当前位置: 仪器信息网 > 行业主题 > >

吡喃岩藻糖基

仪器信息网吡喃岩藻糖基专题为您提供2024年最新吡喃岩藻糖基价格报价、厂家品牌的相关信息, 包括吡喃岩藻糖基参数、型号等,不管是国产,还是进口品牌的吡喃岩藻糖基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡喃岩藻糖基相关的耗材配件、试剂标物,还有吡喃岩藻糖基相关的最新资讯、资料,以及吡喃岩藻糖基相关的解决方案。

吡喃岩藻糖基相关的资讯

  • 黄超兰与高福团队描绘新guan刺突蛋白糖基化图谱
    新突破新guan肺炎自2019年暴发以来,给全社会带来了灾难性的影响,不仅对quan世界人民的健康造成了巨大威胁,还对全球经济产生了震荡性的影响。因此,对新guan肺炎的研究也显得愈发重要。近期,来自北京大学医学部jing准医疗多组学研究中心的黄超兰团队、中国科学院院士高福团队以及中国科学院天津工业生物技术研究所高峰团队,通过采用基于质谱的糖基化修饰鉴定技术,对新guan肺炎颗粒上S蛋白的O-糖基化修饰图谱进行了整体描绘,进而提出了“O-Follow-N”的O糖基化修饰规律,为新guan肺炎的致病机制探索提供了研究基础。而这项出色的研究,也于2021年8月2日以“O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an“O-Follow-N” rule”为题发表在了Cell Research期刊上。糖基化修饰(Glycosylation)是蛋白质主要的翻译后修饰类型,其广泛参与细胞黏附、识别、信号转导等重要过程,影响蛋白质的分泌、运输和稳态调控,可发生在细胞50-70%的蛋白质上,2021年糖基化修饰鉴定被Nature Methods评为zui值得关注的技术之一。根据糖苷链类型,蛋白质糖基化修饰可以分为四类:(1)N-连接糖基化;(2)O-连接糖基化;(3)C-连接糖基化;(4)糖基磷脂酰肌醇锚定。其中O-糖基化修饰,是在高尔基体中产生。它在人体中有70余种常见糖型,无特定氨基酸结构域。目前,对O-糖基化修饰研究存在许多困难,比如:1糖基化修饰的糖链形成无固定模版;2受200多种糖基转移酶的复杂调控;3糖基化肽段剂量水平低;4规模化糖链结构解析通量低;5糖链构成微不均一性,定性与定量困难;6功能性糖基化位点及关键糖结构指认困难。受这些因素影响,对O-糖基化修饰的研究也是少之又少。现阶段,对于大规模、高通量的蛋白质翻译后修饰的研究,zuihao的途径就是利用基于高分辨质谱的蛋白质组学技术。在这篇报道中,黄教授等团队,就是通过基于质谱的蛋白质组学技术,克服一系列困难,shou次对新guan病毒上S蛋白的O-糖基化进行了综合性描绘。实验中,研究者为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,首先从SARS-CoV-2病毒颗粒上获得S蛋白,并使用了LysC+Trypsin, Chymotrypsin, GluC, Elastase 以及 alpha-Lytic等多种蛋白酶将S蛋白酶解成肽段。而对于这种复杂糖蛋白酶解后产生的肽段,普通质谱很难进行检测。研究者则采用了具有超高分辨率的Orbitrap Eclipse 三合一质谱仪,并利用三合一仪器多种碎裂功能中的阶梯HCD(stepped collisional energy SCE),HCD(Higher-energy collisional dissociation)以及组合式的HCDpdEThcD三种碎裂方法进行质谱分析。图1. Orbitrap Eclipse 三合一质谱仪Orbitrap Eclipse三合一质谱仪是一台不仅拥有着CID, HCD, ETD HD, EThcD HD, ETciD, UVPD, PTCR等多种碎裂模式的质谱仪,而且还具有高达50万的分辨率,能够对多种形式的修饰肽段进行jing准定性与定量,为研究者提供了更坚实的硬件基础。研究中,研究者共鉴定到了39个糖基化修饰位点。其中包括此前已报道的22个N-糖基化修饰位点,以及17个O-糖基化修饰位点。值得注意的是,这17个O-糖基化修饰位点是shou次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到的。并且通过深入分析这些位点,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn, N)附近。为了更准确的对这一现象进行挖掘,研究者将NxS/T共有基序内糖基化的N每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实N糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。基于以上分析,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。图2.新guan病毒S蛋白上符合“O-Follow-N”规律的O糖基化修饰(点击查看大图)小结Summary研究基于前沿的质谱分析技术,通过使用超高分辨的三合一质谱仪Orbitrap Eclipse,揭示了新guan病毒上S蛋白的O糖基化修饰谱,进而提出了O 糖基化修饰的“O-Follow-N”规律,同时这一规律也可能适用于其它蛋白。这个规律提示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。黄超兰(北京大学医学部jing准医疗多组学研究中心主任)问根据您的经验,O-糖基化修饰鉴定的难点在哪里?答对于所有的蛋白翻译后修饰鉴定都普遍存在着几个相同的难点:(1)修饰丰度相对较低,难以直接鉴定,往往需要进行修饰富集,因此对样本量等要求较高;(2)修饰调节为动态变化过程,鉴定重复性会相对低一点。而对于O-糖基化修饰,因其特殊性,又有几个其他因素影响:(1)糖基化修饰的糖链形成无固定模版,且受多种糖基转移酶的复杂调控;(2)规模化糖链结构解析通量低,定性与定量困难;(3)功能性糖基化位点及关键糖结构指认困难。问Orbitrap Eclipse Tribrid三合一质谱联用仪在该研究中发挥了怎样的作用?答在我们的实验体系中,使用了多种蛋白酶对S蛋白进行处理,因此会产生长短不一,形式各异的肽段,而这就要求配套的质谱仪器能够具有多种碎裂模式,而 Orbitrap Eclipse质谱仪就很好地满足了我们的需求。并且Orbitrap Eclipse具有很好的分辨率以及稳定性,这对我们的实验提供了很大帮助。问新guan病毒颗粒上提取的S蛋白O-糖基化修饰图谱的揭示对新xing冠状病毒肺炎的研究有哪些帮助?答我们在实验中发现了“O-Follow-N”变化规律,这对研究糖基化的变化具有很好的提示作用。并且这个规律也显示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。专家介绍黄超兰教授长期致力于质谱和蛋白质组学前沿新技术和方法的研究开发,应用范围包括生物学基础、医学和临床研究,是高度跨界,善于交叉学科整合,战略规划制定和人员管理的quan方位技能科学家。如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • SCIEX最新推出快速生物药糖基标记与分析试剂盒
    方案为研究者提供比传统方法更快检测糖基化变化的能力 中国北京讯- SCIEX是生命科学分析技术的全球领先的公司,在2017年1月24号发布了针对于生物制药表征中大量糖基化表征的快速糖标记与分析试剂盒。传统分析中耗时的样品制备和数据分析,现在可以在SCIEX公司PA800 Plus生物分析系统上通过快速糖释放、标记和分离,进行糖基定性定量分析,从而加快研究者的工作流程。 平均一小时的样品制备,而后进行96个分离程序,快速糖分析试剂盒分析糖的速度比传统的HILIC方法快五倍。这使研究者可以快速检测糖基的变化,帮助他们监测可能影响功能变化和生物药的功效、清除效率的糖型分布。自动的糖基化定性不再需要手动而乏味的糖基数据库搜索,排除了分析过程中潜在的人为因素。SCIEX公司提供的方案使分析方法开发和QC实验室的研究者可以对生物药中的糖基进行有效的定性和定量,有助于保证治疗效果。 糖基化对生物药的疗效、免疫原性和清除效率的非常关键。对单克隆抗体(mAb)来说,它可导致抗体依赖性细胞毒性(ADCC)和补体依赖的细胞毒性(CDC)的增加或减少。缺少高分辨的糖基化信息(如岩藻糖基化和非岩藻糖基化结构的分离)以及不可靠的结果会对患者和研究机构产生很大的风险。 使用客户定制的内标,可以直接在SCIEX公司PA800 Plus软件上计算糖单位(GU)。SCIEX公司提供了全面的糖单位参考表用于糖单位的计算,用户也可以添加自定义的特殊糖基种类。SCIEX公司快速糖分析方法中的样品处理可以在Beckman Coulter的 Biomek自动化工作站上使用,来进一步提高实验室的通量和效率。 SCIEX公司产品经理Mark Lies 说过“通常糖分析需要研究者很有耐心的花费一整天进行样品前处理。SCIEX公司提供的解决方案具有自动化鉴定糖基的特点,平均几分钟即可完成样品的制备、对糖基进行定性和定量分析,保证了整个实验室更高的工作效率”。 SCIEX公司快速糖标记与分析试剂盒最近获得了生物国际(BPI)“最佳技术应用与分析奖”,展示创新的新增功能与其它分析技术的结合。 了解更多关于新的快速糖标记与分析试剂盒 关于SCIEX公司SCIEX公司帮助科学家和研究员在他们面对的复杂的分析挑战中探索答案,改善我们生活的世界。SCIEX公司在毛细管电泳、液质联用的全球领导地位和世界一流的技术服务支持下,使它成为了在基础研究、药物开发、食品与环境检测、法医学与临床研究领域值得信赖的合作伙伴。 伴随着超过40年的成熟创新,SCIEX公司擅长聆听和了解客户不断变化的需求,开发可靠、灵敏、直观的解决方案,继续重新定义在常规和复杂分析中可实现的部分。更多信息,请访问sciex.com.cn。 ###媒体联络: 范雪,易思闻思公关咨询Nicole@eastwestpr.com+86 10 65820018
  • 黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱, 揭示“O-Follow-N”糖基化新规律
    CellRes. | 突破!黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱,揭示“O-Follow-N”糖基化新规律  蛋白质糖基化修饰是生物体内最重要的翻译后修饰之一,发生在细胞50%-70%的蛋白上。病毒囊膜蛋白的糖基化修饰具有广泛的功能,包括调控蛋白质稳定性、病毒的趋向性、和保护潜在的抗原表位免受免疫监视等。深入了解新型冠状病毒(SARS-CoV-2)刺突蛋白(Spike, S)的糖基化修饰对于新型冠状病毒肺炎(COVID-19)发病机制的探索,疫苗和治疗药物的设计开发,以及检测试剂盒的生产具有重要意义。此前研究者在体外纯化表达的S蛋白胞外域和从病毒颗粒中提取的S蛋白中共鉴定到了22个N-糖基化修饰位点1,2。而由于技术和样本来源的限制,已有研究仅在纯化的S蛋白上鉴定到了一些O-糖基化修饰位点,截止目前,尚未进行病毒颗粒上S蛋白的O-糖基化修饰的研究。近日,北大-清华生命科学联合中心黄超兰团队,和中国科学院院士高福团队,中国科学院天津工业生物技术研究所高峰团队等开展合作研究,采用基于质谱的糖基化鉴定技术,首次揭示了病毒颗粒上提取的S蛋白O-糖基化修饰图谱,并提出了“O-Follow-N”的O糖基化修饰规律。该研究以“O-glycosylation pattern of the SARS-CoV-2 spike proteinreveals an “O-Follow-N” rule”为题于2021年8月2日线上发表在Cell Research期刊上。为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,研究者从SARS-CoV-2病毒颗粒上获得S蛋白,用多种蛋白酶酶解成肽段,采用纳升液相色谱以及具有超高分辨率的Orbitrap Eclipse Tribrid三合一质谱联用仪,利用阶梯能量HCD (stepped collisional energy SCE),HCD (Higher-energy collisional dissociation) 以及HCDpdEThcD三种碎裂方法进行质谱分析。本研究中,研究者不但成功鉴定到了此前已报道的22个N-糖基化修饰位点,还首次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到了17个O-糖基化修饰位点。值得注意的是,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn)附近。研究者将NxS/T共有基序内糖基化的Asn每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点数有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实Asn糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。综上,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。  图. SARS-CoV-2病毒S蛋白的糖基化修饰遵循“O-Follow-N”规律 本研究基于前沿的质谱鉴定技术,揭示了S蛋白的O糖基化修饰谱,提出了O糖基化修饰的“O-Follow-N”规律,这一规律可能适用于其它蛋白,提示O-糖基化修饰具有潜在的新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式3。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,深耕前沿技术方法开发,为推动基础生物学和临床领域的创新研究提供最有质量保证的蛋白质组和质谱技术手段。中国科学院微生物研究所高福院士,北大-清华生命科学联合中心、北京大学医学部精准医疗多组学研究中心黄超兰教授,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国科学院天津工业生物技术研究所高峰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士,中国科学院天津工业生物技术研究所李德林博士,北京大学医学部精准医疗多组学研究中心博士研究生张楠,中国科学院天津工业生物技术研究所博士研究生白桂杰、原恺博士为本文的共同一作。 原文链接:https://www.nature.com/articles/s41422-021-00545-2
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 质谱检测新策略助力深度解析阿尔兹海默症相关糖蛋白APP的糖基化
    阿尔兹海默症(Alzheimer’s diseases,AD)是最常见的一种神经退行性疾病,临床表现为渐进性记忆损伤,认知功能障碍,语言障碍等精神症状。我国现有1000多万AD患者,是世界上患者数量最多的国家。且随着人口老龄化,这个数字还在急剧增加,据预测到2050年中国AD患病人数将超过4000万,给我国社会经济以及患者家庭带来极大负担。阿尔兹海默症主要特点为病人脑组织中β淀粉样蛋白(Aβ)的异常产生和累积。Aβ形成的前体蛋白APP(amyloid protein precursor)是一种高度糖基化修饰的糖蛋白。蛋白质糖基化是一类重要的蛋白质翻译后修饰,参与蛋白稳定表达,蛋白加工剪切,细胞间的靶向识别及相互作用等生理过程。越来越多的研究表明糖基化对APP的加工及Aβ的产生具有关键的调控作用,精准判定APP糖基化修饰信息,对深入理解app蛋白在AD疾病发生中的作用和疾病早期诊断方法开发上具有重要意义。 近日,上海交通大学系统生物医学研究院张延课题组与严威课题组联合开发了一种基于质谱多碎裂方式组合靶向完整O-糖肽的质谱解析方法(Targeted MS combined Multi-fragment strategy,TMMF)。 该方法精准描绘出APP蛋白的O-糖基化修饰位点和糖链结构。为从蛋白质糖基化修饰水平理解app的分子功能与AD的发病机制,发现AD治疗靶点以及开发AD早期诊断策略提供了新的思路。该成果以“Comprehensive analysis of O-glycosylation of amyloid precursor protein (app) using targeted and multi-fragmentation MS strategy”为标题发表在国际著名生物化学与生物物理学期刊(BBA-General Subjects)上。(生物谷Bioon.com)
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 国科大发表蛋白质糖基化与人类重大疾病发生机制综述文章
    蛋白质糖基化是目前在高等真核生物中发现的最普遍、最重要的蛋白质翻译后修饰方式之一,该类修饰涉及聚糖与蛋白质分子的连接,是蛋白质分子正确折叠、维持稳定、参与互作和细胞黏附等活动所必需的。异常的糖基化修饰会导致多种人类重大疾病的发生,如白血病(leukemia)、胰腺功能障碍(pancreatic dysfunction)、阿尔茨海默病 (Alzheimer’s disease, AD)等。由于糖基化的复杂性,研究难度大,相关领域研究起步较晚,研究结果还不尽完善。中国科学院大学博士生导师、教授郎明林课题组发表了蛋白质糖基化与人类重大疾病发生机制综述,该研究通过探索葡萄糖的调控角色,突出了葡糖转移酶的功能结构特性及其对人类健康和疾病的影响,有利于学界认识葡萄糖修饰的重要性。  在动物胚胎神经系统的发育过程中,Notch蛋白对决定细胞未来命运发挥重要作用;其在成人大脑,特别是海马组织等高突触可塑性区域表达。多种证据表明,Notch1参与了神经元凋亡、轴突回缩和缺血性脑卒引起的神经退行性病变。葡萄糖基化是调控Notch受体S2切割,细胞表面展示、转运,以及EGF重复序列稳定性的重要修饰。由于Notch受体发挥正常功能需要糖基化修饰,其修饰缺陷会引起γ分泌酶(该酶参与淀粉样前体蛋白APP切割形成Aß分子)对Notch的切割,可能参与AD发病的机制。Notch蛋白保守的表皮生长因子EGF-like重复序列的葡萄糖基化由O-葡糖基转移酶POGLUTs催化完成,该酶通过KDEL-like信号驻留于内质网中。POGLUTs不仅具有葡萄糖基转移酶活性,还具有连接木糖至EGF保守重复序列的木糖基转移活性,而这些酶活特性的实现取决于内质网内糖的浓度水平和酶的构象变化。此外,POGLUTs通过Notch蛋白和转化生长因子β1(TGF-β1)信号,操纵了正常细胞周期循环或增殖所需的周期蛋白依赖性激酶CDKIs的表达。已有研究发现,POGLUTs异常过度或下调表达均会导致一些严重的并发症发生,如肌肉萎缩症、白血症、肝功能障碍等。POGLUTs通过控制不同CDKIs的表达,可发挥对细胞增殖诱导和抑制的双重作用。该研究评述有利于学界更深入地了解葡萄糖在当前糖生物学、癌症和细胞通信等研究领域中扮演的角色。  相关研究成果以Structure, Function, and Pathology of Protein O-Glucosyltransferases为题,在线发表在Nature子刊Cell Death & Disease上。国科大生命科学学院博士生Muhammad Zubair Mehboob为论文第一作者,郎明林为论文通讯作者。研究工作得到生物互作卓越创新中心、国家自然科学基金、北京市自然科学基金、河北省应用基础研究计划重点基础研究项目和河北省百名创新人才计划项目的支持。  论文链接
  • 聚焦学术前沿,2021年全国糖科学与糖工程学术会议暨产业论坛圆满闭幕!
