当前位置: 仪器信息网 > 行业主题 > >

惕各酸香叶酯

仪器信息网惕各酸香叶酯专题为您提供2024年最新惕各酸香叶酯价格报价、厂家品牌的相关信息, 包括惕各酸香叶酯参数、型号等,不管是国产,还是进口品牌的惕各酸香叶酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合惕各酸香叶酯相关的耗材配件、试剂标物,还有惕各酸香叶酯相关的最新资讯、资料,以及惕各酸香叶酯相关的解决方案。

惕各酸香叶酯相关的论坛

  • 重铬酸价,求替代洗液!

    重铬酸价洗液,具有很强的毒性,一直很想找一个洗液替代,但是查询了许多资料,没找到洗脱能力与之匹敌的替代洗液,望大家分享,有能洗脱能力强且低毒性的洗液,谢谢!

  • 【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。药物及实验动物:盐酸芬戈莫德为本所研制,实验用大鼠为Wistar雄性大鼠,6-8周龄,体重范围约200-250g/只,本所实验中心提供;大鼠代谢笼为苏州动物实验仪器厂产品。色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm,1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)质谱条件结果分析:通过比较大鼠灌胃盐酸芬戈莫德溶液后收集的尿液样品、空白尿液样品及分到的代谢产物的高分辨质谱和多级质谱数据,在给药后的尿液中共鉴定出了8个代谢产物(如下图)所有代谢产物的高分辨质谱数据的准确度均小于1PPm。通过比较大鼠灌胃盐酸芬戈莫德溶液后收集的胆汁样品、空白胆汁样品及分到的代谢产物的高分辨质谱和多级质谱数据,在给药后的胆汁中共推测出了4个代谢产物(如下图)。所有代谢产物的高分辨质谱数据的准确度均小于1PPm。结果与讨论:经过对于给药后大鼠尿液及胆汁样品分析,初步推测盐酸芬戈莫德在大鼠体内的代谢产物有8种。

  • 【讨论】饮用水中硫酸盐检测中铬酸钡混悬液配制体会

    【讨论】饮用水中硫酸盐检测中铬酸钡混悬液配制体会

    在饮用水硫酸盐检测中,我们用到铬酸钡分光光度法(热法);其中配制铬酸钡混悬液有过失败教训,现贴出来共大家分享,不至于走弯路:GB/T5750.5-2006中描述如下:[img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001071142_194781_1615997_3.jpg[/img]我们的做法:铬酸钾和氯化钡分别溶解在大烧杯中,加热至沸,趁热倾入另一大烧杯中,让其产生沉淀([color=#DC143C]千万不能搅拌[/color])自然沉降至上层液体清亮,一般2-3小时,倾去上清液,加入纯水清洗沉淀多次,此时可用玻棒轻轻搅动液体,直到上清液中用硝酸银溶液检测不出氯离子为准,最后定容就ok了。

  • 液相色谱做阿胶4个氨基酸测定只出3个峰,求大神帮忙

    液相色谱做阿胶4个氨基酸测定只出3个峰,求大神帮忙

    柱子是迪马钻石 C18 5um 250*4.6mm 柱体积4.2ml 流动相和对照品的制备全部按照药典规定进行:以乙腈-0.1mol/L醋酸钠溶液(用醋酸调节pH值至6.5)(7:93)为流动相A,以乙腈-水(4:1)为流动相B,按下表中的规定进行梯度洗脱;检测波长为254nm;柱温为43℃。理论板数按L-羟脯氨酸峰计算应不低于4000。时间(分钟) 流动相A(%) 流动相B(%)0~11 100→93 0→711~13.9 93→88 7→1213.9~14 88→85 12→1514~29 85→66 15→3429~30 66→0 34→100对照品溶液的制备取L-羟脯氨酸对照品、甘氨酸对照品、丙氨酸对照品、L-脯氨酸对照品适量,精密称定,加0.1mol/L盐酸溶液制成每1ml分别含L-羟脯氨酸80μg、甘氨酸0.16mg、丙氨酸70μg、L-脯氨酸0.12mg的混合溶液,即得精密量取上述对照品溶液和供试品溶液各5ml,分别置25ml量瓶中,各加0.1mol/L异硫氰酸苯酯(PITC)的乙腈溶液2.5ml,1mol/L三乙胺的乙腈溶液2.5ml,摇匀,室温放置1小时后,加50%乙腈至刻度。摇匀。取10ml,加正己烷10ml,振摇,放置10分钟,取下层溶液,滤过,取续滤液,即得。出图如下:图1是走空白基线的图图2是进样后出图[img=,690,496]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131110025275_5197_1795523_3.jpg!w690x496.jpg[/img][img=,690,456]https://ng1.17img.cn/bbsfiles/images/2019/08/201908131110071653_2952_1795523_3.jpg!w690x456.jpg[/img]

  • 【原创大赛】人体服用盐酸芬戈莫德后的尿液分析

    【原创大赛】人体服用盐酸芬戈莫德后的尿液分析

    人体服用盐酸芬戈莫德后的尿液分析芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。芬戈莫德是鞘氨醇的结构类似物,研究显示,该药具有与其他药物完全不同的免疫抑制机制,在体内磷酸化后与位于淋巴细胞上的鞘氨醇-1-磷酸受体(S1PR)结合,通过改变淋巴细胞的趋化,促使淋巴细胞在淋巴组织内滞留,从而减少自身反应性淋巴细胞再次进入循环的几率,进而防止这些细胞浸润中枢神经系统(CNS)。进而达到免疫抑制效果。而且该过程是可逆的,停药后淋巴细胞水平即可以恢复正常。临床研究表明,口服制剂芬戈莫德针对复发-缓解型多发性硬化症疗效确切,优于目前的常用MS治疗药物干扰素β-1a注射剂(Avonex,已用于多发性硬化症的临床治疗药物)。芬戈莫德可靶向作用于对中枢神经系统(CNS)有潜在自身攻击性的淋巴细胞,促进神经保护与修复过程,降低MS的复发率,延缓损伤的进展过程,减少颅内核磁共振成像(MRI)病灶的数量,减轻病灶的严重程度。药物及受试者:盐酸芬戈莫德为本所研制,十名男性健康受试者(年龄18~45周岁,体重65±10kg)。色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm,1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)http://ng1.17img.cn/bbsfiles/images/2014/12/201412310815_530422_2217446_3.jpg质谱条件Waters LCT Premier XETM型飞行时间质谱仪,W-负离子模式;毛细管电压2200 V;锥孔电压35 V;离子源温度120℃;脱溶剂气温度350℃;脱溶剂气流量10L /h;锥孔气流量700 L /h;质量扫描范围m /z 50 ~ 1200;扫描时间0.2s。给药方案与样品的收集:人尿液样品的收集五名男性健康受试者(年龄18~45周岁,体重65±10kg),服药前一周内未服任何药物。服药7天,每天每人约服240mg盐酸芬戈莫德片,受试期间统一饮食,自服药时起收集尿液,收集8天尿液,共收集到120升尿液。尿液样品的预处理固相萃取柱(自制ODS小柱),用甲醇活化后待用。取尿样1mL,用酸调pH值至5.0,涡旋,3500prm离心10min,上清液上于固相萃取柱,用2mL水洗涤后,再用5mL甲醇洗脱,收集洗脱液,减压蒸干,残渣加50%甲醇200μL,涡旋,11000prm离心10min,取2μL进行分析。结果分析:通过比较人口服盐酸芬戈莫德片后收集的尿液样品、空白尿液样品及分到的代谢产物的高分辨质谱和多级质谱数据,在给药后的尿液中共推测出了8个代谢(如下图)所有代谢产物的高分辨质谱数据的准确度均小于1PPm。http://ng1.17img.cn/bbsfiles/images/2014/12/201412310816_530423_2217446_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/12/201412310817_530424_2217446_3.jpg结果与讨论:1、 经过对于给药人体尿液样品分析,初步推测盐酸芬戈莫德在大鼠体内的代谢产物有8种,其结构进一步鉴定中。2、 流动相的选择方面进行了优化。流动相的选择主要从溶剂种类和梯度洗脱设置两方面进行优化。分析方法中采用了乙腈作为有机相,原因是乙腈比甲醇具有更大的洗脱强度,从而可以减少色谱峰的展宽,得到较好的峰型,此外,使用乙腈洗脱,其粘度较低,可以减小系统压力。在水相中加入TFA,可以进一步改善化合物的峰型,减少拖尾,此外,TFA的存在还可以提高样品在离子源中的离子化效率,因此,使用乙腈-0.05%TFA水溶液为流动相梯度洗脱,可以使样品分析在 9min之内完成。

  • 液质中用什么试剂代替三氟乙酸做流动相?

