当前位置: 仪器信息网 > 行业主题 > >

白氨酸氨肽酶

仪器信息网白氨酸氨肽酶专题为您提供2024年最新白氨酸氨肽酶价格报价、厂家品牌的相关信息, 包括白氨酸氨肽酶参数、型号等,不管是国产,还是进口品牌的白氨酸氨肽酶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合白氨酸氨肽酶相关的耗材配件、试剂标物,还有白氨酸氨肽酶相关的最新资讯、资料,以及白氨酸氨肽酶相关的解决方案。

白氨酸氨肽酶相关的资讯

  • 中国生化制药工业协会发布《重组双碱性氨基酸内肽酶质量标准》、《重组赖氨酸内肽酶质量标准》团体标准
    各会员单位、相关单位:根据《中国生化制药工业协会团体标准制定工作程序(试行)》规定,中国生化制药工业协会批准并发布团体标准T/CBPIA 0004-2023 《重组双碱性氨基酸内肽酶质量标准》、团体标准T/CBPIA 0005-2023 《重组赖氨酸内肽酶质量标准》。标准发布日期2023年5月23日,自2023年5月23日起实施。现予公告。中国生化制药工业协会2023年5月23日
  • 北大王初课题组发展顺铂结合蛋白的组学鉴定方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心王初课题组在RSC Chemical Biology杂志上发表了题为“ Discovery of Cisplatin-binding Proteins by Competitive Cysteinome Profiling”的研究文章。在这项工作中,作者应用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP,在MCF-7活细胞体系中全局性地鉴定了顺铂(cisplatin)结合蛋白与其结合顺铂的位点,发现并证明了顺铂可以结合谷氧还蛋白1(GLRX1)与具有硫氧还蛋白结构域的蛋白17(TXNDC17)的活性位点。除此之外也发现了一个全新的顺铂结合蛋白甲硫氨酸氨肽酶1(MetAP1),并发现其对顺铂的细胞毒性有一定的保护作用。顺铂是1965年被发现的化疗药物,其在如睾丸癌,卵巢癌等癌症的治疗过程中被广泛应用。其在进入细胞后生成的活性的二价铂离子会进攻DNA上的腺嘌呤或鸟嘌呤,从而引起DNA损伤,最终杀死癌细胞,这个过程被认为是顺铂细胞毒性的主要原因。而近年来很多研究也发现活性二价铂离子除了结合DNA之外,其也会与细胞质中大量亲核性物质反应,比如GSH,RNA以及金属硫蛋白等进行结合,据统计,仅有1%左右的铂是结合到DNA上。大量游离的活性二价铂离子会与细胞中多种有功能的蛋白质结合,从而影响其正常的功能,因此对顺铂结合蛋白的研究有助于我们更完整的理解顺铂细胞毒性的机理以及帮助我们避免顺铂耐药性。目前已经有很多组学上鉴定顺铂结合蛋白的方法,例如利用Pt的特征同位素分布的特点,在一级质谱层面筛选那些潜在的顺铂结合蛋白 或者将ICP-MS与二维凝胶电泳结合,从而在组学层面鉴定潜在的顺铂结合蛋白等,但这些方法受限于较低的灵敏度和通量。对顺铂进行生物正交基团改造,从而通过生物素-亲和素富集来鉴定顺铂结合蛋白的方法也被开发,并成功在酵母细胞中鉴定到数百种潜在的顺铂结合蛋白。但由于顺铂的分子较小,并且其作为无机药物,在其上进行官能团化修饰可能会一定程度上改变顺铂本身的性质,并影响最终的鉴定结果。鉴于活性二价铂离子易与半胱氨酸残基反应并结合,因此作者考虑使用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP来鉴定顺铂结合蛋白。首先作者在活细胞水平上证明了顺铂可以与半胱氨酸特异性反应的探针IAyne竞争结合蛋白质的半胱氨酸残基。在优化了质谱条件后,作者在三次重复的质谱实验中共鉴定并定量到1947个肽段,对其进行条件筛选,定义顺铂处理后肽段的色谱强度与对照组中相同肽段色谱强度比值为Ratio,作者认为三次重复的Ratio平均值与对应的p value满足-log10(p value) x log2(ratio) 1.5的是潜在的顺铂结合位点,共筛选到125个肽段归属于107种蛋白。这些蛋白显著富集于核质交换通路以及氧化还原相关通路,这与之前报道的顺铂会引起DNA损伤以及顺铂会引发细胞产生氧化应激相对应。  