当前位置: 仪器信息网 > 行业主题 > >

甜没药姜黄醇

仪器信息网甜没药姜黄醇专题为您提供2024年最新甜没药姜黄醇价格报价、厂家品牌的相关信息, 包括甜没药姜黄醇参数、型号等,不管是国产,还是进口品牌的甜没药姜黄醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甜没药姜黄醇相关的耗材配件、试剂标物,还有甜没药姜黄醇相关的最新资讯、资料,以及甜没药姜黄醇相关的解决方案。

甜没药姜黄醇相关的资讯

  • 【应用分享】“黄金战士”—中药姜黄的33种农残测定分析
    姜 黄姜黄具有活血化瘀,通经止痛等功能,为姜科植物姜黄Curcuma Longa L.的干燥根茎,含有大量色素和挥发油类成分,这些成分会造成GC-MS/MS分析中目标物保留时间漂移、干扰大、严重污染色谱柱等问题,从而导致分析结果误差过大、回收率不达标,其中六六六类化合物干扰较为明显;同样也会造成LC-MS/MS分析中目标物响应变低、丢峰等问题,其中地虫硫磷和甲拌磷砜干扰较为明显。纳谱分析推出的HLB-C中药农残专用柱,特别适用于重色素和重油脂的中药材农残测定。今天,我们来看看姜黄项目的前处理效果吧。适用范围本方法参考中国药典2020版2341第五法中的固相萃取法二,适用于含色素、挥发油类成分的中药材的农残检测。实验步骤一 / 对照品溶液的制备1.1 混合对照品配制精密量取禁用农药混合1 mL,置20 mL量瓶中,加乙腈稀释至刻度,摇匀,备用;1.2 气相色谱-串联质谱法分析用内标溶液的制备取磷酸三苯酯对照品适量,精密称定,加乙腈溶解并制成每1 mL含1.0 mg的溶液,即得。精密量取适量,加乙腈制成每1 mL含0.1 μg的溶液。1.3 空白基质溶液的制备取空白基质样品,同供试品溶液的制备方法处理制成空白基质溶液。1.4 基质混合对照溶液的制备分别精密量取空白基质溶液1.0 mL(6份),置氮吹仪上,40 °C 水浴浓缩至约0.6 mL,分别加入混合对照品溶液10 μL、20 μL、50 μL、100 μL、150 μL、200 μL,加乙腈稀释至1 mL,涡旋混匀,即得。二 / 供试品溶液的制备(直接提取法)提取:精密称取5 g样品(3号筛),加氯化钠1 g,加入50 mL乙腈,匀浆处理2 min,离心后分取上清液,残渣再加50 mL乙腈,匀浆处理1 min,离心后,合并两次提取上清液,减压浓缩至3~5 mL左右,加乙腈定容至10 mL,摇匀,置冰箱冷藏2 h,取出离心1 min,取上清液至新的离心管内,放置至室温待净化。三 / 净化GC-MS/MS净化:SPE柱:SelectCore HLB-C中药农残专用柱 500mg/6mL净化:取SelectCore HLB-C固相萃取柱 500mg/6mL,加乙腈5ml活化,再取上述姜黄提取液1mL置已活化的SelectCore HLB-C固相萃取柱中,收集样品液,待所有样品液进入柱体填料后,取5mL乙腈洗脱,合并样品液与洗脱液,即得。GC-MS/MS测定:基质加标配制:取上述净化后的样品液与洗脱液的混合液40 ℃氮吹至0.6 mL加入混合对照溶液,乙腈定容至1 mL,再加入0.3 mL磷酸三苯酯溶液,混匀,过0.22 μm尼龙针式过滤器,上机分析。样品溶液配制:取上述净化后的样品液与洗脱液的混合液40 ℃氮吹至1 mL加入0.3 mL磷酸三苯酯溶液,混匀,过0.22 μm尼龙针式过滤器,上机分析。LC-MS/MS净化:SPE柱:SelectCore HLB固相萃取柱500mg/6mL净化:量取上述姜黄提取液4 mL,过SelectCore HLB固相萃取柱500mg/6mL,收集全部净化液,混匀,即得。LC-MS/MS测定:基质加标配制:精密量取过固相萃取柱后的溶液1 mL氮吹至0.6 mL加入混合对照品液,乙腈定容至1 mL,再加入0.3 mL水,混匀,过0.22 μm尼龙针式过滤器,上机分析。样品溶液配制:精密量取过固相萃取柱后的溶液1 mL加入0.3 mL水,混匀,过0.22 μm尼龙针式过滤器,上机分析。四 / 气相色谱-串联质谱法(岛津GC-MS-TQ8040 NX)4.1 色谱条件色谱柱:NanoChrom BP-50+MS,30m×0.25mm×0.25μm进样口温度:250 ℃升温程序:初始温度为60 ℃,保持1 min; 以10 ℃/min升温至160 ℃; 再以2 ℃/min升温至230 ℃ 最后以15 ℃/min升温至300 ℃, 保持6 min;载气:高纯氦气(纯度99.999%);进样方式:不分流进样;恒压模式:146 kPa;进样量: 1 μL4.2 质谱条件 电离方式:电子轰击电离源(EI);电离能量:70 Ev;接口温度:250 ℃;离子源温度:250 ℃;监测方式:多反应监测模式(MRM);溶剂延迟:10 min五 / 高效液相色谱-串联质谱法(岛津LC-MS 8045)5.1 色谱条件色谱柱:ChromCore C18-MS Pesticides, 2.6μm, 2.1×100mm流动相:A:0.1%甲酸水溶液(含有5 mmol/L甲酸铵) B:乙腈-0.1%甲酸水溶液(含有5 mmol/L甲酸铵)=95:5流速:0.3 mL/min柱温:40 ℃进样量:2 µL梯度:时间(min)流速(mL/min)流动相A(%)流动相B(%)00.3703010.37030120.30100140.3010014.10.37030160.370305.2 质谱条件离子源:电喷雾离子源(Electrospray ionization, ESI) 正离子扫描监测方式:多反应监测(Multiple Reaction Monitoring, MRM)接口电压:4.5 kV雾化气:氮气3.0 L/min加热气:干燥空气10.0 L/minDL温度:250 ℃加热模块温度:400 ℃接口温度:300 ℃干燥气:N2 10 L/min六 / 注意事项GC-MS/MS:内吸磷、灭线磷和久效磷参考LC-MS/MS分析结果;LC-MS/MS:地虫硫磷参考GC-MS/MS分析结果,采集条件参考下表;水胺硫磷参考GC-MS/MS分析结果;如遇个别目标物回收率低于60%可将上柱净化量增加到5 mL七 / 实验结果姜黄基质加标GC-MS/MS部分化合物分析结果谱图姜黄基质加标LC-MS/MS部分化合物分析结果谱图表1 姜黄中33种农药残留的测定添加回收结果(%)八 / 实验结论通过以上实验数据可以看出,姜黄使用SelectCore HLB-C 500mg/6mL中药农残专用柱处理对其色素类成分、挥发油吸附良好,有效地减轻了样品中色素和挥发油成分对GC-MS/MS柱前端的污染和基质中干扰物对目标物的影响;并且使用SelectCore HLB 500mg/6mL固相萃取柱处理的姜黄LC-MS/MS基质加标液中化合物出峰良好,搭配上述解决办法可以有效解决姜黄中农残分析中存在的问题,提高了实验效率,为姜黄的农药残留实验数据的稳定性和可靠性提供了良好的帮助。
  • 宝藏姜黄——看看步琦如何来挖宝!
    宝藏姜黄——看看步琦如何来挖宝!姜黄也被称为郁金,是有很多功效的植物。姜黄能活血行气,具有降血脂,抗肿瘤等作用。姜黄中主要的成分姜黄素是一种天然化合物,姜黄素是从姜科、天南星科中的一些植物的根茎中提取的一种二酮类化合物。其中,姜黄中约含姜黄素 3%~6%,姜黄素为橙黄色结晶粉末,味稍苦,不溶于水,在食品生产中也能用于肠类制品、罐头、酱卤制品等产品的着色。姜黄素具有降血脂、抗肿瘤、抗炎、利胆、抗氧化等作用,另外,也有科学家发现姜黄素有助治疗耐药结核病。在本文中利用全频固液萃取仪 E-800 热萃取法提取的,采用紫外/可见分光光度法测定姜黄素总含量。1仪器BUCHI 全频固液萃取仪 E-800分析天平(精度 ± 0.1 mg)紫外/可见分光光度计BUCHI 旋转蒸发仪 R-1002试剂与样品95%乙醇合成姜黄素为了安全处理,请遵循相应MSDS!示例:有机姜黄素粉,标记姜黄素含量:3.7%,样品是粉末,因此不需要额外的均质。3姜黄素含量的测定包括以下步骤标准溶液的制备姜黄粉直接提取紫外/可见分光光度法测定姜黄素含量3.1 标准溶液的制备将 25mg 姜黄素倒入 100mL 的量瓶中,溶解并稀释至乙醇。注意准确的重量!将 0.5 mL, 1 mL 和 2mL 原液转移到三个不同的 100mL 容量烧瓶中,用乙醇定量。对于0.5 mL、1 mL和2 mL转移的原液,这些标准溶液分别含有 1.25、2.5 和 5 mg/L 的姜黄素(根据确切重量而定)。将萃取纸滤筒放入萃取腔支架中。称 0.1 克均匀样品到萃取纸滤筒中。注意准确的重量。用棉絮覆盖在萃取纸滤筒内的样品。将含有样品的纤维素顶针放入提取室,并将液位传感器调整到样品的高度。将溶剂倒入烧杯中,放在相应的加热板上。关闭防护罩,降下萃取架,激活萃取位置,打开冷却水水龙头或接通连接的冷水机。根据表 1 中列出的参数启动热提取。表1:全频固液萃取仪 E-800 热萃取参数步骤_加热等级萃取方法热萃取_溶剂乙醇上萃取腔 9下加热 18萃取2.5h/3h热萃取淋洗10min18干燥AP11溶剂体积(mL)120_提取液转移到 100mL 容量瓶中。烧杯中的残留成分用额外的乙醇冲洗,然后定容到 100 毫升。注意:回收的溶剂应单独收集。再次使用前,通过测定吸光度来检查溶剂中姜黄素的杂质,并将其与纯溶剂进行比较。如果有杂质,必须使用纯溶剂开始清洗方法(例如淋洗30分钟)来清洗索氏腔。回收的溶剂可以通过蒸馏收集和纯化,例如使用旋转蒸发器 R-100。3.2 UV / Vis 分光光度法样品溶液:将 2.0mL 的提取溶液转移到 25mL 的量瓶中,用乙醇定容。测定样品溶液的吸光度,并与乙醇在 425nm处的吸光度进行了比较。3.3 姜黄素的浓度与吸光度之间的关系可由以下方程得到其中:A:姜黄素类化合物在 425 nm 处的吸收率an:标准溶液 n 在 425 nm 处的吸光度d:光路长度 (1 cm)cn:标准溶液浓度 n,单位为 mg/L3.4 姜黄素百分含量按下式计算其中:% Curcuminoids:样品中姜黄素含量的百分比mSample:样品重量 [g]cs:样品溶液的浓度为 mg/L4结果用紫外/可见分光光度计对标准溶液进行分析。用线性回归法确定了浓度与吸光度的相关性,该方法仅适用于标准溶液所涵盖的范围。对于姜黄素的测定,姜黄样品在 2.5h (150分钟) 和 3 h(180分钟) 提取时间内进行三次分析。结果如表2所示。表2:姜黄粉中姜黄素含量测定结果姜黄素含量测定值为 3.7%,与标记值吻合较好。当提取时间从 2.5 小时增加到 3 小时时,姜黄素含量并没有增加,说明 2.5 小时后提取完全。用全频固液萃取仪 E-800 测定姜黄粉中姜黄素含量,结果可靠,重复性好。6 位可同时进行萃取,提高效率,每个位置独立运行。
  • 萃取浓缩姜黄中的有效成分?看看步琦如何给出高效的解决方案!
    萃取浓缩姜黄中的有效成分姜黄,一味活血类中药,早在五代十国时期,就作为药用植物出现在《日华子本草》中,记载其具备治症瘕血块,痈肿,通月经,治跌扑瘀血,消肿毒,止暴风痛冷气,下食等功效。现代药学研究发现,姜黄中的主要有效成分为姜黄素(Curcuma longa L.),一种天然生物活性化合物。提纯的姜黄素在现代医学中常用于抗氧化、抗菌、抗炎、抗突变、抗高脂血症,同时具备减少胀气、降低血糖、预防和治疗阿尔茨海默病和帕金森病等功能。正因为姜黄素的多种优点,其提取和纯化也吸引了许多中药研发课题组。瑞士步琦作为一家样品前处理公司,一直致力于推出高效的解决方案。我们于 2021 年 5 月发布了针对天然产物有效成分提取与浓缩的工业级旋转蒸发仪——R-220 Pro Extraction,这是一款集浓缩与萃取为一体的旋转蒸发仪(点击这里了解更多)。今天我们会以姜黄素为例,把 R-220 Pro Extraction 与传统浸泡萃取做对比,带大家了解这款独特旋转蒸发仪卓越的处理效率。1设备工业级旋转蒸发仪 R-220 Pro Extraction实验室级旋转蒸发仪 R-300真空泵 V-600真空泵 V-300冷却循环水机 F-105冷却循环水机 F-314加热干燥箱2试剂与样品95% 乙醇 8L姜黄原料 2kg3前置处理步骤把姜黄原料放入加热干燥箱内,设置 50-60℃,干燥 24 小时,取出碾碎至小块(图1)。▲ 图1:干燥姜黄块4传统浸泡萃取法取干燥姜黄块 250g,放入 4L 95% 乙醇中(图2),整个浸泡过程持续 3 天,温度为室温。浸泡完毕后通过纱布和滤纸过滤,然后使用 R-300 旋转蒸发仪进行浓缩,浓缩参数如表1。表1:使用旋转蒸发仪 R-300 进行浓缩:参数条件水浴锅温度50 °C冷却循环水机温度5 °C旋转速度90 rpm真空度常压 → 150 → 90 mbar总时长2 小时▲ 图2:使用传统浸泡法萃取姜黄素5使用 R-220 Pro Extraction进行萃取与浓缩为了方便对比,我们采用和传统浸泡法一样的样品与溶剂比例,即把 250g 干燥姜黄块放入 R-220 Pro Extraction 的萃取池(图3),然后在蒸发瓶内倒入 4L 95% 乙醇(图4),萃取完毕后切换至浓缩模式。萃取过程的参数请参考表2,浓缩过程的参数请参考表3。表2:使用 R-220 Pro Extraction 进行萃取:参数条件水浴锅温度55 °C冷却循环水机温度5 °C旋转速度85 rpm真空度常压 → 200 → 150 → 100 → 90 → 80 mbar萃取循环10 次循环 (1 次循环 = 45 min) 表3:使用 R-220 Pro Extraction 进行浓缩:参数条件水浴锅温度55 °C冷却循环水机温度5 °C旋转速度85 rpm真空度80 mbar总时长0.5 小时▲ 图3 和 图4:使用 R-220 Pro Extraction 进行萃取和浓缩6萃取率计算其中:W = 萃取物被浓缩至完全干燥后的重量(g)7结果表4:传统浸泡和 R-220 Pro Extraction 处理效率对比:萃取方法萃取溶剂 [L]萃取与浓缩时间Hours萃取率%Yield传统浸泡法47428.7R-220 Pro Extraction4831.4根据表4 的结果,与浸泡法相比,R-220 Pro Extraction 的萃取率更加高,此外,使用 R-220 Pro Extraction 的提取和浓缩所需的时间比传统浸泡法少得多。事实上,如表4 所示,R-220 Pro Extraction 的提取时间为 8 小时,而传统浸泡法的提取时间为 74 小时。8结论步琦 R-220 Pro Extraction 作为专为天然产物设计的循环萃取浓缩装置,在萃取率和处理时间上都远胜传统的冷热浸泡法。为了方便对比,我们将本次的萃取样品与溶剂比例控制为一致;实际上,在真实的应用环境中,我们完全可以添加更多的姜黄在 R-220 Pro Extraction 的萃取池内,实现更高比例的样品和溶剂比。在保持高萃取率的同时,实现节省溶剂的目的。
  • IVIS视角 | 姜黄外泌体样纳米囊泡用于结肠炎治疗
    植物外泌体样纳米囊泡(plant exosome-like nanovesicles,PELNVs)是源于植物真核细胞的多泡体,通过后者与质膜融合释放到细胞外的一种膜性小囊泡。与此同时,来源于药用植物的姜黄(Curcuma longa)作为一种中药,常用于降血脂、抗肿瘤、抗炎等疾病,姜黄素作为从姜黄中所提取的一种天然疏水多酚,姜黄外泌体样纳米囊泡除了具有相应药理作用外,还兼具纳米载体的独特形态与组成特征,相比哺乳动物来源和人工合成的纳米囊泡,姜黄植物外泌体纳米囊泡具有来源广泛、价廉易得、功能丰富等优势,因此具有大规模生产的可行性。炎症性肠病(IBD),是一种特殊的慢性肠道炎症疾病,主要包括克罗恩病(CD)和溃疡性结肠炎(UC)。随着生活水平的提高和饮食结构的变化,我国IBD发病率有不断攀升的趋势,已逐渐成为我国消化科的常见病。发展IBD诊疗新技术、新方法,将为IBD的综合防治提供有效依据,研究人员受姜黄药物价值的启发,进一步研究了姜黄外泌体样纳米囊泡在IBD治疗中的作用及分子机制。作者首先将植物姜黄用萃取器均质,然后采用蔗糖梯度超离心法获取姜黄外泌体样纳米囊泡(TDNPs),并通过透射电镜、原子力显微镜、质谱分析等方式对TSNPs 1和TDNPs 2做出相关比较(图1)。图1. TDNPs的分离、纯化与表征接下来,作者研究了TDNPs 2的靶向性,使用IVISense™ DiR 750 (XenoLight™ DiR)标记TNDPs,灌胃结肠炎小鼠。通过Perkinelmer的IVIS成像系统对消化道、肠系膜淋巴结(MLN)和重要器官(心、肝、脾、肺和肾)进行成像,发现与PBS组、TDNPs 1治疗组的小鼠相比,TDNPs 2治疗组的小鼠结肠中有强烈的DIR信号,证实了TNDPs 2优先作用于炎症结肠部位(图2)。图2. TDNPs 2优先作用于炎症结肠部位随后在TDNPs 2优先定位于炎症结肠的条件下,进一步研究了TDNPs 2对DSS诱导结肠炎的影响,通过构建小鼠结肠炎模型,使用炎症探针通过化学发光成像进行监测。Lcn-2作为一种有吸引力的肠道炎症生物标志物,被用来监测肠道炎症的进展。作者通过研究Lcn-2在DDS、DSS+TDNPs 1、DSS+TDNPs 2三组中的水平变化,证实了TDNPs 2可减轻DSS诱导的结肠炎。IVIS生物发光结果显示,DSS组和DSS+TDNPs 1治疗组小鼠的腹部显示较强的生物发光信号,表明消化系统内存在严重的炎症反应。相反,虽然DSS+TDNPs 2治疗组的小鼠腹部仍有部分生物发光信号,但强度远低于DDS组和DSS+TDNPs 1治疗组小鼠。作者同时还评估了结肠组织中髓过氧化物酶(MPO) 、促炎细胞因子(TNF-α、IL-6和IL-1β)和氧化应激相关蛋白HO-1的表达水平,证实了TDNPs 2具有明显的抗炎和抗氧化作用(图3)。同时作者评估了TDNPs 2是否能够加速结肠炎的快速消退。通过体外伤口愈合试验,证实了TDNPs 2处理的细胞具有最快修复创面的速度,能够显著缓解DSS诱导的溃疡性结肠炎及促进炎症的快速消退。图3. 口服TDNPs 2可减轻DSS引起的结肠炎随后该团队为满足潜在临床应用,首先评估了TDNPs 2对Caco2细胞的毒性,通过MTT、ATPLite、细胞凋亡、活化caspase-3/7等证明了TDNPs 2具有良好的生物相容性。接下来,通过H&E染色对肝脏等器官进行组织学分析,证实了TDNPs 2在体内的生物安全性。最后作者研究了TDNPs 2是否影响NF-κB信号通路,NF-κB是一种重要的核转录因子,在调节炎症反应中发挥着重要作用。姜黄素是一种NF-kB抑制剂,具有广泛的性能。作者通过检测NF-κB p65依赖的荧光素酶活性、磷酸化NF-κB p65表达和p65转位到细胞核的共聚焦成像,表明了TDNPs 2可以抑制LPS对NF-κB通路的激活。同时为了研究TDNPs 2在体内对NF-κB通路的抑制作用,采用NF-κB-RE-Luc转基因小鼠对NF-κB进行了研究。通过采集重要器官(心脏、肝脏、脾脏、肾脏和肺)和结肠并成像。IVIS生物发光结果显示,心肝脾肺肾的生物发光信号相似,表明NF-κB在这些器官中的活性相似。相反,结肠的生物发光信号,TDNPs 2治疗组较DSS组明显降低。表明了TDNPs 2是通过抑制NF-κB信号通路发挥保护作用(图4)。图4. TDNPs 2通过抑制NF-κB信号通路发挥保护作用参考文献Oraladministration of turmeric-derived exosome-like nanovesicles withanti-inflammatory and pro-resolving bioactions for murine colitis therapy. JNanobiotechnol 20, 206 (2022).https://doi.org/10.1186/s12951-022-01421-w
  • Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度
    利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度姜黄素是一种天然化合物,具有良好的抗炎、降血脂、抗氧化和抗癌等特性。姜黄素是从姜科、天南星科中一些植物的根茎中提取的一种二酮类化合物。其中,姜黄中约含姜黄素3%~6%,是植物界很稀少的具有二酮结构的色素。了解栽培根茎中姜黄素的水平并确定高产品种非常重要。传统上测量姜黄素是通过从新鲜根茎或干粉中将其提取出来,并使用高效液相色谱(HPLC)或紫外-可见分光光度法进行分析。从植物材料中分离姜黄素费事、费力、成本高,且需要专门的实验室设备和有经验的操作人员。而高光谱成像(HSI)是一种快速且无损的技术,已成功用于土壤和农产品(坚果、水果和蔬菜)各种化学成分和质量指标的评估。然而,目前尚未探索使用新鲜姜黄根茎的HIS图像来预测姜黄素。基于此,为了填补研究空白,在本文中,来自澳大利亚的一组研究团队进行了相关研究,旨在(1) 比较澳大利亚东部不同采样点3个姜黄品种(黄色、橙色和红色)的总姜黄素浓度和不同类姜黄素的分布;(2)评估利用可见-近红外(Vis/NIR)光谱(400-1000 nm)建立的PLSR模型预测新鲜姜黄根茎中总姜黄素浓度的潜力。作者在2018年11月至2019年11月,从五个研究地点共收集了190个样本,以捕捉生长周期的变化。利用光谱范围为400-1000 nm,光谱采样间隔为1.3 nm,光谱分辨率为2.3 nm的Resonon Pika XC2高光谱相机获取样品的高光谱图像。扫描后,提取根茎中的姜黄素,分析其总浓度和分布。建立偏最小二乘回归(PLSR)模型来预测总姜黄素浓度,并通过R2和RMSE来评估模型的准确度。图1 高光谱成像系统Resonon Pika XC2高光谱相机扫描姜黄根茎(a),选择根茎肉(横截面)(b)和皮(c)感兴趣区域(ROI),用于提取每个样品的平均光谱反射率。 图2 实验设计和模型开发流程图。【结果】表1 校准和测试集中不同品种和采样地的总姜黄素 (%) 浓度的描述性分析。图3 不同姜黄品种中三种姜黄素类化合物:双去甲氧基姜黄素 (a)、去甲氧基姜黄素 (b) 和姜黄素 (c) 的百分比分布。 图4 使用三个姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)表2 使用各种光谱分析技术的PLSR模型预测性能。 图5 仅使用橙色姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)。【结论】红色姜黄品种姜黄素最高,建议农民可以培育该品种。本研究结果表明Vis/NIR高光谱成像结合PLSR有潜力仅使用根茎肉图像而不是根茎皮图像预测新鲜姜黄中的姜黄素。在收获和清洗过程中,指状根茎通常从母根茎中折断,仍可销售,因此,通过扫描从加工批次中随机选择的任何折断的根茎碎片,并使用所开发的PLSR模型,可以在两级系统下基于农场手段对包装根茎进行分级。针对每个品种开发模型可以提高预测性能和可靠性。使用单一姜黄品种(橙色)开发的模型预测结果更准确,预测性能和可靠性更高。波长选择(Jack knifing)进一步改进了这些方法,使其适用于更小、更便携的多光谱成像系统。然而,在未来的研究中,应针对每个特定品种采集更大的样本量,并对从其他光谱区域收集的数据进行调查。此外,该方法应被用于预测单个姜黄素类化合物,未来新兴的图像深度学习算法可能会进一步提高模型预测性能。请点击如下链接,阅读全文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310032&idx=1&sn=18f01ae402460e5da378f1ca6611014e&chksm=bee1a96f8996207988d67e735544aa15e26988c1a3cbb97e8aef9859a4a796e09c2f2202826e#rd
