当前位置: 仪器信息网 > 行业主题 > >

焦磷酸四苄酯

仪器信息网焦磷酸四苄酯专题为您提供2024年最新焦磷酸四苄酯价格报价、厂家品牌的相关信息, 包括焦磷酸四苄酯参数、型号等,不管是国产,还是进口品牌的焦磷酸四苄酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合焦磷酸四苄酯相关的耗材配件、试剂标物,还有焦磷酸四苄酯相关的最新资讯、资料,以及焦磷酸四苄酯相关的解决方案。

焦磷酸四苄酯相关的资讯

  • 加拿大拟提出食品添加剂磷酸三钠用于相关食品建议
    近日,加拿大发出通报(G/SPS/N/CAN/636),加拿大卫生部公布关于准许食品添加剂磷酸三钠用于某些标准化肉类、家禽、海产和淡水产品及非标准化食品建议的信息咨询文件。加拿大卫生部收到一项提案,要求凡是已准许使用焦磷酸钠(四元磷酸钠)及/或酸式焦磷酸钠的情况下,合法批准磷酸三钠用于标准化肉类、家禽肉、海产和淡水产品及非标准化食品。磷酸三钠是一种具有不同技术功能的磷酸盐,它能代替其他已允许使用的磷酸盐产品。按磷酸二钠计算,标准化肉类、家禽及海产和淡水类动物产品内磷酸三钠的拟定最高使用标准占磷酸盐添加总量的0.5%。当磷酸三钠单独使用或与其他磷酸盐结合使用时,该最高使用标准适用于磷酸三钠。非标准化食品的使用标准拟作为一种符合良好制造规范(GMP)的使用标准。这些拟定最高使用标准与其他当前已准用于这些食品磷酸盐的法定使用标准相同。   加拿大卫生部完成了支持拟定使用食品添加剂提案所述磷酸三钠相关信息的安全评估,并确定不存在与规定使用相关的卫生或安全问题。卫生部确定申请人符合食品药品法规第B.16.002节概述的食品添加剂提案要求。因此,加拿大卫生部拟准许磷酸三钠按技术咨询文件所述合法使用。   目前该通报正在征求意见中。
  • 大连化物所开发出10kWh磷酸盐基钠离子电池储能系统
    近日,大连化学物理研究所储能技术研究部(DNL17)李先锋研究员、郑琼副研究员团队自主开发出10kWh磷酸焦磷酸铁钠基钠离子电池系统,并实现了用电负载的稳定供电。经测试,系统输出能量为9.7kWh,直流侧能量转换效率为91%。   该系统由5个独立的电池模组和与其配套的逆变器、控制模块共同组成。其中,每个模组(50V/40Ah)由34个20Ah级钠离子软包电池、采用2并17串方式构成。该钠离子电池体系具有低成本、长寿命、高安全等优势,在大规模储能领域具有很好的应用前景。大连化学物理研究所储能技术研究部在2015年开始布局钠离子电池技术,特别是聚焦具有高稳定性、长寿命、高安全性等优势的磷酸盐基钠离子电池技术。团队坚持基础研究与应用研究并重,实现了钠离子电池从基础研究探索跨越到关键材料中试制备、大容量电芯及系统集成。   团队先后攻克了磷酸盐正极材料电导率低、稳定性差,碳基负极储钠动力学慢,电解液—电极界面成膜机理不明确等系列关键科学问题;打通了磷酸盐正极的百公斤级制备工艺,开发了多种生物质基硬碳负极制备工艺和高兼容电解液体系;基于自主研制的电极、电解液和电芯技术,集成出5至20Ah级钒系和铁系磷酸盐基软包电芯,比能量达到100至143Wh/kg;在电芯研发的基础上,团队先后集成了48V/10Ah、72V/20Ah磷酸盐基钠离子电池系统并开展示范。   此外,团队先后申报发明专利60余件,获授权发明专利20余件,形成了较为完整的自主知识产权体系;参与制定5项钠离子电池技术标准;推进了与企业间产业化合作,加速了磷酸盐基钠离子电池的产业化进程。   近日,团队开发的钠离子电池电芯通过了由国家工信部锂离子电池及类似产品标准工作组、中关村储能产业技术联盟组织开展的全国首批钠离子电池产品测评,验证了团队钠离子电池技术的可靠性。该系统的成功研制,对于推动钠离子电池在储能领域的应用具有重要意义。   以上工作得到榆林学院—中国科学院洁净能源创新研究院联合基金、大连化学物理研究所创新基金等项目的支持。
  • 生物大分子标记新突破:可基因编码的代谢糖质标记技术
    生物体中几乎所有的细胞都具有相同的基因组,而不同的细胞类型和功能则由不同的基因表达、表观遗传修饰和翻译后修饰等所决定。解析特定器官或组织中特定细胞的生物大分子图谱对探究发育、细胞间通讯以及疾病的发生发展等都具有重要意义。因此,开发细胞选择性的生物大分子标记方法,近年来受到了科学家们的广泛关注。通过基因编码的方法,人们在活体动物中实现了蛋白质的组织特异性和细胞选择性标记和分析。然而,糖质(glycan)作为另外一种主要的生物大分子,尚无法通过基因编码的方式,实现活体中的细胞选择性标记。糖质以寡糖、多糖、糖蛋白、糖脂等形式直接参与细胞的分化增殖、免疫调节、信号转导、细胞迁移等重要的生命活动,对其进行在体标记和分析一直是领域内的一个难点。其中,基于生物正交化学的代谢糖质标记(metabolic glycan labeling)技术已经成为了最主要的工具之一。经过20多年的发展,目前已有数十种非天然糖分子可用以在活细胞和活体中标记糖质。然而,非天然糖在活体中并不具备器官或细胞特异性,无法实现精准的细胞选择性标记,阐释特定细胞群体中糖质所发挥的生物学功能。北京大学化学与分子工程学院、北大-清华生命科学联合中心陈兴教授课题组一直致力于解决这个问题,此前开发了基于靶向性脂质体的非天然糖代谢标记技术,实现了肿瘤组织和脑部的糖质标记。同时,他们意识到,基因编码技术可以在活体中实现更加精准的细胞选择性。为了实现这一目标,继续推进代谢糖质标记技术的应用,2022年5月5日,该课题组在 Nature Chemical Biology 上发表了题为“Cell-type-specific labeling and profiling of glycans in living mice”的论文,报道了一种可基因编码的代谢糖质标记技术(GeMGL)。该技术将“凸凹互补(bump and hole)”的化学遗传学策略与代谢糖质标记方法相结合,利用非天然糖1,3-Pr2GlcNAl(Bump)及其匹配的焦磷酸酶突变体AGX2F383G(Hole)的正交组合,在活体动物上实现了细胞选择性糖质标记和分析。他们从一个具有低标记效率的非天然糖—乙酰胺基葡萄糖的叠氮类似物GlcNAz出发,确认了其代谢通路中的焦磷酸酶AGX是限速酶,将其过表达可以增强代谢强度。他们随即想到,增大非天然基团并对AGX酶进行突变,可能可以开发出凹凸对。于是,他们采用了炔基修饰的乙酰胺基葡萄糖GlcNAl和焦磷酸酶突变体AGX2F383G,通过体外和细胞实验证明了GlcNAl的代谢完全依赖焦磷酸酶突变体AGX2F383G。接着,在多细胞共培养体系和小鼠移植瘤模型中,证明了GeMGL策略的可行性。基于此,他们将该策略拓展到了转基因小鼠中。他们首先利用心肌细胞特异的启动子α-MHC实现了AGX2F383G在小鼠心肌细胞中的特异性表达,然后腹腔注射非天然糖1,3-Pr2GlcNAl,实现了非天然糖分子在小鼠心肌细胞中的特异性代谢。从各组织标记结果来看,GeMGL策略展现出严格的心肌细胞选择性。结合定量蛋白质组学方法,在小鼠心肌细胞中鉴定到582个O-GlcNAc修饰蛋白。分析发现,心肌细胞中许多糖酵解、TCA循环和氧化磷酸化途径相关蛋白都具有O-GlcNAc糖基化修饰,表明O-GlcNAc糖基化修饰可能在心肌细胞的线粒体能量代谢过程中发挥重要功能。在转基因小鼠中进行的细胞类型特异性代谢糖质标记该工作提供了一种可基因编码的细胞特异性糖质标记技术GeMGL,为在活体层面研究糖质在特定细胞类型中的生物学功能提供了一种便利、有效的工具。该技术有望被推广到更为复杂的神经系统中,并在相关疾病模型中探究糖基化与神经发育、神经退行性疾病等的关系。陈兴 北京大学化学学院教授,生命科学联合中心高级研究员,合成与功能生物分子中心研究员。长期致力于糖化学和糖生物学研究,糖质标记和分析是其研究重点之一。综合运用化学方法、生物手段和纳米技术,研究糖基化的生物学功能及其在代谢疾病及其心血管并发症中的作用。原文连接:https://www.nature.com/articles/s41589-022-01016-4
  • 质检总局批准2家复配食品添加剂等产品生产许可检验机构
    关于批准复配食品添加剂等产品生产许可检验机构的通知 质检食监函〔2011〕179号 各省、自治区、直辖市质量技术监督局,各有关检验机构:   为了进一步加强食品添加剂生产许可工作,根据《中华人民共和国工业产品生产许可证管理条例实施办法》(国家质检总局令第80号、第130号),现决定如下:   批准杭州市质量技术监督检测院等2家检验机构承担复配食品添加剂等产品生产许可检验工作(检验机构联系方式见附件)。   各检验机构在承担生产许可检验工作中,应当严格遵守以下规定:   一、在指定的承检范围内开展检验工作,不得超范围检验。   二、在总局指导下,严格按照规定的要求,准确、高效地完成检验工作。   三、未经总局批准,不得擅自将有关检验工作委托给其他检验机构。   四、对在检验工作中发现涉及人身健康的危害性质量问题,要进行深入研究,并及时报告省质量技术监督局和国家质检总局。   五、在检验工作中,要注重经验和技术的积累,注重对检验人员的培训,特别是要有针对性的开展检测方法和技术的研究,不断提高检验能力和检验水平。   特此通知。   二〇一一年七月二十六日   附件:   新增食品添加剂生产许可检验机构联系方式   杭州市质量技术监督检测院(增补检验项目)   地 址:杭州市九环路50号   联 系 人:朱顺达   电 话:0571-81995211   传 真:0571-85357069   邮 编:310019   E-mail:zhushd@hzzjy.net   广西壮族自治区产品质量监督检验院   地 址: 南宁市高新技术开发区高新五路5号   联 系 人: 干宁军   电 话: 0771-5887840   传 真: 0771-5856481   邮 编:530007   E-mail:gxzjs@gxqts.gov.cn   上述新增的食品添加剂生产许可检验机构检验范围见附表。   相关资料下载: 质检食监函[2011]179号附表.xls 食品添加剂品种名称 杭州市质量技术监督检测院(增补检验项目) 广西壮族自治区产品质量监督检验院 1.复配食品添加剂 ∨   2.食品添加剂 冰乙酸(冰醋酸)   ∨ 3.食品添加剂 氢氧化钠   ∨ 4.食品添加剂 焦磷酸二氢二钠   ∨ 5.食品添加剂 焦磷酸钠   ∨ 6.食品添加剂 磷酸   ∨ 7.食品添加剂 六偏磷酸钠   ∨ 8.食品添加剂 山梨酸钾   ∨ 9.食品添加剂 山梨糖醇液   ∨ 10.食品添加剂 碳酸钙   ∨ 11.食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法)   ∨ 12.食品添加剂 蔗糖脂肪酸酯 食品添加剂 蔗糖脂肪酸酯     食品添加剂 蔗糖脂肪酸酯(丙二醇法)     食品添加剂 蔗糖脂肪酸酯(无溶剂法)   ∨ 13.食品添加剂 三聚磷酸钠   ∨ 14.食品添加剂 磷酸氢二钠   ∨ 15.食品添加剂 磷酸二氢钠   ∨ 16.食品添加剂 液体二氧化碳   ∨ 17.食品添加剂 异麦芽酮糖   ∨
  • "3.15"来袭引爆韩企恐慌 一切让检测数据说话
    3月15日是“国际消费者权益日”,却让正与中国陷入“萨德”争执的韩国紧张不堪。来自《环球时报》的消息:韩联社14日称,韩国企业的紧张达到顶峰,中国中央电视台的“315晚会”可能瞄准韩国企业。韩国企业正担心成为中国消费者举报高发的重点。韩国的乐天超市、化妆品、旅行相关产品等很有可能成为“315晚会”攻击的靶子。韩国企业已经多次被“315”点名,2011年锦湖轮胎就被爆出质量问题,去年则有韩国产儿童用品因质量问题被曝光。  借“3.15”来临之际,本网编辑盘点了一下过去一年时间韩国产品因质量问题遭曝光事件,以及在相关产品质量问题调查过中可能所涉及到的标准/检测方法和仪器。  一、三星Note7手机爆炸  2016年三星Galaxy Note7手机发布一个多月,已在全球范围内发生三十多起因电池缺陷造成的爆炸和起火事故。国家工商总局、中国消费者协会就三星Note7手机“质量门”事件分别约谈三星公司。三星公司宣布永久性停产该手机,在多个国家组织召回,包括在中国大陆销售的全部SM—N9300 Galaxy Note7手机,委托第三方机构开展独立调查,公布调查结果,并向消费者道歉。最后官方声称自燃原因为电池,生产过程中一个罕见的错误导致电池正负极相触,造成电池过热。据称,三星 SDI 组建了超过 100 人的团队,设立研发、产品、质量检测三个部门,并引入X光探测流程,以对所有量产电池产品进行监测。同时,为提高产品质量,三星SDI还将引入第三方评测机构。  二、知名化妆品连续几年检出细菌超标  在国家质量监督检验检疫总局最新发布的《2017年1月未予准入的食品化妆品信息》中显示,共403批次产品因质量问题或标签不合格等原因而被拒绝入境。其中,化妆品类产品达43批次,兰芝旗下兰芝臻白净透保湿乳、兰芝水活力喷雾(保温修护)、兰芝水活力喷雾(舒润)共3批次产品因检出大量金黄色葡萄球菌违反了我国颁布的化妆品卫生标准被销毁处理。相关检测标准如下表所列。  公开资料显示,金黄色葡萄球菌是一种病菌,可引起严重感染。而此次涉及的三种护肤产品,在使用方法上均直接接触人类皮肤,长期使用后果堪忧。  据了解,兰芝并不是首次登上质检黑榜,早在2015年,国家质检总局公布的当年首批进口不合格化妆品黑名单中,一款韩国“兰芝”柔润凝亮修护眼霜因细菌总数超标40倍登上质检黑榜。事实上,除兰芝外,韩妆问题普遍存在。今年1月,国家质检总局公布2016年11月未予准入的食品和化妆品信息显示,共有19批次韩国化妆品登上黑榜,且均为韩国著名化妆品品牌旗下产品,近11吨相关产品被退货处理。  三、乐天糖果违规使用维生素E  2017年3月,青岛检验检疫局在对一批自韩国进口的名为“乐天酸奶味Q糖”的糖果检验时发现,该产品配料中违规使用维生素E,遂对其实施销毁处理。  据青岛检验检疫局工作人员介绍,根据GB2760-2014《食品安全国家标准 食品添加剂使用标准》和GB14880-2012GB《食品安全国家标准 食品营养强化剂使用标准》规定,维生素E不能用于该类产品。该批货物共计300纸箱、重600千克、货值5160美元。对于食品中的维生素E检测,现阶段国家标准规定和实验室广泛采用的方法主要是液相色谱法。  四、电烤脆鱼饼过量使用食品添加剂焦磷酸钠和磷酸三钠  2017年3月,有一批韩国产电烤脆鱼饼(共三种口味,合计36千克/378美元)。在对产品标签进行检验过程中发现,产品中使用的食品添加剂焦磷酸钠和磷酸三钠与我国食品添加剂使用标准(GB2760-2014)的要求不符,属超范围使用食品添加剂,大窑湾检验检疫局依法对上述货物实施销毁处理。现阶段我国质监部门主要采用电位滴定法和酸碱滴定法来检测食品添加剂焦磷酸钠和磷酸三钠。  五、热销项链铅含量超标699倍  2017年3月,浙江杭州出入境检验检疫局围绕消费热点对劣质产品进行了监督销毁。本次监督销毁的产品包括铅含量超标699倍的热销韩国饰品项链,相当于问题产品70%的原料为铅块。  目前针对饰品中铅含量的通用无损检测方法是:X射线荧光光谱分析法。  据了解,铅是已知毒性最大、累积性极强的重金属之一,长期蓄积于人体,会严重危害神经、造血系统及消化系统。  本次监督销毁的产品还涉及国际知名品牌服装等27款产品,共12779.2美元。经专业机构检验和检测,这些产品均有严重不合格现象,一旦流入市场进入消费者手中,将造成不同程度的健康损害。  六、坐便器安全标识与电气安全不合格  2016年12月,43批韩国产电子坐便器在中国质检总局不久前实施的监督抽查中,被检出不合格。据韩联社1月18日报道,韩国业界相关人士对此表示,坐便器质量不合格或与“萨德”有关。  中国质检总局指出主要不合格的原因为:安全标识不合格、电气安全不合格等。业界有关人士指出,中国从韩国大量进口电子坐便器,而最近中方提高了相关安全标准,因此不合格产品有所增加。  事实上,这已经不是第一次进口坐便器被检测出存在质量问题。据新民网2016年报道,早在去年6月进行的,主要涉及韩国、日本和我国台湾的,75批进口电子坐便器的抽查中,就发现42批不合格产品,不合格率高达52%。而其主要存在的问题和此次问题一样—其核心指标输入功率存在虚标、以及电气安全项目不合格的问题。  七、保健食品夸大宣传  2017年2月28日,韩国食药部(KFDA)发布对保健食品功能宣传夸大或不实专项检查结果。检查发现有5例违反了保健食品功能宣传要求,不合格产品涉及干燥酵母粉、婴儿保健食品和膳食用维生素等。食品中维生素A、D、E的国家标准测定方法是液相色谱法(见附件)。目前,韩国已对2个销售企业和3个生产企业进行了行政处罚。  正所谓“身正不怕影子歪”,韩企产品质量能否经受时间的考验是赢得消费者的关键。而以上盘点只是冰山一角,或许我们不能把质量问题的根本原因都归为对萨德事件的“报复”,一切让检测数据说话。GB 5009.82-2016 食品安全国家标准 食品中维生素A、D、E的测定.pdf