    仪器信息网讯 7月11日,2021年全国糖科学与糖工程学术会议暨产业论坛在重庆圆满闭幕。大会为期两天,吸引了全国近千名代表参会,仪器信息网作为大会独家直播合作媒体进行了全程报道。11日,大会进入第二天日程,上午3个分会场同时进行,分别为糖链/糖蛋白生物合成与表达体系分会、蛋白质糖基化修饰分会、多糖/寡糖结构功能与应用技术分会,共邀请40位专家、学者阐述糖科学前沿最新研究成果,分享糖工程技术的最新进展。糖链/糖蛋白生物合成与表达体系分会现场蛋白质糖基化修饰分会现场多糖/寡糖结构功能与应用技术分会现场11日下午,中国科学院院士饶子和、中国科学院微生物研究所研究员金城担任大会主持。中国科学院院士、中国生物工程学会理事长高福作了题为:《蛋白糖基化在病毒感染与免疫识别中的作用》大会开场报告。大会报告现场中国科学院院士饶子和视频主持中国科学院微生物研究所研究员金城主持中国科学院院士、中国生物工程学会理事长高福报告题目:《蛋白糖基化在病毒感染与免疫识别中的作用》高福院士在报告中指出,人类的生命活动离不开糖,并讲述了糖生物学的重要性,蛋白翻译后修饰(PTM)、糖基化修饰对肿瘤免疫治疗的影响、SARS病毒S蛋白的N糖、O糖研究现状,重点介绍了和病毒感染相关的高度糖基化免疫球蛋白PD-1,从不同表达系统PD-1蛋白的稳定性差异等方面研究,总结出保守的N糖结构导致其特异性降低、PD-1抗体药研发要尽量避开糖基化修饰位点。高福院士在会上对本次会议给予高度的肯定,同时强调了糖科学与糖工程在生命科学研究中的关键作用以及在大健康产业应用中的广阔前景和迫切需求,呼吁更多的专家学者和产业界人士关注糖科学研究与糖工程产业。此外,中国科学院上海有机化学研究所研究员俞飚、东北师范大学教授周义发等特邀嘉宾分别作了精彩的大会报告。中国科学院上海有机化学研究所研究员俞飚报告题目:《Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus》细菌表面的脂多糖,是革兰氏阴性菌细胞壁的重要成分,其多糖大都具有显著的诱导炎症的效应,是细菌内毒素的主要成分。俞飚研究员在二糖水平上解决了其中难以构建的β-D-甘露糖苷键的大量合成,把正交保护的二糖砌块制备成给体和受体,通过较易控制的α-鼠李糖糖苷化反应得到四糖,通过迭代组装得到了全保护的8糖、16糖、32糖、64糖和128糖,并详细介绍了线性最长的128聚糖化学合成方法、表征方法和对免疫的影响。东北师范大学教授周义发报告题目:《天然活性多糖的构效关系研究策略》天然活性多糖构效关系的核心问题和研究策略在糖类研究中十分重要。周义发教授从建立组合法分离纯化多糖/寡糖的技术体系、综合分析方法、糖降解酶库等方面介绍了多糖构效关系的研究策略。以人参多糖为例,建立了系统纯化人参多糖的方法,得到了人参多糖的各种级分,将国内外人参多糖的研究工作关联起来。随后,张树政糖科学获奖者南方科技大学教授王鹏、西北大学教授关锋、浙江大学教授易文、中国科学院上海药物研究所研究员黄蔚作大会报告。南方科技大学教授王鹏报告题目:《为糖生物学提供工具》王鹏教授介绍了核心化学合成/酶促扩增(CSEE) 方法。从5个简单的单糖出发, 通过化学合成的方法得到8种末端含GlcNAc的N-Glycan核心结构, 然后 使用糖基转移酶通过遵循多种不同的生物合成途径来延长核心,以产生具有高度 多样性的含5-15单糖的寡糖化合物, 使用CSEE方法最终生产了含73个糖的N-糖文库(Chemical Science, 2015, 6, 5652) 。此外,王鹏教授还分享了在寡糖和糖肽合成的自动化 、合成糖组学、糖基化抗肿瘤药物等方面的研究成果。西北大学教授关锋报告题目:《基于组学的肿瘤糖生物学研究》在异常糖基化修饰与肿瘤特征的关系中,肿瘤细胞有自给自足生长信号、抗生长信号的不敏感、抵抗细胞死亡、潜力无限的复制能力、持续的血管生成、组织浸润和转移、避免免疫摧毁、促进肿瘤的炎症、细胞能量异常、基因组不稳定和突变等十大特征。关锋教授讲解了基于MALDI-TOF技术解析细胞/组织模型中糖链的表达差异,建立化学衍生结合质谱鉴别不同键型唾液酸链接的方法、乳腺癌中FUT8的分子调控机制、癌细胞平分糖链变化等。浙江大学教授易文报告题目:《乙酰葡萄糖胺修饰(O-GlcNAc)的研究》O-GlcNAc修饰在生物体内极其重要,具有单糖、可逆修饰、对环境敏感、修饰丰度低等特点。修饰协调胚胎发育、免疫应答及细胞分化。而修饰异常则会导致肿瘤病变、发育缺陷、代谢失衡。易文教授从如何捕捉O-GlcNAc修饰、如何确定O-GlcNAc修饰的蛋白、O-GlcNAc如何调控蛋白的功能等三个关键问题,介绍团队对O-GlcNAc的研究。中国科学院上海药物研究所研究员黄蔚报告题目:《蛋白糖基化调控方法及其在糖类药物研究中的应用》蛋白质糖基化可以提高药物治疗效果和降低毒副作用,但蛋白结构复杂多样,通过表达体系调控N-糖基化具有一定挑战性。黄蔚研究员建立和发展了细胞表面受体糖链编辑方法与技术,利用各类Endo糖苷酶及其突变体的底物选择性,分别对细胞表面糖链进行亚型选择性“删除”和“插入”操作,实现对膜蛋白糖基化的结构编辑。此外,黄蔚研究员还分享了在抗体药物糖基化的调控策略、基于糖基化的药物受体分子模型、GPCR等药物受体糖基化的研究。报告结束后,中国生物工程学会糖生物工程专业委员会主任委员、大会主席杜昱光主持产业论坛。本次论坛聚焦大健康背景下糖工程产业的机遇与挑战、糖科学研究转化中存在的问题以及未来糖工程产业的发展方向等。中国生物物理学会糖生物学分会会长王鹏、中科院微生物生理与代谢工程重点实验室主任陶勇、华熙生物科技股份有限公司首席科学家郭学平、东北师范大学生命科学学院院长周义发、北京同仁堂股份有限公司科学研究院部长范国强、国家糖工程技术研究中心副主任肖敏、澳门国际中草药糖科学研究学会会长赵宁、先正达集团(中国)生物农药产品线经理宋荣,共同上台参与论坛的讨论。中国生物工程学会糖生物工程专业委员会主任委员、大会主席杜昱光主持糖工程产业论坛现场论坛围绕糖科学研究如何与大健康产业的需求紧密结合、中医药多糖的发展趋势、在大健康背景下,企业未来的发展方向和糖工程的关系、糖工程技术转化的要点痛点与难点、糖工程产业未来3-5年的风口和高潜力发展地区、中国需要糖工程产业,年轻人创业如何选择,如何开始等问题展开热烈的讨论。为奖励做出优秀科研工作的研究生和博士后,大会特设“优秀墙报奖”颁奖环节。经过评审委员会的严格评选,共选出十名优秀墙报奖获奖者,分别是丁亚琦(中国科学院上海药物所)、程汉超(南方科技大学)、邓陶(上海交通大学)、闫振鑫(山东大学)、张念竹(大连医科大学)、项梦海(江南大学)、吴金澎(西北大学)、宋淑淑(复旦大学)、李瑞莲(中国科学院过程工程研究所)、刘思思(江南大学)。(排名不分先后)优秀墙报奖获奖者合影部分参展商后记糖工程技术是我国高新技术及新产业革命支柱之一,这次会议的召开推动了糖科学科研与产业的交流,加速了糖工程产业化的进程。为期两天的大会中,国内外糖化学、糖生物学及糖工程等领域知名的专家、学者和业界人士等在本次学术会议暨产业论坛上围绕“糖科学与糖工程产业”,共同研讨糖链结构功能、制备技术、检测分析方法,以及糖类药物、营养食品、生物医用材料研究开发等相关领域的最新研究进展和成果,并就我国糖生物工程产业的现状及产业结构升级展开了多视角、跨学科的交流。内容丰富的学术报告和讨论热烈的产业论坛都让参会代表受益匪浅,让我们见识到糖科学领域的高水平发展和糖工程产业的蓬勃生机,相信通过糖科学与糖工程领域的众研究学者与产业同仁的共同努力,糖科学与糖工程的未来会绽放出更璀璨的光芒,让我们共同期待下一届将在珠海横琴举办的会议!
  • 食品工业用酶制剂新品种果糖基转移酶获批 7种食品添加剂扩大使用范围
    p   国家卫生计生委近期发布公告称,根据食品安全法规定,审评机构组织专家对食品工业用酶制剂新品种果糖基转移酶(又名β—果糖基转移酶)和食品添加剂单,双甘油脂肪酸酯等7种扩大使用范围的品种安全性评估材料审查并通过。 /p p    strong 果糖基转移酶(又名β—果糖基转移酶) /strong /p p   米曲霉来源的果糖基转移酶(又名β-果糖基转移酶)申请作为食品工业用酶制剂新品种。日本厚生劳动省允许其作为食品添加剂使用。 /p p   该物质作为食品工业用酶制剂,用于生产低聚果糖。其质量规格应执行《食品添加剂 食品工业用酶制剂》(GB 1886.174-2016)。 /p p    strong 单,双甘油脂肪酸酯 /strong /p p   单,双甘油脂肪酸酯作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许在各类食品中按生产需要适量使用(表A.3所列食品类别除外)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为食品添加剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量不需要限定。 /p p   该物质用于经表面处理的鲜水果(食品类别04.01.01.02)和经表面处理的新鲜蔬菜(食品类别 04.02.01.02),发挥被膜剂作用。其质量规格应执行《食品添加剂单,双甘油脂肪酸酯》(GB 1886.65-2015)。 /p p    strong dl—酒石酸 /strong /p p   dl-酒石酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于面糊、裹粉、煎炸粉、油炸面制品、固体复合调味料、果蔬汁(浆)类饮料、植物蛋白饮料、碳酸饮料、风味饮料等食品类别,本次申请其使用范围扩大到糖果(食品类别05.02)。澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为酸度调节剂用于食品。 /p p   该物质作为酸度调节剂用于糖果(食品类别05.02),调节产品的口味。其质量规格应执行《食品添加剂dl-酒石酸》(GB 1886.42-2015)。 /p p    strong 可溶性大豆多糖 /strong /p p   可溶性大豆多糖作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于脂肪类甜品、冷冻饮品、大米制品、小麦粉制品、淀粉制品、方便米面制品、冷冻米面制品、焙烤食品、饮料类等食品类别,本次申请其使用范围扩大到配制酒(食品类别15.02)。日本厚生劳动省允许其作为食品添加剂用于食品。 /p p   该物质作为增稠剂、乳化剂用于配制酒(食品类别15.02),调节产品的口感。其质量规格应执行《可溶性大豆多糖》(LS/T 3301-2005)。 /p p    strong 亮蓝 /strong /p p   亮蓝作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、果酱、凉果类、加工坚果与籽类、焙烤食品馅料及表面用挂浆、调味糖浆、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为6mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 亮蓝》(GB 1886.217-2016)。 /p p    strong 磷酸 /strong /p p   磷酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、水油状脂肪乳化制品、冷冻饮品、小麦粉及其制品、杂粮粉、食用淀粉、焙烤食品、预制肉制品、水产品罐头、调味糖浆、固体复合调味料、婴幼儿配方食品、婴幼儿辅助食品、饮料类、果冻、膨化食品等食品类别,本次申请其使用范围扩大到特殊医学用途婴儿配方食品(食品类别13.01.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为酸度调节剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的最大容许摄入量为70 mg/kg bw。 /p p   该物质作为酸度调节剂用于特殊医学用途婴儿配方食品(食品类别13.01.03),调节产品的口味。其质量规格应执行《食品添加剂 磷酸》(GB 1886.15-2015)。 /p p    strong 柠檬黄 /strong /p p   柠檬黄作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、冷冻饮品、果酱、凉果类、加工坚果与籽类、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为10 mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 柠檬黄》(GB 4481.1-2010)。 /p p    strong 乳酸链球菌素 /strong /p p   乳酸链球菌素作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、杂粮罐头、预制肉制品、熟肉制品、熟制水产品、蛋制品、醋、酱油、酱及酱制品、复合调味料、饮料类等食品类别,本次申请其使用范围扩大到腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02)。国际食品法典委员会、欧盟委员会、美国食品药品管理局、澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为防腐剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为2mg/kg bw。 /p p   该物质作为防腐剂用于腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02),起到防腐、保鲜的作用。其质量规格应执行《食品添加剂 乳酸链球菌素》(GB 1886.231-2016)。 /p p style=" text-align: right "   日期:2018-03-19 /p
  • 十年耕耘蛋白糖基化质谱分析技术——对话北京大学分析测试中心,质谱实验室高级工程师,周文
    蛋白质的糖基化修饰是一种重要的蛋白翻译后修饰。对于蛋白糖基化修饰的深入表征将有助于加深糖基化作用机制的理解,为相关疾病药物、疫苗的研发提供理论基础,然而糖基化修饰的类型和结构非常复杂,给分析检测带来了非常大的难度。过去10年间,北京大学分析测试中心高级工程师周文和多个课题组深入合作,致力于针对不同种类的糖基化发展相应的质谱分析检测新方法。北京大学分析测试中心高级工程师周文在过去的20年里,糖基化修饰领域在仪器方面有了很多进展,如从传统的碰撞解离到现在的电子转移解离(ETD)的碎裂方式,同时还可以将不同的碎裂方式进行组合。周文形容到,ETD就像闪电一样,它的碎裂过程非常的快,更便于我们进行糖基化的分析。周文表示,希望让更多人关注分析测试领域,也给分析测试人员更多的展示自己的舞台,相信将来一定会有更多的优秀人才加入到我们当中来!