随后作者在筛选的107种蛋白中,选择了归属于氧化应激通路的已知的与顺铂有关的靶点蛋白GLRX1以及TXNDC17进行验证,纯蛋白层面的竞争标记与ICP-MS结果均表明这两种蛋白为顺铂结合蛋白,并且其顺铂结合位点均是质谱鉴定到的位点,且均是两个蛋白的活性中心位点,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而引起氧化应激。纯蛋白质谱实验中,二级谱也表明两个蛋白与顺铂的结合均是桥连结合,这与文献中报道过的其中一种顺铂与蛋白结合的模式是相对应的。  之后作者选择了另一种尚未明确是否与顺铂有相互作用的蛋白MetAP1进行了后续的生化验证。纯蛋白层面的竞争标记实验与ICP-MS的实验结果证明MetAP1是顺铂结合蛋白,且其顺铂结合位点为我们鉴定到的C14位。随后我们测量了顺铂对MetAP1活性的影响,发现顺铂不会明显影响MetAP1纯蛋白的活性,但可以抑制MetAP1在体内的活性,表明顺铂会在活细胞中影响新生成蛋白的N端甲硫氨酸切割,最后通过比较MetAP1的敲除细胞系和野生型的细胞系对顺铂的MTT曲线,作者发现MetAP1在顺铂引起的细胞毒性中起到了一定程度的保护作用。  总之,作者应用竞争性ABPP策略,在MCF-7活细胞中鉴定到了107种潜在的顺铂结合蛋白,并对其中的三个靶标进行了验证。作者发现顺铂可以结合与氧化还原相关的酶GLRX1与TXNDC17的关键酶活中心,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而可能影响细胞的ROS水平。也证明了顺铂通过结合来影响MetAP1的活性从而影响新生成蛋白的N端甲硫氨酸的加工,并表明MetAP1可以作为提高顺铂细胞毒性以避免肿瘤耐药性的潜在靶点。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心的王初教授。其指导的化学与分子工程学院2019级博士研究生王相贺为本文的第一作者。该工作得到了国家自然科学基金委、国家重点研发计划的经费支持。  本文作者:WXH  责任编辑:JGG  原文链接:https://pubs.rsc.org/en/content/articlehtml/2023/cb/d3cb00042g  文章引用:DOI: 10.1039/D3CB00042G
  • 关于公开征求丝氨酸蛋白酶等3种食品添加剂新品种意见
    根据《食品添加剂新品种管理办法》和《食品添加剂新品种申报与受理规定》,食品工业用酶制剂新品种丝氨酸蛋白酶、扩大使用范围的食品添加剂乳酸钙和三赞胶的申请,其安全性和工艺必要性已通过专家评审委员会技术审查(具体情况见附件),现公开征求意见。请于2023年5月22日前将相关意见反馈至我中心邮箱(zqyj@cfsa.net.cn),逾期将视为无意见。丝氨酸蛋白酶等3 种食品添加剂新品种相关材料.pdf
  • BCEIA2017材料分析论坛——新材料,新设备,新技术
    p    strong 仪器信息网讯 /strong 2017年10月9日,第十七届北京分析测试学术报告会暨展览会(BCEIA 2017)学术报告会在北京国家会议中心正式召开。本届学术报告会为期3天,继续坚持“分析科学创造未来”方向,围绕“生命生活生态—面向绿色未来”主题,举办包括大会报告、分会报告、热点论坛、同期会议等在内的400多场形式多样的学术报告。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/97e78ef3-c1c5-4962-b6b4-b534fcba404e.jpg" title=" IMG_5639.JPG" width=" 450" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 300px " / /p p style=" text-align: center " strong 材料分析测试技术与青年人才论坛会场 /strong /p p   10日,作为八大学术论坛之一,“材料分析测试技术与青年人才论坛”如期进行,该论坛按主题分设三个场次依次进行。第一场——“材料分析中的新技术和新方法”于10日上午首先开讲,来自高校、科研院所、仪器厂商等的5位专家、学者为大家分享了各自领域材料分析检测技术的最新动态。