当前位置: 仪器信息网 > 行业主题 > >

分散橙号滤饼

仪器信息网分散橙号滤饼专题为您提供2024年最新分散橙号滤饼价格报价、厂家品牌的相关信息, 包括分散橙号滤饼参数、型号等,不管是国产,还是进口品牌的分散橙号滤饼您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分散橙号滤饼相关的耗材配件、试剂标物,还有分散橙号滤饼相关的最新资讯、资料,以及分散橙号滤饼相关的解决方案。

分散橙号滤饼相关的论坛

  • 【求助】求助 分散黄23和分散橙149染料的测定

    各位大侠: 大家好!有谁用HPLC-DAD 做 过分散黄23和分散橙149染料的测定 ,能不能发一份结果给我,(就是做完样品后直接从 液相的软中出具的结果,包括色谱图和定量结果),有急用,谢谢啦![em09502]

  • 【转帖】各类分散剂

    分散剂分为无机粉末和水溶性有机高分子两大类。无机分散剂有钙、镁、钡的碳酸盐、磷酸盐或氢氧化物,主要起机械隔离作用,比较容易用酸洗去,故常用于制聚苯乙烯类透明聚合物。有机分散剂包括明胶、海藻胶、蛋白等天然高分子,甲基纤维素、羟丙基甲基纤维素等纤维素衍生物,部分醇解的聚乙烯醇,马来酸酐与苯乙烯或醋酸乙烯的共聚物的钠盐,聚丙烯酸盐等合成聚合物或共聚物。它们吸附在液滴表面,形成保护膜,同时增加介质粘度,防止两液滴粘结。分散剂的种类和用量对聚合物颗粒的粒径和形态有很大影响。例如氯乙烯进行悬浮聚合时用氯乙烯醇或纤维素衍生物作分散剂可制得疏松型聚氯乙烯,用明胶作分散剂可制得紧密型树脂。 农药用分散剂是一类表面活性剂,其功能是降低药液的表面张力,使药粒迅速湿润,并使药液容易在施用目标的表面湿润和展布,帮助药剂渗透。常用的有含皂角素的皂角粉、茶子饼粉和含木质素的亚硫酸纸浆废液,以及合成表面活性剂,如聚氧乙烯基烷基芳基醚、聚氧乙烯基烷基醚、烷基苯磺酸盐、烷基萘磺酸盐等。 用于染色的分散剂又称扩散剂,用分散染料和还原染料印染时要加分散剂和保护胶体,以保证染色均匀,防止色斑。常用的染色用分散剂有磺化油(太古油、土耳基油)、烷基或长链酰胺基苯磺酸钠、烷基聚氧乙烯醚、木质素磺酸钠、萘磺酸甲醛缩合物、油酰基聚胺基羟酸盐等。  商品名 分散剂NNO及(高浓)分散剂N(扩散剂NNO)成 分 亚甲基双萘磺酸钠性能及用途 外观为米棕色粉末。易溶于任何硬度的水中,扩散性与保护胶体性好,无渗透及起泡性。为阴离子型。耐碱、耐无机盐。对蛋白质及锦纶纤维有亲合力,对棉、麻等纤维素无亲合力。可与阴离子及非离子型表面活剂一起混用。pH(1%水溶液)7~9。本品主要用于还原染料悬浮体轧染、隐色酸法染色、分散染料与可溶性还原染料的染色等。也可用于线/毛交织物,染色时使丝不上色。染料工业上主要用作混填料和分散染料,及色淀制造时的分散助剂。此外,还可用作橡胶稳定剂和制革的助鞣剂。还可用于造纸工业。注意防潮。商品名 分散剂MF成 分 亚甲基双甲基萘磺酸钠性能及用途 外观为米棕色粉末。易溶于水,阴离子型,具有优良的扩散性能,无渗透性及起泡性。耐酸、耐碱、耐硬水及无机盐。对棉、麻等纤维无亲合性,可与蛋白质和锦纶同时使用,但不能与阳离子染料或阳离子表面活性剂混用。pH(1%溶液)近中性。本品主要用作还原染料和分散染料的分散剂和填充剂。比分散剂N耐高温且稳定。本品可使染料色光鲜艳,色力增高,着色均匀。还可用作混凝土的早强减水剂。商品名 分散剂DA成 分 丙烯酸钠与丙酰胺共聚物性能及用途 浅黄色粘稠液体。固含量(40±2)%。密度1.15~1.25g/cm3。粘度0.25~0.35Pa.s。pH7~8。用作涂布加工涂料中的分散剂。可用于多种颜料的分散(如:高岭、钛白粉、碳酸钙、硫酸钡、滑石粉、氧化锌、氧化铁黄等。在低pH值分散液中,对颜料的分散性、经时稳定性均很好。对重质碳酸钙和轻质酸碳更有独特的分散作用。商品名 分散剂DC成 分 聚丙烯酸钠性能及用途 浅黄色透明粘稠液体。固含量(40±2)%。pH7.5~8.0。折射率1.415。特性粘度0.1000~0.1200。相对密度1.25~1.30。用作涂布加工涂料的分散剂,也可用于乳胶漆、水性油墨以及织物印花浆中,起促进颜料分散作用。商品名 造纸涂料分散剂CW-885(分散剂 AM-C)成 分 低分子量聚丙烯酸钠性能及用途 淡黄色透明粘稠液体。分子量6000~8000。密度1.30g/cm3。固含量(40±2)%。特性粘度0.1000~0.1200。本品与涂布加工纸用涂料的其他组分相容性好。分散剂本身的储存稳定性好,无混浊或分层现象。用于造纸、涂料等行业,是一种优良的颜料分散剂。商品名 南中牌分散剂PF-88成 分 有较高聚合度的水溶性多元高分子材料性能及用途 本品为胶体物。固含量45%~50%。阴离子电荷密度10%~30%。pH6~8。本品具有较好的提粘分散作用,尤其对中性、弱碱性、弱酸性、水溶性或水油体系具有明显的增稠分散作用。用于造纸、皮革、地毡、纺织、印染浆料或复合粘合剂中作分散剂,具有较好的稳定性。商品名 分散剂S成 分 磺酸钠盐性能及用途 本品为高温型阴离子分散剂。 本品可与其分离子和非离子表面活性剂同时使用,可用作染料砂磨与拼混助剂。使用本品可缩短研磨时间,提高染料的分散性和上色力。还用于染料砂磨的商品化中。 包装及贮运 固态产品用成盛50kg、100kg的编织袋装。液态产品(含量50%)用容量为100kg铁桶装。商品名 分散剂DDA881 成 分 萘磺酸的缩合物性能及用途 外观为淡黄色粉末。不含硫酸钠,热稳定性为130℃,PH7.5左右。本品主要用作分散染料的分散剂。商品名 分散剂CS 成 分 纤维素磺酸钠盐性能及用途 外观为米黄色粉末。可溶于水,阴离子型。具有优良的分散性。能保持分散体良好的稳定性。PH(1%水溶液)呈中性。-SO3Na含量≥27%。本品用于还原染料和分散染料的研磨,一般与分散剂N和MF同进使用,能加快研磨速度 ,使染料均匀分散,提高贮存稳定性。含有本品的商品染料使用方便,化料时不结团、不粘壁。本品尤适用于制备液体染料,使其有良好的贮存稳定性。商品名 合成木质素磺酸钠MS 成 分 木质素磺酸钠性能及用途 水分含量<8.0%,水不溶物<0.5%,钙(以CaO计)<0.1%,还原物<2.5%,PH(20%水溶液)<9%,硫酸钠<6%,总钠<8.5%,有机硫5.9%,全硫6.15%,磺化度(磺酸基克分子数/1000g木质素)1.8,木质素磺酸盐含量>80%。本品用作分散染料及还原染料的分散剂,具有砂磨速度快,分散性好、热稳定性好、染色强度高、色光正等优点,能适应高温高压染色的要求。本品具有吸湿性,应保持干燥。商品名 减水剂MY 成 分 本质素磺酸钠性能及用途 棕褐色粉末或液体。无特殊异味。无毒。易溶于水及碱液。遇酸沉淀,具有较强的分散能力。PH8.0~9.0。含量:液体25%~30%,固体50%~60%,水不溶物<3%。还原物2%~3%。主要用作水泥减水剂。也可进一步加工改性制取木质素磺酸钠型染料分散剂。商品名 合成烷基苯磺酸钙T106A 成 分 烷基苯磺酸钙性能及用途 具有优良的清净、分散、离锈及良好的配伍性能、碱值≤8。钙含量1.0%~1.5%。闪点(开杯法)160℃。适用于柴油、机油、增压柴油机油中,作清净分散添加剂。商品名 分散剂DS-1,RE-610D-102 成 分 烷基酚聚氧乙烯醚磷酸酯(盐)性能及用途 黄色或浅棕色粘稠状物。酸值60~72。具有优良的分散、湿润、增溶、乳化、起泡、润滑、防锈、抗静电等性能。PH2.5,倾点0℃.广泛用于磁性材料、油墨、油漆、合成纤维、农药、塑料、日用化工等产品中作分散剂。其中在磁性记录材料磁浆中的用量逐年增加。商品名 表面活性剂MES 成 分 脂肪酸甲酯磺酸钠性能及用途 浅黄色糊状物。具较高的去污力,优良的钙皂分散力和抗硬水能力。生物溶解性好。闪点149 ℃。流动点60℃。本品适用于香皂和肥皂中,用作钙皂分散剂。也是主要的洗涤活性物。可代替部分烷基苯磺酸钠和三聚磷酸钠。制成低磷和无磷洗涤剂。也可用作各种液体洗涤剂和活性物。工业上用作中泡型矿物浮选剂,也用于皮革脱脂剂中。在染料、颜料、农药、油田化学品中也有使用。商品名 表面活性剂AS(磺化油DAH) 成 分 平均为C15的烷基磺酸钠性能及用途 浅黄色液体。有臭味,密度1.09g/cm3,有效物(28±1)%,不皂物(以100%有效物计)≤6%,氯化钠含量≤6%。PH7~8(1%水溶液)。能完全溶于水,对酸、碱均稳定。耐热性好,具有较强的去污、渗透和发泡性能。本品是氯乙烯悬浮聚全的助分散剂;还广泛应用于合成橡胶、纺织、印染、皮革、造纸、建筑、铸造、选矿、爆破及消防等方面作乳化剂、发泡剂、湿润剂、洗涤剂、油类增塑剂等。还可用作钻井液的发泡剂,水包油乳化剂,清洁剂。磺化油用量为织物1%~4%。