  • 北京基因组所等揭示O-GlcNAc糖基化修饰维持基因组稳定性的分子机制
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   DNA总是受到内源或外源环境中多种损伤因子的攻击,例如DNA复制错误、细胞代谢产物、电离辐射、紫外线照射和化疗试剂等,这些因素都会引起DNA损伤的产生。如果不能够及时有效修复DNA损伤,将导致基因组不稳定性,进而诱发多种人类疾病,如肿瘤、神经退行和出生缺陷。为维持基因组稳定性,生物体进化出一套保护机制来监控DNA损伤并及时修复,这一机制即为DNA损伤应答。 /p p   中国科学院北京基因组研究所郭彩霞研究组与中科院动物研究所唐铁山研究组合作,通过质谱技术发现跨损伤合成DNA聚合酶Polη第457位苏氨酸能发生一种新的蛋白质翻译后修饰:氧连糖基化修饰(O-GlcNAcylation)。已知在紫外线辐射或顺铂等化疗试剂暴露条件下,跨损伤合成DNA聚合酶Polη被招募到复制叉处替换高保真性DNA复制酶,在相应的损伤DNA模板对侧整合正确的核苷酸,从而促进复制叉的继续前行。但与高保真的DNA复制酶相比,Polη复制未损伤DNA模板的错误率显著升高(10 sup -2 /sup ~10 sup -3 /sup ),极易导致遗传信息不能够正确地从亲代细胞传递到子代细胞中,因此它到复制叉的招募和移除必须受到严格调控,然而关于Polη在TLS完成后如何从复制叉解离尚不清楚。研究发现,干扰Polη的氧连糖基化修饰虽不影响其被招募到受阻复制叉处及其在损伤DNA模板对侧整合核苷酸的能力,但显著削弱Polη与CRL4 sup CDT2 /sup E3泛素连接酶之间的相互作用,降低第462位赖氨酸的多泛素化修饰水平,进而抑制p97-UFD1-NPL4复合体所介导的Polη与复制叉分离的过程,导致细胞内突变率上升、细胞对紫外线和顺铂试剂敏感性增强、DNA复制叉移动速率变缓等。该项研究工作揭示了Polη 氧连糖基化修饰与泛素化修饰之间的互作关系,以及DNA复制过程中多种DNA聚合酶转换的分子机制。Polη在多种肿瘤细胞中表达显著升高,与顺铂等化疗药物的耐药性产生密切相关,也与非小细胞肺癌患者的生存期呈负相关。 /p p   该发现首次报道氧连糖基化修饰参与调控细胞跨损伤合成过程并维持基因组稳定性,从DNA损伤应答角度揭示了对营养水平敏感的氧连糖基化修饰调控基因组稳定性和肿瘤耐药性的分子机制,为解决顺铂等化疗药物的耐药性提供新的思路和策略,有望改善部分肿瘤患者的生存状况。 /p p   研究工作以 em Polη O-GlcNAcylation governs genome integrity during translesion DNA synthesis /em 为题,在线发表在 em Nature Communications /em 上。研究工作获得了国家自然科学基金委、科技部等的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171212545298381499.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/afc0a60a-899a-40ca-87bc-2c12afb7ef13.jpg" uploadpic=" W020171212545298381499.jpg" / /p p style=" text-align: center " O-GlcNAc糖基化修饰调控Polη与复制叉解离的分子机制示意图 /p
  • 沃特世和PREMIER Biosoft合作推广多聚糖数据分析软件
    强强联手应对生物制药分析的苛刻要求 盐湖城, 犹他州 - 2010年5月24日 沃特世公司(WAT:NYSE)今天宣布已经与PREMIER Biosoft国际公司(帕洛阿尔托,加州)达成协议:双方携手推广该公司的SimGlycan® 软件以及沃特世质谱分析方案,用于多聚糖和糖肽分析。根据协议,沃特世将继续销售和支持其多聚糖质谱分析方案,而PREMIER Biosoft公司则将其软件卖给将使用沃特世SYNAPTTM和XEVOTM质谱平台进行多聚糖和糖肽分析的客户。 通过利用PREMIER Biosoft的SimGlycan数据分析软件来扩展沃特世分离科学产品、质谱仪和超高效液相(UPLC® )色谱柱方案,可以帮助生物制药企业获取生物药物关键信息,这些信息对于了解该药物的稳定性和安全性至关重要。 糖基化的重要性引起了FDA法规的关注和监管 多聚糖是随蛋白质翻译后连接在生物药物如蛋白质、多肽或单克隆抗体上的支链多聚糖分子。细胞中多聚糖加成和成熟反应的最终结果是不均匀的生物药物修饰,而不同的糖基化形式可对生物药物的有效性和安全性产生不同的影响。因此确定生物药物的糖基化位点和多聚糖的糖型及数量对于评价药物的有效性和安全性是必须的,由于存在各种不同的复杂多糖结构,对分析技术提出了很高的要求。另一方面,糖基化的一致性与否通常被作为一个灵敏度很高的标志,以此来判断制药公司是否对生物药物生产过程进行了有效的控制。为此,美国食品药品监督管理局FDA和其它法规机构也提出了相应的指导原则,要求对蛋白质药物糖基化进行更为严格的控制,这将使生物制药行业针对分析技术进行更大的投入,以便更好地分析和了解复杂的生物治疗药物。 关于沃特世的UPLC多聚糖分析方案 沃特世UPLC多聚糖分析方案由ACQUITY UPLC BEH多聚糖分析专用色谱柱配合带荧光检测器的ACQUITY UPLC® 系统组成,用于分析2-氨基苯甲酰胺(2-AB)或其它荧光试剂标记的生物药物经酶处理后得到的多聚糖混合物。UPLC多聚糖分析方案提供比HPLC方案更好的分析结果,具有重现性好、分离度高、灵敏度高且分析速度快的特点,能够帮助实验室分析检测多聚糖的同分异构体(质量数相同、但保留时间不同),进行不同种类多聚糖如高甘露糖、中性以及唾液酸化的多聚糖分析,并同时对相对丰度很低的多聚糖进行分析(相对于其它多聚糖来讲)。 沃特世UPLC多聚糖分析方案配合沃特世质谱仪器使用可以对多聚糖结构进行确证。作为MS/MS数据分析的工具,SimGlycan软件可预测蛋白质分子上的多聚糖结构、对其进行评分并生成一个与得到的质谱图信息最接近的可能的多聚糖列表。SimGlycan数据库是一个巨大的包含8,553种多聚糖信息的关系型数据库,并持续不断地更新其它新发表的多聚糖信息,可支持糖肽和多聚糖分析。 关于PREMIER Biosoft国际公司(www.premierbiosoft.com ) 成立于1994年,由计算机科学家和生物学家领导,专注于制造用于生命科学研究的最尖端的直观软件。该公司的目标是研究生命科学中最新的创新型技术并将其转化为软件产品以辅助研究。 关于沃特世公司(www.waters.com ) 50年来,沃特世公司(NYSE:WAT)通过提供实用且可持续的创新,实现了全球医疗保健、环境管控、食品安全、水质监测等领域的显著进步,为基于实验室的许多机构创造了商业价值。 沃特世的技术突破和实验室解决方案开创了分离科学、实验室信息管理、质谱技术和热分析的相互组合,为客户提供了一个持久成功的平台。 沃特世公司2009年的收入达15亿美元,员工人数达5,200人;公司正在帮助全球客户推进科研进程,并为其提供绝佳的操作体验。
  • 宁夏化学分析测试协会对《枸杞中维生素C和2-o-β-D-葡萄糖基-L-抗坏血酸的测定 高效液相色谱法》等7项团体标准征求意见
    各相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《枸杞中维生素C和2-o-β-D-葡萄糖基-L-抗坏血酸的测定 高效液相色谱法》等7项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2024年8月21日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com 关于团标征求意见函 -7.22.pdf团标表格7-专家意见表.doc1-2VC.pdf2-2枸杞中生物碱 N-反式阿魏酸酪酰胺及 N-反式阿魏酰真蛸胺的含量测定 高效液相色谱法-标准草案修改.pdf3-2枸杞原浆中类胡萝卜素的测定-标准草案-20240722.pdf4-2枸杞中18种游离氨基酸和核苷的含量测定质量标准草案-0721.pdf5-2液态枸杞产品中枸杞多糖的测定 离子色谱法-团标-20240722.pdf6-2枸杞中3种酚酸和3种黄酮化合物的测定-高效液相色谱法-团标-zyn(1).pdf7-2化妆品中芦丁.pdf
  • 达标蜂蜜未必纯正 新国标未涉及大米糖浆检测
    将不同的蜂蜜样本进行取样萃取。   实验室检测人员在电脑上分析大米糖浆检测数据。   通过酶标仪检测氯霉素残留。   ■ 送检说明   ●组织送检单位:   “绿篮子”食品安全科普组织,由英国大使馆文化教育处指导创建,指定中国土畜进出口商会检验支持。通过媒体公开安全食品标准、解读标准,引导公众作出正确的选择。鼓励企业为食品安全履行更多承诺。   ●送检样本:   慈生堂结晶蜂蜜400g:抽检产品在北京沃尔玛超市随机购买。   同仁堂荆条蜂蜜:从同仁堂北四环华堂商场专柜购买。   百花牌枣花蜂蜜454g:在北京大润发超市购买。   百花调制儿童蜂蜜膏450g:从华堂超市购买。   冠生园纯天然蜂蜜580g:从北京大润发超市民族园店购买。   中粮悦活枸杞蜂蜜454g:在北京北四环华堂超市购买。   福明洋槐蜂蜜500g:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)   感蜂堂洋槐蜂蜜:厂家送交绿篮子团队,委托检测。(非市场领导品牌,在北京购买不到)   ●检测方法:在蜂蜜制造业业内人士的指导下,对比了欧盟、日本等国家蜂蜜标准后,共检测8项内容,按排除法一一检测。   ●检测内容:(按检测步骤先后顺序):SM-R大米糖浆检测、β-呋喃果糖苷酶检测、碳六项检测、TLC检测四项真实性检测 氯霉素、甲硝唑、硝基呋喃、四环素族四项安全性检测。   ●检测机构   秦皇岛出入境检验检疫局:拥有针对蜂蜜类产品最严格的实验室检测方法,是欧盟、日韩等多个发达国家认可的蜂蜜出口检验单位。   ●检测结果   三送检样品掺有大米糖浆   在此次送检的八个样品中,其中有三个样本在SM-R检测中结果呈阳性,证明其中掺入大米糖浆,并非纯正蜂蜜,其中包括北京和上海的某知名品牌的蜂蜜。   其他5个蜂蜜产品在本轮抽检批次中顺利通过了真实性与安全性检测。   【真实性检测】   SM-R大米糖浆检测   将已经萃取提纯的蜂蜜液态样品,送入液相色谱串联质谱仪中。实验人员解释说,如果将色谱柱当作跑道的话,各种不同的物质,通过液相极性分离出不同的糖,由于分子量、分子结构极性不同,在相同助力的推动下,却会先后到达终点。通过色谱图观察,不同物质达到峰值的时间预算,可确定是否是大米糖浆,而通过达到的峰的面积可以确定含有的大米糖浆的含量。   SM-R是大米糖浆里特有的物质,也是判断蜂蜜是否纯正最重要、最基本的检测项目之一,为我国蜂蜜出口欧盟的必检项目之一。如果产品被检测出SM-R呈阳性,则涉嫌在蜂蜜中掺入大米糖浆。大米糖浆虽然也是糖,但却廉价,其保健功效是完全不一样的。   β-呋喃果糖苷酶检测   β-呋喃果糖苷酶检测是在液相色谱仪上进行的,同样的送样、极性分离后的与标准色谱卡的对照,来判断是否含有β-呋喃果糖苷酶。   β-呋喃果糖苷酶,可将蔗糖直接转化成葡萄糖和果糖。作为蜂蜜掺假手段之一,其作用机理是将普通蔗糖的葡萄糖基与果糖基的s-(1,4)糖苷键断裂,生成果糖与葡萄糖。如果在加入二糖蔗糖的同时又加入了β-呋喃果糖苷酶,就可将蔗糖直接转化成葡萄糖和果糖,而天然蜂蜜中90%的成分为葡萄糖和果糖这两种单糖,但这种化学方式生产的“蜂蜜”其营养价值与天然蜂蜜完全不同。   “在这种情况下掺杂糖浆和白砂糖的蜂蜜有可能借助于HPLC也检验不出来。”实验室人员解释说,现在针对β-呋喃果糖苷酶建立了相应的检测方法,针对甜菜糖来源的果葡糖浆掺假进行检测,能够控制一部分的造假行为。   碳六项检测   通过“碳同位素质谱分析仪”检测,这项检测专业的说法叫液相串联同位素质谱检测,来判断蜂蜜中各种糖同位素值的测定方法。液相分离不同的糖,不同糖的同位素比值不一样,来判断糖的种类。   “大米、玉米、马铃薯等植物的糖是碳四植物糖,碳四植物糖通过光合作用产生,不是蜜蜂酿造的,蜂蜜中碳四植物糖含量越高,说明造假越严重。”据业内人士透露,碳同位素检测,主要是通过碳13蛋白和蜂蜜的碳同位素阈值来判断蜂蜜是否掺假,但阈值在-23~--23.5之间的为灰色地带,即不能判断它是否掺假。   TLC检测   又称高果糖浆检测,高果糖浆是一种多糖,淀粉类植物如马铃薯、甜菜糖等都属于高果糖浆,味道和颜色与蜂蜜相似,但是价格比蜂蜜便宜很多。TLC检测使用的是薄层色谱检测法,检测方法看似很老土———通过将样品滴在硅胶板上的“履迹”和颜色深浅,来判断其中是否含有高果糖浆。   【安全性检测】   氯霉素等四项抗生素残留检测   真实性检测均过关的蜂蜜产品,统一通过酶标仪检测氯霉素、硝基呋喃、硝基咪唑类、四环素族,这四项均为蜂蜜中的抗生素残留成分。比如便宜效果好的氯霉素是用来防治蜂病的,但如果蜂蜜中的氯霉素残留,被人体摄取后,会增加致癌的可能性 而甲硝唑可造成恶心、呕吐、腹痛、头晕、站立不稳、精神错乱等症状 硝基呋喃是合成药物,有抑菌作用,但同时也能致癌 四环素残留可能会导致儿童牙齿损害,成人造成肝脏损害。   ■ 检测方声音   对比色谱-质谱发现SM-R   蜂蜜的主要成分是葡萄糖和果糖,掺入糖和糖浆是最简单的方法。针对蜂蜜的掺杂造假的检测方法也一直在发展。常见的掺假方法是通过大米糖浆和甜菜糖浆加入蜂蜜掺假,与甜菜糖浆相比,大米糖浆价格便宜,所以目前最为严重的就是通过大米糖浆掺杂在蜂蜜中造假,又由于检测方法跟不上,市场上有人公然兜售能满足所有蜂蜜检测要求的大米糖浆。   我们今年开始使用通过对比大米糖浆和蜂蜜的色谱-质谱的差别,发现了一种糖浆中特有的物质(SM-R),通过检测该物质能有效地鉴别蜂蜜中是否掺杂了大米糖浆。方法对于掺杂了5%大米糖浆的蜂蜜都能有效的鉴别,方法快速,准确率高。   ■ 行业发言 假蜂蜜形成规模会破坏生态系统   ●周磊,绿篮子食品安全科普团队蜂蜜选题负责人   现行蜂蜜的国家标准为中国蜂产品协会主导,而蜂产品协会的主要成员基本由上海冠生园、北京百花、江西汪氏等国内几大蜂蜜厂家的负责人组成,蜂蜜国家标准虽然规定了“不得添加或混入任何蜂蜜以外的物质”,但没有对检测项目和具体指标做限定,导致检测项目无法鉴别蜂蜜的真假。   尽管新标准仍只使用碳4检测项目来鉴别蜂蜜,但是中国蜂产品协会还是致函卫生部,对新标准提出异议,主要内容是“对不涉及食品安全的感官指标、理化指标等写入食品安全标准提出了行业意见”,并提出暂停执行新标准的建议,力求“放宽”,而非“打假”。   蔗糖蜂蜜、高果糖浆蜂蜜是近年来除了普遍存在的大米糖浆掺假蜂蜜后的另几种高科技蜂蜜造假手段,它们可以欺骗传统的检测仪器,而掺假技术还在发展,很多检测项目结果已不能断定真假蜂蜜,被逐步弱化为“参考指标”。   假蜂蜜虽然吃了无害,但形成规模后,少数蜂农也被动掺假、蜜源无法被控制。人类高依赖性生态圈的花朵授粉已少有野生蜂采蜜,人工蜂业萎缩会导致生态系统连锁受损。
  • 鞠熀先团队顶级期刊发文 细胞表面聚糖检测新成果