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/4999f19e-59f9-4785-9ab2-e12efc3b6ba7.jpg" title=" IMG_5540.JPG" width=" 450" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 300px " / /p p style=" text-align: center " strong 北京材料分析测试服务联盟副秘书长关璐主持会议 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/c6e67a08-811e-41c6-9c50-6b7d983e386b.jpg" title=" IMG_5545.JPG" width=" 450" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 300px " / /p p style=" text-align: center " strong 报告人:国家纳米科学中心 研究员 葛广路 /strong /p p style=" text-align: center " strong 报告题目:纳米材料分析测试技术的标准化 /strong /p p   纳米材料分析测试涉及众多参数和方法,方法普适性差别很大,检测方法标准便成为测试数据良好置信度的保障。葛广路在报告中首先介绍了纳米检测标准在标准化过程中遇到的诸多难点,如涉及多个测量技术标委会的工作范围,需要协调和界定各自工作内容,以及准确性、可靠性往往缺乏多家实验室比对结果的支持等。另外,相关标准样品、物质缺乏,仅由少数国家级研究机构制备,且多是主要针对基础研究中的方法比较和效应评估。接着介绍了纳米检测标准相关的基础研究及展望。展望中,建议建立国内纳米测量实验比对的联盟组织,同时广泛吸纳企业、专家、检测机构参与,以多种形式开展标准制定。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/e635f8dd-6d16-455c-8421-5b90d0448c3e.jpg" title=" IMG_5626.JPG" width=" 450" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 300px " / /p p style=" text-align: center " strong 报告人:国家有色金属及电子材料分析测试中心 教授 马通达 /strong /p p style=" text-align: center " strong 报告题目:材料表征技术与无损检测新方法研究 /strong /p p   马通达在报告中向大家介绍了在材料表征技术方面,近期的主要工作进展。首先通过原位电子显微法、薄样品厚度测量法两种技术的开发过程,讲解了透射电子显微术在钒合金辐照损伤研究中的应用。接着又以小冲杆实验法、纳米压痕法,介绍了金属材料压入测试方法在金属材料性能研究中的应用及最新技术进展。关于无损检测新方法的进展,主要与大家分享了光和超声复合激励红外无损方法,及棒材超声相控阵检测方法的研究。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/88643aae-0f3f-4f70-89f4-78d5300a1275.jpg" title=" IMG_5668.JPG" width=" 450" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 300px " / /p p style=" text-align: center " strong 报告人:中国科学院化学研究所 研究员 马会民 /strong /p p style=" text-align: center " strong 报告题目:光学探针与传感分析 /strong /p p   光学探针具有时空分辨能力高、信号响应快,能对分析物的动态变化进行实时跟踪等特点,已成为生物分子的原位传感与成像、甚至蛋白质区域结构分析的最有效手段之一。马会民首先向大家一一列举了光学探针的设计方法,包括利用共价键形成、粘度变化、温度变化等设计原理。