竖放在塑料布上,然后再用一块塑料布盖上。随后,商贩将一定量的硫磺放入一个炒锅加热,等带有强烈刺激气味的气体从炒锅中冒出后,将炒锅放进塑料布内开始熏制。为防止塑料布被烫坏,炒锅下方会垫砖头。熏制的过程中,商贩会把塑料布封口。到次日凌晨,炒锅内的硫磺基本燃烧完毕,熏制好的银耳会被取出并运走。记者注意到,熏制后的银耳仍然是淡黄色的。   居民介绍,从事硫磺熏制银耳的这一户,已经在院内居住多年。   销路   既批发又零售   据知情人介绍,37号房屋内的这户人家,在附近的大洋路市场有自己的商铺,位于该市场的调料厅。他们用硫磺熏制过的银耳,被运到那里出售。   记者在暗访大洋路市场时发现,该市场调料厅135号商铺内的一男一女,正是住在大院37号房内、用硫磺熏制银耳的那一男一女。这个商铺除了出售银耳,还出售蘑菇等其他食用菌。   记者以每两3元的价格买3两多银耳。女老板说,这些银耳除了零售,也可以批发,如果需要的数量大,价格可以更优惠。   记者发现,这个商铺所出售的银耳,一种是零售,一种是饭店和其他银耳销售商批量购买。   检测   熏制银耳二氧化硫超标6倍   8月9日,朝阳区产品质量监督检验所在对记者购买的银耳进行二氧化硫残留量检测后,得出检测结果,被硫磺熏制的银耳,其二氧化硫残留量达0.3g/kg。   根据GB2760-2007《食品添加剂使用卫生标准》,银耳中的二氧化硫残留量的最高允许值为0.05g/kg。这些被硫磺熏制的银耳,二氧化硫残留量是允许值的6倍。由此可以得出结论,这样的银耳不合格。   危害   二氧化硫危害肝肾   据中国食用菌协会银耳专家介绍,将食品用硫磺熏制,可以起到防腐、防霉的作用,但将有一定量的残留。   国家标准对食品中二氧化硫的允许残留量做了强制性规定。银耳用硫磺熏蒸以后,二氧化硫会直接吸附在银耳当中,过高的二氧化硫对人体有很大危害性,它会使人产生呕吐、腹泻、恶心等症状,严重的甚至会危害人的肝脏、肾脏。   分辨   银耳本身无味道建议购买前闻味   据中国食用菌协会银耳专家介绍,质量好的银耳,耳花大而松散、耳肉肥厚。   从色泽上看,没有经过硫磺熏蒸的银耳颜色是很自然的淡黄色。好的银耳闻起来,应该是自然芳香,如果能闻到刺激的气味,就可能是经过硫磺熏制的,建议不要购买。   同时,银耳本身应无味道,选购时可取少许品尝,如对舌头有刺激或辣的感觉,很可能也是用硫磺熏制过的。消费者在选购时,可以多留意。   另外,建议大型超市在采购银耳货源时,可以考虑进行相关的质量检测,以保证消费者安全食用。
  • 浙江省市场监督管理局批准发布 《畜禽排泄物中磺胺类药物残留量的测定 液相色谱-串联质谱法》省级地方标准
    2022年4月16日,浙江省市场监督管理局批准发布了DB33/T 2481-2022《畜禽排泄物中磺胺类药物残留量的测定 液相色谱-串联质谱法》省级地方标准,2022年5月16日起实施。 1 范围本标准规定了畜禽排泄物中磺胺醋酰、磺胺吡啶、磺胺嘧啶、磺胺甲噁唑、磺胺噻唑、磺胺甲基嘧啶、磺胺二甲噁唑、磺胺异噁唑、磺胺甲噻二唑、苯甲酰磺胺、磺胺二甲嘧啶、磺胺异嘧啶、磺胺对甲氧嘧啶、磺胺甲氧哒嗪、磺胺间甲氧嘧啶、磺胺氯哒嗪、磺胺喹噁啉、磺胺邻二甲氧嘧啶、磺胺间二甲氧嘧啶、磺胺苯吡唑的液相色谱-串联质谱测定方法。本标准适用于畜禽排泄物中上述20种磺胺类药物残留量的测定。本标准的检出限为2 mg/kg,定量限为5 mg/kg。 注: 畜禽排泄物包括畜禽排泄的粪便或粪便和尿液的混合物。2 规范性引用文件下列文件中的内容通过规范性文件的引用而构成本标准必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本标准;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。 GB/T 6682 分析实验室用水规格和试验方法GB/T 25169 畜禽监测技术规范3 术语和定义本标准没有需要界定的术语和定义。