  • 岛津XRD应对游离氧化硅的解决方案
    1、认识游离二氧化硅游离二氧化硅是指没有与金属或金属氧化物结合而呈游离状态的二氧化硅。职业卫生领域所称的“游离二氧化硅”是专指结晶型二氧化硅。《作业场所中空气中粉 尘测定方法》(GB5748-85)中明确说明“游离二氧化硅指结晶型的二氧化硅”。 游离二氧化硅按晶体结构分为结晶型(crystalline)、隐晶型(crypto crystalline)和无定型(amorphous)三种。结晶二氧化硅的硅氧四面体排列规则,如石英、鳞石英,存在于石英石、花岗岩或夹杂于其他矿物内的硅石;隐晶型二氧化硅的硅氧四面体排列不规则,主要有玛瑙、火石和石英玻璃;无定型二氧化硅主要存在于硅藻土、硅胶和蛋白石、石英熔炼产生的二氧化硅蒸气和在空气中凝结的气溶胶中。 2、游离二氧化硅与矽肺的关系生产过程中因长期吸入含有游离SiO2粉尘达到一定量, 会引起以肺部组织纤维化为主的疾病,即矽肺病。是尘肺中进展速度快、严重并且常见和影响面广的一种职业病。游离二氧化硅粉尘---矽尘, 以石英为代表,其包含的游离SiO2含量可高达99%。不同晶体结构致肺纤维化能力大小为:结晶型隐晶型无定型;另外,石英有多种晶体结构, 如:鳞石英、α-石英、方英石、β-石英等,其致纤维化作用能力的大小为:鳞石英方石英石英柯石英超石英。 3、游离二氧化硅的测定方法目前中国和世界上多数国家都是以焦磷酸重量法作为分析粉尘中游离SiO2的基础方法,不过如果粉尘中含有无定型的二氧化硅,则无法使用焦磷酸检测粉尘中的游离二氧化硅(结晶二氧化硅)含量,而只能通过红外分光光度法和X射线衍射法来确定其中的游离二氧化硅的含量。红外分光光度法和X射线衍射法普遍适用于各种粉尘中游离二氧化硅(结晶二氧化硅)含量检测。这也是国际标准化组织(ISO)和美国国家职业安全卫生研究所(NIOSH)采用红外分光光度法、X射线衍射法测定分成中游离二氧化硅的原因。 部分XRD仪器相关的标准如下:4、岛津XRD应对方案岛津的X射线衍射仪XRD-6100/XRD-7000,秉承日本工匠精神,做工精良,操作简便,本质安全,维护成本低。针对游离氧化硅分析,可以提供专用的数据分析软件及环境样品台,非常适用于疾控预防中心、职业病防治中心、安全生产研究院等单位,完成游离氧化硅相关的测试项目。 参考文献:1. 桑圣凯,周文正等,粉尘中游离二氧化硅的几点思考,中国卫生产业,2017,09,1842. 中华人民共和国卫生部,GB5748-85 作业场所中空气中粉尘测定方法[S],北京:人民卫生出版社,19853. 孙贵范,职业卫生与职业医学[M],7 版,北京:人民卫生出版社,2012,173
  • 18种食品添加剂拟扩大使用范围和使用量
    卫生部8月12日发布通知,拟批准姜黄素等18种食品添加剂扩大使用范围及使用量。   其中包括腌渍蔬菜中使用的防腐剂脱氢乙酸钠、山梨酸钾 热凝固蛋制品中使用的水分保持剂焦磷酸钠、三聚磷酸钠、六偏磷酸钠 去皮、切块或切丝的蔬菜水果中使用的抗氧化剂抗坏血酸 糖果中使用的着色剂姜黄素、叶黄素以及焙烤食品中使用的着色剂葡萄皮红、栀子蓝等。   卫生部表示,公众可以于2010年9月10日前通过传真电话010-67711813或电子信箱gb2760@gmail.com,反馈意见。   18种拟批准扩大使用范围、使用量的食品添加剂 序号 名称 类别 食品分类号 食品名称/分类 最大使用量(g/kg) 备注 1. 葡萄皮红 着色剂 07.0 焙烤食品 2.0 2. 姜黄素 着色剂 05.02 糖果 0.7 3. 叶黄素 着色剂 05.02 糖果 0.15 4. 栀子蓝 着色剂 07.0 焙烤食品 1.0 5. 山梨酸钾 防腐剂 04.02.02.03 腌渍的蔬菜 1.0 6. 脱氢乙酸钠 防腐剂 04.02.02.03 腌渍的蔬菜 1.0 7. 微晶纤维素 稳定剂 01.05.01 稀奶油 按生产需要适量使用 8. 羧甲基纤维素钠 稳定剂 01.05.01 稀奶油 按生产需要适量使用 9. 焦磷酸钠 水分保持剂 10.03.02 热凝固蛋制品 5.0 单独使用或与六偏磷酸钠、三聚磷酸钠复配使用。 10. 三聚磷酸钠 水分保持剂 10.03.02 热凝固蛋制品 5.0 单独使用或与六偏磷酸钠、焦磷酸钠复配使用。 11. 六偏磷酸钠 水分保持剂 10.03.02 热凝固蛋制品 5.0 单独使用或与三聚磷酸钠、焦磷酸钠复配使用。 12. 麦芽糖醇 甜味剂01.02.02 调味和果料发酵乳 按生产需要适量使用 05.01 可可制品、巧克力和巧克力制品,包括类巧克力和代巧克力 11.04 餐桌甜味料 13. 山梨糖醇(液) 甜味剂 16.06 膨化食品 按生产需要适量使用 14. 柠檬酸 食品工业用加工助剂 02.01.01.01 植物油 2.0 15. L(+)-酒石酸 酸度调节剂 15.03.01 葡萄酒 4.0g/L 16. 普鲁兰多糖 增稠剂 03.0 冷冻饮品(除外03.04食用冰) 10.0 17. 乳铁蛋白 其他 01.02 发酵乳 1.0 01.01.02 调制乳 14.03.01 含乳饮料 18. 抗坏血酸 抗氧化剂 04.01.01.03 去皮或预切的鲜水果 5.0 04.02.01.03 去皮、切块或切丝的蔬菜
  • 谢晓亮:从单细胞研究到高通量测序
    2011年7月第八期《自然&mdash 方法学》刊登了Monya Baker撰写的一篇人物特写,详细介绍了在当期发表的论文 &ldquo Fluorogenic DNA sequencing in PDMS microreactors&rdquo 的主要作者哈佛大学谢晓亮教授的高通量测序技术。全文翻译如下:   在科学界,合情合理的实验也可能会出现令人吃惊的结果。当谈到他的实验室时,谢晓亮把他的主要研究分成三个领域:活体细胞中的动态基因表达研究,单分子酶学和免标记显微成像技术,而现在,又多了一个由于意外而诞生的新领域&mdash &mdash 高通量测序。   目前常见的测序技术&ldquo 焦磷酸测序&rdquo 是通过边合成DNA边测序实现的,当加入新三磷酸核苷酸时,荧光素酶水解三磷酸键所产生的能量会以光的形式发出,然而光信号转瞬即逝,需要检测系统能够灵敏地捕捉到这一瞬间的光信号。 另一种常见的技术是基于荧光的测序,相比之下,它可以产生一个稳定的光信号,但需要很多额外的化学修饰步骤才能产生荧光。在这篇Nature Method的文章中(指Sims, P.A., Greenleaf, W.J., Duan, H. & Xie, X.S.. Nat. Methods 8, 575&ndash 580 (2011).),谢晓亮和他的同事们推出了一种新型的测序技术,这种技术兼顾焦磷酸测序的简单流程和荧光检测的稳定信号,这使得高精确度并循环周期短的测序成为可能。   单分子荧光酶学的开端要追溯到十多年前,当时谢晓亮作为美国太平洋西北国家实验室的一位研究员,正在研究表征单个酶分子活性的方法,为此,他和同事曾应用过一个含有可发荧光的吖啶黄素基团的酶。那时,诸如 Helicos和Pacific Bioscience等公司也刚刚宣布了他们的DNA单分子测序计划。谢晓亮对把单分子酶学应用于DNA测序领域很感兴趣,但由于他已经在哈佛就职,这个想法仅仅被搁置于专利层面。&ldquo 我需要学着做个教授&rdquo ,谢晓亮说。   谢晓亮偶尔会尝试把基于荧光基团测序的想法推荐给一些研究生或博士后,但是年轻的科学家们通常不大敢尝试这一想法。&ldquo 提些建议对我来说是很容易的,因为我有很多项目,总有一些会成功的&rdquo ,谢晓亮解释道,&ldquo 但是对学生来说这是个很大的赌注,并不是所有人都敢于接受这种挑战。&rdquo 一位四年级的研究生Peter Sims听说了这个想法,当即接受了这个挑战,尽管当时他完全可以由单分子马达在活细胞的研究来获得学位。 Sims表示这种潜在的高通量测序激发了他的浓厚兴趣,但是对于所需的在核酸上修饰荧光基团的化学工作,他还没有经验。&ldquo 他当时刚刚涉足于此,才开始学习&rdquo ,谢晓亮说。谢晓亮和Sims共同商定了一个期限,如果Sims在此之前还没有获得显著的成绩,他就退回到原来的课题上,开始写毕业论文。   捕捉荧光信号就像成功产生荧光一样重要。在博士后William Greenleaf帮助下,他们解决了这个难题。&ldquo 微反应容器和荧光化学二者的结合,便是这项测序新技术的精髓。&rdquo 谢晓亮说。Greenleaf设法加工出了这些含有微反应容器的芯片,它是由可以重复密封的聚二甲基硅氧烷(PDMS)聚合物制成。谢晓亮说,没有这种材料,他的实验室的研究人员不可能做出这种尝试。&ldquo 我想把推广PDMS的功劳归于George Whitesides(George也在哈佛大学工作)&rdquo ,他说,&ldquo 基于PDMS我们才能够制作出各式各样的芯片上的实验室,而且他们真的很好用。&rdquo   但是研究进展并非一帆风顺。在后来的实验中,含有荧光基团的分子总是会扩散到PDMS 中或是产生一些不可信的伪信号。实验室的另一位成员段海峰加入了他们的小组,负责合成新型的荧光分子。此时,Sims和谢晓亮定下的期限也快到了,但他们仍没有做出很好的结果。   Sims和Greenleaf制定了另外一项计划,但是仅仅是对多拷贝的DNA测序而并非单分子测序。当时谢晓亮正在苏格兰出差,一天深夜他和Sims进行了一次电话长谈,讨论Sims是否应该退回到原来的项目来写毕业论文。谢晓亮回忆道: &ldquo 那真费了我好大一笔电话费。我说,&lsquo Peter,请你再想想,我们再尽快地尝试一下,如果你真的做到了,学术界将对你的毕业论文产生极大的兴趣。&rsquo &rdquo 几周后,他们果真拿到了数据,并且Sims在他的答辩中成功地阐述了这种测序方法。谢晓亮富有哲理地说:&ldquo 你开始一直在对着一堵墙作战,后来你稍微改变了方向,这就大不一样了&rdquo 。Sims也有另外的动机,他曾和谢晓亮开玩笑说,&ldquo 我做这个只是想毕业。&rdquo   虽然这项测序技术本身还是基于DNA扩增的,但谢晓亮希望它能为通用单细胞基因组测序提供一条道路。谢晓亮说:&ldquo 尽管我们的技术并不是我最初希望的DNA单分子检测,但它依然为单细胞中DNA单分子测序提供了可能。&rdquo
  • 赛恩思碳硫仪助力紫金锂元磷酸铁锂项目
    近日,赛恩思HCS-808型高频红外碳硫仪在紫金锂元磷酸铁锂项目投入使用。紫金锂元是紫金矿业投产的磷酸铁锂生产线,项目一期规划产能为2万吨/年,建成后产品将主要用于新能源汽车和储能利电子电池的正极材料。磷酸铁锂中碳、硫含量的差异会对材料本身的性能造成巨大的影响。例如,当磷酸铁锂材料中碳含量低时,材料中Fe2+被氧化的比例大,会造成样品纯度降低,而且电子导电率低导致充电电阻过大;但当磷酸铁锂材料中碳含量太高时,影响材料的振实密度,致使材料的克容量低;当硫含量达到一定程度时,对磷酸铁锂的颗粒形貌、放电容量和循环性能的影响逐渐明显。因此磷酸铁锂中的碳、硫含量的测试是必须进行的。当前对磷酸铁锂材料碳硫含量测试的主要的方法就是采用碳硫分析仪。四川赛恩思高频红外碳硫分析仪能够准确、快速、简便地检测出磷酸铁锂材料中的碳、硫含量。公司设备在多家锂电材料企业服役,产品获得客户的好评。
  • 卫生部公布18种扩大使用范围使用量食品添加剂名单
    近日,卫生部网站公布了葡萄皮红等18种食品添加剂扩大使用范围、使用量。名单如下:   18种扩大使用范围、使用量的食品添加剂 序号 食品添加剂名称 类别 使用范围 最大使用量(g/kg) 备注 食品名称/分类 食品分类号 1 葡萄皮红 着色剂 焙烤食品 07.0 2.0 2 姜黄素 着色剂 糖果 05.02 0.7 3 叶黄素 着色剂 糖果 05.02 0.15 4 栀子蓝 着色剂 焙烤食品 07.0 1.0 5 山梨酸钾 防腐剂 腌渍的蔬菜 04.02.02.03 1.0 6 脱氢乙酸钠 防腐剂 腌渍的蔬菜 04.02.02.03 1.0 7 微晶纤维素 稳定剂 稀奶油 01.05.01 按生产需要适量使用 8 羧甲基纤维素钠 稳定剂 稀奶油 01.05.01 按生产需要适量使用 9 焦磷酸钠 水分保持剂 热凝固蛋制品 10.03.02 5.0 单独使用或与六偏磷酸钠、三聚磷酸钠复配使用。 10 三聚磷酸钠 水分保持剂 热凝固蛋制品 10.03.02 5.0 单独使用或与六偏磷酸钠、焦磷酸钠复配使用。 11 六偏磷酸钠 水分保持剂 热凝固蛋制品 10.03.02 5.0 单独使用或与三聚磷酸钠、焦磷酸钠复配使用。 12 麦芽糖醇 甜味剂 调味和果料发酵乳 01.02.02 按生产需要适量使用 可可制品、巧克力和巧克力制品,包括类巧克力和代巧克力 05.01 餐桌甜味料 11.04 13 山梨糖醇(液) 甜味剂 膨化食品 16.06 按生产需要适量使用 14 柠檬酸 食品工业用加工助剂 植物油 02.01.01.01 2.0 15 L(+)-酒石酸 酸度调节剂 葡萄酒 15.03.01 4.0g/L 16 普鲁兰多糖 增稠剂 冷冻饮品(除外03.04食用冰) 03.0 10.0 17 乳铁蛋白 其他 发酵乳 01.02 1.0 调制乳 01.01.02 含乳饮料 14.03.01 18 抗坏血酸 抗氧化剂 去皮或预切的鲜水果 04.01.01.03 5.0 去皮、切块或切丝的蔬菜 04.02.01.03
  • 磷酸铁锂迎发展“第二春”,欧美克高性能激光粒度仪需求强劲
    近日,在北京召开的第七届中国电动汽车百人会论坛(2021)上,比亚迪股份有限公司董事长王传福表示,“按照规划,到2025年,我国新能源汽车新车销售量将达到汽车新车销售总量的20%左右。”这意味着接下来5年,新能源汽车行业年复合增长率将达37%以上。结合前期“特斯拉Model Y低价发售”、“宁德时代逼近万亿股价”、“蔚来包下宁德时代磷酸铁锂电池生产线!”等新闻发酵,不难发现随着磷酸铁锂电池以其低成本高安全性的优势在中低端市场不断渗透,特别是相关技术的进步也助推磷酸铁锂电池自2020年起重新扩展市场空间,其需求快速反转向上。中国汽车动力电池产业创新联盟日前发布的数据显示,2020年我国动力电池累计销量达65.9GWh,同比累计下降12.9%。其中,三元锂电池累计销售34.8GWh,同比累计下降34.4%;磷酸铁锂电池累计销售30.8GWh,同比累计增长49.2%,是唯一实现同比正增长产品。中信证券指出,目前,特斯拉、戴姆勒等海外新能源汽车主流企业均明确了磷酸铁锂电池技术路线,预计宝马、大众等其他海外车企也将在其动力电池技术路线中选择磷酸铁锂方案。而国内无论是宁德时代的CTP电池管理控制技术还是比亚迪的“刀片电池”,磷酸铁锂的高安全性助力了其在乘用车领域的回暖,都让磷酸铁锂电池开始经历第二春!伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂第二春的帷幕已然拉开,大规模的量产也必将刺激高性能激光粒度仪的市场需求。众所周知,激光粒度分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、导电剂、隔膜涂覆用氧化铝等材料的粒度测试。从大量的制浆经验以及行业交流反馈来看,诸如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)、镍钴锰酸锂(LiNiCoMnO2)和磷酸铁锂(LiFePO4)等多种不同的正极材料,通常采用中值粒径D50、代表大颗粒的D90作为关键质控指标。不同材料不同工艺的产品对原材料的粒径要求也不尽相同,以分布在1-20μm范围内居多。负极材料以石墨为例,当其平均粒径为16-18μm,且粒度分布较为集中时,电池有较好的初放容量及首次效率。此外,随着电池隔膜的厚度要求不断提高,对其中添加阻燃材料的粒径要求也随之不断提高,常使用的隔膜氧化铝粒径从微米级逐渐发展到亚微米甚至是纳米级。随着电池性能提高对原材料的粒度要求不断提高,激光粒度仪发挥着不可替代的作用,同时对粒度测量仪器的重复性、重现性、分辨能力提出了更高的要求。锂离子电池正、负极材料标准中的粒度分布要求激光粒度仪的高分辨能力在电池材料的检验中,对测试样本中少量的大颗粒或小颗粒的准确识别有着重要的意义。比如说在电池材料活性物质中如果存在少量的大颗粒,可能会对涂布、滚压造成负面影响。如果在原材料检测时就发现,则可以避免后续不良品的产生。