  • 【应用分享】温中止痛中药——花椒的33种农残测定分析(固相萃取法)
    中药花椒本品为芸香科植物青椒、花椒的干燥成熟果皮。由于花椒基质中含有大量油脂类、色素类成分,这些成分易造成GC-MS/MS上目标物保留时间漂移、化合物不出峰和污染柱前端;LC-MS/MS上易导致目标物不出峰,从而导致分析结果干扰大、回收率差、线性不达标。今天,我们用固相萃取法来看花椒项目的前处理效果吧。适用范围本方法参考中国药典2020版2341第五法中的固相萃取法方式二,适用于含色素、挥发油、基质复杂中药材的农残检测。实验步骤一 / 对照品溶液的制备1.1 混合对照品配制精密量取禁用农药混合1 mL,置20 mL量瓶中,加乙腈稀释至刻度,摇匀,备用;1 .2 气相色谱-串联质谱法分析用内标溶液的制备取磷酸三苯酯对照品适量,精密称定,加乙腈溶解并制成每1 mL含1.0 mg的溶液,即得。精密量取适量,加乙腈制成每1 mL含0.1 μg的溶液。1.3 空白基质溶液的制备取花椒空白基质样品,同供试品溶液的制备方法处理制成空白基质溶液。1.4 基质混合对照溶液的制备分别精密量取空白基质溶液1.0 mL(6份),置氮吹仪上,40 °C 水浴浓缩至约0.6 mL,分别加入混合对照品溶液10 μL、20 μL、50 μL、100 μL、150 μL、200 μL,加乙腈稀释至1 mL,涡旋混匀,即得。二 / 供试品溶液的制备(QuEChERS法)提取:取花椒粉末(过3号筛)5 g,精密称定,加氯化钠1 g,加入50 mL乙腈,匀浆处理2 min,离心后分取上清液,残渣再加50 mL乙腈,匀浆处理1 min,离心后,合并两次提取上清液,减压浓缩至3~5 mL,加乙腈定容至10 mL,摇匀,置-20 ℃冷藏3 h或家用冰箱冷藏过夜,取出趁冷离心1 min(4000转/min),分取所有上清液置离心管中,摇匀,待净化。三 / 净化3.1 GC-MS/MS样品 SPE柱:SelectCore HLB-C中药农残专用柱500mg/6mL净化:取SelectCore HLB-C固相萃取柱500mg/6mL,加乙腈5 mL活化,再取上述花椒提取液2 mL置已活化的SelectCore HLB-C固相萃取柱中,收集样品液,待所有样品液进入柱体填料后,取5 mL乙腈洗脱,合并样品液与洗脱液,氮吹至2 mL即得。GC-MS/MS测定:精密量取上述减压回收后的样品溶液1 mL,氮吹至0.4 mL加入混合对照溶液,乙腈定容至1 mL,再加入0.3 mL磷酸三苯酯溶液,混匀,过0.22 μm尼龙针式过滤器,上机分析。3.2 LC-MS/MS样品 SPE柱:SelectCore HLB固相萃取柱500mg/6mL净化:量取上述花椒提取液3 mL,过SelectCore HLB固相萃取柱500mg/6mL,收集全部净化液,混匀,即得。LC-MS/MS测定:精密量取过固相萃取柱后溶液1 mL氮吹至0.4 mL加入混合对照品液,乙腈定容至1 mL,再加入0.3 mL水,混匀,过0.22 μm尼龙针式过滤器,上机分析。四 / 仪器分析4.1 GC-MS/MS气相色谱-串联质谱法(岛津GC-MS-TQ8040 NX)色谱条件色谱柱:NanoChrom BP-50+MS, 30m×0.25mm×0.25μm;进样口温度:250 ℃;升温程序:初始温度为60 ℃,保持1 min;以10 ℃/min升温至160 ℃;再以2 ℃/min升温至230 ℃,最后以15 ℃/min升温至300 ℃,保持6 min;载气:高纯氦气(纯度99.999%);进样方式:不分流进样;恒压模式:146 kPa;进样量:1 μL质谱条件电离方式:电子轰击电离源(EI);电离能量:70 Ev;接口温度:250 ℃;离子源温度:250 ℃;监测方式:多反应监测模式(MRM);溶剂延迟:10 minGC-MS/MS监测目标物注意事项:目标物定量离子CE电压参考离子CE电压地虫硫磷245.90137.005245.90109.0015甲基对硫磷263.10109.0013125.0047.0010甲拌磷砜124.9096.905153.0097.0010特丁硫磷砜198.90143.0010124.9096.905特丁硫磷亚砜186.0097.0020186.00124.9010氟甲腈、氟虫腈、氟虫腈亚砜、氟虫腈砜、久效磷、水胺硫磷采用LC-MS/MS监测结果,GC-MS/MS可不监测以上化合物。4.2 LC-MS/MS高效液相色谱-串联质谱法(岛津LC-MS 8045)色谱条件色谱柱:ChromCore C18-MS Pesticides, 2.6μm, 2.1×100mm;流动相:A:0.1%甲酸水溶液(含有5 mmol/L甲酸铵);B:乙腈-0.1%甲酸水溶液(含有5 mmol/L甲酸铵)=95:5;流速:0.3 mL/min;柱温:40 ℃;进样量:2 µL;梯度:时间(min)流速(mL/min)流动相A(%)流动相B(%)00.3703010.37030120.30100140.3010014.10.37030160.37030质谱条件离子源:电喷雾离子源(Electrospray ionization,ESI)正离子扫描;监测方式:多反应监测模式(MRM);离子源接口电压:4.5 kV;雾化气:氮气3.0 L/min;加热气:干燥空气10.0 L/min;DL温度:250 ℃;加热模块温度:400 ℃;接口温度:300 ℃;干燥气:N2 10 L/minLC-MS/MS监测目标物注意事项:目标物定量离子CE电压参考离子CE电压氟虫腈434.9081.0015434.90249.8030氟甲腈386.90350.8010386.90281.8035氟虫腈砜450.90281.8030450.90243.8066氟虫腈亚砜419.10383.1010419.10262.1027治螟磷、甲拌磷、甲拌磷砜、特丁硫磷砜、特丁硫磷亚砜、地虫硫磷参考GC-MS/MS分析结果;为提高仪器灵敏度可采用分段采集模式进行,分段采集可设置测定时间为各目标物保留时间前后0.5 min;挥发油基质样品自动进样器托盘温度不宜过低,否则个别样品会出现分层,导致分析结果不准确,建议25 ℃为宜。五 / 实验结果花椒样品液净化后颜色对比1花椒提取液2花椒提取液过SelectCore HLB固相萃取柱500mg/6mL3花椒提取液过SelectCore HLB-C固相萃取柱500mg/6mL六 / 实验结论通过以上实验数据比对,可以看出,SelectCore HLB-C 500mg/6mL固相萃取柱,针对花椒的挥发性成分和色素成分去除效果良好,这样,不仅保护了气相柱和离子源,还消除了由于基质效应带来的检测灵敏度下降等问题。其中普遍反映GC-MS/MS中存在较大基质抑制效应的地虫硫磷、甲拌磷砜、特丁硫磷砜、特丁硫磷亚砜等农残的回收率都得以保证。另外SelectCore HLB 500mg/6mL固相萃取柱,对花椒中挥发性成分去除效果良好,减轻了由于基质中干扰物导致的LC-MS/MS上样品中目标化合物响应低等问题。两款固相萃取柱搭配使用可为花椒的农药残留实验数据的稳定性和可靠性提供良好的帮助。中药农残相关实验耗材:方法类别推荐产品货号适用品种快速样品处理法(QuEC-hERS)SelectCore QuEChERS 萃取盐包6g MgSO4, 1.5g NaOAc 50/pkgQS-002川桐皮、川赤芍、木通、通草、灯心草、白芍、麦冬、泽泻、益智、姜黄、枸杞、大枣等含碳水化合物和少量色素类SelectCore QuEChERS 净化管15mL, 900mg MgSO4, 300mg PSA, 300mg C18, 300mg Silica, 90mg GCB 50/pkgQ-15PCSG01注意事项:前处理步骤较多,提取效率较为充分,溶液颜色较深,基质标每次只能一个点,加入盐包时会放热,注意冰浴降温对杀虫脒有吸附,回收率可能偏低SelectCore QuEChERS 净化管 15mL, Pesticide Residue A06(含色素挥发油中药农残Q法) 50/pkgQ-15A06木香、厚朴、羌活等含挥发油和色素类注意事项:改良后的配方可以吸附更多的色素和挥发油基质SelectCore QuEChERS 净化管15mL, Pesticide Residue A07(丹参中药农残Q法) 50/pkgQ-15A07丹参专用注意事项:改良后的配方提高了丹参农残测定的稳定性和重现性固相萃取方法1SelectCore QuEChERS 净化管15mL, 1200mg MgSO4, 300mg PSA, 100mg C18 50/pkgQ-15PC04基质简单,色素较少如:人参、西洋参、茯苓、白芍、山药、隔山撬、浙贝母、麦冬、葛根、粉葛、川赤芍、赤芍、白附片、川木通、桑白皮、三七、黄芪、甘草、天花粉注意事项:适用于含有较多有机酸和糖干扰的样品,对磺隆类和杀虫脒化合物吸附较强固相萃取方法2SelectCore HLB固相萃取柱200mg/6mL 30/pkgHLB060-060200-1紫草、北柴胡、陈皮、山楂、大黄、柴胡、当归、党参、地黄、防风、黄芪、桔梗、苦参、益母草、黄精、灵芝、茯苓、大青叶、板蓝根、甘草等含少量色素类注意事项:吸附色素能力相比固相1要好,对滴滴滴类化合物吸附力较强故GC-MS/MS样品分析不适用,多用于LC-MS/MS样品净化SelectCore HLB-A中药农残专用柱200mg/6mL 30/pkgHLBA60-060200-1千年健、桃仁、苦杏仁、花椒、没药、紫苏叶、厚朴、金银花、艾叶、款冬花、乌梅、桑叶、牛蒡子、菟丝子、酸枣仁、莪术、槟榔、小茴香、枳实、郁金、白头翁、菊花、陈皮、白花蛇舌草、褚实子、化橘红、川防风、当归等富含挥发油和色素类气质质测定项目注意事项:对磺隆类化合物吸附力强,且对三氯杀螨醇类、滴滴滴类化合物具有一定吸附作用,故LC-MS/MS样品分析不适用,GC-MS/MS样品分析需5mL样品上柱净化SelectCore HLB-B中药农残专用柱200mg/6mL 30/pkgHLBB60-060200-1色素较多,挥发油较多如:火麻仁、菟丝子、厚朴、酸枣仁、羌活、川芎、莪术、蛇床子、紫苏叶、姜黄、干姜、陈皮、枳实、青皮s、防风、莱菔子、槟榔、当归、小茴香、豆蔻、黄连、黄柏、虎杖、大黄、马钱子、化橘红、当归注意事项:对滴滴滴类化合物具有一定吸附性,适用于LC-MS/MS样品分析,3mL样品上柱净化SelectCore HLB-C中药农残专用柱500mg/6mL 30/pkgHLBC60-060500-1血竭、补骨脂、吴茱萸、沉香、没药、蛇床子、火麻仁、小茴香、马钱子等富含挥发油、色素和生物碱类气质质测定项目适用于重油重色素和生物碱的果实和种子类中药,GC-MS/MS样品分析需2mL样品上柱净化固相萃取方法3SelectCore GCB/NH2-II 固相萃取柱500mg/500mg/6mL 30/pkgGN100-061000-2色素含量多,含少量挥发油如:金银花、菊花、款冬花、忍冬花、益母草、淫羊藿、龙胆草、大黄、虎杖、何首乌、麻黄、苦丁茶、刘寄奴、山银花、忍冬藤、川牛膝、地黄、桑叶注意事项:洗脱液中有甲苯,毒性较大,且洗脱时间较长;对磺隆类农药有一定吸附LC-MS/MS样品分析时应联合其他净化方式分析磺隆类数据SelectCore GCB/NH2-A 固相萃取柱500mg/500mg/6mL 30/pkgGNA100-061000-1紫草、黄连、黄柏、何首乌、干益母草、吴茱萸、虎杖、大黄、决明子、胡黄连、苕叶细辛、菊花、千里光、蒲公英、艾叶、荆芥、茵陈、金银花、番泻叶、龙胆草、蛇床子、川乌、草乌、车前子、地耳草、金钱草、薄荷、广藿香、老鹳草、紫苏叶、忍冬藤、栀子、连翘、莲子心、竹叶柴胡、矮地茶、红景天、麻黄、白鲜皮、赶黄草、款冬花等注意事项:适用于干扰较为严重的GC-MS/MS样品分析。若用于LC-MS/MS样品分析,应联合其他净化方式液相色谱柱ChromCore C18-MS Pesticides 2.6μm, 2.1×100mmS013-026018-02110S气相色谱柱NanoChrom BP-50+MS, 0.25μm,30m×0.25mmG5025-3002
  • 中药工艺优化 | 关于分子蒸馏技术在中药分离中的应用
    1月2日,国务院联防联控机制综合组印发了《关于在新型冠状病毒感染医疗救治中进一步发挥中医药特色优势》的通知,确实,经过三年的疫情经验总结,中药对于新冠症状的抑制作用有目共睹。 因此,尽管在1月8日,国家对新型冠状病毒感染已由”防感染”转向实施“乙类乙管”,中医药仍然将在接下来的“保健康、防重症”阶段扮演重要角色。不仅如此,我国对于中医药其实一直保持着相对的关注,这一点从2021-2023年一系列的支持政策也可以看到。 来源:国务院办公厅,国家卫健委,国家药监局等并且,2022年国家药监局就发布了《中药品种保护条例(修订草案征求意见稿)》,明确“一级保护给予十年市场独占,二级保护给予五年市场独占”。天时地利人和,在新的一年,我国中医药的市场预计总规模可能会达到万亿规模。中药新药的研发已成为大势所趋,如何加快中医药研发抢先争取市场份额?这将会成为未来2023年药企需要直面的一个点。中药有效成分提取工艺想要了解如何加快中医药制剂研发,必须从源头出发,深挖工艺环节。本文将先围绕如何优化“从中药中提取有效成分”这一过程,展开讨论。中药有效成分提取 Step1利用有机溶剂进行抽提,得到的是初步的中药精油,纯度很低,含有溶剂、水和杂质,此时需要进一步精制和提纯。Tips:● 目前比较好的方法有CO2超临界萃取技术,利用温度和压力略超过临界的、介于气体和液体之间的流体作为萃取剂,从固体或液体萃取某种高沸点和热敏性成分,介质为CO2。● 像艾草、五味子、川芳、蛇床子等中药都可以通过有机溶剂抽提或者超临界萃取的方式做*步的预处理。中药有效成分提取 Step2利用分子蒸馏技术,根据样品中各组分分子的平均自由程的差异,在远低于物质常压沸点的情况下将物质进行分离,从而达到提纯的目的,因此特别适合高沸点、热敏性的天然药物。 分子蒸馏技术 分子蒸馏又称短程蒸馏,是近年来新兴的并广泛应用的一种在高真空条件下进行高效分离纯化的技术。分子蒸馏由于操作温度低、受热时间短、分离程度高等特点,解决了热敏性、高沸点或高相对分子质量、高黏度、易氧化物料难分离纯化的问题,目前已被广泛应用于制药、石油化工、食品工业、香料香精等方面,具有广阔的发展前景。中药有效成分提取 Step3用GC/MS检测处理后的样品纯度,要求主含量至少在95%以上。气质联用作为表征未知物组成和含量有着很广泛的应用,可以结合红外色谱仪来判断官能团的特征峰,从而再次确定这一组分的真实性。中药有效成分提取 Step4目前中成药制剂大多数以颗粒等固体制剂为主,当然也有类似于精油的剂型,只是储存和运输不便,所以中成药的挥发油一般是单独提取出来,用β-环糊精包合再和其他提取物一起制成固体制剂。 在中药有效成分提取工艺中,我们发现分子蒸馏这一技术,较常规蒸馏具备更显著的优势,如果能不断提升这一技术应用,就能大大提升分离度及效率。——Pilodist团队 分子蒸馏技术基本原理常规蒸馏是利用样品各组分沸点的不同进行分离,而分子蒸馏是在高真空下分离操作的非平衡蒸馏,通过将液体加热,依托混合物组分中不同分子平均分子自由程的差异,在远低于物质常压沸点的情况下将物质进行分离,故分子蒸馏其实质是分子蒸发,是一种特殊的液-液分离技术。分子蒸馏基本原理:把分子连续两次碰撞之间通过的路程称为自由程,分子自由程的平均值称为分子平均自由程。由分子的平均自由程公式可知,不同物质分子由于运动速度和有效分子直径不同,平均分子自由程也不相同,重分子的平均自由程小,轻分子的平均自由程大。在液面上方小于轻分子平均自由程而大于重分子平均自由程处设置冷凝面,使得轻分子不断地落在冷凝面上被冷凝,进而破坏轻分子的动态平衡,而重分子因为到达不了冷凝面就会发生碰撞返回溶液中,*使混合液中的不同成分分离。如下图所示: 在中药分离中的现代化应用随着中药现代化发展,中药有效成分的提取与分离技术朝着高效率且环境友好的方向发展。中药现代化就是指在中药的传统特色优势与现代化的科学技术相结合的基础上研发现代中药。将新兴的分子蒸馏技术应用于中药有效成分提取分离过程中,特别适合含有热敏性、高沸点及易被氧化物质的分离纯化,有利于促进中药有效成分分离技术的现代化。挥发油是中药发挥药效的重要物质基础之一。目前,我国已知有 56 个科 136 种植物含有挥发油。传统的蒸馏加工过程由于受热时间长、温度高等会使得挥发性成分受损,因此,在中药挥发油的分离与精制中引入分子蒸馏技术十分必要。应用一:贵州传统苗药米槁米槁作为贵州传统苗药,其有效成分存在于精油中,采用分子蒸馏技术对米槁精油进行提取分离并系统研究其化学成分,结果表明该技术具有明显的优势,各馏分富集程度高,并可成功保护全部组分。应用二:姜黄挥发油姜黄烯和姜黄酮是姜黄挥发油的主要有效成分,传统蒸馏会使其加热时间较长而氧化,影响产品质量,采用多级分子蒸馏技术对姜黄挥发油进行精制,经5次蒸馏,姜黄挥发油中的姜黄酮与姜黄烯的体积分数提高到80%以上,总得率为 30.29%,有效提高产品附加值。应用三:纯化广藿香挥发油采用正交试验法优化分子蒸馏技术在纯化广藿香挥发油中的应用,以广藿香醇为评价指标,所得产物优于传统水蒸气蒸馏法。通过分子蒸馏技术对苍术油进行精制,得到易挥发的苍术素,体积分数达到 52.17%以上。分子蒸馏技术应用于对高良姜、广藿香、香附、川芎等有效成分的分离,含量测定均达到有效成分用药的要求。随着技术发展,目前的一些分子蒸馏设备已经能够较为成熟的应用这项新兴技术,使蒸发速率更快、分离效率更好。 Pilodist分子蒸馏仪在中药分离中有什么优势? 德国Pilodist分子蒸馏仪SP10001、真空度高SP1000*可到10^(-5)mbar的真空度。Tips:分子蒸馏装置必须保证体系达到高真空,分子蒸馏装置内部压力越低,获得更好的真空度,分离度越好)2、加热温度低,受热时间短SP1000配备了用于操作短程蒸发器的恒温器,加热能力2kW,最高工作温度200°C,配有循环泵和隔离管,模块化的数字PID控制器和高温管。而且分子蒸馏器中蒸发面到冷凝面的距离小于轻分子的平均自由程,轻分子从液面蒸发几乎不发生任何碰撞直接飞射到冷凝面,物料受热的时间较短,在很大程度上能够有效地使液料原本的物质得以保护,即保障物料的原始状态,降低了热损伤。3、Hybrid技术的混合蒸发器蒸发面积1000cm² ,结合了玻璃和不锈钢的所有优点,即可以保证可视化的操作流程,又能保证装置的结实耐用。配备了加热的入口和出口管线,以及用于油浴加热的双层套管,设计紧凑,物料滞留时间短,分离速度快。4、三种刮膜器类型可供选择,适合不同物料 a.通过离心力旋转的PTFE和玻璃刮膜器b.带螺旋传动装置的PTFE刮膜器c.卷筒式PTFE刮膜器5、模块化精密控制单元 集成高精度的数字真空控制器、加热恒温器、真空调节旋钮、刮膜器驱动于一体的控制单元,操作简单,控制精度高。 德国 PILODIST® 是一家专业从事实验室蒸馏、精馏技术和设备的公司,由原德国 Fischer 公司的主力人员及 Fischer 先生本人一起组建的全新的公司。Pilodist 全面继承了原 Fischer 公司的技术资源,为全球客户提供高品质的实验室蒸馏、精馏技术和设备,产品范围包括蒸馏仪、精馏仪、薄膜蒸发器、溶剂回收、气液相平衡仪及航煤润滑性测试仪等。PILODIST® 实验室工艺技术在世界范围内被享有盛誉的公司广为应用——德国制药实验室,西班牙香精香料研究实验室,中国精细化工企业及伊朗炼油企业等。在德国波恩总部, 我们为客户量身定做设备,并由经销商销往世界各地,并提供现场服务。我们的员工具有多年的从业经验、引领潮流的理念和丰富的技术知识,是行业内公认的专家。就这方面而言,PILODIST® 是世界上非常有能力的供应商之一。为了保证产品*的质量和性能,在我们的室内玻璃吹制、电子、软件及机械加工室, PILODIST® 制造了绝大部分重要的主件和零部件。每一套设备在运往客户之前都经过我们完 整的组装及详尽的测试。我们能提供的让客户满意的实验室生产/研究用产品范围包括: PILODIST® 产品还包括备件供应及现场为您竭诚服务。参考文献:[1]雷 玲,徐 辉.基于分子蒸馏技术的生物油分离与提取研究[J].化工管理,2018(8):54+56[2]颉东妹,代云云,郭亚菲,魏晗婷,郭 玫.分子蒸馏技术及其在多领域中的应用[J].中兽医医药杂志,2021,40(5)[3]李天祥.米槁精油提取与分离及其化学成分的研究[D].天津:天津大学,2004.[4]韩金历.多级分子蒸馏提取五味子精油控制系统研究[D].长春:长春工业大学,2013[5]陈 慧,张金巍,朱合伟,等.分子蒸馏法纯化广藿香挥发油中广藿香醇[J].中草药,2009,40(1):60-63.[6]高 英,李卫民,倪 晨,等.分子蒸馏技术在分离苍术油有效部位中的应用[J].广州中医药大学学报,2004(6):476-478.