接着介绍了近年的若干相关研究工作,包括利用低背景信号、打开型光学探针进行新的酪氨酸酶识别基因、超灵敏亮氨酸氨肽酶光学探针设计等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/8f7f2d8c-ad4e-4ad2-a3e7-31931d23ac61.jpg" title=" IMG_5700.JPG" width=" 450" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 300px " / /p p style=" text-align: center " strong 报告人:北京工业大学 教授 汪夏燕 /strong /p p style=" text-align: center " strong 报告题目:微纳尺度分离分析 /strong /p p   随着生命科学研究的深入,对生物体的研究深入到细胞、单分子层次。迫切需要在微纳尺度上原位、活体、实时地获取相关生物化学信息。汪夏燕在微纳尺度分离分析方面的相关研究进展包括:基于电渗的原理建立了对微纳流体可控驱动和精准操控的方法,并可用于驱动HPLC分离 研制了皮/飞升取样器,实现飞升到皮升范围的精确体积取样和转移 建立和发展了多种微纳色谱方法等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/ba770a22-08e1-416b-a511-9199398cfd91.jpg" title=" IMG_5771.JPG" width=" 450" height=" 300" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 300px " / /p p style=" text-align: center " strong 报告人:钢研纳克检测技术有限公司 副总经理 陈吉文 /strong /p p style=" text-align: center " strong 报告题目:激光原位统计分布分析技术及其应用 /strong /p p   陈吉文首先介绍了激光原位统计分布分析仪的关键技术,包括激光剥蚀光斑调节与均匀剥蚀技术、激光光谱瞬态信号探测技术、惰性气体保护的低压原位同步扫描控制系统等。接着介绍了钢研纳克公司研制的LA与ICP-MS联用系统与国外先进设备的参数对比,结果显示方法检出限及定量限比对比较一致,定量分析线性范围、精密度、准确度等水平基本相当。最后,列举了激光原位分析仪器(LIBSOPA)在深度分布分析、镀层分布分析、夹杂物统计分布分析等领域的应用案例。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/4746dd14-86d4-4de4-84ee-f76ac9e0fb7a.jpg" title=" IMG_5619_meitu_1.jpg" width=" 450" height=" 625" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 625px " / /p p style=" text-align: center " strong 现场提问互动环节 /strong /p
  • NAR | 许伟团队揭示BAF155蛋白的精氨酸甲基化修饰水平影响恶性肿瘤转移的新机制
    蛋白质精氨酸甲基化修饰是一类由精氨酸甲基转移酶(Arginine methyltransferases, PRMTs)介导的翻译后修饰作用。PRMTs不仅能够通过甲基化修饰组蛋白上特定位点的精氨酸来调控下游靶基因的转录活性,还参与修饰了多种非组蛋白类作用底物,以此来影响RNA剪接、蛋白质翻译、细胞周期等一系列细胞生物学行为。近年来,越来越多的证据表明蛋白质精氨酸甲基化水平的失调与恶性肿瘤的发生、发展密切相关。因此,PRMTs作为潜在的肿瘤治疗靶点,逐渐引起了全球科学家的关注。2021年11月19日,威斯康星大学麦迪逊分校医学院许伟教授团队在Nucleic Acid Research上发表题为BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity的研究成果。