    p   在国家自然科学基金项目项目(项目编号:90713015、91213301、91413118、21135002、21635005)等资助下,南京大学鞠熀先、丁霖教授研究团队通过十余年的持续研究,在细胞表面聚糖检测领域取得系列开创性研究成果。 /p p   糖基化模式随细胞生物过程和信号转导通路的改变而发生明显的动态变化,并对多种重要的生物过程具有调控作用。因此,活细胞表面以及特定蛋白上糖型的原位示踪不仅能够加深对蛋白质糖基化过程及其功能的理解,而且有助于新型诊断标志物和治疗靶标的甄定。 /p p   该研究组开创性提出一系列细胞表面聚糖的原位电化学、光学与扫描成像检测方法(J. Am. Chem. Soc. 2008, 130, 7224 Angew. Chem. Int. Ed. 2009, 48, 6465 Anal. Chem. 2010, 82, 5804 Anal. Chem. 2012, 84, 1452 Chem. Sci. 2015, 6, 3769),发展了特定蛋白上聚糖原位检测的多种方法(Angew. Chem. Int. Ed. 2016, 55, 5220 Chem. Sci. 2016, 7, 569 Angew. Chem. Int. Ed. 2017, 56, 8139),实现了细胞表面神经节苷脂的定量、亚型筛查与再生分析(Angew. Chem. Int. Ed. 2018, 57, 785),在细胞表面糖基的原位检测领域提出了奠基性成果(Acc. Chem. Res. 2014, 47, 979 by Prof. M. S. Strano at Massachusetts Institute of Technology),并应邀综述了该领域的发展前沿与趋势(Acc. Chem. Res. 2018, 51, 890)。 /p p   近期,该研究组利用DNA序列的编码功能,构建了一种分级编码策略(Hierarchical Coding Strategy, HieCo)。他们以细胞表面的肿瘤标志物粘蛋白MUC1为模型,O-聚糖糖链末端的唾液酸和岩藻糖为对象,巧妙地设计DNA序列和荧光基团的标记位点,结合适配体识别蛋白技术和糖代谢标记技术,对糖蛋白的蛋白、聚糖两个不同级别的结构单元进行分别编码和掩蔽,利用启动序列与时间编码的杂交引发解码过程,实现了由高级到低级的顺序解码,并提出癌细胞表面MUC1上两种单糖的同时成像方法。与已有的蛋白特异性糖型成像策略相比,该方法可反映目标糖蛋白的真实分级结构,并提供任意扩展的单糖检测通道,实现细胞生理状态改变和上皮细胞-间充质转化过程中两种单糖变化的动态监测,为揭示与聚糖相关的生命过程提供了重要工具。 /p p   这一研究成果以“A hierarchical coding strategy for live cell imaging of protein-specific glycoforms”(分级编码策略用于活细胞表面蛋白特异性糖型的成像)为题发表于Angew. Chem. Int. Ed. 2018, 57, 12007-12011(https://onlinelibrary.wiley.com/doi/10.1002/anie.201807054)。日本糖化学生物学专家Tadashi Suzuki教授在Nature的News and Views专栏以《DNA tags used to image sugar-bearing proteins on cells》为题对该工作进行了介绍和评论(Nature 2018, 561, 38-40)。该文指出:鞠、丁课题组提出的对聚糖进行DNA编码的方法“解决了同时检测特定蛋白上多种聚糖的难题” “由于作为标签的DNA序列在理论上可以有无穷多,该方法可以被拓展为多种聚糖的同时检测” 并且,所使用的DNA不会被转运到细胞内,使该方法“具有专注于细胞表面蛋白研究的优点”。Suzuki教授在评论中高度评价鞠、丁课题组的工作“具有很大的潜力,为发展绿色荧光蛋白标记的类似系统走出了重要的一步”。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/f17ecf36-3d43-45f7-a14e-72dee3bde0e0.jpg" title=" 微信图片_20180928105530.jpg" alt=" 微信图片_20180928105530.jpg" / /p p br/ /p
  • 2021年全国糖科学与糖工程学术会议暨产业论坛会议通知(第二轮)
    2021年全国糖科学与糖工程学术会议暨产业论坛会议通知(第二轮)为促进我国糖生物工程领域的合作交流,加快国内糖科学和糖工程的发展,由中国生物工程学会糖生物工程专业委员会、中国生物物理学会糖生物学分会和重庆医科大学联合主办,重庆医科大学药学院、中国科学院过程工程研究所生化工程国家重点实验室、南方科技大学和上海科技大学承办的“2021年全国糖科学与糖工程学术会议暨产业论坛”定于2021年7月9-12日在重庆市举行。本次会议将邀请国内外糖化学、糖生物学及糖工程等领域知名的专家、学者和业界人士等,围绕“糖科学与糖工程产业”,共同研讨糖链结构功能、制备技术、检测分析方法,以及糖类药物、营养食品、生物医用材料研究开发等相关领域的最新研究进展和成果,并就我国糖生物工程产业的现状及产业结构升级展开多视角、跨学科的交流。热忱欢迎国内外糖科学和糖工程领域的各位专家、学者、业界人士、研究生等踊跃投稿、到会交流!现将有关事项通知如下:一、会议时间和地点时间:2021年7月9-12日(7月9日报到;10-11日会议;12日离会)。地点:重庆市渝州宾馆(重庆市渝中区渝州路168号)。二、会议组织主办单位: 中国生物工程学会糖生物工程专业委员会 中国生物物理学会糖生物学分会 重庆医科大学承办单位: 中国科学院过程工程研究所生化工程国家重点实验室 重庆医科大学药学院、南方科技大学、上海科技大学大会主席: 王鹏 杜昱光 执行主席: 于超 三、特邀嘉宾报告人高福院士、张玉奎院士、饶子和院士、朱蓓薇院士、邵峰院士四、分会场主题与召集人信息分会场一:糖链合成与分析新方法新技术主题内容:糖链合成新方法,糖组、糖芯片、糖链标记示踪新技术等召集人:叶新山(北京大学)、陆豪杰(复旦大学)分会场二:糖链/糖蛋白生物合成与表达体系主题内容:模式生物的糖链合成与功能,糖酶等召集人:肖敏(山东大学)、陶勇(中国科学院微生物研究所)分会场三:糖链与病原感染 主题内容:糖链在病原感染与机体免疫中的功能,糖疫苗、糖药物及诊断试剂等召集人:章晓联(武汉大学)、彭文杰(上海交通大学) 分会场四:蛋白质糖基化修饰 主题内容:糖基化对蛋白质及细胞功能调控等召集人:张延(上海交通大学)、高晓冬(江南大学)分会场五:糖链与疾病主题内容:疾病过程中糖链功能,糖链、糖复合物在疾病诊断、治疗中的作用等召集人:张嘉宁(大连理工大学)、关锋(西北大学)分会场六:多糖/寡糖结构功能与应用技术 主题内容:动植物、微生物来源多糖/寡糖的结构与功能,植物/微生物凝集素等召集人:周义发(东北师范大学)、尹恒(中国科学院大连化学物理研究所)分会场七:肠道微生物糖组与营养健康主题内容:糖链与人/动物营养健康,糖链与肠道微生物等召集人:丁侃(中国科学院上海药物研究所)、余冰(四川农业大学)五、会议日程DAY 1(7月9日)全天参会代表报到14:00-18:00专委会工作会议DAY 2(7月10日)08:00-09:45开幕式、张树政奖颁奖仪式、大会特邀报告09:45-10:00茶歇10:00-12:00大会特邀报告12:00-13:30午餐、休息13:30-15:30分会场报告15:30-15:45茶歇15:45-17:45分会场报告19:00-21:00晚宴DAY 3(7月11日)08:00-09:45分会场报告09:45-10:00茶歇10:00-12:15分会场报告12:15-13:30午餐、休息13:30-15:30大会特邀报告15:30-15:45茶歇15:45-17:15大会特邀报告17:15-17:45糖工程产业论坛17:45-18:05闭幕式、优秀论文颁奖仪式六、会议征文及墙报要求  1、会议摘要征文要求  会议摘要全部通过http://csbt.scimall.org.cn/meeting/TGC/ 网站投稿,截止日期为2021 年5 月10 日。会议摘要将全部收录于会议论文集;会议报告从投稿申请中选取。会议摘要使用Word文档,限A4 纸1 页以内:题目:宋体及Times New Roman字体,小四号,1.5倍行距,居中。作者:宋体及Times New Roman字体,五号,1.5倍行距,居中。单位和邮箱地址:宋体及Times New Roman字体,小五号,1.5倍行距,居中。正文宋体及Times New Roman字体,五号,1.5倍行距,限A4纸1页以内。2. 墙报交流:大会将设墙报区。墙报推荐按照0.9米*1.2米(竖型)设计,由参会代表自行制作。会议现场注册时交给会务人员。七、会议奖项1. 张树政糖科学奖:设立“杰出成就奖”和“优秀青年奖”两个奖项,其中杰出成就奖1名,优秀青年奖3名(其中糖生物工程1名、糖化学1名及糖生物学1名),具体参见“2021年张树政糖科学奖评选的通知”。2. 青年优秀论文/墙报奖:为奖励优秀青年学生学者,本次会议将设立青年优秀论文/墙报奖约10-15名,获奖者由会议组委会组织评定并授予奖状及奖金。八、会议注册、缴费及住宿预定: 1. 报名参会:通过http://csbt.scimall.org.cn/meeting/TGC/ 网站注册,注册费用可通过银行转账缴费或现场缴费完成,学生凭有效学生证注册;与会人员交通差旅费和食宿费自理。会议注册提前缴费(2021年5月31日前)(RMB) 后期缴费及现场缴费(2021年5月31日后)(RMB)正式代表 16002000学生代表 10001400企业代表 24002800缴费程序:扫描以下二维码,进入“缴会务费”,填写代表信息后微信缴费。“缴费记录”里可查询缴费信息。 2. 会议住宿(1) 重庆渝州宾馆(地址:重庆市渝中区渝州路168号)房 型景园/悦大床房景园/悦双床房会议价480元480元(2) 重庆万友康年大酒店(地址:重庆市渝中区长江二路77号)房 型标准大床房标准双床房会议价368元368元(3) 重庆冠君大酒店(地址:重庆市渝中区大坪正街160号万科锦程3栋)房 型豪华大床房豪华双床房会议价190元190元九、会议赞助及糖工程相关企业产品展示会议诚邀糖工程相关企业厂商赞助本次会议,大会提供协办、分会场冠名、青年优秀论文/墙报奖冠名、会议资料单品赞助、会刊广告、标准展位等形式的展示方式。详情请咨询:焦思明 18611058165十、会务联系方式王倬 tswgc@ipe.ac.cn 010-82545039 中国科学院过程工程研究所张兵 zhangbing@shanghaitech.edu.cn 15921318107 上海科技大学马丽梅 malimei@cqmu.edu.cn 15608225605 重庆医科大学中国生物工程学会糖生物工程专业委员会中国生物物理学会糖生物学分会重庆医科大学2020年4月
  • 自上而下质谱揭示SARS-CoV-2 Omicron变异体棘突蛋白RBD的独特核心聚糖和O-糖型
    大家好,本周为大家分享一篇发表在Chemical Science上的文章,Distinct Core Glycan and O-Glycoform Utilization of SARS-CoV-2 Omicron Variant Spike Protein RBD Revealed by Top-Down Mass Spectrometry1,通讯作者是美国威斯康星大学的Ying Ge教授。  SARS-Cov-2的快速变异为全球抗疫带来了极大的挑战。Delta和Omicron等新变种的传染性更强、病症更严重、显著逃避康复者或疫苗的中和抗体,并且逃避检测的风险更高。与野生型(WT)毒株相比,Omicron变体具有数量惊人的突变(30),包括棘突蛋白受体结合域(S-RBD)中的15个位点突变。S-RBD是中和抗体和其他疗法的主要靶点,病毒的细胞感染性、保护表位免受抗体中和及与人类受体ACE2结合的能力与S蛋白的糖基化密切相关。S蛋白O-聚糖具有巨大的微观异质性和结构多样性,因此对其O-糖基化的表征仍具是极大的挑战。作者在本文中报道了一种自上而下的混合质谱方法,能够同时表征分子结构、位点特异性、各种糖类的相对丰度,以及不同共现蛋白型的整体翻译后修饰(PTM)。  与WT相比,Delta和Omicron变体固有的突变差异在其RBD中尤其明显(图1A)。为了阐明各种S-RBD的分子序列和O-聚糖,作者使用PNGase F从S-RBD中完全去除N-聚糖,以最小化N-聚糖异质性造成的干扰(图1B)。与完全糖基化的S-RBD相比,N-聚糖的去除产生了10 kDa的分子量损失。通过超高分辨率12T FTICR-MS可实现各种S-RBD的基线同位素分离。自上而下的MS分析显示,各种O-糖型的化学计量比和相对丰度存在显著差异,其中Omicron变体显示出最大的O-糖型结构异质性(图1C)。  图1 由WT、Delta和Omicron变体产生的S-RBD的蛋白质突变图谱和高分辨率自上而下MS。(A)SARS-CoV-2基因组结构和S-RBD变体蛋白质序列变化的说明。(B)PNGase处理前(-)后(+)的S-RBD的SDS-PAGE。(C)在对WT、Delta和Omicron变体进行PNGase F处理后,完整S-RBD蛋白型的原始MS1。所有确定的O-糖型在插图中用红色圆圈注释。  为了实现深入的糖型和糖位点分析,作者利用捕获离子迁移谱(TIMS)-MS,通过timsTOF Pro仪器分离和分析各种S-RBD O-聚糖结构(图2)。为了表征Omicron变体的聚糖结构和占比,作者对单个S-RBD O-糖型进行了特异性分离。以最丰富的O-聚糖(26+,1069.4.3 m/z)为例,从Bruker数据分析软件输出由CAD获得的MS/MS片段离子,并使用MASH Explorer16在靶向蛋白质分析模式下进行分析,以进行全面的蛋白型表征。获得了自上而下的MS/MS谱以及各种O-聚糖结构的离子迁移率分离,以克服O-聚糖分析固有的质量简并性和微观异质性(图2B)。足够软的TIMS淌度池活化参数能够对分离的S-RBD蛋白型进行详细的中性缺失图谱绘制,并揭示了具有GalNAcGal(NeuAc)2结构的核心1(Galβ1-3GalNAc-Ser/Thr)O-聚糖(图2C)。这种TIMS-MS方法允许对聚糖结构进行直接表征,以揭示在三种S-RBD变体中具有核心1和核心2(GlcNAcβ1-6 (Galβ1-3) GalNAc-Ser/Thr)O-聚糖结构的多个S-RBD糖型。  图2 S-RBD O-糖型的TIMS-MS分析。(A)经PNGase F处理后的特定S-RBD糖型(z=26+, 1069.4 m/z)的TIMS-MS分离示意图。插图为前体离子分离后对应的离子迁移率热图。(B) 分离的蛋白型经CAD碎裂后,Omicron S-RBD O-聚糖的自上而下MS/MS。(C) Omicron S-RBD蛋白型中性缺失O-聚糖图谱。  随后,作者进一步描述了S-RBD WT、Delta和Omicron O-糖基化模式,以揭示变体之间的所有O-糖基化结构改变(图3)。有趣的是,与WT或Delta变体相比, Omicron中主要的O-聚糖微观异质性发生变化。特别是Omicron的核心2 O-聚糖结构丰度显著增强,多重唾液酸化GalNAc(GalNeuAc)(GlcNAcGalNeuAc)和岩藻糖基化GalNAc(GalNeuAc)(GlcNAcGalFuc)结构显著表达。表1总结了Omicron与WT或Delta变体相比所观察到的显著分子丰度差异。  图3 S-RBD变体的O-糖型表征。S-RBD蛋白型的去卷积谱显示了WT(绿色)、Delta(蓝色)和Omicron(粉色)变体的所有主要O-聚糖分配。理论同位素分布由红点表示。聚糖结构在用插图所示的图形表示。  表1 S-RBD变体O-糖型相对丰度总结  Omicron变体的核心1与核心2 S-RBD O-聚糖结构的相对丰度比约为71:29,核心1 GalNAcGal(NeuAc)2是最丰富的O-糖类(~69%相对丰度)。有趣的是,WT和Delta变体显示出对核心1型O-聚糖结构的强烈偏好,其O-糖型丰度的80%以上对应于核心1结构 含核心2 GalNAc(GalNeuAc)(GlcNAcGalFuc)结构的O-聚糖占其总O-糖型组成的13%以上。在WT和Delta S-RBD变体中也发现了这些特殊的核心2结构,但相对丰度要低得多(5-7%)。图3所示的高分辨率完整S-RBD糖型表征表明,与基于糖肽的自底向上MS方法相比,这种自上而下的MS方法具有明显的优势。  作者进一步研究了S-RBD变体之间的糖基化位点及其微观异质性。对S-RBD O-糖型的详细自上而下MS/MS分析显示,存在一种新的O-糖位点(Thr376),这是Omicron变体所特有的(图4A)。令人感兴趣的是,所有检测到的WT和Delta变体的S-RBD O-聚糖都被自信地单独分配给Thr323(图4B-C),这与之前关于WT S O-糖基化的研究一致。鉴于Delta上的突变数量比Omicron少,因此O-糖位点Thr323在Delta和WT变体之间保持保守也就不足为奇了。另一方面,Omicron变体产生了熟悉的Thr323 O-糖位点和一个新的Thr376 O-糖位点(b6012+和b525+),对应于核心1 O-糖型(图4D)。该Thr376 O-糖位点在残基373处与脯氨酸相邻,这与先前关于脯氨酸附近O-糖基化频率增加的报道一致。这种特殊的Pro373是Omicron变体特有的位点特异性突变,很可能是产生这种新O-糖位点的原因。实验还发现,与T323相比,Thr376位点的占有率较低(30%),并且仅被可靠地分配给丰富的核心1 O-糖基。此外,尽管为变异体指定的O-糖型是HEK293细胞表达的S-RBD特有的,但已知HEK293表达模型可反映病毒体预期的糖基化位点。  图4 通过自上而下的MS/MS进行S-RBD O-糖定位。(A)对应于WT、Delta和Omicron S-RBD变体的核心1型聚糖的片段映射。蓝色N表示PNGase F处理后的脱酰胺作用。特定的Omicron残基突变用粉红色表示。(B-D)代表性的自上而下MS/MS CAD片段离子,包括完整的(B)WT(b71+和b17311+)、(C)Delta(b71+和b22312+)和(D)Omicron(b51+、b182+、b71+、b17311+)变体。WT和Delta变体在Thr323处显示完全的O-糖苷占据。发现Omicron变体同时具有Thr323(b51+和b182+)和Thr376(b71+和b17311+)。  本文首次阐明了SARS-CoV-2 Omicron和Delta变异体中发现的O-糖型结构异质性。与WT或Delta相比,Omicron变体的核心2型O-糖型的利用率显著提高。此外还鉴定了一种新的Omicron S-RBD特有的Thr376 O-糖位点。这种自上而下的MS方法是对传统结构方法的补充,并为SARS-CoV-2 S-RBD蛋白形式的表征提供了无与伦比的分辨率。  撰稿:夏淑君  编辑:李惠琳  文章引用:D.S. Roberts, M. Mann, B.H. Li, et al., Distinct core glycan and O-glycoform utilization of SARS-CoV-2 Omicron variant Spike protein RBD revealed by top-down mass spectrometry, Chemical Science (2022).