  • 四川首建重大危险源测控实验室 黑煤窑一扫就现形
    昨日,记者从省安监局下属的四川省安全科学技术研究院(以下简称“省安科院”)获悉,四川省刚建立了全国首家“重大危险源测控重点实验室”,该实验室就设在省安科院。以后,实验室将为四川所有重大危险源建立档案,对重大危险源进行动态监管,推动四川省安全生产形势根本好转。   目前,四川省安科院刚从以色列引进一批高科技设备——手持式和防爆三维激光扫描测量仪。目前,省安科院的科研人员正在对其研究,以后将开发系列软件,为建立重大危险源档案服役。 省安科院工作人员在调试“刷子”   利器1 “刷子”   能看清油气管1毫米的变化   记者在省安科院见到了引进的高科技设备。5个黑灰色箱子里,装着手持式三维激光扫描测量仪。黑色的测量仪高度不足30厘米,只有3.5公斤重。   “它也有眼睛、嘴巴和大脑。”安全信息技术研究所所长郭万佳指着有摄像头和激光的一端说,这就是它的眼睛,负责把它看到的信息存入大脑。数据线的另一端,是一块约50平方厘米的触摸屏,操作键轻轻一碰就能发出指令。不仅如此,它还能读出相关信息。   “手持式三维激光扫描测量仪适宜于近距离(5米-10米内)捕获信息。”郭万佳说,这种设备尚没有一个通俗易懂的名字,他们叫它“刷子”。   “刷子”除了能拍摄到影像外,每秒钟还能在一平方米内固定10万个坐标原点。通过软件,工作人员可准确绘制出被拍摄物体的三维图,从而进一步分析它的动态变化。   “它能在技改、事故调查、建立案件档案库等方面发挥非常重要的作用。”郭万佳举例说,如果对可视的石油天然气输配气管线定期扫描,对比多次扫描结果,可迅速确定毫米级的变化,帮助工作人员对管线存在的潜在爆裂和泄漏风险作出判断和评估,及时采取相应措施。此外,它还能广泛用于事故发生后的安全调查,用于固定相关证据。   利器2防爆测量仪   能找出黑煤窑里藏的暗门   除了“刷子”,引进的设备还有防爆三维激光扫描测量仪。   “这套设备能在矿井里发挥重要的安全监管作用。”郭万佳说,近年来发生的很多起矿难,绝大多数都与非法偷采和盗采有关。   事故调查情况反映,许多黑心矿主在井下设置有暗门,安监部门检查时,他们关闭暗门 检查人员一走,他们重启暗门让矿工进入非法开采区暗中作业。非法开采区的安全设施得不到保障,导致事故频现。   以后,安监工作人员定期带着防爆三维激光扫描测量仪深入矿井,采集回井下的数据,再根据井下一些细微处变化判断出哪里可能存在暗门,也可判断安全监管的探头是否安在了有效监管区域内。   “防爆三维激光扫描测量仪的原理和‘刷子’一样,有了这个利器,可以让暗门无处可躲,从而起到更加有效的监管作用。”郭万佳说,防爆三维激光扫描测量仪能读出方圆100米-300米之间的数据。   省安科院党委书记秦跃进说,这种技术在国际上都比较新。除了近距离、中距离的设备外,该院还有车载式和飞机载式的远距离高科技设备,它们能监测的范围更大。目前,省安科院引进的这些设备还处于科研阶段。   秦跃进说,实验室为四川所有重大危险源建立档案,摸清重大危险源的分布、分类和动态情况,对重大危险源进行系统、动态的监管,建立起重大事故监测、控制、预警系统和应急救援体系。
  • 新国标实施 | 福立液相精准检测全反式视黄醇,食品安全再升级
    全反式视黄醇是一种食品营养强化剂,也被称为维生素A。它是人体必需的营养素之一,对视觉、生长发育、生殖和免疫系统等方面都有重要作用。在食品中添加全反式视黄醇可以提高食品的营养价值,帮助预防和治疗维生素A缺乏症。然而,过量摄入全反式视黄醇也可能对人体造成负面影响,如头痛、恶心、呕吐、皮肤干燥等。因此,在使用全反式视黄醇作为食品营养强化剂时,需要严格控制用量。国家标准GB 1903.71-2024《食品安全国家标准 食品营养强化剂 全反式视黄醇》于2024年8月8日正式实施,为全反式视黄醇产品的各项质量技术指标提供了检测依据。福立仪器参照上述标准,采用LC5190低压超高效液相色谱仪对食品营养强化剂全反式视黄醇开展相关应用,为全反式视黄醇类食品的生产和政府监管提供了有力的技术支撑。分析检测方法方法提要试样中的全反式视黄醇加正己烷溶解后,正相液相色谱柱分离,紫外检测器检测,外标法计算试样中全反式视黄醇的含量。仪器配置 福立LC5190低压超高效液相色谱仪配备:LC5190在线脱气机、LC5190四元低压输液泵、LC5190自动进样器、LC5190柱温箱、LC5190双波长-紫外检测器。色谱柱PolyPak Silica色谱柱,4.60 mm * 250 mm,粒径为5.0 µ m。分析检测数据01 全反式视黄醇标准溶液典型谱图及结果(20μg/mL)02 全反式视黄醇标准溶液六针重复性谱图及结果(20μg/mL)03 标准曲线04 空白谱图05 样品典型谱图及2次测定结果说明:标准规定全反式视黄醇含量/(IU/g)≥2.5×106,从上表可得此样品的含量符合规定;标准规定在重复性条件下获得的两次独立测定结果的绝对差值不大于算数平均值的5%(即3.04×106×5%=0.152×106),从上表可得,连续两次的测定结果符合规定。小结由以上实验结果可知,采用福立LC5190测定食品营养强化剂全反式视黄醇,方法稳定可靠,目标物线性范围良好,灵敏度较高,有很好的重现性,能够对样品准确定性定量测定。
  • 中药研究系列专题——中药材鉴定及溯源
    影响中药材品质及疗效的因素很多,人们通常需要通过多种手段对对其进行鉴定,包括来源、性状、显微、理化、生物等鉴定法。此外,产地也是历代中医评价中药材品质的一个关键标准。有效成分的结构鉴定、道地药材真伪鉴别,作为中药研究的一个重要课题,在控制中药质量中发挥着独特的作用。 LCMS-9030四极杆飞行时间液质联用仪 举重若轻,超凡性能★ 室温波动环境下获取稳定的质量精度★ 低浓度范围中保持可靠的质量准确度 应用案例 利用高分辨率四极杆飞行时间质谱靶向筛选香豆素类化合物 香豆素类化合物是一种存在于很多植物中的化合物,很多具有抗肿瘤、抗菌等生理活性,秦皮、前胡、肿节风、补骨脂等中药中的香豆素类化合物都是其主要药效成分。 在没有完整标准品的情况下,用LCMS-9030完成了针对35种香豆素类化合物的靶向筛选。初步确认的工作基于高质量精度的精确质量数完成;在无标准的情况下,通过与Metlin的MSMS数据库进行比对,可以完成二次确认工作。 实际样品中筛查出的部分香豆素类化合物的提取离子色谱图 甲基香豆素在Metlin数据库中的MSMS谱图甲氧基香豆素的二级质谱图确认 iMScope QT成像质谱显微镜 iMScope QT是岛津最新一代的旗舰级成像质谱显微镜,继承了iMScope系列质谱仪配备光学显微镜的概念。iMScope QT不仅完美融合了形态学研究,而且具有出色的速度,灵敏度和空间分辨率,可对中药材有效成分或指标成分的分子进行定性鉴定、定量研究和可视化分布分析。 应用案例 iMScope对黄玛咖中芥子油苷类物质的空间分布评价 中药材中特定成分表达水平以及局部分布模式的差别,不仅可以鉴别其品种和产地,还能帮助探索有效成分的代谢通路。 用质谱成像的方法直接观察黄玛咖中不同次级代谢产物在植物组织中的分布特征及其相对含量,对于鉴定其产地和品种并进一步揭示其生物代谢途径具有广泛的应用前景。 如图所示,在高空间分辨率下成像后,明确了葡萄糖苷类物质主要分布在黄玛咖的木质部。 iMScope对干姜根中姜黄素的空间分布评价 对干姜根样品进行径向和纵向切片并用质谱成像的方法进行研究,发现姜黄具有非常规则的内部分布。纵向切片结果显示,姜黄素具有线性分布特征,推测姜黄素在植物体内是管状结构分布。 MultiNA微芯片电泳系统 小巧精致,功能强大 ★ 可重复利用的微芯片大大降低分析成本。★ 高速自动化分析,周期低至75秒。★ 采用LED激发的高灵敏度荧光检测器。★ 分离缓冲液和内标保证分析可靠性和重现性。★ 控制和数据处理软件图形化界面显示,操作更简便。 应用案例 应用MultiNa鉴定中药材金银花和山银花 由于不同的物种具有其特异性的生物遗传信息,使用分子生物学手段PCR方法结合电泳检测,通过检测样品的特异性基因信息,可以实现准确鉴定品种的目的。应用全自动化、且具有高分辨率的微芯片电泳仪 MultiNA,即可自动化地检测不同生物品种 PCR 产物。 金银花引物和山银花引物分别扩增金银花和山银花样品的PCR产物电泳图 金银花+金银花引物的PCR产物电泳图 山银花+山银花引物的PCR产物电泳图
  • 关注!食药物质超100种!