  • 分散机的操作使用方法

    分散机的操作使用方法一、分散机开车前的准备工作   1、检查分散机油位是否加注到规定位置,低应加至规定油位,高应放至规定位置。   2、检查三角皮带松紧是否适当。   3、用手盘动叶轮应转动灵活,无磨擦声。   4、检查各紧固件是否松动及各密封部位有无渗漏现象。   5、开启分散机主电机,检查搅拌的旋向是否与设备所规定的方向相同。   6、确认以上检查工作无误后方可开车。   二、开车   1、将叶轮放在分散机容器的中心位置,揿下降按钮,下降到最低位置或要求的位置。   2、两只手柄必须锁紧后才能开车。   3、开主电机,按操作需要转速按下按钮,   4、分散机操作过程中应经常注意电流,如发现超载运转,应停车检查原因,采取措施后再继续运转分散机。   三、停车   1、先停主电动机,使叶轮全部停止转动。   2、开分散机上升按钮,使主轴叶轮上升至容器之上,清洗叶轮   四、分散机日常维护保养:   1、三角皮带应长短相等,放入传动箱内,松紧适当,拧紧滑板螺栓,盖好上盖。   2、设备若长期停车不用,须切断电源,全部擦洗干净,各润滑部位注油,主轴和油缸涂油防锈。   3、油箱用46#液压机油,每半年更换一次,并清洗油箱,滤网每月清洗一次,在换油后两三天内清洗一次。   4、分散机转动部分的齿轮、轴承、滚珠、轴与轴套及油缸,每周注油一次,在使用过程中发现过热或不正常噪音应及时检查。   5、如因超载而热继电器动作引起停车,则需揿下热继电器的“复位”按钮,方能继续操作。   6、交流接触器每半年检查一次,设备使用一年检修一次。   7、定期检查分散机易损件,如轴承、油封等,发现有磨损立即更换。

  • 分散机的操作使用方法

    分散机:操作使用方法一、分散机开车前的准备工作   1、检查分散机油位是否加注到规定位置,低应加至规定油位,高应放至规定位置。   2、检查三角皮带松紧是否适当。   3、用手盘动叶轮应转动灵活,无磨擦声。   4、检查各紧固件是否松动及各密封部位有无渗漏现象。   5、开启分散机主电机,检查搅拌的旋向是否与设备所规定的方向相同。   6、确认以上检查工作无误后方可开车。   二、开车   1、将叶轮放在分散机容器的中心位置,揿下降按钮,下降到最低位置或要求的位置。   2、两只手柄必须锁紧后才能开车。   3、开主电机,按操作需要转速按下按钮,   4、分散机操作过程中应经常注意电流,如发现超载运转,应停车检查原因,采取措施后再继续运转分散机。   三、停车   1、先停主电动机,使叶轮全部停止转动。   2、开分散机上升按钮,使主轴叶轮上升至容器之上,清洗叶轮   四、分散机日常维护保养:   1、三角皮带应长短相等,放入传动箱内,松紧适当,拧紧滑板螺栓,盖好上盖。   2、设备若长期停车不用,须切断电源,全部擦洗干净,各润滑部位注油,主轴和油缸涂油防锈。   3、油箱用46#液压机油,每半年更换一次,并清洗油箱,滤网每月清洗一次,在换油后两三天内清洗一次。   4、分散机转动部分的齿轮、轴承、滚珠、轴与轴套及油缸,每周注油一次,在使用过程中发现过热或不正常噪音应及时检查。   5、如因超载而热继电器动作引起停车,则需揿下热继电器的“复位”按钮,方能继续操作。   6、交流接触器每半年检查一次,设备使用一年检修一次。   7、定期检查分散机易损件,如轴承、油封等,发现有磨损立即更换。厂 址:沈阳市于洪区北里官工业园

  • 分散橙37在混标中和单标储存,是否发生变化

    标准物质的性质,哪里可以查得到?最近初步对照两个月的标准曲线发现,分散橙37,在致敏致癌分散染料混标中,同等条件下响应有变小的情况;而单标形式储存的,响应变化则没有那么明显?各位同行,有同感么?所以很想查一查资料,orange37化学性质如何,是否与别的染料共存时发生了反应,导致浓度降低?

  • 【求助】分散剂的选择

    我们的产品特性:为白色或类白色结晶性粉末;无臭;微有引湿性。  本品在水中易溶,在甲醇中溶解,在乙醇中略溶,在丙酮中极微溶解。,在氯仿或甲苯中几乎不溶。我公司的仪器是德国新帕泰克,用黏度为50的甲基硅油做分散剂,结果镜头对不上焦。老师用的是马尔文的仪器,用硅油就可以,这是为什么??????也用三氯甲烷做的效果不好,那可以用什么作为分散剂呢???????

  • 【原创】抛光粉分散剂

    LBD-1分散剂一、性能与用途LBD-1分散剂为丙烯酸类聚合物表面活性剂,该产品为白色固体粉末,极易溶于水,抗硬水能力强,分子结构中含有分散性能好的羧酸基和强极性的磺酸基,在水中可以搭配常规及惰性填料制成各种固体颗粒和粉末成品。在不同水质分散体系,能够吸附在各种微小颗粒表面并产生静电斥力使之分散,避免沉降、返粗。广泛应用于无磷洗涤助剂,纺织,印染,农药,涂料,抛光行业等。二、技术指标外观:白色粉末固含量:98%密度(25℃):1.1-1.2 g/cm3分子量:80000g/mol水溶性:极易溶于水PH值(1%水溶液):6-8最佳使用剂量:3-5%三、包装储存25公斤/袋(三层牛皮纸袋);使用后应密闭,储存时不可接触阳离子、多价金属离子及其它破坏稳定性之物质,置于温度为5-35℃的环境中,忌曝晒,注意防潮。(下次发帖请勿有广告)

