当前位置: 仪器信息网 > 行业主题 > >

氯化苄乙氧铵

仪器信息网氯化苄乙氧铵专题为您提供2024年最新氯化苄乙氧铵价格报价、厂家品牌的相关信息, 包括氯化苄乙氧铵参数、型号等,不管是国产,还是进口品牌的氯化苄乙氧铵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯化苄乙氧铵相关的耗材配件、试剂标物,还有氯化苄乙氧铵相关的最新资讯、资料,以及氯化苄乙氧铵相关的解决方案。

氯化苄乙氧铵相关的资讯

  • 中关村材料试验技术联盟立项《多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法》等9项团体标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)标准化领域委员会审查,CSTM标准化委员会批准(具体标准如下,详细公告内容请至CSTM官网查看),特此公告。序号标准名称标准立项号所属委员会1多钒酸铵分析方法 第1部分:五氧化二钒含量测定 过硫酸铵氧化硫酸亚铁铵滴定法CSTM LX 2000 01429.1—2024FC202多钒酸铵分析方法 第2部分:硅含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.2—2024FC203多钒酸铵分析方法 第3部分:铁、磷 硫含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.3—2024FC204多钒酸铵分析方法 第4部分:氧化钾、氧化钠含量测定 电感耦合等离子体原子发射光谱法CSTM LX 2000 01429.4—2024FC205多钒酸铵分析方法 第5部分:烧得率的测定 高温煅烧法CSTM LX 2000 01429.5—2024FC206民用大型客机 热固性液体垫片材料 热循环稳定性测试方法CSTM LX 6600 01430—2024FC667泵组碳足迹核算与碳标签评价规范CSTM LX 9500 01431—2024FC958零碳建造评价规范CSTM LX 9500 01432—2024FC959水质 急性毒性现场快速监测 发光细菌法CSTM LX 9803 01433—2024FC98/TC03联系方式如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。CSTM标准化委员会秘书处联系方式联系人:陈鸣,范小芬办公电话:010-62187521手机:13011072266,13426028810邮箱:chenming@ncschina.com,fanxiaofen@ncschina.com通讯地址:北京市海淀区高梁桥斜街13号钢研集团新材料大楼1020邮编:100081
  • 生态环境部发布《固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)》等4项国家生态环境标准
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《固定污染源废气 一氧化碳和氯化氢连续监测技术规范》等4项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2024年4月22日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646263  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)  3.《固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)》编制说明  4.环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿)  5.《环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿)》编制说明  6.环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿)  7.《环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿)》编制说明  8.水质 水温的测定 传感器法(征求意见稿)  9.《水质 水温的测定 传感器法(征求意见稿)》编制说明  生态环境部办公厅  2024年3月18日  (此件社会公开)
  • 高纯试剂中杂质检测专题——工业甲醇中铵离子的测定
    01 引言 离子色谱法测定甲醇中铵离子 监测甲醇中铵离子含量在煤基合成甲醇工艺中具有重要作用。在煤基合成甲醇过程中,会产生一系列杂质气体 ,如 CO 、NH3 以及有机硫化物、氮的氧化物、煤焦油等,而铵离子会引起合成过程中的催化剂中毒失效,致催化剂效率严重下降;同时铵离子含量较高时会降低低温甲醇洗脱硫效率、对工艺设备有严重影响。因此,通过控制甲醇中铵离子的含量 ,可以防止催化剂中毒,提高转化率,降低成本。工艺控制中工业用甲醇中铵离子含量不得大于0.05mg/L.制定工业用甲醇中铵离子测定方法,是为工业甲醇的杂质检测提供一个试验方法,对指导甲醇为原料的相关生产过程的检测具有重要意义。目前甲醇中NH4+的测定都是采用离子色谱法,2022年3月1日开始实施国标《工业用甲醇中铵离子的测定离子色谱法》,下面小编分享下甲醇中NH4测定的离子色谱法。02 相关标准 GB/T 40395-2021《工业用甲醇中铵离子的测定离子色谱法》03 皖仪科技应对方案 皖仪仪器设备 试剂耗材 甲醇:色谱纯;铵根离子:ρ=1000mg/L;一次性注射器(0.5-2mL);有机系针式过滤器(0.22μm) 测试结果 标曲线性测试NH4+标曲重叠谱图NH4+线性说明:由于所有胺类物质一次线性范围均较窄,本次按照标准要求配置的标准曲线系列梯度范围较宽,因此,标准曲线采用二次曲线拟合,本次测试铵离子线性相关系数为R2=0.99996,线性良好。------ 重复性测试 ------ NH4+0.05mg/L连续3针测试谱图NH4+0.2mg/L连续3针测试谱图NH4+2.0mg/L连续3针测试谱图 ------ 重复性结果 ------ 说明:根据谱图及测试结果可见,所有组分定量重复性均小于1%,定性重复性均小于0.2%,测试重复性良好。------ 检出限 ------ 注:标准中规定,在进样体积为50μL下,测定下限为0.01mg/L,本测试以NH4+0.05mg/L进样,考察其峰高,取测试最大噪声,以3倍信噪比对应峰高为检出限。------ 测试结果 ------ 经计算,本次测试 NH4+检出限为 0.434μg/L,小于标准要求的 0.01mg/L。04 总结 结果表明 本文采用离子色谱法,对甲醇中 NH4+进行测定,准确度高,灵敏性好,精密度好,该法可用于甲醇中 NH4+的测定。05 注意事项 — END —扫描二维码 |
  • 靠‘谱’系列之VOCs走航案例未知因子判定---以四氯化碳为例
    四氯化碳(CCl4),也称四氯甲烷或氯烷,常态下是一种无色透明的挥发性液体,具有特殊的芳香气味,味甜。在四氯化碳分子中,4个氯原子是由共价键以正四面体的结构分布碳原子的四周。因为其结构对称,所以四氯化碳呈非极性,常温下化学性质稳定。四氯化碳是一种优良的有机溶剂,可以作为有机物的氯化剂、药物的萃取剂而应用于物理、化学和医学等领域 也用作香料的浸出剂、纤维的脱脂剂、粮食的蒸煮剂、织物的干洗剂。四氯化碳是一种可致癌的有机化学物,人体吸入高浓度的四氯化碳蒸气后,可迅速出现昏迷、抽搐等急性中毒症状。四氯化碳作为原料生产的氟氯化碳,光解能产生氯自由基,对臭氧层具有极强的破坏性。图1 四氯化碳结构式PTR-TOF对于四氯化碳的测量方法,我国标准(GB/T 16132-1995)中有利用气袋对现场气体进行采集,再带到实验室进行气相色谱离线检测的方法[1]。或者环境监测中,使用气相色谱/氢离子火焰检测器对四氯化碳直接测量的方法(采样频率10分钟),学术届也有使用拉曼光谱对四氯化碳进行光学测量的方式[2]。这些方法有的需要漫长的预处理过程增加了样品的不确定性,有的时间分辨率低达不到走航测量的要求,有的检测限不够低需要预先富集或其他前处理。近年来,利用快速分析飞行时间质谱仪进行车载走航VOCs检测成为了对污染排放源的环境空气影响进行跟踪溯源的重要技术手段(什么是VOCs走航监测技术(VOCs走航车)? )(中国东部大气气态芳烃的移动观测 靠‘谱’系列之VOCs走航案例未知因子判定---以氟苯为例)图2 Vocus小精灵仪器捕捉到的原始四氯化碳质谱图及信号强度变化图3 四氯化碳质谱图位置及信号强度在2022年秋季中国进口博览会空气保障—大气VOCs走航监测任务中。搭载 Vocus Elf PTR-TOF(Vocus 小精灵)的大气走航观测车对华东地区某工业园区的大气VOCs组分进行了走航监测。监测车在园区内某区位走航过程中,在m/Q 116.9659的位置检测到较强的响应(见图2),经确认,该精确质量离子分子式是CCl3+。结合前期标气测量结果,该离子信号定性为四氯化碳(CCl4)质谱信号,该峰相关同位素分布符合含3个氯的特征。同时,该信号的变化趋势与丙酮、苯、二甲苯等物质的信号趋势明显不同(见图3),半定量其峰值浓度为156 ppbV(时间分辨率1秒)。目前对四氯化碳的排放规定较少,在山东省地方标准《挥发性有机物排放标准》(DB37-2801)厂界监测点浓度限值中,四氯化碳的无组织排放浓度规定为0.3mg/m3,计算为48 ppbV。故按照该标准此次排放事件四氯化碳浓度已超标。参考文献1. GB/T 16132-1995 居住区大气中三氯甲烷、四氯化碳卫生检验标准方法 气相色谱法2. 四氯化碳级联受激拉曼散射研究[D].长春.吉林大学.2022
  • 检测氯化氢及卤化氢的仪器如何使用?
    氯化氢及卤化氢检测的仪器如何使用?HCl固定污染源排放中重要的污染物之一,需要进行有效的监测和控制。检测HCl存在以下难度1.湿度大:经过湿法脱硫和湿式除尘器之后的烟气,通常为70℃左右的湿度饱和或接近饱和的气体,这就需要在检测时全程无冷点加热,避免形成冷凝水,从而避免由HCl溶于水而导致的损耗。2.含量低:固定污染源排放气体中HCl的含量通常为几个ppm甚至更低,这就需要高精度的设备进行测量。3. 烟气组分的复杂性:固定污染源烟气是一个复杂的混合物,其中包含多种气体成分。同时监测多种组分的浓度,如HCl、SO2、NOx、NH3等,需要高度选择性的检测方法,以区分和准确测量每种组分。为此,我们推荐您使用以下三种原理设备进行HCl的检测,可以有效应对上述问题并且实现精确测量。一 T690型可调谐半导体激光吸收光谱原理(TD-LAS)分析仪 仪器特点:1.高度订制根据具体的应用场景可以分为壁挂式、19英寸机架式以及便携式三种模式;2.高精度和高灵敏度:仪器采用高分辨率的“指纹光谱”进行气体分析,其高灵敏度使得仪器可以检测到极低浓度的气体组分,甚至在ppb(十亿分之一)或更低的水平上进行精确测量。3.高选择性 “指纹光谱”“指纹光谱”是指气体分子在特定波长范围内的吸收光谱特征。每种气体都具有独特的吸收线和波长,就像每个人都有独特的指纹一样,因此被称为“指纹光谱”。这种特异性识别使得仪器在复杂气体混合物的分析中非常有优势,它可以精确测量低浓度的NH3气体,并排除其他干扰物质的影响,确保数据的准确性和可靠性。4.实时监测和快速响应: TDLAS气体分析仪具有快速响应时间,能够实时监测气体浓度的变化。5.免维护: TDLAS分析仪内置参考光路信号,通过与参考信号进行比对,可以实现实时的校准和补偿,消除光源波动和光路漂移对测量结果的影响。 二 F950型傅立叶变换红外光谱原理(FTIR)烟气分析仪仪器特点1.高度订制根据具体的应用场景可以分为壁挂式、19英寸机架式以及便携式三种模式 2. 全谱范围检测:F950型FTIR气体分析仪可以检测包含HCl在内的几乎所有气体成分。它能够覆盖广泛的波数范围从红外到远红外,使您能够分析多种气体成分。 3. 高灵敏度和检测限:F950型FTIR仪器具有5米长的光路以及0.5cm-1超高光谱分辨率,这使得仪器具备出色的灵敏度和低检测限,同时具备高选择性和低干扰。它可以检测到非常低浓度的气体,甚至在ppb级别下进行精确测量。 4. 宽量程和高精度:F950型FTIR气体分析仪具有宽广的检测量程,从10ppb到100%。这意味着它可以适应不同浓度范围的气体分析需求,从极低浓度的痕量气体到高浓度的纯气体。 5. 实时监测和快速响应:F950型FTIR气体分析仪具有快速的响应时间和实时监测能力。它能够实时获取气体成分的数据,并提供即时的监测结果。 6.免维护:设备还具备自动校准功能,实现零维护。更重要的是主机重量仅有14KG,作为便携式设备使用时非常易于携带。详细信息请点击这里:F950型傅立叶变换红外光谱分析仪 三 化学法——EPA方法26A准确性:该方法经过标准化和验证,具备较高的测量准确性和可靠性,可以满足环境监测的要求。灵敏度:方法26A可检测烟气中较低浓度的HCl,通常在几毫克每立方米(mg/m³ )至几百毫克每立方米(mg/m³ )的范围内。可靠性:该方法已广泛应用于燃煤电厂等大气排放源的HCl监测,并且经过多年实际应用验证,具备较好的可靠性和稳定性。合规性:EPA方法26A是符合环境法规和排放标准的监测方法,可用于评估燃煤电厂的HCl排放是否符合规定的限值要求。 如您对上方仪器内容感兴趣,可通过仪器信息网联系我们
  • 黎巴嫩首都发生特大爆炸 2750吨硝酸铵威力有多大?