    2023年11月17日,国家卫生健康委、国家市场监管总局发布《关于对党参等9种物质开展按照传统既是食品又是中药材的物质公告》(2023年第9号),生产经营的食品中不得添加药品,但是可以添加按照传统既是食品又是中药材的物质(简称食药物质),新法规的发布更有利于食品行业产品创新。 目前发布的食药物质名单有三批,共102种物质,包括《卫生部关于进一步规范保健食品原料管理的通知》(卫法监发[2002]51号)、《关于当归等6种新增按照传统既是食品又是中药材的物质公告》(2019年第8号)和《关于党参等9种新增按照传统既是食品又是中药材的物质公告》(2023年第9号)。物质名单出处备注丁香、八角茴香、刀豆、小茴香、小蓟、山药、山楂、马齿苋、乌梢蛇、乌梅、木瓜、火麻仁、代代花、玉竹、甘草、白芷、白果、白扁豆、白扁豆花、龙眼肉(桂圆)、决明子、百合、肉豆蔻、肉桂、余甘子、佛手、杏仁(甜、苦)、沙棘、牡蛎、芡实、花椒、赤小豆、阿胶、鸡内金、麦芽、昆布、枣(大枣、酸枣、黑枣)、罗汉果、郁李仁、金银花、青果、鱼腥草、姜(生姜、干姜)、枳椇子、枸杞子、栀子、砂仁、胖大海、茯苓、香橼、香薷、桃仁、桑叶、桑椹、桔红、桔梗、益智仁、荷叶、莱菔子、莲子、高良姜、淡竹叶、淡豆豉、菊花、菊苣、黄芥子、黄精、紫苏、紫苏籽、葛根、黑芝麻、黑胡椒、槐米、槐花、蒲公英、蜂蜜、榧子、酸枣仁、鲜白茅根、鲜芦根、蝮蛇、橘皮、薄荷、薏苡仁、薤白、覆盆子、藿香《卫生部关于进一步规范保健食品原料管理的通知》87种当归、山柰、西红花(在香辛料和调味品中又称“藏红花”)、草果、姜黄、荜茇《关于当归等6种新增按照传统既是食品又是中药材的物质公告》6种仅作为香辛料和调味品党参、肉苁蓉(荒漠)、铁皮石斛、西洋参、黄芪、灵芝、山茱萸、天麻、杜仲叶《关于党参等9种新增按照传统既是食品又是中药材的物质公告9种
  • 部分药店向中药添加硫磺 无相关检测标准
    从海王星辰购买的当归中二氧化硫含量达到725毫克/千克。   金羊网-新快报9月2日报道 硫磺熏蒸中药材(行内称打磺)泛滥!新快报记者多日调查发现,不仅广州清平中药材市场不少批发商给药材打磺致使药材二氧化硫含量超高,而且许多名牌中药材连锁店也存在给药材打磺的现象。记者从几家药材店购买了几种药材检测后发现,其中竟有一半的二氧化硫含量超过500毫克/千克,其中二氧化硫含量最高的达到1850毫克/千克。   暗访   多家药店承认打磺药材好卖   8月19日上午10时,记者到天河城广场4楼的中草药材专柜,这里有一些中药机构的连锁店,包括同仁堂、位元堂、东方红等多种品牌。一名女销售人员告诉记者:“这些药材都是我们集团统一到药材生产地购买的,不会有打磺这道工序。”当记者问是否会在广州清平药材市场进货时,该销售人员表示大药房是不会去那里批发的,而许多小药房和连锁药房则大部分是从那里进货。   记者随后来到位于体育东横街19号的海王星辰连锁药店,一名女销售人员告诉记者,其中草药材由北京同仁堂供货,质量有保障。但她说:“淮山都是要打磺的,党参为了保存得好一点,也会打磺。”   位于天河南一路120号的宝家康平价医保药店的销售人员也称,一些药材是要打磺的,不然无法保质。   十八甫南路一家大参林药店的店员告诉记者,打磺是为了保证运输过程中药材不会变坏。该店员还称,他们有自己的加工厂进行打磺。当记者询问如何打磺时,该人员说:“一般用铁丝网隔开药材和硫磺粉,加热硫磺粉来熏药材,熏过的药材大都颜色鲜亮,卖相好,受人欢迎。”   检测   六份药材过半超高   8月24日下午2时左右,新快报记者与南方台记者再次来到位于天河城4楼的中草药材专柜,从多个药材专柜购买了一些药材,其中包括北京同仁堂的党参一罐250克装,东方红的莲子、百合各一罐250克,位元堂的当归一罐250克。随后记者又到位于体育东横街19号的海王星辰连锁药店,购买了党参、当归各200克。随后记者将这些药品送往赛特检测公司检测二氧化硫含量。   检测结果显示,这些药品中,过半二氧化硫含量超过了500毫克/千克。其中海王星辰连锁药店的党参二氧化硫含量最高,达到1850毫克/千克,在该店购买的散装当归二氧化硫含量也达到725毫克/千克,在天河城位元堂专柜购买的当归则为908毫克/千克。相比之下,在东方红专柜购买的百合中二氧化硫只有47、5毫克/千克,而在天河城同仁堂专柜购买的党参及东方红专柜购买的莲子均未检测出含二氧化硫。   药店回应   ●海王星辰   自己没有进行过打磺   昨日下午,记者致电海王星辰药材公司深圳总部,该公司媒体经理陆小姐称,在位于体育东横街的海王星辰的中药材专柜是由"北京同仁堂"供货的,他们自己并没有进行过打磺。她说:"绝不是我们零售商在搞,应当是供货商的问题。"   但是,北京同仁堂药材有限责任公司宣传部负责人接受记者采访时说:"经过我们证实,海王星辰里面的这个中药材专柜不是同仁堂的,同仁堂也没有给他们供过货。"   ●位元堂   药典没规定,药材没检测二氧化硫   位元堂国内总部的一位客服人员告诉记者,他们查验了相关检测报告,供货的中药材都是没有问题的,根据药检所规定该检测的都检测过,包括性状及显微特征都是合格的,但并没有对二氧化硫进行检测。"药典上是没有二氧化硫的检测要求的,所以我们没有检测。"该客服人员说。昨日下午,一名自称是位元堂天河城店负责人的女子给记者打来电话,承认药材没有进行过二氧化硫检测,她说:"天河城的位元堂只是一个加盟店,有问题也是我自己的问题。"   曝光药材打磺后 该市场大多商家停售打磺药材   在新快报和南方电视台关于广州市中草药材市场给药材打磺的报道出街后,昨日记者获悉,广州市食品药品监督局和广州市工商行政管理局荔湾分局决定今日上午采取联合行动,对广州清平市场进行整治查处。   记者再访时档主多称没卖过打磺药材   昨日上午,记者再次走访清平药材市场看到,一些档主已收起打磺药材,当记者询问有无打磺药材卖时,许多档主都称说没有,还称从没卖过这类药材。“我们这里的药材都没有打磺,都是纯天然的,报纸上的那些报道都是骗人的!”珠玑路33号的一家药材批发店的一名店员说。然而在此前,正是该店的老板梁某亲身示范教记者如何给药材打磺的。但是,也有少数档口卖打磺药材。在一档口,当得知记者要买打磺的党参时,档主带记者到她的另一家处于后巷的店面,这些有许多打磺的党参,一闻之下,气味刺鼻。   管理方称没措施限制打磺药材进市场   清平药材市场集团办公室负责人昨日对新快报记者表示,新快报关于中药材打磺泛滥的报道引起市场管理人员的重视,随即组织人员对商家进行检查监督,勒令其不得摆卖打磺药材。   “我们没有没收药材的执法权限,只能跟政府相关部门进行合作。”该负责人说,清平药材市场集团的管辖范围只有一栋大楼,周边的一些个体户并不属于他们的管理范围,因此这些个体户具体是如何操作的,他们也没有权限管理。   “我们肯定是杜绝打磺这种行为的,我们会配合有关部门进行管理,毕竟这个市场已经有30年历史了!”该负责人说。   在谈到市场有没有相关措施来限制打磺药材流入市场时,该负责人称,清平药材市场是有严格规章制度的,每年会给经营客户上两到三次培训课,培训内容包括国家相关的法律法规、清平药材市场的规定等,此外市场方还与经营客户签订合同并让其作出相关药材安全和经营管理的承诺。如果市场方在有证据证实某摊档贩卖含有二氧化硫的药材时,视情节是否严重,处以警告、解除合约甚至封铺的处理。
  • 18种食品添加剂拟扩大使用范围和使用量
    卫生部8月12日发布通知,拟批准姜黄素等18种食品添加剂扩大使用范围及使用量。   其中包括腌渍蔬菜中使用的防腐剂脱氢乙酸钠、山梨酸钾 热凝固蛋制品中使用的水分保持剂焦磷酸钠、三聚磷酸钠、六偏磷酸钠 去皮、切块或切丝的蔬菜水果中使用的抗氧化剂抗坏血酸 糖果中使用的着色剂姜黄素、叶黄素以及焙烤食品中使用的着色剂葡萄皮红、栀子蓝等。   卫生部表示,公众可以于2010年9月10日前通过传真电话010-67711813或电子信箱gb2760@gmail.com,反馈意见。   18种拟批准扩大使用范围、使用量的食品添加剂 序号 名称 类别 食品分类号 食品名称/分类 最大使用量(g/kg) 备注 1. 葡萄皮红 着色剂 07.0 焙烤食品 2.0 2. 姜黄素 着色剂 05.02 糖果 0.7 3. 叶黄素 着色剂 05.02 糖果 0.15 4. 栀子蓝 着色剂 07.0 焙烤食品 1.0 5. 山梨酸钾 防腐剂 04.02.02.03 腌渍的蔬菜 1.0 6. 脱氢乙酸钠 防腐剂 04.02.02.03 腌渍的蔬菜 1.0 7. 微晶纤维素 稳定剂 01.05.01 稀奶油 按生产需要适量使用 8. 羧甲基纤维素钠 稳定剂 01.05.01 稀奶油 按生产需要适量使用 9. 焦磷酸钠 水分保持剂 10.03.02 热凝固蛋制品 5.0 单独使用或与六偏磷酸钠、三聚磷酸钠复配使用。 10. 三聚磷酸钠 水分保持剂 10.03.02 热凝固蛋制品 5.0 单独使用或与六偏磷酸钠、焦磷酸钠复配使用。 11. 六偏磷酸钠 水分保持剂 10.03.02 热凝固蛋制品 5.0 单独使用或与三聚磷酸钠、焦磷酸钠复配使用。 12. 麦芽糖醇 甜味剂01.02.02 调味和果料发酵乳 按生产需要适量使用 05.01 可可制品、巧克力和巧克力制品,包括类巧克力和代巧克力 11.04 餐桌甜味料 13. 山梨糖醇(液) 甜味剂 16.06 膨化食品 按生产需要适量使用 14. 柠檬酸 食品工业用加工助剂 02.01.01.01 植物油 2.0 15. L(+)-酒石酸 酸度调节剂 15.03.01 葡萄酒 4.0g/L 16. 普鲁兰多糖 增稠剂 03.0 冷冻饮品(除外03.04食用冰) 10.0 17. 乳铁蛋白 其他 01.02 发酵乳 1.0 01.01.02 调制乳 14.03.01 含乳饮料 18. 抗坏血酸 抗氧化剂 04.01.01.03 去皮或预切的鲜水果 5.0 04.02.01.03 去皮、切块或切丝的蔬菜
  • 质检总局公布我国最新食品添加剂标准目录
    国家质检总局7月26日消息,我国最新的食品添加剂标准目录公布,详细见下表: 食品添加剂品种名称 标准名称 备注 1.食品添加剂 柠檬酸 GB 1987-2007 食品添加剂 柠檬酸   2.食品添加剂 乳酸 GB 2023-2003 食品添加剂 乳酸   3.食品添加剂 dl-酒石酸 GB 15358-2008 食品添加剂 dl-酒石酸   4.食品添加剂 L(+)-酒石酸 GB 25545-2010 食品添加剂 L(+)-酒石酸 卫生部公告2010年第19号 5.食品添加剂 L-苹果酸 GB 13737-2008 食品添加剂 L-苹果酸   6.食品添加剂 DL-苹果酸 GB 25544-2010 食品添加剂 DL-苹果酸 卫生部公告2010年第19号 7.食品添加剂 冰乙酸(冰醋酸) GB 1903-2008 食品添加剂 冰乙酸(冰醋酸)   8.食品添加剂 碳酸钾 GB 25588-2010 食品添加剂 碳酸钾 卫生部公告2010年第19号 9.食品添加剂 柠檬酸钾 GB 14889-1994 食品添加剂 柠檬酸钾   10.食品添加剂 柠檬酸钠 GB 6782-2009 食品添加剂 柠檬酸钠   11.食品添加剂 富马酸 GB 25546-2010 食品添加剂 富马酸 卫生部公告2010年第19号 12.食品添加剂 磷酸三钾 GB 25563-2010 食品添加剂 磷酸三钾 卫生部公告2010年第19号 13.食品添加剂 碳酸氢三钠(倍半碳酸钠) GB 25586-2010 食品添加剂 碳酸氢三钠(倍半碳酸钠) 卫生部公告2010年第19号 14.食品添加剂 盐酸 GB 1897-2008 食品添加剂 盐酸   15.食品添加剂 氢氧化钠 GB 5175-2008 食品添加剂 氢氧化钠   16.食品添加剂 碳酸钠 GB 1886-2008 食品添加剂 碳酸钠   17.食品添加剂 氢氧化钙 GB 25572-2010 食品添加剂 氢氧化钙 卫生部公告2010年第19号 18.食品添加剂 氢氧化钾 GB 25575-2010 食品添加剂 氢氧化钾 卫生部公告2010年第19号 19.食品添加剂 碳酸氢钾 GB 25589-2010 食品添加剂 碳酸氢钾 卫生部公告2010年第19号 20.食品添加剂 磷酸二氢钾 GB 25560-2010 食品添加剂 磷酸二氢钾 卫生部公告2010年第19号 21.食品添加剂 磷酸三钠 GB 25565-2010 食品添加剂 磷酸三钠 卫生部公告2010年第19号 22.食品添加剂 磷酸二氢钙 GB 25559-2010 食品添加剂 磷酸二氢钙 卫生部公告2010年第19号 23.食品添加剂 磷酸氢钙 GB 1889-2004食品添加剂 磷酸氢钙   24.食品添加剂 焦磷酸二氢二钠 GB 25567-2010 食品添加剂 焦磷酸二氢二钠 卫生部公告2010年第19号 25.食品添加剂 焦磷酸钠 GB 25557-2010 食品添加剂 焦磷酸钠 卫生部公告2010年第19号 26.食品添加剂 乳酸钠(溶液) GB 25537-2010 食品添加剂 乳酸钠(溶液) 卫生部公告2010年第19号 27.食品添加剂 磷酸 GB 3149-2004 食品添加剂 磷酸   28.食品添加剂 六偏磷酸钠 GB 1890-2005 食品添加剂 六偏磷酸钠   29.食品添加剂 硫酸钙 GB 1892-2007 食品添加剂 硫酸钙   30.食品添加剂 乳酸钙 GB 6226-2005 食品添加剂 乳酸钙   31.食品添加剂 L-乳酸钙 GB 25555-2010 食品添加剂 L-乳酸钙 卫生部公告2010年第19号 32.食品添加剂 磷酸三钙 GB 25558-2010 食品添加剂 磷酸三钙卫生部公告2010年第19号 33.食品添加剂 柠檬酸一钠 食品添加剂 柠檬酸一钠 卫生部公告2011年第8号指定标准 34.食品添加剂 亚铁氰化钾(黄血盐钾) GB 25581-2010 食品添加剂 亚铁氰化钾(黄血盐钾) 卫生部公告2010年第19号 35.食品添加剂 二氧化硅 GB 25576-2010 食品添加剂 二氧化硅 卫生部公告2010年第19号 36.食品添加剂 硅铝酸钠 GB 25583-2010 食品添加剂 硅铝酸钠 卫生部公告2010年第19号 37.食品添加剂 滑石粉 GB 25578-2010 食品添加剂 滑石粉 卫生部公告2010年第19号 38.食品添加剂 微晶纤维素 食品添加剂 微晶纤维素 卫生部公告2011年第8号指定标准 39.食品添加剂 叔丁基-4-羟基茴香醚 GB1916-2008 食品添加剂 叔丁基-4-羟基茴香醚   40.食品添加剂 二丁基羟基甲苯(BHT) GB 1900-2010 食品添加剂 二丁基羟基甲苯(BHT) 卫生部公告2010年第19号 41.食品添加剂 没食子酸丙酯 GB 3263-2008食品添加剂 没食子酸丙酯   42.食品添加剂 茶多酚 QB 2154-1995(2009)食品添加剂 茶多酚   43.食品添加剂 植酸(肌醇六磷酸) HG 2683—1995(2007)食品添加剂 植酸(肌醇六磷酸)   44.食品添加剂 特丁基对苯二酚 GB 26403-2011食品添加剂 特丁基对苯二酚 卫生部公告2011年第7号 45.食品添加剂 甘草抗氧物 QB 2078-1995(2009)食品添加剂 甘草抗氧物   46.食品添加剂 抗坏血酸钙 GB 15809-1995食品添加剂 抗坏血酸钙   47.食品添加剂 L-抗坏血酸棕榈酸酯 GB 16314-1996食品添加剂 L-抗坏血酸棕榈酸酯 食品添加剂 抗坏血酸棕榈酸酯 卫生部公告2011年第8号指定标准 48.食品添加剂 迷迭香提取物 QB/T 2817-2006食品添加剂 迷迭香提取物   49.食品添加剂 D-异抗坏血酸钠 GB 8273-2008食品添加剂 D-异抗坏血酸钠   50.食品添加剂 D-异抗坏血酸 GB 22558-2008食品添加剂 D-异抗坏血酸   51.食品添加剂 抗坏血酸钠 GB 16313-1996食品添加剂 抗坏血酸钠   52.食品添加剂 维生素E(dl-a-醋酸生育酚) GB 14756-2010食品添加剂 维生素E(dl-a-醋酸生育酚) 卫生部公告2010年第19号 53.食品添加剂 山梨酸 GB 1905-2000食品添加剂 山梨酸   54.食品添加剂 山梨酸钾 GB 13736-2008食品添加剂 山梨酸钾   55.食品添加剂 羟基硬脂精(氧化硬脂精) 食品添加剂 羟基硬脂精(氧化硬脂精) 卫生部公告2011年第8号指定标准 56.食品添加剂 硫代二丙酸二月桂酯 食品添加剂 硫代二丙酸二月桂酯 卫生部公告2011年第8号指定标准 57.食品添加剂 连二亚硫酸钠(保险粉) GB 22215-2008食品添加剂 连二亚硫酸钠(保险粉)   58.食品添加剂 焦亚硫酸钠 GB 1893-2008食品添加剂 焦亚硫酸钠   59.食品添加剂 无水亚硫酸钠 GB 1894-2005食品添加剂 无水亚硫酸钠   60.食品添加剂 焦亚硫酸钾 GB 25570-2010 食品添加剂 焦亚硫酸钾 卫生部公告2010年第19号 61.食品添加剂 亚硫酸氢钠 GB 25590-2010 食品添加剂 亚硫酸氢钠 卫生部公告2010年第19号 62.食品添加剂 硫磺 GB 3150—2010 食品添加剂 硫磺 卫生部公告2010年第19号 63.食品添加剂 碳酸氢铵 GB 1888-2008食品添加剂 碳酸氢铵   64.食品添加剂 酒石酸氢钾 GB 25556-2010 食品添加剂 酒石酸氢钾 卫生部公告2010年第19号 65.食品添加剂 复合膨松剂 GB 25591-2010 食品添加剂 复合膨松剂 卫生部公告2010年第19号 66.食品添加剂 硫酸铝钾 GB 1895-2004食品添加剂 硫酸铝钾   67.食品添加剂 硫酸铝铵 GB 25592-2010 食品添加剂 硫酸铝铵 卫生部公告2010年第19号 68.食品添加剂 羟丙基淀粉醚 QB 1229-1991(2009)食品添加剂 羟丙基淀粉醚   69.食品添加剂 山梨糖醇液 GB 7658-2005食品添加剂 山梨糖醇液   70.食品添加剂 聚葡萄糖 GB 25541-2010 食品添加剂 聚葡萄糖 卫生部公告2010年第19号 71.食品添加剂 碳酸氢钠 GB 1887-2007食品添加剂 碳酸氢钠   72.食品添加剂 碳酸钙 GB 1898-2007食品添加剂 碳酸钙   73.食品添加剂 碳酸镁 GB 25587-2010 食品添加剂 碳酸镁 卫生部公告2010年第19号 74.食品添加剂 偶氮甲酰胺 食品添加剂 偶氮甲酰胺 卫生部公告2011年第8号指定标准 75.食品添加剂 苋菜红 GB 4479.1—2010 食品添加剂 苋菜红 卫生部公告2010年第19号 76.食品添加剂 苋菜红铝色淀 GB 4479.2-2005食品添加剂 苋菜红铝色淀   77.食品添加剂 胭脂红 GB 4480.1-2001食品添加剂 胭脂红   78.食品添加剂 胭脂红铝色淀 GB 4480.2-2001食品添加剂 胭脂红铝色淀   79.食品添加剂 柠檬黄 GB 4481.1—2010 食品添加剂 柠檬黄 卫生部公告2010年第19号 80.食品添加剂 柠檬黄铝色淀 GB 4481.2—2010 食品添加剂 柠檬黄铝色淀 卫生部公告2010年第19号 81.食品添加剂 日落黄 GB 6227.1—2010 食品添加剂 日落黄 卫生部公告2010年第19号 82.食品添加剂 日落黄铝色淀 GB 6227.2-2005食品添加剂 日落黄铝色淀   83.食品添加剂 亮蓝 GB 7655.1-2005食品添加剂 亮蓝   84.食品添加剂 亮蓝铝色淀 GB 7655.2-2005食品添加剂 亮蓝铝色淀   85.食品添加剂 新红 GB 14888.1-2010 食品添加剂 新红 卫生部公告2010年第19号 86.食品添加剂 新红铝色淀 GB 14888.2-2010 食品添加剂 新红铝色淀 卫生部公告2010年第19号 87.食品添加剂 诱惑红 GB 17511.1-2008食品添加剂 诱惑红   88.食品添加剂 诱惑红铝色淀 GB 17511.2-2008食品添加剂 诱惑红铝色淀   89.食品添加剂 赤藓红 GB 17512.1-2010 食品添加剂 赤藓红 卫生部公告2010年第19号 90.食品添加剂 赤藓红铝色淀 GB 17512.2-2010 食品添加剂 赤藓红铝色淀 卫生部公告2010年第19号 91.食品添加剂 β-胡萝卜素 GB 8821—2010 食品添加剂 β-胡萝卜素 卫生部公告2010年第19号 92.食品添加剂 天然β-胡萝卜素 QB 1414-1991(2009)食品添加剂 天然β-胡萝卜素   93.食品添加剂 甜菜红 QB/T 3791-1999(2009)食品添加剂 甜菜红   94.食品添加剂 紫胶红色素 GB 4571—1996食品添加剂 紫胶红色素   95.食品添加剂 辣椒红 GB 10783-2008食品添加剂 辣椒红   96.食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法) GB 8817-2001食品添加剂 焦糖色(亚硫酸铵法、氨法、普通法)   97.食品添加剂 红米红 GB 25534-2010 食品添加剂 红米红 卫生部公告2010年第19号 98.食品添加剂 栀子黄 GB 7912-2010 食品添加剂 栀子黄 卫生部公告2010年第19号 99.食品添加剂 菊花黄 QB 3792-1999(2009)食品添加剂 菊花黄   100.食品添加剂 黑豆红 QB 3793-1999(2009)食品添加剂 黑豆红   101.食品添加剂 高粱红 GB 9993-2005食品添加剂 高粱红   102.食品添加剂 可可壳色素 GB 8818-2008食品添加剂 可可壳色素   103.食品添加剂 红曲米(粉) GB 4926-2008食品添加剂 红曲米(粉)   104.食品添加剂 红曲红 GB 15961-2005食品添加剂 红曲红   105.食品添加剂 天然苋菜红 QB 1227-1991(2009)食品添加剂 天然苋菜红   106.