    我准备用英文文献中的方法用含有三氟乙酸的流动相做[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]分析,但是被告之三氟乙酸不能做[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url],用什么试剂可以代替三氟乙酸做流动相呢?另外,用乙酸可以吗?我的方法是: 流动相A:0.03%三氟乙酸水溶液 流动相B:0.02%三氟乙酸乙腈溶液如果可以用乙酸代替,乙酸的浓度要做改变吗?

  • 【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析 芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。芬戈莫德是鞘氨醇的结构类似物,研究显示,该药具有与其他药物完全不同的免疫抑制机制,在体内磷酸化后与位于淋巴细胞上的鞘氨醇-1-磷酸受体(S1PR)结合,通过改变淋巴细胞的趋化,促使淋巴细胞在淋巴组织内滞留,从而减少自身反应性淋巴细胞再次进入循环的几率,进而防止这些细胞浸润中枢神经系统(CNS)。进而达到免疫抑制效果。而且该过程是可逆的,停药后淋巴细胞水平即可以恢复正常。临床研究表明,口服制剂芬戈莫德针对复发-缓解型多发性硬化症疗效确切,优于目前的常用MS治疗药物干扰素β-1a注射剂(Avonex,已用于多发性硬化症的临床治疗药物)。芬戈莫德可靶向作用于对中枢神经系统(CNS)有潜在自身攻击性的淋巴细胞,促进神经保护与修复过程,降低MS的复发率,延缓损伤的进展过程,减少颅内核磁共振成像(MRI)病灶的数量,减轻病灶的严重程度。 药物及实验动物:盐酸芬戈莫德为本所研制,实验用大鼠为Wistar雄性大鼠,6-8周龄,体重范围约200-250g/只,本所实验中心提供;大鼠代谢笼为苏州动物实验仪器厂产品。色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm, 1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)http://ng1.17img.cn/bbsfiles/images/2014/12/201412302201_530374_2217446_3.jpg质谱条件Waters LCT Premier XETM型飞行时间质谱仪,W-负离子模式;毛细管电压2200 V;锥孔电压35 V;离子源温度120℃;脱溶剂气温度350℃;脱溶剂气流量10L /h;锥孔气流量700 L /h;质量扫描范围m /z 50 ~ 1200[

  • 液相测乳酸有两个峰?

    我用的体积比为0.12的磷酸溶液和乙氰当流动相,我用d-L的乳酸标样去跑线,在七分钟会出峰,是一个完整的峰,但是我的样品每次跑出来在同样的位置会有两个峰,有时候能分开有时候又连在一起,导致我仪器定乳酸组分的时候有时候会定在前面这个峰,有时候会在两峰中间,有时候会在后面这个峰,给我整的不知道哪个是乳酸了。 图一图二是样品的峰,图三是乳酸标样。求各位大神这种问题咋解决[img=,690,388]https://ng1.17img.cn/bbsfiles/images/2024/03/202403271712537212_4575_6429384_3.png[/img][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2024/03/202403271712542142_7611_6429384_3.png[/img][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2024/03/202403271712545339_9549_6429384_3.png[/img]

  • 关于脂肪酸甲酯的标液配置的浓度梯度

    在用岛津2010时,做牛油的32种脂肪酸甲酯是,得到样品的定量结果,浓度范围跟标曲相差很大,想请教一下,一般用wax的柱子做油类样品时,配置的标液浓度梯度是怎么配的啊?

  • 液质的流动相能用草酸水溶液吗?

    现在比较常用的甲酸或者乙酸,看到有个方法是草酸水溶液做流动相的,不知道草酸是否会对系统有干扰或者会污染仪器?大家还知道有哪些算能用作液质流动相的吗?与甲酸和乙酸比有哪些好处或者不好处?大家都讨论一下吧!

  • 复方盐酸阿替卡因注射液中盐酸阿替卡因的液相色谱分析方法

    复方盐酸阿替卡因注射液中盐酸阿替卡因的液相色谱分析方法

    [color=black]复方盐酸阿替卡因注射液为复方制剂,是盐酸阿替卡因与肾上腺素的灭菌水溶液,作为口腔用局部麻醉剂,适用于涉及切骨术及粘膜切开的外科手术过程。[/color][color=black] [/color][img=,156,99]https://ng1.17img.cn/bbsfiles/images/2019/03/201903211036489419_4502_2297_3.jpg!w156x99.jpg[/img][align=center][/align][align=left][b][color=black]盐酸阿替卡因(Articaine hydrochloride M.W.:320.84)[/color][/b][/align][align=center][b][color=black] [/color][/b][/align][color=black]在现有国家药品标准(YBH17082004-2015Z)分析方法中,流动相添加了离子对试剂-庚烷磺酸钠,并在pH为2.0的强酸条件下进行相应分析,不利于色谱柱的使用寿命。大曹三耀实验室参考USP方法,以冰醋酸水溶液-乙腈作为流动相,选用CAPCELL PAK C18 MGII色谱柱,实现了复方盐酸阿替卡因注射液中盐酸阿替卡因的定量和有关物质的良好分析(复方盐酸阿替卡因注射液由客户提供)。[/color][color=black]CAPCELLPAK C18 MGII[/color][color=black]液相色谱柱,其采用高纯度硅胶作为基质,通过减少硅胶微细孔的数量来增大有效比表面积;并且采用新包被技术Ultimate Polymer Coating,实现了对硅醇基极大程度的封锁,兼具分离性能和普适性能,通用性非常好。[/color][align=left][b][color=#0070c0]实验方法[/color][/b][/align][align=left][img=,500,358]https://ng1.17img.cn/bbsfiles/images/2019/03/201903211037456969_5082_2297_3.jpg!w730x523.jpg[/img][/align][align=left]图1[color=black]盐酸阿替卡因[/color]对照品及供试品溶液[/align][align=left][img=,500,248]https://ng1.17img.cn/bbsfiles/images/2019/03/201903211038541919_2603_2297_3.jpg!w572x284.jpg[/img][/align][align=center][/align][align=center][/align][color=black]为进行有关物质分析,该实验将注射液样品以流动相稀释100倍,作为有关物质供试品溶液,再将该有关物质供试品溶液以流动相进一步稀释100倍,作为自身对照溶液。以冰醋酸水溶液-乙腈作为流动相,选用CAPCELL PAK C18 MGII色谱柱,通过调整流动相比例及柱温,最终在18%乙腈、柱温30℃条件下实现了盐酸阿替卡因供试品溶液及对照品的良好分析。[/color]如图2、3,使用CAPCELL PAK C18 MGII色谱柱进行分析,盐酸阿替卡因和有关物质均能得到良好分析结果,主峰与峰前杂质得到了良好分离,分离度为1.90(见表1)[img=,400,311]https://ng1.17img.cn/bbsfiles/images/2019/03/201903211045536855_9516_2297_3.jpg!w574x447.jpg[/img][img=,400,295]https://ng1.17img.cn/bbsfiles/images/2019/03/201903211045540875_8483_2297_3.jpg!w698x516.jpg[/img][align=left] 图2 [color=black]盐酸阿替卡因[/color]有关物质供试品溶液及空白 图3 自身对照溶液[/align][align=center][/align][align=left]表1 有关物质结果详表[/align][align=left][img=,600,323]https://ng1.17img.cn/bbsfiles/images/2019/03/201903211042513275_6690_2297_3.jpg!w786x424.jpg[/img][/align][align=center][/align]综上实验结果,使用CAPCELL PAK C18 MGII S5 4.6mm i.d.×250 mm色谱柱,以冰醋酸水溶液-乙腈为流动相体系,在30°C柱温条件下,能够实现复方盐酸阿替卡因注射液中盐酸阿替卡因的定量和有关物质的良好分析。[color=black] [/color]