4 原理试样中残留的磺胺类药物经酸化乙腈溶液提取,氮气吹干后用磷酸盐溶液复溶,固相萃取柱净化, 液相色谱-串联质谱仪测定,基质匹配标准曲线校准,外标法定量。5 试剂或材料除非另有规定,均使用分析纯试剂。5.1 水:GB/T 6682,一级。 5.2 甲醇(CH3OH):色谱纯。5.3 正己烷(C6H14)。 5.4 90 %酸化乙腈溶液:取 900 mL 乙腈,加冰乙酸 10 mL,加水稀释至 1 000 mL,混匀。5.5 0.05 mol/L 磷酸盐溶液:取 1.48 g 磷酸二氢钠和 14.50 g 磷酸氢二钠,加水溶解稀释至 1 000 mL, 混匀。 5.6 5 %甲醇溶液:取 50 mL 甲醇,加水稀释至 1 000 mL,混匀。 5.7 5 %氨化甲醇:取 5 mL 氨水,加甲醇稀释至 100 mL,混匀。 5.8 0.1 %甲酸溶液:取 1.0 mL 甲酸,加水稀释至 1 000 mL,混匀。 5.9 乙腈甲酸溶液:取 10 mL 乙腈,用 0.1 %甲酸溶液稀释至 100 mL,混匀。 5.10 0.1%甲酸甲醇溶液:取 1.0 mL 甲酸,加甲醇稀释至 1 000 mL,混匀。 5.11 磺胺类标准品:各标准品信息见附录 A,纯度≥95 %。5.12 标准贮备溶液(1 mg/mL):分别称取磺胺类标准品(5.11)约 10 mg(准确至 0.01 mg),分别置 10 mL 棕色容量瓶中,用甲醇(5.2)溶解并定容至刻度,混匀。-20 ℃以下保存,有效期 6 个月。 5.13 混合标准中间溶液Ⅰ(10 mg/mL):分别吸取标准贮备溶液(5.12)各 1.00 mL,置于 100 mL 棕色容量瓶中,用甲醇(5.2)稀释至刻度,混匀,-20 ℃以下保存,有效期 1 个月。 5.14 混合标准中间溶液Ⅱ(250 ng/mL):准确吸取混合标准中间溶液Ⅰ(5.13)250 mL,置于 10 mL 棕色容量瓶中,用乙腈甲酸溶液(5.9)稀释至刻度,混匀,现用现配。 5.15 系列混合标准工作溶液:准确吸取混合标准中间溶液Ⅱ(5.14)适量,用乙腈甲酸溶液(5.9) 稀释成浓度为 2.0 ng/mL、5.0 ng/mL、25.0 ng/mL、50.0 ng/mL、100.0 ng/mL、250.0 ng/mL 的系列标准工作溶液,现用现配。 5.16 N-乙烯吡咯烷酮和二乙烯基苯混合固相萃取柱(HLB):60 mg/3 mL 或性能相当者。5.17 微孔滤膜:0.22 mm,水系。6 仪器设备6.1 液相色谱-串联质谱仪:配有电喷雾离子源。 6.2 分析天平:感量 0.01 mg、0.01 g。 6.3 真空冷冻干燥机:冷阱温度-50 ℃,真空度 10 Pa。 6.4 离心机:转速不低于 10 000 r/min。 6.5 氮吹仪。 6.6 固相萃取装置。 6.7 振荡仪。 6.8 涡旋混合器。 6.9 超声提取仪。 6.10 样品粉碎设备。 6.11 分析筛:0.5 mm 孔径。7 样品制备与保存按照GB/T 25169采集畜禽排泄物,用四分法缩减至约200 g,-40 ℃以下真空冷冻干燥24 h,使样品中的水分在10 %以下,粉碎,过0.5 mm孔径的分析筛(6.11),装入密闭容器中,于-20 ℃以下保存备用。取不含待测磺胺类药物的样品适量,按上述方法制备,作为空白试样。
  • 现代食品安全检测中的抗生素残留检测仪【莱恩德】