  • 利用高速分散机分散太阳能电池耐刮涂层的纳米复合型材料

    工作原因,最近翻译了一份稿件,发出来分享一下,原文附在最后,欢迎大家批评斧正!摘要柔性太阳能电池的表面涂层要求是高性能的紫外固化丙烯酸酯纳米复合材料。他们的合成不仅是一个微调的化学步骤,同时要求分散和研磨的过程。已申请专利的气相二氧化硅原位硅烷化在德国VMA公司的TORUSMILL®研磨分散机的帮助下表现得最好。从VMA实验室系列分散研磨机参数的可比性更简单方便的帮助从实验室试样放到规模生产。简介非凡的挑战要求非凡的解决方案:柔性太阳能电池要受到阳光、风力和各种外界因素几十年的摧残。要承受这些极端的要求,表面涂层必须柔韧,耐磨和耐划伤。当然,高透明度,成本效益和避免底材温度过高这些性能也是需要的。由于同时要求高的生产效率和低的工艺温度,优异性能的紫外光固化丙烯酸酯系统是首选。通过加入无机粒子,可使得丙烯酸酯配方的耐刮性和耐磨性可以进一步提高。只要填充度低于的阈值为25%体积(大约与40%质量百分比一致,因为无机颗粒的密度更高)则被认为是表面硬度与填充度呈线性过程。涂料表面硬度的提高比期望的颗粒硬度要低(图1)。直到超过渗流阈值,即颗粒不能再滑动,总硬度成为颗粒和基体的加权和。超过了渗流阈值,另一方面也就意味着这个系统不再搅动。插图1很明显地显示了理论状况,这就是众所周知的冶金过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061742_165.gif图1: 提高填充度的紫外光固化纳米复合材料的微硬度的改善随质量百分比显示。插图显示了硬度和填充度的体积百分比在整个范围内的理论关系。突出的区域对应于主图中显示的数据。分散技术如果不是粒子本身的硬度,那是什么决定了不同填充度的硬度变化呢?这是由颗粒与基体之间的相互作用及矩阵,这受到粒子的表面处理,也即分散技术相互作用的控制。最不理想的情况是,微硬度随填充度的增加而降低,我们最近在实验室研究的一个水性纳米粒子丙烯酸酯系统(数据未显示)就是这种情况。另一方面,为了实现最大的颗粒基质相互作用的原位表面改性的硅烷化是在莱布尼茨研究所研发的。这一专利的概念是基于著名的化学反应与一个新过程的组合。颗粒表面硅烷化包括前体步骤(通过相应的烷氧基硅烷的水解形成的硅醇基取代)和硅烷醇与表面羟基缩合来结合扩散,从而提供表面活性。因为这些过程是丙烯酸酯基的自身反应,并不需要不确定的反式扩散。最后,每个颗粒都有了自己的硅烷均匀包裹,再交联与基体形成坚硬的质膜。如太阳能电池所用的透明薄膜,就需要非常精细的纳米颗粒。操作会产生气相二氧化硅纳米粒子(Degussa的气相二氧化硅比表面积至少200m2/g,即Aerosil200和Aerosil380)未经表面处理的这些粒子通常作为一种触变剂,百分之几的质量足以将清漆变成高粘度的腻子。这种效果当然也发生在中纳米复合材料的合成过程:纳米颗粒必须计量并慢慢加到有丙烯酸酯的TORUSMILL® 研磨分散机 中,该型号的分散机具有高扭矩力的引擎,并能满负荷运转。随着分散的开始并在表面反应的辅助下,纳米复合材料的粘度再次下降。当降低转矩力,机器上会显示出综合数值,告知操作员什么时候恢复供给二氧化硅纳米颗粒。一个完全自动化的耦合转矩控制和粒子计量已经应用在TORUSMILL® TM500中。透明清澈的纳米复合材料——使用TORUSMILL®使用传统的分散机是不可能得到完全透明清澈的清漆而且完全没有附聚物的。这就是TORUSMILL®专利系统的关键之处,分散机的预分散与研磨砂的创新结合,能有效地对基料先作预分散,之后用高性能的珠磨作研磨,不再需要转移基料:已经合成了纳米粒子超过20%质量百分比的透明清澈的纳米复合材料。透明清澈的意思是通过半米厚的纳米复合材料,仍能看到放在桶底的硬币上的字母。TORUSMILL®系列为纳米复合材料的合成线路的发展提供了极大的便利。 TORUSMILL® TM 10已经大批量运用在10L的规模原料下,也已经有了一些经验,更大的机器通常需要用更多的时间。很快将会大批量生产100L的型号 (图2是TM100) 或者是半吨规模的(TM500)。这种方式就是购买原材料从实验室小样到试生产到扩大规模生产的时理步骤。最终的产品通过在TORUSMILL®上的IOM系统生产的丙烯酸酯纳米复合材料表现出令人惊讶的低粘度,使我们制造出高填充度且涂层柔韧耐磨的太阳能电池。柔性太阳能电池还在试生产阶段,而丙烯酸酯纳米复合材料已经由莱比锡的Cetelon Nanotechnik成吨大批量生产并由WKP Unterensingen进一步加工成了耐受性极强、超细克拉级的箔。VMA TM砂磨分散机http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_427.gif图2: 来自VMA Getzmann的TORUSMILL®TM100安装在能在IOM研制纳米合成材料的AFM扫描仪前面,这台扫描仪能展示颗粒被碾磨成坚硬骨料(70nm)的合成过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_367.gifFig. 3:柔性电池和尺子比较.

  • 钛白粉工艺处理过程是怎样的?

    钛白粉工艺处理工段非常复杂,经过分散湿磨技术、表面工艺处理、过滤洗涤、通风干燥、微粉碎成品包装等几大步骤来组成,这些工序都有着各自的具体作用。在钛白粉的表面处理过程中,需要加入各种表面处理添加剂,这样就可以得到不同品种的钛白粉,在二氧化钛浆液进入料浆罐,需要加入一定量的分散剂搅拌进行分散。钛白粉表面处理工艺之后,需要用泵送至过滤机进行洗涤,送入砂磨机研磨,经分级后除去粗粒子,合格的二氧化钛浆液通过泵送至表面处理罐,洗涤合格后的滤饼卸料至干燥机,在干燥机中,二氧化钛滤饼中水份不断蒸发,产品得以干燥。在获得干燥后的二氧化钛送至汽粉前料仓,通过螺旋给料机连续送入汽流粉碎机中,以过热蒸汽为工质,对粒二氧化钛子进行超微粉碎。粉碎后加分散剂后连同蒸汽一并进入袋滤器,收集下来的经螺旋冷却器冷却后进入成品料仓,而后经包装机包装成袋入库。

  • 在水中萤石粉样品如何分散好?

    用激光粒度仪湿法测试萤石粉的粒度分布,可是在水中分散不好,用了少量的六偏,超声波3-5分钟,没有明显改善。求助:分散剂用六偏是否合适?用量多少合适?是否有其他分散剂能分散更好?

  • 【求助】分散良好粉末试样制备?

    [em0808]由于需要对粉末显微观测,如何制备一些分散良好的金属粉末试样,粒径范围大约在0.1-4mm,需要分级制样,大概在什么样的粒径范围,使用什么样的分散方法?(在视场一定的条件下能观察颗粒最多,单个颗粒能够清晰观察,少有颗粒叠加),需求达人给出方法,谢谢。

  • 15.5 高效液相色谱法测定盐酸甲氯芬酯分散片含量及有关物质

    15.5 高效液相色谱法测定盐酸甲氯芬酯分散片含量及有关物质

    高效液相色谱法测定盐酸甲氯芬酯分散片含量及有关物质周岐勋 李健和 徐幸民 彭六保 曹俊华 罗霞(1.湖南省湘西自治州人民医院药剂科,湖南吉首416000;2.中南大学湘雅二医院药剂科,湖南长沙410011)【摘要】目的:建立盐酸甲氯芬酯分散片含量与有关物质测定的高效液相色谱分析方法。方法:采用Diamonsil C18柱(250 mmx4.6 mm,5um)。以乙腈_o.02 mol/ml磷酸二氢钾溶液(磷酸调pH值至4.0)(33:67)为流动相,检测波长为225 nm,流速为1.0 ml/min,柱温为25℃,进样量为20ul。结果:有关物质测定中降解产物与样品主峰能有效分离,分离度符合要求。盐酸甲氯芬酯最低检出量为2.0 ng。3批样品中有关物质的平均含量为1.56%。样品浓度在5.2—20.8斗∥ml的范围内与峰面积呈良好的线性关系(r=1.000),平均回收率为99.26%(RSD=I.12%)。结论:本检测方法专属性强.结果可靠。重复性良好,可用于盐酸甲氯芬酯分散片的质量控制。【关键词1盐酸甲氯芬酯分散片;有关物质;含量测定;高效液相色谱法http://ng1.17img.cn/bbsfiles/images/2012/07/201207232327_379311_2355529_3.jpg