另一个典型的例子是粒径过小的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外颗粒直径太小,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行粒度测试,在一定程度上有助于预判后续产品性能、防范风险… … 可见,电池性能的诸多方面都与正负极材料和隔膜材料等的粒径息息相关。欧美克Topsizer激光粒度分析仪对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高品质高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光信号都精确地聚焦获取,通过精准的独立探测器焦点曲面排布设计和一致性定位工装提高粒度仪分辨能力和仪器之间的重现性。欧美克Topsizer激光粒度分析仪和Topsizer Plus激光粒分析仪是在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克LS-609激光粒度分析仪而欧美克LS-609激光粒度分析仪就采用了先进的激光粒度仪散射光能探测的设计,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式精确放置于与其散射角相对应的傅立叶透镜焦点位置,以保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。我们以具体的电池材料样品来看欧美克激光粒度分析仪的测试性能对材料准确表征的案例。1. 欧美克Topsizer激光粒度仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于最终下游应用中电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常巨大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。2. 下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。由此可见高分辨能力和重现性的激光粒度分析仪在电池原材料粒度检测领域能带来更好的质控效益。正如中国科学院院士、中国电动汽车百人会副理事长欧阳明高所说,中国动力电池技术创新模式已经从政府主导向市场驱动转型,目前中国电池材料研究处于国际先进行列。而在中国动力电池的快速创新发展必然也离不开高分辨能力和重现性的激光粒度分析仪作为质控的好帮手。通过给动力电池行业提供更专业优化的粒度检测方案,欧美克激光粒度仪的行业销售也在持续高速增长。欧美克必将一如既往不断探索,与中国动力电池行业并行快速发展,携手创造中国奇迹,助力新能源引领世界美好未来!参考资料:1. 沈兴志,珠海欧美克仪器有限公司,《高性能激光粒度分析仪在电池材料测试中的应用》2. 经济日报,《第七届中国电动汽车百人会论坛举办》3. 腾讯网,《磷酸铁锂厂家齐涨价,2021年将回潮迎来“第二春”?》4. 中国证券报,《磷酸铁锂电池迎来发展“第二春” 2020年累计销售同比增长近
  • 2013食品国标制(修)订项目承担单位公布
    2013年5月2日,国家卫计委印发《2013年食品安全国家标准项目计划》的通知,通知中列出了所有2013年食品安全国家标准计划项目承担单位,全文如下:   国家卫计委关于印发《2013年食品安全国家标准项目计划》的通知   卫办监督函〔2013〕359号   各有关单位:   根据《食品安全法》和《食品安全国家标准管理办法》规定,我委在向社会公开征求意见的基础上制定了《2013年食品安全国家标准项目计划》,现印发给你们,请认真组织落实。有关工作要求如下:   一、填报项目委托协议书,及时落实食品安全国家标准项目计划   2013年食品安全国家标准计划项目承担单位应当填写《2013年食品安全国家标准制(修)订项目委托协议书》(可从卫生计生委网站http://www.moh.gov.cn下载),打印后由承担单位负责人签字并加盖单位公章(一式五份),于2013年5月20日前报送食品安全国家标准审评委员会秘书处(以下简称秘书处)。逾期未提交协议书的,视为自动放弃标准起草单位和起草人资格。秘书处对协议书进行审核后,于2013年5月31日前报送我委。   二、加强日常管理,确保食品安全国家标准项目及相关经费按时保质执行   (一)项目承担单位和项目负责人要加强食品安全国家标准制定、修订工作的管理,保证项目质量和进度,请于2013年12月30日前向秘书处提交工作中期进展报告和经费使用情况报告,于2014年6月30日前完成任务,向秘书处提交送审材料和经费决算报告。经费决算报告由财务负责人和单位负责人签字并加盖公章。   (二)未按期完成任务提交送审材料的,项目承担单位和项目负责人应当提交说明,并附经费使用情况报告,加盖单位公章后报秘书处。我委将视情况予以通报批评,并根据国家有关财经法规制度,对已拨付的项目经费采取追回等必要的处理措施。   (三)相关省(区、市)卫生厅(局、卫生计生委)、有关单位要支持并督促下属单位承担的项目工作,秘书处要督促检查项目执行情况,确保项 目计划整体进度。   2013050901.doc   2013年食品安全国家标准项目计划 序号 项目名称 制定/修订 建议承担单位 食品产品 1 藻类制品 修订 浙江省疾病预防控制中心 中国水产科学研究院 微生物检验方法 2 食品微生物检验采样与检样处理规程 修订 国家食品安全风险评估中心 理化检验方法 3 食品中B族和G族黄曲霉毒素的测定 修订 浙江省疾病预防控制中心 4 食品中M族黄曲霉毒素的测定 修订 浙江省疾病预防控制中心 食品添加剂质量规格 5 食品添加剂 4-己基间苯二酚 制定 中海油天津化工研究院 6 食品添加剂 冰结构蛋白 制定 中国食品添加剂和配料协会 7 食品添加剂 刺梧桐胶 制定 中国食品发酵工业研究院 上海市质量监督检验技术研究院 8 食品添加剂 甲基纤维素 制定 中国食品发酵工业研究院 9 食品添加剂 偏酒石酸 制定 天津科技大学 10 食品添加剂 植酸钠 制定 江西出入境检验检疫局 11 食品添加剂 羟基硬脂精 制定 中国食品发酵工业研究院 上海市食品添加剂行业协会 12 食品添加剂 海藻酸钠 修订 黄海水产研究所 中国海藻工业协会 13 食品添加剂 36项香料标准包括: 橙苷(柚皮甙提取物)、橙皮素、丁香花蕾油、根皮素、黄芥末提取物、可可酊、葡萄籽提取物、大蒜油、白兰花油、白兰叶油、红茶酊、玫瑰净油、杭白菊油、罗汉果酊、小花茉莉净油、树兰油、桂花净油、绿茶酊、椒样薄荷油、茶树油、香茅醛(合成)、香茅(精)油、麦芽酚、覆盆子酮(悬钩子酮)、丙酸苄酯、丁酸丁酯、异戊酸乙酯、苯甲酸乙酯、苯甲酸苄酯、2-甲基吡嗪、2,3-二甲基吡嗪、2,3,5-三甲基吡嗪、5-羟乙基-4-甲基噻唑、2-乙酰基噻唑、2,3,5,6-四甲基吡嗪、乙基香兰素 制定 国家食品安全风险评估中心 上海香料研究所 营养强化剂质量规格 14 维生素E琥珀酸钙 制定 广东出入境检验检疫局检验检疫技术中心 15 硝酸硫胺素 制定 景德镇出入境检验检疫局 16 维生素C磷酸酯镁 制定 中国食品添加剂和配料协会 17 生物素 制定 中国食品发酵工业研究院 18 氯化胆碱 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 19 葡萄糖酸亚铁 制定 江西省疾病预防控制中心 20 焦磷酸铁 制定 上海市质量监督检验技术研究院 21 柠檬酸亚铁 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 22 柠檬酸铁铵 制定 广西出入境检验检疫局检验检疫技术中心 23 柠檬酸苹果酸钙 制定 天津出入境检验检疫局动植物与食品检测中心 24 骨粉(超细鲜骨粉) 制定 江苏省疾病预防控制中心 天津科技大学 25 乳酸锌 制定江西省疾病预防控制中心 26 碳酸锌 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 27 亚硒酸钠 制定 张家港市产品质量监督检验所 28 硒蛋白 制定 湖北省疾病预防控制中心 29 富硒食用菌粉 制定 中国食品发酵工业研究院 中国食品添加剂和配料协会 30 L-硒-甲基硒代半胱氨酸 制定 江西省疾病预防控制中心 31 硒化卡拉胶 制定 中国食品添加剂和配料协会 32 富硒酵母 制定 中国食品发酵工业研究院 33 DHA(金枪鱼油) 制定 中国食品添加剂和配料协会 中国食品发酵工业研究院 34 葡萄糖酸锰制定 广东出入境检验检疫局检验检疫技术中心 35 葡萄糖酸铜 制定 广东出入境检验检疫局检验检疫技术中心 36 5’-单磷酸胞苷 制定 江苏省卫生监督所 37 乳铁蛋白 制定 中国食品发酵工业研究院 38 酪蛋白钙肽 制定 中国食品发酵工业研究院 中国食品添加剂和配料协会 39 海藻碘 制定 中国地方病协会 营养与特殊膳食食品 40 运动营养食品通则 修订 中国食品科学技术学会运动营养食品分会 41 孕产妇和乳母用营养补充品通用标准 制定 中国疾病预防控制中心营养与食品安全所 生产经营规范 42 食品用菌种生产卫生规范 制定国家食品安全风险评估中心 43 航空食品生产卫生规范 制定 中国航空运输协会航空食品委员会   国家卫生和计划生育委员会办公厅   2013年5月2日
  • 国家卫生健康委发布50项新食品安全国家标准
    近日,根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2021年第3号公告,发布50项新食品安全国家标准和4项修改单。本次公布的标准主要包括:《婴儿配方食品》(GB10765-2021)等3项营养与特膳食品标准、《干酪》(GB5420-2021)1项食品产品标准、《食品添加剂碳酸钠》(GB1886.1-2021)等38项食品添加剂质量规格标准、《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准、《食品中总酸的测定》(GB12456-2021)等4项检验方法与规程标准,以及《食品中污染物限量》(GB2762-2017)第1号修改单等4项修改单。上述食品安全国家标准的制定、修订符合法律法规规定,充分考虑群众健康权益,兼顾食品产业发展需求,参考国际相关法规和通行做法,为食品安全监管所需,标准制定、修订过程充分征求了社会各方意见并向世贸组织通报。为保障婴幼儿特殊人群健康,本次还修订了《婴儿配方食品》(GB10765-2021)《较大婴儿配方食品》(GB10766-2021)《幼儿配方食品》(GB10767-2021)等3项营养与特膳食品标准。制定修订并实施婴幼儿配方食品系列标准,是保障婴幼儿配方食品安全性、营养充足性的重要手段,是指导和规范食品生产企业科学生产的技术要求,是监管部门开展监管执法的重要依据。为做好标准实施解读,同时发布婴幼儿配方食品标准问答。 为加强食品安全全程控制,我委组织制定了《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准。其中,《餐(饮)具集中消毒卫生规范》(GB31651-2021)制定以规范餐饮具集中消毒服务单位生产经营行为,保证餐饮具卫生满足人民群众健康需求为目的,为加强餐饮具集中消毒的监督执法提供科学的技术依据。《即食鲜切果蔬加工卫生规范》(GB31652-2021)将进一步规范即食鲜切果蔬加工过程,促进行业健康发展,确保此类产品安全卫生,满足消费者对健康、便利生活的追求。《餐饮服务通用卫生规范》(GB31654-2021)是我国首部餐饮服务行业规范类食品安全国家标准,对于提升我国餐饮业安全水平,保障消费者饮食安全、适应人民群众日益增长的餐饮消费需求具有重要意义。《食品中黄曲霉毒素污染控制规范》(GB31653-2021)重点关注食品链中黄曲霉毒素的产生、消除、降低、控制等措施,对于加强黄曲霉毒素的过程控制,确保原料及下游产品食用安全具有重要意义。其编号和名称如下: GB5420-2021食品安全国家标准干酪 GB10765-2021食品安全国家标准婴儿配方食品 GB10766-2021食品安全国家标准较大婴儿配方食品 GB10767-2021食品安全国家标准幼儿配方食品 GB1886.1-2021食品安全国家标准食品添加剂碳酸钠 GB1886.3-2021食品安全国家标准食品添加剂磷酸氢钙 GB1886.302-2021食品安全国家标准食品添加剂聚乙二醇 GB1886.303-2021食品安全国家标准食品添加剂食用单宁 GB1886.315-2021食品安全国家标准食品添加剂胭脂虫红及其铝色淀 GB1886.316-2021食品安全国家标准 食品添加剂 胭脂树橙 GB1886.317-2021食品安全国家标准食品添加剂β- 胡萝卜素(盐藻来源) GB1886.318-2021食品安全国家标准食品添加剂 玉米黄 GB1886.319-2021食品安全国家标准食品添加剂沙棘黄 GB1886.320-2021食品安全国家标准食品添加剂葡萄糖酸钠 GB1886.321-2021食品安全国家标准食品添加剂索马甜 GB1886.322-2021食品安全国家标准食品添加剂可溶性大豆多糖 GB1886.323-2021食品安全国家标准 食品添加剂 花生衣红 GB1886.324-2021食品安全国家标准 食品添加剂 偏酒石酸 GB1886.325-2021食品安全国家标准食品添加剂聚偏磷酸钾 GB1886.326-2021食品安全国家标准食品添加剂酸式焦磷酸钙 GB1886.327-2021食品安全国家标准食品添加剂 磷酸三钾  GB1886.328-2021食品安全国家标准食品添加剂 焦磷酸二氢二钠 GB1886.329-2021食品安全国家标准食品添加剂 磷酸氢二钠 GB 1886.330-2021食品安全国家标准食品添加剂 磷酸二氢铵 GB1886.331-2021食品安全国家标准食品添加剂 磷酸氢二铵 GB1886.332-2021食品安全国家标准食品添加剂 磷酸三钙 GB1886.333-2021食品安全国家标准食品添加剂 磷酸二氢钙 GB1886.334-2021食品安全国家标准食品添加剂 磷酸氢二钾 GB1886.335-2021食品安全国家标准食品添加剂 三聚磷酸钠 GB1886.336-2021食品安全国家标准食品添加剂 磷酸二氢钠 GB1886.337-2021食品安全国家标准食品添加剂 磷酸二氢钾 GB1886.338-2021食品安全国家标准食品添加剂 磷酸三钠 GB1886.339-2021食品安全国家标准食品添加剂 焦磷酸钠 GB1886.340-2021食品安全国家标准食品添加剂 焦磷酸四钾 GB1886.341-2021食品安全国家标准食品添加剂 二氧化钛 GB1886.342-2021食品安全国家标准食品添加剂 硫酸铝铵 GB1886.343-2021食品安全国家标准 食品添加剂 L-苏氨酸 GB1886.344-2021食品安全国家标准食品添加剂DL-丙氨酸 GB1886.345-2021食品安全国家标准食品添加剂桑椹红 GB1886.346-2021食品安全国家标准食品添加剂柑橘黄 GB1886.347-2021食品安全国家标准食品添加剂4-氨基-5,6-二甲基噻吩并[2,3-d]嘧啶-2(1H)-酮盐酸盐 GB1886.348-2021食品安全国家标准食品添加剂焦磷酸一氢三钠 GB31651-2021食品安全国家标准 餐(饮)具集中消毒卫生规范 GB31652-2021食品安全国家标准 即食鲜切果蔬加工卫生规范 GB31653-2021食品安全国家标准 食品中黄曲霉毒素污染控制规范 GB31654-2021食品安全国家标准 餐饮服务通用卫生规范 GB12456-2021食品安全国家标准 食品中总酸的测定 GB31604.51-2021食品安全国家标准 食品接触材料及制品1,4-丁二醇迁移量的测定 GB31604.52-2021食品安全国家标准 食品接触材料及制品芳香族伯胺迁移量的测定 GB31655-2021食品安全国家标准 哺乳动物体内碱性彗星试验 GB1886.47-2016《食品安全国家标准食品添加剂天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)》第1号修改单 GB 1886.103-2015《食品安全国家标准食品添加剂微晶纤维素》第1号修改单 GB1886.169-2016《食品安全国家标准食品添加剂卡拉胶》第1号修改单 GB2762-2017《食品安全国家标准食品中污染物限量》第1号修改单
  • 从Q30到Q40——高通量测序技术正在发生变革吗?