    p   当地时间8月4日下午6时左右,黎巴嫩首都贝鲁特港口区发生巨大爆炸,爆炸接连发生两次,导致多栋房屋受损,玻璃被震碎,天上升起红色烟雾。据黎巴嫩卫生部公布,爆炸目前已造成至少78人死亡,4000多人受伤。黎巴嫩总理宣布5日为国家哀悼日。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/eaec7772-baee-4513-a7bf-e559b6fa3430.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p   当地时间18时左右,贝鲁特港口发生第一起爆炸事故,随后的第二起爆炸事故破坏力要比第一起强得多。有视频显示,爆炸现场狼藉一片,冲击波对周围建筑物造成严重破坏,瓦砾遍布街道,天空被灰尘笼罩,浓烟遮住了夕阳,当地有人惊呼“这就像世界末日。”黎巴嫩卫生部长称,当地医院急诊已人满为患,伤者目前已被送往其他医院进行救治。目前,黎巴嫩武装部队已被派往现场协助救援。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8aff3b9a-6892-4758-abf9-b551ce92b4bf.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p   黎巴嫩安全部门负责人阿巴斯· 易卜拉欣表示,港口仓库中储存着可燃化学物质。黎巴嫩总理证实,2750吨硝酸铵发生了爆炸。他强调,一批重达2750吨的硝酸铵在没有采取任何预防措施的条件下停在仓库里长达六年之久,这是不能被接受的。 /p p   据了解,硝酸铵(NH4NO3)是一种铵盐,呈无色无臭的透明晶体或呈白色的晶体,极易溶于水,易吸湿结块,溶解时吸收大量热。受猛烈撞击或受热爆炸性分解,遇碱分解。硝酸铵主要用作肥料及工业用和军用炸药,还可用于杀虫剂、冷冻剂、氧化氮吸收剂,制造笑气、烟火等。 /p p   纯硝酸铵在常温下是稳定的,对打击、碰撞或摩擦均不敏感。但在高温、高压和有可被氧化的物质(还原剂)存在及电火花下会发生爆炸,硝酸铵在含水3%以上时无法爆轰,但仍会在一定温度下分解,在生产、贮运和使用中必须严格遵守安全规定。 /p p   2750吨硝酸铵发生爆炸的威力到底有多大? /p p   我国2015年发生的“8· 12天津滨海新区爆炸事故”爆炸总能量约为 450 吨 TNT 当量,给我国造成了巨大损失。2750吨硝酸铵爆炸产生的能量相当于将近2000吨左右TNT当量,危害可想可知! /p p   此外,“8· 12天津滨海新区爆炸事故”调查结果显示对事故中心区及周边局部区域大气环境、水环境和土壤环境造成了不同程度的污染。事故发生后,我国相关部门紧急调集多方力量开展了环境应急监测,对事故中心区及周边大气、水、海洋环境实行24小时不间断监测,对事故中心区外土壤进行了网格化抽样监测;对受污染水体进行了处理处置;严格规范了废物转移处置工作。 /p p   黎巴嫩此次特大爆炸事件对环境造成的污染也是不可避免的,政府只能争取及时疏散人群以及做好防护措施,在最短时间内清理危险物品,才能将损失降到最低! /p
  • LC-MS/MS直接进样法高灵敏度分析大米中草甘膦和草铵膦等极性农药
    高灵敏度分析 草甘膦和草铵膦是广泛使用的叶面除草剂中的活性成分。近年来,草甘膦的产量和销售额一直占据世界除草剂品种的前列。当在土壤和水中降解时,草甘膦会产生代谢产物氨甲基膦酸 (AMPA)。 各国标准对于农产品中草甘膦的最大残留限量大多介于0.05mg/kg-50mg/kg之间。如GB2763-2021《食品安全国家标准食品中农药最大残留限量》中规定,草甘膦在不同食品中的最大残留限量从0.05mg/kg-7mg/kg不等。 一直以来,高极性农药的检测都是液质分析的难点之一。草甘膦、草铵膦和AMPA都是高极性化合物,很难在反相模式下使用液相或液质进行分析。因此,对于草甘膦的液质分析通常采取FMOC衍生化的方法。本文[1]介绍了一种无需复杂预处理或耗时衍生化的草甘膦、草铵膦和AMPA的高灵敏度直接分析方法。 01样品前处理 本方法基于欧盟制定的食品中高极性农药快速分析方法(QuPPe),使用含有甲酸的甲醇:水 (50:50) 作为最终提取溶剂。将1g均质大米样品称入 50 mL离心管中,加入9 mL水和100 μL混标溶液,然后将样品静置15 min。之后,加入10 mL含有1%甲酸的甲醇,振摇1min。加入1 mL 10% EDTA水溶液,在振荡器上混合15min并离心。取上清液用0.22 μm尼龙滤膜过滤,取2mL滤液转移到含有2mL乙腈的试管中,涡旋1分钟,使用3 kDa的超滤管离心并将滤液转移至聚丙烯塑料瓶中。02色谱图 2.5ng/mL混标样品在纯溶剂(a)和大米基质(b)中的MRM色谱图 从左到右分别为0.5、1.0和2.5ng/mL样品的MRM色谱图(上:AMPA、中:草铵膦、下:草甘膦)利用岛津三重四极杆液质联用仪,基于QuPPe的样品前处理方法,无需衍生化、直接进样定量分析大米基质中的草甘膦、草铵膦和 AMPA。并对线性、准确度、精密度、基质效应和回收率等方法学进行了考察,结果良好。 03高极性农药分析的小诀窍 1、选用HILIC或混合模式色谱柱以获得良好峰形,可参考欧盟QuPPe方法中推荐的色谱柱型号。2、为避免高极性化合物被玻璃瓶吸附,建议使用聚丙烯塑料材质的样品瓶、离心管等用于样品和标准品的制备和储存。3、高极性化合物可能会吸附在金属表面,LC自动进样器和色谱柱之间的不锈钢管路用 PEEK材质管路替换。推荐使用Nexera XS inert生物惰性液相系统作为质谱前端。 Nexera XS inert生物惰性液相系统本文中涉及的分析仪器:三重四极杆液相色谱质谱联用仪LCMS-8060NX请访问以下链接,了解更多信息https://www.shimadzu.com.cn/an/lcms/lcms-8060nx/index.html 04其他相关应用 LCMS-8050直接分析饮料中草甘膦 复制链接前往查看:https://www.an.shimadzu.com/direct_analysis_of_glyphosate_glufosinate_and_ampa_in_beverages_using_a_tq_lcmsms.html LCMS-8060 在线衍生化分析啤酒中草甘膦 复制链接前往查看:https://www.an.shimadzu.com/glyphosate_glufosinate_and_ampa__uhplcmsms.html 参考文献:1.Zhe Sun and Zhaoqi Zhan, Quantitative Determination of Residual Glufosinate, Glyphosate and AMPA in Rice Matrix by Direct LC-MS/MS Method,Shimadzu Application News 本文内容非商业广告,仅供专业人士参考。
  • 新品上架| 阿尔塔助力氯化石蜡检测
    今年的6月9日是第十六个“世界认可日”,阿尔塔科技上新氯化石蜡检测标准品,助力食品安全认证认可检验检测。关于氯化石蜡:氯化石蜡(CPs),也称氯石蜡,是许多工业和商业过程中使用的一系列多氯代烷烃,一般含氯量为40%~70%。氯化石蜡是当今深受关注的新污染物,在全球生产、使用及排放量高,由于国家发文整治新污染物,且其对化学品管理和国家履约有重大需求,因此受到广泛重视。一般按照碳链长度的不同,氯化石蜡可分为:○短链氯化石蜡(Short Chain Chlorinated Paraffins,SCCPs,碳链长度为 10~13)○中链氯化石蜡(Medium Chain Chlorinated Paraffins,MCCPs,碳链长度为 14~17)○长链氯化石蜡(Long Chain Chlorinated Paraffins,LCCPs,碳链长度为 18~30)研究表明,碳链长度越短,对生态环境和人类健康的危害越大。短链氯化石蜡具有长距离迁移能力、持久性、生物累积效应及毒性和潜在致癌性等持久性有机污染物(POPs)的基本特征,是一种常见的有机污染物,在人类和动物体内具有生物蓄积性,并在食物链中逐级放大;对人类和野生生物等均具有毒性,具有致癌、致畸、致突变等”三致"效应。短链氯化石蜡作为新增持久性有机污染物已于2017年被正式列入《关于持久性有机物的斯德哥尔摩公约》附件A中,并于2023年列入重点管控新污染物清单。阿尔塔科技密切关注市场动态,为满足氯化石蜡监管与检测方面不断增长的市场需求,丰富氯化石蜡标准物质产品线,推出短链氯化石蜡及相关产品,帮助实验室标品检测添加助力。部分氯化石蜡产品了解更多产品或需要定制服务,请联系我们天津阿尔塔科技有限公司介绍天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • POPs物质检测新标准实施-多氯化萘
    电子电气设备在丰富、方便我们生活的同时,也产生了一定的环境污染问题。随着各国环境法规的日益完善,电子电气产品中禁用限用的物质也越来越多。如欧盟RoHS指令、中国RoHS2.0、欧盟REACH、POPs法规等等,均对有毒有害物质做出限量要求。为了能更好地实现管控,方法标准需要同时跟进。本月《GB/T 40031-2021 电子电气产品中多氯化萘的测定 气相色谱-质谱法》开始实施。 多氯化萘(PCNs)是一类基于萘环上的氢原子被氯原子所取代的化合物的总称,共有75种同类物,是持久性有机化合物。可用作电容器、变压器介质、绝缘剂、防腐剂等等。 原理本标准采用甲苯作为萃取剂进行索氏萃取,萃取液经过硅胶固相萃取小柱净化后,采用气相色谱-质谱法对多氯化萘进行检测,外标法定量。 检测物质多氯化萘包括75种同类物,标准选取1-氯化萘、1,5-二氯化萘、1,2,3-三氯化萘、1,2,3,4-四氯化萘、1,2,3,5,7-五氯化萘、1,2,3,4,6,7-六氯化萘、1,2,3,4,5,6,7-七氯化萘和八氯化萘,共八种物质进行定量分析,在一定程度上反映出氯化萘物质的添加情况。岛津应对GCMS-QP2020 NX抗污染型高灵敏度气相色谱质谱联用仪 ● 可旋转的预四极及超高效大容量真空系统有效降低主四极及离子源污染问题。● 创新ClickTek技术,实现徒手维护。● 仪器自动检漏、自动判断调谐结果,减少用户等待时间。● 提升信号强度,降低噪音,实现高灵敏度分析。 拓展岛津GCMS在应对欧盟RoHS限量邻苯类物质的筛查及准确定量应用中也有优异表现。热裂解与液体自动进样器安装在同一台GCMS上,两根色谱柱同时接入质谱。无需泄真空,更换色谱柱,即可实现快速筛查与准确定量无缝衔接,节省时间,提高效率。本文内容非商业广告,仅供专业人士参考。
  • 国强标《生活饮用水用聚氯化铝》征求意见