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • 2021年全国糖科学与糖工程学术会议暨产业论坛在重庆盛大开幕!
    仪器信息网讯 7月10日-11日,2021年全国糖科学与糖工程学术会议暨产业论坛(China Glycoscience and Glycoengineering Conference,CGC)在重庆隆重召开。中国科学院院士张玉奎、中国科学院院士饶子和、中国科学院院士邵峰、中国科学院院士高福、中国工程院院士朱蓓薇受邀出席,张玉奎院士、邵峰院士、高福院士、朱蓓薇院士在会上作精彩的大会报告,此外,大会邀请到国内外在糖科学及糖工程相关等领域的一百多位报告嘉宾,同时吸引了全国近千位专家与会,大会视频和图片直播访问量累计超6万人次,仪器信息网作为本届大会的独家直播合作媒体进行了全程的跟踪报道。2021年全国糖科学与糖工程学术会议暨产业论坛现场本届会议由中国生物工程学会糖生物工程专业委员会、中国生物物理学会糖生物学分会、重庆医科大学及北京市阳光健康公益基金会联合主办。中科院过程所生化工程国家重点实验室、重庆医科大学药学院、南方科技大学、上海科技大学共同承办。重庆医科大学药学院院长、大会执行主席于超担任开幕式主持人。重庆医科大学药学院院长、大会执行主席于超主持开幕式上,中国科学院院士饶子和、中国生物工程学会副理事长马树恒、重庆医科大学党委书记刘宴兵分别为大会致辞,对嘉宾的到来表示热烈欢迎,预祝大会取得圆满成功。中国科学院院士饶子和视频致辞中国生物工程学会副理事长马树恒致辞重庆医科大学党委书记刘宴兵致辞为发扬张树政院士科学精神,推动我国糖科学领域科学研究、技术创新与开发,大会启动张树政糖科学专项基金成立仪式。中国科学院院士张玉奎、中国工程院院士朱蓓薇、中国科学院院士邵峰、中国生物物理学会糖生物学分会会长王鹏、张树政糖科学奖获奖代表俞飚、国家糖工程技术研究中心主任凌沛学、张树政院士学生代表中国科学院微生物研究所研究员金城、北京中研同仁堂医药研发有限公司院长王志斌、华熙生物科技股份有限公司副总经理刘爱华、北京市阳光健康公益基金会秘书长刘子齐、张树政糖科学专项基金发起人代表杜昱光,共同按下手印启动仪式。中国生物工程学会糖生物工程专业委员会主任委员杜昱光主持张树政糖科学专项基金成立仪式  张树政糖科学专项基金管理委员会授牌仪式为激励更多优秀青年学生投身到糖科学与糖工程科研领域。糖生物工程专业委员会每隔两年评选张树政糖科学奖,授予对糖科学领域及糖工程产业做出重大贡献的杰出人物及取得优秀成绩极具潜力的青年人才。CGC特别设立了第四届“张树政糖科学奖”颁奖环节,南方科技大学教授王鹏、北京大学教授陈兴荣获“第四届张树政糖科学杰出成就奖”。南方科技大学教授王鹏获奖合影王鹏教授的工作证明糖链合成可以用传统商业化的自动多肽合成仪完成,实现了寡糖的高通量合成,极大的推动了糖肽的合成生物学发展,创造性的将酶合成法和化学合成方法结合起来,提出了合成糖组学的概念。在微生物多糖的生物合成、生物起源和合成生物学方面也进行了深入的研究,在糖化学和糖生物学领域做出了一系列创新的成果。北京大学教授陈兴获奖合影陈兴教授研究集中于化学糖生物学领域,开发聚糖标记和功能解析新方法,解决糖科学中的重要问题。在“化学糖生物学”这一新兴交叉学科方向上形成了鲜明的特色,开辟了利用化学标记研究糖生物学问题的新途径,有力推动了化学和生命科学的交叉与融合。西北大学教授关锋、浙江大学教授易文、中国科学院上海药物研究所研究员黄蔚荣获“第四届张树政糖科学优秀青年奖”。张树政糖科学优秀青年奖获奖者合影关锋教授从事基于组学的肿瘤糖生物学研究,建立了系列糖组分析方法,发现乳腺癌中平分型糖链的异常表达,阐明平分型糖链修饰影响外泌体功能等。获奖研究项目中建立起完善的糖链质谱分析策略,将糖组学研究技术应用于糖生物工程及糖生物学中,挖掘乳腺癌、膀胱癌、肝癌等多种肿瘤发生发展过程中的特征性糖链,并通过生物工程技术手段进行改造。易文教授发展基于酶反应的糖基化标记方法,以及探讨糖基化在调控细胞代谢、生长、和免疫应答的分子机制。获奖研究项目以O-GlcNAc糖基化修饰为主要对象,阐明了O-GlcNAc糖基化通过将营养感知与表观遗传联系起来决定细胞命运的新机制。黄蔚研究员发展糖类药物研发新技术、新方法、新策略,拓展糖类药物设计理论和化学空间。获奖项目在糖类药物设计上,从理论上凝练糖类药物设计的共性与特性 实现了糖型优化抗体药物和基于糖链定点的抗体药物偶联物设计,为新型抗体药物研发提供新的糖结构思路和技术策略,开发新型抗万古霉素耐药菌候选药物SM-V-61。随后,张树政糖科学独家冠名赞助企业华熙生物科技股份有限公司常务副总经理刘爱华上台致辞。华熙生物常务副总经理刘爱华致辞大会报告环节,中国科学院院士邵峰、中国工程院士朱蓓薇、中国科学院院士张玉奎、北京大学教授陈兴分别作精彩大会主旨报告。中国科学院院士邵峰报告题目:《Innate immunity to cytosolic LPS: Pyroptosis and beyond》细胞焦亡(Pyroptosis)是一种程序性细胞死亡,表现为细胞不断胀大直至细胞膜破裂,导致细胞内容物的释放进而激活强烈的炎症反应,是机体一种重要的天然免疫反应,在抗击感染中发挥重要作用。邵峰院士讲解了Toll样受体(TLR)介导的先天免疫,并阐释先天免疫系统处理细胞溶质中的细菌的作用机理。中国工程院院士朱蓓薇报告题目:《海洋食品的营养与人类健康》目前,不合理的膳食结构已经造成严重的健康负担,各个国家都在积极制定健康膳食指南保障健康,而我国同样面临营养不足和肥胖的问题。海洋生物是研究和开发创新海洋营养食品的重要生物资源,肩负着提高人类健康和生活质量的使命,补充我们身体所需的蛋白质、油脂、糖、维生素、矿物质等。针对海洋资源的开发,朱蓓薇院士提出要以科技力量推动第三代海洋功能食品开发、聚焦视频营养素与人类健康的关系研究、开展食品营养素对特殊膳食人群的健康改善研究、结合传统中医药资源,开发中国特色海洋功能食品、结合食品行业优势,开发海洋功能食品、开发低值海洋生物为功能食品原料等,实现海洋强国的战略目标。中国科学院院士张玉奎报告题目:《基于离子液提取的蛋白质分析》2020年,人类蛋白质组组织整合25个研究团队的染色体蛋白质数据和19个研究团队的生理/疾病蛋白质组学数据。张玉奎院士介绍了微量蛋白组样品制备方法、用于肾病分型相关蛋白的筛选、血液透析吸附蛋白质常规评价方法、血液净化材料吸附蛋白组的定性定量分析等分析方法。在疾病方面,分享了抑郁症新病因,旨在通过蛋白质组学定量分析抑郁症血浆,筛选出标志物,为抑郁症诊断提供辅助手段。北京大学教授陈兴报告题目:《“糖密码”的化学解析》糖酵解途径是将葡萄糖和糖原降解为丙酮酸并伴随着ATP生成的一系列反应,是一切生物有机体中普遍存在的葡萄糖降解的途径,而传统糖生物学在标记和成像上存在瓶颈,为研究带来一定难度。陈兴教授介绍生物正交化学标记方法,通过超高分辨成像显微镜,观察聚糖在神经突触方面的聚集,从O-GlcNAc修饰对大脑发育和功能的重要作用、O-GlcNAc修饰底物的常用方法等解锁脑内“糖密码”。下午,CGC开设4个分会场,糖链合成与分析新方法新技术分会、糖链与病原感染分会、糖链与疾病分会、肠道微生物糖组与营养健康分会,为参会的专家、企业家、用户等提供了更加全面、便利的交流平台。糖链合成与分析新方法新技术分会现场糖链与病原感染分会现场糖链与疾病分会现场肠道微生物糖组与营养健康分会现场参会专家合影后记糖生物学是当前生命科学最前沿的领域,这门新兴学科既有深远的理论意义,又和人类健康、动植物生长有着密切的关系。此次学术会议的举办,为国内外糖化学、糖生物学及糖工程等领域的专家、学者和业界人士等提供了一个相互交流,共同研讨糖链结构功能、制备技术、检测分析方法,以及糖类药物、营养食品、生物医用材料研究开发等相关领域最新研究进展和成果的平台。本次大会颁发的张树政糖科学奖,更让我们怀念在糖科学领域做出巨大贡献的张树政院士,她长期致力于我国微生物生物化学的研究,在白地霉糖代谢、红曲糖化酶结构与功能、糖苷酶和耐热酶、糖生物学和糖生物工程学等研究中成就卓著,是中国微生物生化的重要领军人,是糖生物学的奠基人之一。希望这次大会后有更多优秀人才投身糖研究领域,为我国糖科学、糖工程的未来发展做出重要贡献。
  • 糖类物质分析利器—离子色谱值得拥有!
    糖类物质分析利器—离子色谱值得拥有!关注我们,更多干货和惊喜好礼高立红 韩春霞 郑洪国糖类是自然界中广泛分布的一类重要的有机化合物,在生命活动过程中起着重要作用。由于其具有改善肠道菌群,以及抗肿瘤、抗氧化、抗衰老、降血糖降血脂等作用,广泛应用于食品和医药领域。因此,糖类物质的分析检测在食品和药物质量控制方面具有重要作用。 糖类分析难点:1. 极性强并且同分异构体较多,常规色谱柱对其保留和分离效果欠佳;2. 无紫外吸收或较弱,一般检测器无法直接检测, 需要衍生后进行测定,操作复杂并且某些热不稳定的糖回收率差。基于糖类物质的化学特征,以及常规分析检测难点,采用离子色谱法(IC)进行检测具有多种优势: 1.专用糖分析色谱柱对糖类物质具有很好的保留和分离效果;2.脉冲安培检测器(PAD)对糖类物质具有特异性响应和高灵敏度;3.无需衍生即可直接检测,重复性好;4.单双糖、低聚糖、多聚糖、糖醇、氨基糖、酸性糖均可进行检测。Dionex™ ICS-6000多功能高压离子色谱仪 快来围观离子色谱在糖分析中的优异表现吧! 单双糖分析分离度和灵敏度齐飞——赛默飞ICS-6000高压离子色谱仪,配置特有的单双糖分析色谱柱,脉冲安培检测器,使离子色谱轻松应对半乳糖、葡萄糖、木糖、果糖、蔗糖、乳糖、麦芽糖等常见单双糖的测定。仅需5~25 μL小体积进样即可检测ng/L~mg/L级别单双糖,无需衍生化,灵敏度高,选择性好。IC-PAD测定常见单双糖1-岩藻糖;2-鼠李糖;3-阿拉伯糖;4-半乳糖;5-葡萄糖;6-蔗糖;7-木糖;8-果糖;9-乳糖(点击查看大图) 脱水糖和糖醇分析 对PM2.5大气颗粒物中糖类物质进行监测可以有效帮助识别大气颗粒污染物的成因和来源。采用ICS-6000离子色谱仪脉冲安培法测定大气颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖,无需衍生可直接测定,操作简单重复性好;并且与颗粒物中阿拉伯糖醇和海藻糖等干扰物质具有有效分离;当样品提取液为10 mL,左旋葡聚糖、甘露聚糖和半乳聚糖的检出限可达到0.02 μg,灵敏度高。IC-PAD测定大气颗粒物中脱水糖和糖醇(点击查看大图) 低聚糖和多糖分析 1. 国家标准方法依从2016年出台的三项食品安全国家标准:《GB5009.245-2016食品中聚葡萄糖的测定》、《GB5009.255-2016食品中果聚糖的测定》、《GB5009.258-2016食品中棉子糖的测定》均采用赛默飞离子色谱条件进行测定。赛默飞ICS-6000高压离子色谱仪,配置四元梯度泵和脉冲安培检测器,四电位波形测定,灵敏度高,重复性好,助您轻松应对标准法规。 2. 乳粉中的低聚半乳糖低聚半乳糖(GOS)是一种具有天然属性的功能性低聚糖,婴幼儿奶粉中都添加了低聚半乳糖的营养成分,因此是奶粉中的必检项目。赛默飞自主研发建立使用低聚半乳糖原料为对照品直接测定低聚半乳糖的方法。利用不受奶粉本底干扰的色谱峰来定性定量,不受样品中高含量乳糖的干扰,可准确测定婴幼儿奶粉中的低聚半乳糖。此方法无需酶解,降低成本,但对色谱柱分离能力和检测器灵敏度要求较高,赛默飞ICS-6000高压离子色谱仪,配置脉冲安培检测器和Carbopac PA20色谱柱,可完全满足高灵敏度和分离度的要求。IC-PAD测定不同厂家的低聚半乳糖谱图(点击查看大图) 3. 淀粉多糖的分析对于聚糖分析,即使聚合度大于100的淀粉,离子色谱法也仍有很好的分离度和灵敏度,可分离出多达132个峰!其他检测方法望尘莫及!IC-PAD测定玉米淀粉谱图(点击查看大图) 糖型结构分析 由于赛默飞离子色谱无需衍生、灵敏度高以及专用糖色谱柱you秀的保留分离能力,其在注射液糖类分析、多糖疫苗/多糖蛋白结合疫苗和糖基化蛋白药物分析等方面亦有you秀表现。 糖基化对蛋白药物的疗效,稳定性,免疫原性具有重要的影响。糖基化蛋白经酶切后,N-糖链无需衍生即可直接离子色谱进样分析,避免了衍生过程中唾液酸的降解,减少样品前处理步骤和时间。2020版中国药典新增单抗N糖谱分析,采用ICS-6000高压离子色谱仪,配置脉冲安培检测器和Carbopac PA200色谱柱进行测定。此外,赛默飞独有的IC-Q Exactive高分辨质谱联用技术,可鉴定出更多的糖型,适用于复杂唾液酸修饰的糖型,可极大的完善和推动糖蛋白类药物N-糖链的质控分析。单克隆抗体N-糖链 (a) LC-MS/MS完整分析流程, (b) IC-MS分析流程(点击查看大图)滑动查看更多IC-PAD和IC-QE检测N-糖型结果(点击查看大图) zui后为大家总结了离子色谱法测定糖类物质的标准方法和推荐色谱柱,诚意满满!!!离子色谱法测定糖类物质标准方法和推荐色谱柱(点击查看大图)高品质明星耗材,助力检测事半功倍!5月6日起,离子色谱耗材官网全线7折,购抑制器+任意耗材低至6.8折!更有热点应用方案免费下载,尽请期待!? 下单即赠: 摩飞果汁机/蕉下太阳伞/幻响蓝牙耳机? 促销代码:IC0501如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 超亿元B轮融资!先思达生物加速糖组转化医学布局