    基因测序仪是解码生命科学的利器,因其技术壁垒高、开发难度大,市场长期被少数几家跨国企业垄断。近些年,基因测序仪市场格局正在快速发生变化,涌现出许多新企业并纷纷推出自主研发的商品化测序仪。基于此,仪器信息网特别策划“基因测序仪新势力”(点击查看约稿详情)专题,并向测序技术研究专家、测序仪应用专家和基因测序仪企业广泛约稿(投稿邮箱:lizk@instrument.com.cn),充分了解基因测序新企业、新仪器、新技术及新应用进展。本文将介绍测序仪新星企业Element Biosciences的Avidity(亲和力)测序技术。新一代测序,英文原文为Next Generation Sequencing,也常被简称为NGS测序,从技术的角度,通常是指一类通过将模版片段化之后进行扩增,然后进行大规模并行测序的技术。与其他测序技术相比,它可以显著提高测序通量,并大幅降低测序成本,所以也通常被称作高通量测序技术。NGS技术沿革自2005年454公司推出第一个商业化的高通量测序平台以来,高通量测序技术经历了长足的发展,应用范围也越来越广泛。454公司的测序平台基于焦磷酸(Pyrosequencing)测序技术,于2005年开始商业化发布,后该公司被罗氏(Roche)公司收购,但后续由于测序成本居高不下、操作复杂及精度的问题,目前已经停产。继罗氏454之后,Solexa公司也于2006年推出了基于边合成边测序(sequence by synthesis, SBS)的测序仪Genome Analyzer,后被美国Illumina公司收购。基于SBS原理的Illumina测序仪是目前全球市场占有率最高的测序平台。与Solexa同期的还有Applied Biosystems从Agencourt公司收购的基于SOLiD技术(Sequence By Oligo Ligation and Detection)的测序仪,后基于SOLiD技术的测序仪也因操作过于复杂,以及性能和价格缺乏竞争力而最终停产。Applied Biosystems被Invitrogen公司收购后组成的Life Technologies。2010年,Life Technologies又通过收购Ion Torrent继续在测序市场占有一席之地。2013年,ThermoFisher赛默飞收购Life Technologies。Ion Torrent测序平台的原理类似于焦磷酸测序,但它检测的不是焦磷酸,而是反应同时释放的氢离子。与罗氏454类似,Ion Torrent存在操作复杂、重复碱基读取精度受限、通量提升困难、测序成本过高的问题,虽然依托于赛默飞的支持与销售网络仍旧在测序市场占有一席之地,但由于技术限制,已经远非主流平台,有逐步淡出二代测序市场的趋势。目前,国内市场还有众多国产NGS平台先后面市,绝大部分均基于SBS的测序原理。Avidity(亲和力)测序技术引人注目随着技术的发展以及测序应用边界的不断拓展,近1-2年来也涌现出了更多新的测序技术,其中最引人注目的是Element Biosciences的Avidity(亲和力)测序技术。与SBS不同,亲和力测序的关键创新在于,它将检测掺入的核苷酸与延伸DNA模板分离开来。分离步骤可使每个过程独立优化,使得基于亲和力测序技术的Element AVITI系统成为成本更低、精度更高的DNA测序系统。多年以来,大家使用的测序仪基本的数据质量停留在Q30的标准,即碱基解读的准确性为99.9%,而亲和力测序可将测序质量提升到Q40(99.99%)标准,错误率降低近10倍!这无疑为测序行业带来了新的可能,有望重新塑造行业精度的标准。简单介绍下它的工作原理:PCR-Free的Polony生成亲和力测序可以兼容目前市场上的大部分建库试剂盒,可直接用线性文库加载到流动槽上,在流动槽表面捕获它们之后,仪器将自动将线性文库环化,然后模板的克隆拷贝通过环状循环扩增(RCA)来生成polonies,其中模板的多个拷贝存在于单个DNA多联体模版中。仅从原始模板复制还具有额外的好处,可以消除DNA测序中的一个重要错误来源——PCR。两份工作,两个步骤任何基于聚合酶的DNA测序方法都必须完成两项工作:• 检测核苷酸结合事件• 将DNA模版延伸到下一个位置SBS测序将这两个步骤锁定在一起。当一个染料标记的、带有阻断基团的核苷酸被添加到生长中的互补链中时,也同时完成了延伸步骤。共价结合为成像步骤产生持久的信号,但需要微摩尔试剂浓度来驱动反应在合理的时间范围内完成。通过亲和力测序,Element科学家发明了一种方法,通过分离这两个步骤,仅使用纳摩尔试剂浓度就可以创建稳定的复合物进行成像。亲和子(Avidites):低试剂成本和高数据准确性的关键亲和力是指多个非共价结合相互作用的相加强度,当多价配体与底物内的多个位点结合时,可以实现这种强度。亲和子分子重新构想了核苷酸是如何传递到聚合酶复合物中的,并利用了这一特性。它们是带有多个相同核苷酸的染料标记聚合物。在DNA聚合酶的存在下,亲和子分子在每个polony内与模板的多个拷贝形成高度稳定的复合物。亲和子分子与DNA聚合酶复合物的结合率与染料标记的单价核苷酸的结合率相似,但与单价核苷酸不同,即使在纳摩尔浓度下,在足够成像所需的1分钟时间尺度上也没有观察到解离。成像后,亲和子被移去,然后使用工程聚合酶和带有阻断基团、未标记的核苷酸延伸模版。图1显示了完整的亲和力测序周期。图1:Avidity(亲和力)测序除了能够降低试剂浓度(从而降低运行成本)外,亲和力测序比SBS更准确,在均聚物区域尤其具有优势(图2)。较高的准确性可能是几个因素的结果:• 使用工程高保真聚合酶• 多个核苷酸在单个亲和子上的协同结合,以确保只有正确的同源亲和子与polony结合• Polony内的非同期延伸的DNA拷贝由于缺乏其他非同期延伸的邻体作为亲合力底物,从而在结合上处于劣势图2:AVITI和NovaSeq在长度为12或更高的同源聚合物之前和之后读取的错配百分比。详细阐述亲和力测序原理和性能的文章发表在《Nature Biotechnology》上,可以参考原文,了解具体细节: https://www.nature.com/articles/s41587-023-01750-7 一项具有待开发潜力的新技术不同于已经发展了20多年且逐渐达到技术边界的SBS技术,亲和力测序是一项新技术,亲和子的模块化设计创造了多个独立的改进空间,使得这项技术具有更加广阔的潜力。聚合物核心、染料的数量和选择以及核苷酸连接体的长度和结构都可以并行优化,以增强信号、减少循环时间、降低试剂浓度,或调整测序反应的其他参数,以更好地适应不同的应用。根据其目前数据结果,相对SBS技术,它已经可以带来以下技术层面的提升:• 数据精度更高,可将数据质量从SBS测序的Q30(99.9%准确性)提升至Q40(99.99%),从而减少后续false candidates验证的压力• 显著降低SBS过程中PCR步骤所引入的duplication的比例,有效提升有效数据量,减少浪费• 大幅提升的2x300 bp读长的测序精度• 对于低diversity文库,比如甲基化测序,可以不添加平衡文库或仅需很少量的平衡文库即可进行测序• 兼具低成本和灵活通量两个特性,有多种可选flowcell以适应不同应用,无需凑样即可轻松开机,同时享受和外送工厂级测序服务接近的价格• 可兼容long-insert文库,从而提升变异recall比率• 对于基因组困难区域进行测序的能力,比如极大提升了重复连续碱基区域测序的精度,克服了SBS存在的问题Google AI DeepVariant的Andrew Carroll及其团队近期分享了使用Element Biosciences最新CloudBreak化学试剂的数据分析结果。具体信息可以参考原文:https://www.biorxiv.org/content/10.1101/2023.08.11.553043v1 Element AVITI测序仪的出现,不仅将测序质量带到了Q40的新标准,同时还解决了以往测序工作中存在的众多困难。同时,它可以台式平台的仪器,提供可以和高通量测序仪接近的测序成本,更是解决了目前困扰众多研究者的台式测序仪测序成本高昂的问题。测序性能的全面提升,由测序原理决定的试剂量节省而带来的测序成本的降低,这些都使得Element Biosciences成为有望颠覆目前测试市场格局的新品牌。今年9月,自AVITI推出后一年左右的时间,Element Biosciences宣布全球已经获得了超过100台订单,相信后续会看到越来越多提升测序性能为研究所带来的改变和新可能。
  • 赛恩思与国轩系携手,共筑磷酸铁锂高品质未来
    随着新能源领域的持续繁荣,磷酸铁锂——这一核心产品的质量监测变得尤为重要。近日,赛恩思工程师在国轩新能源(庐江)有限公司成功完成了高频红外碳硫仪的安装与调试工作,值得注意的是,这已是继宜春国轩电池有限公司之后,赛恩思为国轩系新能源公司提供的第二台碳硫仪。国轩新能源(庐江)有限公司为合肥国轩高科动力能源有限公司全资子公司,主营产品为磷酸铁锂、镍钴锰三元正极材料,位于新能源汽车产业基地(集群)产业链的上游(为新能源汽车关键零部件-动力电池的关键组成部分),是国家级高新技术企业。赛恩思与国轩系能源的再次合作,不仅仅是一次技术与产业的结合,更是对新能源未来的共同追求与期许。两者携手,一方面彰显了赛恩思在碳硫检测领域的技术实力,另一方面也展示了国轩系能源对于产品质量的坚持与不懈追求。期待这次合作能够为新能源产业质量把关,共同打造一个绿色、高效、可持续的未来。
  • “让红外光谱变的简单无忧”-创新100调研组走访天津市能谱科技有限公司
    为助力国产科学仪器发展,筛选和扶持一批优秀的科学仪器产品和企业,在中国仪器仪表行业协会、中国仪器仪表学会、北京科学仪器装备协作服务中心等单位的支持下,由仪器信息网主办、我要测网协办的“国产科学仪器腾飞行动”于2013年9月5日正式启动。  秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,筛选、挖掘一批具备自主创新能力的中小仪器厂商,通过公益性的报道、走访、调研、视频、线下座谈会等方式展现其基本情况,在企业发展的关键时期“帮一把”。  9月26日上午,“创新100”项目企业走访第18站,由中国仪器仪表行业协会高级顾问闫增序、中科院科技战略咨询研究院学部咨询研究支撑中心执行主任赵兰香、仪器信息网市场拓展部经理陈丽英等组成的走访调研组,来到天津市能谱科技有限公司(简称:能谱科技),深入了解这家初创企业的创新实力。能谱科技谢樟华总经理等热情接待了调研组一行。“创新100”调研组走访能谱科技  初衷:仪器销售自创品牌  谢樟华总经理等几个人最早曾从事实验室化学分析仪器的销售,也曾是某几个跨国外企在天津地区的签约代理商。“经销的年头做长了,总想有自己的产品和品牌。”几个技术负责人一拍即合,能谱科技于2014年应运而生,先后推出了傅立叶变换红外光谱仪、红外测油仪、紫外分光光度计、粉尘游离二氧化硅分析仪等系列产品,广泛应用于高校、科研单位、医药、化工、石化、煤炭、材料等行业。  能谱科技现有员工将近20人,每年在研发上的投入占比30%,业务遍布全国,并在华南、西南、华中设有办事处。公司积极与南开大学、天津大学等科研院校开展合作,仪器在制药、石油、环保、高分子材料等行业及第三方检测机构销量可观,典型用户有凯莱英天津生物制药有限公司、天津领航润滑油有限公司、云南龙润药业,中交建设集团等。能谱科技办公环境  产品:行业内做精做专  谢樟华表示:“我们想在一两款产品上稳扎稳打,产品种类不一定很多,但应用领域可覆盖环保,医疗,材料等各行业。”历经近三年的研发,能谱科技基于红外光谱精心打造了几款主打产品。  iCAN 9傅立叶变换红外光谱仪自主研发设计的智能人机交互,配备独特光源休眠模式,分腔式一体设计,干涉仪和接收器等部件单独防潮,独特配置湿度软件自动数字显示装置,系统自动优化功能。软件实时在线监测,保证仪器始终处于最佳工作状态,测试谱图更准确可靠。  iCAN 8便携式红外光谱仪重量仅为7Kg,采用高灵敏度DLATGS或液氮制冷MCT检测器,纯金刚石晶体ATR附件硬度大,可应用于环保气体、工业在线气体以未知物如违禁品、爆炸物的实时检测。可配移动电源,具有专业工具箱,适用于实验室和现场测试。  OIL4000B PLUS型全自动红外测油仪实现测油的过程全自动化,萃取等操作无须分析人员的参与,消除和四氯化碳的接触,可自动分离并收集吸附废液废水废气不更换管路器件长期使用。  电力和煤炭行业生产环境中粉尘的种类较多, 主要有矽尘、煤尘、锅炉尘、石棉尘、水泥尘、电焊烟尘等, 对接尘人员的危害较大。加强对粉尘中游离二氧化硅含量的检测以往检测采用“焦磷酸重量法”, 该方法存在操作步骤复杂、使用试剂种类繁多、检测周期长、准确性差、试验室条件要求苛刻等一系列问题, 难以满足现场批量检测的要求。2017年能谱科技在原来FC-2000D的基础上,又新推出FC-4000D粉尘中游离二氧化硅分析仪,测试速度由原来每个样品十分钟升级到10秒钟,精度也提高了一个数量级。产品获得多项国家专利证书,产品在中煤集团,华煤集团,龙煤集团,煤科院等单位得到广泛应用。参观产品  特色:初涉市场 细节暖心  能谱科技创立初衷:“让红外光谱变得简单无忧”,尽管成立已有近四年,但产品真正推向市场,还得从2017年算起。初来乍到如何树立典型用户,除了打磨产品,专业定制和及时反馈也成了能谱科技抢占市场的“法宝”。  红外光谱仪器可用于沥青样品检测,但瓶颈在于沥青的相似度有时高达99%,一般的谱图难以分辨。为此,能谱科技专门开发了一套沥青分析系统,根据算法能找出沥青样品间最细微的差别,从而判定沥青是否掺假甚至推断品牌。正因如此,东北某公路段项目一口气购买了能谱科技6台设备,打开了仪器在沥青领域的销售。  唐山三孚硅业股份有限公司以制造四氯化硅等化工产品著称。四氯化硅不能接触空气和水,一旦发生泄漏,会引发人体不适并危害四周环境。为安全检测样品,唐山三孚联系市面上多家红外光谱仪器公司,但都无法做到“交钥匙”工程。能谱科技为此专门开发了一套进样系统,定制衬聚四氟乙烯池子和防泄漏系统,不仅解决了唐山三孚的“燃眉之急”,更吸引业内4-5家同类企业前来购买。  浙江有客户要测滤棉中硅油含量,常规方法需要预处理且耗时过长,借用核磁和能谱仪等其他手段一两百万的价格又太贵。能谱科技采用红外+ATR方法轻松解决,几秒出具结果,快速分析里面是否含油和含油高低。谢樟华介绍了多个类似的案例:“客户提的要求只要不是非常为难,我们都会尽力满足,这对我们也是一种提升。”  红外光谱解析通过数据库自动检索分析,进口谱图价格高昂,不是一般的单位所能购买的起,能谱科技专门研发一套谱图分析数据系统,用户可依据特征系数和特征峰匹配度自由检索,便于剖析未知样品成分,大大节约了客户的采购成本。  愿景:做“正三角形企业”  数据显示,国内红外光谱市场一年的销售量大约800台,国产仪器销售额占比不到10%,高端红外基本由进口品牌掌控。纵观红外光谱市场,国产厂商任重而道远。谢樟华坦言,研发投入、团建创建、渠道拓展、品牌认知度提升、行业典型用户的建立都是能谱科技当前面临的挑战。  不过他也是补充,能谱科技将以创新为引领,依托本地市场,把家门口的“战役”打好,以天津辐射全国乃至全球,加大产品的出口力度。在打好常规红外市场的基础上,重视油品、中药、聚合物、沥青、珠宝、化工分析等行业客户的崛起。公司将不断研发新产品,通过开发出更多优质附件,提升设备的附加价值。  能谱科技专注于傅里叶红外光谱仪与红外测油仪的整体解决方案。产品线的逐步完善,使能谱科技确定走“全产业链”模式,把产业链的每一个环节做透、做精、做细,做研发、生产、销售三位一体互相支撑的“正三角形企业”。
  • 商机!天津理工大学拟1552万采购多种仪器设备
    p   近日,天津理工大学对焦磷酸测序仪等设备采购进行公开招标。项目金额1552万,涉及焦磷酸测序仪,影像测量仪,双微焦斑单晶衍射仪等多种仪器设备,欢迎相关供应商投标。 /p p   部分项目信息及产品要求如下: /p p   项目名称:焦磷酸测序仪等设备 /p p   项目编号:JG2018-132 /p p   项目内容: br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/b4dfb792-06e4-48bf-9940-733972618f8b.jpg" title=" 企业微信截图_20181012.png" alt=" 企业微信截图_20181012.png" width=" 562" height=" 528" style=" width: 562px height: 528px " / /p p   项目预算:1552.1万元 /p p   投标截止时间:2018-10-24 09:30 /p p   开标时间: 2018-10-24 09:30 /p p   开标地点: 天津市河东区万新村八区嵩山道72号天津市教育委员会教学仪器设备供应中心。 /p p   采购代理机构名称:天津市教育委员会教学仪器设备供应中心 /p p   项目联系人:刘刈 /p p   项目联系方式:022-24710333 /p p   附件: /p p style=" line-height: 16px "    img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201810/attachment/89d270aa-310f-42f5-b5eb-272ae8b88cb8.doc" title=" 公开招标文件(JG2018-132理工).doc" 公开招标文件(JG2018-132理工).doc /a /p
  • 【阿拉丁】连接子 - 抗体与药物结合的关键因素