  • 螯合分散剂在染整加工中阻垢作用机理

    螯合分散剂在染整加工中阻垢作用机理螯合分散剂的阻垢机理相当复杂,说法也比较多,但下面的说法一直以来是获得最广泛认同的: (一)晶格畸变作用   垢体一般大多为结晶体,以CaCO3垢为例,它的成长是按照严格顺序,由正带电荷的Ca2+与带负电荷的CO3-相撞才能彼此结合,并按一定方向成长。当螯合分散剂在水中加入时,它当中的成分(如有机膦酸成分)物质会吸附到CaCO3晶体的活性增长点上与Ca2+螯合,抑制了晶格向一定的方向成长,因此使晶体歪曲(畸变),长不大,也就是说晶体被螯合分散剂的有机膦酸表面去活剂的分子所包围而失去活性。同样,这种作用也可阻止其它垢类晶体的沉淀。另外,部分吸附在晶体上的化合物,随着晶体增长而被卷入晶格中,使CaCO3晶格发生位错,在垢层中形成一些空洞,分子与分子之间的相互作用减少,使硬垢变软。   而在聚羧酸类螯合分散剂中,聚羧酸是线性高分子化合物,它除了一端吸附在CaCO3晶粒上以外,其余部分则围绕到晶粒周围,使其无法增长而变圆滑。因此晶粒增长受到干扰而歪曲,晶粒变得细小,形成的垢层松软,极易被水流冲洗掉。 (二)增加成垢化合物的溶解度及增溶作用 能与Ca2+、Fe3+、Mg2+等金属离子形成稳定络合物,从而提高了CaCO3晶粒的析出时的过饱和度,也就是说增加了CaCO3在水中的溶解度。另外,由于有机膦酸吸附在CaCO3晶粒增长点上,使其畸变,即相对于不加药剂的水平来说,形成的晶粒要细小的多。从颗粒分散度对溶解度影响的角度看,晶粒小也就意味着CaCO3溶解度变大,因此提高了CaCO3析出时的过饱和度。 (三)静电斥力作用   螯合分散剂的分子在水中电离成阴离子后,由于物理或化学的作用,有强烈的吸附性,它会吸附到悬浮在水中的一些浆料、果胶质、低聚物、染料缔聚体、尘土等杂质的粒子上,使粒子表面带有相同的负电荷,因而使粒子间相互静电排斥,避免颗粒碰撞积聚成长,颗粒呈分散状态悬浮于水中。性能良好螯合分散剂能使颗粒长久地分散在水中,即使产生沉淀,也能减缓颗粒的沉降速度。的如我们自制螯合分散剂ZF,在含有100mg/l钙硬度水中,投加1mg/l,85℃下,可保持24h无沉积。   (四)分散作用   除静电斥力以外,螯合分散剂(如聚丙烯酸)具有分散悬浮作用,能对低聚物、染料缔合体、胶状物等起到强烈分散作用,使其不凝结,加上吸附了螯合分散剂大分子的垢类颗粒产生了空间位阻,呈分散状态的垢类颗粒更不易碰撞凝结而悬浮水中不沉降,易被水冲走。

  • 【讨论】锡粉分散剂

    请教几十微米的锡粉选什么分散介质比较适宜?水或是有机溶剂,如异丙醇和乙二醇。如果用水,加什么分散剂帮助稳定分散?非常感谢!

  • 【求助】农药水分散粒剂分散性检测

    水分散粒剂中分散性是很重要的一项指标,由于检测设备不齐全,我们一般把悬浮率高的认定为分散性也就没问题,大家是怎么看呢?农药分析上写的,悬浮率是颗粒自然分散后的结果,而分散性是给一定的外力看分散性如何?既然这样,那么如果不给外力都能达到很高的标准,那么加外力后分散效果肯定是好啦?可以这么理解吗?

  • 【第三届原创参赛】中药分散片及其辅料的研究进展

    [size=3][font=宋体][/font][/size][size=2][color=#d40a00]维权声明:本文为[font=Times New Roman]hehu2010[/font][font=宋体]原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。[/font][/color][/size]   [size=4][b]中药分散片及其辅料的研究进展[/b][/size] 分散片 (dispersible tablets)又称水分散片 (water dispersible tablets),是指遇水可迅速崩解形成均匀黏性混悬液的片剂[l]。随着医药工业的发展 ,西药分散片已经载入各国药典,《英国药典》1980年开始收载阿司匹林等3种分散片。《中国人民共和国药典》2000年版开始收载分散片,但中药分散片在各国药典中并不多见。目前,已有文献报道的中药分散片有绞股蓝总苷分散片[2]黄心分散片[3]、黄芩清肺分散片[4]、葛根黄豆苷元分散片[5] 感冒灵分散片[6]及麝香保心分散片[7]等。2005版《中国人民共和国药典》规定,分散片要求在(20±1) 的 100 ml水中,振摇 3 min,应全部崩解并通过二号筛[8],相对与普通剂型来讲,这样大大提高了药物的生物利用度,并提高老、幼和吞服困难的患者的顺应性。它结合了片剂和液体制剂的优点,并克服两者的不足,这种新剂型不仅服用方便,而且吸收快、生物利用度高、不良反应小,主要要适用于难溶 药物和生物利用度有问题的药物,不适合毒副作用较大、安全系数较低和易溶水的药物。分散片的生产工艺与设备无特殊要求,是一种具有开发前景的新型片剂,近几年已得到迅速发展。现就中药分散片制备过程中遇到的问题作一综述。  1.分散片的处方。  分散片的处方主要组分为药物、一种或多种崩解剂、填充剂、遇水即形成高黏度的溶胀辅料、助流剂、润湿剂等。  1.1药物。由于中药活性成分复杂,且容易吸潮,使药物成团,难以成型,严重影响到片剂的崩解和生物利用度,因此将中药制成分散片,具有较大的技术难度。如果将中药提取分离出有效部位,并进行适当的精制处理,尽可能地减少制剂用量,再通过实验设计筛选出合适 的分散片处方和制备工艺,完全可以制备出美观、符合质量要求的中药分散片。  1.2崩解剂。崩解剂的种类、型号、加入方法 、是否联用等因素均会影响分散片的崩解时限。其中选用优质的崩解剂是最重要的因素之一 。雷同康[9]认为,优质的崩解剂是指吸水溶胀 度大于5mL/g的崩解剂。孔隙率和强溶胀性是这类崩解剂最重要的速崩机理 ,尤其是溶胀性。 当崩懈剂含量约为7 6%时 ,将获得最短的崩解时间 ,此时 ,片剂孔径分布是最合理的细孔结 构 .这种细孔结构的总孔隙溶剂达到饱和,它所产生的压力能导致有效的崩解 溶胀过程成为主要的崩解机理 。但当崩解剂含量超过8%时 ,片剂内部毛细管变粗 ,水的快速渗透反而隔离了周围的细孔结构区 ,使其中的空气不能及时逸出 ,阻止水分进入细 孔区[10]。分散片处方中常用的崩解剂有:  交联羧甲基纤维素钠 (cCMC—Na):cCMC—Na溶胀性强,但不溶于水 ,具有优良的崩解作用[11]。Fererro[12]用水不溶性药物鞣酸蛋白作模型药,系统地研究了cCMC—Na在直接压片中的崩解效率。实验结果表明 ,当其含量为5% ~ 10%,压片压力为 250—280MPa时 ,崩解时问最短 ,仅为十几秒钟。 若处方中没有它,则 30min内部都不会崩解。  羧甲淀粉钠 (CMS-Na):CMS-Na是淀粉经化学修饰的产品,它是淀粉的低取代衍生物,颗粒吸水后能迅速溶胀,但不碎裂,可缩短大多数片剂的崩解时限,其溶胀度为 14.8mL/g,尤其适用于不溶性药物[13,14], 刚臧志等[15]用正交试验筛选了西咪替丁分散片的处方,结果以20%联羧甲淀粉钠、25%改性淀粉、10%微晶纤维素配合使用,崩解效果最佳,为 (70.2±5.16)秒,分散均匀性、混悬性均合格。由此提 ,几种不同的崩解剂联用,将有可能取得优于单种崩解剂更好的崩解效果,所以在方筛选中要注意考虑到这一点。  低取代羟丙纤维素 (LS- HPC):有较强的吸湿性,遇水溶胀而小溶解 ,且具有毛糙的表面结构,可增强药粉和颗粒问的镶嵌作用,提高片剂黏度和光洁度,所以选用LS- HPC为辅 料,能起崩解和黏结双重作用,用量一般为2% ~5%[16,17]。  交联聚乙烯吡咯烷酮 (PPVP):聚乙烯吡咯烷酮 (PVP) 溶于水,吸湿性强 ,溶胀性较弱 ,而 PPVP崩解效果好。外加PPVPxl。具有很高的毛细管活性及水合能力,迅速将水吸入片 中,然后膨胀崩解 ,内加的PPVPxl10吸水使固体颗粒崩解为更细小的粉末从而增加主药 的溶出。  微晶纤维素(MCC):是目前应用最广的一种辅料,它具有海绵状的多孔管状结构。受压时,MCC的多孔结构由杂乱无事而成为线性排列 ,再加之塑性变形,使MCC遇水后,水分子 进入片剂内部,破坏微品之间的氧键,促使片剂速崩。 MCC可压性好,适合于直按压片法。 由于它溶胀性很弱,一般不单独用作崩解剂,往往和其他溶胀性能强的辅料如LS- HPC联合 使 用[18]。  1.3填充剂。  乳糖:是一种优 良的填充剂 ,在压片过程即使压力稍有变化,也不至于影响片剂的硬度,片重差异变化小,较少出现黏冲、脱片等现象。成品光洁美观,有良好的药物溶出速率。中药分散片中如果原料药黏性较差,可考虑使用乳糖作填充剂。但黏性较强的原料药不宜使用乳糖[19],因其有可能影响崩解度。  硫酸钙(二水物):不溶于水,无引湿性,对油类有极强的吸附能力,可广泛用作对水敏感的药物填充剂,中药分散片中如原料药的黏性较强,可考虑使用硫酸钙作填充剂[19]。其他如山梨醇、微晶纤维索、甘露醇,麦芽糊精等均可考虑使用。  1.4溶胀性辅料  溶胀性辅料对分散片这一剂型间接地起到促进崩解的作用。常用以下品种:预凝胶淀粉。预 凝胶淀粉是将普通淀粉在高于糊化温度 (45℃)下处理 ,使淀粉吸水膨胀,破坏分子之间氧 键甚至破坏淀粉颗粒,然后升温,待糊化完伞后,经于燥压制成薄膜, 粉碎而得。其具有良好的流动性、可压性、崩解性和自我润滑性[20]。 海藻酸钠:海藻酸钠溶于水而形成粘稠的胶体溶液,其黏度随聚合度、浓度及pH值而异,pH5~10时黏度最大[21]。另外,还可采用瓜耳胶、苍耳胶、葡聚糖、多糖类、亲水性纤维素衍生物 (如羧甲基纤维素钙、羟丙 基纤维素或羟丙基甲基纤维素等)。  1.5 其它辅料  其它辅料包括表面活性剂、助流剂、亲水性润滑剂等 ,它们的加入将有助于提高分散片的质量 。较常用的表面活性剂 是十二烷基硫酸钠 (SLS)[16,22],溶于黏合剂中使用 ,效果最好,可显著促进片剂崩解和药物溶解 。此外,也有用磺基丁二酸二辛酯钠的[23]。 分散片中广泛采用微粉硅胶[24]为助流剂 ,无论在制粒压片或粉末直接压片中都有利于改善颗 粒或粉末的流动性 。 同时 ,由于它的强极性和亲水性 ,有利于水分透入片剂 ,加速片剂的崩解,同时硅醇基吸附药物后能显著提高难溶性药物的溶出速率[25]。  由于崩解剂为不溶性物质.崩解后口感似沙砾,为克服这一缺点。常用甘露醇为填充剂,可以改善口感。