    糖组转化医学头部企业先思达生物宣布完成了超亿元B轮融资,这是迄今为止国内糖组转化医学领域最大的一笔融资。近日,糖组转化医学头部企业先思达生物宣布完成了超亿元B轮融资,据悉,这是迄今为止国内糖组转化医学领域最大的一笔融资。本轮融资由中金资本旗下中金启德基金领投,老股东上海复星继续追投,雷石投资、行至资本、南京市创新投资集团、南京江北科投集团、同人资本等机构跟投。先思达生物是一家基于海归科学家在欧洲数十年的基础科研积累,以应用糖组学为核心,集体外诊断试剂及仪器的研发、生产、销售为一体的完全“First-in-class”创新的生物医药企业。公司专注于肿瘤检测和诊断以及先端健康指数两大领域,拥有自主研发建立的糖组检测分析技术平台,产品管线涉及肿瘤、神经退行性疾病及健康状态评估等。先思达生物基于糖组检测分析技术平台开发的首个IVD产品“寡糖链检测试剂盒”,已获批进入NMPA创新医疗器械绿色通道。该款产品针对我国约7000万慢性HBV感染者而设计,用于肝癌辅助诊断,有望改变我国肝癌早期诊断率低的现状。本轮融资将进一步加速先思达生物在全球糖组转化医学领域的布局,保障临床试验的顺利开展、推动平台技术的升级优化、加快产品管线的拓展、推进设备试剂国产化、资源及市场的全球化及建立三方医学检验实验室。对于本轮融资的顺利完成,先思达生物创始人、董事长陈萃英博士表示:作为揭示生命奥秘的“第三条生命链”,糖链(Glycan)广泛参与各种基本生命过程并发挥着不可或缺的作用。人体中超过50%的蛋白质存在糖基化(Glycosylation)修饰,在疾病状态下,这些蛋白质的糖基化修饰往往发生剧烈的动态变化。研究表明,蛋白质的糖基化异常与肿瘤的发生发展、转移和免疫逃逸等过程高度相关。糖链作为新型恶性肿瘤的体液标志物可用于肿瘤筛查和早期诊断,开发临床诊断试剂盒具有重大理论价值和现实意义。先思达生物拥有检出率高、操作简便的专利技术,我们相信,本轮融资将助力公司向肝癌以外的其它高发癌症检测以及健康风险评估领域实现快速拓展。公司将一如既往地加大研发投入,以多种形式与国内外最先进的科研机构开展合作,在未来的2-3年内形成覆盖全国以及部分国外地区的检测平台联盟,成为患者信赖、造福千家万户的生物科技公司。本轮领投方中金资本董事总经理黄序博士表示:很多疾病在被确诊后通常已处于中晚期不可逆状态。作为糖组学检测技术的缔造者之一,陈萃英博士带领先思达团队开发的基于该技术的肿瘤辅助诊断和早筛早诊产品为在早期阶段精准诊断肿瘤增添了一个重要的手段,研发进展处于国际领先水平。辅以早期临床干预将极大提高肿瘤等恶性疾病的治疗效果。中金启德创新生物医药基金持续关注、发现和帮助像先思达这样以强创新科技解决未满足临床需求的企业,助力其开发出更多更好的临床产品不断改善人民生活,增进人民福祉。本轮追投方上海复星代表、复星诊断董事长、先思达公司董事包勤贵先生表示:继基因组学、蛋白质组学之后,糖组学也日益受到科学界&产业界的关注。糖基化作为蛋白质翻译后修饰的主要形式之一,糖链具有丰富的生物学功能,是探索生命奥秘及利用转化医学助力于人类健康的重要通道。复星坚定的看好糖组学这一赛道对肿瘤等疾病早筛早诊的创新推动,复星诊断亦与先思达团队在商业化进程中携手多年。通过本次股权投资,相信公司能继续夯实在底层技术的累积、加大产品开发上的投入,同时在商业化体系及公司运营能力等重要的维度能同步并举,更快的形成多产品管线从研究开发到商业端的闭环能力,更好的服务于广大患者及客户。本轮跟投方行至资本合伙人赵家曦表示:恶性肿瘤是威胁人类健康的头号敌人,早诊早治是提升癌症患者生存率的关键,近年来我国关于肿瘤早筛的相关政策支持力度持续提升。肿瘤早筛产品具有受众广、高复购的特性,市场空间广阔。当前关于肿瘤早筛技术路径的竞赛,才刚刚开始。糖组学是继基因组学和蛋白组学之后的新兴研究领域,先思达以糖组学为技术基础,已研发形成拥有自主知识产权的糖组检测分析技术平台,产品管线涉及肿瘤、神经退行性疾病等,在中国乃至全球的糖组学转化医学领域具有领先性。先思达的产品在性能、成本、效率等方面做到了很好的平衡,我们看好其产品的市场前景和临床价值。本轮跟投方南京市创新投资集团投资三部总经理闫鹏安先生表示:糖组学是继基因组学和蛋白质组学后的又一新兴研究领域,先思达的糖组学研发进度在国际上处于前沿水平,其基于糖组检测分析技术平台开发的首个IVD产品有望成为世界上第一款糖组学体外诊断试剂产品。南京市创新投资集团重点关注具有前瞻性视野和突破性技术创新的科技型中小企业,我们相信在陈博士的带领下,先思达团队有能力在糖组学领域进行持续有益的探索,并推动产品在临床试验和商业化上取得成功!本轮跟投方南京江北科投集团副总经理朱旨昂先生表示:生命体中的糖链及相关分子与健康和疾病密切相关,糖组作为下一代疾病诊疗的新兴靶点,相关研究为各类疾病的诊治提供了新思路。先思达拥有自主知识产权的糖组检测技术,公司开发的用于疾病早期诊断的系列产品具有“无创、方便、微量、快速”等优势。作为致力于支持具有自主创新研发能力的科技企业的国有投资平台,科投集团一直关注并看好新兴领域创新技术。先思达作为科投集团科创载体最早一批孵化的优秀企业之一,我们将以“科技金融+科技平台”双轮驱动,助推公司糖组医学快速转化,共同为健康中国建设“添砖加瓦”。* 图片来源:Salomé S. Pinho and Celso A. Reis,Glycosylation in cancer: mechanisms and clinical implications,Nature Reviews Cancer(2015)。
  • 葛瑛团队新成果:自上而下质谱揭示SARS-CoV-2 Omicron变异体棘突蛋白RBD的独特核心聚糖和O-糖型
    大家好,本周为大家分享一篇预发表的文章,Distinct Core Glycan and O-Glycoform Utilization of SARS-CoV-2 Omicron Variant Spike Protein RBD Revealed by Top-Down Mass Spectrometry1,通讯作者是美国威斯康星大学的葛瑛教授。SARS-Cov-2的快速变异为全球抗疫带来了极大的挑战。Delta和Omicron等新变种的传染性更强,其中Delta病情严重,但Omicron症状很轻。与野生型(WT)毒株相比,Omicron变体具有数量惊人的突变(30),包括棘突蛋白受体结合域(S-RBD)中的15个位点突变。S-RBD是中和抗体和其他疗法的主要靶点,病毒的细胞感染性、保护表位免受抗体中和及与人类受体ACE2结合的能力与S蛋白的糖基化密切相关。S蛋白O-聚糖具有巨大的微观异质性和结构多样性,因此对其O-糖基化的表征仍具是极大的挑战。作者在本文中报道了一种自上而下的混合质谱方法,能够同时表征分子结构、位点特异性、各种糖类的相对丰度,以及不同共现蛋白型的整体翻译后修饰(PTM)。与WT相比,Delta和Omicron变体固有的突变差异在其RBD中尤其明显(图1A)。为了阐明各种S-RBD的分子序列和O-聚糖,作者使用PNGase F从S-RBD中完全去除N-聚糖,以最小化N-聚糖异质性造成的干扰(图1B)。与完全糖基化的S-RBD相比,N-聚糖的去除产生了10 kDa的分子量损失。通过超高分辨率12T FTICR-MS可实现各种S-RBD的基线同位素分离。自上而下的MS分析显示,各种O-糖型的化学计量比和相对丰度存在显著差异,其中Omicron变体显示出最大的O-糖型结构异质性(图1C)。图1 由WT、Delta和Omicron变体产生的S-RBD的蛋白质突变图谱和高分辨率自上而下MS。(A)SARS-CoV-2基因组结构和S-RBD变体蛋白质序列变化的说明。(B)PNGase处理前(-)后(+)的S-RBD的SDS-PAGE。(C)在对WT、Delta和Omicron变体进行PNGase F处理后,完整S-RBD蛋白型的原始MS1。所有确定的O-糖型在插图中用红色圆圈注释。为了实现深入的糖型和糖位点分析,作者利用捕获离子迁移谱(TIMS)-MS,通过timsTOF Pro仪器分离和分析各种S-RBD O-聚糖结构(图2)。为了表征Omicron变体的聚糖结构和占比,作者对单个S-RBD O-糖型进行了特异性分离。以最丰富的O-聚糖(26+,1069.4.3 m/z)为例,从Bruker数据分析软件输出由CAD获得的MS/MS片段离子,并使用MASH Explorer16在靶向蛋白质分析模式下进行分析,以进行全面的蛋白型表征。获得了自上而下的MS/MS谱以及各种O-聚糖结构的离子迁移率分离,以克服O-聚糖分析固有的质量简并性和微观异质性(图2B)。足够软的TIMS淌度池活化参数能够对分离的S-RBD蛋白型进行详细的中性缺失图谱绘制,并揭示了具有GalNAcGal(NeuAc)2结构的核心1(Galβ1-3GalNAc-Ser/Thr)O-聚糖(图2C)。这种TIMS-MS方法允许对聚糖结构进行直接表征,以揭示在三种S-RBD变体中具有核心1和核心2(GlcNAcβ1-6 (Galβ1-3) GalNAc-Ser/Thr)O-聚糖结构的多个S-RBD糖型。图2 S-RBD O-糖型的TIMS-MS分析。(A)经PNGase F处理后的特定S-RBD糖型(z=26+, 1069.4 m/z)的TIMS-MS分离示意图。插图为前体离子分离后对应的离子迁移率热图。(B) 分离的蛋白型经CAD碎裂后,Omicron S-RBD O-聚糖的自上而下MS/MS。(C) Omicron S-RBD蛋白型中性缺失O-聚糖图谱。随后,作者进一步描述了S-RBD WT、Delta和Omicron O-糖基化模式,以揭示变体之间的所有O-糖基化结构改变(图3)。有趣的是,与WT或Delta变体相比, Omicron中主要的O-聚糖微观异质性发生变化。特别是Omicron的核心2 O-聚糖结构丰度显著增强,多重唾液酸化GalNAc(GalNeuAc)(GlcNAcGalNeuAc)和岩藻糖基化GalNAc(GalNeuAc)(GlcNAcGalFuc)结构显著表达。表1总结了Omicron与WT或Delta变体相比所观察到的显著分子丰度差异。图3 S-RBD变体的O-糖型表征。S-RBD蛋白型的去卷积谱显示了WT(绿色)、Delta(蓝色)和Omicron(粉色)变体的所有主要O-聚糖分配。理论同位素分布由红点表示。聚糖结构在用插图所示的图形表示。表1 S-RBD变体O-糖型相对丰度总结Omicron变体的核心1与核心2 S-RBD O-聚糖结构的相对丰度比约为71:29,核心1 GalNAcGal(NeuAc)2是最丰富的O-糖类(~69%相对丰度)。有趣的是,WT和Delta变体显示出对核心1型O-聚糖结构的强烈偏好,其O-糖型丰度的80%以上对应于核心1结构;含核心2 GalNAc(GalNeuAc)(GlcNAcGalFuc)结构的O-聚糖占其总O-糖型组成的13%以上。在WT和Delta S-RBD变体中也发现了这些特殊的核心2结构,但相对丰度要低得多(5-7%)。图3所示的高分辨率完整S-RBD糖型表征表明,与基于糖肽的自底向上MS方法相比,这种自上而下的MS方法具有明显的优势。作者进一步研究了S-RBD变体之间的糖基化位点及其微观异质性。对S-RBD O-糖型的详细自上而下MS/MS分析显示,存在一种新的O-糖位点(Thr376),这是Omicron变体所特有的(图4A)。令人感兴趣的是,所有检测到的WT和Delta变体的S-RBD O-聚糖都被自信地单独分配给Thr323(图4B-C),这与之前关于WT S O-糖基化的研究一致。鉴于Delta上的突变数量比Omicron少,因此O-糖位点Thr323在Delta和WT变体之间保持保守也就不足为奇了。另一方面,Omicron变体产生了熟悉的Thr323 O-糖位点和一个新的Thr376 O-糖位点(b6012+和b525+),对应于核心1 O-糖型(图4D)。该Thr376 O-糖位点在残基373处与脯氨酸相邻,这与先前关于脯氨酸附近O-糖基化频率增加的报道一致。这种特殊的Pro373是Omicron变体特有的位点特异性突变,很可能是产生这种新O-糖位点的原因。实验还发现,与T323相比,Thr376位点的占有率较低(30%),并且仅被可靠地分配给丰富的核心1 O-糖基。此外,尽管为变异体指定的O-糖型是HEK293细胞表达的S-RBD特有的,但已知HEK293表达模型可反映病毒体预期的糖基化位点。图4 通过自上而下的MS/MS进行S-RBD O-糖定位。(A)对应于WT、Delta和Omicron S-RBD变体的核心1型聚糖的片段映射。蓝色N表示PNGase F处理后的脱酰胺作用。特定的Omicron残基突变用粉红色表示。(B-D)代表性的自上而下MS/MS CAD片段离子,包括完整的(B)WT(b71+和b17311+)、(C)Delta(b71+和b22312+)和(D)Omicron(b51+、b182+、b71+、b17311+)变体。WT和Delta变体在Thr323处显示完全的O-糖苷占据。发现Omicron变体同时具有Thr323(b51+和b182+)和Thr376(b71+和b17311+)。本文首次阐明了SARS-CoV-2 Omicron和Delta变异体中发现的O-糖型结构异质性。与WT或Delta相比,Omicron变体的核心2型O-糖型的利用率显著提高。此外还鉴定了一种新的Omicron S-RBD特有的Thr376 O-糖位点。这种自上而下的MS方法是对传统结构方法的补充,并为SARS-CoV-2 S-RBD蛋白形式的表征提供了无与伦比的分辨率。撰稿:夏淑君编辑:李惠琳文章引用:doi.org/10.1101/2022.02.09.479776
  • 大会报告:糖蛋白的最新分析技术与研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   作为会议议题的主要内容之一,糖蛋白广泛存在于生物体内,是重要的生物活性物质,具有很多重要功能,关于其的最新研究进展已受到国内外科学家们的高度关注。在本次大会上,南京大学的梁亮博士、美国约翰霍普金斯大学李岩博士、上海交通大学系统生物医学研究院的张延研究员等多位专家学者作了关于糖蛋白最新研究进展的报告,本文对关于糖蛋白研究的部分报告主要内容进行简要报道:   报告题目:应用糖蛋白质组学和糖组学的方法筛选癌症分子标记物   报告人:美国约翰霍普金斯大学李岩博士 李岩博士   李岩博士在报告中表示,目前分子标记物研究主要面临的挑战主要是,样品的复杂性与患者的个体差异性,应对其建立高准确度、高灵敏度、高通读、高重复性的分析检测方法。糖蛋白在分子标志物研究中的重要意义,大部分分泌蛋白、跨膜蛋白、和细胞表面蛋白是糖基化蛋白,他们涉及大量的生物学功能,并且,美国FDA已批准的生物标记物几乎全是糖蛋白。   在其报告中,分别通过糖蛋白质组学糖组学的方法对分子标记物进行了分析比较分析。   在糖蛋白质组学研究中,其分别采用多维色谱-质谱法(MALDI-TOF/TOF)和SRM-MS对糖蛋白进行了定量检测 在糖组学研究中,其表示,现有的糖组学方法不能用于临床样本检测,而新方法有待确立,李岩博士通过凝集素-抗体反应方法检测了糖的motif在前列腺组织中的表达水平。通过对糖蛋白质组学和糖组学方法的分析比较,其建立了适用于临床的检测方法,对于在前列腺中发现可能的分子标志物选择临床治疗方案有很大的帮助。   报告题目:用于糖蛋白富集的团队硼亲和方法研究   报告人:南京大学梁亮博士 梁亮博士   梁亮博士在报告中首先提到,糖蛋白(包括糖肽)的富集是糖蛋白质组学研究中的一个关键科学问题。目前用于糖蛋白富集的主要方法有凝集素亲和法、肼化学法、亲水作用色谱法和硼亲和色谱法等。和其他些方法比较,硼亲和方法虽具有显著的优点,但也有两个明显的缺点:(1)在中性pH下的亲和能力极弱,必须在碱性pH下才能与顺式二羟基化合物结合,这造成了操作上的不便,增加了样品变性的危险 (2)在碱性pH时取代硼酸带负电,与样品及样品基体间存在静电相互作用,因而导致专一性的下降。   为了同时解决以上两个问题,其科研团队提出了“团队硼亲和”的原理以及相应的方法。该方法要求分子团队成员在分子的另一端带上氨基,通过与环氧开环形成多孔整体材料,分子团队固定到整体材料的表面。该方法只需要一步反应即可制备得到所需的整体柱,操作十分简单,对操作者和环境友好。制备得到的整体柱可以直接应用于生理样品中的核苷等生物分子的专一性富集。最近,其科研团队提出了构建团队硼亲和的另一个绿色化学路线:分子自组装法。分子团队成员在分子的另一端带为噻吩或巯基,利用在金表面的分子自组装,一步反应即可得到团队硼亲和材料。利用该方法,制备了团队硼亲和磁性纳米颗粒和团队硼亲和MALDI靶板,其优异的亲和力和专一性得到验证,成功实现了在中性pH条件下对糖蛋白的专一性富集和纯化。利用团队硼亲和磁性纳米颗粒作为微萃取探针,通过MALDI-TOF MS检测,在生理pH条件下,存在于浓度高100倍的非糖蛋白基体中的糖蛋白能被专一性地萃取。   报告题目:蛋白质的O-糖基化修饰研究   报告人:上海交通大学系统生物医学研究院张延研究员 张延研究员   糖链修饰是一种重要的蛋白质翻译后修饰。细胞内50%以上的蛋白质都有糖链修饰。糖链参与了细胞识别、细胞分化、发育、信号传导、免疫应答等各种重要生命活动。按糖链与氨基酸的糖苷键结合方式的不同,真核生物中蛋白质糖基化可分为N-糖基化修饰和O-糖基化修饰,蛋白质的O-糖基化修饰中最主要的O-GalNAc修饰。   张延研究员通过对O-GalNAc糖基转移酶的糖基化修饰特性进行研究,利用UDP-GalNAc衍生物糖探针的荧光标记技术,结合质谱及多肽蛋白质芯片技术,建立了一种高通量发现蛋白质O-糖基化的新策略。