食品添加剂 姜黄色素 QB 1415-1991(2009)食品添加剂 姜黄色素   107.食品添加剂 叶绿素铜钠盐 GB 26406-2011 食品添加剂 叶绿素铜钠盐 卫生部公告2011年第7号 108.食品添加剂 萝卜红 GB 25536-2010 食品添加剂 萝卜红 卫生部公告2010年第19号 109.食品添加剂 二氧化钛 GB 25577-2010 食品添加剂 二氧化钛 卫生部公告2010年第19号 110.食品添加剂 蔗糖脂肪酸酯 食品添加剂 蔗糖脂肪酸酯 GB 8272-2009食品添加剂 蔗糖脂肪酸酯   食品添加剂 蔗糖脂肪酸酯(丙二醇法) GB 10617-2005食品添加剂 蔗糖脂肪酸酯(丙二醇法)   食品添加剂 蔗糖脂肪酸酯(无溶剂法) QB 2245-1996(2009)食品添加剂 蔗糖脂肪酸酯(无溶剂法)   111.食品添加剂 酪蛋白酸钠 QB/T 3800-1999(2009)食品添加剂 酪蛋白酸钠(原GB 10797-89)   112.食品添加剂 蒸馏单硬脂酸甘油酯 GB 15612-1995 食品添加剂 蒸馏单硬脂酸甘油酯   113.食品添加剂 山梨醇酐单硬脂酸酯(司盘60) GB 13481-2010 食品添加剂 山梨醇酐单硬脂酸酯(司盘60) 卫生部公告2010年第19号 114.食品添加剂 山梨醇酐单油酸酯(司盘80) GB 13482-2010 食品添加剂 山梨醇酐单油酸酯(司盘80) 卫生部公告2010年第19号 115.食品添加剂 单、双硬脂酸甘油酯 GB 1986-2007食品添加剂 单、双硬脂酸甘油酯   116.食品添加剂 辛癸酸甘油酯 QB 2396-1998(2009)食品添加剂 辛癸酸甘油酯   117.食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂 QB/T 3790-1999(2009)食品添加剂 聚氧乙烯木糖醇酐单硬脂酸脂   118.食品添加剂 木糖醇酐单硬脂酸酯 QB/T 3784-1999(2009)食品添加剂 木糖醇酐单硬脂酸酯   119.食品添加剂 改性大豆磷脂LS/T 3225-1990食品添加剂 改性大豆磷脂(原GB 12486-90)   120.食品添加剂 山梨醇酐单月桂酸酯(司盘20) GB 25551-2010 食品添加剂 山梨醇酐单月桂酸酯(司盘20) 卫生部公告2010年第19号 121.食品添加剂 山梨醇酐单棕榈酸酯(司盘40) GB 25552-2010 食品添加剂 山梨醇酐单棕榈酸酯(司盘40) 卫生部公告2010年第19号 122.食品添加剂 双乙酰酒石酸单双甘油酯 GB 25539-2010 食品添加剂 双乙酰酒石酸单双甘油酯 卫生部公告2010年第19号 123.食品添加剂 三聚甘油单硬脂酸酯 GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯   124.食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) GB 25553-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单硬脂酸酯(吐温60) 卫生部公告2010年第19号 125.食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) GB 25554-2010 食品添加剂 聚氧乙烯(20)山梨醇酐单油酸酯(吐温80) 卫生部公告2010年第19号 126.食品添加剂 果胶 GB 25533-2010 食品添加剂 果胶 卫生部公告2010年第19号 127.食品添加剂 卡拉胶 GB 15044-2009食品添加剂 卡拉胶   128.食品添加剂 藻酸丙二醇酯 GB 10616-2004食品添加剂 藻酸丙二醇酯   129.食品添加剂 松香甘油酯和氢化松香甘油酯 GB 10287-1988食品添加剂 松香甘油酯和氢化松香甘油酯 食品添加剂 氢化松香甘油酯 卫生部公告2011年第8号指定标准 130.食品添加剂 乳酸脂肪酸甘油酯 食品添加剂 乳酸脂肪酸甘油酯 卫生部公告2011年第8号指定标准 131.食品添加剂 乙酰化单、双甘油脂肪酸酯 食品添加剂 乙酰化单、双甘油脂肪酸酯 卫生部公告2011年第8号指定标准 132.食品添加剂 硬脂酸钙 食品添加剂 硬脂酸钙 卫生部公告2011年第8号指定标准 133.食品添加剂 硬脂酸镁 食品添加剂 硬脂酸镁 卫生部公告2011年第8号指定标准 134.食品添加剂 硬脂酰乳酸钙 食品添加剂 硬脂酰乳酸钙 卫生部公告2011年第8号指定标准135.食品添加剂 硬脂酰乳酸钠 食品添加剂 硬脂酰乳酸钠 卫生部公告2011年第8号指定标准 136.食品添加剂 丙二醇脂肪酸酯 食品添加剂 丙二醇脂肪酸酯 卫生部公告2011年第8号指定标准 137.食品添加剂 聚甘油脂肪酸酯 食品添加剂 聚甘油脂肪酸酯 卫生部公告2011年第8号指定标准 138.食品添加剂 乳糖醇 食品添加剂 乳糖醇 卫生部公告2011年第8号指定标准 139.食品添加剂 α-淀粉酶制剂 GB 8275-2009食品添加剂 α-淀粉酶制剂   140.食品添加剂 糖化酶制剂 GB 8276-2006食品添加剂 糖化酶制剂   141.食品添加剂 果胶酶制剂 QB 1502-1992(2009)食品添加剂 果胶酶制剂   142.食品添加剂 真菌α-淀粉酶 QB 2526-2001(2009)食品添加剂 真菌α-淀粉酶   143.食品添加剂 α-葡萄糖转苷酶 QB 2525-2001(2009)食品添加剂 α-葡萄糖转苷酶   144.食品添加剂 a-乙酰乳酸脱羧酶制剂 GB 20713-2006食品添加剂 a-乙酰乳酸脱羧酶制剂   145.食品添加剂 纤维素酶制剂 QB 2583-2003 纤维素酶制剂   146.食品工业用酶制剂 GB 25594-2010 食品添加剂 食品工业用酶制剂 卫生部公告2010年第19号 147.食品添加剂 5'-鸟苷酸二钠 QB/T 2846-2007食品添加剂 5'-鸟苷酸二钠   148.食品添加剂 呈味核苷酸二钠 QB/T 2845-2007食品添加剂 呈味核苷酸二钠   149.食品添加剂 甘氨酸(氨基乙酸) GB 25542-2010 食品添加剂 甘氨酸(氨基乙酸) 卫生部公告2010年第19号 150.食品添加剂 L-丙氨酸 GB 25543-2010 食品添加剂 L-丙氨酸 卫生部公告2010年第19号 151.食品用石蜡 GB 7189-1994食品用石蜡   152.食品级白油 GB 4853-2008食品级白油   153.食品添加剂 吗啉脂肪酸盐果蜡 GB12489-2010 食品添加剂 吗啉脂肪酸盐果蜡 卫生部公告2010年第19号 154.食品添加剂 紫胶(虫胶) LY 1193—1996 食品添加剂 紫胶(虫胶)   155.食品添加剂 松香季戊四醇酯 食品添加剂 松香季戊四醇酯 卫生部公告2011年第8号指定标准 156.食品添加剂 巴西棕榈蜡 食品添加剂 巴西棕榈蜡 卫生部公告2011年第8号指定标准 157.食品添加剂 蜂蜡 食品添加剂 蜂蜡 卫生部公告2011年第8号指定标准 158.食品添加剂 三聚磷酸钠 GB 25566-2010 食品添加剂 三聚磷酸钠 卫生部公告2010年第19号 159.食品添加剂 磷酸氢二钾 GB 25561-2010 食品添加剂 磷酸氢二钾 卫生部公告2010年第19号 160.食品添加剂 磷酸二氢铵 GB 25569-2010 食品添加剂 磷酸二氢铵 卫生部公告2010年第19号 161.食品添加剂 磷酸氢二钠 GB 25568-2010 食品添加剂 磷酸氢二钠 卫生部公告2010年第19号 162.食品添加剂 磷酸二氢钠 GB 25564-2010 食品添加剂 磷酸二氢钠 卫生部公告2010年第19号 163.食品添加剂 L-赖氨酸盐酸盐 GB 10794-2009 食品添加剂 L-赖氨酸盐酸盐   164.食品添加剂 牛磺酸 GB 14759-2010食品添加剂 牛磺酸 卫生部公告2010年第19号 165.食品添加剂 左旋肉碱 GB 17787-1999 食品添加剂 左旋肉碱 食品添加剂 左旋肉碱 卫生部公告2011年第8号指定标准 166.食品添加剂 维生素A GB 14750-2010 食品添加剂 维生素A 卫生部公告2010年第19号 167.食品添加剂 维生素B1(盐酸硫胺) GB 14751-2010 食品添加剂 维生素B1(盐酸硫胺) 卫生部公告2010年第19号 168.食品添加剂 维生素B2(核黄素) GB 14752-2010 食品添加剂 维生素B2(核黄素) 卫生部公告2010年第19号 169.食品添加剂 维生素B6(盐酸吡哆醇) GB 14753-2010 食品添加剂 维生素B6(盐酸吡哆醇) 卫生部公告2010年第19号 170.食品添加剂 维生素C(抗坏血酸) GB 14754-2010 食品添加剂 维生素C(抗坏血酸) 卫生部公告2010年第19号 171.食品添加剂 维生素D2(麦角钙化醇) GB 14755-2010 食品添加剂 维生素D2(麦角钙化醇) 卫生部公告2010年第19号 172.食品添加剂 烟酸 GB 14757-2010 食品添加剂 烟酸 卫生部公告2010年第19号 173.食品添加剂 叶酸 GB 15570-2010 食品添加剂 叶酸 卫生部公告2010年第19号 174.食品添加剂 乳酸亚铁 GB 6781-2007 食品添加剂 乳酸亚铁   175.食品添加剂 柠檬酸钙 GB 17203-1998 食品添加剂 柠檬酸钙   176.食品添加剂 葡萄糖酸钙 GB 15571-2010食品添加剂 葡萄糖酸钙 卫生部公告2010年第19号 177.食品添加剂 生物碳酸钙 QB 1413-1999(2009)食品添加剂 生物碳酸钙   178.食品营养强化剂 煅烧钙 GB 9990-2009 食品营养强化剂 煅烧钙   179.食品添加剂 L-苏糖酸钙 GB17779-2010 食品添加剂 L-苏糖酸钙 卫生部公告2010年第19号 180.食品添加剂 乙酸钙 GB 15572-1995 食品添加剂 乙酸钙及第1号修改单   181.食品添加剂 葡萄糖酸锌 GB 8820-2010 食品添加剂 葡萄糖酸锌 卫生部公告2010年第19号 182.食品添加剂 天然维
  • 食品检测智云达 揭露隐藏在蜂蜜里的甜蜜“谎言”
    蜂蜜被誉为“大自然中最完美的营养食品”,成分除了葡萄糖、果糖之外还含有各种维生素、矿物质和氨基酸等,既是良药,又是上等饮料,集延年益寿、润肺消食、美容养颜多种功效于一身,颇受消费者亲睐。几乎每个家庭都有过蜂蜜消费的经历,但那些隐藏在蜂蜜里的秘密你可能不知道,造假蜂蜜早有耳闻,北京智云达食品安全检测产品带您揭露那些隐藏在蜂蜜里的甜蜜的“谎言”。 作为全球最著名的蜂蜜类产品,新西兰麦卢卡蜂蜜一直以其独特的药用价值举世闻名。但很少人知道当你花费了高昂价格购入一小瓶新西兰麦卢卡蜂蜜,很可能里面连一滴麦卢卡茶树的成分都没有,或许买的只是一瓶掺入了大量糖浆的混合物。根据新西兰一家蜂农协会的统计,新西兰每年大约只出产1700~2000吨的麦卢卡蜂蜜,但在全球范围内,每年以麦卢卡名义出售的蜂蜜高达1万吨以上。 这其中的内幕不言而喻,在蜂蜜市场,真正纯的蜂蜜已经太少,造假蜂蜜五花八门,以白糖蜜、大米糖浆蜜、玉米糖浆蜜等为主要形式,再加入明矾、甜蜜素、饴糖等各类食品添加剂,这就是市售的所谓的“指标蜜”,农药残留和兽药残留等各项指标也符合标准,但是毕竟添加的是糖,尤其是患有糖尿病的患者,在不知情的情况下误以为是蜂蜜大量食用,长此以往势必会适得其反。 由此消费者在选购蜂蜜时要学会如何辨别真假蜂蜜,可通过感官辨别。纯正的蜂蜜透光性强,颜色均匀一致,劣质蜂蜜显得浑浊而有杂质;纯蜂蜜用筷子挑一下拉长丝,丝断后回缩至珠状;储存在5℃-13℃条件下不久会结晶,劣质蜂蜜不受温度影响。纯蜂蜜口味醇厚、芳香甜润,入口后回味长易结晶。 感官辨别因人而异,需要有一定的经验和阅历,消费者也可以通过食品安全检测产品快速辨别蜂蜜中是否掺假。北京智云达科技有限公司作为食品安全快速检测行业的领先者,在强大的研发队伍下研发、生产了多项拥有自主知识产权的产品和设备,其生产了多项检测蜂蜜中成分的检测产品,SMART-02F多功能食品安全检测仪可检测蜂蜜中多项指标,还有小包装蜂蜜果糖、葡萄糖速测盒、造假蜂蜜糊精速测盒等多种快检产品,便于携带、操作简便,真正为您揭露那些隐藏在蜂蜜里的甜蜜“谎言”。 现在市场上销售的蜂蜜类产品鱼龙混杂,但是相信有智云达这样专业从事食品安全检测的企业,能更好的为身边的食品保驾护航,作为您身边的食品安全检测专家北京智云达一直在不断努力中,接下来还会有更多更先进更精确的快速食品检测产品上市。
  • 卫计委对35项食品安全国家标准征求意见
    国家卫生计生委办公厅关于征求《食品理化检验方法 总则》等35项 食品安全国家标准(征求意见稿)和2项标准修改单意见的函 国卫办食品函〔2014〕527号   工业和信息化部、农业部、商务部、质检总局、食品药品监管总局(国务院食品安全办)办公厅,粮食局、标准委、认监委办公室,各有关单位:   根据《食品安全法》及其实施条例的规定,我委组织拟订了《食品理化检验方法总则》等35项食品安全国家标准(征求意见稿)和2项标准修改单,现征求你单位意见并向社会公开征求意见(征求意见稿及编制说明可从国家卫生计生委网站http://www.nhfpc.gov.cn下载)。请于2014年7月15日前将意见反馈表(附件38)以传真或电子邮件形式反馈我委。   传 真:010-52165414、52165424   电子信箱:spbz@cfsa.net.cn、zqyj@cfsa.net.cn   附件:1.《食品理化检验方法 总则》征求意见稿及编制说明.rar   2.《食品微生物学检验 微生物酶源制剂中抗菌活性的测定》征求意见稿及编制说明.rar   3.《食品微生物学检验 小肠结肠炎耶尔森氏菌检验》征求意见稿及编制说明.rar   4.《食用淀粉》征求意见稿及编制说明.rar   5.《食用盐》征求意见稿及编制说明.rar   6.《方便面》征求意见稿及编制说明.rar   7.《食品添加剂 皂荚糖胶》征求意见稿及编制说明.rar   8.《食品添加剂 甘草酸三钾》征求意见稿及编制说明.rar   9.《食品添加剂 二甲基二碳酸盐(维果灵)》征求意见稿及编制说明.rar   10.《食品添加剂 天门冬酰苯丙氨酸甲酯乙酰磺胺酸》征求意见稿及编制说明.rar   11.《食品添加剂 罗汉果甜苷》征求意见稿及编制说明.rar   12.《食品添加剂 沙蒿胶》征求意见稿及编制说明.rar   13.《食品添加剂 1,2-二氯乙烷》征求意见稿及编制说明.rar   14.《食品添加剂 聚氧乙烯聚氧丙烯胺醚》征求意见稿及编制说明.rar   15.《食品添加剂 甘草酸铵》征求意见稿及编制说明.rar   16.《食品添加剂 不溶性聚乙烯聚吡咯烷酮》征求意见稿及编制说明.rar   17.《食品添加剂 柠檬酸钾》征求意见稿及编制说明.rar   18.《食品添加剂 L-半胱氨酸盐酸盐》征求意见稿及编制说明.rar   19.《食品添加剂 半乳甘露聚糖》征求意见稿及编制说明.rar   20.《食品添加剂 红花黄》征求意见稿及编制说明.rar   21.《食品添加剂 姜黄》征求意见稿及编制说明.rar   22.《食品添加剂 姜黄素》征求意见稿及编制说明.rar   23.《食品添加剂 硅酸镁》征求意见稿及编制说明.rar   24.《食品添加剂 膨润土》征求意见稿及编制说明.rar   25.《食品添加剂 焦糖色(普通法、苛性亚硫酸盐法、氨法、亚硫酸铵法)》征求意见稿及编制说明.rar   26.《食品添加剂 6号轻汽油(己烷类溶剂)》征求意见稿及编制说明.rar   27.《食品添加剂 单辛酸甘油酯》征求意见稿及编制说明.rar   28.《食品添加剂 己二酸》征求意见稿及编制说明.rar   29.《食品添加剂 石油醚》征求意见稿及编制说明.rar   30.《食品添加剂 丙烷》征求意见稿及编制说明.rar   31.《食品添加剂 丁烷》征求意见稿及编制说明.rar   32.《食品添加剂 1-丁醇(正丁醇)》征求意见稿及编制说明.rar   33.《食品添加剂 乙醚》征求意见稿及编制说明.rar   34.《食品营养强化剂 低聚半乳糖》征求意见稿及编制说明.rar   35.《食品辐照加工卫生规范》征求意见稿及编制说明.rar   36.《食品添加剂 聚丙烯酸钠》(GB 29948-2013)第1号修改单.doc   37.《食品添加剂 麦芽糖醇和麦芽糖醇液》(GB 28307&mdash 2012)第1号修改单.doc   38.食品安全国家标准征求意见反馈表.docx   国家卫生计生委办公厅   2014年6月18日
  • 川宁生物:合成生物学管线稳定推进
    川宁生物(301301) 2023 上半年实现营收24.2 亿元(+21.8%,括号内为同比数据,下同);归母净利润3.91 亿元(+64.8%);扣非归母净利润3.93 亿元(+65.5%),经营性现金流净额10.4 亿元(+1636%),业绩略超预期。Q2 业绩环比再加速,盈利能力加强:单季度看,公司Q2 实现营收11.5亿元(+16.3%),归母净利润2.15 亿元(+57.8%),归母净利润环比+22.8%。业绩快速增长主要因为疫情放开后需求端的快速恢复。盈利能力方面,由于规模效应的体现叠加原材料成本下降,公司Q2 毛利率环比提升4.7pct 至30.9%。期间费用率随着收入增长而下滑,其中管理费用率同比下滑4.3pct 至3.0%,财务费用率同比下滑2.0pct 至1.2%。综合来看,2023 上半年销售净利率同比提升4.2pct 至16.2%,盈利能力不断加强。抗生素中间体疫后恢复良好:分品种看,公司2023 上半年硫红收入7.3亿元(-2.4%);头孢中间体收入5.3 亿元(+16.3%),青霉素类中间体9.8亿元(+54.7%);疫情放开后,头孢和青霉素类中间体需求恢复良好;其中,6-APA 平均价格同比涨价6.7%,销售量同比增加50.8%,青霉素G 钾盐平均价格同比涨价3.4%,销售量同比增加16.4%。合成生物学研发管线丰富,产能丰富,项目落地在即:公司在上海建立合成生物学研究院,依托强大的研发团队、4 大底盘菌研发平台等,已有十数个项目管线,且部分管线有望短期落地。川宁生物首个合成生物学产品红没药醇预计在下半年形成收入。随着下半年公司全资子公司疆宁生物绿色循环经济产业园一期投产,公司将完成合成生物学从选品—研发—大生产的全产业链布局。红没药醇、5-羟色氨酸、依克多因、红景天苷等合成生物学系列产品的商业化生产将标志着公司从资源要素驱动向技术创新驱动的成功转变,从而实现公司效益的稳步提升。合成生物学巩留新基地一期有望在2023 年年底前建成,新基地设计产能包括红没药醇 300吨、5-羟基色氨酸 300 吨、麦角硫因 0.5 吨、依克多因 10 吨、红景天苷 5 吨、诺卡酮 10 吨、褪黑素 50 吨、植物鞘氨醇 500 吨及其他原料的柔性生产车间;其中红没药醇已进入动销;5-羟基色氨酸通过合成生物学技术来生产,其工艺达到业内最高的发酵水平和提取收率,该产品通过微生物发酵法生产,故产品天然度为100%,且生产成本低于植物提取,目前该产品仍在中试验证;麦角硫因公司利用合成生物学技术来进行生产,该技术和用蘑菇菌丝体发酵相比具有工艺简单、发酵周期短、产物浓度和糖转化率高等特点,具有显著的竞争优势,目前该产品也在中试验证。两项产品均在中试阶段,即将为公司提供业绩。
  • 重大突破!"长寿药"首次用到人类身上,效果惊人