  • 激光粒度仪湿法分散样品的方法

    [font=微软雅黑][size=10.5pt][color=#333333]1、被测粉料若悬浮在水面或在水中分散不理想。可采用甘油的水溶液或乙醇作介质,在样品池中进行超声波分散后测试。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]2、超声波分散时间大约为15-30秒,测试结果稳定,不在跳动,则说明分散均匀。有些样品由于强度低,超声分散时间过长,则会使测试结果越来越细:分散时间太短则样品未能充分分散,影响测试结果。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]3、一些样品溶于水,则改用酒精、异丙醇、甘油或该样品的饱和溶液做介质。有些特殊粉体需要用正庚烷等有腐蚀性的介质,就必须更换专用部件或采用测试皿静态测试。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]4、为使样品分散均匀,一般需要加入分散剂。常用分散剂有六偏磷酸钠、硅酸钠、多偏磷酸钠等。根据经验,一般采用餐具洗洁精加水(1:3)作分散剂,每次用胶头滴管加1~2滴。用量不宜过多,否则将产生气泡。影响测试结果的准确性。不过分散过程中产生气泡这点不用担心。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]5、一般来说,样品加入量约为0.1-0.5g.样品不同加粉量有所不同。粉越细,样品用量越少。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]6、激光粒度仪测试的颗粒,计算机处理时被视为等效球体,被测样品如为片状、棒状、针状等,当最大尺寸或者最小尺寸处于迎光面时两者的测试结果差异会很大,因为在流动状态下的试样,最大尺寸处于迎光面的几率大于最小尺寸的几率,特征越明显,其几率偏差越大。反应客观情况下的结果比处于等几率情况下的结果偏粗。[/color][/size][/font]

  • 关于粒度分析中的试样浓度,分散时间,分散介质,分散剂等

    一般情况下,粉体试样浓度较小时 ,所测得的粒径较小、粒度分布范围较窄(由粒度分布曲线看出) 当粉体试样浓度较大时 ,因复散射及颗粒团聚 ,所测得的粒径偏大、粒度分布范围较宽 ,测试结果误差较大.但并不能说明粉体试样浓度越小越好 ,因为浓度小到一定程度时 ,样品中的颗粒数已大大减小 ,而太少的颗粒数会产生较大的取样及测量随机误差 ,致使样品不具有代表性 ,所以测量时也应该控制浓度的下限范围。由于各种仪器超声分散器功率的差异,这里需要自己做试验。进行粉体的粒度测试时 ,选择的分散介质不仅应该对粉体有浸润作用 ,而且又要成本低、无毒、无腐蚀性.通常使用的分散介质有水、水+甘油、乙醇、乙醇+甘油、异丙醇等.对大多数粉体而言 ,乙醇的浸润作用比水强 ,因而更容易使颗粒得到充分分散。分散剂中使用最多的是表面活性剂,主要有:阴离子表面活性剂、阳离子表面活性剂、两性表面活性剂、非离子表面活性剂、特殊类型表面活性剂等,同时分散剂的浓度对测定结果也有一定影响 ,使用时应加以控制。