  • 传承与创新,赛默飞Orbitrap质谱携手客户创造更美好的未来
    7月24日,《遇见 创新|赛默飞质谱新品中国行》在上海万豪酒店隆重举行,赛默飞携今年美国质谱年会上刚刚推出的两款革命性Orbitrap高分辨质谱仪首次与中国客户见面,通过网络直播的方式同时与线上线下学者共同回顾Orbitrap历史,展望科学发展未来。截止直播结束,2600+人参与线上直播,共计访问11372次。会议伊始,赛默飞色谱与质谱业务中国区商务运营副总裁李剑峰先生为新品发布会开场致辞。“值此Orbitrap技术推出20周年之际,我们有幸邀请到行业专家分享精准医疗、生物制药方面的热点论题。此次,我们首次尝试线下内容,线上千人直播的方式,让不同城市不同区域的用户学者都能聆听到今天的内容。7月24-26日,赛默飞国外国内的技术专家将奔赴各个城市,与各个行业客户老师面对面交流,通过这种新颖的形式为分析领域的学者们带来更多技术分享。今年赛默飞新品主流在于性能的提升,Exploris 480体积缩小一半,皮实性升至工业级水平,用户可自维护。另一款Orbitrap Eclipse,扫描速度、灵敏度都达到新的高度,并包括丰富接口。另外,新推出的PaperSpray纸喷雾离子源,通过指尖一滴血即可分析,为食品、临床等领域提供便捷快速的检测方式。赛默飞不断创新推出的一系列新品,能够为我们中国的学术研究、工业客户、分析行业客户带来新的亮点,我们希望携手我们的客户让世界更健康、更清洁、更安全。” 历史传承,Orbitrap再现质谱辉煌作为本次盛会的开场,复旦大学杨芃原教授带来了《疾病糖蛋白质组的蛋白分析》精彩报告杨教授首先为大家徐徐展开质谱发展史,在过去一百年中,先后有六位质谱科学家获得诺贝尔奖,他们的工作正推动着分析研究飞速发展。而由A.Makerov博士研发的静电场轨道阱(Orbitrap)技术,正以其超高分辨率、高灵敏度、高稳定性的特性在诸多领域绽放异彩。特别是针对异常复杂的生命科学研究领域,例如精准医学,如何快速准确的鉴定并确证疾病标志物作为未来精准诊断,精准治疗的依据充满挑战。 而在杨芃原教授实验室中Orbitrap技术正在发挥着积极的作用,不仅针对蛋白质组学,对于更难检测的蛋白质翻译后修饰也有着非常出色的表现。杨教授实验室根据糖基化特性开发多种研究方法,特别是对于糖蛋白鉴定软件开发经过多轮迭代,新一版GlycoNote已经可以对于大规模生物完整糖肽数据采集,非常规糖肽链结构完整糖肽解析分析达到新高度,为后续临床糖蛋白研究提供强大助力。 创新进取,Orbitrap开创质谱新纪元赛默飞从未停下创新的脚步,2019年Orbitrap技术迎来新纪元,两款重量级旗舰机面世。来自赛默飞美国工厂的两位专家Maciej Bromirski和Daniel Lopez Ferrer博士为大家带来了今年推出的两款重磅Orbitrap新品——Orbitrap Exploris 480以及Orbitrap Eclipse三合一质谱仪,这两款仪器为客户研究实现更多可能,为客户从发现到验证提供最为全面的定量解决方案。 非凡至简,天才不“繁”,Orbitrap Exploris 480组合型高分辨质谱仪小身材蕴含大能量,在保持高性能、稳定性和耐久性的同时,提供多方位定量解决方案,例如SureQuant和BoxCar,可以满足绝大多数蛋白质组学、转化医学及生物制药分析要求,显著提高实验室数据产出质量和通量,势必将分析研究推向新的高度。 性能比尖,通用万间,Orbitrap Eclipse三合一高分辨质谱仪Orbitrap Eclipse三合一高分辨质谱仪独有的HMR?、PTCR,实时反应监测功能,推动蛋白质组学,精准医学及生物药研究到达新高度。 万众瞩目,Orbitrap新品中国重磅亮相从左往右顺序为:李剑峰先生、Evett Kruka女士、杨芃原教授赛默飞色谱与质谱业务生命科学产线全球副总裁、总经理Evett Kruka女士,赛默飞色谱与质谱业务中国区商务运营副总裁李剑峰先生与复旦大学杨芃原教授共同为Orbitrap新品揭幕。 性能飞升,Orbitrap直击科学研究新痛点南京师范大学的王冠博教授对Orbitrap质谱仪在蛋白质药物表征方面工作做了相关报告王教授实验室一直进行着特定蛋白质在特殊条件下受到的影响相关的研究,但目前完整蛋白质研究充满挑战,例如尺寸很大、结构层次复杂、成分复杂等问题。 目前王教授通过top down技术及Native MS技术两种策略研究,基于Orbitrap超高分辨质谱对于分子量非常接近的大分子能够清晰准确看到差别,同时发现更多细节信息。王教授对单抗相互作用,翻译后修饰、ADC、异构体检测研究上的新颖方案赢得在座专家的广泛关注。西湖大学的郭天南研究员带来《DIA蛋白质组大数据结合深度学习用于甲状腺肿瘤良恶性判断》精彩报告针对目前甲状腺结节良恶诊断方面难点,郭老师课题组利用基于Orbitrap高分辨质谱仪DIA蛋白质组大数据挖掘技术,对超大样本量深度挖掘,再结合软件深度学习筛选能力,通过多中心验证将准确率提高到93%,表明了基于Orbitrap质谱仪DIA方案的强大疾病诊断挖掘能力。 赛默飞制药/生物制药客户体验中心的张晓夕对Eclipse在生物制药方面的应用进行了介绍包括深度真空技术、PTCR技术和HMR?功能在复杂融合蛋白,蛋白复合物和完整蛋白自上而下分析中可获得详实可信的结果,从而实现生物医药制品的全面深度表征。 赛默飞大分子应用资深工程师唐家澍对Exploris 480在转化医学及临床蛋白质组学方面应用进行了介绍赛默飞在新一代平台上提供丰富多样的定量流程以助力转化医学的各个研究阶段。包括对于TMT定量的全面升级;全新的软件特性对BoxCar DDA和Box DIA完美的支持。高度智能SureQuant内标触发PRM工作流程将靶向定量推到了新的高度,灵敏度,通量和易用性得到了完美的结合。 现场火爆,共话Orbitrap质谱新未来 客户反馈强烈,与报告专家们积极讨论,共同畅想未来。而后,客户移步赛默飞金桥产业园仪器客户体验中心,赛默飞资深工程师们为大家进行了产品操作演示,让与会者更详细的了解了Orbitrap新品的亮点及性能。
  • 孙士生:用糖蛋白质组学破译癌症的密码
    p   作为一名生长在齐鲁大地、深受儒家文化熏陶的青年学者,即便在海外求学多年,孙士生始终心系国家、情牵母校。伴随着时代的召唤,入选国家“千人计划”青年项目的孙士生毅然回到母校西北大学,希冀将他在美国掌握与研发的先进技术应用到西北这片广袤的大地上,以期为母校、为西北地区乃至为整个中国的科研水平真正实现与世界一流接轨尽一份力。 br/ /p p   “在我看来,在西部地区开展工作有一定的好处及空间,这里受到的外界诱惑和干扰应该会相对少一些,这份安静其实对于基础科学研究颇有助益。”对于未来,“我将继续在自己擅长的方向——糖蛋白质组学和生物标志物发现研究领域开展前沿研究”,为破译人类癌症的密码贡献力量。在接受《中国科学报》记者采访时,孙士生这样表示到。 /p p   和糖蛋白的缘分 /p p   2005年本科毕业后,孙士生进入西北大学攻读研究生,并在那里获得了硕士和博士学位。 /p p   “还在读大学的时候,我就对糖蛋白比较感兴趣。这个领域研究的人还比较少,但其实相当重要。当时教科书上关于糖蛋白的介绍还非常有限,从那时起我就开始注意搜集这方面的资料,没想到有一天还真的从事了这方面的研究。”孙士生回忆说。 /p p   糖蛋白是被聚糖共价修饰的一类蛋白质,糖蛋白上的寡糖链与肽链中的特定氨基酸残基侧链以糖苷键共价连接.糖蛋白普遍存在于动物、植物,真核微生物和各种病毒表面,种类繁多,功能广泛。其中N-连接的糖链合成起始于内质网,完成于高尔基体。其整个合成和分解过程受到各种酶类的特异催化和精确调控。其主要生物学功能为细胞或分子的生物识别,如人类ABO血型和精卵结合过程 另外,受体蛋白、肿瘤细胞表面抗原等亦均属糖蛋白。 /p p   近年来,科学界逐渐认识到,糖蛋白与很多疾病如感染、肿瘤、心血管病、肝病、肾病、糖尿病以及某些遗传性疾病等的发生、发展有关。再者,细胞表面的糖蛋白及糖脂可“脱落”到周围环境或进入血循环,它们可以作为相关组织或细胞异常的标志为临床诊断提供信息 患某些疾病时体液中的糖蛋白亦常有特异性或强或弱的改变,这些糖蛋白的发现和应用将有助于疾病诊断或预后的判断。 /p p   读研伊始,孙士生从事的是生物芯片方面的研究,“后来因为参与一个糖芯片检测流感病毒宿主范围的项目,我有幸进入了糖蛋白的研究领域,或许这就是缘分吧”,孙士生说。 /p p   2011年,从西北大学毕业后,孙士生选择前往美国约翰· 霍普金斯大学Dr. Hui Zhang实验室做博士后,继续从事糖蛋白质组的方法学和生物标志物发现研究。 /p p   Dr. Zhang建立了经典分析糖蛋白方法,这在世界上属于蛋白质组学领域的权威。他所领导的实验室,有着很多国际前沿的技术和研究。有幸在这样的实验室工作,孙士生深觉受益匪浅。 /p p   “在国外,感触比较深的一点是,国外做科研,比较强调原创性。在美国,张老师会说,这个领域已经有人在做,而且做得不错,我们应该选择一些新的领域去探索。很多学者认为别人没做过的研究会更困难,其实不然,正是因为没人做过,发挥的空间才会更大”。 /p p   糖蛋白组学意义重大 /p p   在美多年,孙士生所做的诸多研究也产生了不小的国际影响力。 /p p   孙士生介绍说,随着蛋白质组学研究的日益成熟和规模化,蛋白翻译后修饰谱成为了新的研究焦点。蛋白糖基化修饰作为最重要、最普遍的蛋白质翻译后修饰之一,主要参与细胞间识别、调控、信号传导、免疫应答、细胞转化和疾病的发生发展。而系统高通量的糖蛋白质组研究方法是蛋白糖基化分析的基础。在美期间,他在Dr. Zhang建立的经典分析糖蛋白方法基础上,通过改变分析策略,创建了一种全面系统分析N-糖蛋白质组的新方法。该方法可广泛应用于肿瘤标记物筛查,蛋白抗体、病毒以及其他各种生物样品中的蛋白糖基化分析。同时,孙士生还建立了一些其他基于质谱分析的糖蛋白质组学新方法。 /p p   在蛋白质组/糖蛋白质组学在疾病生物标记物和致病机理研究中的应用方面,孙士生也取得了一定的进展。他与合作者将蛋白质组/糖蛋白质组相关方法学成功应用于各种临床样本分析中。其应用范围包括:人流感病毒、艾滋病病毒(HIV)及其感染的细胞和宿主,不同年龄和性别的人唾液,肝癌细胞系和HCC病人血清,前列腺癌细胞系、组织和血清,卵巢癌细胞系和组织、肺癌细胞系模型和肾衰竭动物模型。 /p p   “其中值得一提的是,我在博士后期间作为样本制备主要负责人之一参与了美国临床蛋白质组肿瘤分析(CPTAC)项目。我所在的实验室是全美参与此项目的五个核心实验室之一。在此项目中,我一直负责实验室内样品分析方法的建立,标准流程的制定,样品制备,质量监控和问题解决。目前已顺利完成本轮所有临床样本的蛋白质组和糖蛋白质组图谱的解析,其中蛋白质组的研究成果已在Cell杂志发表”,孙士生说。 /p p   回国的“青年千人” /p p   梁园虽好,终非故土。在美国学习和工作多年后,孙士生最终选择回到西北大学,并在2017年顺利获得了中组部 “千人计划”青年项目的资助。 /p p   “我选择回西北大学,很大程度上是出于对母校的热爱。这儿有我老师、同学和朋友的帮助和支持。有着悠久历史的西北大学近年来综合实力也在蒸蒸日上”,孙士生指出,西北大学学术氛围相对自由,对青年学者没有设置太多限制,“选择西北大学,也有这方面的考量。” /p p   回到母校后,孙士生希望能将本人所学,特别是他在糖蛋白质组学及新的肿瘤标志物发现等领域所积累的研究经验及学术成果服务于祖国,同时将母校建设的更好。 /p p   展望未来,孙士生表示,他将继续致力于糖蛋白质组学新技术的开发并将其应用于新的生物标志物发现、致病机制研究和蛋白糖基化调控机制研究中。他已针对这些设想制定了详细的工作计划。 /p p   孙士生表示,蛋白质组研究技术在癌症、早老性痴呆等人类重大疾病的临床诊断和治疗方面具有诱人的应用前景。糖类作为重要的生物大分子之一,参与各种重要的生物学过程。然而系统糖生物学研究包括系统的糖链解析、高通量的糖蛋白和糖脂分析等才刚刚起步:“在中国从事这方面的研究,必然会大有可为。” /p p br/ /p
  • 合成生物学新进展:利用莱茵衣藻生物反应器表达重组人红细胞生成素
    抗体或激素等重组蛋白在生物制药市场具有良好的发展前景。目前,重组蛋白主要在中国仓鼠卵巢细胞中生产,这种类型的生产非常昂贵的。因此,人们需要开发新的、更便宜的和有效的表达系统。微藻便成为了一种很好的替代品,因为,微藻作为光合单细胞生物,它们的生长不需要昂贵和复杂的培养基,同时也能够在培养基中分泌蛋白质并进行蛋白质N-糖基化。近日,Plant Biotechnology Journal在线发表了题为“Fine-tuning the N-glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants”的研究论文。作者主要研究莱茵衣藻N-聚糖免疫原性表位缺失而开发的敲除策略是否适用于治疗蛋白的糖工程,这对于进一步开发微藻生产人类相容性生物制品至关重要。该研究进行了与人促红细胞生成素(hEPO)相关的聚糖的结构研究,以及这些聚糖在野生型莱因哈特氏C.菌株和关键高尔基糖基转移酶受损的突变体中表达。通过在野生型菌株中表达的重组hEPO (rhEPO)的糖蛋白组学分析表明,3个n -糖基化位点与含有4 ~ 5个甘露糖残基、携带核心木糖、核心焦点和o -甲基的成熟n -聚糖100%糖基化。此外,在C. reinhardtii插入突变体中,木糖基转移酶A、B和聚焦转移酶缺陷的表达导致与rhEPOs相关的n -聚糖的核心木糖基化和核心聚焦化急剧减少,从而表明该策略为衣原体制备的生物制品的n -糖基化人源化提供了前景。文献链接:https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.14424
  • 母乳低聚糖(HMOs)的科学共识》正式发布 产业化路径还需协同探索