  • 【求助】高效液相可同时测定植酸、黄酮和阿魏酸吗

    【求助】高效液相可同时测定植酸、黄酮和阿魏酸吗

    高效液相可同时测定植酸、黄酮和阿魏酸吗?检测波长该如何选择?流动相呢?阿魏酸:有顺式和反式两种,顺式为黄色油状物,反式为正方形结晶或纤维结晶,溶点为174℃,溶于热水,乙醇和乙酸乙酯,稍溶于乙醚,难溶于苯和石油醚。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912231143_191530_1638724_3.jpg[/img]黄酮:天然黄酮类化合物多以苷类形式存在 ,并且由于糖的种类、数量、联接位置及联接方式不同可以组成各种各样黄酮苷类。黄酮苷一般易溶于水、乙醇、甲醇等极性强的溶剂中;但难溶于或不溶于苯、氯仿等有机溶剂中。糖链越长则水溶度越大。黄酮类化合物因分子中多具有酚羟基,故显酸性。酸性强弱因酚羟基数目、位置而异。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912231143_191531_1638724_3.jpg[/img]植酸:淡黄色浆状液体,易溶于水、乙醇、丙酮,不溶于无水乙醚、苯、已烷、氯仿。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912231144_191532_1638724_3.jpg[/img]

  • 【分享】制备液相几个条件

    碱法体系 体系1 A相:制备级ACN或MEOH B相:10mmol/L NH4HCO3 1L水配0.8gNH4HCO3 制备柱:shimadzu 20*250mm 15μm 两根串联 PH 2-8 预柱保护芯:waters 满足大多数普通弱碱性化合物,部分酸性化合物也能有效的分离。 强碱性化合物,在柱子上的保留的时间长,峰形较宽。对氨基酸的分离效果很差。 体系2 A相:制备级ACN或MEOH B相:0.01%氨水 1L水配0.4ml分析纯氨水 制备柱:Waters xbridge OBDTM 30*100mm 5μm PH 1-12 预柱保护芯:waters 可以分离强碱性化合物,峰形较尖锐。 酸法体系 A相:制备级ACN或MEOH B相:0.05%TFA 1L水配0.5ml TFA 制备柱:shimadzu 20*250mm 15μm 两根串联 PH 2-8 预柱保护芯:waters 可分离大多数酸性,弱碱性化合物 偶尔看到,希望可以供人参考。

  • 【分享】分析化学基础:弱酸弱碱溶液的型体分布分数及其应用

    【分享】分析化学基础:弱酸弱碱溶液的型体分布分数及其应用

    弱酸弱碱溶液的型体分布分数及其应用  弱酸、弱碱及其盐溶液由于存在部分离解(电离或水解)的多级可逆平衡,溶液中弱酸、弱碱的各种成分(型体)都可能存在,在指定条件下(指定PH值),各型体的浓度相对大小如何计算,谁是主体成分,谁是次要成分,浓度比值如何,在化学分析中还是很有实际意义的。  一、分布分数的定义和计算式 以磷酸溶液为例。 磷酸溶液中存在磷酸的三级平衡和水的离解平衡,磷酸体系存在四个型体,即H3PO4、H2PO4-、HPO42-、PO43-,(n元弱酸、n元弱碱具有n+1个型体)存在三个与磷酸根相关的化学平衡。理论上讲,不作任何近似时,溶液中四种型体都存在,而且,它们都有一定的浓度比,不过像磷酸根、磷酸一氢根都型体,相对浓度(即后述的分布分数)就极其小,而磷酸、磷酸二氢根的相对浓度(分布分数)则相对较大。分析化学中将某型体的平衡浓度与体系的总浓度(本例中,指四种含磷酸根的型体浓度之和)之比称作分布分数。 符号约定(分析浓度、标签浓度C): http://ng1.17img.cn/bbsfiles/images/2010/10/201010272011_254486_1644756_3.gif 磷酸平衡体系中四种分布分数的定义式和计算式如下http://ng1.17img.cn/bbsfiles/images/2010/10/201010272012_254487_1644756_3.gif每个分布分数虽然定义为浓度比,但导出的公式表明,分布分数只与氢离子浓度有关,即只是pH值的函数,这表明:任何弱酸弱碱溶液,平衡时,只要pH一定,溶液中各成分(型体)的浓度比是确定的值,而与配制时原浓度的大小没有关系。分布分数的计算式虽然看似复杂,但仍有一定的书写规律,即对于n元弱酸或n元弱碱,1、分母含有n+1个单项式,正好与溶液含n+1个成分(型体)相对应;2、分母为氢离子浓度幂与逐级酸常数的乘积之和,氢离子浓度由n次方依次降幂到0次,而Ka逐渐地连乘至所有常数之积,每次递增一个常数,氢离子浓度减少一次方;3、比较各分布分数的分子可知,将分母中的某一项放到分子上就是某一个型体的分布分数,而且,从n到Ka1Ka2、Ka3,依次对应于n元正酸,离解1个氢、2个氢.....不含氢酸根的酸(碱)型体;4、四个分布分数相加,其值为1. 根据以上的规律,可以直接写出HAc及醋酸盐溶液的两个分布分数为 http://ng1.17img.cn/bbsfiles/images/2010/10/201010272014_254488_1644756_3.gif 又如,对于碳酸、碳酸氢钠、碳酸钠等其他碳酸体系溶液,具有如下的三个分布分数: http://ng1.17img.cn/bbsfiles/images/2010/10/201010272015_254489_1644756_3.gif 需要说明的是:定义式中分母的浓度项并未规定为碳酸(醋酸),你可以表示为实际配制时的物质形式,如醋酸钠,后一例中碳酸钾、碳酸氢钠等,都是可以的。它只表示该体系中各型体的总浓度(即分析浓度)。另外,分布分数的计算式也可以表示成用和Kbi表示的形式,因为计算结果都相同,因此,只需记一种表示式即可。例如,对于氨-铵根体系,两个分布分数可以用氢离子,也可以用氢氧根离子浓度表示,其计算结果是相同的,见下面的恒等式: http://ng1.17img.cn/bbsfiles/images/2010/10/201010272017_254490_1644756_3.gif (根据水的离子积关系和Ka与Kb换算关系可以证明上面的恒等式是成立的)二、分布分数的图解方法分布分数随着pH变化而变化,它们是PH值的函数,可以用作图的方法来讨论它们之间的变化规律,下图是磷酸体系的分布分数图,共有四条,每一条对应于一个型体的分布分数曲线: http://ng1.17img.cn/bbsfiles/images/2010/10/201010272019_254491_1644756_3.jpg可以看出,1、磷酸根和磷酸的曲线是单向变化的,pH增大,磷酸的分布分数减小(指pH0-4区间),磷酸根的分布分数增大(指PH10.5-14