    连接子 - 抗体与药物结合的关键因素抗体-药物偶联物(Antibody-drug conjugate, ADC)结合了抗体的高特异性和小分子药物的强细胞毒性。这种组合结合了抗体的独特和非常敏感的目标能力,可以区分健康组织和癌组织。它还具有细胞毒性药物的细胞杀伤能力,可能最大限度地减少剂量限制性毒性,同时最大限度地提高所需的治疗效果。ADC的主要优点是可以在体循环中作为药物使用,最终在靶肿瘤细胞中释放游离药物。在这一过程中,连接子在释放有效药物靶向肿瘤细胞,决定ADC的药代动力学特性、治疗指标和选择性,甚至整体成功方面发挥着关键作用。目前使用的连接子可分为可切割连接子和不可切割连接子两大类,它们之间的区别在于它们在细胞内是否会被降解。一、用于连接的可切割连接ADC连接子的主要类别是可切割连接子。可切割连接子被设计为对细胞外和细胞内环境差异(pH、氧化还原电位等)表现出化学不稳定性,或者可以被特定的溶酶体酶切割。在大多数情况下,这种连接子被设计成在键断裂后释放有效载荷分子。这种无迹可循的药物释放机制使研究人员能够根据已知的游离有效载荷的药理学参数估计共轭有效载荷的细胞毒性。2.1 可切割接头的类型可裂解接头腙是一种酸不稳定基团,当ADC被转运到核内体(pH 5.0-6.0)和溶酶体(pH约4.8)时,它被用作可切割的连接子,通过水解释放游离药物。组织蛋白酶B响应连接子组织蛋白酶B是一种溶酶体蛋白酶,在多种癌细胞中过表达,参与人类许多致癌过程。组织蛋白酶B的底物范围相对较广,但它优先识别某些序列,如苯丙氨酸-赖氨酸(Phe-Lys)和缬氨酸-瓜氨酸(Val-Cit)。这种序列的c端切割肽键。Val-Cit和Val-Ala连接物偶联p -氨基苄氧羰基(Val-Cit- pabc和Val-Ala- pabc)是adc最成功的可切割连接物。PABC片段使自由有效载荷分子以无迹方式释放。双硫键连接子谷胱甘肽敏感连接子是另一种常见的裂解连接子,其策略依赖于细胞质中较高浓度的还原分子(如谷胱甘肽)(1-10 mmol/L)。二硫键嵌入在连接子中,在循环中抵抗还原性裂解。然而,内化后,大量细胞内谷胱甘肽减少二硫键,释放自由有效载荷分子。为了进一步提高循环中的稳定性,通常在二硫键旁边安装一个甲基。焦磷酸二酯连接子该阴离子连接子具有比传统连接子更高的水溶性和优良的循环稳定性。此外,在内化后,焦磷酸二酯通过内核体-溶酶体途径快速裂解,释放未修饰的有效载荷分子。图1. 可切割连接子。(Kyoji Tsuchikama & Zhiqiang An. 2018)二、不可切割的连接子不可切割连接子由稳定的键组成,抵抗蛋白质水解降解,确保比可切割连接子更高的稳定性。不可切割连接子依赖于细胞质和溶酶体蛋白酶对ADC抗体成分的完全降解,并最终释放与降解抗体衍生的氨基酸残基连接的有效载荷分子。与可切割连接子相比,不可切割连接子的最大优点是其等离子体稳定性增强,与可切割连接子相比,这可能提供更大的治疗窗口。此外,与可切割的偶联物相比,它有望降低脱靶毒性,因为不可切割的adc可以提供更大的稳定性和耐受性。图2. 不可切割的连接子。不可切割连接的化学稳定性可以承受蛋白质水解降解。单抗的细胞质/溶酶体降解可以释放与降解的单抗衍生氨基酸残基相连的有效载荷分子。(Kyoji Tsuchikama & Zhiqiang An. 2018)三、总结结论保证游离药物在肿瘤细胞内的特异性释放是选择Linker的最终目的。该连接子对ADC的稳定性、毒性、PK特性和药效学等具有重要意义。每个环节都有其优点和缺点。在选择连接子时,必须考虑许多因素,包括单克隆抗体和细胞毒性药物中的现有基团、反应性基团和衍生功能基团。最后,需要通过个案分析确定如何优化选择合适的连接物、靶点和毒性分子,平衡ADC药物的有效性和毒性。表1. 连接子类型及优缺点比较参考文献1. Kyoji Tsuchikama & Zhiqiang An. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein & Cell. 2018 9:33-46.2. Jun Lu. Feng Jiang. Aiping Lu. and Ge Zhang. Linkers Having a Crucial Role in Antibody–Drug Conjugates. Int J Mol Sci. 2016 Apr 17(4):561.3. Monteiro Ide P, Madureira P, de Vasconscelos A, Pozza DH, de Mello RA. Targeting HER family in HER2-positive metastatic breast cancer: potential biomarkers and novel targeted therapies. Pharmacogenomics. 2015 16(3):257-71.阿拉丁提供相关产品,详情请见阿拉丁官网:Linkers - A Crucial Factor in Antibody–Drug Conjugates (aladdin-e.com)
  • 盘点:分子诊断常用技术50年的沿革与进步
    一、基于分子杂交的分子诊断技术  上世纪60年代至80年代是分子杂交技术发展最为迅猛的20年,由于当时尚无法对样本中靶基因进行人为扩增,人们只能通过已知基因序列的探针对靶序列进行捕获检测。其中液相和固相杂交基础理论、探针固定包被技术与cDNA探针人工合成的出现,为基于分子杂交的体外诊断方法进行了最初的技术储备。  (一)DNA印迹技术(Southernblot)  Southern于1975年发明了DNA印迹技术,通过限制性内切酶将DNA片段化,再以凝胶电泳将长度不等的DNA片段进行分离,通过虹吸或电压转印至醋酸纤维膜上,再使膜上的DNA变性与核素标记的寡核苷酸探针进行分子杂交,经洗脱后以放射自显影鉴别待测的DNA片段-探针间的同源序列。这一方法由于同时具备DNA片段酶切与分子探针杂交,保证了检测的特异性。因此,一经推出后便成为探针杂交领域最为经典的分子检测方法,广为运用于各种基因突变,如缺失、插入、易位等,及与限制性酶切片段长度多态性(restrictionfragment length polymorphism,RFLP)的鉴定中。Alwine等于1977年推出基于转印杂交的Northernblot技术也同样成为当时检测RNA的金标准。  (二)ASO反向斑点杂交(allele-specificoligonucleotide reverse dot blot,ASO-RDB)  使用核酸印迹技术进行核酸序列的杂交检测具有极高的特异性,但存在操作极为繁琐,检测时间长的缺点。1980年建立的样本斑点点样固定技术则摆脱了传统DNA印迹需要通过凝胶分离技术进行样本固定的缺点。通过在质粒载体导入单碱基突变的方法,构建了首条等位基因特异性寡核苷酸探针(allele-specificoligonucleotide,ASO),更使对核酸序列点突变的检测成为可能。1986年,Saiki[3]首次将PCR的高灵敏度与ASO斑点杂交的高特异性结合起来,实现了利用ASO探针对特定基因多态性进行分型。其后为了完成对同一样本的多个分子标记进行高通量检测,Saiki[4]又发明了ASO-RDB,通过将生物素标记的特异性PCR扩增产物与固定于膜上的探针杂交显色,进行基因分型、基因突变的检测。该法可将多种寡核苷酸探针固定于同一膜条上,只需通过1次杂交反应,即可筛查待检样本DNA的数十乃至数百种等位基因,具有操作简单、快速的特点,一度成为基因突变检测、基因分型与病原体筛选最为常用的技术。  (三)荧光原位杂交(fluorescencein situ hybridization,FISH)  FISH源于以核素标记的原位杂交技术,1977年Rudkin首次使用荧光素标记探针完成了原位杂交的尝试。在上世纪8090年代,细胞遗传学和非同位素标记技术的发展将FISH推向临床诊断的实践应用。相比于其它仅针对核酸序列进行检测的分子诊断技术,FISH结合了探针的高度特异性与组织学定位的优势,可检测定位完整细胞或经分离的染色体中特定的正常或异常DNA序列 由于使用高能量荧光素标记的DNA探针,可实现多种荧光素标记同时检测数个靶点。  如今,FISH已在染色体核型分析,基因扩增、 基因重排、病原微生物鉴定等多方面中得到广泛应用。通过比较基因组杂交(comparativegenomic hybridization,CGH)与光谱核型分析(spectralkaryotyping,SKY)等FISH衍生技术,使其正在越来越多的临床诊断领域中发挥作用。  (四)多重连接探针扩增技术(multiplexligation-dependent probe amplification,MLPA)  MLPA技术于2002年由Schouten等[6]首先报道。每个MLPA探针包括2个荧光标记的寡核苷酸片段,1个由化学合成,1个由M13噬菌体衍生法制备 每个探针都包括1段引物序列和1段特异性序列。在MLPA反应中,2个寡核苷酸片段都与靶序列进行杂交,再使用连接酶连接2部分探针。连接反应高度特异,只有当2个探针与靶序列完全杂交,连接酶才能将2段探针连接成1条完整的核酸单链 反之,如果靶序列与探针序列不完全互补,即使只有1个碱基的差别,就会导至杂交不完全,使连接反应无法进行。连接反应完成后,用1对荧光标记的通用引物扩增连接好的探针,每个探针扩增产的长度都是唯一的。最后,通过毛细管电泳分离扩增产物,便可对把核酸序列进行检测。由于巧妙地借鉴了扩增探针的原理,MLPA技术最多可在1次反应中对45个靶序列的拷贝数进行鉴定。  该技术具备探针连接反应的特异性与多重扩增探针杂交的高通量特性。经过MRC-Holland公司10余年的发展,MLPA技术已成为涵盖各种遗传性疾病诊断、药物基因学多遗传位点鉴定、肿瘤相关基因突变谱筛查、DNA甲基化程度定量等综合分子诊断体系,是目前临床最为常用的高通量对已知序列变异、基因拷贝数变异进行检测的方法。  (五)生物芯片  1991年Affymetrix公司的Fordor[7]利用其所研发的光蚀刻技术制备了首个以玻片为载体的微阵列,标志着生物芯片正式成为可实际应用的分子生物学技术。时至今日,芯片技术已经得到了长足的发展,如果按结构对其进行分类,基本可分为基于微阵列(microarray)的杂交芯片与基于微流控(microfluidic)的反应芯片2种。  1.微阵列芯片  (1)固相芯片:微阵列基因组DNA分析(microarray-basedgenomic DNA profiling,MGDP)芯片:将微阵列技术应用于MGDP检测中已有超过十年的历史,其技术平台主要分为2类,即微阵列比较基因组杂交(array-basedcomparative genome hybridization,aCGH)和基因型杂交阵列(SNParray)。顾名思义,aCGH芯片使用待测DNA与参比DNA的双色比对来显示两者间的拷贝数变异(CNV)的变化,而单核苷酸多态性(singlenucleotide polymorphism,SNP)芯片则无需与参比DNA进行比较,直接通过杂交信号强度显示待测DNA中的SNP信息。随着技术的不断进步,目前市场上已出现可同时检测SNP与CNV的高分辨率混合基因阵列芯片。MGDP芯片主要应用于发育迟缓、先天性异常畸形等儿童遗传病的辅助诊断及产前筛查。经验证,使用MGDP芯片进行染色体不平衡检测与FISH的诊断符合率可达100%,表达谱芯片(geneexpression profiling array,GEParray):1999年,Duggan等首次使用cDNA芯片绘制了mRNA表达谱信息。随着表观遗传学在疾病发生发展中的作用日益得到重视,目前也已出现microRNA芯片、长链非编码RNA(longnoncoding RNA,lncRNA)芯片等。类似于MGDP芯片,GEP芯片使用反转录后生成的cDNA文库与固定于芯片载体上的核酸探针进行杂交,从而检测杂交荧光信号的强度判断基因的表达情况。  相较于基因组杂交,GEP芯片对生物学意义更为重要的转录组信息进行检测,对疾病的诊断与预后判断具有特殊的意义。目前使用GEP芯片对急性髓细胞白血病、骨髓增生异常综合征等血液病及神经退行性变等进行诊断、分类及预后评估已经获得了令人满意的效果   (2)液相芯片:传统固相芯片将检测探针锚定于固相载体上捕获目的序列,而Luminex公司的xMAP技术则通过搭配不同比例的2种红色荧光染料,将聚苯乙烯微球标记为不同的荧光色,并对其进行编码得到具有上百种荧光编号的微球。通过xTAG技术将不同的特异性杂交探针交联至编码微球上,使得不同的探针能够通过微球编码得以区分。利用混合后的探针-微球复合物与待测样本进行杂交,使微球在流动鞘液的带动下通过红绿双色流式细胞仪,其中红色激光检测微球编码,绿色荧光检测经杂交后核酸探针上荧光报告基团的信号强度,一次完成对单个样本中多种靶序列的同时鉴定。目前,该技术已在囊性纤维化等遗传性疾病诊断、多种呼吸道病毒鉴定及人乳头瘤病毒分型取得了广泛的应用。  2.微流控芯片  1992年Harrison等首次提出了将毛细管电泳与进样设备整合到固相玻璃载体上构建“微全分析系统”的构想,通过分析设备的微型化与集成化,完成传统分析实验室向芯片上实验室(lab-on-chip)的转变。微流控芯片(microfluidicchip)由微米级流体的管道、反应器等元件构成,与宏观尺寸的分析装置相比,其结构极大地增加了流体环境的面积/体积比,以最大限度利用液体与物体表面有关的包括层流效应、毛细效应、快速热传导和扩散效应在内的特殊性能,从而在1张芯片上完成样品进样、预处理、分子生物学反应、检测等系列实验过程。  目前使用微流控芯片进行指导用药的多基因位点平行检测是主要临床应用领域。  二、核酸序列测定  测序反应是直接获得核酸序列信息的唯一技术手段,是分子诊断技术的一项重要分支。虽然分子杂交、分子构象变异或定量PCR技术在近几年已得到了长足的发展,但其对于核酸的鉴定都仅仅停留在间接推断的假设上,因此对基于特定基因序列检测的分子诊断,核酸测序仍是技术上的金标准。  (一)第1代测序  1975年Sanger与Coulson发表了使用加减法进行DNA序列测定的方法,随后Maxam在1977年提出了化学修饰降解法的模型,为核酸测序时代的来临拉开了序幕。  Sanger等于同年提出的末端终止法(Sanger测序法)利用2' 与3' 不含羟基的双脱氧核苷三磷酸(ddNTP)进行测序引物延伸反应,ddNTP在DNA合成反应中不能形成磷酸二酯键,DNA合成反应便会终止。如果分别在4个独立的DNA合成反应体系中加入经核素标记的特定ddNTP,则可在合成反应后对产物进行聚丙烯酰胺凝胶电泳(polyacrylamidegel electrophoresis,PAGE)及放射自显影,根据电泳条带确定待测分子的核苷酸序列。AppiedBiosystems公司在Sanger法的基础上,于1986年推出了首台商业化DNA测序仪PRISM 370A,并以荧光信号接收和计算机信号分析代替了核素标记和放射自显影检测体系。该公司于1995年推出的首台毛细管电泳测序仪PRISM 310更是使测序的通量大大提高。Sanger测序是最为经典的一代测序技术,仍是目前获取核酸序列最为常用的方法。  (二)第2代测序  1.焦磷酸测序(Pyro-sequencing)  不同于Sanger测序法所使用的合成后测序理念,Ronaghi分别于1996年与1998年提出了在固相与液相载体中通过边合成边测序的方法-焦磷酸测序。其基本原理是利用引物链延伸时所释放的焦磷酸基团激发荧光,通过峰值高低判断与其相匹配的碱基数量。由于使用了实时荧光监测的概念,焦磷酸测序实现了对特定位点碱基负荷比例的定量,因此在SNP位点检测、等位基因(突变)频率测定、细菌和病毒分型检测方面应用广泛。由于荧光报告原理不同,其对于序列变异的检测灵敏度从Sanger测序的20%提高到了5%。但由于该技术的仪器采购与单次检测成本较高,目前尚未得到大规模的临床使用。  2.高通量第2代测序  目前常见的高通量第二代测序平台主要有Roche454、IlluminaSolexa、ABISOLiD和LifeIon Torrent等,其均为通过DNA片段化构建DNA文库、文库与载体交联进行扩增、在载体面上进行边合成边测序反应,使得第1代测序中最高基于96孔板的平行通量扩大至载体上百万级的平行反应,完成对海量数据的高通量检测。该技术可以对基因组、转录组等进行真正的组学检测,在指导疾病分子靶向治疗、绘制药物基因组图谱指导个体化用药、感染性疾病的病原微生物宏基因组鉴定及通过母体中胎儿DNA信息进行产前诊断等方面已经取得了喜人的成绩。然而,由于该技术需要对DNA进行片段化处理,测序反应读长较短(如Solexa与SOLiD系统单次读长仅50bp),需要对数据进行大规模拼接,因此对分子诊断工作者掌握生物信息学知识提出了更高要求,以利于后期的测序数据分析。  (三)第3代测序  第3代测序技术的核心理念是以单分子为目标的边合成边测序。该技术的操作平台目前主要有Helicos公司的Heliscope、PacificBiosciences公司的SMRT和OxfordNanopore Technologies公司的纳米孔技术等。该技术进一步降低了成本,可对混杂的基因物质进行单分子检测,故对SNP、CNV的鉴定更具功效。但是目前其进入产品商业化,并最终投入临床应用仍有很长的距离。  三、基于分子构象的分子诊断技术  (一)变性梯度凝胶电泳(denaturinggradient gel electrophoresis,DGGE)与单链构象多态性(singlestrand conformation polymorphism,SSCP)  1970~1980年间,Fischer等与Orita等分别提出了利用核酸序列变异所导至双链变性条件差异与单链空间折叠差异,通过变性与非变性PAGE对变异序列进行分离鉴定的方法,即DGGE与SSCP。上述2项技术均通过变异核酸分子在空间构象上的差异,通过特定条件下电泳速率的变化进行检测。正因为核酸分子构象具有序列特异性,且对于序列的改变非常敏感,常常1个碱基的变化也能得到鉴定。但由于DGGE与SSCP均必须进行PCR后开盖电泳的操作,现已不常见于临床检测。  (二)变性高效液相色谱(denaturinghigh-performance liquid chromatography,dHPLC)  1997年,Oefner和Underhill建立了利用异源双链变性分离变异序列、使用色谱洗脱鉴定的技术,称为dHPLC,可自动检测单碱基置换及小片段核苷酸的插入或缺失。对于存在一定比例变异序列的核酸双链混合物,其经过变性和复性过程后,体系内将出现2种双链:一种为同源双链,由野生正义链-野生反义链或变异正义链-变异反义链构成的核酸双链 另一种为异源双链,即双链中1条单链为野生型,而另1条为变异型。由于存在部分碱基错配的异源双链DNA与同源双链DNA的解链特征不同,在相同的部分变性条件下,异源双链因存在错配区而更易变性,被色谱柱保留的时间短于同源双链,故先被洗脱下来,从而在色谱图中表现为双峰或多峰的洗脱曲线。