  • 【原创大赛】分散液相微萃取分析法分析废水探讨

    【原创大赛】分散液相微萃取分析法分析废水探讨

    具体内容烦请查阅附件!http://simg.instrument.com.cn/bbs/images/default/emyc1002.gif分散液相微萃取分析法分析废水探讨【引言】 随着苯胺装置产能的不断提升,有机废水处理也相应成为稳定生产中很重要的一环。目前采用的比色法普遍存在操作繁琐、持续时间长(全程 5 小时左右)、难以实现自动化等缺点,经常出现废水处理发生异常后得不到及时有效的控制,以致影响生化系统的正常运行。因此,建立快速、准确的废水分析方法是非常必要的,为突发的生产异常事件在最短的时间得出分析结果,以便异常能够得到及时的处理。【摘要】 分散液相微萃取是最近发展起来的一种新型样品前处理技术,只需要不超过 2ml的有机溶剂,环境友好,成本低廉、富集效率高,预处理过程及其简单,单个样品预处理可以在 3 分钟完成,该方法与气相色谱联用分析废水,单个样品出结果时间能够控制在 30 分钟以内。本方案针对我公司废水的实际情况,对样品体积、萃取剂和分散剂的选择,萃取剂使用体积、萃取时间的确定以及影响样品富集的盐度、酸度、温度等方面加以评述。1、分散液相微萃取技术的原理 分散液相微萃取类似于液液萃取,是基于目标分析物在样品溶液和小体积的萃取剂之间平衡分配的过程。而对于具有酸碱性的分析物,可通过控制样品溶液的 pH 值使分析物以非离子化状态存在,从而提高分配系数。在样品溶液中加入萃取剂和分散剂,混合液经轻轻振荡后即形成一个水/分散剂/萃取剂的乳浊液体系,再经离心分层,用微量进样器取出萃取剂就直接进样分析。该方法集采样、萃取和浓缩于一体,能够有效提高样品分析物的回收率和富集倍数。2、萃取剂的种类及体积的影响 萃取剂需满足两个条件:一是其密度必须大于水,这样才能通过离心的方法把水溶液与萃取剂分离;二是萃取剂要不溶于水而且对待测物的溶解能力要大,以保证取得良好的萃取效率,萃取剂的选择是保障待测组分较高回收率的重要因素。本方案选用氯化苯、氯仿、二氯甲烷、二硫化碳、四氯化碳做比对试验,充分考虑萃取剂对硝基苯和苯胺的萃取效率的影响,并使离心之后的沉积基本控制在固定体积之内,以消除沉积相体积不同对萃取结果造成的影响,由于事故池废水浓度较高,普遍高达上万个 ppm,容易造成样品超出样品的富集极限,造成回收率降低;同时还要兼顾总排口、二沉池废水浓度低,富集倍数需要提高的现状,故沉积体积也不适宜太大,经过反复比较,将沉积体积控制在 80μl 左右能够兼顾本公司各类废水样品的回收与富集。介于目前我们公司多数废水同时含有硝基苯很苯胺的现实,使用二硫化碳和二氯甲烷进行联合萃取,微量的氯化苯能够促使样品的乳化程度,促使待测组分与萃取剂有较大机会的接触,使待测组分得到较好的提取和富集,同时,也能得到较好的色谱峰形。3、分散剂的选择及体积的影响 分散剂的选择是影响萃取效率的另一个关键因素,分散剂可以使萃取剂在水相中分散成细小的液滴,均匀的分散在溶液中,即形成一个水/分散剂/萃取剂的乳浊液体系,增大萃取剂与待测物的接触面积,从而提高萃取效率。分散剂(丙酮)体积的变化必然导致沉积相体积的改变。在沉积相体积基本相同的条件下考察萃取剂体积对萃取效率的影响。萃取回收率的变化趋势表明,随着丙酮体积的增加,萃取回收率先增加继而减少。在低体积的丙酮中, 萃取剂分散得不好, 传质效果差,导致萃取回收率降低。随着丙酮体积增大,苯胺在水中的溶解性增强,萃取效率下降。硝基苯影响不大,经比较:选择1.5 mL的丙酮为最佳条件。4、萃取和离心分离时间的确定 萃取时间是影响待测组分回收率的一个重要因素。在分散液相微萃取中,萃取时间是指在水相中注入了萃取剂和分散剂后,到混合液开始离心之前这段时间。研究表明,萃取时间对DLLME萃取效率没有显著的影响,这是由于在溶液形成乳浊液之后萃取剂被均匀地分散在水相中,待测物可以迅速由水相转移到有机相并达到两相平衡。萃取时间短是分散液相微萃取的一个突出的优点。试验表明:离心2分钟能够达到理论沉积体积的要求,故确定离心时间为2分钟,离心速度为4000r/h。5、样品溶液体积的影响 在萃取剂/分散剂体积一定的情况下,改变样品溶液的体积,分别取2.5、5、和10mL为考察体积。结果表明,在样品溶液为2.5 mL时,萃取剂过饱和,分离后沉积明显减少,所得到富集效率不能达到最大值;当样品溶液为5 mL时,萃取剂在样品溶液中达到基本饱和,此时富集效率达到相对最佳值;继续增大样品溶液的体积至10、15 mL时,所得萃取效率明显下降,尤其不适应事故池和原水样品组分的分离 ,表明样品溶液过量,导致样品在水相和萃取剂之间不能有较好的平衡,从而使富集倍数降低。实验选用样品溶液的最佳体积为5 mL。6、萃取温度的影响 考虑到实验中萃取剂、分散剂和样品溶液的混合可能存在微弱的热交换,实验表明该热交换不足以对萃取效率产生影响。但萃取时环境温度影响沉积相的生成,对萃取效率有一定的影响。随着萃取时温度的升高,沉积相体积逐渐减少,环境温度达到 50℃时,胶束体系基本消失,沉积相体积几乎降至 0,故合适的萃取温度范围为 5~20 ℃,实验在温度 20 ℃下进行,对于汽提塔废水需要降至室温后才可以施行样品预处理。7、盐浓度的影响 随着离子强度的增加,分析物和有机萃取剂在水相中的溶解度减小,利于提高回收率,所得到的沉积体积也有所增加,公司内各类废水都经过 PH 调节等处理,故不需要考虑盐度对萃取效率的影响。8、PH 的影响 酸性条件下对于废水中硝基苯的提取影响不大,在 PH 为 2-12 的范围内,回收率仍然不会受太大的影响,而废水体系中的苯胺在 PH 低于 7 时,回收率急剧下滑,酸度降至 3 左右时,回收率将跌至 10%以下,故废水预处理前的 PH 不容忽视,提取水相中苯胺的最佳酸度范围为 9-109、重复性试验 本试验方案在含量为 1-500ppm 时具有最好的重复性,当浓度高于 1000ppm 后重复性逐渐下降。【试验部分】DLLME 法样品处理过程相对比较简便,只需经过加样、萃取、分离三步骤即完成样品的预处理,全过程耗时不超过 5 分钟。1、试剂与仪器1.1 卤苯(CP)1.2 二氯甲烷(CP)1.3 二硫化碳(CP)1.4 丙酮(CP)1.5 气相色谱仪(FID 检测器)1.6 高速离心机1.7 移液枪(1000-5000μL)2、试验方法2.1 色谱条件 DB-1701 毛细管柱(60m×0.3mm×0.25μm),起始柱温 110 ℃,保持 3 min,以 10 ℃/min 的速率升温至 220 ℃,并保持 10 min;载气为高纯 N2,流速 30 mL/min;尾吹气流速 60 mL/min;采用分流进样,分流比 10∶1。进样口温度 250 ℃;检测器温度为270 ℃。2.2 分散液液微萃取步骤 取 5 mL 澄清样品溶液于离心试管中,缓慢加入含萃取剂的丙酮溶液 1.5mL。轻轻振荡离心管,使样品溶液和丙酮溶液形成胶束体系,将离心管放入离心机内,调节离心机转速为 4000 r/min,离心 2 min,用微型进样器取 1μL,进气相色谱分析。【综合评估】1、DLLME-GC 在高浓度废水中的应用目前有机类废水硝、胺基类含量分析方法系引用 GB11889 N-(1-萘基)乙二胺偶氮分光光度法,该方法最高监测上限为 1.6mg/L,该方法硝基酚对结果成正干扰,浓度高的废水理论上可以通过稀释来获取近似真实值的结果,然而高倍数的稀释所带来的误差非常惊人,无法指导生产,以下将引用 7 月 8 日苯胺厂冷冻

  • 【原创】过滤式离心机

    过滤式离心机看这个名字大家就知道该离心机是利用过滤的原理进行工作的,过滤式离心机的主要型号有三足式过滤式离心机,平板、卧式、立式过滤。就是利用离心力原理,将两种密度不同的物料,或者是固液混合物进行分离,从而得到想要的物料。过滤式离心机的一般结构为:转鼓壁上有许多过滤孔,使用时必须有滤布(除非是纺织品等脱水可不加滤布),所以说滤布或滤袋在过滤式离心机上的应用是非常广泛和重要的。采用电机带动转鼓旋转,从而进行分离脱水的效果。过滤式离心机的应用范围广泛,在化工、原料药、食品、纺织、印染、选矿等行业都有很好的应用,因为此型号离心机的工作原理及结构都是非常简单的,在价格方面也是十分的实惠,一台过滤离心机在使用了一年或者2年后,处理出售,还可以卖到机器价值的65%,所以使用过滤式离心机的用户非常多!常用的过滤离心机有:三足式离心机、上悬式离心机、卧式刮刀卸料离心机、卧式活塞推料离心机和离心力卸料离心机等形式。过滤离心机的滤饼适用于10um至数毫米的粒径,含固量从5%-80%的液固二相悬浮液的分离。过滤利息你叫的滤饼可以进行洗涤、滤饼含量低、处理量大,在化工、只要、冶金、选矿、制盐、轻工、石油化工、防止和环保工程等方面都有应用。在选用过滤离心机时也应该注意呗分离物质对设备的防爆、密闭性,以及材料耐腐蚀的要求。通常过滤离心机的转鼓为碳素钢、不锈钢制成、在特殊条件下页可以用钛材等加工,但造价明显增高。