  • 二硫腙-乙酸丁酯法测定食品中镉

    (1)原理试样经处理后,在pH6左右的溶液中,镉离子与二硫腙形成配合物,并经乙酸丁酯萃取分离,导入原子吸收仪中,原子化以后,吸收228.8nm共振线,其吸收值与镉含量成正比,与标准系列比较定量。(2)试剂 氨水、混合酸、1g/L二硫腙-乙酸丁酯溶液(称取0.1g二硫腙,加10mL三氯甲烷溶解后,再加乙酸丁酯稀释至100rnL,临用时配制)、2mo1/L柠檬酸钠缓冲液(称取226.3g柠檬酸钠及48.46g柠檬酸,加水溶解,必要时加温助溶,冷却后加水稀释至500mL,临用前用1g/L二硫腙-乙酸丁酯溶液处理以降低空白值)、镉标准储备溶液和标准使用液的配制与碘化钾-4-甲基戊酮-2法中的相同。(3)仪器原子吸收分光光度计。(4)分析步骤①试样处理对于谷类要去除其中的杂物及尘土,必要时除去外壳。对于豆类,取可食部分洗净晾干,切碎充分混匀。②样品消化称取5.00g上述试样,置于250mL高型烧杯中,加15mL混合酸,盖上表面皿,放置过夜,再于电热板或电砂浴上加热。消化过程中,注意勿使干涸,必要时可加少量硝酸,直至溶液澄明无色或微带黄色。冷后加25mL水煮沸,除去残余的硝酸至产生大量白烟为止,如此处理两次,放冷。以25mL水分数次将烧杯内容物洗入125mL分液漏斗中。取与处理样品相同量的混合酸、硝酸按同一操作方法做试剂空白试验。③萃取分离 吸取0、0.25mL、0.50mL、1.50mL、2.50mL、3.50mL、5.0mL镉标准使用液(相当于0、0.05μg、0.1μg、0.3μg、0.5μg、0.7μg、1.0μg镉)。分别置于125mL分液漏斗中,各加盐酸(1+11)至25mL。向试样品处理溶液、试剂空白液及镉标准溶液各分液漏斗中各加5mL柠檬酸钠缓冲液(2mol/L),以氨水调节pH至5~6.4,然后各加水至50mL,混匀。再各加5.0mL二硫腙-乙酸丁酯溶液(1g/L),以氨水调节pH至5~6.4,然后各加水至501mL,混匀。再各加5.0mL二硫腙-乙酸丁酯溶液(1g/L),振摇2min,静置分层,弃去下层水相,将有机层放入具塞试管中,备用。④测定测定方法与碘化钾-4-甲基戊酮-2法中的相同。⑤结果计算 样品中镉的含量按下式进行计算。X=/(m×1000)式中,X为试样中镉的含量,mg/kg;A1为测定用试样液中镉的质量,μg;A2为试剂空白液中镉的质量,μg;m为试样质量或体积,g或mL。计算结果保留两位有效数字。⑥精密度 在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的15%。

  • 松脂酸(松香酸)测定方法

    松脂酸(松香酸)测定方法

    [align=center][size=24px][b]松脂酸(松香酸)测定方法[/b][/size][/align] 松香酸用于发酵工业,并且可用作肥皂和造纸工业的填料。松香酸为三环二萜类化合物。在含水乙醇中得单斜片状结晶。熔点172~175℃,旋光度-102°(无水乙醇)。不溶于水,溶于乙醇、苯、氯仿、乙醚、丙酮、二硫化碳以及稀氢氧化钠水溶液。为天然松香树脂的主要成分。本测定方法是建立松香中松脂酸测定,液体原药松脂酸铜中松脂酸测定;文献报道,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法测定松脂酸铜需要加入盐酸,[font=宋体]将松脂酸铜衍生转化为松脂酸,图[/font][font='Times New Roman','serif']1[/font][font=宋体]列出了其可能的转化途径,确定松脂酸铜实际测定对象为松脂酸。厂家送过来的原药是盐酸处理过的所以我们直接检测就行。[/font][align=center][img=,589,168]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150859397658_4592_3963412_3.jpg!w589x168.jpg[/img][/align][align=center][b][font=宋体]图[/font][font='Times New Roman','serif']1 [/font][/b][font=宋体][b]松脂酸铜转化为松脂酸[/b][/font][/align][align=left][b]实验方法[/b][/align][align=left][/align][align=left][font='Times New Roman','serif']1[/font][font=宋体]试剂:乙腈(色谱级),磷酸(分析纯);盐酸分析纯[/font][font=&] [font='Times New Roman','serif']2[/font][font=宋体][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]条件:[/font][font='Times New Roman','serif']LC-20AT [/font][font=宋体]波长:[/font][font='Times New Roman','serif']245nm [/font][font=宋体];进样量:[/font][font='Times New Roman','serif']5μL[/font][font=宋体]色谱柱型号:[/font][font='Times New Roman','serif']Agilent Eclipse XDB-C18(2.1 mm×100mm, 2.7 μm), [/font][font=宋体]柱温:[/font][font='Times New Roman','serif']30.5 [/font][font=宋体]℃,流动相条件如表[/font][font='Times New Roman','serif']1[/font][font=宋体]:[/font][/font][/align][align=center][font=&][font=宋体]表1 流动相洗脱程序[/font][/font][/align][align=center][font=&][font=宋体][img=,559,298]https://ng1.17img.cn/bbsfiles/images/2023/08/202308151105132742_2164_3963412_3.jpg!w559x298.jpg[/img][/font][/font][/align][align=left][font='Times New Roman','serif']3 [/font][font=宋体]标准品配制:称取一定量的松脂酸,用乙腈[/font][font='Times New Roman','serif']:0.1%[/font][font=宋体]磷酸([/font][font='Times New Roman','serif']V/V=70:30[/font][font=宋体])溶解,定容,得到浓度为[/font][font='Times New Roman','serif']200 μg/mL[/font][font=宋体],待测。[/font][/align][font=宋体][/font][align=center][img=,534,242]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150902130177_1955_3963412_3.jpg!w534x242.jpg[/img]图2 标准品色谱图[/align][align=left][font='Times New Roman','serif']4[/font][font=宋体]样品制备:[/font][/align][align=left][font='Times New Roman','serif']4.1[/font][font=宋体]松香用研钵研碎,称取一定量的样品,用乙腈[/font][font='Times New Roman','serif']:0.1%[/font][font=宋体]磷酸([/font][font='Times New Roman','serif']V/V=70:30[/font][font=宋体])超声溶解,定容至[/font][font='Times New Roman','serif']50 mL[/font][font=宋体],然后过滤待测。[/font][/align][align=center][img=,532,236]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150904090783_7851_3963412_3.jpg!w532x236.jpg[/img][/align][align=center]图3 松香样1色谱图[/align][align=center][/align][align=center][img=,498,227]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150904412965_7172_3963412_3.jpg!w498x227.jpg[/img][/align][align=center]图4 松香样2色谱图[/align][align=left]4.2 称取一定量的液体原药,用乙腈:0.1%磷酸(V/V=70:30)溶解,定容至50mL, 过0.45μm滤膜,待测。[/align][align=center][img=,560,254]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150908303829_927_3963412_3.jpg!w560x254.jpg[/img]图5 原药1色谱图[/align][align=center][img=,513,235]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150908401428_7495_3963412_3.jpg!w513x235.jpg[/img]图6 原药2色谱图[img=,690,516]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150914267479_9450_3963412_3.jpg!w690x516.jpg[/img]图7 松香(1和2)样品图[/align][align=left]结论:从松香质地能看出来松香2 质地要优于松香1,松香1中松香酸含量44.3%,松香2中松香酸含量88.5%,原药1含量12.5%,原药2中含量42.1%。后来联系客户说松香1是湿地松得到的,松香2是马尾松得到的。不同植物得到的松香差异比较明显。[/align][font='Times New Roman','serif'][/font][align=left][font=宋体][/font][/align][align=center][/align][align=left][/align][align=left][/align]