该研究发现,精氨酸甲基化修饰的BAF155蛋白可以通过操纵增强子、破坏机体的抗肿瘤免疫能力,从而促进恶性肿瘤的转移 。BAF155是染色质重组复合物SWI/SNF的重要亚单位之一。2014年,许伟课题组在Cancer Cell发文,首次证实了PRMT4(又称CARM1)能够通过甲基化修饰BAF155蛋白第1064位精氨酸,起到促进三阴性乳腺癌转移的作用【1】。近日,该课题组以基因编辑的乳腺癌细胞系与小鼠模型为基础,结合多组学技术揭示了me-BAF155促进乳腺癌转移的内在分子机制。超级增强子(Super-enhancers, SEs)是基因组中大量增强子富集的转录调控区域。在转录过程中,通过富集多种转录因子和辅因子(BRD4等)来大幅度激活下游靶基因的转录活性。本研究中,作者采用ChIP-seq技术对me-BAF155的基因组结合位点进行全局定位分析,发现me-BAF155和BRD4在SEs处共定位,以此调节关键癌基因的表达水平。CARM1抑制剂(CARM1i)的处理,能够使得me-BAF155和BRD4从SE上解离,减少SE数量,激活干扰素α/γ通路,增强宿主免疫反应,起到抑制肿瘤生长和转移的治疗效果。最后,作者采用VERSA技术分离循环肿瘤细胞,证实me-BAF155在高转移特性的三阴性乳腺癌患者的循环肿瘤细胞中呈稳定、持续的强阳性表达(图1)。该研究首次揭示了me-BAF155在促进恶性肿瘤转移中具有双重作用:通过招募BRD4激活增强子依赖的癌基因转录活性;通过抑制干扰素α/γ通路以削弱宿主免疫反应。尽管CARM1抑制剂具有较低的细胞毒性,但是在体外依然能够显著抑制三阴性乳腺癌细胞的迁移,在体内显著抑制肿瘤生长和转移。因此,作者提出CARM1抑制剂有望被开发成为单独使用的抗癌药物,或与其他治疗药物(如免疫治疗)联合使用,用于治疗转移性恶性肿瘤。另外,相较于现有的CARM1抑制剂,开发me-BAF155(R1064)靶点特异性的小分子抑制剂,有望产生抑癌效果更好、副作用更少的新型抗肿瘤药物。
  • 食品安全标准与监测评估司关于假肠膜明串珠菌等28种“三新食品”的公告
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对假肠膜明串珠菌申请新食品原料、聚天冬氨酸钾等16种物质申请食品添加剂新品种、环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物等11种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。附件: 假肠膜明串珠菌等28种“三新食品”的公告文本.pdf国家卫生健康委2023年2月7日附件 1新食品原料假肠膜明串珠菌 假肠膜明串珠菌中文名称假肠膜明串珠菌拉丁名称Leuconostoc pseudomesenteroides其他需要说 明的情况1. 批准列入《可用于食品的菌种名单》,使用 范围包括发酵乳、风味发酵乳、干酪、发酵 型含乳饮料和乳酸菌饮料 ( 非固体饮料),不包括婴幼儿食品。2. 食品安全指标须符合以下规定:铅(Pb,干基计),mg/kg ≤1总砷(As,干基计),mg/kg ≤1.5沙门氏菌,/25 g ( mL)0金黄色葡萄球菌,/25 g ( mL)0单核细胞增生李斯特氏菌,/25 g ( mL)0附件 2 聚天冬氨酸钾等 16 种食品添加剂新品种一、食品添加剂新品种序号名称功能食品分类号食品名称最大使用量 (g/L )备注1聚天冬氨酸钾PotassiumPolyaspartate稳定剂和凝固剂15.03.01葡萄酒0.3—二、食品工业用酶制剂新品种序号酶来源供体1氨基肽酶Aminopeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae2蛋白酶 Protease李氏木霉 Trichoderma reesei樟绒枝霉 Malbranchea sulfurea3磷脂酶 A2Phospholipase A2李氏木霉 Trichoderma reesei烟曲霉Aspergillusfumigatus4麦芽糖淀粉酶 Maltogenic amylase酿酒酵母Saccharomycescerevisiae嗜热脂解地芽孢杆菌Geobacillusstearothermophilus5木聚糖酶 Xylanase地衣芽孢杆菌Bacillus