  • 分散液相微萃取分析法分析废水探讨

    分散液相微萃取分析法分析废水探讨张燕【新浦化学(泰兴)有限公司】【引言】随着苯胺装置产能的不断提升,有机废水处理也相应成为稳定生产中很重要的一环。目前采用的比色法普遍存在操作繁琐、持续时间长(全程5小时左右)、难以实现自动化等缺点,经常出现废水处理发生异常后得不到及时有效的控制,以致影响生化系统的正常运行。因此,建立快速、准确的废水分析方法是非常必要的,为突发的生产异常事件在最短的时间得出分析结果,以便异常能够得到及时的处理。【摘要】分散液相微萃取是最近发展起来的一种新型样品前处理技术,只需要不超过2ml的有机溶剂,环境友好,成本低廉、富集效率高,预处理过程及其简单,单个样品预处理可以在3分钟完成,该方法与气相色谱联用分析废水,单个样品出结果时间能够控制在30分钟以内。本方案针对我公司废水的实际情况,对样品体积、萃取剂和分散剂的选择,萃取剂使用体积、萃取时间的确定以及影响样品富集的盐度、酸度、温度等方面加以评述。1、分散液相微萃取技术的原理分散液相微萃取类似于液液萃取,是基于目标分析物在样品溶液和小体积的萃取剂之间平衡分配的过程。而对于具有酸碱性的分析物,可通过控制样品溶液的pH值使分析物以非离子化状态存在,从而提高分配系数。在样品溶液中加入萃取剂和分散剂,混合液经轻轻振荡后即形成一个水/分散剂/萃取剂的乳浊液体系,再经离心分层,用微量进样器取出萃取剂就直接进样分析。该方法集采样、萃取和浓缩于一体,能够有效提高样品分析物的回收率和富集倍数。2、萃取剂的种类及体积的影响萃取剂需满足两个条件:一是其密度必须大于水,这样才能通过离心的方法把水溶液与萃取剂分离;二是萃取剂要不溶于水而且对待测物的溶解能力要大,以保证取得良好的萃取效率,萃取剂的选择是保障待测组分较高回收率的重要因素。本方案选用氯化苯、氯仿、二氯甲烷、二硫化碳、四氯化碳做比对试验,充分考虑萃取剂对硝基苯和苯胺的萃取效率的影响,并使离心之后的沉积基本控制在固定体积之内,以消除沉积相体积不同对萃取结果造成的影响,由于事故池废水浓度较高,普遍高达上万个ppm,容易造成样品超出样品的富集极限,造成回收率降低;同时还要兼顾总排口、二沉池废水浓度低,富集倍数需要提高的现状,故沉积体积也不适宜太大,经过反复比较,将沉积体积控制在80μl左右能够兼顾本公司各类废水样品的回收与富集。介于目前我们公司多数废水同时含有硝基苯很苯胺的现实,使用二硫化碳和二氯甲烷进行联合萃取,微量的氯化苯能够促使样品的乳化程度,促使待测组分与萃取剂有较大机会的接触,使待测组分得到较好的提取和富集,同时,也能得到较好的色谱峰形。3、分散剂的选择及体积的影响分散剂的选择是影响萃取效率的另一个关键因素,分散剂可以使萃取剂在水相中分散成细小的液滴,均匀的分散在溶液中,即形成一个水/分散剂/萃取剂的乳浊液体系,增大萃取剂与待测物的接触面积,从而提高萃取效率。分散剂(丙酮)体积的变化必然导致沉积相体积的改变。在沉积相体积基本相同的条件下考察萃取剂体积对萃取效率的影响。萃取回收率的变化趋势表明,随着丙酮体积的增加,萃取回收率先增加继而减少。在低体积的丙酮中, 萃取剂分散得不好, 传质效果差,导致萃取回收率降低。随着丙酮体积增大,苯胺在水中的溶解性增强,萃取效率下降。硝基苯影响不大,经比较:选择1.5 mL 的丙酮为最佳条件。4、萃取和离心分离时间的确定萃取时间是影响待测组分回收率的一个重要因素。在分散液相微萃取中,萃取时间是指在水相中注入了萃取剂和分散剂后,到混合液开始离心之前这段时间。研究表明,萃取时间对DLLME萃取效率没有显著的影响,这是由于在溶液形成乳浊液之后萃取剂被均匀地分散在水相中,待测物可以迅速由水相转移到有机相并达到两相平衡。萃取时间短是分散液相微萃取的一个突出的优点。试验表明:离心2分钟能够达到理论沉积体积的要求,故确定离心时间为2分钟,离心速度为4000r/h。5、样品溶液体积的影响  在萃取剂/分散剂体积一定的情况下,改变样品溶液的体积,分别取2.5、5、和10 mL为考察体积。结果表明,在样品溶液为2.5 mL时,萃取剂过饱和,分离后沉积明显减少,所得到富集效率不能达到最大值;当样品溶液为5 mL时,萃取剂在样品溶液中达到基本饱和,此时富集效率达到相对最佳值;继续增大样品溶液的体积至10、15 mL时,所得萃取效率明显下降,尤其不适应事故池和原水样品组分的分离,表明样品溶液过量,导致样品在水相和萃取剂之间不能有较好的平衡,从而使富集倍数降低。实验选用样品溶液的最佳体积为5 mL。6、萃取温度的影响 考虑到实验中萃取剂、分散剂和样品溶液的混合可能存在微弱的热交换,实验表明该热交换不足以对萃取效率产生影响。但萃取时环境温度影响沉积相的生成,对萃取效率有一定的影响。随着萃取时温度的升高,沉积相体积逐渐减少,环境温度达到50℃时,胶束体系基本消失,沉积相体积几乎降至0,故合适的萃取温度范围为5~20 ℃,实验在温度20 ℃下进行,对于汽提塔废水需要降至室温后才可以施行样品预处理。7、盐浓度的影响随着离子强度的增加,分析物和有机萃取剂在水相中的溶解度减小,利于提高回收率,所得到的沉积体积也有所增加,公司内各类废水都经过PH调节等处理,故不需要考虑盐度对萃取效率的影响。8、PH的影响酸性条件下对于废水中硝基苯的提取影响不大,在PH为2-12的范围内,回收率仍然不会受太大的影响,而废水体系中的苯胺在PH低于7时,回收率急剧下滑,酸度降至3左右时,回收率将跌至10%以下,故废水预处理前的PH不容忽视,提取水相中苯胺的最佳酸度范围为9-109、重复性试验本试验方案在含量为1-500ppm时具有最好的重复性,当浓度高于1000ppm后重复性逐渐下降。【试验部分】DLLME法样品处理过程相对比较简便,只需经过加样、萃取、分离三步骤即完成样品的预处理,全过程耗时不超过5分钟。1、试剂与仪器1.1卤苯(CP)1.2 二氯甲烷(CP)1.3二硫化碳(CP)1.4 丙酮(CP)1.5 气相色谱仪(FID检测器)1.6 高速离心机1.7 移液枪(1000-5000μL)2、试验方法2.1色谱条件 DB-1701毛细管柱(60m×0.3mm×0.25μm),起始柱温110 ℃,保持3 min,以10 ℃/min的速率升温至220 ℃,并保持10 min;载气为高纯N2,流速30 mL/min;尾吹气流速60 mL/min;采用分流进样,分流比 10∶1。进样口温度250 ℃;检测器温度为270 ℃。2.2 分散液液微萃取步骤取5 mL澄清样品溶液于离心试管中,缓慢加入含萃取剂的丙酮溶液1.5mL。轻轻振荡离心管,使样

  • 分散机操作规程详解

    分散机操作规程详解:一、分散机-开车前的准备工作1、检查分散机油位是否加注到规定位置,低应加至规定油位,高应放至规定位置。2、检查三角皮带松紧是否适当。3、用手盘动叶轮应转动灵活,无磨擦声。4、检查各紧固件是否松动及各密封部位有无渗漏现象。5、开启分散机主电机,检查搅拌的旋向是否与设备所规定的方向相同。6、确认以上检查工作无误后方可开车。二、分散机-开车1、将叶轮放在分散机容器的中心位置,揿下降按钮,下降到最低位置或要求的位置。2、两只手柄必须锁紧后才能开车。3、开主电机,按操作需要转速按下按钮。4、操作过程中应经常注意电流,如发现超载运转,应停车检查原因,采取措施后再继续运转分散机。三、分散机-停车1、先停主电动机,使叶轮全部停止转动。2、开分散机上升按钮,使主轴叶轮上升至容器之上,清洗叶轮。莱州市沙河镇明冠化工机械厂主营分散机、混合机等机械设备。

  • 【原创大赛】青菜中多种农药残留的分散固相萃取/气相色谱法测定

    【原创大赛】青菜中多种农药残留的分散固相萃取/气相色谱法测定

    摘要:本文介绍了采用一种新型的样品前处理技术—分散固相萃取法对青菜中的多种农药残留进行测定的方法。该法将提取和净化在同一步骤中完成,具有试剂用量少,操作简单,快速等优点。以丙酮+正己烷为提取溶剂,配微电子捕获检测器,此法对毒死蜱、氟虫氰、菊酯类等九种农药在40分钟内实现基线分离,最小检测浓度为2μg/kg~10μg/kg,方法的线性范围为0.02mg/kg~15.00 mg/kg,相关系数为0.9953~0.9999。关键词: 分散固相萃取;气相色谱;微电子捕获检测器;青菜 青菜是人们日常生活中必不可少的食物之一,然而随着滥用农药的现象,对青菜中的农药残留进行检测是很有必要的。本文将一种新型的样品处理技术:分散固相萃取法(Matrix solid phase dispersion: MSPD)对青菜样品中的毒死蜱、氟虫氰、联苯菊酯、甲氰菊酯、三氟氯氰菊酯、氯菊酯、氟氰戊菊酯、溴氰菊酯、氰戊菊酯九种农药残留进行快速检测,对方法的稳定性、精密度、重现性和最低检测限进行了测定。1 实验部分1.1 安捷伦7890A气相色谱仪;配微电子捕获检测器;化学工作站,离心机,粉碎机、涡旋混合器;氮气吹干浓缩仪;固相萃取装置;1.2 试剂与材料丙酮、氯化钠、正已烷、无水硫酸钠(650℃下灼烧4小时后贮存于干燥器中备用)均为分析纯;定容用的正已烷为色谱纯;毒死蜱、氟虫氰、联苯菊酯、甲氰菊酯、三氟氯氰菊酯、氯菊酯、氟氰戊菊酯、溴氰菊酯、氰戊菊酯标准品(浓度均为100μg/mL)。1.3 样品提取称取约20.0g粉碎好的试样,加入60mL丙酮,涡旋混合5 min,过滤,用丙酮洗涤残渣。将滤液收集于100mL容量瓶中,并用丙酮定容。准确移取10mL提取液,置于50mL离心管中,加入约1mL饱和氯化钠溶液,混匀,用约15mL丙酮+正已烷(1+3)提取两次,每次旋涡1 min,4000r/min离心5 min,合并上层有机相,并过无水硫酸钠柱用少量正已烷洗涤柱。将合并的流出液于40℃下用氮气吹干浓缩至1mL待净化。1.4 净化将ENVI-carb (6mL,0.5g)小柱装在固相萃取装置上,在小柱中加入0.5g酸性氧化铝,先用3mL丙酮+正已烷(1+3)预淋洗小柱,将淋洗液过ENVI-carb小柱,10mL丙酮+正已烷(1+9)洗脱。将洗脱液置于40℃下用氮气吹近干,用正已烷(色谱纯)定容至1mL,待测。1.5色谱条件检测器:微电子捕获检测器;色谱柱:HP-5(30m×320μm×0.25μm)。采用程序升温:初始温度70℃,保持3 min后升至270℃,升温速度为20℃/min,保持25 min。进样口温度230℃,检测器温度300℃。载气为氮气,流量为1mL/min;尾吹为氮气,流量为30 mL/min。恒流模式,不分流进样,进样量1μL。2 结果与讨论2.1 淋洗液体积的选择表1为洗脱剂丙酮+正已烷(1+3)体积对回收率的影响。在实验过程中采用三种不同的洗脱体积进行洗脱(n=5),测定其回收率。表1 洗脱剂丙酮+正已烷(1+3)体积对回收率农药名称洗脱液体积5mL洗脱液体积10mL洗脱液体积15mL回收率%RSD%回收率%RSD%回收率%RSD%[/