  • 【原创】【第三届原创大赛+极限体验】皮革中富马酸二甲酯的快速测定

    摘 要: 目的:建立并验证了用HPLC-UV测定皮革中富马酸二甲酯的检测方法;方法:以乙腈为提取溶剂,采用超声波提取法提取皮革中富马酸二甲酯,以相对保留时间定性,色谱峰面积定量;结果:乙腈平均回收率为94.31%~100.83%,RSD为0.993%~1.468%;检测限(S/N=3)为0.12mg/kg;结论:实验表明,乙腈提取皮革中富马酸二甲酯的方法操作简单,结果准确。关键词:皮革;富马酸二甲酯;超声波1 前言富马酸二甲酯(Dimethyl fumarate,简写DMFu)是80年代开发的一种新型防霉剂,具有高效、低毒、广谱和适应pH值范围宽(3.0~8.0)等特点,能有效地抑制多种 霉菌、酵母菌和细菌的生长,对黄曲霉素抑制效果最佳,适用于各种食品和饲料防霉、粮食贮存、水果防腐保鲜及蚕茧、衣物、图书防霉、防蛀等。曾广泛用于食品、饲料、烟草、皮革和衣物等防腐防霉及保鲜。然而DMFu 会导致健康损害。根据临床试验,DMFu 可经食道吸入对人体肠道、内脏产生腐蚀性损害;并且当该物质接触到皮肤后,会引发接触性皮炎痛楚,包括发痒、刺激、发红和灼伤;对人类的身体健康造成了极大的危害。因此,DMF 的存在成为一种严重威胁。欧盟委员会于2009 年3 月17 日通过《要求各成员国保证不将含有生物杀灭剂富马酸二甲酯(DMF)的产品投放市场或销售该产品的决议》,5月1日开始执行。该草案明确规定,如果消费品或其部件中富马酸二甲酯的含量超过了0.1毫克/千克,或者产品本身已声明了其富马酸二甲酯的含量,就将被认定为“含有富马酸二甲酯”的产品,其将禁止进入欧盟市场流通和销售。测定DMF含量的方法有紫外分光光度法、薄层色谱法、液相色谱法、气相色谱法、气相色谱/质谱法。本文根据现有测试方法,选取三种不同提取试剂做对比,选择更方便迅速的提取方法,利用高效液相色谱仪进行测试,具有分析结果准确、测定迅速等优点。2 实验部分2.1 仪器与材料仪器:LC-310型高效液相色谱仪(包括P310高压输液泵,UV310紫外可见光检测器,CT310色谱柱温箱,LC-310液相色谱工作站,均为江苏天瑞仪器股份有限公司产品),电子天平(赛多利斯科学仪器(北京)有限公司),超声波清洗器(张家港市神科超声电子有限公司),紫外分光光度计(上海精密仪器仪表有限公司),精密酸度计(上海精密科学仪器有限公司),旋转蒸发仪(巩义市英峪予华仪器厂),粉碎机(武义县屹立工具有限公司),超纯水机(南京易普易达科学发展有限公司)。试剂:乙酸乙酯(分析纯)、三氯甲烷(分析纯)、乙腈(色谱纯,美国TEDIA),水为超纯水。样品:白色皮革。富马酸二甲酯标准品:(美国Accustandard,Inc.提供)2.2 方法与结果2.2.1 [size=3

  • 【讨论】警惕健康杀手反式脂肪酸 鉴别要看食品成分

    反式脂肪酸——食品安全的隐患http://img.antpedia.com/attachments/2010/11/33393_201011261223201.jpg  近日,央视一则关于植物奶油(又称氢化油)危害的报道,再次将反式脂肪酸推至风口浪尖。据了解,反式脂肪酸又称反式脂肪或逆态脂肪酸,是一种不饱和人造植物油脂,生活中常见的人造奶油、人造黄油都属于反式脂肪酸。制造反式脂肪酸的“氢化处理”过程可以防止分子被氧化,使液体油脂变成适合特殊用途的半固体油脂并延长保质期,因此受到许多糕点制造商的欢迎。  据报道,反式脂肪酸对人体有一系列副作用,更是造成糖尿病的元凶。清远消费者对它的了解又有多少呢?记者对此展开了调查。  市民对反式脂肪酸知之甚少  “氢化植物油?反式脂肪酸?没听说过。”市民小周由于工作较忙,经常错过正常吃饭时间,因此在他的办公桌抽屉里总是装满各种零食,如饼干、蛋黄派等,但是他从没有听说过植物奶油,每次“入货”时,也不怎么留意食物的配料表,顶多是看一下什么品牌或什么口味的。有时候加夜班,为了提神也会喝咖啡。“我经常喝咖啡,也不觉得有啥问题。”  “小孩子喜欢吃饼干、薯条这些零食,一般都会储备一点这样的零食哄孩子。我不清楚什么是反式脂肪酸,只知道零食吃多了容易使人发胖,对牙齿也不好。”市民刘女士说,  记者发现,很多档次高低不一的蛋糕店大多有个相同之处:销售人员均宣称店里的蛋糕是真正的纯正奶油蛋糕。而这些蛋糕看起来确实细腻、美观,让人觉得胃口大开。  “大多数甜品店使用的奶油都是混合了植物奶油和动物奶油两种。动物奶油是由牛奶中的脂肪分离获得的,植物奶油是以大豆等植物油和水、盐、奶粉等加工而成的,也叫人造奶油。从口感上说,动物奶油口味更好一些,你到糕点店里闻到的那个香味多是来自这个东西。而植物奶油不含胆固醇,看起来好像比较健康。”一位有多年甜品制作经验的糕点师傅告诉记者。不过他私下里表示,听过植物奶油中含有反式脂肪酸,好像对身体不太好,至于不好在哪里,他也说不清楚。  在记者的随机采访中,大多数市民表示一般只会看产品的品牌和保质期,至于配料当中的那些所谓的“植物奶油”、“植脂末”则完全看不懂,也不在意,更不知道它们有什么危害。  一些人则认为植物奶油更好,是动物奶油脂肪含量太高而出现的替代品。  “植物”不等同于“健康”  据了解,氢化油可以说是健康的头号杀手,因为自然界很少有氢化油的存在,人类自古以来的食物里也几乎没有这种东西。由于反式脂肪酸在我们身体里是完全不被接受的,所以会导致体内生理功能出现多重障碍。  “其实,‘植物’的不一定就是健康的。”广州中山大学孙逸仙纪念医院临床营养科主任陈超刚对媒体表示,植物油加氢可将不饱和脂肪酸转变成室温下更稳定的固态反式脂肪酸,这种反式脂肪酸对人体的危害比饱和脂肪酸更大。  人体每天所需的脂肪总量是固定的,除了不饱和脂肪酸,还有饱和脂肪酸,但是每天所需的总量有限,过多摄入不饱和脂肪酸,容易造成肥胖、心血管疾病的发生。  营养学专家指出,所谓的“植物黄油”和“人造奶油”、“人造黄油”、“人造脂肪”等,其实都是氢化植物油。“除了含一定量的反式脂肪酸,氢化植物油中还含有非常多的饱和脂肪酸,虽然还带着‘植物’两个字,但它比猪油所含的饱和脂肪酸还多!”  根据有关研究,反式脂肪酸对人体健康的影响一般有:降低记忆力;发胖;引发冠心病,形成血栓;影响男性生育能力;影响生长发育期的青少年对必需脂肪酸的吸收,会对青少年中枢神经系统的生长发育造成不良影响。  反式脂肪酸广泛存在  除了植脂末、氢化植物油之外,不少食品的成分表中标注含有“精炼植物油”、“植物奶油”等成分,其实这些油脂中都含有氢化油。换句话说,这些食品中都含有反式脂肪酸。  据了解,真正的奶油是以全脂鲜奶为原料的,但记者在一家蛋糕店看到,该店使用的人造奶油的外包装上显示,其配料主要为水、白砂糖、精炼玉米油、氢化棕榈油等,没有一点奶的成分。  一位有多年甜品制作经验的糕点师傅告诉记者,糕点行业内制作蛋糕用的“奶油”其实很少采用纯正奶油。因为纯奶油较难成型,放在冰箱里两个小时就会溶化,没法保存;而大家购买的奶油蛋糕大都质地松软,口感细腻,间隙小,有“卖相”,还可以冷藏两三天。“现在大多数甜品店里用的奶油都是混合了植物奶油的。”  植脂奶油”的主要成分是氢化植物油脂,再加上乳化剂、稳定剂、蛋白质、糖、食盐、色素、水、香精等辅料制成。这种“植物奶油”有着非常好的口感,高档植脂奶油可以做到入口即化,而且不容易变质。很多糕饼企业买来用在生日蛋糕、面包夹心等食品里。  夹心饼干、薯片、早餐麦片、方便面、方便汤、蛋黄派、多纳圈、巧克力、咖啡伴侣、沙拉酱、冰淇淋、速冻汤圆、糖果、色拉……在清远各大超市的食品货架上,到处可见含有“氢化植物油”、“植脂末”等成分的食品。  记者在超市看到,不少袋装甜点中,虽然没有写含有“植物奶油”或者“植脂末”,但是,却标注含类似“精炼植物油”或者“起酥油”。一位业内人士告诉记者,这些听起来好像食用油的物质其实多是由氢化棕榈油、氢化大豆油、氢化椰子油等物质组成,而这些均是“氢化油”的不同叫法,甚至不少被简单写成“奶油”的成分,也很有可能就是“氢化油”。  据广州媒体报道,在同一间超市里,95种饼干里有36种含人造脂肪,51种蛋糕点心里有19种含人造脂肪,16种咖啡伴侣全部含人造脂肪,31种麦片里有22种含人造脂肪。  有关媒体报道,2005年至2009年,一项中国食品油脂含量、反式脂肪酸种类含量的调查显示,抽检食品中87%的样品含有反式脂肪酸。包括所有的奶酪制品;95%的“洋快餐”、蛋糕、面包、油炸薯条类小吃等;约90%的冰激凌以及80%的人造奶油、71%的饼干。  另外,有专业人士指出,自然界也存在反式脂肪酸,当不饱和脂肪酸被反刍动物(如牛)消化时,脂肪酸在动物瘤胃中被细菌部分氢化。牛奶、乳制品、牛肉和羊肉的脂肪中都能发现反式脂肪酸,占2%—9%。鸡和猪也通过饲料吸收反式脂肪酸,反式脂肪酸因此进入猪肉和家禽产品中。  “物美价廉”惹的祸  “很多人会有这样的感觉,脱脂牛奶比起全脂牛奶,口感、香味都差远了,这就是脂肪在起作用。”从事食品安全检测工作的赵明说,添加了脂肪之后,食物的香味更加扑鼻,口感也更好,这是面包、饼干、奶茶、冰激凌等中都会添加脂肪的原因,植物奶油就是一种反式脂肪。  植物奶油最初是用来代替价格比较昂贵的动物奶油的。和动物奶油不太一样的是,植物油脂是一种液体,所以要通过氢化处理改变植物油脂性质,使之成为固体或半固体,方便运输与加工。与植物奶油类似,咖啡伴侣中的“植脂末”也是因为有相同的加工需要。  而薯条、薯片中含有的氢化油则是从另外一种渠道产生的。“植物油脂中含有不饱和脂肪,这是一种不稳定的物质,在高温的环境下会产生变性,形成有害于人体健康的反式脂肪,所以薯条、薯片中的氢化油更多的是在加工过程中产生的。”  为什么众多的商家都选择使用这种含有大量反式脂肪酸的“植物奶油”呢?采访中,多位业内人士向记者透露,“植物奶油”的低成本是关键。“植物奶油比鲜奶油的成本低。”一位不愿意透露姓名的食品企业采购人员在回答记者的疑问时说,“一箱植物奶油只需要100多元,可以制作出十几个或几十个蛋糕,而同样的一箱淡牛奶就需要花几百元。如果将这个差价乘以几千几万再乘以年数,你想想看,那就是一个庞大的数字了。”  面包、蛋糕、饼干、奶茶、薯条、薯片、冰激凌、咖啡……不知不觉中,植物油脂偷偷“占领”了我们的胃。为什么“遍地”都是植物奶油?归纳起来主要有三个原因,一是口感好,二是加工的需要,三是价格低廉。