    关于征求强制性国家标准《生活饮用水用聚氯化铝》(征求意见稿)意见的通知   各相关单位:   由全国化学标准化技术委员会水处理剂分技术委员会归口修订的GB 15892-2009《生活饮用水用聚氯化铝》征求意见稿已完成,现公开征求意见。请于2014年8月10日前将意见表以电子邮件形式反馈至全国化学标准化技术委员会水处理剂分技术委员会(SAC/TC63/SC5)秘书处。   秘书处联系方式:   单位:中海油天津化工研究设计院标准理化研究中心   地址:天津市红桥区丁字沽三号路85号   邮编:300131   联系人:朱传俊 李琳   电话:022-26689086  022-26689095   E-mail:shuifh@163.com   2014年7月10日   附件:   1.强制性国家标准《生活饮用水用聚氯化铝》(征求意见稿).doc   2.强制性国家标准《生活饮用水用 聚氯化铝》编制说明.doc   3.意见反馈表.doc
  • 玩具材料中短链氯化石蜡测定标准即将颁布
    导语遥控汽车、拼图积木… … 又到了欢乐“六一”,想好给孩子们送什么玩具礼物了吗?随着社会的发展和进步,玩具花样也越来越多。但另一方面,玩具的安全性,如化学添加物质(增塑剂、阻燃剂等)也愈发引起关注。2017年,欧盟RAPEX通报了27起中国出口的消费品短链氯化石蜡超标案例,其中有6起涉及儿童玩具产品,包括了玩具小马、玩具步枪、绳子、沐浴玩具、塑料娃娃等。为适应国内外市场的要求,2019年,由上海海关机电产品检测技术中心牵头,着手开展制定《玩具材料中短链氯化石蜡含量的测定 气相色谱-质谱联用法》的国家标准。期间,岛津分析中心积极协助上海海关专家,参与了标准品和玩具材料实际样品的验证工作,并就技术问题与制标单位专家进行协商和沟通,推动项目的进展,目前该标准已通过报批程序,即将颁布并实施(标准号:GB/T 41524-2022),一起来看看吧! 氯化石蜡——年产量超过百万吨的化学品短链氯化石蜡(SCCPs,碳原子数10-13个)是一类人工合成的直链正构烷烃氯代衍生物。SCCPs主要用作金属加工润滑剂、增塑剂、涂料、皮革加脂剂以及阻燃剂等。SCCPs具有持久性、生物富集性以及潜在生物毒性,被IARC归为2B类致癌物。2007年,欧盟REACH将SCCPs列入第一批高关注物质清单;EU 2015/2030规定物品中的短链氯化石蜡含量不得等于或大于0.15%,否则不能投放市场。2017年4月,SCCPs被正式列入关于持久性有机污染的《斯德哥尔摩公约》受控名单(附录A)中。 表1. 关于SCCPs的管控情况中国是世界第一大氯化石蜡生产国,2013年的年产量超过100万吨,年产能超过160万吨。同时,我国也是世界玩具生产大国和出口大国,每年全球约75%的玩具来自中国,氯化石蜡常作为增塑剂和阻燃剂添加至玩具中,玩具材料中短链氯化石蜡的过量使用不仅会成为影响我国玩具出口的重大隐患,也会影响了我国玩具制造业的国际形象。图1. 氯化石蜡全球产量与使用量[1] 短链氯化石蜡——分析化学的前沿热点之一氯化石蜡及短链氯化石蜡的检测一直是环境、消费品等分析化学的难点之一。下图是市售某氯含量的短链氯化石蜡标准品谱图,由于同族分子种类众多,在仪器谱图上呈现簇峰,且保留时间跨度范围大,易与其它污染物干扰。因此,氯化石蜡及短链氯化石蜡的分析需要综合考虑前处理分离、仪器的分离度、分辨率、灵敏度等因素。迄今,尚无关于其检测的统一/黄金方法标准。 图2. 典型氯化石蜡的工业标准品谱图 相对而言,气相色谱-负化学电离质谱联用法(NCI-GCMS)目前是分析短链氯化石蜡常用的方法之一。 表2. NCI-GCMS的分析SCCPs的特点需要特别指出一点,NCI-GCMS的响应随氯原子数增大而增大,这会导致样品与标准品若氯含量有明显差异,则得到的定量结果不准确[2]。因此若使用NCI-GCMS,目前主流的方法是使用氯含量-响应因子做校准曲线[3]。图3. NCI模式下,相同浓度下不同氯含量的响应对比,由下到上依次为50ppm,氯含量51.5%、53.5%、55.5%、56.25%、57.75%、59.25%和63%的总离子流图。 岛津应对利器使用NCI-GCMS法,岛津分析中心协助上海海关机电中心对开展标准制订工作用的标准品和玩具样品进行方法学验证。图4. GCMS-QP2020 NX及方法参数信息 l 方法学结果节选——质量色谱图图5. 氯含量55.5%的SCCPs工业标准品单体质量色谱图(以CnCl7为例) l 某玩具材料样品的实例谱图图6. 某玩具材料样品的TIC谱图(浓度约2000 mg/kg) 结语作为世界知名的仪器产商,岛津公司始终秉持“为了人类和地球健康“的经营理念,不仅提供优良性能的仪器,同时也提供丰富的理化检测解决方案,针对国内外关注的玩具中短链氯化石蜡超标问题,协助国内制标单位开展标准制定工作,让下一代玩的放心,拥有快乐的童年。 参考文献[1] Gluge J., Wang Z.J., Bogdal C et al. Global production, use, and emission volumes of short-chain chlorinated paraffins – A minimum scenario. Science of the Total Environment, 2016, 573: 1132-1146.[2] Reth M., Oehme M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins. Anal Bioanal Chem, 2004, 378: 1741-1747.[3] Reth M., Zencak Z., Oehme M et al. New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry. Journal of Chromatography A, 2005, 1081:225-231. 本文内容非商业广告,仅供专业人士参考。
  • 赛默飞发布针对左乙拉西坦中四丁基铵的检测方案
    2015年8月20日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布针对左乙拉西坦中四丁基铵的检测方案。左乙拉西坦是一种新型吡咯烷酮衍生物型抗癫痫药物。左乙拉西坦的结构和作用机制均与已上市的其他抗癫痫药物不同,具有较强的抗癫痫作用。四丁基溴化铵是在左乙拉西坦的合成过程中作为相转移催化剂使用,原料药的合成工艺准则要求必须要严格控制其残留量。赛默飞发布的测定左乙拉西坦原料药中四丁基胺的离子色谱方法,采用Thermo ScientificTM DionexTM ICS-900 基础型离子色谱系统,样品中基体不影响待测物质的准确分析。ICS-900配备SCS1柱容量较小的分析柱,采用MSA+35%乙腈作为淋洗液,采用抑制电导的方式检测,四丁基胺的检出限可以做到8 ug/L,待测物四丁基胺在SCS1上的峰形很对称,方法分析速度快,操作简便,灵敏度等均可完全能够满足左乙拉西坦中残留的四丁基胺根离子的检测要求。ICS-900基础型离子色谱系统检测方案下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/pharma/documents/Suppressed-Conducitivity-Ion-Chromatography-Method-Determination-Tetrabutyl-Ammonium-Levetiracetam.pdf----------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法
    铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法 一、硅之测定(亚铁还原硅钼蓝光度法) 1、方法提要 试样溶于稀硝酸,滴加高锰酸钾氧化,硅酸离子全部转化成正硅酸离子,在一定酸度下与钼酸铵作用,生成硅钼杂多酸。然后在草酸存在下用亚铁还原成硅钼蓝,借此进行硅的光度测定。 2、试剂 (1)稀硝酸(1+5) (2)高锰酸钾溶液(2%) (3)碱性钼酸铵溶液: A、钼酸铵溶液(9%) B、碳酸钾溶液(18%) A、B两溶液等体积合并,贮于塑料瓶中备用。 (4)草酸溶液(2.5%) (5)硫酸亚铁铵溶液(1.5%) 称硫酸亚铁铵15g,先将稀硫酸(1+1)1ml湿匀亚铁盐,然后以水稀释至1L,溶解后摇匀备用。 3、分析步骤 称取试样30mg,加至高型烧杯(250ml)中,杯内有预热之稀硝酸(1+5)10ml,样品溶清,逸去黄色气体,加高锰酸钾(2%)2-3滴,继续加热至沸,立即加入碱性钼酸铵溶液10ml摇动10秒钟,再另入草酸(2.5%)40ml,硫酸亚铁铵(1.5%)40ml摇匀以水作参比,扣除空白倾入比色杯,在JSB系列或JQ系列分析仪器上测定,直读含量。 4、注意事项 溶解样品时应低温溶解。 二、锰之测定(过硫酸铵银盐光度法) 1、方法提要 钢铁试样,在耨、磷介质是,以银离了为催化剂,用过硫酸铵氧化将低价锰子变成高锰酸,借此进行锰的光度测定。 2、试剂 (1)定锰混合液 硝酸450ml,磷酸72ml,硝酸银7.2g,用水稀释至2L,摇匀,贮于棕色瓶中备用。 (2)过硫酸铵溶液(15%)或固体。 3、分析步骤 称样50mg,置于高型烧杯(250ml)中,溶于预热定锰混合液15ml,等试样溶解毕,加入过硫酸铵溶液(15%)10ml(联测时加固体过硫酸铵约1g)继续加热于沸并出现大气泡10秒钟后,加入40ml倾入比色杯中,在JSB系列或JQ系列分析仪器上测定,直读含量。 4、注意事项 (1)过硫酸铵加入后,需要控制煮沸10秒。 (2)记取含量时,要等少量小气泡逸去后读取。 三、磷之测定(氟化钠-氯化亚锡磷) 1、方法提要 试样在硝酸介质中,以高锰钾氧化,使偏磷酸氧化成正磷酸,与钼酸铵生成磷钼杂多酸,以氯化亚锡还原成磷钼蓝进行光度测定。酒石酸离子消除硅的干扰。氟化钠络合铁离子,生成无色络合物,并抑制硝酸分子的电离作用。 2、试剂 (1)稀硝酸(1+2.5) (2)高锰酸钾溶液(2%) (3)钼酸铵-酒石酸钾溶液 取等体种的钼酸铵溶液(10%)与酒石酸钾钠(10%)混合备用。 (4)氯化钠(2.4)-氯化亚锡(0.2%)溶液: 氯化钠24g溶于800ml水,可稍加热助溶,氯化亚锡2g,以稀盐酸(1+1)5ml,加热至全部溶清;加入上述溶液稀释至1L,必要时可过滤。当天使用,经常使用时,配大量氟化钠溶液,使用时取出部分溶液加入规定量之氯化亚锡。 3、分析步骤 称试样50mg,置于高型烧杯(250ml)中,加入预热稀硝酸(1+2.5)10ml,加热至试样溶解,逸去黄色气体,滴加高锰酸钾溶液(2%)2-3滴。再加氟化钠-氯化亚锡溶液40ml。水作参比,倾入比色杯。在JSB系列或JQ系列分析仪器上测定,读取含量。 4、注意事项 (1)氧化时应使溶液至沸,并保持5-10秒钟。 (2)分析操作手续相对保持一致致,以保证分析结果重现性和准确度。 (3)含量高至0.050%以上,色泽稳定时间较短,读数不就耽误,在0.080%时更短,要即刻读取。