    抗生素残留检测仪是一种用于快速检测食品、药品、动物源性产品等中抗生素残留的重要仪器。其可能检测的内容主要包括以下几类:    1.抗生素类残留:    四环素类    硝基呋喃类    磺胺类    沙星类(如氟沙星类)    喹诺酮类    氯霉素    庆大霉素    链霉素    喹乙醇代谢物    硫酸链霉素    羧苄西林    硫孢菌素钠    阿莫西林   氨苄西林    红霉素    以及其他多种抗生素,如金霉素、土霉素、大观霉素等    2.兽药残留:    包括一些特定用于动物的抗生素和药物,如潮霉素B、安普霉素、杆菌肽等    3.激素类残留:   盐酸克伦特罗    沙丁胺醇    莱克多巴胺    己烯雌酚等    4.毒素类残留:    黄曲酶毒素B1   呕吐毒素    玉米赤霉烯酮    赭曲霉毒素A等    5.化学类残留:   氨丙琳    甲基吡啶磷    阿灭丁    双甲脒    阿散酸    阿维菌素    氮哌酮    苄青霉家    头孢噻呋    克拉维酸    氯羟吡啶等    此外,抗生素残留检测仪还具有以下特点和技术优势:   高精密:采用先进的无损检测技术,可以实现对样本中抗生素残余的精准测量。    智能化程度高:具有开机自检和调零功能,以及重复性自动检测功能。    多种检测方式:支持色度检测、CT比值检测等多种拟合方式。    数据分析与导出:可对检测结果进行多种形式的汇总分析,并支持USB数据导出。   总之,抗生素残留检测仪在现代食品安全检测中发挥着重要作用,能够确保食品、药品等产品的质量和安全。点击此处可了解更多产品详情:抗生素残留检测仪
  • “农药废水低排放技术开发”重点项目课题申请指南
    国家高技术研究发展计划(863计划)新材料技术领域 “农药废水低排放技术开发”重点项目 课题申请指南 一、指南说明 农药废水是非常典型的难降解有机废水,处理难度大,对生态环境的危害严重,已成为环保治理的重点和难点。研究开发农药废水低排放技术对于农药工业可持续发展具有十分重要的意义。 本项目拟通过农药骨干品种清洁生产技术开发和废水预处理技术、深度处理技术以及综合治理集成技术开发,为农药行业实现清洁生产、减少废水排放提供技术支撑,提升农药行业废水处理技术水平,满足农药行业节能减排的迫切需求,为农药行业实现可持续发展奠定基础。 本项目拟支持草甘膦、百草枯、菊酯类农药、阿维菌素、吡虫啉、氯代吡啶类除草剂、毒死蜱等骨干农药品种清洁生产与废水低排放技术开发。项目国拨经费控制数5000万元,执行期为2008年12月到2010年12月。 二、指南内容 课题一、草甘膦废水低排放及母液回收利用技术开发 研究目标: 针对草甘膦原药生产中存在的废水排放量大的问题,开发草甘膦及其重要中间体亚氨基二乙腈和双甘膦的清洁生产工艺及废水低排放成套技术,并在20000吨/年以上草甘膦原药生产装置上进行集成应用。 主要研究内容: 通过反应器、催化剂等的创新提高亚氨基二乙腈的反应收率,研究开发亚氨基二乙腈母液回收利用及废水处理技术;优化双甘膦合成工艺,脱除双甘膦废水中的盐和甲醛,实现双甘膦废水循环利用;开发草甘膦母液的无害化、减量化技术;集成草甘膦废水综合处理技术并应用于20000吨/年以上规模的原药生产装置。 主要考核指标: (1) 草甘膦吨产品废水产生量减少50%,降低到11吨以下。 (2) 草甘膦吨产品末端废水排放量减少80%,不高于18吨(COD≤100mg/l)。 (3) 草甘膦吨产品COD排放量不高于1.8公斤。 (4) 草甘膦吨产品废水处理成本降低40%,不高于500元。 说明:本课题国拨经费控制数1150万元,配套经费与国拨经费的比例应不低于1:1。本课题牵头申请单位必须是国内草甘膦原药生产企业,鼓励产学研合作。 课题二、百草枯废水资源化成套技术开发 研究目标: 开发百草枯清洁生产工艺和废水资源化成套技术,应用在2000吨/年以上原药生产装置上。 主要研究内容: 通过催化剂及工艺条件的优化提高百草枯反应总收率,分离回收废水中残量百草枯、氰根离子和氨,实现中水回用和残液高效焚烧处理。 主要考核指标: (1) 百草枯吨产品工艺废水产生量减少50%,不大于3吨。 (2) 废水中氰根离子去除率≥95%。 (3) 焚烧炉排放尾气符合国家GB18484-2001《危险废弃物焚烧污染物控制标准》一级排放标准,处理每吨废水耗燃料油100kg以下,焚烧炉使用寿命不低于10年。 (4) 百草枯吨产品废水处理成本降低50%,不高于1500元。 说明:本课题国拨经费控制数1000万元,配套经费与国拨经费的比例应不低于1:1。本课题牵头申请单位必须是国内百草枯原药生产企业,鼓励产学研合作。 课题三、菊酯类农药废水综合治理技术开发 研究目标: 开发菊酯类农药的清洁生产工艺和废水综合治理技术,并在3000吨/年以上菊酯类农药生产装置上获得应用。 主要研究内容: 优化菊酯类农药反应工艺,回收废水中的有效成分,有效集成活性污泥生物系统及其它废水深度处理技术,应用于3000吨/年以上菊酯类农药生产装置上。 主要考核指标: (1) 菊酯类农药吨产品废水产生量减少50%,不高于20吨。 (2) 菊酯类农药吨产品末端废水排放量减少95%,不高于20吨。 (3) 菊酯类农药吨产品COD排放量减少95%,不高于2公斤。 (4) 菊酯类农药吨产品废水处理成本降低20%,不高于2600元。 (5) 回收中间体异戊烯醇生产废水中的醋酸钠,回收率大于90%。 (6) 环化工艺产生的废水中N,N-二甲基乙酰胺(DMA)回收率大于80%,环化废水处理后DMA含量小于0.5%。 说明:本课题国拨经费控制数800万元,配套经费与国拨经费的比例应不低于1:1。课题牵头申请单位必须是国内菊酯类农药原药生产企业,鼓励产学研合作。 课题四、阿维菌素新工艺及废水低排放技术开发 研究目标: 针对阿维菌素生产废水排放量大的问题,提高阿维菌素发酵效价,开发阿维菌素废水的催化氧化预处理技术、废水深度处理及回用技术,在80吨/年以上原药生产装置上进行集成应用。 主要研究内容: 开发阿维菌素菌种基因改造、诱变育种以及多尺度发酵等创新技术,提高提取收率,开发废水双膜处理及回用技术,开发废渣成肥应用技术。 主要考核指标: (1) 阿维菌素吨产品废水产生量减少50%,不高于400吨。 (2) 阿维菌素吨产品末端废水排放量减少50%,不高于360吨。 (3) 阿维菌素吨产品COD排放量减少80%,不高于30公斤。 (4) 阿维菌素吨产品废水处理成本降低45%,不高于5300元。 (5) 阿维菌素的平均效价达7000μg/ml。 (6) 发酵废渣灭活后制备的有机肥料达到国家相关标准。 说明:本课题国拨经费控制数500万元,配套经费与国拨经费的比例不低于1:1。课题牵头申请单位必须是国内阿维菌素原药生产企业,鼓励产学研合作。 课题五、吡虫啉创新工艺研究与废水治理技术开发 研究目标: 针对吡虫啉原药生产废水排放量大的问题,开发吡虫啉创新生产工艺和废水综合处理技术,在5000吨/年以上原药生产装置上进行集成应用。 主要研究内容: 优化催化剂和反应工艺条件,提高反应总收率,综合回收利用废水中的二甲基甲酰胺(DMF),集成废水催化氧化预处理技术和双膜生物反应器等深度处理技术,应用于5000吨/年以上原药生产装置。 主要考核指标: (1) 吡虫啉吨产品废水产生量减少65%,不高于10吨。 (2) 吡虫啉吨产品末端废水排放量减少85%,不高于100吨。 (3) 吡虫啉吨产品COD排放量减少85%,不高于10公斤。 (4) 吡虫啉吨产品废水处理成本降低55%,不高于1200元。 (5) DMF综合回收利用率80%以上。 说明:本课题国拨经费控制数600万元,配套经费与国拨经费的比例应不低于1:1。课题牵头申请单位必须是国内吡虫啉原药生产企业,鼓励产学研合作。 课题六、氯代吡啶类除草剂废水综合治理与低排放技术 研究目标: 开发氯代吡啶类除草剂的创新生产工艺和废水综合处理技术,在2000吨/年以上原药生产装置上集成应用。 主要研究内容: 开发专用催化剂,改变反应溶剂,提高反应总收率;研究开发废水物理—化学相结合的综合处理技术,开发高氨氮废水中氨的回收利用技术。 主要考核指标: (1) 氯代吡啶类除草剂吨产品废水产生量减少60%,不高于12吨。 (2) 氯代吡啶类除草剂吨产品末端废水排放量减少70%,不高于30吨。 (3) 氯代吡啶类除草剂吨产品COD排放量减少80%,不高于3公斤。 (4) 氯代吡啶类除草剂吨产品废水处理成本降低50%,不高于3000元。 说明:本课题国拨经费控制数500万元,配套经费与国拨经费的比例应不低于1:1。要求企业和研究单位联合申请,课题牵头申请单位必须是国内氯代吡啶类除草剂生产企业。 课题七、毒死蜱清洁生产与废水低排放技术开发 研究目标: 开发毒死蜱的清洁生产工艺及废水综合处理技术,集成应用于5000吨/年以上原药生产装置。 主要研究内容: 研究提高原子利用率的新合成方法和高效催化剂,提高毒死蜱及其中间体乙基氯化物、三氯吡啶酚钠的反应收率,开发副产物单质硫的回收利用技术、废水综合治理技术和废水回用技术。 主要考核指标: (1) 毒死蜱吨产品废水产生量减少50%,不高于30吨。 (2) 毒死蜱吨产品末端废水排放量减少50%,不高于30吨。 (3) 毒死蜱吨产品COD排放量减少80%,不高于3公斤。 (4) 毒死蜱吨产品废水处理成本降低60%,不高于900元。 (5) 回收的单质硫含量大于95%。 说明:本课题国拨经费控制数450万元,配套经费与国拨经费的比例应不低于1:1。要求企业和研究单位联合申请,课题牵头申请单位必须是国内毒死蜱原药生产企业。 三、注意事项 1、本项目申请者应根据申请指南的规定和要求,按研究课题进行申请。 2、课题申请者应根据申请指南提出的研究课题、主要研究内容和研究目标、主要考核指标等要求,编写《国家高技术研究发展计划(863计划)项目课题申请书》。 3、课题必须由法人(单位)提出申请,申请单位与协作单位不得超过5家,并确定申请课题的依托单位和课题负责人。 4、课题依托单位应符合的基本条件:在中华人民共和国境内登记注册一年以上、过去两年内在申请和承担国家科技计划项目中没有不良信用记录的企事业法人单位,包括:大学、科研机构等事业法人;中方控股的企业法人。 5、课题负责人应符合的基本条件: (1)具有中华人民共和国国籍; (2)年龄在55岁(含)以下(按指南发布之日计算); (3)具有高级职称或已获得博士学位; (4)每年(含跨年度连续)离职或出国的时间不超过6个月; (5)过去三年内在申请和承担国家科技计划项目中没有不良信用记录。 6、课题负责人及主要参加人员不得违反以下限项申请的规定: 为保证科研人员能够高质量地开展研究工作,国家科技计划实行限制申请及承担课题数量规定。每人同期只能主持1项国家主要科技计划(包括863计划、973计划、支撑计划)课题,作为主要参加人员同期参与承担的国家主要科技计划课题数(含负责主持的课题数)不得超过2项。申请者应按照上述要求进行申请,且在同一批发布的申请指南中只能申请1项863计划课题或项目。 7、申请者提出的申请经费不得高于申请指南规定的经费控制额,并应按照申请指南的要求提供相应的配套经费,否则不予受理。 8、申请者要遵守科学道德,以严谨的科学作风和实事求是的科学精神填写项目申请书,保证项目申请书的真实性,避免出现夸大和不准确的内容。同时,不得将研究内容相同或者近似的项目进行重复申请。863计划对申请者在申报过程中进行信用记录,对于故意在课题申请中提供虚假资料、信息的,一经查实,记入信用档案,并对单位在两年内取消其申报863计划资格、对个人在三年内取消其申报863计划资格。 9、申请程序和要求:课题申请采取网上集中申报。申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。有关申请的程序、要求和其他注意事项详见《“十一五”国家高技术研究发展计划(863计划)申请指南》。 10、课题申请受理的截止日期为2008年12月12日17时。 11、咨询联系人及联系方式 联系人: 卞曙光 010-88372105 蒋志君 010-68338919 电子邮件: jeanbsg@htrdc.com 863计划新材料技术领域办公室     二〇〇八年十月二十三日
  • 戴安公司提供牛奶中硫氰酸钠检测方法