  • 【求助】高效液相测定植酸

    我是个大四的学生,老师让用液相测植酸,文献好像也很少用液相测定,今天按照文献的方法,用0.025M的磷酸二氢钾做流动相测植酸,硬是没看到峰出来,郁闷死啦![em09509]有没有高手指点一下啊,我用的检测波长是260nm哈![em09511]

  • 维生素E醋酸酯是液体的,我该怎么称取?

    在验收维生素E醋酸酯标准品的时候,不够仔细,我没有认真查看,现在要用了才发现是液体状的,可是小瓶子中却只有100mg,我素手无策了,又怕浪费,不知道该怎么称取那少的可怜的标准品了?我是初次接触高效液相色谱,仪器也是新买的,还烦请请各位赐教帮帮忙啊。在此先谢过了。。。

  • 傅若农:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱

    [b][color=#0000ff]编者注:[/color][/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[color=#0000ff][url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#0000ff]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#0000ff]第二讲:傅若农:从三家公司[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#0000ff]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#0000ff]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141009/143041.shtml][color=#0000ff]第五讲:傅若农:气-固色谱的魅力[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141104/145381.shtml][color=#0000ff]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141205/147891.shtml][color=#0000ff]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20150106/150406.shtml][color=#0000ff]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20150211/153795.shtml][color=#0000ff]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][/url][/color][url=http://www.instrument.com.cn/news/20150312/155171.shtml][color=#0000ff]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/color][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][color=#0000ff]第十一讲:[/color][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][color=#0000ff]傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/color][/url][url=http://www.instrument.com.cn/news/20150519/160962.shtml][color=#0000ff]第十二讲:擒魔序曲——脂质组学研究中的样品处理[/color][/url][b]前言[/b]  作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。  前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]方法。[b]1、基本情况[/b]  由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]有些困难,逊色于薄层色谱和液相色谱。如果使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行脂质组学研究的基本方法。用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。  近年把离子液体用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161-175)[b]2、室温离子液体作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相[/b]  室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根(-)、四氟硼酸根(-)、硝酸根(NO3-)、三氟甲基磺酰亚胺(-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离α-甲基吡啶和β-甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ( ) 及相应的氯化物( )用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了和色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490)[b](1).室温离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的特点[/b]  室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,它们非常适应毛细管色谱柱的多方面要求:[b](a) 蒸汽压低[/b]  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺()的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的要求。[align=center]表1 在不同温度下的蒸汽压[/align][table][tr][td][align=center]温度/℃[/align][/td][td][align=center]蒸汽压/P×10[sup]2[/sup] (Pa)[/align][/td][/tr][tr][td][align=center]184.5[/align][/td][td][align=center]1.22(0.92 mmHg柱)[/align][/td][/tr][tr][td][align=center]194.4[/align][/td][td][align=center]2.29(1.72 mmHg柱)[/align][/td][/tr][tr][td][align=center]205.5[/align][/td][td][align=center]5.07 (3.8 mmHg柱)[/align][/td][/tr][tr][td][align=center]214.4[/align][/td][td][align=center]8.74 (6.6 mmHg柱)[/align][/td][/tr][tr][td][align=center]224.4[/align][/td][td][align=center]15.2 (11.4 mmHg柱)[/align][/td][/tr][tr][td][align=center]234.4[/align][/td][td][align=center]27.4 (20.5 mmHg柱)[/align][/td][/tr][tr][td][align=center]244.3[/align][/td][td][align=center]46.6 (35.0 mmHg柱)[/align][/td][/tr][/table][b](b) 粘度高[/b]  室温离子液体的粘度高,适合于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。[b](c) 湿润性好[/b]  要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。[b](d)热稳定性好[/b]  大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220-250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335-405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。[align=center][img=,537,347]http://img1.17img.cn/17img/old/NewsImags/images/201561710517.jpg[/img][/align][align=center]图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较[/align][b](e) 极性高[/b]  固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及π-电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。[align=center]表 2 几种商品离子液体固定相的极性 [/align][table=536][tr][td][align=left]商品色谱柱[/align][/td][td][align=left]组成[/align][/td][td][align=left]McRynolds 极性(P)[/align][/td][td][align=left]相对极性数(p.N.)*[/align][/td][/tr][tr][td][align=left]SLB-IL 111[/align][/td][td][align=left] 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]5150[/align][/td][td][align=left]116[/align][/td][/tr][tr][td][align=left]SLB-IL 100[/align][/td][td][align=left]1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺[/align][/td][td][align=left]4437[/align][/td][td][align=left]100[/align][/td][/tr][tr][td][align=left]TCEP[/align][/td][td][align=left]1,2,3-三(2-氰乙氧基)丙烷[/align][/td][td][align=left]4294[/align][/td][td][align=left]94[/align][/td][/tr][tr][td][align=left]SLB-IL 82[/align][/td][td][align=left]1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]3638[/align][/td][td][align=left]82[/align][/td][/tr][tr][td][align=left]SLB-IL 76[/align][/td][td][align=left]三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]3379[/align][/td][td][align=left]76[/align][/td][/tr][tr][td][align=left]SLB-IL 69[/align][/td][td][align=left]未知 [/align][/td][td][align=left]3126[/align][/td][td][align=left]70[/align][/td][/tr][tr][td][align=left]SLB-IL 65[/align][/td][td][align=left]未知 [/align][/td][td][align=left]2834[/align][/td][td][align=left]64[/align][/td][/tr][tr][td][align=left]SLB-IL 61[/align][/td][td][align=left]1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐[/align][/td][td][align=left]2705[/align][/td][td][align=left]61[/align][/td][/tr][tr][td][align=left]SLB-IL 60[/align][/td][td][align=left]1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活)[/align][/td][td][align=left]2666[/align][/td][td][align=left]60[/align][/td][/tr][tr][td][align=left]SLB-IL 59[/align][/td][td][align=left]1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]2624[/align][/td][td][align=left]59[/align][/td][/tr][tr][td][align=left]SupelcoWax[/align][/td][td][align=left]100%聚乙二醇[/align][/td][td][align=left]2324[/align][/td][td][align=left]52[/align][/td][/tr][tr][td][align=left]SPB-5MS[/align][/td][td][align=left]5%二苯基/95%二甲基)硅氧烷[/align][/td][td][align=left]251[/align][/td][td][align=left]6[/align][/td][/tr][tr][td][align=left]Equity-1[/align][/td][td][align=left]100%聚二甲基硅氧烷[/align][/td][td][align=left]130[/align][/td][td][align=left]3[/align][/td][/tr][/table][align=center]*相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性[/align][align=center](McRynolds 极性指标是上世纪60年代中期研究建立的一种[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691)[/align][align=left]几种离子液体色谱柱的结构和性能见表3[/align][align=center]表3:几种离子液体色谱柱的结构和性能[/align][align=center][img=,439,481]http://img1.17img.cn/17img/old/NewsImags/images/2015617101819.png[/img][/align][align=center][img=,440,494]http://img1.17img.cn/17img/old/NewsImags/images/2015617101838.png[/img][/align][align=center][img=,453,584]http://img1.17img.cn/17img/old/NewsImags/images/2015617101858.png[/img][/align][b]3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4[/b][align=center]表4 离子液体色谱柱在脂肪酸甲酯分离中应用[/align][table=555][tr][td]1[/td][td]SLB-IL111[/td][td]奶油中的脂肪酸[/td][td]使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体[/td][td]1[/td][/tr][tr][td]2[/td][td]SLB-IL 82 和 SLB-IL 100[/td][td]水藻中的脂肪酸[/td][td]这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。一维:聚二甲基硅氧烷二维:SLB-IL 82 和 SLB-IL 100[/td][td]2[/td][/tr][tr][td]3[/td][td]SLB-IL100[/td][td]鱼的类脂中反式20碳烯酸顺反异构体的分析[/td][td]用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57[/td][td]3[/td][/tr][tr][td]4[/td][td]SLB-IL111[/td][td]分离16碳烯酸顺反异构体和其他不饱和脂肪酸[/td][td]如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。[/td][td]4[/td][/tr][tr][td]5[/td][td]SLB-IL111[/td][td]分离脂肪酸顺反异构体[/td][td]SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸[/td][td]5[/td][/tr][tr][td]6[/td][td][align=left] SLB-IL100[/align][/td][td]牛奶和牛油中的脂肪酸顺反异构体[/td][td]使用全二维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],把离子液体柱用作第一维色谱柱一维:SLB-IL100二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷[/td][td]6[/td][/tr][tr][td]7[/td][td]SLB-IL 100(快速柱)[/td][td]生物柴油中的脂肪酸甲酯(C1-C28)[/td][td]SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]。[/td][td]7[/td][/tr][tr][td]8[/td][td]SLB-IL100[/td][td]分离C[sub]18:1[/sub], C[sub]18:2[/sub], 和 C[sub]18:3[/sub]顺反异构体[/td][td]SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱[/td][td]8[/td][/tr][tr][td]9[/td][td]SLB-IL111SLB-IL100SLB-IL82SLB-IL76SLB-IL61SLB-IL60SLB-IL59[/td][td]评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能[/td][td]IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开[/td][td]9[/td][/tr][tr][td]10[/td][td]SLB-IL59SLB-IL60SLB-IL61SLB-IL76SLB-IL82 SLB-IL100 SLB-IL111[/td][td]用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体[/td][td]除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系[/td][td]10[/td][/tr][tr][td]11[/td][td]SLB-IL111[/td][td]使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸[/td][td]使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 μm)快速分离食用油(例如奶油)中的反式脂肪酸[/td][td]11[/td][/tr][tr][td]12[/td][td]SLB-IL111[/td][td]使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸[/td][td]在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体[/td][td]12[/td][/tr][/table][b]表中文献[/b][table][tr][td]1[/td][td]Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat .[b]J. Chromatogr.A,2012, 1233:137-146[/b][/td][/tr][tr][td]2[/td][td][align=left]Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography-mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota. [b]J. Chromatogr.A, 2011, 1218:3056-3063[/b][/align][/td][/tr][tr][td]3[/td][td]Ando Y.Sasaki, [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase. [b]J. Am. Chem. Oil Soc.,2011,88:743-748[/b][/td][/tr][tr][td]4[/td][td][align=left]Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography-mass-spectrometry using ionic-liquid coated capillary column. [b]J.Chromatogr.A2011,1218: 9384- 9389[/b][/align][/td][/tr][tr][td]5[/td][td][align=left]Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. [b]J.Chromatogr.A, 2011,1218: 545-554[/b][/align][/td][/tr][tr][td]6[/td][td][align=left]Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers .[b]J. Chromatogr. A, 1217 (2010) 775-784[/b][/align][/td][/tr][tr][td]7[/td][td]Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase. [b]J. Chromatogr.A[/b], [b]2009,1216:8992-8997[/b][/td][/tr][tr][td]8[/td][td]Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids. [b]Anal. Chem., 2009, 81:5561-5568[/b][/td][/tr][tr][td]9[/td][td]Dettmer K, Assessment of ionic liquid stationary phases for the [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] analysisof fatty acid methyl esters,[b]Anal Bioanal Chem[/b] ,2014, 406:4931-4939[/td][/tr][tr][td]10[/td][td]Characterisation of capillary ionic liquid columns for gaschromatography-mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, [b]Anal Chim Acta[/b] , 2013 803:166- 173[/td][/tr][tr][td]11[/td][td]Inagaki S,Numata M, Fast [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] Analysis of Fatty Acid Methyl Esters Using a HighlyPolar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,[b]Chromatographia[/b] , 2015,78:291-295[/td][/tr][tr][td]12[/td][td]Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography-flame ionisation detector equipped with highly polar ionic liquid capillary column, [b]Food Chemistry[/b] , 2014 160:39-45[/td][/tr][/table] 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。

  • 氨基酸水溶液放4度冰箱一个月还能用嘛

    求问各位大佬们,我5月25日称18种氨基酸标品配成氨基酸水溶液,然后又稀释了一系列梯度,放在4℃冰箱一个月了,现在观察到母液有点点长菌,但是其他梯度的溶液没有。请问这些梯度溶液还能用吗?