由于该技术使用了较高分析灵敏度的色谱技术进行检测,可快速检出5%负荷的变异序列。但需注意的是,由于该技术主要通过异源双链进行序列变异检测,其不能明显区分野生型与变异型的纯合子。  (三)高分辨率熔解分析(high-resolutionmelting analysis,HRMA)  2003年,Wittwer等首次革命性地使用过饱和荧光染料将PCR产物全长进行荧光被动标记,再通过简单的产物熔解分析对单个碱基变化进行鉴定。该技术的原理也是通过异源双链进行序列变异鉴定。待测样本经PCR扩增后,若存在序列变异杂合子,则形成异源双链,其熔解温度大大下降。此时由于双链被饱和染料完全填充,其产物熔解温度的变化便可通过熔解曲线的差异得以判定。对于变异纯合子而言,HRMA也可利用其较高的分辨率完成PCR产物单个位点A:T双键配对与G:C三建配对热稳定性差异的鉴定,但是对于Ⅱ、Ⅲ类SNP的纯合子变异则无法有效区分。  如何利用DNA构象对序列进行推测,从而避免成本较高的序列测定或操作繁琐的杂交反应一直是分子生物学研究与应用的热点问题。目前,使用构象变化对序列变异进行间接检测的便捷性已得到一致肯定,尤其是HRMA可完成对变异序列单次闭管的扩增检测反应。但需要注意的是,由于基于构象变化的分子检测手段多无法通过探针杂交或核酸序列测定对检测的特异性进行严格的保证,因此其只适合大规模的初筛,而真正的确诊仍需要进行杂交或测序的验证。  四、定量PCR(quantitativePCR,qPCR)  相比于其他分子诊断检测技术,qPCR具有2项优势,即核酸扩增和检测在同一个封闭体系中通过荧光信号进行,杜绝了PCR后开盖处理所带来扩增产物的污染 同时通过动态监测荧光信号,可对低拷贝模板进行定量。正是由于上述技术优势,qPCR已经成为目前临床基因扩增实验室接受程度最高的技术,在各类病毒、细菌等病原微生物的鉴定和基因定量检测、基因多态性分型、基因突变筛查、基因表达水平监控等多种临床实践中得到大量应用。但伴随着qPCR技术的迅猛发展,有关这项技术的质量管理问题也日益突出,如何消除各类生物学变量所引起的检测变异,减少或抑制实验操作与方法学中的各种干扰因素是qPCR技术面临的难题。  (一)实时荧光定量PCR(real-timePCR)  1.双链掺入法  1992年Higuchi等通过在PCR反应液中掺入溴乙锭对每个核酸扩增热循环后的荧光强度进行测定,提出了使用荧光强度与热循环数所绘制的核酸扩增曲线,定量反应体系中初始模板的反应动力学(real-timePCR)模型,开创了通过实时闭管检测荧光信号进行核酸定量的方法。核酸染料可以嵌入DNA双链,且只有嵌入双链时才释放荧光,在每1次的扩增循环后检测反应管的荧光强度,绘制荧光强度-热循环数的S形核酸扩增曲线,以荧光阈值与扩增曲线的交点在扩增循环数轴上的投影作为循环阈值(Cyclethreshold,Ct),则Ct与反应体系中所含初始模板数量呈负指数关系,推断初始模板量。随后Morrison[22]提出了使用高灵敏度的双链染料SYBR GreenI进行反应体系中低拷贝模板定量的方法。这一方法操作简便,但由于仅使用扩增引物的序列启动核酸扩增,其产物特异性无法得到充分保证。虽然在实时荧光定量PCR反应后可通过熔解曲线对产物特异性进行检验,但其特异性明显逊于使用荧光探针进行检测,因此双链掺入法并未在临床实践中得到认可。  2.Taqman探针  由于双链掺入法存在特异性较低的问题,1996年Heid[23]综合之前发现的Taq酶的5' 核酸酶活性与荧光共振能量转移(fluorescenceresonance energy transfer,FRET)探针的概念提出了使用Taqman探针进行qPCR的方法。TaqMan探针的本质是FRET寡核苷酸探针,在探针的5' 端标记荧光报告基团,3' 端标记荧光淬灭基团,利用Taq酶具有5' 3' 外切酶活性,在PCR过程中水解与靶序列结合的寡核苷酸探针,使荧光基团得以游离,释放荧光信号。从而使能够与靶序列杂交的探针在扩增过程中释放荧光,通过real-timePCR的原理对其进行定量。由于其超高的特异性与成功的商品化推广,Taqman探针已经成为目前临床使用最为广泛的qPCR方法,其在各种病毒基因定量检测、基因分型、肿瘤相关基因表达检测等方面具有着不可替代的地位。  3.分子信标  同样在1996年,Tyagi等提出了使用分子信标(moleuclarbeacons)进行qPCR的方法,分子信标是5' 与3' 端分别标记有荧光报告基团与淬灭基团的寡核苷酸探针,其两端具有互补的高GC序列,在qPCR反应液中呈发夹结构,荧光基团与淬灭基团发生荧光共振能量转移(FRET)而保持静息状态。当PCR反应开始后,茎环结构在变性高温条件下打开,释放荧光 在退火过程中,靶序列特异性探针则与模板杂交保持线性,不能与模板杂交的探针则复性为茎环结构而荧光淬灭,通过检测qPCR体系中退火时的荧光信号强度,便可以real-timePCR原理特异性检测体系中的初始模板浓度。相比于Taqman探针,分子信标使用发卡结构使荧光基团与淬灭基团在空间上紧密结合,大大降低了检测的荧光背景,其检测特异性较Taqman探针更高,更适合等位基因的分型检测。  4.双杂交探针  1997年,Wittwer等发表了使用分别标记荧光供体基团与荧光受体基团的2条相邻寡核苷酸探针进行qPCR的方法。双杂交探针所标记的供体基团和受体基团的激发光谱间具有一定重叠,且2条探针与靶核酸的杂交位置应相互邻近。仅当2条探针与靶基因同时杂交时,供体与受体基因得以接近,从而通过FRET发生能量传递,激发荧光信号,荧光信号强度与反应体系中靶序列DNA含量呈正比。由于使用了2条探针进行靶序列杂交,该方法的特异性比传统单探针检测体系得到了极大地提升。  (二)数字PCR  早在上世纪90年代就出现了使用微流控阵列对单次qPCR反应进行分散检测的概念。基于这一理念,Vgelstein与Kinzter于1999年发表了数字PCR(digitalPCR)的方法,对结肠癌患者粪便中的微量K-RAS基因突变进行了定量。相比于传统的qPCR方法,数字PCR的核心是将qPCR反应进行微球乳糜液化,再将乳糜液分散至芯片的微反应孔中,保证每个反应孔中仅存在≤ 1个核酸模板。经过PCR后,对每个微反应孔的荧光信号进行检测,存在靶核酸模板的反应孔会释放荧光信号,没有靶模板的反应孔就没有荧光信号,以此推算出原始溶液中待测核酸的浓度。因此,数字PCR是1种检测反应终点荧光信号进行绝对定量的qPCR反应,而非以模板Ct值进行核酸定量的real-timePCR。  经由Quantalife公司开发(已于2011年被BIO-RAD收购)的微滴式数字PCR是首款商品化的数字PCR检测系统,目前已被广泛运用于微量病原微生物基因检测、低负荷遗传序列鉴定、基因拷贝数变异与单细胞基因表达检测等多个临床前沿领域。与传统qPCR相比较,该技术具有超高的灵敏度与精密度,使其成为目前qPCR领域的新星。  五、对未来5年的展望  半个世纪以来分子诊断的高速发展离不开分子生物学技术日新月异的进步。概而言之,在过去的50年中分子诊断技术取得了三大转化与3项提升:即报告信号检测从放射核素标记向荧光标记转化,操作方法由手工操作向全自动化转化,检测分析通量从单一标志物向高通量多组学联合判断转化 检测灵敏度、精密度、特异性的快速提升。  在未来5年中,我国分子诊断事业将迎来两方面的进步。随着卫生监管部门对分子诊断重要性的认识不断深入与越来越多高学历、高素质人才的进入,分子诊断将会出现理念的革命性进步,高通量技术将更多的进入临床的实际应用中。随着技术的进一步发展,传统针对特定基因异常、病原微生物感染鉴定的方法学,也将在检测的各项分析性能与操作便捷程度上取得长足的进步。对于传统人力与时间成本较高的检测方法学,将出现两极分化的态势,即Southern等经典的检测金标准将得到保留 而ASO-RDB等灵敏度、特异性均不能满足实际临床需求的方法将快速被新型技术所取代。最终,分子诊断也必将一改目前仅仅用于病原微生物基因检测与部分遗传性疾病诊断的局面,形成由肿瘤学、遗传学、微生物学、药物基因组学四足鼎立,快速发展的景象。
  • 食品添加剂“零添加”也不等于更安全!
    超市不少食品包装都标注“零添加”“不添加合成着色素、不添加增味剂”等字样,也因此收获了不少消费者的青睐。但不得不说,“无添加”其实很大程度含有“忽悠”的成分。“零添加”顾名思义,就是没有任何添加剂。但仔细想想,现代社会中可能吗?有的商家包装上醒目地标注“零添加”的食品,实质上却是有添加的,所谓“零添加”有时只不过是商家宣传的一种手段,不仅损害消费者知情权,而且扰乱了食品市场竞争秩序。事实上,食品添加剂并不是妖魔鬼怪。越是发达的国家地区使用食品添加剂的品种就越多。目前在美国允许使用的食品添加剂高达4000多种,而我国只有2000多种,其中包含1000多种香料。其实,合法、适量地使用食品添加剂,不仅无碍健康,还会让食品保鲜、增加口感。反之,即便真的“零添加”,也不等于一定安全。如果没有防腐剂的发明,我们还停留在吃腐烂变质食物的年代,因为可能无法抑制食品中微生物的繁殖,导致食品容易变质。目前为止,全世界食品安全最大的隐患仍是食源性疾病。所以说食品添加剂不是不能添加,相反它是食品生产加工行业不可获缺的一部分。只要按照国家标准进行合理合量不超限量添加就可以保障食品安全。对食品添加剂的使用必须严格监管,违规使用,严厉打击,确保安全。深芬仪器食品添加剂多功能检测仪能够快速检测二氧化硫,亚硫酸盐,溴酸钾,磷酸盐,靛蓝,亮蓝,胭脂红,焦磷酸盐,焦磷酸二氢钠,三聚磷酸盐等多种食品添加剂含量的超限量使用或者有毒有害添加剂的非法添加。适用于政府执法部门、食品生产企业、消费者等进行检测自检。
  • 赛恩思碳硫仪牵手磷酸铁锂企业七星光电
    近年来新能源产业发展迅猛,四川赛恩思仪器已与多家新能源企业开展合作。近日,又一台HCS-801型碳硫仪在一家磷酸铁锂厂家---攀枝花七星光电科技正式投入使用。我公司HCS-878和HCS-801两代产品服务于同一公司。攀枝花七星光电科技有限公司现已建成并投产5000吨/年磷酸铁锂生产线,为国内规模前列的磷酸铁锂生产线,占全国40%的市场份额,可向全球客户提供多规格碳酸锂、氢氧化锂、氯化锂、金属锂、锂辉石及相关衍生产品。赛恩思HCS-801高频红外碳硫仪可检测产品的原料及成品的碳、硫含量,协助客户把关其产品质量。 碳、硫含量的差异会对磷酸铁锂材料本身的性能造成巨大的影响。利用高频红外碳硫仪对其进行碳、硫含量的测定是一种高效、便捷的方法。四川赛恩思HCS-801型高频红外碳硫仪测试数据准确,操作便捷,每小时可测量60个以上样品。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 93个与仪器及检测相关国家标准将在8月份实施——涉及质谱、光谱等多款仪器应用
    93个与仪器及检测相关国家标准将在8月份实施——涉及质谱、光谱等多款仪器应用为了方便仪器及检测使用者查看8月份即将实施的标准,我们继续整理了8月份将要实施的那些国家标准。在8月份实施的标准中共有93个标准与我们仪器及检测相关,这些实施的标准涉及食品安全、环境环保健康安全、医疗卫生、冶金、能源和热传导工程、建筑、电信、机械、石油化工等。在8月份即将实施的标准中,食品安全相关标准有40多项将实施,占据了近半壁江山;其次是冶金标准,也有20多项将要实施;环境环保健康安全也不容我们忽视,也有14项标准将实施。具体如下,需要的可以收藏。8月份将要实施的食品安全国家标准列表GB 12456-2021 食品安全国家标准 食品中总酸的测定 GB 1886.1-2021 食品安全国家标准 食品添加剂 碳酸钠 GB 1886.302-2021 食品安全国家标准 食品添加剂 聚乙二醇 GB 1886.303-2021 食品安全国家标准 食品添加剂 食用单宁 GB 1886.315-2021 食品安全国家标准 食品添加剂 胭脂虫红及其铝色淀 GB 1886.316-2021 食品安全国家标准 食品添加剂 胭脂树橙 GB 1886.317-2021 食品安全国家标准 食品添加剂 β-胡萝卜素(盐藻来源) GB 1886.318-2021 食品安全国家标准 食品添加剂 玉米黄 GB 1886.319-2021 食品安全国家标准 食品添加剂 沙棘黄 GB 1886.320-2021 食品安全国家标准 食品添加剂 葡萄糖酸钠 GB 1886.3-2021 食品安全国家标准 食品添加剂 磷酸氢钙 GB 1886.321-2021 食品安全国家标准 食品添加剂 索马甜 GB 1886.322-2021 食品安全国家标准 食品添加剂 可溶性大豆多糖 GB 1886.323-2021 食品安全国家标准 食品添加剂 花生衣红 GB 1886.324-2021 食品安全国家标准 食品添加剂 偏酒石酸 GB 1886.325-2021 食品安全国家标准 食品添加剂 聚偏磷酸钾 GB 1886.326-2021 食品安全国家标准 食品添加剂 酸式焦磷酸钙 GB 1886.327-2021 食品安全国家标准 食品添加剂 磷酸三钾 GB 1886.328-2021 食品安全国家标准 食品添加剂 焦磷酸二氢二钠 GB 1886.329-2021 食品安全国家标准 食品添加剂 磷酸氢二钠 GB 1886.330-2021 食品安全国家标准 食品添加剂 磷酸二氢铵 GB 1886.331-2021 食品安全国家标准 食品添加剂 磷酸氢二铵 GB 1886.332-2021 食品安全国家标准 食品添加剂 磷酸三钙 GB 1886.333-2021 食品安全国家标准 食品添加剂 磷酸二氢钙 GB 1886.334-2021 食品安全国家标准 食品添加剂 磷酸氢二钾 GB 1886.335-2021 食品安全国家标准 食品添加剂 三聚磷酸钠 GB 1886.336-2021 食品安全国家标准 食品添加剂 磷酸二氢钠 GB 1886.337-2021 食品安全国家标准 食品添加剂 磷酸二氢钾 GB 1886.338-2021 食品安全国家标准 食品添加剂 磷酸三钠 GB 1886.339-2021 食品安全国家标准 食品添加剂 焦磷酸钠 GB 1886.340-2021 食品安全国家标准 食品添加剂 焦磷酸四钾 GB 1886.341-2021 食品安全国家标准 食品添加剂 二氧化钛 GB 1886.342-2021 食品安全国家标准 食品添加剂 硫酸铝铵 GB 1886.343-2021 食品安全国家标准 食品添加剂 L-苏氨酸 GB 1886.344-2021 食品安全国家标准 食品添加剂 DL-丙氨酸 GB 1886.345-2021 食品安全国家标准 食品添加剂 桑椹红 GB 1886.346-2021 食品安全国家标准 食品添加剂 柑橘黄 GB 1886.347-2021 食品安全国家标准 食品添加剂 4-氨基-5,6-二甲基噻吩并[2,3-d]嘧啶-2(1H)-酮盐酸盐 GB 1886.348-2021 食品安全国家标准 食品添加剂 焦磷酸一氢三钠 GB 31604.51-2021 食品安全国家标准 食品接触材料及制品 1,4-丁二醇迁移量的测定 GB 31604.52-2021 食品安全国家标准 食品接触材料及制品 芳香族伯胺迁移量的测定 GB/T 10784-2020 罐头食品分类 8月份将要实施的环境环保健康安全标准列表GB 15892-2020 生活饮用水用聚氯化铝 GB 8999-2021 电离辐射监测质量保证通用要求 GB/T 39874-2021 疑似毒品中溴西泮检验 气相色谱和气相色谱-质谱法 GB/T 39875-2021 疑似毒品中氯氮卓检验 气相色谱和气相色谱-质谱法 GB/T 39876-2021 疑似毒品中可卡因检验 气相色谱和气相色谱-质谱法 GB/T 39877-2021 疑似毒品中地西泮检验 气相色谱和气相色谱-质谱法 GB/T 39878-2021 疑似毒品中艾司唑仑检验 气相色谱和气相色谱-质谱法 GB/T 39879-2021 疑似毒品中鸦片五种成分检验 气相色谱和气相色谱-质谱法 GB/T 39880-2021 疑似毒品中美沙酮检验 气相色谱和气相色谱-质谱法 GB/T 39881-2021 疑似毒品中安眠酮检验 气相色谱和气相色谱-质谱法 GB/T 39882-2021 疑似毒品中二亚甲基双氧安非他明检验 气相色谱和气相色谱-质谱法 GB/T 39883-2021 疑似毒品中吗啡检验 气相色谱和气相色谱-质谱法 GB/T 39884-2021 疑似毒品中大麻三种成分检验 气相色谱和气相色谱-质谱法 GB/T 39885-2021 疑似毒品中三唑仑检验 气相色谱和气相色谱-质谱法 8月份将要实施的医疗卫生标准列表GB 28234-2020 酸性电解水生成器卫生要求 GB 8965.1-2020 防护服装 阻燃服 8月份将要实施的冶金标准列表GB 39176-2020 稀土产品的包装、标志、运输和贮存 GB/T 10573-2020 有色金属细丝拉伸试验方法 GB/T 11094-2020 水平法砷化镓单晶及切割片 GB/T 13587-2020 铜及铜合金废料 GB/T 1531-2020 铜及铜合金毛细管 GB/T 2072-2020 镍及镍合金带、箔材 GB/T 20928-2020 无缝内螺纹铜管 GB/T 20975.17-2020 铝及铝合金化学分析方法 第17部分:锶含量的测定 GB/T 20975.21-2020 铝及铝合金化学分析方法 第21部分:钙含量的测定 GB/T 20975.6-2020 铝及铝合金化学分析方法 第6部分:镉含量的测定 GB/T 23518-2020 钯炭 GB/T 26017-2020 高纯铜 GB/T 26291-2020 舰船用铜镍合金无缝管 GB/T 26300-2020 镍钴锰三元素复合氢氧化物 GB/T 26302-2020 热管用铜及铜合金无缝管 GB/T 2969-2020 氧化钐 GB/T 3131-2020 锡铅钎料 GB/T 34609.2-2020 铑化合物化学分析方法 第2部分:银、金、铂、钯、铱、钌、铅、镍、铜、铁、锡、锌、镁、锰、铝、钙、钠、钾、铬、硅含量的测定 电感耦合等离子体原子发射光谱法 GB/T 4423-2020 铜及铜合金拉制棒 GB/T 5230-2020 印制板用电解铜箔 GB/T 8151.22-2020 锌精矿化学分析方法 第22部分:锌、铜、铅、铁、铝、钙和镁含量的测定 波长色散X射线荧光光谱法 GB/T 8151.23-2020 锌精矿化学分析方法 第23部分:汞含量的测定 固体进样直接法 GB/T 8760-2020 砷化镓单晶位错密度的测试方法 8月份将要实施的能源和热传导工程标准列表GB 39177-2020 电压力锅能效限定值及能效等级 8月份将要实施的建筑标准列表GB/T 11968-2020 蒸压加气混凝土砌块 GB/T 11969-2020 蒸压加气混凝土性能试验方法 GB/T 15762-2020 蒸压加气混凝土板 GB/T 40052-2021 防腐胶合板 8月份将要实施的电信标准列表GB/T 15972.42-2021 光纤试验方法规范 第42部分:传输特性的测量方法和试验程序 波长色散 GB/T 21548-2021 光通信用高速直接调制半导体激光器的测量方法 GB/T 33779.3-2021 光纤特性测试导则 第3部分:有效面积(Aeff) 8月份将要实施的机械标准列表GB/T 39785-2021 服务机器人 机械安全评估与测试方法 8月份将要实施的是石油化工标准列表GB/T 39824-2021 溶液中染料相对强度的测定 8月份将要实施的试验标准列表GB/T 39990-2021 颗粒 生物气溶胶采样器 技术条件 8月份将要实施的其他标准列表GB/T 15000.7-2021 标准样品工作导则 第7部分:标准样品生产者能力的通用要求目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!扫码安装仪器信息网APPAPP端可免费下载各种标准、仪器操作使用手册、谱图等资源。