  • 将取消气相色谱法 测定染料产品中氯化甲苯
    在染料生产和纺织品生产过程中,氯化甲苯得到了广泛应用,但其对环境及人身健康安全有着较大的危险性,故而,各国及行业组织均对氯化甲苯化合物的残留做了严格的限量。我国早在2009年就制订发布了有关氯化甲苯测定的标准,即GB/T 24167-2009《染料产品中氯化甲苯的测定》,但其在实施应用中存在各式各样的问题,故而业内提出了修订该标准。近日,由沈阳化工研究院有限公司、国家染料质量监督检验中心主要起草的《染料产品中氯化甲苯的测定》已经修订完成,正面向社会征求意见。拟实施日期:发布后个月正式实施。与GB/T 24167-2009相比,更改了标准适用范围;删除了气相色谱测定方法;更改了方法原理;更改了标准溶液制备方法;更改了样品溶液制备方法;更改了色谱分析条件;更改了方法的检出限;更改了方法准确度判定要求;更改了氯化甲苯目标物种类。标准中规定了采用气相色谱-质谱法(GC/MS)测定染料产品中12种氯化甲苯残留量的方法,而该方法的原理是在超声波浴中,用二氯甲烷提取试样中的氯化甲苯,采用气相色谱-质谱联用仪(GC/MS)进行分离和测定,峰面积外标法定量即可。标准中也明确表明实验过程中需要用到的仪器设备包括具有EI源的气相色谱-质谱联用仪、色谱柱、分析天平、超声波发生器、提取器、离心机、氮吹浓缩仪等。目前《染料产品中氯化甲苯的测定》新标准处于意见征集阶段,相信2021年将会公示执行。随着对燃料染料产品把控的越来越严格,对于我们自身的健康安全就愈发有保障,并减少环境污染和资源浪费。
  • 共克时艰 | 论消毒剂的现场检测
    摘要2019年12月以来,新型冠状病毒(NCP/COVID-19)感染引发肺炎疫情。在这场全国性的战疫中,有效切断病毒传播途径,遏制疫情蔓延势头为当务之急。2020年2月4日,在国家卫健委办公厅及中医药管理局办公室发布的《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》中,对新冠病毒病原学特点有如下描述:“对冠状病毒理化特性的认识多来自对SARS-CoV和MERS-CoV的研究。病毒对紫外线和热敏感,56℃ 30分钟、乙醚、75%乙醇、含氯消毒剂、过氧乙酸和氯仿等脂溶剂均可有效灭活病毒,氯己定不能有效灭活病毒。”因此,选择合格的消毒剂是有效灭活病毒的手段之一。季铵盐类消毒剂具有无色无臭无刺激性、杀菌浓度低、副作用小、化学性能稳定、分散及缓蚀作用较好等优点,应用领域广泛。氯化苄铵松宁(又名苄索氯铵,CAS#: 121-54-0)是一种氯型季铵盐类的低毒高效消毒剂。参考《GB 26369-2010 季铵盐类消毒剂卫生标准》,应用于不同场景的消毒使用,对氯化苄铵松宁的浓度及作用时间有明确要求,因此现场检测并确认氯化苄铵松宁的含量是十分必要的。检测方案美国Axcend公司Focus LC便携式超高效液相色谱仪,专为现场快速检测而设计,可供操作者随手掌控。仪器体积如鞋盒般小巧,净重不足8kg,续航时间长,流动相消耗少,灵敏度高,模块化的检测器设计使操作和维护都非常方便。纳升级进样,二元高压梯度检测器与色谱柱一体化设计整个分析过程溶剂消耗不到100μL环境友好,产生的废液极少可通过WIFI或网线与笔记本电脑连接
  • 岛津应用:矿泉水中氰化物和氯化氰的检测
    2014年12月22日,日本颁布了牛奶和奶制品成分标准的相关指令,以及食品、添加物等规格基准的部分修订指令(日本厚生劳动省令第141号、厚生劳动省告示第482号;同日实施),还规定了有关试验方法(食安发1222第4号)。指令中规定,矿泉水中的氰标准值为0.01 mg/L(氰化物离子和氯化氰的总值),试验方法为离子色谱柱后衍生化法。 本文向您介绍按照修订后的清凉饮料水试验方法(以下称为“指令”),使用岛津氰化物分析系统对矿泉水中的氰化物离子和氯化氰进行分析的示例。 按照指令规定,使用离子排斥柱将氰化物离子和氯化氰分离,然后使用4-吡啶羧酸吡唑啉酮法进行柱后衍生化,在波长638nm处进行检测。柱后衍生化反应分两步进行,第一步利用氯胺T 溶液进行氯化,第二步利用 1-苯基-3-甲基-5-吡唑啉酮/4-吡啶羧酸溶液进行显色。 按照指令规定的岛津氰化物系统流路图 了解详情,敬请点击《使用离子色谱柱后衍生化法分析矿泉水中的氰化物和氯化氰》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • GC Smart+HS-10测定生活饮用水中氯仿、四氯化碳应用方案
    随着社会的发展,人们对生活饮用水的质量要求也在不断提高,不仅仅是需要清洁、卫生,更需要“安全”。国家从2007年7月1日全面实施《gb 5749-2006 生活饮用水卫生标准》,总共规定了106项水质指标,分为微生物指标、毒理指标、化学指标和放射性指标。其中毒理指标涉及氯仿和四氯化碳。通过监测生活饮用水中氯仿、四氯化碳的浓度可以指导生产中的加氯量,避免加氯量过大对人体健康造成危害或加氯量过小导致微生物指标不达标。现行国标《gb/t 5750.8-2006 生活饮用水标准检验方法 有机物指标》中规定了顶空法结合气相色谱ecd检测器测定生活饮用水中氯仿、四氯化碳。顶空法采用气体进样,不需要进行有机溶剂萃取等前处理,操作简单。ecd检测器是一种高灵敏度、高选择性检测器,对电负性物质具有极高的灵敏度。本解决方案参照国标《gb/t 5750.8-2006》,建立了顶空进样结合气相色谱ecd检测器测定生活饮用水中氯仿、四氯化碳含量的方法。岛津公司 hs-10 顶空自动进样器延续了 hs-20 系列的良好重复性,gc smart 气相色谱仪采用载气手动控制模式并结合了 apc 高精度控制技术,两者通过工作站 labsolutions le实现分析的全自动化。本方法操作简单、检出限低,样品中氯仿、四氯化碳加标回收率分别为 99.3%和 98.4%,方法准确可靠,对于生活饮用水中氯仿、四氯化碳含量控制具有现实意义。所谓顶空,是指"物质上部的空间",在液体或固体的上部存在着液体或固体中所含的挥发性成分,特别是低沸点的成分。顶空进样器将样品放置于密封恒温系统中进行一定时间恒温,当气液或气固两相达到热力学平衡后采样并导入气相色谱仪(gc)进行分析。通常应用于食品中的香气成分、化学制品的气味成分,环境水中的有害挥发性成分的定性或定量分析。hs-20系列顶空进样器为从研究部门到品质管理部门所有涉及挥发性成分的分析提供有力的支持。hs-20 系列顶空进样器包括定量环采集模式hs-20/hs-20lt型和冷阱模式hs-20trap型。 卓越的性能良好的重现性极低的交叉污染友好的界面设计样品盘设计人性化维护简便灵活的扩展性电子冷却捕集阱条形码阅读器选件hs-20系列顶空进样器加热炉温度上限可以达到300℃,全惰性化样品传输管线,可以分析以往顶空进样器难以分析的高沸点化合物。环硅氧烷是硅氧烷生产的一种原料,常痕量存在于硅油、液体橡胶和某些化合物中。环硅氧烷具有挥发性,可能造成电子部品接点不良,所以控制环硅氧烷的含量非常重要。hs-20系列顶空进样器可在相同条件下测定从环硅氧烷到邻苯二甲酸酯等成分。
  • 英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选
    在当今这个快速发展的时代,环境保护已经成为全球共同关注的焦点。而环保监测,作为确保环境质量的重要手段,其意义愈发凸显。在众多环境污染物中,氯化氢(HCl)因其强烈的腐蚀性和对生态环境可能造成的严重损害,成为环保监测中不可忽视的对象。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选氯化氢是一种无色、有刺激性气味的气体,具有强腐蚀性。它广泛存在于工业废气、废水和垃圾焚烧等过程中,若未经妥善处理排放到环境中,将对大气、水体和土壤造成不同程度的污染。例如,氯化氢进入大气后,会形成酸雨,对植被和建筑物造成损害;进入水体后,会改变水体的酸碱度,影响水生生物的生存;进入土壤后,会破坏土壤结构,影响农作物的生长。评估环境质量:通过对环境中氯化氢浓度的监测和测试,可以直观地了解环境质量状况,为环保决策提供科学依据。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选预警和防控:当氯化氢浓度超过一定阈值时,环保监测系统可以发出预警,提醒相关部门及时采取措施进行防控,防止环境污染事件的发生。指导治理:通过对氯化氢来源的追踪和分析,可以指导相关部门采取针对性的治理措施,减少氯化氢的排放,改善环境质量。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选评估治理效果:在采取治理措施后,通过再次对环境中氯化氢浓度的监测和测试,可以评估治理效果,为后续的环保工作提供参考。随着全球环境问题的日益严重,环保监测的重要性愈发凸显。在众多环境污染物中,氯化氢(HCl)因其对生态环境可能造成的严重损害而备受关注。因此,对氯化氢进行准确、高效的监测成为环保工作中不可或缺的一环。英国Alphasense公司推出的氯化氢传感器HCL-A1(或类似型号HCL-D4),为环保监测提供了强有力的技术支持。氯化氢是一种无色、有刺激性气味的气体,具有强腐蚀性。它广泛存在于工业废气、废水和垃圾焚烧等过程中,若未经妥善处理排放到环境中,将对大气、水体和土壤造成不同程度的污染。通过对氯化氢的监测和测试,可以评估环境质量、预警和防控环境污染、指导治理以及评估治理效果。这对于保护我们共同的家园——地球具有重要意义。英国Alphasense作为气体传感器领域的佼佼者,其推出的氯化氢传感器HCL-A1(或类似型号HCL-D4)具有以下特点:高灵敏度:该传感器具有较高的灵敏度,能够快速响应环境中的氯化氢浓度变化。快速响应:响应时间短,能够迅速捕捉到氯化氢的排放情况,为预警和防控提供及时信息。高分辨率:传感器具有较高的分辨率,能够精确测量出环境中氯化氢的浓度,为评估环境质量提供准确数据。稳定性好:传感器采用先进的技术和材料,具有良好的稳定性和可靠性,能够在恶劣环境下长时间稳定运行。电化学盐酸气体传感器氯化氢气体传感器HCL-D4的主要参数如下:灵敏度:100~200nA/ppm,这意味着传感器对氯化氢浓度变化具有高度的敏感性。响应时间:≤250s,传感器能够迅速响应并捕捉到氯化氢的排放情况。分辨率:PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ 获取进口传感器详细资料。
  • 饮用水臭氧消毒后,如何检测臭氧的残余量?