  • 液质联用分析体液中未衍生化氨基酸的方法

    [color=#444444]看了很多文献的报道,使用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]分析体液中未衍生化的氨基酸时,他们都使用离子对试剂全氟酸(例如全氟庚酸、全氟丁酸等),但是我现在希望不使用任何离子对试剂的帮助,通过反相液相色谱柱进行分离氨基酸,并通过质谱进行定性定量分析。我想问的问题就是我的方案的可行性有多大,有意义吗?(因为如果我的想法可行的话,国外为什么很多报道还是使用离子对试剂呢?)[/color][color=#444444]希望大家帮我多提宝贵意见,谢谢。[/color]

  • 【求助】工业乙酸乙酯的液相色谱测试条件

    各位大虾,网上都是乙酸乙酯的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测试条件,不知道能不能用液相色谱测试乙酸乙酯,请教工业乙酸乙酯的液相色谱测试条件,多谢大家的热心帮助!!!

  • 【转帖】大茴香酸-硫酸荧光体系测定黄芪甲苷

    大茴香酸-硫酸荧光体系测定黄芪甲苷刘养清 杜鸣 徐秉玖关键词: 黄芪甲苷; 大茴香酸; 黄芪; 中药复方补阳还五汤; 荧光分光光度法中图分类号: R927.2 R284.1   文献标识码: A   文章编号: 0513-4870(2000)07-0544-03黄芪甲苷(astragaloside)是中药膜荚黄芪Astragalus membranaceus (Fisch.) Bge.和蒙古黄芪Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao的主要活性成分,有抗炎、降压、镇痛、镇静、升高血浆中cAMP水平、促进小鼠再生肝DNA的含量[1,2]以及促进免疫功能等生理活性。黄芪甲苷的测定方法主要有:紫外分光光度法[3,4]、薄层扫描法[5,6]和HPLC法[7,8]。光度法常用香草醛在浓硫酸作用下与甲苷显色反应,空白值较高,干扰严重;薄层扫描法操作繁琐,准确度相对较差。黄芪甲苷仅在200 nm处有末端吸收,对HPLC法不利。黄芪甲苷的荧光分析尚未见报道。本文首次根据在浓硫酸条件下黄芪甲苷与大茴香酸反应产物具有荧光的特性建立了荧光分光光度法测定黄芪甲苷,方法灵敏度高、选择性好、线性范围宽、检出限低、操作简便。可直接用于黄芪生药、中药复方、黄芪制剂以及含药血清等多种样品的测定,无干扰。材料与方法  仪器 日本岛津RF-540型荧光分光光度计。  试剂 黄芪甲苷对照品(中国药品生物制品检定所提供)配成1.0 mg.mL-1的甲醇溶液。2%大茴香酸的无水乙醇溶液,72%硫酸溶液,85%磷酸溶液。所用试剂均为分析纯。  样品及处理 黄芪口服液(上海福达制药有限公司生产,批号980502)。取口服液1.00 mL,加入无水乙醇2.00 mL,离心分离沉淀,上清液蒸干,用甲醇1 mL溶解,备用。补阳还五汤复方汤剂煎煮3次,合并水煎液,分别用石油醚、氯仿、正丁醇萃取4次,每次萃取剂用量为水煎液体积的一半。合并正丁醇相,总体积为800 mL。取正丁醇萃取液2 mL,蒸干,用甲醇2 mL溶解,备用。含药猪血清样品(北京医科大学药学院生药研究室提供):用补阳还五汤复方浸膏连续3 d喂猪,3 d后取血,分离猪血清,取猪血清50 mL,用正丁醇萃取4次,每次萃取剂用量为原血清体积的一半。得含药血清样品100 mL,取正丁醇萃取液4 mL,蒸干,用甲醇2 mL溶解,备用。黄芪生药样品:按文献[3]方法提取分离,甲醇溶样,备用。结果与讨论1 黄芪甲苷反应产物的激发光谱和发射光谱  取1.0 mg.mL-1黄芪甲苷对照品0.1 mL,于5 mL量瓶中,加入2%大茴香酸溶液0.6 mL、72% H2SO4溶液0.8 mL,于60℃水浴中反应20 min,迅速冷却后,用无水乙醇定容至刻度,摇匀,在荧光分光光度计测荧光光谱黄芪甲苷反应产物最大激发波长Ex=320 nm,最大发射波长Em=387 nm。2 大茴香酸用量的影响  取大茴香酸0.1,0.3,0.5,0.6,0.7,0.9 mL按照分析方法操作,选择大茴香酸最佳用量。结果表明大茴香酸用量0.6 mL较合适(图1)。3 稀释液的选择  准确移取1.0 mg.mL-1黄芪甲苷0.1 mL,按照分析方法操作,体积定容时选无水乙醇、甲醇、冰醋酸和水作稀释液,测得其荧光强度(If)分别为77.6,48.4,35.0,1.3。可见无水乙醇对荧光强度影响最小。本文采用无水乙醇作为稀释液。 Fig 1 Effect of amount of anisic acid4 酸的种类和用量的影响  选72% H2SO4, 85% H3PO4及浓HClO4进行实验,结果发现选用72% H2SO4时反应产物的荧光强度最大。对72%硫酸的用量进行选择,结果表明72% H2SO4取0.8 mL为最佳(图2)。 Fig 2 Effect of amount of sulphuric acid5 反应温度的影响  准确移取1.0 mg.mL-1黄芪甲苷对照品0.1 mL,按分析方法内容操作,分别在40,50,60,70,80,90℃和沸水浴中反应20 min,同时做空白。考察荧光强度随温度的变化,结果表明:60℃时反应空白小,荧光强度较高。故实验选择60℃为反应温度较适宜。6 加热时间的影响  将温度控制在60℃,改变加热时间,考察加热时间对反应的影响。结果表明加热时间选20 min为宜。7 反应产物的稳定性  准确移取1.0 mg.mL-1黄芪甲苷对照品0.1 mL,按照分析方法操作,测定荧光强度值,每间隔5 min测定1次,对产物稳定性进行考察。结果表明反应产物在90 min内均稳定。8 工作曲线及检出限  分别准确移取1.0 mg.mL-1黄芪甲苷对照品0.010,0.025,0.050,0.100,0.150和0.200 mL,在最佳实验条件下,测定工作曲线,得回归方程为:Y=-0.4201+1.575X,γ=0.9993。黄芪甲苷浓度在2.0~40 μg.mL-1与荧光强度呈良好的线性关系。检出限为0.02 μg.mL-1。9 干扰考察  为解决基体太浓或基体不一致所造成的影响,在适当稀释溶液后,采用标准加入法测定样品。为考察此反应选择性,利用薄层分离黄芪甲苷[6]后测定样品中其他物质的荧光强度,证明杂质荧光强度与样品总荧光强度的比1.2%。10 样品的测定与回收率实验  取被测样品6份各0.1 mL,依次加入1.0 mg.mL-1黄芪甲苷对照品0.0,0.01,0.02,0.03,0.04和0.05 mL,按照分析方法操作,分别测定了黄芪、复方补阳还五汤、黄芪口服液及猪血清样品中黄芪甲苷的含量,测定结果及回收率实验见表1。SampleContent/%Recovery/%RSD/%HQOL0.210±0.00298.5~101.91.8BYHWT0.280±0.02098.8~102.12.1AMB0.420±0.00498.6~102.02.0PS0.063±0.00198.8~102.41.9黄芪是补阳还五汤的君药,黄芪甲苷定量分析是黄芪中药制剂质量控制的重要指标,本方法灵敏度高,选择性好,操作简便且无干扰,可作为黄芪甲苷的质控方法。基金项目: 九五攀登计划项目杜鸣(北京医科大学药学院分析化学与药物分析研究室,北京 100083 )徐秉玖(北京医科大学药学院分析化学与药物分析研究室,北京 100083 )刘养清(山西师范大学化学系,山西 临汾 041004)收稿日期: 1999-08-03

  • 硫酸二甲酯的液相色谱法测定

    用液相色谱测定硫酸二甲酯,正常情况下色谱图应该有三个峰,但是最近试了很多次,都只出前两个峰,DMS的峰怎么都出不来,应该是衍生的问题,但是发应物的加入顺序改过,反应条件也改过,将温度升高到75℃,还是不行。有哪位大神做过DMS的液相色谱,帮一下忙啊

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制