  • 卫生部发布97项食品安全国家标准
    据卫生部网站报道,根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查,现发布《食品添加剂琼脂(琼胶)》(GB1975-2010)等97项食品安全国家标准。   97项食品安全国家标准目录 GB 1975-2010 食品添加剂 琼脂(琼胶) GB 1900-2010 食品添加剂 二丁基羟基甲苯(BHT) GB 3150-2010 食品添加剂 硫磺 GB 4479.1-2010 食品添加剂 苋菜红 GB 4481.1-2010 食品添加剂 柠檬黄 GB 4481.2-2010 食品添加剂 柠檬黄铝色淀 GB 6227.1-2010 食品添加剂 日落黄 GB 7912-2010 食品添加剂 栀子黄 GB 8820-2010 食品添加剂 葡萄糖酸锌 GB 8821-2010 食品添加剂 β-胡萝卜素 GB 12487-2010 食品添加剂 乙基麦芽酚 GB 12489-2010 食品添加剂 吗啉脂肪酸盐果蜡 GB 13481-2010 食品添加剂 山梨醇酐单硬脂酸酯(司盘60) GB 13482-2010食品添加剂 山梨醇酐单油酸酯(司盘80) GB 14750-2010 食品添加剂 维生素A GB 14751-2010 食品添加剂 维生素B1(盐酸硫胺) GB 14752-2010 食品添加剂 维生素B2(核黄素) GB 14753-2010 食品添加剂 维生素B6(盐酸吡哆醇) GB 14754-2010 食品添加剂 维生素C(抗坏血酸) GB 14755-2010 食品添加剂 维生素D2(麦角钙化醇) GB 14756-2010 食品添加剂 维生素E(dl-α-醋酸生育酚) GB 14757-2010 食品添加剂 烟酸 GB 14758-2010 食品添加剂 咖啡因 GB 14759-2010 食品添加剂 牛磺酸 GB 14888.1-2010 食品添加剂 新红 GB 14888.2-2010 食品添加剂 新红铝色淀 GB 15570-2010 食品添加剂 叶酸 GB 15571-2010 食品添加剂 葡萄糖酸钙 GB 17512.1-2010 食品添加剂 赤藓红 GB 17512.2-2010 食品添加剂 赤藓红铝色淀 GB 17779-2010 食品添加剂 L-苏糖酸钙 GB 25531-2010 食品添加剂 三氯蔗糖 GB 25532-2010 食品添加剂 纳他霉素 GB 25533-2010 食品添加剂 果胶 GB 25534-2010 食品添加剂 红米红 GB 25535-2010 食品添加剂 结冷胶 GB 25536-2010 食品添加剂 萝卜红 GB 25537-2010 食品添加剂 乳酸纳(溶液) GB 25538-2010 食品添加剂 双乙酸钠 GB 25539-2010 食品添加剂 双乙酰酒石酸单双甘油酯 GB 25540-2010 食品添加剂 乙酰磺胺酸钾 GB 25541-2010 食品添加剂 聚葡萄糖 GB 25542-2010 食品添加剂 甘氨酸(氨基乙酸) GB 25543-2010 食品添加剂 L-丙氨酸 GB 25544-2010 食品添加剂DL-苹果酸 GB 25545-2010 食品添加剂 L(+)-酒石酸 GB 25546-2010 食品添加剂 富马酸 GB 25547-2010 食品添加剂 脱氢乙酸钠 GB 25548-2010 食品添加剂 丙酸钙 GB 25549-2010 食品添加剂 丙酸钠 GB 25550-2010 食品添加剂 L-肉碱酒石酸盐 GB 25551-2010 食品添加剂 山梨醇酐单月桂酸酯(司盘20) GB 25552-2010 食品添加剂 山梨醇酐单棕榈酸酯(司盘40) GB 25553-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温 60) GB 25554-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温 80) GB 25555-2010 食品添加剂 L-乳酸钙 GB 25556-2010 食品添加剂 酒石酸氢钾 GB 25557-2010 食品添加剂 焦磷酸钠 GB 25558-2010 食品添加剂 磷酸三钙 GB 25559-2010 食品添加剂 磷酸二氢钙 GB 25560-2010 食品添加剂 磷酸二氢钾 GB 25561-2010 食品添加剂 磷酸氢二钾 GB 25562-2010 食品添加剂 焦磷酸四钾 GB 25563-2010 食品添加剂 磷酸三钾 GB 25564-2010 食品添加剂 磷酸二氢钠 GB 25565-2010 食品添加剂 磷酸三钠 GB 25566-2010 食品添加剂 三聚磷酸钠 GB 25567-2010 食品添加剂焦磷酸二氢二钠 GB 25568-2010 食品添加剂 磷酸氢二钠 GB 25569-2010 食品添加剂 磷酸二氢铵 GB 25570-2010 食品添加剂 焦亚硫酸钾 GB 25571-2010 食品添加剂 活性白土 GB 25572-2010 食品添加剂 氢氧化钙 GB 25573-2010 食品添加剂 过氧化钙 GB 25574-2010 食品添加剂 次氯酸钠 GB 25575-2010 食品添加剂 氢氧化钾 GB 25576-2010 食品添加剂 二氧化硅 GB 25577-2010 食品添加剂 二氧化钛 GB 25578-2010 食品添加剂 滑石粉 GB 25579-2010 食品添加剂 硫酸锌 GB 25580-2010 食品添加剂 稳定态二氧化氯溶液 GB 25581-2010 食品添加剂 亚铁氰化钾(黄血盐钾) GB 25582-2010 食品添加剂 硅酸钙铝 GB 25583-2010 食品添加剂 硅铝酸钠 GB 25584-2010 食品添加剂 氯化镁 GB 25585-2010 食品添加剂 氯化钾 GB 25586-2010 食品添加剂 碳酸氢三钠(倍半碳酸钠) GB 25587-2010 食品添加剂 碳酸镁 GB 25588-2010 食品添加剂 碳酸钾 GB 25589-2010 食品添加剂 碳酸氢钾 GB 25590-2010 食品添加剂 亚硫酸氢钠 GB 25591-2010 食品添加剂 复合膨松剂 GB 25592-2010 食品添加剂 硫酸铝铵 GB 25593-2010 食品添加剂 N,2,3-三甲基-2-异丙基丁酰胺 GB 25594-2010 食品工业用酶制剂 GB 25595-2010 乳糖 GB 25596-2010 特殊医学用途婴儿配方食品通则
  • 布鲁克红外测定不同浓度的粉尘中游离二氧化硅
    游离二氧化硅粉尘俗称矽尘,是工业界广泛存在的职业有害因素,长期接触矽尘引起的矽肺是最我国目前最为严重的职业病,据2006年卫生统计报告,我国累积矽肺患者约为尘肺的半数,大约30余万例。矽肺是尘肺中最严重、最多见、报告最早、研究最多、病理改变基本清楚的一种尘肺,而且也是我国乃至全球发病率和死亡率最高的一种尘肺病。矽尘的准确识别和检测是矽肺病预防与控制的重中之重。因此,分析粉尘中的游离二氧化硅含量成为疾病预防与职业卫生监测工作的重要工作内容之一。 根据中华人民共和国国家职业卫生标准GBZ/T 192.4 2007《工作场所空气中粉尘测定 第 4 部分:游离二氧化硅含量》,工作场所空气中粉尘游离二氧化硅含量的测定方法有三种,第一法是焦磷酸法,第二法是红外光谱法,第三法是X线衍射法。 焦磷酸法为手工称重操作,对实验人员的操作水平要求较高,且实验繁琐。而且据《中华职业医学》和国外有关文献中指出: 矽肺是长期吸入结晶型游离二氧化硅造成的。第二法是红外光谱法,其原理是利用 α-石英(结晶型)在红外光谱中于12.5μm (800 cm-1) 、12.8μm ( 780 cm-1 ) 及14.4μm (694 cm-1) 处出现特异性强的吸收带,在一定范围内,其吸光度值与α-石英质量成线性关系,通过测量其吸光度进行定量测定。当待测物是结晶型二氧化硅时(如石英粉尘),两种方法测定的结果是一致的,但是当待测粉尘不是或不完全是结晶型二氧化硅时,焦磷酸法测得的粉尘中二氧化硅结果就会高于红外光谱法。不同浓度的α-石英光谱图标准曲线的建立 布鲁克多款型号的红外光谱仪满足国标对游离二氧化硅的检测要求。布鲁克专利的永久准直的ROCKSOLIDTM干涉仪,采用镀金双立方角镜技术,保证了红外光谱仪具有业界最佳的光效能和灵敏度,从而确保光谱仪可以在各种环境条件下获得准确可靠的红外光谱数据。将游离二氧化硅含量分析简单到一键化操作,结果直接公式即得,大大缩短了分析时间和简化了实验流程。ALPHA II傅立叶变换红外光谱仪INVENIO傅立叶变换红外光谱仪如您对该应用技术感兴趣,欢迎拨打布鲁克光谱400热线。
  • 食盐碘含量上限降低 每公斤改为20至30毫克
    7月26日上午,卫生部公布了《食品用香料、香精使用原则》、《食用盐碘含量》和《食品添加剂碘酸钾》的征求意见稿,一并面向社会征求意见。对于食用盐中碘含量平均水平的规定有所降低。   与此前公布的《食品营养强化剂使用卫生标准》第1号修改单相比,此次公布的《食用盐碘含量》规定了我国目前使用碘酸钾作为碘强化剂 将食盐碘强化量为20mg/kg至60mg/kg修改为食用盐中碘含量的平均水平(以碘元素计)为20mg/kg至30mg/kg。   同时提出了各省、自治区、直辖市根据人群实际碘营养水平,选定适合本地的食用盐碘含量平均水平 提出了食用盐中碘含量的允许范围为碘含量平均水平±30%。   征求意见稿的编制说明中表示,目前食盐中碘含量偏高,尽管全国水平处于可接受水平,但有约5个省处于过量水平,16个省处于大于适宜量水平,因此有下调余地。在实施食盐加碘的10年内,碘过量可使甲亢的危险性提高 可使隐性的甲状腺自身免疫性疾病转变为显性疾病 长期碘过量可使甲减或亚甲减患病的危险性提高。   该标准的主要研制人认为应接受该修改意见,把食用盐中碘含量的平均水平改为20至30mg/kg。这一范围,可供各省选择的平均水平有多种,即使是严重碘缺乏的西部地区,如选用30mg/kg,碘的摄入量也是足够的 另外按理论值计算,如果每人每天食用10g盐,可能摄入的碘300微克,除烹调可能损失20%计算,每人每天则可摄入最大量为240微克,应当是足够了。即使保留30至40mg/kg,也不会有人选择该范围的碘含量水平。   在近期屡屡发生因食品添加剂而引起的食品安全问题之后,今天上午,卫生部发布了《食品安全国家标准――食品添加剂使用标准》的征求意见稿,面向社会公开征求意见。   此次修订将2007年至2010年卫生部批准的食品添加剂规定纳入该标准。同时对部分食品添加剂的使用规定进行了修订,比如对磷酸、焦磷酸二氢二钠等的使用规定进行了合并,这些食品添加剂可以在批准的使用范围中单独或混合使用,最大使用量以磷酸盐计。
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1. Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics ofGlycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2. Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3. Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 我国公布首批非食用物质及易滥用食品添加剂名单
    新华网北京12月15日电(记者周婷玉)为配合全国打击违法添加非食用物质和滥用食品添加剂专项整治工作的开展,中国食品专项整治领导小组日前下发通知,公布第一批“食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单”,其中包括17种非食用物质和10种易滥用的食品添加剂。 17种非食用物质包括:吊白块、苏丹红、王金黄块黄、蛋白精三聚氰胺、硼酸与硼砂、硫氰酸钠、玫瑰红B、美术绿、碱性嫩黄、酸性橙、工业用甲醛、工业用火碱、一氧化碳、硫化钠、工业硫磺、工业染料、罂粟壳。 食品加工过程中易滥用的食品添加剂品种和行为包括:在渍菜(泡菜等)中超量使用着色剂胭脂红、柠檬黄等,或超范围使用诱惑红、日落黄等;水果冻、蛋白冻类食品中超量或超范围使用着色剂、防腐剂,超量使用酸度调节剂(己二酸等);腌菜中超量或超范围使用着色剂、防腐剂、甜味剂(糖精钠、甜蜜素等);面点月饼馅中超量使用乳化剂(蔗糖脂肪酸酯等),或超范围使用(乙酰化单甘脂肪酸酯等);面条、饺子皮的面粉超量使用面粉处理剂;糕点中使用膨松剂过量(硫酸铝钾、硫酸铝铵等),造成铝的残留量超标准,或超量使用水分保持剂磷酸盐类(磷酸钙、焦磷酸二氢二钠等)、增稠剂(黄原胶、黄蜀葵胶等)及甜味剂(糖精钠、甜蜜素等);馒头违法使用漂白剂硫磺熏蒸;油条过量使用膨松剂(硫酸铝钾、硫酸铝铵),造成铝的残留量超标准;肉制品和卤制熟食超量使用护色剂(硝酸盐、亚硝酸盐);小麦粉违规使用二氧化钛、超量使用过氧化苯甲酰、硫酸铝钾等。 通知指出,判定一种物质是否属于非法添加物,根据相关法律、法规、标准的规定,可以参考以下原则:不属于传统上认为是食品原料的;不属于批准使用的新资源食品的;不属于卫生部公布的食药两用或作为普通食品管理物质的;未列入中国食品添加剂的;其他中国法律法规允许使用物质之外的物质。 食品中可能违法添加的非食用物质名单(第一批) 序号 名称 主要成分 可能添加的主要食品类别 可能的主要作用 检测方法 1 吊白块 次硫酸钠甲醛 腐竹、粉丝、面粉、竹笋 增白、保鲜、增加口感、防腐 GB/T 21126-2007 小麦粉与大米粉及其制品中甲醛次硫酸氢钠含量的测定;卫生部《关于印发面粉、油脂中过氧化苯甲酰测定等检验方法的通知》(卫监发〔2001〕159号)附件2 食品中甲醛次硫酸氢钠的测定方法 2 苏丹红 苏丹红I 辣椒粉 着色 GB/T 19681-2005 食品中苏丹红染料的检测方法高效液相色谱法 3 王金黄、块黄 碱性橙II 腐皮 着色 4 蛋白精、三聚氰胺 乳及乳制品 虚高蛋白含量 GB/T 22388-2008 原料乳与乳制品中三聚氰胺检测方法GB/T 22400-2008 原料乳中三聚氰胺快速检测液相色谱法 5 硼酸与硼砂 腐竹、肉丸、凉粉、凉皮、面条、饺子皮 增筋 6 硫氰酸钠 乳及乳制品 保鲜 7 玫瑰红B 罗丹明B 调味品 着色 8 美术绿 铅铬绿 茶叶 着色 9 碱性嫩黄 豆制品 着色 10 酸性橙 卤制熟食 着色 11 工业用甲醛 海参、鱿鱼等干水产品 改善外观和质地 SC/T 3025-2006 水产品中甲醛的测定 12 工业用火碱 海参、鱿鱼等干水产品 改善外观和质地 13 一氧化碳 水产品 改善色泽 14 硫化钠 味精 15 工业硫磺 白砂糖、辣椒、蜜饯、银耳 防腐 20080820 16 工业染料 小米、玉米粉、熟肉制品等 着色 17 罂粟壳 火锅 食品加工过程中易滥用的食品添加剂品种名单(第一批)序号 食品类别 可能易滥用的添加剂品种或行为 检测方法 1 渍菜(泡菜等) 着色剂(胭脂红、柠檬黄等) 超量或超范围(诱惑红、日落黄等)使用。 GB/T 5009.35-2003 食品中合成着色剂的测定GB/T 5009.141-2003 食品中诱惑红的测定 2 水果冻、蛋白冻类 着色剂、防腐剂的超量或超范围使用,酸度调节剂(己二酸等)的超量使用。 3 腌菜 着色剂 、防腐剂、甜味剂(糖精钠、甜蜜素等)超量或超范围使用。 4 面点、月饼 馅中乳化剂的超量使用(蔗糖脂肪酸酯等),或超范围使用(乙酰化单甘脂肪酸酯等);防腐剂,违规使用着色剂超量或超范围使用甜味剂 5 面条、饺子皮 面粉处理剂超量 6 糕点 使用膨松剂过量(硫酸铝钾、硫酸铝铵等),造成铝的残留量超标准;超量使用水分保持剂磷酸盐类(磷酸钙、焦磷酸二氢二钠等);超量使用增稠剂(黄原胶、黄蜀葵胶等);超量使用甜味剂(糖精钠、甜蜜素等) GB/T 5009.182-2003 面制食品中铝的测定 7 馒头 违法使用漂白剂硫磺熏蒸 8 油条 使用膨松剂(硫酸铝钾、硫酸铝铵)过量,造成铝的残留量超标准 9 肉制品和卤制熟食 使用护色剂(硝酸盐、亚硝酸盐),易出现超过使用量和成品中的残留量超过标准问题 GB/T 5009.33-2003 食品中亚硝酸盐、硝酸盐的测定 10 小麦粉 违规使用二氧化钛、超量使用过氧化苯甲酰、硫酸铝钾
  • 磷酸化蛋白,液体活检全新维度——访北美华人质谱学会主席陶纬国教授