    p   近日,《柳叶刀》首次发表了利用抗衰老药物Senolytics治疗14名轻度至中度特发性肺纤维化老年人的报道,这也是这类药物在世界上的首个人体试验结果! /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/435c588d-f99c-4011-bd8c-b11216d11c9d.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 图片来源:EbioMedicine /span /p p style=" text-align: justify "   每位参与者服用两种药物:达沙替尼和槲皮素,每周服用3天,连续服用3周,可以使患者的活动能力显著改善,缓解虚弱症状,对握力和肺功能等其他生理指标不造成影响。 /p center style=" text-align: justify "   “长寿药”的临床有效性将帮助人类继续延长寿命,或许未来人类不仅能活到120岁,而且还能有质量地老去。那么“长寿药”是否能让“长命百岁”成为现实呢?今天就为大家详细科普一下! br/ /center p    strong 衰老是怎样发生的? /strong /p p   人体的衰老是由于细胞的衰老造成的。当衰老细胞停止分裂、持续性积累,特别是在衰老的生物免疫系统中,衰老细胞不能被及时清除掉,数量上逐渐超过非衰老细胞,分泌的蛋白质损害周围细胞核组织,组织就呈现“老态”,导致出现健康状况。 /p p    /p center img alt=" 重大突破!" src=" https://n.sinaimg.cn/translate/470/w250h220/20181225/3KLi-hqqzpkv4984485.gif" width=" 250" height=" 220" / /center p br/ /p p   细胞衰老通常是由于端粒缩短、原癌基因激活、氧化应激、细胞-细融等各种内部和外部刺激所造成的DNA持续性损伤,从而引起细胞状态的改变。 /p p   细胞衰老涉及到多方面的生理现象,对生命体可以是有益的,例如抑制肿瘤发生、促进伤口愈合、胚胎发育等 也可以是有害的,如生物体衰老以及促炎衰老性相关疾病的发生等。然而,衰老细胞的好处和坏处一般取决于这种衰老细胞是短暂存在还是持续性存在,前者有益,后者一般有害。 /p p    strong 抗衰老药物Senolytics是怎样抗衰老的? /strong /p p   消除衰老细胞是抗衰老的一种策略,可以通过基因工程手段或者服用抗衰老药物来实现。 /p p   达沙替尼dasatinib是一种抗组胺药,传统用途是治疗癌症和白血病,而槲皮素quercetin是一种抗组胺药,传统用途是用于治疗癌症和炎症是植物生长抑制剂。 /p p   2015年Deursen 教授等人发现有一系列药物可以针对性诱导衰老细胞的死亡,而对非衰老细胞的作用不大,于是将这类药物称为Senolytics,用于清除人体衰老细胞。由于不同种类的Senolytics药物作用机理不同,清除的衰老细胞也不同,所以联合使用常常效果较好。 /p center img alt=" 重大突破!" src=" https://n.sinaimg.cn/translate/212/w446h566/20190113/hw__-hrpcmqw1741142.jpg" width=" 446" height=" 566" / /center p   目前文献已报道的Senolytics药物有达沙替尼、槲皮素、navitoclax (ABT263)、荜拨明碱、非瑟酮、A1331852 和A1155463等多种,很多药物正在进行临床研究,有望未来陆续投入使用。 /p p    strong 其他抗衰老的方法有哪些? /strong /p p   随着人类平均寿命的延长,衰老随之而来的心血管疾病、癌症和神经退行性疾病等,将越来越显著的影响老年生活质量,因此科学家们研究了各种手段来“抗衰老”。 /p p   通过特定方法增强特殊种类和特殊时期的细胞自噬过程、直接清除衰老细胞、间歇性禁食、促进神经生成以逆转艾尔兹海默症、规律的体育锻炼、服用抗氧化物和草药、干细胞治疗等。 /p p   strong  应该选用什么方法防止衰老? /strong /p p   增强细胞自噬能力、利用Senolytics清除衰老细胞、输注年轻人血浆、药物促进神经生成等在抗衰老方便都是很有前景的,然而这些方法绝大多数还是在动物实验中确认有效,还需要临床实验以评价长期疗效以及副作用等。Senolytics治疗虽然在临床上取得了一定的效果,但是为了降低副作用,治疗不能经常性进行。 /p p   干细胞疗法被证实可以促进衰老的大脑再生,恢复其功能,然而在临床使用上需要对不同细胞来源的细胞进行安全性和有效性评价。 /p p   间歇性禁食、经常性运动、白藜芦醇和姜黄治疗神经退行性疾病等正准备展开大型临床实验,也有可能是一种无创伤、副作用最小的方法。 /p p   未来某一天我们可能真的能决定自己的寿命,但在那一天来临之前,健康的生活方式和良好的心理状态毫无疑问还是现在的长寿秘诀! /p
  • 疾控中心传染病预控所所长:超级细菌并非无药可治
    据中国之声《央广新闻》报道,今年8月以来,印度、巴基斯坦、英国等地陆续发现NDM-1耐药基因细菌感染病例,俗称“超级细菌”,引起全球广泛关注。中国疾控中心昨天(26日)通报我国也发现三例感染病例。其中两例是两名宁夏的新生儿,一例是福建的一位83岁的癌症患者。   目前,国际上有许多国家已经发现携带NDM-1耐药基因细菌。国外相关研究资料显示,某些临床疾病已经治愈的出院患者仍可携带NDM-1耐药基因细菌,但由于这类耐药菌多为条件致病致病菌或人体正常菌群细菌,它们通常不会在社区环境内普通人群中传播。各国通常不建议对这类已出院的“健康”带菌者进行“积极的”抗菌治疗,防止应用高级别抗生素引起病例体内菌群失调,甚至由于高级别抗生素的选择性压力,演变出耐药性更强的菌株。对这类带菌者,主要是在治愈原有疾病基础上,提高机体抵抗力。身体机能恢复正常后,使该种耐药菌自然在机体内消亡。同时,对携带者开展随访、检测,定期采集病例标本检测该菌。   由于该泛耐药菌主要是通过医院环境和医疗活动传播,因此,医疗机构在其住院患者中一旦检出该耐药菌,应启动主动监测,采取隔离防护和消毒的强化措施,遏制或减少传播的机会。同时,开展环境监测,定期采集样品,评估消毒和医院感染控制效果。   很多专家认为这和人类滥用抗生素有着直接的关系。因此专家提醒公众要慎用抗生素,不要随意买药、不自行选药、不任意服药,一旦使用抗生素治疗,就要按时按量服药,以维持药物在身体里的有效浓度。而面对这些耐药细菌,我们也不必恐慌。中国疾病预防控制中心传染病预防控制所所长徐建国在接受采访时就表示,其实超级细菌还是有药物可以应对的。   徐建国:并不是没药可治。我们通过回顾性的调查,这个小孩3月份就住院了,然后按照他原来怀疑腹泻病的治疗方法,就治愈出院了。我们8月底才开展这个工作,9月份才发现这个细菌有耐药性。换句话说,医生当时治疗患者的时候并没有考虑到耐药的现象,还是治好了。(所以)并不是得了这个细菌以后就不可治疗了。药品试验里(这种)耐药性是被放大了。因为一般是机体比较弱的、免疫比较低下的或者是有基础性疾病的人(材比较严重)。从国外报道的大部分病例来说,存活的并不是很少。换句话说,死亡的程度可能和本身的状况有关系。
  • 自带“可视化功能”的成像技术,让你的分析更有“深度”
    仪器信息网讯 基质辅助激光解吸电离飞行时间质谱成像技术(MALDI-TOF Imaging),作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。   岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope TRIO ),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。iMScope TRIO 是光学与成像质谱分析完整融合的独特技术,拥有领先的5μm高空间分辨率,可进行高精度多级质谱结构解析,为未知物的结构解析提供丰富的碎片信息,是具备高端性能的革新性分析系统。   成像质谱分析保留样品组织的位置信息的同时,可以直接使用质谱仪测定生物体分子和代谢物,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息。因此,除了在医学和药学领域中的应用外,近年来在农业、食品安全、中药、环境以及特殊类型样品中也得到了广泛的应用。   岛津公司于2014年推出成像质谱显微镜 iMScope TRIO 以来,在诸多领域发挥其独有的高清晰度成像、光学图像融合、定性定位分析的特长。本文介绍了岛津日本合作实验室大阪大学Shimma教授基于iMScope TRIO 在领域拓展方面开展的部分工作。   1.姜黄素在姜黄干样品中分布的可视化分析:通过观察轴向和径向切片,对姜黄素的分布进行了详细的分析。发现姜黄具有非常规则的内部结构,而姜黄素就被封闭在管状结构中。 轴向切片中姜黄素具有线性分布特征,具有管状结构分布在植物体内的可能性   2.芦笋中抗高血压有效成分Asparaptine的分析:使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDI-MSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 芦笋的尖部、中部、下端和鳞片中的Asparaptine 分析   3.果蝇质谱成像方法建立以及脑部GABA成分的空间分布:首次对果蝇这种特殊样品建立了成像方法,可应用于昆虫体内杀虫剂成分可视化分析。使用上述方法,对果蝇脑部的γ─氨基丁酸(GABA)分布进行可视化,为神经递质的研究提供更可靠的空间分布信息。给药后的果蝇腹部检测出大量吡虫啉成分果蝇脑部GABA成分的分布   4.马毛中药物成分的直接检测:通过负离子模式分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊16.48 mm 位置处观察到较强的药物信号。根据马毛的平均生长速度。可推算出给药时间,大约在24-25天前。由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。 给药后的马毛中DexaSP 分布检测结果   iMScope TRIO 通过叠加不同检测原理的图像进行分析,为成像分析提供了强大的工具,并提高研究水平。   基于此,2020年7月9日,岛津“镜质合璧,还原真实”新品发布会将在仪器信息网举办,届时岛津将携新一代iMScope 成像质谱显微镜产品首次与中国用户见面。   届时尽请关注!
  • 中国食品添加剂和配料协会着色剂专委员会年会江苏召开
    中国食品添加剂和配料协会着色剂专业委员会2016年行业年会于2016年10月18日至20日在江苏省常熟市成功召开。本次年会会务工作由常熟春来机械有限公司承办,并得到当地政府的大力支持。  来自国内外食用着色剂生产和营销企业、食品加工企业、外贸公司、商检部门、第三方检测机构、设备和仪器生产和经销商、原料基地科技人员、大专院校和科研院所共68个单位,150多名代表参加了会议。中国食品报采访报道了本次年会。  协会理事长齐庆中、名誉理事长吕坚东、副理事长杜雅正、副秘书长孙瑾及协会秘书处工作人员参加并指导了工作。  10月17日下午召开了本次年会预备会,协会领导及专业委员会领导成员单位交流了企业、产业和行业一年来的经济运行情况,主要成绩、存在的主要问题和解决方案 展望了产业发展的趋势和前景。会议认为,我国食用着色剂产业的基本状况良好。我国食用着色剂最大品种焦糖色产销稳定,食用合成色素产销稳定 辣椒红色素产业去产能效果显著,前三年积压的库存已销售一空,价格有所上扬,生产企业的利润有所增加。这是辣椒红色素产业进行供给侧结构性改革成功的典范。会议同时着重强调,由于价格上扬太快而导致出现供大于求的震荡局面再次发生。万寿菊—叶黄素产业在协会2016年4月11日青岛召开的产业研讨会的警示下,有效的抑制了万寿菊花的种植面积,但2016年的种植面积还是有一定幅度的增长,从而导致了叶黄素的价格有10%以上幅度的下滑。红曲红色素、红曲黄色素、栀子黄色素等由于产能过剩原因,导致一定幅度的产销量和价格的下滑。水溶性花色苷色素表现喜人,在全国各行业经济下滑的形势下仍然表现稳增长态势。类胡萝卜素(胡萝卜素、叶黄素、玉米黄质、角黄素、虾青素)微胶囊化制剂产品和叶黄素保健品增长较快,健康发展。  18日举行的年会大会由着色剂专业委员会主任姜祥华主持。协会副理事长杜雅正、常熟市市场监督管理局局长阚国良、常熟春来机械有限公司总经理王庆分别致辞。常熟市市场监督管理局办公室主任吴东、虞山镇镇长钟旅疆等同志到会祝贺。  着色剂专业委员会副秘书长王岩松传达了“中国食品添加剂和配料协会五届五次常务理事会暨五届三次理事会的主要内容、决定和会议纪要。  着色剂专业委员会秘书长张慧做了“着色剂行业发展和2016年专业委员会工作报告”。报告指出,过去的一年,着色剂行业的发展总体保持平稳呈现微增长态势。预计2016年食用着色剂产销总量将达到73.6万吨,同比增长0.016% 总销售额超过58.3亿元人民币,同比下降了3.48% 出口预计超过 10247吨,出口创汇总额超过2.32亿美元。2016年全行业产销将实现“微增长”的目标。其中,天然着色剂紫甘薯色素、萝卜红色素、甘蓝红等品种的产销量有所增长 合成着色剂及其复配产品、焦糖色呈现健康稳定的发展态势 辣椒红色素产业去产能效果明显,价格回升 万寿菊—叶黄素产业因2016年种植面积增大,价格出现一定幅度的下滑。红曲红色素、栀子黄色素、姜黄色素等品种产能过剩,出现了产销量和价格的下滑,应引起行业关注。报告从十三个方面分析了行业、产业发展遇到的主要问题和矛盾,面临的新挑战和新机遇。指出,我国食用着色剂产业的发展已经取得了很大成绩,但在质的方面、在实用化方面、在使用技术方面与发达国家相比还存在一定差距。各企业和全行业要做好供给侧结构性改革,转型和产业升级工作 随着新的食品安全法实施,建议生产企业加大法规执行力度。随着“互联网+”的时代兴起,着色剂生产企业应转变营销模式,迎接“互联网+食用着色剂”新模式。还应注重人才培养和人力资源的建设 加强环境保护意识 坚定不移地走中国特色的自主创新之路,促进我国食用着色剂产业实现新的质的飞跃。  本次会议在各位代表和专家的共同努力下,圆满完成了各项议程:  一、组织了学术报告:  来自院校和企业界的专家分别就技术成果、企业核心技术的专利保护以及行业企业在转型和整合的大趋势下应注意的问题等专题与代表分享了他们经验和体会。报告包括:1、我国食品添加剂和配料法规和标准化进展 2.清洁生产管理实践 3、辣椒成分分析和应用研究 4、不同来源β —胡萝卜素的指纹鉴别。  二、会议期间,与会代表还进行了分组讨论和交流,共识如下:  (一) 专业委员会秘书长张慧所做的行业发展报告客观反映了我国食用着色剂产业的发展状况。2016年,整个行业的经济运行平稳,稳中有微增态势,实现稳增长的目标,为2017年新的发展打下较好的基础。  (二) 我国食用着色剂产销量最大的焦糖色品种生产规范、市场有序,健康发展 自新焦糖色素食品安全国家标准GB1886.64实施以来,要求焦糖色素技术指标出厂批检,对生产企业负荷较重,希望出厂批检和型式检验相结合。另外,焦糖色素生产企业表示积极行动起来,宣传焦糖色素的安全性,坚决抵制一些媒体的误导性宣传。与会代表一致认为,采用普通法生产焦糖色素是今后的产业发展方向。  (三) 万寿菊-叶黄素产业因为2016年万寿菊种植面积过大而出现下滑局面。解决万寿菊—叶黄素产业的关建问题要严格控制万寿菊种植面积,防止叶黄素市场出现供大于的局面,避免价格波动而造成农业资源的浪费。与会代表建议每年11月份召开万寿菊—叶黄素产业发展研讨会,对明年万寿菊的种植面积进行合理的计划,保证产业稳定可持续有序的发展。  (四) 辣椒红色素在今年下半年价格出现翘尾现象,上涨幅度达到40%以上。出现这种局面的原因是2012年以来去产能明显,库存消耗造成的。并不是市场需求扩大所致,对这一点各企业一定要有清醒的认识,不要再盲目扩产。建议辣椒红色素生产企业理性对待这轮上涨现象,合理配备产能。辣椒红生产企业要走综合利用之路 系列产品中的每个产品也要走高端化、高质化、高新化、实用化之路。  (五) 生产企业和当地监管部门对复配着色剂的国家标准以及食品配料的法规方面解读和执行方面存在一定的偏差,希望协会在适当的机会安排关于复配着色剂和配料标准法规方面的学术报告。  (六) 食用合成着色剂生产和销售较为稳定。启动氧化铁黄的申报工作。同时呼吁国家监管部门对进口合成色素的监管加大力度,保证国内高品质产品不受到低价的冲击。  (七) 要改革粗放式发展方式,调整不合理的产业链结构,实现产业整合升级,优势互补,充分发挥资源优势。  (八) 产品安全和生产安全要严格把控,把每个生产和产品环节全面管控,杜绝安全事故发生。  (九) 在“大众创业,万众创新”形势下,科技创新是企业发展的原动力,要打造真正的创新型企业。  (十) 着色剂生产企业加强食品安全标准和法规的重视力度,成立法务部,做好标准制修定的申报工作,加强对食品安全法规的消化吸收工作。  (十一) 会议呼吁停止恶意低价竞争行为。各企业要加强自律,诚实守信,规范经营。  (十二)希望协会以各种形式组织行业内企业进行法规培训。邀请卫计委等相关机构的专家和标准评审专家对着色剂企业进行法规解读和培训指导。  (十三) 启动栀子红、藻蓝、甘蓝红、氧化铁黄、胭脂虫红、胭脂树橙、红曲米粉、叶绿素铜、β -胡萝卜素制剂等品种的制修标工作。  在年会闭幕式上,着色剂专业委员会主任姜祥华做了总结发言。发言中指出,焦糖色素和合成色素表现稳定,水溶性花色苷色素因为市场规模小而产能较小,表现出较为喜人的态势。但另外两大天然色素辣椒红、叶黄素则表现出较大的波动。这也反映了以农副产品为原料的色素加工产业会受到多方面的影响。其中包括气候条件、农副产品收购价格、当地政府的政策推动等。这就决定我们要严格把握好种植和产能两大关口,根据国际市场的需求量,理性决定种植面积、收购价格、加工产能,使产业平稳发展。坚决防止盲目投机行为。另外,着色剂生产企业要加强国家标准和法规的重视力度,坚决按照新的食品安全法进行生产和销售。清洁生产非常重要,科技创新更为重要。加大对新产品的开发力度,走精细化、实用化、制剂化之路,增加企业产品的核心竞争力,满足国内外市场的需求。  最后,会议决定,中国食品添加剂和配料着色剂专业委员会2017年行业年会由广州智特奇生物科技有限公司承办。地点时间待定。  代表们由衷感谢常熟春来机械有限公司的领导和工作人员为年会成功举办付出的辛劳 感谢常熟市、虞山镇政府对本次年会的大力支持。
  • 卫生部公布18种扩大使用范围使用量食品添加剂名单
    近日,卫生部网站公布了葡萄皮红等18种食品添加剂扩大使用范围、使用量。名单如下:   18种扩大使用范围、使用量的食品添加剂 序号 食品添加剂名称 类别 使用范围 最大使用量(g/kg) 备注 食品名称/分类 食品分类号 1 葡萄皮红 着色剂 焙烤食品 07.0 2.0 2 姜黄素 着色剂 糖果 05.02 0.7 3 叶黄素 着色剂 糖果 05.02 0.15 4 栀子蓝 着色剂 焙烤食品 07.0 1.0 5 山梨酸钾 防腐剂 腌渍的蔬菜 04.02.02.03 1.0 6 脱氢乙酸钠 防腐剂 腌渍的蔬菜 04.02.02.03 1.0 7 微晶纤维素 稳定剂 稀奶油 01.05.01 按生产需要适量使用 8 羧甲基纤维素钠 稳定剂 稀奶油 01.05.01 按生产需要适量使用 9 焦磷酸钠 水分保持剂 热凝固蛋制品 10.03.02 5.0 单独使用或与六偏磷酸钠、三聚磷酸钠复配使用。 10 三聚磷酸钠 水分保持剂 热凝固蛋制品 10.03.02 5.0 单独使用或与六偏磷酸钠、焦磷酸钠复配使用。 11 六偏磷酸钠 水分保持剂 热凝固蛋制品 10.03.02 5.0 单独使用或与三聚磷酸钠、焦磷酸钠复配使用。 12 麦芽糖醇 甜味剂 调味和果料发酵乳 01.02.02 按生产需要适量使用 可可制品、巧克力和巧克力制品,包括类巧克力和代巧克力 05.01 餐桌甜味料 11.04 13 山梨糖醇(液) 甜味剂 膨化食品 16.06 按生产需要适量使用 14 柠檬酸 食品工业用加工助剂 植物油 02.01.01.01 2.0 15 L(+)-酒石酸 酸度调节剂 葡萄酒 15.03.01 4.0g/L 16 普鲁兰多糖 增稠剂 冷冻饮品(除外03.04食用冰) 03.0 10.0 17 乳铁蛋白 其他 发酵乳 01.02 1.0 调制乳 01.01.02 含乳饮料 14.03.01 18 抗坏血酸 抗氧化剂 去皮或预切的鲜水果 04.01.01.03 5.0 去皮、切块或切丝的蔬菜 04.02.01.03
  • 天然提取物:现代化妆品的健康新趋势
    在当前消费者越来越注重产品成分天然健康的市场环境下,植物提取物因其独特的功效和相对较低的副作用风险,成为化妆品研发的重要方向。化妆品中的天然提取物以其绿色、自然和健康的特性,在现代化妆品行业中的应用日益广泛,据不完全统计,天然化妆品在整个化妆品中的比例已经达到40%。本文汇总了天然提取物在美白祛斑、防晒、抗衰老、保湿、乳化、防腐、透皮吸收促进、香料等8个方面的应用情况,供大家阅读参考。1、天然提取物-美白剂传统美白剂有稳定性不佳,刺激,功效显现缓慢等劣势。而天然来源的美白剂可结合多成分、多靶点与多功效的优势,同时还兼具温和、安全、持久的特点,已成为美白化妆品行业的一个趋势。常见的天然美白成分有金银花、茶多酚、石榴、花青素、珍珠等。化妆品常见天然美白提取物汇总2、天然提取物-抗衰剂以天然提取物为原料的抗衰老化妆品同样越来越多的被应用于化妆品中。根据衰老学说,天然提取物的抗衰机制主要有以下几点:①通过提取物中的抗氧化组分,减少皮肤的自由基损伤,来调节皮肤免疫和提高自我保护作用。②通过抑制MMP表达,或促进组织型抑制剂(TIMP)表达来维持真皮层的结构。此外,防晒组分可有效防止紫外线对皮肤的伤害。而由于天然物种中组分较为复杂,往往能够多靶点协同作用起到抗衰老的效果,因此备受市场欢迎。常见天然抗衰剂有番红花素、人参皂苷、姜黄提取物、丹参酮、牡丹花等。化妆品常见天然抗衰提取物汇总3、天然提取物-保湿剂天然提取物在保湿方面的机制一般为:1、天然多酚羟基与水以氢键形式结合,形成锁水膜。2、其中的神经酰胺成分可以修护皮肤屏障,从而提高锁水能力。3、抑制透明质酸酶活性,减少皮肤保湿剂-HA的降解。常见的天然保湿成分有白及成分、竹叶黄酮、甘草提取物、芦荟有机酸、百合提取物等。化妆品常见天然保湿提取物汇总4、天然提取物-防晒剂目前市面上的防晒产品多为物理紫外屏蔽剂、化学紫外吸收剂,这两种类型的防晒剂均会给皮肤造成不同程度的负担,同时对水体生态环境也是造成了不小的压力。天然来源的防晒剂则具有广谱防晒、副作用小等特点。我国目前已将芦荟、黄岑、甘草、桂皮、沙棘等用于防晒产品中。化妆品常见天然防晒剂汇总5、天然提取物-毛发用剂发用化妆品中添加一些中药提取物已经比较常见,主要是可以使头发柔软、促进头发生长等。如何首乌、五味子、黑芝麻、人参、侧柏叶等都具有不错的养发护发的功效。此外,有一部分的收涩药含有的有机酸和鞣质能与美发剂中的铁、铜结合,用于染发剂的制备。化妆品常见天然护发剂汇总6、天然提取物-防腐剂化妆品中常用的防腐剂有尼泊金酯类、咪唑烷基脲、苯甲酸及其衍生物、醇类及其衍生物类等。安全的天然防腐剂一直成为化妆品研究的热点。常用的天然防腐剂有芦荟、益母草、黄岑、月见草、金缕梅等。化妆品常见天然防腐剂汇总7、天然提取物-香精天然香料是指以自然界存在的动植物的芳香部位为原料提取加工而成的原态香材天然香料。动物香料常用的有香、龙涎香、灵猫香、海狸香和香鼠香等,一般作定香剂使用,价格比较昂贵。植物性香料由植物的花、果、叶、茎、根、皮或者树木的木质茎、叶、树根和树皮中提取的易挥发芳香组分的混合物。常见的天然香精有玫瑰、薰衣草、苦橙叶、迷迭香、茉莉等。化妆品常见天然香精汇总8、天然提取物-其他功能① 乳化乳化剂是化妆品的重要辅助原料,具有乳化作用的天然提取物一般含有皂苷、树胶、蛋白质、胆固卵磷脂、明胶等。② 头皮吸收促进剂如月桂氮卓酮之类的化学合成促进剂,毒性大,长时间会对皮肤造成伤害。对比之下,天然的促进剂如薄荷油、桉油、丁香油、蛇床子油、当归挥发油、川芎挥发油等则有促渗作用强,不良反应小等特点。9、品牌天然提取物及功效举例