    7月18日,中国食品科学技术学会组织起草的《母乳低聚糖(HMOs)的科学共识》(以下简称“共识”)在北京正式发布,为HMOs的科学研究、产品研发和原料审批提供科技支撑,同时为消费者科学认知HMOs提供指导。  回应关切发布共识 加快HMOs在我国的审批与应用  HMOs已成为婴配行业普遍关注的重要功能性配料之一,其发现、制造与应用对于促进人群健康,尤其是在改善婴幼儿健康和营养需求方面具有重要意义。HMOs已在全球多数国家上市,但在我国尚未获得批准,而严谨扎实的科学基础是其通过审批的前提。中国食品科学技术学会常务副理事长邵薇在致辞中表示,中国食品科学技术学会组织来自食品科学、医学、临床营养学以及标准法规方面等不同专业领域的相关专家及行业代表,从HMOs的基础研究、安全性及功能性、产业化情况以及国内外管理情况和应用情况等方面,做出了系统的科学总结,经过广泛而深入的讨论形成了共识。  为什么要形成这样一个共识?中国工程院院士、国家食品安全风险评估中心总顾问陈君石代表专家组表示,专家组和工作组对HMOs相关的技术内容进行了系统梳理,确保了共识的科学性。共识的发布,有利于消费者“明明白白地消费”。例如,HMOs存在于母乳中,为什么要添加到婴幼儿配方奶粉中?这是由于婴配奶粉主要是用动物的乳为原料,特别是牛乳,而牛乳中HMOs的含量非常少,所以在婴幼儿配方奶粉有必要添加HMOs。他期望,各方能够在共识的指引下,强化HMOs相关应用与研究,不断为消费者提供优质产品,推动行业高质量发展。  权威专家深入解读 HMOs的功效与安全得到全球认可  安全性是一个食品原料应用的基础。HMOs的安全性究竟如何?中国海洋大学功能性乳品与益生菌工程研究室主任张兰威在报告中指出,发酵法生产的HMOs与母乳中天然存在的HMOs在结构上完全一致。对于微生物发酵法生产的HMOs,科学界和产业界已对其用于婴幼儿配方食品的安全性开展了相关动物毒理实验和临床人群试验,结果均证实HMOs是安全的。  从营养角度来看,究竟有没有必要在食品中添加HMOs?北京大学公共卫生学教授张玉梅表示,母乳喂养追踪研究及临床研究表明,HMOs有促进双歧杆菌定殖,改善肠道菌微生态、维持肠屏障、抵抗病原菌感染、调节免疫以及神经发育、认知功能等功能。有临床研究表明,添加2'-岩藻糖基乳糖 + LNnT配方粉对牛奶蛋白过敏婴儿出生后第一年呼吸道和耳部感染具有保护作用。“科学无止境,对于人类健康的追求也无止境。未来,HMOs功能的相关研究还将继续深入。”  HMOs的研究日益深入,应用日趋广泛,那么这种原料又是如何生产出来的,在生产中应用了哪些技术?江南大学生物工程学院院长刘龙介绍,目前国际上已批准使用的HMOs主要采用微生物发酵法(合成生物学方法)制备,通过代谢途径的理性设计与优化重构,获得的工程菌株能够直接以乳糖、甘油、葡萄糖等底物为原料微生物发酵合成HMOs。由于其生产更加高效,该方法也更适合应用于大规模工业生产。经过合成生物学技术生产的HMOs安全性是可以保障的。  HMOs在国际上又是如何管理的?国家食品安全风险评估中心标准三室主任张俭波解读了部分国家和地区HMOs法规标准管理情况。张俭波介绍说,美国将HMOs作为一般认为安全(Generally Recognized as Safe, GRAS)物质管理,欧洲食品安全局、澳大利亚和新西兰食品标准局(以下简称“澳新”)将HMOs作为新食品原料(novel food)管理。美国、欧盟允许的品种较多、允许使用的范围较广,均允许在婴幼儿配方食品等使用,使用量一般设定最大使用量。在我国,对HMOs作为营养强化剂进行管理,需要依据《食品安全法》以及《食品添加剂新品种管理办法》进行上市前审批。  基础研究支撑应用 创新技术推动行业高质量发展  在回答如何确保HMOs的安全性时,北京工商大学教授罗云波谈到,通过基因工程菌进行发酵产生HMOs,通常是在封闭环境下进行生产。同时最终的产物也要经过分离、纯化,其安全性是能够保障的。  对于HMOs的工业化应用问题,张兰威认为应做到以下几点:一是加强基础研究,对其加大认识。二是弄清其量效关系。三是在工业化生产,必须进一步去发掘其潜力,降低成本,才能实现高效生产。他表示,“对HMOs的开发应用,应不限于婴配食品,还可向老年食品、特医食品等领域拓展”。  对于婴配乳粉消费问题,张玉梅表示,对于婴儿,母乳是第一选择。但如果没有母乳或母乳不足,可以选择添加了HMO的婴配乳粉。  在回答HMOs在我国的审批进展问题时,中国疾病预防控制中心营养与健康所黄建研究员表示,相关企业已向国家卫生健康委员会提交了几种HMOs(2'-FL,生产方式包括合成法和发酵法;LNnT,生产方式为发酵法)作为食品营养强化剂用于婴幼儿配方粉和调制乳粉(仅限儿童用乳粉)的申请,其中,2'-FL和LNnT在即食状态下的使用量分别为0.7~2.4 g/L和0.2~0.6 g/L。截至目前,已进行多次公开征求意见。可以预见,不久后可能会根据三新食品要求对HMOs进行审批上市。  对于HMOs的未来发展,邵薇提出三点建议。一是加快推动HMOs的审批。二是加强HMOs的研究与应用。三是同步推进HMOs的科学普及工作。以共识的发布为起点,推动HMOs在我国的应用及创新发展,真正惠及广大消费者。
  • 关于阿拉伯木聚糖等8种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对阿拉伯木聚糖等3种物质申请作为新食品原料,羟基酪醇等4种物质申请作为食品添加剂新品种,“2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物”申请作为食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2024年7月25日阿拉伯木聚糖是以甘蔗渣为原料,经清洗、压榨、氢氧化钠提取、沉淀、纯化、干燥等工艺制成。该原料主要作为膳食纤维来源之一。美国食品药品监督管理局将阿拉伯木聚糖作为一种膳食纤维,欧盟、加拿大等国家和地区已允许该物质添加在食品或膳食补充剂中。本产品推荐食用量为≤15克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对阿拉伯木聚糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于阿拉伯木聚糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。长双歧杆菌婴儿亚种(原名称为“婴儿双歧杆菌”)已被列入我国《可用于食品的菌种名单》,也已列入欧洲食品安全局资格认定(QPS)名单的推荐微生物列表。长双歧杆菌婴儿亚种M-63(Bifidobacterium&ensp longum&ensp subsp.infantis&ensp M-63)从健康婴儿肠道中分离得到,该菌株在美国被作为“一般认为安全的物质(GRAS)”管理,可用于婴幼儿食品。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对长双歧杆菌婴儿亚种M-63的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性,批准列入《可用于婴幼儿食品的菌种名单》。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该原料的食品安全指标应符合《食品安全国家标准&ensp 食品加工用菌种制剂》(GB&ensp 31639)的规定,同时克罗诺杆菌属不得检出(/100g)。N-乙酰氨基葡萄糖是以葡萄糖、玉米浆干粉、硫酸铵、磷酸二氢钾、硫酸镁为原料,经谷氨酸棒杆菌RDG-2110(Corynebacterium&ensp glutamicum&ensp RDG-2110)发酵、过滤、浓缩、结晶、离心、醇洗、干燥等工艺制成。韩国允许N-乙酰氨基葡萄糖作为食品原料使用;加拿大批准其作为天然健康食品使用;我国台湾地区已将其作为食品原料使用。本产品推荐食用量≤500毫克/天(以干基计)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对N-乙酰氨基葡萄糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于N-乙酰氨基葡萄糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。1.背景资料。羟基酪醇申请作为食品添加剂新品种。本次申请用于植物油脂(食品类别02.01.01)。美国食品药品管理局、欧盟委员会等允许其用于植物油中。2.工艺必要性。该物质作为抗氧化剂用于植物油脂(食品类别02.01.01),延缓油脂氧化。其质量规格按照公告的相关要求执行。1.背景资料。二氯甲烷申请作为食品工业用加工助剂新品种。本次申请用于茶叶脱咖啡因工艺。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许其作为提取溶剂脱咖啡因。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶脱咖啡因工艺,在茶叶提取加工中发挥作用。其质量规格按照公告的相关要求执行。1.背景资料。2’-岩藻糖基乳糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许2’-岩藻糖基乳糖用于婴幼儿配方食品等食品类别。2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。1.背景资料。聚甘油蓖麻醇酸酯作为乳化剂、稳定剂已列入《食品安全国家标准&ensp 食品添加剂使用标准》(GB&ensp 2760),允许用于水油状脂肪乳化制品、半固体复合调味料等食品类别,本次申请扩大使用范围用于调制稀奶油(食品类别01.05.03)。美国食品药品管理局、日本厚生劳动省等允许其用于人造黄油等食品类别。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-7.5&ensp mg/kgbw。2.工艺必要性。该物质作为乳化剂用于调制稀奶油(食品类别01.05.03),改善产品品质。其质量规格执行《食品安全国家标准&ensp 食品添加剂&ensp 聚甘油蓖麻醇酸酯(PGPR)》(GB&ensp 1886.95)。&ensp 2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物1.背景资料。该物质常温下为淡黄色液体,不溶于水、微溶于丁酮等有机溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料基础树脂,具有较好的交联性和耐化学性。以该物质为原料生产的涂层具有较好的附着力和耐腐蚀性能。食品相关产品新品种.pdf阿拉伯木聚糖等 3 种新食品原料.pdf羟基酪醇等 4 种食品添加剂新品种.pdf
  • 智能制造助力中药发展—访天津红日康仁堂药业
    p   “智能制造助力中药产业发展” 国家软课题是中国仪器仪表学会承接的中国科协学会“创新助力产业发展”政策建议研究项目,北京中医药大学、中国仪器仪表学会药物质量分析与过程控制分会为承办单位。该项目旨在通过调研中药智能制造技术成果、需求和建议,为中国科协,科技部和工信部等国家部委下一轮科技课题立项提供数据支撑。为了解中药智能制造智能化改造的经验及带来的效益、成果和存在问题,掌握中药产业对于智能化改造和转型升级过程中技术和人才的需求,鉴于天津红日康仁堂药业有限公司在制药行业的影响力,工作组于2019年3月8日邀请行业专家共同走访调研该公司北京武清区中药配方颗粒智能制造生产基地。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/c0ec0b69-cf6c-4626-9923-740f1028bf70.jpg" title=" 图片1.png" alt=" 图片1.png" / /p p   经北京康仁堂药业有限公司张志强总监引荐,调研专家组来到天津红日康仁堂位于天津市武清开发区的中药配方颗粒生产基地。工厂总用地面积约20.4万平方米,规划总建筑面积约19.9万平方米 2017年通过GSP、GMP有关认证后正式开始投产,年产精制中药饮片3000吨、配方颗粒2500吨,年产值超5亿元。依托智能化、信息化,天津红日康仁堂中药配方颗粒生产基地整体达到工业3.0水平,关键核心环节达工业4.0水平。工厂采用新工艺、新技术和新装备,构建集智能装备、仓储物流管理、自动化控制、过程分析、信息化管理、企业资源管理等技术为一体的中药配方颗粒智能工厂。 /p p   为保障原药材来源可控,红日康仁堂药业公司不断在药材道地产区寻找规模化、规范化种植基地,通过订单农业、基地共建等不同模式,与供应商合作建设药源基地。在药材入库前,通过自身企业标准,对含量、农残、重金属、黄曲霉等严格检测,以确保原料药质量合格与稳定。厂区装备有自动化炮制、智能投料、篮式和搅拌提取、浓缩和干燥设备,不同设备间物料依靠工厂重力设计和rgv轨道车实现自动化运输。自动化炮制针对中药大品种原药材物理属性,采用不同炮制加工线路进行处理,实现炮制过程的封闭式无烟操作。基于“标准汤剂”指纹图谱,浸膏得率上下限等多种质量控制指标,对中药配方颗粒的质量进行控制,并建立配方颗粒指纹图谱数据库。通过企业资源管理系统(ERP)、生产制造执行系统(MES)、集散控制系统(DCS)、智能仓储、数据采集与视频监控,实现各系统间数据的智能抽取,有效解决各业务系统间数据分散造成的数据一致性、准确性、时效性等问题。构建了中药制造信息化管理平台和智能物流配送中心,首创自动补货和挑拣系统,满足用户的小批量定制和个性化订单。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/174496bd-7f26-4c92-8727-6b7a34727f51.jpg" title=" 图片2.png" alt=" 图片2.png" / /p p   参观完成后,调研组专家和工厂负责人就中药配方颗粒的智能制造开展了座谈会。北京中医药大学吴志生教授代表调研组专家向天津红日康仁堂药业有限公司对本次调研的支持表示感谢,并表明来意,希望了解中药配方颗粒智能制造生产过程中的问题与需求。张志强总监首先向调研组介绍了在线检测技术在制药过程中的实际应用情况,就自身工作经验介绍了在线检测技术在中药提取和制粒混合质量控制中的应用优势。但其表示,在线检测技术目前在中药生产过程中的应用仍属于数据收集和经验总结阶段,还无法在制药过程中大量推广。并指出,在线检测技术的选择应针对检测对象选择合适的方法,NIR对于物料混合均匀度的测定具有良好的适用性 但对于中药提取过程,水分对NIR分析的影响较大而导致难以准确定量,此时应用在线紫外能更有效的监测提取过程。 /p p   针对当前中药市场混乱的现实情况,张志强总监表示,天津红日康仁堂中药配方颗粒质量保证的关键点在于对提取、浓缩等不同过程中中间体质量变化进行分析,理解生产过程,制定并严格执行企业标准对中药全过程质量进行管控。中国仪器仪表学会标准委员会郭哓维秘书长表示,标准是引领行业发展最重要的内容,对于优秀企业的技术成果,应以标准的形式向外公开。国家标准审核较为复杂,可以选择申请为行业标准或团体标准以促进行业的整体进步。对于中药配方颗粒智能制造现阶段的需求,天津红日康仁堂厂区负责人表示,MES操作系统的重要支撑点在于设备中传感器对制药中间体信息的收集,但目前国内中药配方颗粒生产规模较小,针对制药中间体的传感器设备供应商较少。同时由于中药中间体成分复杂,导致传感器的质量较不稳定,难以完全信赖MES系统对生产过程进行控制。 /p p   针对中药配方颗粒的智能制造,郭哓维秘书长强调,智能制造不是仅依靠先进制造设备实现制药过程的高度自动化,更重要的是企业需结合自身产品特点,发展成为行业内的智能制造标杆。中国仪器仪表学会燕泽程主任也指出,智能制造是一个需要长期发展的过程,需要依靠大数据的累计与监控,在制药过程自动化的基础上,逐步实现信息的数字化、智能化和网络化。并以北京以岭药业有限公司一体化仓库的管理模型为例,强调了原药材质量控制在中药智能制造中的重要性。 /p p   仪器信息网编辑参加了本次调研活动。在红日药业的大力支持下,本次调研活动圆满结束。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制