    p    span style=" font-family: 楷体,楷体_GB2312, SimKai " 回顾2017年,基于质谱的临床研究有一项突破性发现。普渡大学陶纬国教授团队在2017年3月20日的《美国国家科学院院刊》(PNAS)杂志上发表文章称,他们从人体血液中发现2400多种磷酸化蛋白。该发现首次证明了磷酸化蛋白可以作为基于液体活检的疾病标志物,能用于对癌症等重大疾病更早、更精准的非侵入性诊断,为 “液体活检”提供了全新的检测维度。近日,仪器信息网专访了陶纬国。 /span /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/a21a903c-0479-4776-9e2a-5b5c719f76fc.jpg" / /p p style=" text-align: center " strong 普渡大学 陶纬国教授 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 磷酸化蛋白突破性发现 /strong /span /p p   通过液体活检来诊断肿瘤和癌症等疾病一直是临床科学家关注的焦点,研究对象多集中在循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA),但是二者都有局限性:由于CTC在血清中的浓度非常低,取少量血液对其检测难度很大 癌症有很多基因突变,而这些突变不一定会显现出来,因此基于ctDNA进行的液体活检的诊断结果只能预测患病的概率,并不能确诊。 /p p   蛋白质磷酸化是调节和控制蛋白质活力和功能的最基本,最普遍,也是最重要的机制,同时,与许多疾病的发生密切相关。在众多肿瘤致病机理中,当前学术界对蛋白质磷酸化机理的研究最为清楚,80%-90%的癌症都跟蛋白质磷酸化有关。因此,许多抗肿瘤药物的研制都着眼于磷酸化蛋白。理论上,磷酸化蛋白作为相关基因突变的表达,在临床上能够帮助医生做出更明确的诊断。但是,有关基于液体活检的磷酸化蛋白研究还很少。此前,有个别报道在血液中发现几十种磷酸化蛋白,均是高丰度蛋白,生物学意义不大。“原因就是磷酸化蛋白一旦从细胞进入血液中就被肝脏分泌的磷酸酶水解了。”陶纬国解释说,“所以虽然磷酸化蛋白跟癌症关系非常密切,但人们无法对其进行检测。” /p p   陶纬国团队是如何从人体血液中检测到大量磷酸化蛋白的呢?这要从三年前的一篇文献报道说起,当时陶纬国从这篇文章中了解到外泌体和微囊的结构,“当我看到类似于纳米微粒的外泌体、微囊结构时,我认为可能会有磷酸化蛋白被包裹在外泌体中,然后进入血液。如果真是这样,被外泌体包裹的磷酸化蛋白可能会避免被血液中的磷酸酶水解。”于是陶纬国团队对血液中的外泌体、微囊进行了超速离心分离、提取,然后用质谱进行检测。一周以后,实验结果让所有人都惊呆了,他们从中发现了几千个磷酸化蛋白。这个突破性的发现使得临床科学家们今后可以在1毫升血浆里找到几千个磷酸化的位点,并从中筛选出不同疾病的生物标志物。之后,陶纬国团队对乳腺癌病人血清中的磷酸化蛋白做了研究,发现乳腺癌病人体内的磷酸化蛋白与其病症密切相关。 /p p   那么,磷酸化蛋白液体活检何时能够应用临床呢?陶纬国回答说:“虽然现在还不好断言,但我认为3-5年内都有可能。”他进一步解释,随着质谱技术的显著提升,一些原来检测不到的生物标志物现在能够检测了,后面的工作主要是考察重复性有多好,假阳性有多低。 /p p   谈及未来的工作,陶纬国表示,一方面会继续做乳腺癌的磷酸化蛋白生物标志物确认的工作 另一方面也会做其他疾病磷酸化蛋白生物标志物找筛的工作,“还有很多其它疾病,比如阿尔茨海默病、帕金森综合征等,也都是蛋白磷酸化有关。” /p p    span style=" color: rgb(255, 0, 0) " strong 质谱用于生物大分子检测的思考 /strong /span /p p   陶纬国教授做蛋白组学研究至今已有十几年,用到的研究工具主要是质谱。在攻读博士期间,陶纬国师从普渡大学著名质谱专家Graham Cooks教授。博士毕业后,陶纬国加入了西雅图系统生物研究所,在Leroy Hood教授(自动DNA测序仪发明人)和Ruedi Aebersold教授(著名蛋白质组学专家)课题组继续博士后研究。从那时起,陶纬国就开始了他的磷酸化蛋白质组学检测的研究,“重回普渡教书以后,我的工作基本上是围绕着怎么去提高磷酸化蛋白分析手段来开展的。质谱在我的工作扮演着中心角色,包括方法开发,蛋白生物标志物早筛,全靠质谱来做。”首先是早筛,用质谱(Orbitrap)筛选出相关的生物标志物(磷酸化蛋白) 然后对病人的样本进行检测,用统计学的方法对检测结果进行分类 最后,分析统计学上有意义的、跟病人相关的磷酸化蛋白。 /p p   在过去二三十年里,质谱在生物大分子检测方面有几个重要的技术突破。首先,80年代末90年代初, ESI和MALDI的出现,使质谱能够用于分析生物样品 第二,近十几年来,高分辨质谱的飞跃发展,大大提升生物大分子的分析效率。“我读博士后时(2002年),很多仪器还是低分辨的,生物样品还是挺难做的,做完一个磷酸化的蛋白,单是数据库检索就要三天,而且,相对来说,得到的数据假阳性高。现在的高分辨质谱解谱很容易,差不多半个小时就够了,假阳性也降低很多。”此外,陶纬国还说到,“UPLC与质谱的结合在技术上是很大的进步,使色谱的分离效率赶上了质谱的速度,现在一个小时能检测到几千个蛋白,非常快。” /p p   同时,陶纬国也指出了目前利用质谱来检测生物大分子的难点。第一,生物样品基体复杂。“像我们实验室做磷酸化蛋白,它本身丰度就很低,假如样本不经过任何分离的话,谱图上将会只能看到高丰度蛋白。”第二,质谱检测假阳性比较高。“其实还是需要统计学算法方面的开发,来解决假阳性率高的问题,这也是现在很多质谱开发者在做的工作。” /p p   现如今质谱产品更新迭代非常快,对于质谱工作者来说,是好,也是坏。“新产品的确扫描速度更快了,精度更高。但是,也给质谱工作者带来了不小的压力。特别是像我们这种使用高分辨大仪器的,没有那么多钱换来换去。可是如果你想要紧跟前沿,这些新仪器又十分必要。”陶纬国说,这是目前质谱工作者普遍面临的两难境地。 /p p    span style=" color: rgb(255, 0, 0) " strong 整合临床大数据 /strong /span /p p   2017年,陶纬国作为海外高层次人才被东南大学引进回国。谈及回国的初衷,陶纬国表示,国内拥有更多、更丰富的病人样本,这是他选择回国的原因之一。此外,国内对于高分辨质谱等大型仪器的投入力度也更大,有助于前沿研究的开展。谈到选择东南大学的原因,陶纬国说到:“东南大学的生物医学工程学院有转化医学,有生物,然后又有工程,包括产业化,比较适合我。” /p p   现在国内,整合医学大数据来服务大健康的概念很热,“在全国,包括南京,都已经有相关工作在开展”。从临床检测这个角度来说,陶纬国希望找到办法来整合DNA检测,microRNA检测,磷酸化蛋白检测几个维度的数据,从而获得更为精准的临床诊断结果。“比如检测一个肿瘤,通过对DNA、mRNA、磷酸化蛋白、糖基检测多维度数据的不断积累,数据会越来越多,结合人工智能、计算机算法,检测结果会越来越精准。 我回来能赶上这个机会也是不容易。”陶纬国如是说到。 /p p   目前,医学大数据的采集方式主要为第二代、第三代测序。“但是,质谱也是很重要的一块儿。”陶纬国指出,“比如乳腺癌,基因突变仅仅代表一种患病的可能性,但是到底有没有癌症还是要通过蛋白检测来确定,所以用质谱来检测蛋白的存在、活性、功能,比基因层面更可靠。所以,质谱检测肯定会慢慢跟上来。” /p p   陶纬国在东南大学生物医学工程学院的新实验室是电子生物国家重点实验室。对于自己的工作重心,陶纬国表示,现在是过渡时期,未来会逐步将重心转至国内。“国内实验室刚刚开始,看起来前途光明。” /p p   span style=" color: rgb(255, 0, 0) " strong  热衷学界公益事务 出任CASMS主席 /strong /span /p p   作为质谱生物大分子检测方面的专家,陶纬国于2017年6月份当选北美华人质谱学会(CASMS)主席。该学会汇聚了众多顶尖的华人质谱学者,已经成为质谱学界重要的华人力量。在一年一度的“美国质谱年会(ASMS)”期间举行“北美华人质谱学术会议”已经成为CASMS的传统。据陶纬国介绍,CASMS已有二三十年的历史,目前注册人数在800人左右,覆盖了北美地区绝大部分优秀的华人质谱学者。ASMS每年参会人数6000-7000人,相当一部分是华人,中国面孔越来越多。“在美国,有很多华人学者做了非常出色的工作,但他们并没有获得相匹配的影响力和威望。” 陶纬国说,“我们学会的宗旨就是提升华人质谱学者在世界质谱领域的影响力。当然, 中国本身的国际地位的重要性是显而易见的。” /p p   CASMS的另一个宗旨是促进世界华人质谱界的互相交流。每两年召开一次的“世界华人质谱学术研讨会”是全世界华人的质谱盛会,汇聚了中国内地、台湾、香港、新加坡和北美地区的质谱学者,CASMS是该会议4个主办方之一。2016年,CASMS主办了第六届“世界华人质谱学术研讨会”,这是该会议首次在美国召开,恰逢该会议召开十周年。“我认为非常有意义,促进了两岸三地华人质谱学者的交流合作。我的亲身体会是通过这个会议结识了很多优秀学者,而在此前很多同仁相互间是不认识的。” /p p   未来,除了重要的线下会议组织工作,陶纬国希望通过加强线上日常交流,来使学会内部联系更为紧密。 /p p    span style=" font-family: 楷体,楷体_GB2312, SimKai " strong 后记: /strong 临床质谱技术被认为是医学诊断的下一个“基因测序”,应用前景被普遍看好。质谱用于临床检验具有灵敏度高、特异性高、重现性好的优点,可在临床多个领域对传统诊断方法学进行替代。陶纬国教授团队的磷酸化蛋白研究进一步提升了临床质谱应用的含金量。基于该研究,临床科学家们将会找到更多可靠的疾病标志物,从而实现癌症等重大疾病的早期发现和精准诊断。 /span /p p style=" text-align: right " 采访编辑:李博 /p
  • 贝因美代工面条被检出致癌物
    2月24日,吉林省食品药品监管局发布《近期全省食品监督抽检信息公示》,其中显示,一款由浙江贝因美公司生产的黑芝麻营养面条被检出亚硝酸盐超标。   自2011年4月在深交所中小板挂牌上市以来,贝因美三年三换董事长。此前,该公司刚对外公告,春节前就悬空的董事长一职由原公司总经理王振泰出任,而一直负责生产和质量的黄焘则被升为公司总经理。&ldquo 在近几年奶粉行业频发信任危机的大背景下,贝因美从未出现重大安全事故,且在行业中率先实现了产品的全程信息化管理和追踪追溯体系的建设,黄焘功不可没。&rdquo 话音未落,贝因美面条便被检出问题。   中山大学公共卫生学院营养系主任蒋卓勤介绍,在中国《食品安全国家标准 婴幼儿谷类辅助食品GB 10769-2010》中有规定,亚硝酸盐在婴幼儿谷类辅助食品中的污染物限量应该不大于2mg/kg。   &ldquo 国家严禁在婴幼儿食品中添加亚硝酸盐,如果检出量超标要不是人为违法添加,要不就是原料中自带,只要对生产原料进行检测就一目了然。&rdquo 蒋卓勤说。   26日晚间,贝因美发布紧急澄清公告,承认问题面条为该公司委托代工产品,但坚称产品检测合格。   与此同时,贝因美亦遭遇重大的营销变革考验。2013年遭遇反垄断调查并降价后,贝因美存货持续增长,销售费用大幅增加,通过设立营销子公司并由经营团队部分持股效果如何,将成为贝因美新任董事长的一大考验。   问题面条疑云   该款面条并不是由贝因美亲自生产,而是由一家名叫上海京元食品的公司代工。   据吉林省食品药品监管局披露,该款被检出亚硝酸盐超标的问题面条产品由浙江贝因美生产,产品规格为208克/盒,生产日期为2013年10月1日,抽样地点是长春润泰商业有限公司,但该局并未公布问题产品的具体亚硝酸盐含量。   作为国家允许使用的食品添加剂,亚硝酸盐目前主要用于肉制品,一方面赋予肉制品特有的肉红色、改善产品的组织结构 另一方面作为防腐剂,对肉毒梭状芽孢杆菌具有较强的抑制作用。但由于亚硝酸盐可以与血红蛋白结合形成高铁血红蛋白而失去携氧功能,严重时可窒息致死,同时具有致癌作用,又因为婴幼儿比成人更易感受亚硝酸盐的危害,因此被禁止在婴幼儿食品中使用。   21世纪经济报道记者查阅该款产品的配料表,发现除了小麦粉以外,还包括乳清蛋白粉、蛋黄粉、脱盐乳清粉、低聚果糖、碳酸钙、磷酸氢钙、焦磷酸铁、氧化锌等多种化合物,并未显示有添加&ldquo 亚硝酸盐&rdquo 。   尽管贝因美一直对其面条产品的宣传都强调&ldquo 无添加任何增白剂、香精、防腐剂和食用盐碱&rdquo ,但该款面条并不是由贝因美亲自生产,而是由一家名叫上海京元食品的公司代工。早在2013年8月,贝因美旗下的两款婴儿面条因为包装不符合国家相关规定而被常州工商部门查处并处罚,其中一款就是黑芝麻营养面条。   据贝因美表示,2013年12月13日,上海市松江区质量技术监督局在得到国家食品安全风险评估中心转送的吉林省食品药品监督管理局对&ldquo 贝因美黑芝麻营养面条&rdquo 抽检亚硝酸盐超标信息后,派出执法人员对公司委托生产方上海京元食品有限公司进行执法检查,并对生产工厂留样同批次产品进行执法抽样检查。   贝因美同时表示,在出厂前及获知吉林省食品药品监督管理局的抽检情况后,公司已将批号为20131001的黑芝麻营养面条先后送往南京、上海、杭州的三家独立的第三方检测机构进行检测,结果均为亚硝酸盐指标合格。该批次产品共生产20844盒,销售收入计14.73万元。   据贝因美最新财报显示,2013年上半年该公司非奶粉产品的收入均出现了不同程度下滑,其中米粉和其他产品的收入分别为8591.48万元和6570.91万元,同比下降了6.35%和27.18% 而与奶粉和米粉高达60%以上的毛利率相比,该类产品的毛利率为38.79%。   从2013年3月开始,根据举报,国家发展改革委价格监督检查与反垄断局对合生元、美赞臣、多美滋、雅培、富仕兰(美素佳儿)、恒天然、惠氏、贝因美、明治等乳粉生产企业开展了反价格垄断调查。2013年7月,贝因美承认被调查,并宣布从7月10日起,对旗下婴幼儿配方奶粉主要品项标准出厂价下调5%~20%。受消息影响,公司股价一度从35元高位跌至29元。   中投顾问食品行业研究员简爱华分析认为,2013年乳业反垄断后,贝因美自动调低产品售价,导致收入大幅降低,此外频频发生的食品安全问题也对贝因美的品牌进行蚕食,&ldquo 在三聚氰胺事件后,大家对食品安全极其敏感,若处理不当很有可能变成企业的极大危机。&rdquo 简爱华表示。   事实上,贝因美就是在2012年伊利汞含量超标事件后登上国产奶粉销售一哥宝座,伊利、雅士利、合生元和飞鹤居其后。   渠道变革压力   &ldquo 在奶粉限价令下,经销商入货谨慎,导致公司存货有所增加。&rdquo   自2014年2月8日起,贝因美名称由&ldquo 浙江贝因美科工贸股份有限公司&rdquo 变更为&ldquo 贝因美婴童食品股份有限公司&rdquo 。早在2012年年末,浙江贝因美科工贸股份有限公司就向母公司贝因美集团出售了旗下的婴童用品等非食品业务。   创始人谢宏&ldquo 面向婴童行业综合运营商&rdquo 初衷亦失败告终。2月24日,贝因美宣布王振泰成为公司第四任董事长,并出资4400万元成立8个营销控股子公司。   乳业专家宋亮认为,贝因美此次调整旨在做强做精婴幼儿食品。&ldquo 经历了前两年的业绩飙升后,贝因美去年出现了销售增速放缓的情况,加上国家相继出台了多项针对乳制品市场的调控措施,在奶粉限价令下,经销商入货态度较之前谨慎,导致公司存货有所增加。&rdquo 宋亮说。   2013年贝因美的存货持续增长,从一季度的4.32亿元升至二季度的5.46亿元,到了三季度更高达6.28亿元,与此同时,公司销售费用也大幅增加,三季度销售费用为7.05亿元,同比大幅增加44.76%。   目前贝因美的销售渠道主要分为经销商、KA(关键客户,如大卖场)和其他三种,其中经销商是公司最大销售渠道。此前,贝因美在全国设立了28家分公司,但营销一律由总部统筹。去年一季度开始,公司尝试转向分产品分渠道的精细化管理模式。   根据贝因美公告,此次贝因美合计出资4400万元分别成立贝因美宁波、上海、杭州、南京、西安、武汉、合肥及郑州8个营销控股子公司,贝因美在营销公司中占股80%,经营团队占股20%。   在宋亮看来,通过在重点销售区域设立营销子公司并由经营团队部分持股,一方面可以稳定经营团队 另一方面,过往贝因美对渠道管得较死,在销售有相当规模的情况下很难再有大幅增长,因此赋予营销公司有自主经营权,总部仅负责生产发货,可以激励业绩的同时减少数据造假。   此前在湖北等部分市场就曾经出现过由于经销商压货过多的情况,导致某地级市一个月的量是本地真实需求的2倍多,最后公司要通过扣点来处理。加上今年贝因美的产能将从6万吨提升到10万吨,建立起有效的营销团队将成为贝因美新任董事长的一大考验。
  • 央视315晚会曝光一次性筷子毒物满身
    央视315晚会今晚曝光一次性筷子的过程,经过多道化工原料的加工处理,一次性筷子上产生多种化学残留。国家对具体残留量有着严格的限制,但这一标准早已经被厂家抛在脑后。  筷子是中国人最常使用的餐具之一,自从出现了一次性筷子之后很多人觉得用起来非常方便,也非常卫生,所以在现在的餐饮服务当中一次性筷子使用相当普遍,在很多人眼中用起来方便又卫生的一次性筷子却并不卫生。  据央视曝光,一次性筷子在生产过程中经历了熏硫黄、石蜡、双氧水等多种化学药品的加工,生产过程触目惊心。  据报道,在筷子加工过程中,工人还要用脚把筷子“翻一下”,而脚与筷子紧密接触,在筷子厂随处可见,在有的厂筷子上看到脚印就不足为奇了。而一些已经发霉变质的筷子也没有扔掉,还要加工处理。工业双氧水具有很强的腐蚀性和漂白作用,经过双氧水煮过的黑筷子就会变白,为了使速度更快甚至有人使用其他的材料,工业无水焦磷酸钠。报道称,用工业双氧水把便黑的筷子煮白了再卖已经成为行业内公开的秘密。  据央视报道,经过加工处理一次性开子会产生多种化学残留,记者在怀化和宜丰的一次性筷子生产厂没有看到消毒环节。筷子就这样从厂家到批发商手里,有的被批发到加工厂做成一次性餐具。  报道最后评论称,一次性筷子非但没有成为我们健康的守护神,反而成为了健康的杀手。一连串工业用品的使用,现在让这双一次性筷子上沾边了有害身体的各种各样的物质,在看完了刚才记者调查之后,我们每个人都应该反思或者更新一下我们的消费习惯。让我们拥有更健康的消费主张。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制