  • 科学家合成出可替代柴油的生物燃料
    据美国物理学家组织网近日报道,美国科学家们使用合成生物学方法,修改了大肠杆菌和一个酿酒酵母的菌株,制造出了没药烷的前体物没药烯。测试表明,对没药烯进行加氢反应生成的没药烷是一种“绿色”的生物燃料,有潜力替代D2柴油。研究发表在《自然通讯》杂志上。   “这是科学家们首次报告称没药烷可替代D2柴油,也是首次报告称可通过大肠杆菌和酿酒酵母生产出没药烷。”该研究的主要作者、美国能源部下属的联合生物能源研究所(JBEI)代谢工程(通过基因工程方法改变细胞的代谢途径)项目主管李淳太(音译)说。   与日俱增的燃料成本以及对燃烧化石燃料会加剧全球变暖趋势的担忧等,驱使科学家想尽一切办法寻找碳中和的可再生能源。从多年生牧草和其他非食品植物以及农业废物的纤维素生物质中提取出的液态生物燃料一直被认为有潜力替代汽油、柴油和航空煤油。   不过,现有占主流的生物燃料乙醇只能有限地用于汽油发动机中,而无法用于柴油机或航空喷气式发动机内 另外,乙醇也会腐蚀石油管道和油罐,人们急需可与现有发动机、运输和存储设备兼容的高级生物燃料。   联合生物能源研究所是美国能源部于2007年建立的三个生物能源研究中心之一,他们正在加紧研制从国家层面来讲性价比高的生物燃料。其中一个研究对象是拥有15个碳原子(柴油燃料一般有10到24个碳原子)的倍半萜烯。   该研究的合作者、联合生物能源研究所所长杰伊科斯林表示:“倍半萜烯的能源含量特别高,其物理化学性质也与柴油和航空燃油一样,尽管植物是其天然来源,但对细菌进行转基因修改是最方便且性价比最高的大规模制造高级生物燃料的方法。”   在此前的研究中,李淳太团队对大肠杆菌和酿酒酵母的一个新的甲羟戊酸途径(对生物合成至关重要的代谢反应)进行了基因修改,使这两个微生物过度生产出了化学物质尼基二磷酸(FPP),使用酶可将其合成为理想的萜烯。在最新研究中,李淳太和同事使用该甲羟戊酸途径制造出了没药烷(萜烯类化合物家族的一员)的前体物没药烯,并通过加氢反应制造出没药烷。   科学家们对没药烷进行的燃料性能方面的测试表明,其拥有作为生物燃料的潜能。李淳太说:“没药烷和D2柴油的性能几乎一样,但其有分叉的环式化学结构,这使其凝固点和浊点更低,作为生物燃料使用,这是一大优势。我们可设计一个甲羟戊酸途径来产生没药烯,该平台几乎与制造防蚊虫药物青蒿素的平台一样,我们唯一需要做的修改是引入一个烯萜类合成酶并对该途径进行进一步修改以提高大肠杆菌和酿酒酵母产生没药烯的数量。”   李淳太团队想将烯属烃还原酶编入大肠杆菌和酿酒酵母体内,以取代没药烯加氢反应的化学处理步骤,使所有化学反应都在微生物体内进行。他说:“这类用酶促进的加氢反应极具挑战性,也是我们的长期目标。我们也将研究使用生物质中提取出来的糖作为碳源生产没药烯的可行性。”
  • 2022年第二期19个中药配方颗粒国家药品标准公示
    近日,国家药典委发布公告,公示2022年第二期19个中药配方颗粒国家药品标准。原文如下:按照国家药品监督管理局统一部署要求,根据国家药品标准工作程序,我委组织相关企业开展中药配方颗粒国家药品标准研究,形成了2022年第二期19个中药配方颗粒拟公示标准。为确保标准的科学性、合理性和适用性,现就上述中药配方颗粒品种国家药品标准公示征求社会各界意见(详见附件),公示期为三个月。请相关单位认真研究,鼓励企业参照国家药品监督管理局发布的《中药配方颗粒质量控制与标准制定技术要求》,开展从标准汤剂到生产工艺及中药配方颗粒产品的标准研究与复核。若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。来函需加盖公章,同时将公函扫描件电子版发送至指定邮箱。公示期满未回复意见即视为对公示标准无异议。联系人:张雪 祁进电话:010-67079632,010-67079633电子邮件:zhangxue@chp.org.cn收文单位:国家药典委员会办公室地址:北京市东城区法华南里11号楼邮编:100061附件:18.五味子配方颗粒.pdf17.熟大黄(掌叶大黄)配方颗粒.pdf16.石韦(有柄石韦)配方颗粒.pdf15.山银花(灰毡毛忍冬)配方颗粒.pdf13.南五味子配方颗粒.pdf14.青蒿配方配方颗粒.pdf12.玫瑰花配方颗粒.pdf10.龙胆(坚龙胆)配方颗粒.pdf9.酒续断配方颗粒.pdf7.筋骨草配方颗粒.pdf8.酒白芍配方颗粒.pdf6.姜黄配方颗粒.pdf11.龙脷叶配方颗粒.pdf5.鹅不食草配方颗粒.pdf4.大蓟配方颗粒.pdf2.醋南五味子配方颗粒.pdf3.醋五味子配方颗粒.pdf1.布渣叶配方颗粒.pdf19.仙鹤草配方颗粒.pdf
  • 高纯气体分析是色谱分析技术皇冠上一颗“明珠”
    “100家国产仪器厂商”专题:访上海华爱色谱分析技术有限公司   为推动中国国产仪器的发展,了解中国国产仪器厂商的实际情况,促进自主创新,向广大用户介绍一批有特点的优秀国产仪器生产厂商,仪器信息网自2009年1月1日开始,启动“百家国产仪器厂商访问计划”。日前,仪器信息网工作人员走访参观了气相色谱分析整体解决方案(特别是气体分析的应用研究)供应商——上海华爱色谱分析技术有限公司(以下简称“华爱色谱”),华爱色谱公司总经理方华先生、市场部经理李聪先生热情接待了仪器信息网到访人员。   专注于行业专用的气相色谱仪,侧重于高纯气体的分析方法研究和开发   方华总经理介绍说:“华爱色谱公司于2004年注册成立,目前侧重于高纯气体分析方法的研究,专注于行业专用气相色谱仪的开发,是国内第一家专业从事气相色谱分析方法研究和开发的企业。” 上海华爱色谱分析技术有限公司方华总经理   华爱色谱致力于产品的创新,拥有多项国家专利技术,并有多个产品荣获上海市高新技术成果转化认证、上海市重点新产品等称号,部分产品已经获得上海市创新资金和国家创新基金立项扶持;尤其,作为全国气体标准化技术委员会优秀委员单位,华爱色谱先后负责起草了多项国家标准工作。   “公司的产品涵盖了实验室色谱、便携式色谱等整个气体行业所需10余款色谱分析产品,如适用于高纯和超纯气体分析的GC-9560-HG氦离子化气相色谱仪,以及GC-9560-HC高灵敏度热导气相色谱仪、GC-9560-HZ氧化锆气相色谱仪、GC-9560-HQ天然气分析专用色谱仪、GC-9560-HD变压器油专用色谱仪等,开发的分析方法已经覆盖香料、酿造、农药、环保、冶金、石化、化工等行业,截止目前已开发40多套色谱工作站系统,均可加入‘个性化’管理系统、相关行业标准等。” 华爱色谱公司研发与测试车间掠影   “3-3-3模式”,华爱色谱公司成功研发出GC-9560-HG氦离子色谱仪,积极抢占高纯气体分析高端市场   方华总经理谈到,“高纯气体的分析市场,一直是国外仪器的‘领地’;但从2008年开始客户听到更多的可能就是华爱的‘氦离子色谱仪’;我们的GC-9560-HG氦离子色谱仪研制过程可以用‘3-3-3模式’来概括:3位资深工程师,用了3年时间,投入300万才研制成功。”   高纯气体中微量杂质的分析一直是色谱分析的难点,华爱的高纯气体分析系统,很好地完成了气体中微量杂质(特别是ppb级杂质)的分析工作。“也有个别厂家简单认为买一个氦离子检测器装在色谱仪上就可以分析高纯气体了,而我们认为,高纯气体分析是色谱分析技术皇冠上的‘明珠’:和高纯气体的分析比较,其他领域的色谱分析方法,如石化上的模拟蒸馏、碳分布、炼厂气、汽油中的氧化物和芳烃等分析,不过都是入门级的水平。” 华爱色谱公司的GC-9560-HG氦离子色谱仪   华爱色谱公司的GC-9560-HG氦离子色谱仪的技术研发过程:   2006年研发了四阀五柱分离系统、常温下的氧氩分离技术,完成了对高纯氮的分析;   2007年研发了无阀流量控制技术、自动压力校正技术、氢气的钯管分离技术、氧吸附与还原技术,完成了对高纯氧、高纯氢的分析;   2008年研发了多柱箱温控技术、样品除空吹扫技术,完成了对高纯氩的分析;   2009年完成了氦离子检测器的改性,实现了对氖气的分析,掌握了载气99.999999%纯化技术,完成了对高纯氦的分析。   “和国外同类仪器比较,我们的GC-9560-HG氦离子色谱仪在价格和售后上的优势是显而易见的;2009年实现几十台销量 目前,全球最大的气体公司林德、国内气体研究的权威单位光明化工研究院等都已经成为我们的仪器用户。” 知名气体公司AP访问华爱色谱公司   “争取18个月内建立起所有高纯气体的检测规范;占领国内高纯气体领域50%市场”   方华总经理谈到:“在完成了所有通用高纯气体的解决方案后,2010年我们将工作重点转移到电子气体等特种气体的分析上来 第一季度已解决氟气转换技术、硅烷真空取样系统、六氟化硫中痕量杂质分析的多次切割技术,争取18个月内建立起所有高纯气体的检测规范。另外,由华爱色谱主持的国家标准《气体分析 氦离子气相色谱法》也将于今年颁布。”   “2010年华爱预计完成3000万元销售额,将占领国内高纯气体领域50%市场 同时,完成对所有气体检测器的开发,如氩离子检测器、氧化锆检测器、离子迁移检测器、气体密度天平检测器等。” 合影留念(方华总经理,左3)   关于华爱色谱公司的中长期发展规划,方华总经理表示:“便携式色谱仪和在线色谱仪,终将和实验室色谱仪‘三分天下’,而这两个领域也是华爱‘看好’的市场;今年公司将加大对于便携式色谱仪的研发力度,并为在线色谱仪做好技术储备。”   附录1:上海华爱色谱分析技术有限公司   http://www.huaaisepu.com/index.asp   http://huaai.instrument.com.cn   附录2:华爱色谱公司重大事件   2004年03月24日:上海华爱色谱分析技术有限公司注册成立。   2006年11月01日:荣获《单柱分析电力用油气相色谱仪》专利证书(专利号: ZL2005 20042753.5)   2006年12月06日:荣获《一种在高温高压下可以进行在线分析的气相色谱仪》 专利证书(专利号:ZL2005 2 0044846.1)   2007年01月03日:荣获《一种用于汽车尾气分析气相色谱仪》专利证书(专利号:ZL2005 20044945.X)   2007年02月28日:荣获《自清洗型热解析装置》专利证书(专利号:ZL2005 20044576.4)   2007年04月04日:荣获《用于气体全分析的气相色谱仪》专利证书(专利号:ZL2005 2 0044845.7)   2008年05月08日:全面通过ISO9001:2000国际质量管理体系认证   2008年11月:新产品GC-9760变压器油专用微型色谱仪,荣获上海市高新技术成果转化认证   2008年12月:公司入围上海市第二届最具活力企业评选,被评为上海市最具活力高科技企业   2009年04月:GC-9760变压器油专用微型色谱仪,荣获上海市重点新产品证书   2009年06月:为表彰公司在国家标准起草工作的突出贡献,全国气体标准化技术委员会授予我公司优秀委员单位称号   2009年08月:新产品GC-9560-HG氦离子化气相色谱仪,荣获上海市高新技术成果转化A级项目证书   2009年11月:GC-9560-HD变压器油专用色谱仪,荣获上海市高新技术成果转化认证   2009年12月09日:荣获《一种氦离子化检测器》专利证书(专利号:ZL2009 20073624.0)   2009年12月29日:荣获高新技术企业证书(编号:GR200931000979)   2010年04月09日:新产品GC-9560-HG氦离子化气相色谱仪,荣获“2009年度科学仪器优秀新产品”奖   2010年04月14日: GC-9560-HG氦离子化气相色谱仪,荣获“上海市重点新产品”   2010年04月15日:公司总经理方华出任气标委“第一届气体分析分技术委员会委员”
  • 夫妻往烧猪肉里添加日落黄改善卖相获刑事责任
    日落黄是一种人工合成着色剂,有增加外观颜色好看的作用,主要用于食品和药物的着色,如果消费者吃了违规使用这类添加剂的食品,健康可能会受到严重损害。  据广州优瓦对照品网消息,浙江永康有一对夫妻,从2013年7月开始在古山镇某菜场开卤味店,为了改善肉制品色泽提高销量,他们就非法使用食品添加剂日落黄,共卖出1万多斤,目前,这对夫妻已经被警方采取刑事强制措施。  这对夫妻因涉嫌非法生产、销售伪劣产品被依法采取刑事强制措施,案件在进一步调查当中,这是浙江永康市公安局食品药品环境犯罪侦查大队成立以来破获的首例食品犯罪案件。  针对食品中非法使用日落黄,广州优瓦仪器有限公司提供日落黄标准品检测食品中日落黄的含量,为食品安全保驾护航,咨询电话:020-81215950!
  • 止咳药检出硫磺,涉事企业有话说
    p    span style=" color: rgb(0, 112, 192) " strong 云南白药集团股份有限公司关于媒体就相关企业产品检出硫磺报道的情况说明 /strong /span /p p   本公司及董事会全体成员保证公告内容真实、准确和完整,并对公告中的虚假记载、误导性陈述或者重大遗漏承担责任。 /p p   一、媒体报道情况 /p p   近日,公司关注到《经济参考报》于 2016 年 5 月 6 日刊出的《多种常见止咳药被检出硫磺 涉及太极、通化、哈药、云南白药集团等知名药企》一文,报道了公司生产的产品“小儿宝泰康颗粒”, 国药准字 Z10920006,规格为 4g× 12 袋,检测出硫磺含量为 0.1%。 /p p   二、情况说明 /p p   针对上述事宜,公司高度重视,立即开展了严格的核查,现将有关情况作如下说明: /p p   1、公司对报道所涉及的小儿宝泰康颗粒产品进行了全方位的核查,包括药材采购、供应商资质、进厂检测、药品生产等全过程,再次确认公司药品生产完全符合药品生产质量管理规范 GMP 的要求。 /p p   2、公司按《中国药典》的测定方法对药材、饮片及成品中二氧化硫残留量进行检测,符合国家标准 监管部门对报道高度重视,经云南省食品药品监督管理局抽样,云南省食品药品检验所检测,公司小儿宝泰康颗粒中二氧化硫的残留均小于 10mg/kg、浙贝母药材小于20mg/kg,远低于药材、饮片国家标准要求小于 150mg/kg 的标准值。 /p p   3、公司所生产的小儿宝泰康颗粒符合《中国药典》(2015 年版)标准,产品安全、有效。 /p p   4、《经济参考报》报道依据的是西安国联质量检测技术有限公司的检测结果,其标准依据为 GB3150-2010,适用于使用工业硫磺经加工、处理、提纯制得的食品添加剂硫磺。检测方法为 GB/T2449-2006,对于药材、饮片的检测不具适用性。 /p p   5、2015 年,公司生产的小儿宝泰康颗粒实现销售收入956 万元,此产品收入金额占公司营业收入的比重为0.05%,对公司生产经营无重大影响。 /p p   三、必要的提示 /p p   公司一直保有强烈的质量诚信意识,始终以顾客安全为目标,将产品质量管控贯穿于整个产品生命周期,最大限度地保障产品质量,确保消费者用药安全。 /p p   公司后续将根据事件的进展情况认真履行信息披露义务。公司指定信息披露媒体为《中国证券报》、《上海证券报》、《证券时报》及深圳证券交易所网站。公司所有公开披露信息均以上述指定媒体刊登正式公告为准,敬请广大投资者理性投资,注意投资风险。 /p p style=" text-align: right "   特此公告云南白药集团股份有限公司 /p p style=" text-align: right "   董事会 /p p style=" text-align: right "   2016 年 5 月 10 日 /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 哈药集团股份有限公司澄清公告 /span /strong /p p   本公司董事会及全体董事保证公告内容不存在任何虚假记载、误导性陈述或者重大遗漏,并对其内容的真实性、准确性和完整性承担个别及连带责任。 /p p   一、媒体报道情况 /p p   近日,有媒体报道和转载了题为《多种常见止咳药被检出硫磺》的文章,报道称“由于使用了用硫磺熏蒸过的浙贝作为原料,很多成品药中被检测出较高的硫磺含量,太极集团、通药集团、哈药集团、云南白药集团等多家知名药企或涉其中”,文中提及哈药集团世一堂制药厂(以下简称“世一堂”)生产的产品“金贝痰咳清颗粒”硫磺含量0.1%。就媒体报道事宜,公司立即进行核查,现将有关情况说明如下: /p p   二、公司澄清说明 /p p   1.世一堂为哈药集团股份有限公司(以下简称“公司”)的分公司,其生产的“金贝痰咳清颗粒”按照《中国药典》2015年版一部质量标准检验合格出厂销售。 /p p   经自查,企业从符合GMP规定的供应商处采购浙贝母后,严格按照《中国药典》的质量标准进行检测,合格后方可使用。世一堂金贝痰咳清颗粒生产过程严格按照生产工艺和处方进行投料生产,购入、生产、质量控制等环节均符合新版GMP要求。 /p p   2.报道显示,出具检测报告的机构为西安国联质量检测技术股份有限公司。 /p p   其检验的依据为GB3150-2010,检测方法为GB/T2449-2006,适用于食品添加剂中的硫磺检测,而药品的检验依据和检验方法国家另有规定。 /p p   3.世一堂参照《中国药典》2015年版附录2331二氧化硫残留量的测定方法,对“金贝痰咳清颗粒”产品进行了检测,检测结果均符合《中国药典》2015年版0212药材及饮片检定通则中“药材及饮片(矿物类除外)的二氧化硫残留量不得过150mg/kg”的标准。 /p p   4.2015年,世一堂金贝痰咳清颗粒实现销售收入664万元,此产品收入金额占公司营业收入的比重较小,对公司生产经营无重大影响。 /p p   公司将继续加强对产品各个生产环节的质量管控,提高产品质量,保障消费者的用药安全。公司后续将根据事件的进展情况认真履行信息披露义务。公司指定信息披露媒体为《中国证券报》、《上海证券报》、《证券时报》及上海证券交易所网站。公司所有公开披露信息均以上述指定媒体刊登正式公告为准,敬请广大投资者理性投资,注意投资风险。 /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 关于我司产品橘红丸含硫量的情况说明 /span /strong /p p   广大消费者: /p p   我司接到信息,关于《经济参考报》报道有关橘红丸中检出较高硫磺残留量事宜,我司立即开展了调查,情况如下: /p p   1.西安国联质量检测技术股份有限公司出具的橘红丸检验报告(实际为橘红颗粒的报告)存诸多疑点:①我司产品外包装上具有产品批号、生产日期、有效期等信息 ②橘红丸性状:为棕褐色的浓缩丸 气芳香,味甘,微苦。而西安国联质量检测技术股份有限公司出具报告中无产品批号、生产日期、有效期等基本信息 样品状态栏描述为:棕褐色的颗粒,我司无橘红颗粒这个产品。 /p p   2.对方检验我司橘红丸中二氧化硫残留量标准依据为GB3150一2010,适用于使用工业硫磺经加工、处理、提纯制得的食品添加剂硫磺。方法为GB/T2449一2006,利用差减法通过扣除灰分、酸度、有机物和砷后即为硫的含量,中药复方成分复杂,不仅是以上几类成分,还含其它微量元素,对于成分复杂样品上述方法由于不能扣除本底干扰,而不具适用性,所以造成结果有差异。 /p p   3.我司咨询权威专家,表示这不是测定药品、食品中二氧化硫的残留量的方法,目前国家通用的食品中二氧化硫残留量测定方法为GB/T5009.34-2003。 /p p   4.我司参照《中国药典》2015年版附录2331药材、饮片二氧化硫残留量的测定方法(第一法),随机测定橘红丸成品3批,测定结果分别为46mg/kg、56mg/kg、34mg/kg,并参照GB/T5009.34-2003食品方法测定,结果大致相同,《中国药典》方法和国标食品方法结果一致,说明方法适用性良好,结果可靠。 /p p   5.对方的检测结果是药材检验标准的40倍,我们的检测结果为药材检验标准的0.37倍,结果相差107倍以上,出现这种偏差完全是检测方法采用不当,没有扣除本底干扰、没有设置合理对照导致。《中国药典》对中药材规定了硫的限量值,且有检验方法,经过长期验证,对中药材硫限量的检验方法对中成药具有很好的适用性。药典每个中成药标准项下虽无硫残留限量值,但通过中药材限量值折算,并参考国际食品法典对于人体硫摄入量的规定,是可以对中成药硫残留的安全性做出一个科学判断的。从以上来看,目前检验结果表明,中成药中硫残留完全在安全范围。 /p p   6.依据《经济参考报》文章所述“联合国粮农组织和世界卫生组织联合食品添加剂专家委员会则认为,二氧化硫类物质作为食品添加剂,每日允许摄入量为0—0.7mg/kg体重,即一个60kg体重的成年人,每天二氧化硫的摄入量不得超过42mg。因此,联合国粮农组织和世界卫生组织制定的‘食品添加剂通用标准’中明确规定,草药及香料中亚硫酸盐残留量‘以二氧化硫计不得超150mg/kg’,我国有关二氧化硫残留量的标准正是参考了这一标准”。 /p p   7.我司的橘红丸成品参照食品中二氧化硫残留量测定(GB/T5006.34-2003)测定,最大检出为56mg/kg,橘红丸每天的服用量为:每天2次,每次3g,共6g,每天因服用橘红丸摄入量6*34/1000g=0.204mg-6*56/1000g=0.336mg,远远低于联合国粮农组织和世界卫生组织允许摄入量42mg。 /p p   由于《经济参考报》选用不当检验方法导致了报道不实,对我公司产品声誉造成了不当影响,对于这种不负责任的行为,我司将保留依法追究对方相关责任的权力。 /p p style=" text-align: right "   太极集团重庆中药二厂有限公司 /p p style=" text-align: right "   二0一六年五月七日 /p p br/ /p
  • 探秘《止咳药被检出硫磺》的行业“潜规则”!