    一、背景介绍臭氧,化学式为O3,因其类似鱼腥味的臭味而得名。臭氧是一种强氧化剂,具有很强的杀菌消毒、漂白、除味等特性,因此广泛应用于饮用水消毒、食品加工杀菌净化、医疗卫生和家庭消毒等方面,但是过量的臭氧会使水中溴化物绝大部分被氧化成对人体有害的溴酸盐。《生活饮用水卫生标准》GB 5749-2006中,对水质中的臭氧有明确的限值,下面我们将具体介绍臭氧含量检测的标准要求、测试方法、具体测试过程及结果。 二、方法及限值臭氧分析主要有光谱分析和电化学分析。常用检测方法主要为碘量法、靛蓝二磺酸钠分光光度法、紫外吸收法和化学发光法。分光光度法不仅体积小巧,测试性价比高,易于携带保管,比较适合于在农村或县级实验室推广使用。靛蓝二磺酸钠分光光度法是在酸性条件下,臭氧迅速氧化靛蓝,使之褪色,吸光率的下降与臭氧浓度的增加呈线性。 表1臭氧的检测标准及限值标准编号标准名称限值GB 5749-2006GB5749-XXXX征求意见稿生活饮用水卫生标准出厂水和末梢水限值≤0.3mg/L末梢水余量≥0.02mg/L 三、臭氧含量测定1、检测仪器:DGB-480型多参数水质分析仪2、检测试剂:臭氧试剂包:(臭氧)测定试剂(粉剂组分)、(臭氧)测定试剂(溶液组分)3、检测流程及结果:参数方法号方法检出限mg/L测量范围mg/L重复性测量误差臭氧18靛蓝二磺酸钠分光光度法0.020.02-2.002.00%±0.1mg/L图 1 臭氧含量测定流程 图2 臭氧含量测定显色图(从左到右0mg/L、0.4mg/L、1.0mg/L、1.6mg/L和2.0mg/L) 图3 臭氧含量测定曲线图4、结果总结:● 对0mg/L、0.4mg/L、1.0mg/L、1.6mg/L和2.0mg/L的臭氧标准溶液进行检测,测量误差≤0.008mg/L,结果良好。● 采用DGB-480型多参数水质分析仪测定水中臭氧含量,测量方法为国家标准方法。测试仪器体积小巧,配套有臭氧检测试剂,测试方便,测试性价比高。 四、检测仪器介绍DGB-480型多参数水质分析仪,采用8波长光学测量系统和90度光散射浊度检测光路,内置浊度、色度、臭氧、亚硝酸盐氮、尿素、六价铬、总铬、锰、总氮、 硝酸盐氮、硝酸盐、甲醛、水硬度、锌、亚硝酸盐、余氯、总氯、 二氧化氯、高锰酸盐指数、低浓度 CODCr、高浓度 CODCr、镉、 氨氮、铵离子、总磷、总磷酸盐、镍、亚铁离子、铁、亚硫酸盐、 过氧化氢、铝、铅、铜、钙、汞、硼、砷、氟、阴离子洗涤剂、 银、溴酸盐、硫酸盐、钼、铍、钴、钡、氯化物等40多种检测项目和方法,直接调用,测量快速、简便。既可以配套雷磁专用试剂盒检测也可以自制试剂检测,使用灵活。主要应用于生活饮用水、地表水、自来水、污水、游泳池水等水质的现场测定或者实验室分析。
  • 赫施曼助力饮用水中四氯化碳的测定
    生活饮用水由于加氯消毒可产生新的有机卤代物,主要成分是氯仿和四氯化碳及少量的一氯甲烷、一溴二氯甲烷、二溴一氯甲烷以及溴仿等,统称为卤代烷。根据GB/T 5750.8-2023,生活饮用水中四氯化碳浓度的测定可用毛细管柱气相色谱法。其原理是水样置于密封的顶空瓶中,在一定温度下经一定时间的平衡,水中三氯甲烷、四氯化碳逸至上部空间,并在气液两相中达到动态平衡,此时,三氯甲烷、四氯化碳在气相中的浓度与其在液相中的浓度成正比。通过对气相中三氯甲烷、四氯化碳浓度的测定,可计算出水样中三氯甲烷、四氯化碳的浓度。实验步骤如下:试剂:1.载气:高纯氮。2.纯水:色谱检测无待测成分。3.抗坏血酸。4.甲醇:优级纯,色谱检测无待测成分。5.三氯甲烷和四氯化碳标准物质:纯度均≥99.9%,也可为色谱纯,或使用有证标准物质。6.三氯甲烷标准储备液:准确称取0.8008g三氯甲烷,放入装有少许甲醇的100mL容量瓶,以甲醇定容至刻度,此溶液浓度为8.00mg/mL。7.四氯化碳标准储备液:准确称取0.4004g四氯化碳,放入装有少许甲醇的100mL容量瓶,以甲醇定容至刻度,此溶液浓度为4.00mg/mL。8.混合标准溶液:于200mL容量瓶中加入约100mL甲醇,再用电动移液器分别加入1mL三氯甲烷、四氯化碳的各单标准溶液,然后加入甲醇定容。混合标准溶液中各组分质量浓度分别为三氯甲烷40μg/mL,四氯化碳20μg/mL。9.标准使用溶液:用电动移液器移取1.00mL混合液标准溶液于100mL容量瓶中,纯水定容。标准使用溶液中各组分的质量浓度分别为三氯甲烷0.40μg/mL,四氯化碳0.20μg/mL。现配现用。标准工作曲线的绘制:采用opus电子瓶口分配器(10mL款)的stepper模式,设置5个分液体积分别为0.10、0.50、1.00、2.00、5.00mL,排气泡后进行分液,将标准使用溶液分别加入5个200mL容量瓶中,另备一个不加标准使用溶液,并用纯水稀释至刻度(可用opus电子瓶口分配器50mL款分别设定并加入193-198mL纯水,然后定容),混匀。配置后三氯甲烷的质量浓度为0、0.20、1.0、2.0、4.0、10μg/L;四氯化碳质量浓度为0、0.10、0.50、1.0、2.0、5.0μg/L。再倒入6个顶空瓶至100mL刻度处。加盖密封于40℃恒温水浴中平衡1h,各取顶部空间气体30μL注入色谱仪。以峰高或峰面积为纵坐标,质量浓度为横坐标绘制标准工作曲线。实验室移取几微升到几毫升的液体,一般采用移液器。Miragen电动移液器,接头和内腔为不锈钢,相对于常见的橡胶和塑料,更适合有机试剂。电枪的数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。德国赫施曼的opus分液系列产品,可在0.5%的精度下进行连续分液,且分液次数、间隔时间和流速均可调,既可进行基础的等体积分液,也可进行不等体积分液(每个体积均独立可调,如本试验中的5个体积分液),可用于大批量移液、稀释剂补液(代替烧杯和玻璃棒),还可代替量筒、移液器和部分移液管。
  • 保障装置安全,提高生产效益——中盐安徽红四方电化车间“氯化氢中游离氯”分析项目
    项目背景  中盐安徽红四方股份有限公司是中国盐业股份有限公司控股,合肥市工业投资控股公司参股组建的化工企业,位于安徽省合肥市循环经济示范园。经过五十多年的发展,形成了以煤化工、盐化工、精细化工、化工新材料和新能源为核心的多元化产业新格局。目前拥有10余家子公司,总资产130亿元。  电化车间生产的氯化氢气体中含有微量氯, 当氯含量超标时,将会严重影响下游VCM合成工段的安全性,所以合成炉出口氯化氢中的游离氯,成为了监控的重点目标。厂区概览图项目概述  2014年2月,中盐安徽红四方股份有限公司携手聚光科技(杭州)股份有限公司(以下简称“聚光科技”),新上了氯化氢总管出口的氯化氢中的游离氯监测项目,为装置的安全和工艺的精确控制保驾护航。项目仪表选用聚光科技专为氯碱行业氯化氢合成炉出口——氯化氢中游离氯监测而开的OMA-3010 Cl2&HCl分析仪。  本项目包括两台OMA-3010 Cl2&HCl分析仪,采用二选一的联锁方式,任何其中一台分析仪测得游离氯超标时,将启动下游氯乙烯合成装置的紧急停车系统。分析系统取样口来源于氯化氢合成出口总管,对样气中的氯化氢浓度和游离氯含量进行监测。项目建设  OMA-3010 Cl2&HCl分析仪是聚光科技针对氯碱行业特别推出的解决方案。该系统采用OMA-3000系列在线紫外光纤光谱分析仪和高耐腐预处理系统,可同时分析工业过程气中的微量Cl2和高浓度HCl,且支持自动Cl2双量程切换,能在高腐蚀性环境中长期稳定的工作。 项目现场图项目价值  聚光科技OMA-3010 Cl2&HCl分析仪投用四年多来,系统工作稳定,仪器测量值与实验室人工分析偏差≤1%,尤其是游离氯检测灵敏,不仅保障生产装置的安全,防止Cl2含量超标与C2H2发生剧烈反应导致爆炸;还为工艺的优化提供了良好的支持,提高了H2利用率和HCl合成率,优化HCl与C2H2原料气配比。同时,大大减少了仪器自身的维护量和正常的备品备件消耗量。
  • 三篇新型POPs氯化石蜡研究在环境国际权威期刊发表,分析技术竟然是它!