    最近一段时期卫生部在食品安全方面的工作力度逐渐加大,2008年12月12卫生部发布的《食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单(第一批)》中明确规定乳及乳制品中硫氰酸钠属于违法添加物质。近日卫生部食品整治办[2009]29号文件全国打击违法添加非食用物质和滥用食品添加剂专项整治中,规定的牛奶中的硫氰酸钠检验方法,使用了戴安公司的&ldquo 离子色谱法测定牛奶中硫氰酸根&rdquo 方法,该方法使用戴安公司离子色谱仪和AS16离子色谱柱进行检测。该检测方法结果准确,重复性良好,检测限低。值得一提的是,方法中梯度洗脱的方式,采用了戴安公司 &ldquo 只加水&rdquo 淋洗液发生专利技术,能够自动产生需要的淋洗液浓度,替代了传统人工配制的方式,克服了因手动配置带来的浓度不准确,操作繁复缺点。 链接为卫生部食品办[2009]29号文件 http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohwsjdj/s3594/200903/39650.htm 戴安中国有限公司应用中心现可提供以上分析方法,如大家对上述分析方法感兴趣,请与戴安公司应用中心联系:010-62849182 硫氰酸钠简介:来自于中国检科院综合检测中心的专题报道,硫氰酸钠(NaSCN) 是白色斜方晶系结晶或粉末,毒害品。易溶于水、乙醇和丙酮。硫氰酸钠的毒性主要由其在体内释放的氰根离子而引起。氰根离子在体内能很快与细胞色素氧化酶中的三价铁离子结合, 抑制该酶活性, 使组织不能利用氧。氰根离子所致的急性中毒分为轻、中、重三级。轻度中毒表现为眼及上呼吸道刺激症状, 有苦杏仁味, 口唇及咽部麻木, 继而可出现恶心、呕吐、震颤等 中度中毒表现为叹息样呼吸, 皮肤、黏膜常呈鲜红色,其他症状加重 重度中毒表现为意识丧失, 出现强直性和阵发性抽搐, 直至角弓反张, 血压下降, 尿、便失禁, 常伴发脑水肿和呼吸衰竭。原料乳或奶粉中掺入硫氰酸钠后可有效的抑菌、保鲜, 是不法奶户的掺假物质之一。但硫氰酸钠是毒害品, 少量的食入就会对人体造成极大伤害。 戴安中国市场部 2009年4月11日
  • 《出口水果中多果定残留量的测定 液相色谱-质谱/质谱法》等86项行业标准发布
    现发布《进口再生铜原料检验规程》等86项行业标准(目录见附件1)。《蜜蜂美洲幼虫腐臭病检疫技术规范》(SN/T 1168-2011)等8项被代替标准自新标准实施之日起废止。本次发布的标准文本可通过中国技术性贸易措施网站(http://www.tbtsps.cn)标准栏目查阅。《TCK疫麦环氧乙烷熏蒸处理方法》(SN/T 2016-2007)等3项行业标准(见附件2)自本公告发布之日起废止。特此公告。附件:1.《进口再生铜原料检验规程》等86项行业标准目录.xls2.废止行业标准目录.xls海关总署2022年3月14日公告正文下载链接:海关总署关于发布《进口再生铜原料检验规程》等86项行业标准并废止3项行业标准的公告.doc海关总署关于发布《进口再生铜原料检验规程》等86项行业标准并废止3项行业标准的公告.pdf相关标准如下:发布行业标准目录序号标准编号 标准名称替代标准号实施日期1SN/T 0184.4-2022 出口食品中单核细胞增生李斯特菌的检测方法 第4部分:肽核酸荧光原位杂交(PNA-FISH)方法2022-10-012SN/T 0500-2022 出口水果中多果定残留量的测定 液相色谱-质谱/质谱法SN 0500-952022-10-013SN/T 1168-2022 蜜蜂美洲幼虫腐臭病检疫技术规范SN/T 1168-20112022-10-014SN/T 1632.4-2022 出口乳粉中克罗诺杆菌属(阪崎肠杆菌)检测方法 第4部分:PCR-CRISPR法2022-10-015SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法SN/T 