    今天,关于“止咳药被检出硫磺”的新闻,在朋友圈已经开启了刷屏模式。因为使用了经过硫磺熏蒸的浙贝作为原料,国内多家知名药厂或被牵涉其中。  更让我们痛心的是,硫磺熏蒸浙贝犹如医药行业的“三聚氰胺”,已经成为中药材行业的潜规则,而有关检测的缺失则让这一潜规则发展成为“明规则”!    为您的食品药品安全保驾护航,海能应用实验室运用专业的检测仪器——SOA100二氧化硫残留量测定仪,迅速对止咳常用药中的二氧化硫含量进行测定,提供一手资料,希望对大家有所帮助!  1引言  硫磺燃烧产生二氧化硫,直接杀死虫卵、蛹等,抑制霉菌、真菌滋生,达到防虫防霉作用。二氧化硫与药材中的水分子结合形成亚硫酸。具有脱水、漂白作用。二氧化硫使表皮细胞破坏,促进干燥,特别象产地在南方潮湿地区天麻、 山药等。从毒理学上来说,硫磺属低毒化学品,但其蒸汽及硫磺燃烧后发生的二氧化硫对人体有剧毒。食用二氧化硫超标的食品,容易产生恶心、呕吐等胃肠道反应,此外,还可影响钙吸收,促进机体钙流失。过量进食引起的急性中毒可出现眼、鼻黏膜刺激症状,严重时产生喉头痉挛、喉头水肿、支气管痉挛等。  药典规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg,上述限量标准均在世界卫生组织(WHO)认可的安全标准范围内。测定中药及其饮片成品药中二氧化硫含量是为保障人体健康做的最后一道防线,预防救命药变成毒药。  2参考文献  2015版《中国药典》  3药典原理步骤  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置两颈圆底烧瓶中,加水300-400ml,打开回流冷凝管开关给水,将冷凝管的上端E口处连接一橡胶导气管置于100ml锥形瓶底部。锥形瓶内加入3%过氧化氢溶液50ml作为吸收液(橡胶导气管的末端应在吸收液面一下)。使用前,在吸收液中加入3滴甲基红乙醇溶液指示剂(2.5mg/ml),并用0.01mol/L的氢氧化钠滴定液滴定至黄色(即终点,如果超过终点,则应舍弃该吸收溶液)。开通氮气,使用流量计调节气体流量至约0.2L/min,打开分液漏斗C的活塞,使盐酸溶液(6mol/L)10ml流入蒸馏瓶,立即加热两颈烧瓶内的溶液至沸,并保持微沸,烧瓶内的水沸腾至1.5h后,停止加热。吸收液放冷后,置于磁力搅拌器上不断搅拌,用氢氧化钠滴定液(0.01mol/L)滴定,至黄色持续时间20s不褪,并将滴定结果用空白试验校正。  4反应方程式  SO32- + 2H+→ H2O + SO2  SO2 + H2O2→H2SO4  H2SO4 + NaOH →Na2SO4 + H2O  5仪器  SOA100二氧化硫分析仪(如图1)  T860自动电位滴定仪  pH复合电极  烧杯  6试剂  60%磷酸  3%H2O2  NaOH滴定液(C(NaOH)=0.02mol/L) (图 1)  去离子水  供试品  7试样处理  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置于400ml蒸馏管中。  (取样如图2)    (图2)  测定蒸馏: 开机,设置参数,进行实验。(图3)  参数设置(如图3)  自动测试  稀释水量:50ml  接收液量: 25ml  加酸体积:10ml  蒸馏时间:7min  淋洗水量:10ml  (蒸馏过程如图4)   (图4)  l 滴定  参数设置  终点设置滴定  终点数:1  终点结束体积:10.00ml  终点pH: 6.20  最小添加体积:0.01ml  初次添加体积:0.02ml  终点预控范围:1.50pH  (滴定过程如图5)    (图5)  SO2总含量计算:  二氧化硫残留量(ug/g)=(A-B)*C*0.032*106/W  式中 A---供试品溶液消耗氢氧化钠滴定液的体积,ml  B---空白消耗氢氧化钠滴定液的体积,ml  C---氢氧化钠滴定液摩尔浓度,mol/L  0.032---1ml氢氧化钠滴定液(1mol/L)相当于二氧化硫的质量,g  W ---供试品的重量,g  实验结果  2 中药材:浙贝母    备注:实验结果只用于为验证实验方法  8结果与讨论  实验选取的浙贝母中二氧化硫的平均含量为644.13ug/g(mg/kg),明显超国家规定的400mg/kg。而含浙贝的止咳药中均检出二氧化硫且含量很高,相比同类止咳药川贝类药品中二氧化硫含量明显低于浙贝产品。国家药典委员会规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg。  在使用药典法测试液体类样品中二氧化硫含量时,需剧烈振摇样品或者超声加热除去其中的二氧化碳,因为在滴定过程中二氧化碳会消耗滴定剂氢氧化钠。  在使用SOA100采用药典法进行蒸馏时,建议将6mol/L的盐酸换作60%的磷酸,由于机器蒸馏功率大,易挥发的盐酸很容易蒸馏到吸收液中,造成结果偏大,而磷酸作为中强酸,沸点比盐酸高,不易挥发,效果更好。日本公定法及台湾药典均采用磷酸而非盐酸。  采用药典法进行测试时,由于吸收液过氧化氢不稳定,易分解生成水和氧气,需即用即配。  在使用SOA100采用药典法进行蒸馏时,实验之前需将吸收液H2O2调至pH=6.2,因为过氧化氢显酸性,滴定过程中会消耗氢氧化钠,造成实验结果偏大。  中药中淀粉含量较大,若测试试样为粉末状,在称样前需在蒸馏管中加入20ml蒸馏水,将样品放入后进行摇匀,防止实验时样品结块,造成结果偏低。
  • 超大孔填料在蛋白质分离纯化中的应用
    p & nbsp /p p   层析纯化技术由于其高选择性、灵活性、易放大性等优点,已经成为蛋白质药物纯化中不可或缺的技术。传统的层析填料为多糖基质,孔径一般在100 nm以下。1970年代出现了大孔和微孔无机材料硅填料,虽然增大了孔道、提高了层析的分辨率和流速,但只能在PH2-7.5范围内稳定,不利于分离纯化在碱性范围内稳定的蛋白质或是需要碱性层析条件的分离,从而限制了其在大规模快速分离蛋白质层析上的应用。多孔聚合物微球由于其高的比表面积、高的机械强度和多样的表面特征,常被用作层析分离纯化的填料。目前已发展出了多种表面基团、基质种类的层析填料,成功用于疫苗、病毒、抗体、酶、细胞因子等的分离纯化。 /p p   span style=" color: rgb(0, 176, 240) " strong  层析纯化病毒、病毒样颗粒等生物大分子的瓶颈问题 /strong /span /p p   随着病毒、病毒样颗粒在疫苗、肿瘤治疗、免疫治疗中的地位越来越重要,这类复杂生物大分子的分离纯化需求也逐渐增加。然而传统填料由于孔径较小,蛋白质只能以扩散方式通过填料,传质速率慢,处理量低,造成分离时间长、容易失活等问题[1]。当蛋白质体积较大时,填料表面在吸附一层蛋白后,由于体积位阻以及静电排斥作用,会阻碍其它的蛋白质进一步进入孔内,造成填料的载量下降。另一个限制是病毒或疫苗,尤其是带有包膜的病毒或疫苗,在狭窄的填料孔径内发生吸附时非常容易发生结构变化,破坏其整体结构。在乙肝病毒表面抗原(HBsAg)的纯化中发现这种病毒样颗粒在层析时会发生解聚[2],经过离子交换层析分离后,疫苗的回收率通常不到50%[3, 4]。而抗原的结构发生变化以后,就会对其免疫原性产生影响,所以需要在纯化过程中尽可能维持抗原的结构。 /p p   为了解决针对病毒及病毒样颗粒纯化的瓶颈问题,目前已有采用膜色谱、超大孔贯穿孔颗粒填料及整体柱的策略进行纯化的案例,成功纯化了包括人乳头瘤病毒、番茄花叶病毒、流感病毒、腺病毒、慢病毒及各种病毒样颗粒。 /p p span style=" color: rgb(0, 176, 240) " strong   病毒及病毒样颗粒的分离纯化 /strong /span /p p   根据文献报道,超大孔填料相比传统层析填料不仅在载量及处理速度上有极大的优势,还更有利于病毒及病毒样颗粒的结构保持。 /p p   例如,在重组乙肝病毒表面抗原的分离纯化中,采用具有120nm及280nm超大孔径的离子交换填料DEAE-AP-120 nm和DEAE-AP-280 nm(商品名为中科森辉的Giga系列)具有比传统填料DEAE-FF高7倍以上的动态载量[1]。此外,采用ELISA测定抗原收率,发现采用超大孔填料能够减少重组乙肝病毒表面抗原在层析过程中的裂解,从而显著提高活性抗原的收率。 /p p style=" text-align: center " img width=" 576" height=" 450" title=" 1.jpg" style=" width: 415px height: 282px " src=" http://img1.17img.cn/17img/images/201808/insimg/3b67db18-4291-4ab6-9874-209cd57644af.jpg" /    /p p style=" text-align: center " 重组乙肝病毒表面抗原在不同孔径离子交换填料上 /p p style=" text-align: center "   的吸附动力学[1] /p p style=" text-align: center " img width=" 497" height=" 345" title=" 2.jpg" style=" width: 387px height: 289px " src=" http://img1.17img.cn/17img/images/201808/insimg/07fdf233-77a5-4c30-8d20-faf7f044b54a.jpg" /   /p p style=" text-align: center "  重组乙肝病毒表面抗原从不同孔径的填料上洗脱下来的 /p p style=" text-align: center "   ELISA回收率[1] /p p   对病毒的分离纯化同样有类似的效果。例如在灭活口蹄疫病毒的纯化中,DEAE-FF导致严重的病毒裂解。而采用具有100nm以上孔径的超大孔填料,不仅载量提高10倍以上,还能显著提高病毒在填料上吸附时的热稳定性,从而减少病毒的裂解,具有更高的收率。最终的分离纯化单步收率达90%以上[5]。 /p p style=" text-align: center "    span style=" font-size: 14px " strong 灭活口蹄疫病毒在传统填料与超大孔填料上的吸附解离过程 /strong /span /p p   与商品填料的小孔道填料相比,超大孔结构可能从以下几方面提高对蛋白质构象的稳定性: /p p   1)增大孔道(受限空间):根据蛋白质折叠行为计算显示,蛋白质的折叠速率与空腔大小、形状密切相关,也即当填料孔道与蛋白的相对尺寸超过某一阈值后,蛋白的折叠行为将不受空腔大小影响。与数十纳米中孔结构的传统填料的相比,数百纳米超大孔结构会因孔道增大、与蛋白接触面积减小,从而对某一尺寸下蛋白质的变构行为有所改善。 /p p   2)界面曲率:小孔径填料孔道曲率大,填料与蛋白质接触面积大,因此受更大吸附力影响,蛋白质二级结构变化越严重。而曲率更大的超大孔孔道对蛋白二级结构的保护比狭窄孔道更有优势。 /p p style=" text-align: center "   span style=" font-size: 14px " strong  表面曲率变化对蛋白接触面积的影响 /strong /span /p p   3)改善配基与蛋白活性区域的接触面积:超大孔微球内部数百纳米孔道在修饰配基后可能会有效改善传统填料狭窄孔道内由于配基拥挤造成的蛋白质失活现象。 /p p   4)减少蛋白在孔道内的静电排斥作用:有研究者认为,在离子交换填料上蛋白质起初会在孔道入口处形成一圈静电层,这一静电层会对后来蛋白继续进入孔道产生排斥作用从而使孔道关闭,动态载量下降。如果将超大孔填料修饰为离子交换树脂,由于孔道尺寸显著扩大可能会有效改善蛋白吸附静电层对孔道的封闭作用,从而有效引导蛋白质进入超大孔道,提高回收率。 /p p span style=" color: rgb(0, 176, 240) " strong   快速分离蛋白质及pDNA /strong /span /p p   除了应用于病毒及病毒样颗粒的分离纯化的分离纯化,利用超大孔填料传质速度快的优势,将超大孔填料镀上亲水表层,再接上不同配基制成多种形式的层析填料,用于快速高分辨率的纯化蛋白混合物或质粒。超大孔填料制备成的亲和层析、反相层析和离子交换层析填料广泛的应用在蛋白质的分离纯化方向,显示出超大孔填料比传统分离填料高速高分辨率的蛋白质纯化优势。 /p p   例如以肌红蛋白、转铁蛋白和牛血清白蛋白的混合溶液为模拟体系,考察不同流速下超大孔聚苯乙烯阴离子交换介质(DEAE-AP,商品名为Giga系列)的分离效果,并与DEAE 4FF介质进行了对比。实验结果(图2)显示,作为对照的DEAE-4FF介质在流速达到361 cm/h时,分离效果已明显降低,而超大孔介质可以在流速高达1084 cm/h的条件下操作,分离效果良好,能够在6 min内实现三种生物大分子的快速分离。 /p p style=" text-align: center " img width=" 588" height=" 170" title=" 3.jpg" style=" width: 473px height: 144px " src=" http://img1.17img.cn/17img/images/201808/insimg/65df31ac-bd00-4a08-8a5a-feedfa1aa990.jpg" / /p p   span style=" color: rgb(0, 176, 240) " strong  超大孔填料应用前景与展望 /strong /span /p p   近年来,随着生命科学的发展,生物样品越来越复杂,如人的血样、尿样、组织样品等,对生物分离分析技术提出更高的要求。根据超大孔填料固有的诸多优点,通过合成不同种类的超大孔固定相及在固定相上做不同功能的衍生,超大孔填料已经被广泛应用于生物分离分析中,但也存在一些问题。因此,发展新的制备手段,优化制备条件和过程,探索制备和分离机理,对于开辟新的应用领域以及开展实际样品的分离分析有更大的理论和现实意义。 /p p   根据已有的文献报道,我们可以预测今后几年的相关工作仍会集中在以下几个方面: /p p   (1)规则的聚合物整体材料内部形态。如获得规则的3D网络骨架,可控的孔径尺寸和分布。 /p p   (2)继续在微分离系统中扩展其应用。如在加压电色谱、微流控芯片材料、微流色谱和纳流色谱系统,甚至纳米器件开发等诸多方面大显身手。 /p p   (3)表面物理化学性质的调控向功能化、智能化方向发展。如基于分子印迹技术、温度响应以及pH响应的表面智能化的整体材料。 /p p   (4)制备规模整体柱的开发及其在生物下游技术中的应用。 /p p   目前,已经有一部分整体柱实现了商品化,但种类有限,还无法与种类繁多的颗粒型填充柱相提并论,也远未能满足分离分析的需求。而颗粒型的超大孔填料,由于其制备较困难、批次间重复性较差、价格昂贵等,也没有得到广泛的应用。相对于超大孔填充柱,有机相整体柱存在因流动相变会发生溶胀或收缩、机械强度差、比表面积小、柱容量差以及聚合过程中产生的微孔不利于小分子样品的分析等问题,现有报道大都用于生物大分子的分离。硅骨架整体柱也存在必须预先聚合好装入套管中,制备繁琐,比表面积较小的问题。因此,如何以更简便、有效的方式制备高效新型的超大孔填料并将其应用于实际样品的分离分析仍然是今后工作的重心。在实际工作中所面临的层出不穷的问题也是推动新型超大孔填料制备技术和方法发展的源源不竭的动力,在诸多的尝试中很可能就会出现某些性质优良的超大孔填料,这也预示着将来商品化的超大孔会越来越多。 /p p span style=" color: rgb(0, 176, 240) " strong   部分商品化的超大孔层析介质 /strong /span /p p    strong 超大孔填料因其具有独特的多孔结构,与传统填料相比具有更加优良的渗透性和传质速率,可以在较低的操作压力下实现高效和快速的分离,已成为继多聚糖、交联与涂渍、单分散之后的第四代分离填料。可以预测,随着制备技术的不断提升,超大孔填料在生命科学、医药、环境和化学化工等领域必将大有可为。 /strong /p p   参考文献 /p p   [1] M.R. Yu, Y. Li, S.P. Zhang, X.N. Li, Y.L. Yang, Y. Chen, G.H. Ma, Z.G. Su, Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity, Journal of Chromatography A, 1331 (2014) 69-79. /p p   [2] P.M. Kramberger P, Boben J, Ravnikar M, ?trancar, A.S.m.c.a.b. in, p.a.f.q.o.t.m. virus., J. Chromatogr. A 1144(1). /p p   [3] W. Zhou, J. Bi, J.-C. Janson, A. Dong, Y. Li, Y. Zhang, Y. Huang, Z. Su, Ion-exchange chromatography of hepatitis B virus surface antigen from a recombinant Chinese hamster ovary cell line, Journal of Chromatography A, 1095 (2005) 119-125. /p p   [4] W. Zhou, J. Bi, J.C. Janson, Y. Li, Y. Huang, Y. Zhang, Z. Su, Molecular characterization of recombinant Hepatitis B surface antigen from Chinese hamster ovary and Hansenulapolymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering, Journal of Chromatography B, 838 (2006) 71-77. /p p   [5] S.Q. Liang, Y.L. Yang, L.J. Sun, Q.Z. Zhao, G.H. Ma, S.P. Zhang, Z.G. Su, Denaturation of inactivated FMDV in ion exchange chromatography: Evidence by differential scanning calorimetry analysis, BiochemEng J, 124 (2017) 99-107. /p p /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制