    精彩推荐近期,中国农业科学院农业质量标准与检测技术研究所“饲料质量安全检测与评价”创新团队开展了畜产品以及饲料中短链和中链氯化石蜡污染特征研究,解析了污染来源,进一步揭示了氯化石蜡在“环境—青贮饲料—奶牛—生鲜乳”生产链条中迁移转化规律,评估了暴露风险,为新型持久性有机污染物在动物性食品生产链条中的迁移防控提供了技术支撑。相关研究成果[1,2]相继在线发表在《环境国际(Environment International)》和《危害物质学报(Journal of Hazardous Materials)》上。图片来源:ScienceDirect 与此同时,国家环境测试中心发表大气环境中短链氯化石蜡SCCPs的污染水平与特性,相关研究成果[3]在线发表在《Environmental Pollution》上。图片来源:ScienceDirect 什么是氯化石蜡?氯化石蜡(ChlorinatedParaffins,CPs)是一类组成复杂的正构烷烃的氯代衍生物,其中短链氯化石蜡(ShortChain Chlorinated Paraffins, SCCPs)及中链氯化石蜡(Medium Chain Chlorinated Paraffins, MCCPs)均具有典型持久性有机污染物(PersistentOrganic Pollutants, POPs)的特征,是近年来备受关注的一类新型的有机污染物(图1)。短链氯化石蜡已于2017年5月被正式列入《关于持久性有机污染物的斯德哥尔摩公约》受控名单附件A中,其在环境介质和生物中的含量,以及对人体的暴露风险评价等成为现今研究的热点课题。图1:氯化石蜡分类 岛津创新中心基于全二维气相色谱串联质谱联用仪(图3),开发了环境中新型POPs氯化石蜡分析方法包。可有效分离短链氯化石蜡与中链氯化石蜡,同时可准确定量短链氯化石蜡SCCPs和中链氯化石蜡MCCPs的总含量以及同系物的相对含量,该方法学文章[4](图2)在2018年发表于《色谱A(Journal of Chromatography A)》,可有效应用于大气、土壤、底泥、生物、血液、饲料和食品等各类样品。同时获得一项分析方法专利。 图2:全二维三重四极杆质谱技术在短链氯化石蜡检测中的应用 中国农业科学院农业质量标准与检测技术研究所和国家环境测试中心发表的三篇文章,正是参照分析方法学文献[4]并采用了氯化石蜡分析方法包,完成大量不同基质样品的实际检测。图3:全二维气相色谱质谱联用仪 在氯化石蜡分析方法的基础上,创新中心又开发全二维气质联用GCxGC分离定量209种多氯联苯(PolychlorinatedBiphenyls,PCBs)单体的应用(图4)。该应用系统可分离198个PCB单体,4对两单体重合,1组三单体重合,以及实现12个Dioxin-likePCB单体的完全分离。该方法可应用于大气、土壤、底泥等环境及食品领域。图4:2019ASMS Poster《全二维气质联用分离定量209种多氯联苯单体》 [1] Shujun Dong, Su Zhang, Xiaomin Li, et al. Short- and medium-chain chlorinated paraffins in plastic animal feed packaging and factors affect their migration intoanimal feed, Journal of Hazardous Materials,389,2020.https://doi.org/10.1016/j.jhazmat.2019.121836 [2] Shujun Dong,Su Zhang,Xiaomin Li, et al. Occurrence of short- and medium-chain chlorinated paraffins in raw dairy cow milk from fiveChinese provinces,Environment International 136 (2020). https://doi.org/10.1016/j.envint.2020.105466 [3] Shan Niu, Ruiwen Chen, Yun Zou, et al. Spatial distribution and profile of atmospheric short-chain chlorinated paraffins in the Yangtze River Delta,259, April 2020.https://doi.org/10.1016/j.envpol.2020.113958 [4] Yun Zou, Shan Niu, Liang Dong, et al. Determination of short-chain chlorinated paraffins using comprehensive two-dimensional gas chromatography coupled with lowresolution mass spectrometry, Journal of Chromatography A, 1581 (2018) 135–143. https://doi.org/10.1016/j.chroma.2018.11.004
  • 真的有“0添加”防腐剂化妆品?智商税!
    我们常用的化妆品,如护肤、彩妆、洗护类产品,由水、油脂和营养物质组成,是微生物增生、繁殖的培养基地,极易变质腐败。为了延长化妆品使用寿命,在生产的过程中需加入适量的防腐剂。根据文献资料和新闻报道,绝大多数化妆品所谓的“0添加”只是没有添加《化妆品安全技术规范》中列出的防腐剂,而是使用了其他替代防腐剂,且这类物质使用时间较短,其副作用还暂不明确。 2015版《化妆品安全技术规范》中规定了51种准用防腐剂及最大允许浓度,较常用的有苯氧乙醇、苯甲酸钠、对羟基苯甲酸酯类、甲基异噻唑啉酮等。某护手霜成分表 如何检测化妆品中防腐剂? 防腐剂是一把双刃剑,过量的或不适合自身肤质的防腐剂可能会导致过敏性皮炎、肝脏毒性、类激素作用等副作用。 2021年3月国家药品监督管理局发布《化妆品中防腐剂检验方法》(2021年第17号通告),与2015版《化妆品安全技术规范》中绝大部分准用防腐剂一一对应,检测仪器有液相色谱仪和气相色谱仪,如有阳性检出或测试结果存在干扰因素,可采用三重四极杆液相色谱-质谱仪、气相色谱-质谱仪进行确证。 《化妆品安全技术规范(2015年版)》准用防腐剂与检验方法对照表岛津解决方案 岛津公司拥有丰富的色谱质谱产品,性能优越,操作简便,可以应对化妆品中防腐剂的检测。 检验方法 液相色谱法检测化妆品中23种防腐剂色谱柱:Shim-pack GIST C18,250mm x 4.6mm x 5μm流动相:A 0.12%磷酸水溶液 B乙腈流速:1 mL/min,柱温:30℃检测波长:230nm、254nm、280nm进样体积:10 μL洗脱程序:梯度洗脱 色谱图(1. 甲基异噻唑啉酮、2. 2-溴-2-硝基丙烷-1,3-二醇、3. 4-羟基苯甲酸、4. 甲基氯异噻唑啉酮、5. 苯甲醇、6. 苯氧乙醇、7. 苯甲酸、8. 4-羟基苯甲酸甲酯、9. 氯苯甘醚、10. 脱氢乙酸、11. 5-溴-5-硝基-1,3-二噁烷、12. 4-羟基苯甲酸乙酯、13. 4-羟基苯甲酸异丙酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 4-羟基苯甲酸异丁酯、17.4-羟基苯甲酸丁酯、18. 4-羟基苯甲酸苄酯、19.苯甲酸乙酯、20. 4-羟基苯甲酸戊酯,21. 苯甲酸异丙酯、22. 苯甲酸丙酯、23. 苯甲酸苯基酯) 气相色谱法检测化妆品中26种防腐剂色谱柱:Rxi-wax,60m×0.32mm×0.25μm柱温程序:50℃(1 min)_50℃/min_ 120℃ _5℃/min_195℃(3 min)_20℃ /min_220℃(10min)_20℃/min_240℃ (15 min)进样方式:分流进样(分流比为5:1)检测器温度:250℃ 色谱图(1. 丙酸、2. 三氯叔丁醇、3. 苯甲酸甲酯、4.苯甲酸异丙酯、5. 苯甲酸乙酯、6. 苯甲酸丙酯、7. 苯甲酸异丁酯、8. 苯甲酸异丁酯、9. 苯甲醇、10. 甲基氯异噻唑啉酮、11. 苯氧异丙醇、12. 甲基异噻唑啉酮、13. 山梨酸、14. 苯氧乙醇、15. 苯甲酸、16. 十一烯酸、17. 对氯间甲酚、18. 氯二甲酚、19. 邻苯基苯酚、20. 4-羟基苯甲酸甲酯、21. 4-羟基苯甲酸异丙酯、22. 4-羟基苯甲酸乙酯、23. 4-羟基苯甲酸丙酯、24. 4-羟基苯甲酸异丁酯、25. 4-羟基苯甲酸丁酯、26. 4-羟基苯甲酸戊酯) 确证方法 三重四极杆液相色谱-质谱法检测化妆品中34种防腐剂 色谱柱:Shim-pack GIST C18,50mm x 2.1mmx 2μm流动相1:A相-5 mM乙酸铵;B相-甲醇流动相2:A相-5 mM乙酸铵(含0.1%甲酸) B相-甲醇流速:0.3 mL/min洗脱方式:梯度洗脱离子化模式:ESI +/- 同时扫描离子源接口电压:4.0 kV雾化气:氮气 3.0 L/minDL温度:250℃扫描模式:多反应监测(MRM) 色谱图流动相1:(1. 水杨酸、2. 甲基异噻唑啉酮、3. 苯甲酸、4. 2-溴-2硝基丙烷-1,3-二醇、5. 4-羟基苯甲酸、6. 脱氢乙酸、7. 甲基氯异噻唑啉酮、8. 硫柳汞、9. 4-羟基苯甲酸甲酯、10. 4-羟基苯甲酸乙酯、11. 4-羟基苯甲酸异丙酯、12. 对氯间甲酚、13. 碘丙炔醇丁基氨甲酸酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 邻苯基苯酚、17. 氯二甲酚、18. 4-羟基苯甲酸异丁酯、19. 4-羟基苯甲酸丁酯、20. 4-羟基苯甲酸苄酯、21. 氯咪巴唑、22. 十二烷基三甲基溴化铵、23. 4-羟基苯甲酸戊酯、24. 苄氯酚、25. 十二烷基二甲基苄基氯化铵、26. 苄索氯铵、27. 溴氯酚、28. 三氯卡班、29. 三氯生、30. 十四烷基二甲基苄基氯化铵、31. 十六烷基二甲基苄基氯化铵、32. 海克替啶) 流动相2:(1. 己咪定二(羟乙基磺酸)盐、2. 氯己定) 部分同分异构体色谱图气相色谱-质谱法检测化妆品中19种防腐剂色谱柱:InertCap Pure-WAX,30 m×0.25 mm×0.25 μm柱温程序:40℃(1 min)_40℃/min_80℃_10℃/min_230℃(1 min) _10℃/min_260℃(5 min)色谱柱流量:1 mL/min进样方式:分流进样(分流比为5:1)采集模式:SIM 色谱图(1. 甲酸、2. 丙酸、3. 三氯叔丁醇、4. 苯甲酸甲酯、5. 苯甲酸异丙酯、6. 苯甲酸乙酯、7. 苯甲酸丙酯、8. 苯甲酸异丁酯、9. 苯甲酸丁酯、10. 苯甲醇、11. 苯氧异丙醇、12. 山梨酸、13. 苯氧乙醇、14. 2,6-二氯苯甲醇、15. 邻伞花烃-5-醇、16. 2,4-二氯苯甲醇、17. 十一烯酸、18. 苯甲酸苯基酯、19. 氯苯甘醚) 结语 其实,为了抑制细菌繁殖,绝大多数化妆品都会添加防腐剂。防腐剂种类繁多,涉及多种检测仪器,利用岛津LC、GC可以准确测定防腐剂含量,如存在不确定因素,可用岛津LC-MS/MS和GC-MS进行定性定量确证,符合法规要求,助您高效准确识别化妆品中防腐剂。 撰稿人:郑嘉