  • 【分享】水分散粒剂的一些标准测试方法

    1润湿性测定方法按CIPAC MT53.3方法,具体步骤如下:(1)加500ml342mg/L的标准硬水于500ml刻度量筒中。(2)用称量皿快速倒1.0g样品于量筒中,不搅动;(3)立刻记秒表;(4)记录99%的样品沉入量筒底部的时间。2崩解性测定方法方法为25℃下向盛有90ml蒸馏水的100ml具塞量筒中加入样品0.5克后,夹住量筒中部,以之为轴心以8转/min的速度沿轴心转动,直至样品颗粒在水中崩解完,记录时间,一般以小于3min为合格。3固体制剂悬浮率的测定方法参照CIPAC“MT 168测定水分散粒剂悬浮液的稳定性”进行测试。称取1.0 g80%吡虫啉水分散粒剂试样(精确至0.1 mg),缓缓放入盛有50 ml标准硬水(30±1)℃的200 ml烧杯中,用手摇荡作圆周运动,约每分钟120次,进行2 min,将该悬浮液在同一温度的水浴中放置13 min,然后用(30±1)℃的标准硬水将其全部洗入250 ml量筒中,并稀释至刻度,盖上塞子,以量筒底部为轴心,将量筒在1 min内上下颠倒30次(将量筒倒置并恢复至原位为一次,约2 s),打开塞子。再垂直放入无震动的恒温水浴中放置30 min。用吸管在10~15 s内将内容物的9/10(即225 ml)悬浮液移出,不要摇动或搅起量筒内的沉淀物,确保吸管的顶端总是在液面下几毫米处。将100 ml烧杯称重并做好记录烧杯重量(W0),将量筒底部悬浮液振荡后转移至该100 ml烧杯中,用20-30 ml蒸馏水洗涤量筒3次,洗涤液全部转移至该烧杯中,将烧杯中的水于烘箱中烘干,再次称取烘干后的烧杯重量(W1)。制剂悬浮率(%)=〔111(1 -)〕% 式中w---所取样品质量,g。4持久起泡量测定方法将250ml具塞量筒加标准硬水(342mg/L)至180ml刻度线处,置,量筒于天平上,称入样品1g,加硬水至距量筒塞底部9cm的刻度线处,盖上塞,以量筒底部为中心,上下颠倒30次,每次2s,放在试验台上静置,记录1min后的泡沫体积(ml)5分散性测试方法量筒混合法。加98ml去离子水或一般水于100ml刻度量筒中,称2g样品加入量筒,盖上塞子上下倒置10次,每次约2s,记录30min,60min时沉积物高度,60min后再颠倒10次,使完全分散,静置24h,24h后再颠倒量筒,记录使沉积物再分散而颠倒的次数,通常认为颠倒次数少于10次者认为合格。

  • 离心机的常见问题

    [b]1. 急停开关出现异常问题分析[/b]此类报警一般在离心机出现紧急故障按下急停开关后或设备重启时出现此类报警。[b]处理方法[/b]只需对设备进行复位键,如复位失败需等30s后驱动变频器开关能自动切断后再进行复位即可。[b]2. 分散单元位置不对问题分析[/b]此类报警一般在离心机开启后准备进行操作时或在分散过程中刮刀走到位后出现,由于分散时设备异常停车导致分散循环没有走完,刮刀没有回到起始位置造成;其次,在检修或清理设备完成后及其他异常情况下造成的接近开关与刮刀接近金属片间距较大,从而导致即使刮刀到位也无法检测到,造成假报警;再次,接近开关异常损坏,无法正常工作。[b]处理方法[/b](1)开启前出现报警:检查刮刀位置,不在起始位置,立即手动分散,将刮刀复位 使用金属物遮挡住接近开关,若报警消除,则证实是接近开关间隙较大,稍微调整间隙,消除报警即可。(2)如果金属物接触接近开关,报警信号无法消除,说明接近开关已坏,更换备件即可解决。(3)将2个开关调换,如能消除报警,则可能是在安装时将2个开关位置混淆所致。[b]3. 浆料进口阀/EG进口阀出现异常问题分析[/b]此类报警一般出现在离心开始时或离心结束转分散的过程中,由于浆料进口阀不能打开或关闭,或由于阀门卡阻造成打开、关闭不到位,其次就是位置开关的误报警。[b]处理方法[/b](1)检查阀门是否开关到位,如开关到位便是位置开关出现故障,调整位置开关位置或更换位置开关 如阀门没有开关到位,开关到一半的位置极大可能是阀门卡阻,检查气源压力是否满足动作需求,其次检查电磁阀是否动作正常,供电是否正常,手动是否能正常动作,再次检查气缸是否能灵活动作,最后拆开阀芯检查,是否有异物卡住阀芯。(2)阀门没有动作检查同阀门没有开关到位步骤一致。[b]4. 轴温出现异常问题分析[/b]此类报警基本都是在离心机运行过程中出现,由于电机温度过高或PT100的不正常工作造成报警或跳停。[b]处理方法[/b](1)检查电机温度是否达到报警设定值,如未达到则检查PT100是否有损坏,接线是否有松动、脱落或接线断开和破损情况,确认有无异常,检查安全栅有无故障,输入输出是否一致。(2)如温度达到报警值,需停机检查油泵是否工作正常,出口压力是否满足生产需要,检查脉冲开关是否工作正常,检查冷却油温是否过高,检查冷冻水是否满足要求。[b]5. 浆料或EG流量出现异常问题分析[/b]此类报警基本在离心开始时发生,基本由于流量计的不正常工作、管道堵塞、供料泵的 OP 值满足不了生产需要造成。[b]处理方法[/b](1)检查流量计,对流量计进行拆洗,清除流量计内杂质,确保流量计正常运行。(2)检查供料泵出口压力表是否有压力显示,如有压力显示且压力大于正常运行压力值则最大可能性为管道堵塞造成,联系相关专业人员对管道进行清洗。(3)供料泵出口压力值过小,满足不了生产需要,则需提高泵的输出 OP 值,如 OP 值已大于正常工作值,则需联系相关专业进行维护。[b]6. 离心机振动出现异常问题分析[/b]此类报警的情况较多,离心机不管在分散或在离心时都有可能出现。[b]处理方法[/b](1)分散开始时: 检查滤饼厚度,是否滤饼过厚,引起运行不稳定 检查工艺参数是否由于工艺参数不匹配,浆料量过大,转速过低造成浆料不能正常进入下个设备,造成堆积导致振动过大 检查是否由于 2 台设备运行,在增速的过程中产生共振引起,检查安全隔离栅是否存在异常的情况。(2)分散过程中: 检查滤饼厚度,是否由于滤饼过厚造成振动过大 检查是否由于刮刀安装角度不合理或冲洗 EG 流量过大造成阻力过大引起 检查设备安装基础或平台的稳定性,检查安全隔离栅是否存在异常的情况。(3)离心时: 检查设备基础或平台的稳定性 检查是否由于浆料刚刚进入设备造成 检查滤饼厚度,是否由于滤饼过厚造成高速运转时离心力大小不一,使得设备振动偏大,检查安全隔离栅是否存在异常的情况。[b]7. 离心机运行过程中出现转速异常问题分析[/b]此类报警出现在设备开启后正常运行过程中。[b]处理方法[/b]检查变频器面板参数,确认设备转速是否确实低于正常值,如实际值与设定值一致则检查现场转速检测元件是否有松动,或加长螺丝杆是否有弯曲脱落,检查安全隔离栅是否存在异常的情况。如实际值低于设定值则需检查通讯电缆是否受到干扰或PLC程序出现异常。[b]8. 结语[/b]离心机在运行或准备运行中出现报警,在排除电气元器件故障的前提下,要保证设备平稳运行,就必须要彻底解决报警出现的问题,在确认“ACK”键不能消除报警的前提下进行故障排查,达到正常运行生产的目的。总之,由于离心分散是一个连贯性的循环程序,各类故障因素应该根据实际出现的原因来确诊处理。[table=702][tr][td][url]https://yqj.mumuxili.com/?from=YQSQ2.3/1-1[/url][/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制