2073-20082022-10-016SN/T 2922-2022 出口保健食品中EPA、DHA和AA的测定 气相色谱法SN/T 2922-20112022-10-017SN/T 4544.2-2022 商品化试剂盒检测方法 菌落总数 方法二2022-10-018SN/T 4545.3-2022 商品化试剂盒检测方法 沙门氏菌 方法三2022-10-019SN/T 4545.4-2022 商品化试剂盒检测方法 沙门氏菌 方法四2022-10-0110SN/T 4675.32-2022 进出口葡萄酒中羧甲基纤维素钠的测定 分光光度法2022-10-0111SN/T 5363-2022 鲤浮肿病检疫技术规范2022-10-0112SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-0113SN/T 5366.1-2022 商品化试剂盒检测方法 肠杆菌科计数 方法一2022-10-0114SN/T 5367.1-2022 商品化试剂盒检测方法 单核细胞增生李斯特氏菌 方法一2022-10-0115SN/T 5368.1-2022 商品化试剂盒检测方法 克罗诺杆菌属(阪崎肠杆菌) 方法一2022-10-0116SN/T 5408-2022 再生塑料与改性塑料的鉴别方法2022-10-0117SN/T 5414-2022 再生塑料中33种禁限用物质的测定 裂解气相色谱-质谱筛选法2022-10-0118SN/T 5419-2022 进出境陆生动物隔离检疫场防疫消毒技术规范2022-10-0119SN/T 5420-2022 蜜蜂热厉螨病检疫技术规范2022-10-0120SN/T 5436-2022 乳及乳制品发酵剂、发酵产品中乳酸菌计数 流式细胞仪法2022-10-0121SN/T 5437-2022 出口动物源食品中苯海拉明残留量的测定 液相色谱-质谱/质谱法2022-10-0122SN/T 5438-2022 出口乳粉中核苷酸含量的测定 液相色谱-质谱/质谱法2022-10-0123SN/T 5439.1-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第1部分:沙门氏菌2022-10-0124SN/T 5439.2-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第2部分:金黄色葡萄球菌2022-10-0125SN/T 5439.3-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法第3部分:副溶血性弧菌2022-10-0126SN/T 5439.4-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第4部分:克罗诺杆菌2022-10-0127SN/T 5439.5-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第5部分:产志贺毒素大肠埃希氏菌及大肠埃希氏菌O1572022-10-0128SN/T 5439.6-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第6部分:空肠弯曲菌2022-10-0129SN/T 5439.7-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第7部分:单核细胞增生李斯特氏菌2022-10-0130SN/T 5440-2022 出口食品中双炔酰菌胺、噻唑菌胺、吲唑磺菌胺等多种酰胺类杀菌剂残留量的测定 液相色谱-质谱/质谱法2022-10-0131SN/T 5441-2022 出口水产品中三卡因、苯佐卡因、喹哪啶残留量的测定 