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 听说抄袭我们的都火了?今天带来原创的杂质分离方法开发过程
    zui近月旭科技除了产品以外,我们发布的内容也越来越受到大家的喜爱,遭到了多家公众号的自主发布,热度也颇高,我们十分“欣慰”。我们的内容能够得到大家的喜欢,真的是我们zui高兴的事情。但是其发表的内容因为水印等问题,谱图截取并不完整,影响大家的观看体验。所以小编就来以正视听,将完整的谱图,以及zui完整的杂质分离方法开发过程分享给大家,我们一起变得更强!首先来看看需要分离的三个物质的结构式:01 分析目的要求开发一种合适的分析方法,使上述3种化合物在浓度1.0mg/mL的情况下分离度大于1.50。开始方法开发之前,di一件该做的事是什么呢?当然是去了解这几个物质的性质,尽可能的得到有关这些物质的信息,这样可以为后面工作节省zui多的时间。而对这三个物质得到的信息大致如下:三种物质极性比较强,水溶性比较好,在常规C18色谱柱保留太弱,基本上与溶剂峰重叠。结构式上主要是官能团的差异,分别为-NH2,-Br,-COOH,差异性很大。综合考虑,有两种方案:一是加离子对试剂,用反相C18色谱柱增强保留,进行分离;二是使用离子交换色谱柱进行分离。首先由于个人的习惯,离子交换色谱被我直接排除(离子色谱平衡比较慢,而且离子交换色谱柱非常容易出现重现性问题)。所以本实验采用C18添加离子对试剂的方法。考虑的实验过程中需要使用离子对试剂,且流动相pH需要大范围调整(可能用到碱性流动相),所以色谱柱选择月旭Xtimate ® C18(4.6×250mm,5μm)色谱柱,流速:1.0mL/min,柱温30℃,检测波长220nm。02 流动相优化及测试结果图谱2.1 初步尝试流动相:0.05mol/L庚烷磺酸钠+0.05mol/L磷酸二氢钾,PH=4.60。结果:化合物3保留时间2.6min,化合物1不出峰。估计是化合物1保留太强未洗脱下来。接下来,调整pH并增加有机相的比例,来加大洗脱能力。2.2流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):甲醇=60:40。混合对照图谱如下:实验中将庚烷磺酸钠改为辛烷磺酸钠,增加有机相(甲醇)比例,结果三个物质分离良好,但是化合物1(19.9分钟)峰型太差,下一步优化化合物1的峰型。2.3 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):乙腈=80:20。化合物1图谱:基于上一次实验,将有机相甲醇变为乙腈,通过改变选择性看是否峰型会有改善。结果发现并没有任何改善,而且发现这个方法中有机相只提供洗脱能力,不提供选择性改变作用。2.4 流动相:缓冲液(缓冲液:1.00g十二烷基磺酸钠,50mM氯化铵至500mL水,用磷酸调pH=1.80):甲醇=60:40。混合对照图谱:当时换成这个流动相的主要思路是,加十二烷基磺酸钠使保留更强,加氯化铵提高离子浓度,调pH至1.80强酸性使化合物1中-NH2官能团作用更弱,达到优化峰型的目的,但是效果很差。回头总结发现我们所有的目光都聚焦在三种物质的不同官能团上,导致越走越偏离分离的轨迹,这里,三个物质共同含有的官能团可能也是影响分离的主要因素,换了个角度后,豁然开朗了。推翻了之前的方案,将离子对试剂换为四丁基氢氧化铵,从头开始。2.5 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=9.30):乙腈=80:20。混合对照图谱:流动相中添加三乙胺和并将pH调成9.3目的是抑制化合物1的拖尾,但是结果发现三种物质没有分开。继续优化条件将pH值降低。2.6 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=7.00):乙腈=80:20。混合对照图谱:看到这结果是不是项目就OK了。但是既然是方法开发,方法重现性实验实验是必不可少的,需要用一根新色谱柱重现该色谱条件。结果问题就来了.....化合物1图谱:化合物1峰型一直分叉,zui终发现应该是色谱柱使用多种离子对试剂,造成色谱柱改性,新色谱柱不能重现结果。好吧,再开始。然后又是继续摸索。不得不说有时候运气也是成功的一部分,在一次流动相配置过程中,看到四丁基氢氧化铵试剂旁边还有一瓶四丁基溴化铵,突然我就冒出想法,用四丁基溴化铵试试,不知道结果会怎么样,说做就做。2.7 流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20。混合对照图谱:03 结果
  • 新国标应对|强制性国家标准GB15892-2020《生活饮用水用聚氯化铝》于8月1日正式实施
    安全的饮用水是人类健康的基本保障,是关系国计民生的重要公共健康资源。伴随着GB 5749—2006《生活饮用水卫生标准》修订工作的开展,作为与水相关的化学品,必须同步修订。 聚合氯化铝主要作为生活饮用水,生活用水和工业污水(如含油污水、印染、造纸污水、钢厂污水等)处理的絮凝剂,以及高毒性重金属和含氟污水的处理等;此外,在精密铸造、制革等方面亦有广泛用途。国标聚合氯化铝的显著特点是净水效果明显,絮凝沉淀速度快,沉降快、活性好、不需加碱性助剂。适应PH范围宽;对管道设备腐蚀性低;能有效除去水中色质SS(悬浮固体)、COD(化学需氧量)、BOD(生化需氧量)及砷、汞等重金属离子。 聚氯化铝在处理自来水过程中,主要起到絮凝沉淀、改善水质的作用。为避免聚氯化铝对自来水造成的二次污染,聚氯化铝本身的杂质检测,特别是元素杂质检测非常重要。《生活饮用水用聚氯化铝》GB15892-2020强制性国家标准于8月1日起正式实施。标准解读标准应用范围本标准规定了生活饮用水用聚氯化铝的要求、试验方法、检验规则、标志、包装、运输和储存;本标准适用于生活饮用水用聚氯化铝,该产品主要用于生活饮用水的净化;本标准替代GB15982-2009 新标准检测的项目与旧标准GB15892-2009相比,新标准有如下差异:除了上表的差异外,另有将砷含量测定中的砷斑法改为原子荧光光谱法将汞含量测定中的分光光度法改为原子荧光光谱法铅、镉含量测定中增加了火焰原子吸收光谱法增加了铁含量的测定增加了铬含量的测定删除了六价铬含量的测定 东西分析应对方案 东西分析原子吸收分光光度计可以满足Pb、Cd、Cr含量的测定 AA-7090型原子吸收分光光度计特点横向加热、纵向交流塞曼,使仪器具有更高的灵敏度;塞曼、氘灯背景校正模式互为补充,选择更加灵活;原子化器切换速度快,可2s完成火焰/石墨炉的自动快速切换;具备石墨炉可视系统对火焰或石墨炉进行实时观测;自动化程度高,气路自动保护,软件自动点火;燃烧头自动升降,前后位置及旋转角度可调;自动氘灯,石墨炉电源自动开关,自动识别编码灯;配合自动进样器,达到真正无人值守。东西分析原子荧光可以满足As、Hg含量的测定AF-7550型双道氢化物-原子荧光光度计特点:双通道同时测定双元素;六通进样阀和可变定量管相结合;气液分离采用二次分离(专利号:200720104068.x),并用红外传感器控制液位,消除其对分析的影响;人性化、环保节气型气路设计;仪器自动识别元素灯,监控空芯阴极灯使用寿命;开机自检、实现系统自动诊断功能;三维立体可调远红外加热原子化器、短焦距透镜聚光,全封闭无色散光学系统;可配备160位大容量自动进样器.GBC紫外可满足Fe、As含量测定Cintra 紫外-可见分光光度计 Cintra系列由cintra1010,2020,3030和4040组成,光学性能好;双光束光学系统,具有长时间稳定性;巧妙的光学设计,即使对μL级的样品量,测试结果可靠而稳定;可满足多种性能规范要求;可以通过软件模块完成多种应用,如常规测试、定量分析、系统性能验证等。
  • 美丽新卫士:电雾式检测器应用于化妆品检测
    美丽新卫士:电雾式检测器应用于化妆品检测熊亮 胡金盛 冉良骥 金燕引言:随着经济的快速发展,人们生活水平的提高,化妆品已从早期的奢侈品转变为大众日常的消费品,美丽经济规模日渐壮大。近年来随着电商的广泛应用、各大美妆博主的时尚引导、短视频平台的直播带货,化妆品的种类不断丰富,化妆品的消费逐年递增,随之而来引起的化妆品纠纷也逐年上升。化妆品中致癌致敏成分检出、铅汞重金属含量超标、糖皮质激素非法添加、微生物污染等安全问题, 使得化妆品质量监督管理及化妆品检验的科学性受到了人们的关注和重视。 2021年3月2日,国家药品监督管理局发布2021年第17号通告,将《化妆品中防腐剂检验方法》、《化妆品中硼酸和硼酸盐检验方法》、《化妆品中对苯二胺等32种组分检验方法》、《化妆品中维甲酸等8种组分检验方法》等7项检验方法纳入《化妆品安全技术规范(2015年版)》,作为该规范修订或新增的检验方法。 此次新增和修订,对原技术规范“第四章 理化检验方法4防腐剂检验方法”整个分析方法的框架结构进行了调整,变更尺度非常之大。在修订的《化妆品中防腐剂检验方法》中,新增了4.3 已脒定二(羟乙基磺酸)盐等7种组分的检验方法。 随着政府通告的发布,《规范》修订的检验方法,自2021年5月1日起施行,因此众多具有化妆品注册和备案检验机构资质的实验室开始了实验室扩项的准备工作。然而有多个客户实验室在实际方法开发过程中发现,参照“4.3 已脒定二(羟乙基磺酸)盐等7种组分”标准方法,采用0.1%三氟乙酸溶液作为流动相,检测波长为210nm,虽然可以提高部分低紫外吸收待测物的响应,但由于210nm为三氟乙酸的截止波长,在梯度分析过程中产生剧烈的基线波动,可能会影响低含量待测物的峰型以及检测灵敏度。 飞飞有妙招针对这一情况,飞飞协助客户开发了一套全新的含量测定方法。新方法采用了Acclaim Surfactant Plus表面活性剂专用色谱柱分离,并配合赛默飞独有的电雾式检测器(以下简称CAD,如图1所示)测定。