液相色谱-质谱/质谱法2022-10-0132SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-0133SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-0134SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-0135SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-0136SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-0137SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-0138SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-0139SN/T 5450-2022 动物源食品中9种双稠吡咯啶类生物碱的测定 液相色谱-质谱/质谱法2022-10-0140SN/T 5451-2022 商品化试剂盒检测方法 乳酸菌总数 方法一2022-10-0141SN/T 5452-2022 食品检测用浓缩仪采购与验收指南2022-10-01废止行业标准目录序号标准编号标准名称1SN/T 2016-2007TCK疫麦环氧乙烷熏蒸处理方法2SN/T 2837-2011进境集装箱承载废物原料动植物检疫除害处理规程3SN/T 4642-2016枇杷桔小实蝇、梨小食心虫检疫处理技术标准
  • 新品消息:新一代精密分析仪器---A2070S紫外荧光测硫仪
    硫是石油及其产品中含有的重要元素之一。硫化物在石油加工过程中可引起设备腐蚀﹑催化剂中毒等问题 硫含量过高的成品油则属于质量不合格产品。随着环保法规的不断完善,燃料油中硫含量的控制指标日趋严格,硫含量的测定越来越受到重视。 测定硫含量的经典方法燃灯法﹑管式炉法等,操作步骤繁琐,测定时间长,灵敏度低。近些年,氧化微库仑法、光电比色法、X-射线荧光法、紫外荧光法等快速分析方法受到更多关注。与其它方法相比,氧化裂解/紫外荧光法具有操作简便,分析快速、灵敏度高,基体效应小,抗干扰能力强等许多突出优点,实际应用也越来越多。得利特技术组研发了A2070S紫外荧光测硫仪,以下是该仪器的具体参数:A2070S 硫测定仪是根据紫外荧光荧光原理与计算机技术相结合研发的新一代精密分析仪器。适用于测定石脑油,馏分油,发动机燃料和其他石油产品。适用标准: SH/T 0689、ASTM D5453、GB/T11060.8仪器特点:1、系统采用紫外荧光法测定总硫含量。2、提高了抗杂质干扰的能力,避免了电量法对滴定池的繁琐操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。3、系统关键部位采用**器件,使得整机性能有了可靠的保证。4、软件直观易学,标准曲线和结果自动保存,永远不会丢失数据。技术参数:样品种类 液体、固体和气体测定方法 紫外荧光法样品进样量 固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围 0.1-5000mg/L测量精度 荧光测硫仪 进样量(μL) RSD(%) 0.2 20 25 5 10 10 50 10 5 100 10 3 5000 10 3控温范围 室温~1300℃控温精度 ±1℃气源要求 高纯氩气:纯度99.995%以上 高纯氧气:纯度99.99%以上工作电源 AC220V±10% 50Hz功 率 1500 W外形尺寸 主机:305(W)×460(D)×440(H)mm 温控:550(W)×460(D)×440(H)mm重  量 主机:20kg 温控:40kg
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制