图1 电雾式检测器(CAD)(左:Vanquish CAD系列,右:Corona Veo系列)由于待测物经色谱柱分离后,在CAD内部先进行雾化再进行检测,可完全消除挥发性流动相对基线的干扰,而且相对原标准方法,飞飞发现“十二烷基三甲基溴化铵”的检测灵敏度也有大幅提升,如图2所示。图中7种组分的浓度分别为:己脒定二(羟乙基磺酸)盐40 μg/mL、氯己定60 μg/mL、十二烷基三甲基溴化铵(DTAB)800 μg/mL、十二烷基二甲基苄基氯化铵200 μg/mL、苄索氯铵200 μg/mL、十四烷基二甲基苄基氯化铵200 μg/mL、十六烷基二甲基苄基氯化铵200 μg/mL。图2 7种组分混标CAD色谱图 随后飞飞对这套全新方案进行了方法学考察,结果当然也是妥妥哒!图3 混标最低点连续进样6次重叠色谱图 结论本方法基于赛默飞新一代Vanquish Core高效液相色谱系统,Acclaim Surfactant Plus表面活性剂专用色谱柱配合赛默飞特有的电雾式检测器(CAD),开发了一个全新的针对化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量测定方法。本方法中7种防腐剂的分离度和灵敏度均优于国标方法,重复性好,线性范围宽,给化妆品中限量使用组分的分析提供了一种新思路,拓展了化妆品行业的分析手段。 “码”上下载扫码立即免费下载【采用电雾式检测器(CAD)分析化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量】
  • 百灵达发布用于过氯化处理游泳池的便携检测仪器
    百灵达已发布了两款新产品&mdash &mdash DPD XF和DPD XT试剂片&mdash &mdash 用于检测游离余氯和总余氯的浓度检测,测量量程可达0-10mg/l。在推出这两款新试剂片后,我们还继续供应传统的0-5mg/l的DPD试剂片,新型的宽量程试剂片可应用于百灵达Pooltest 9 和Pooltest25光度计。 ) 对于需要过氯化的游泳池和温泉来说,准确而便捷地检测氯含量是十分必要的。因为无须稀释,采用此宽量程检测法将极大地减轻检测工作量,同时也不会出现高浓度氯将DPD显色反应后溶液颜色漂白所引起的一些问题。此新DPD配方基于百灵达的已得到验证的技术,与过去的配方一样有效。百灵达的Pooltest光度计可以提供标准量程DPD检测和宽量程DPD检测,检测结果可以使用mg/l或ppm来表示。 新的Pooltest 9增强版和Pooltest 25增强版光度计已经对新的检测方法进行了编程,而旧型号的Pooltest 9和25专业版仪器可以很方便地进行升级,以便支持大范围检测功能。 此新一代的畅销光度计也添加了一个水平衡指数功能。光度计可以根据检测结果计算出水平衡指数,以可确保所有游泳池水质参数均处于最佳范围内。这有助于防止泳池设施的腐蚀和结垢,降低运行成本和延长设备寿命。 关于百灵达有限公司(Palintest) 英国百灵达有限公司 (www.palintest.com ) 创立于1870年,是一家世界领先的致力于水质量、饮用水及游泳池水质检测装置和环保产品的制造企业。其创始人Palin博士发明了DPD余氯检测法(目前已是国际和中国通用的标准检测方法)。经过一百多年的积累和创新,我们为用户提供技术领先、精确可靠地环境检测设备,为环境监控、安全卫生、工业控制提供完美的解决方案,特别是水质检测领域。 百灵达是英国豪迈国际有限公司(Halma p.l.c. &ndash www.halma.com)的子公司。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 3600 多名员工,40 多家子公司,2008年度营业额超过 7.7 亿美元。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国蓬勃发展的经济作出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前已经在上海和北京设有代表处,并且部分子公司在中国已开设制造工厂。 欲了解最新豪迈中国新闻并订阅RSS,请访问豪迈中国新闻博客: http://halmapr.com/news/halmacn/ . 完 更多信息请联系: 英国百灵达有限公司 范姝兴/中国区经理 地 址:北京市朝阳区朝外大街乙12号昆泰国际大厦1601室,100020 电 话:86-10-51261868, 51265299;传真:86-10-58790155 Email:fred.fan@palintest.com 网 址:www.palintest.com 中文媒体联络: 刘兵斌 (Bryan Liu) 中国区市场经理 英国豪迈国际有限公司上海代表处 中国上海市长宁区仙霞路 137 号盛高国际大厦 1801 室, 200051 电 话:(21) 5206 8686-111;传真:(21) 5206 8191 Email:bryan.liu@halma.cn 网 址:www.halma.com
  • 用BettersizeC400检测氯化钠注射液中不溶性微粒
    不溶性微粒是指存在于液体制剂中除气泡以外的异物,是非代谢性的有害粒子[1],其粒径一般在1~50μm之间,肉眼看不见。1966年,美国食品药品监督管理局(FDA)《关于大输液安全性问题》专题讨论报告中指出,输液中大量非代谢性异物(微粒)可引起热源反应、静脉炎。有些微粒具有抗原作用,使机体发生过敏反应;有些可导致血管栓塞及动脉肉芽肿的形成[2]。这主要是由于人体最细的毛细血管内径仅4~7μm。此外,大于8μm的微粒会沉积在肺部,小于8μm的微粒则可能沉积在肝、脾与骨髓中[3],因此很多国家药典中均制定了微粒检查的限度。中国药典对不溶性微粒的限定标准如下: 本次实验采用丹东百特研制的BettersizeC400光学颗粒计数器,来分析三个不同厂家的0.9%氯化钠注射液中的不溶性微粒数,规格均为250ml。检测方法是在每个厂家的0.9%氯化钠注射液中抽取4个10ml样品,分别用BettersizeC400分别测10μm-25μm之间和大于25μm的微粒数,结果如下:表2. 三个厂家0.9%氯化钠注射液的微粒数(个/10ml)测试结果显示,三个样品的不溶性微粒含量极少,远远小于药典中规定的数值,完全符合药典要求。0.9%氯化钠注射液为基础注射液,它的不溶性微粒含量达到药典要求,对民众的用药安全具有特殊意义。BettersizeC400光学颗粒计数器(光阻法)具有操作简单、快速、灵敏、智能化程度高、取样体积准确等特点,是目前各种类型的注射液中不溶性微粒检测的必备仪器,是药典规定的检测方法,也是各大药企和药监机构普遍使用的方法。[1]付艳 注射液中不溶性微粒检查方法 中国粉体技术 2008年6月14卷,238-239[2]黄佳,白彩珍,山广志等,中国药典对注射液中不溶性微粒的监控变革及防控微粒污染的措施.药品评价,2010,7:18-21[3]毛璐,甄健存,陈志刚,崔蔚,静脉滴注药物中不溶性微粒的考察,中国药学杂志,2006.1月41卷1期,45-47
  • 海关加强防疫物资质量检验,岛津仪器各显身手
    图片来自:https://unsplash.com/ 4月10日海关总署公告2020年第53号,为加强医疗物资质量监管,按照《中华人民共和国进出口商品检验法》及其实施条例,将对医用口罩、医用防护服、医用消毒剂等11类物资实施出口商品检验。防疫物资质量的保证将对全世界抗“疫”战争起着重要的作用,严格把控防疫物资的质量关是我们对全世界负责的态度和担当。 医疗物资相关国家标准和检定项目医用口罩及防护服的环氧乙烷残留量 医用口罩和医用防护服技术要求规范文件中都明确规定了环氧乙烷的残留限量应小于10μg/kg,依据国家相关标准《GB/T 16886.7-2015/ISO10993-7:2018 医疗器械生物学评价 第7部分:环氧乙烷灭菌残留量》,使用顶空气相色谱法进行定量分析,岛津的顶空进样器HS-10和HS-20搭配不同型号气相色谱仪GC Smart和GC-2010 Pro均能进行环氧乙烷残留的检测,环氧乙烷检出限可达到0.1μg/g。岛津HS-10顶空进样器+GC Smart气相色谱仪 医用防护服的断裂强力、断裂伸长率和医用手套的拉伸性能 医用防护服技术要求中规定防护服关键部位材料的断裂强力应小于45N,关键部位材料的断裂伸长率应小于15%,医用橡胶检查手套国家标准中规定了手套的拉伸性能和限值规定。岛津公司的AGS-X材料试验机能够测试多种材料的拉伸、强度等性能,保障这些产品的质量。 ◇ 1kN 高精度力值传感器◇ DSES-1000 大变形引伸计◇ 1KN气动双推夹具◇ 智能TRAPEZIUM 软件 医用消毒剂含量及重金属检测 医用消毒剂包含的种类有75%乙醇、戊二醛、过氧乙酸、季铵盐类、84消毒液等, 国标中对不同消毒剂的有效成分含量使用不同的检测方法。 在GB/T 26369-2010《季铵盐类消毒剂卫生标准中》,氯化苄铵松宁消毒剂推荐使用液相色谱法检测,岛津的LC-16、LC-2030 Plus以及最新推出的LC-40系列均可用于苄铵松宁的检测。在GB/T 26373-2010《乙醇消毒剂卫生标准》中,推荐乙醇含量的测试方法为气相色谱法,岛津的GC-2010 Pro配置AOC-20系列自动进样器,可支持大量样品的分析。消毒剂中Pb、As等重金属含量的分析推荐使用岛津原子吸收光谱仪AA-7000或电感耦合等离子体发射光谱仪ICPE-9800分析。 医用护目镜 医用护目镜还没有对应的国标,目前只能参考相关标准如GB 14866-2006《个人用眼护具技术要求》,可参考该标准中的可见光透射比等光学性能,耐腐蚀性能等化学性能,化学雾滴、粉尘、刺激性气体的防护性能等。岛津的紫外可见分光光度计UV-2600对护目镜的可见光透射比等光学参数进行分析,小巧便携的红外光谱仪IRSpirit可对护目镜的材质进行鉴定分析。岛津IRSpirit ◇ 小巧便携◇ 采样方便◇ 软件直观 岛津UV-2600 ◇ 超宽光度测试范围◇ 超低杂散光◇ 超宽波长范围◇ 多附件扩展◇ 强大分析软件支持 结语 春暖花开的四月,我们为中国防控取得的成绩感到骄傲,但是疫情还在全世界蔓延,中国对其他国家的医疗和物资援助还在持续进行,相信全世界记住的不光是中国专业的医疗团队,还有中国生产的各种有质量保证的防疫物资!岛津中国会为防疫物资的检测和质控提供有力保障。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制