licheniformis地衣芽孢杆菌 Bacillus licheniformis6乳糖酶 (β-半乳糖苷 酶 ) Lactase(beta-galactosidase )Papiliotrematerrestris—7羧肽酶Carboxypeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae8脱氨酶 Deaminase米曲霉 Aspergillus oryzae—三、食品用香料新品种序 号名称功能食品分类号食品名称最大使用量备 注12- 己基吡啶 2-Hexylpyridine食品用香料—配制成食品用香精应用于各类食品中( GB 2760-2014 表 B. 1食品类别除外)按生产需要适量使用—
  • 迪马科技发布乳制品中L-羟脯氨酸的测定方法
    皮革水解蛋白是由皮革废料或动物皮毛、脏器等水解生成的一种蛋白粉,将其掺入牛奶或奶粉中可提高蛋白质的含量。对于乳与乳制品中皮革水解蛋白的鉴定,主要是通过对L-羟脯氨酸含量的测定。L-羟脯氨酸是胶原蛋白(皮革水解蛋白)特有的氨基酸,在乳酷蛋白中则没有,所以一旦检出,则可认为含有皮革水解蛋白,即为&ldquo 皮革奶&rdquo 。迪马科技应用实验室提供两种L-羟脯氨酸衍生方法,利用氨基酸分析柱,对L-羟脯氨酸进行分析检测,可根据实际情况进行选择。 详细检测方法:乳制品中L-羟脯氨酸的测定 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • 甲型肝炎病毒全颗粒晶体结构被解析
    来自中国科学院生物物理研究所、牛津大学等单位的科学研究人员经过多年紧密合作于2014年10月19日在Nature杂志上在线发表题为Hepatitis A virus and the origins of picornaviruses的论文,详细阐述了甲型肝炎病毒的独有的结构特性、极强的稳定性、特殊的脱衣壳机制和进化关系。。HAV病毒属于小RNA病毒科肝炎病毒属,科学家对这一病毒的研究也已经持续了很长时间。此次,中国科学院生物物理研究所饶子和院士研究组与牛津大学 David Stuart 教授研究组、中国食品药品检定研究院王军志教授和胡忠玉教授以及北京科兴控股生物有限公司尹卫东和高强等专家共同合作,解析了HAV成熟病毒和空心病毒两种状态的全颗粒高分辨率的晶体结构,结果显示这两种病毒颗粒的结构具有很大的不同。在这一论文中,科学家第一次证明HAV成熟病毒具有衣壳蛋白vp4,而空心病毒颗粒含有的是未被剪切的衣壳蛋白vp0前体。与目前已经解析的小RNA病毒科成员三维结构比较,HAV病毒结构最大的不同在于其衣壳蛋白vp2的N端进行了180度偏移,转向了病毒二次轴处,增强了病毒五聚体与五聚体之间的相互作用力,部分解释HAV病毒具有的极强稳定性。HAV病毒这一独特的构象是在小RNA病毒科中第一次被发现,然而这一构象在昆虫病毒成员中却普遍存在。与昆虫病毒类似,HAV病毒也能够进行细胞之间的传递。这一系列相似的特性,不难想到HAV病毒与昆虫病毒之间的关系。基于全病毒衣壳蛋白三维结构开展的进化关系分析表明,HAV病毒不断进化时,逐渐脱离昆虫病毒方向,衍生出小RNA病毒的结构特征,在HAV病毒的基础上又逐渐进化出更多更高级的小RNA病毒成员。病毒入侵宿主细胞的第一步是与其功能性受体结合,而甲型肝炎病毒与其功能性受体TIM1的结合模式和脱衣壳机制与其它小RNA病毒成员不同。结构分析表明HAV病毒颗粒因较短的vp1 BC loop和vp2 EF loop,使其不具备肠道病毒典型的“峡谷”结构特征,也意味着HAV病毒的受体结合方式与之不同。同时,HAV病毒衣壳蛋白也没有典型的疏水口袋,自然也不含有口袋因子,这暗示着HAV病毒采用不同的脱衣壳机制。HAV病毒具有极强的稳定性,耐酸耐碱耐高温,能在绝大多数有机溶液中存活,在自然环境中可存活几个月之久。热稳定性实验结果表明HAV病毒能够在pH 1-10保持着极好的稳定性,在弱酸环境下,HAV病毒能够忍受的裂解温度可高达81摄氏度。该研究对于进一步解析HAV灭活病毒疫苗的免疫原性和保护机理具有重要意义,对于抗肝炎病毒药物的研发提供理论指导和新方向中文名称:人外核苷酸焦磷酸酶/磷酸二酯酶2(ENPP2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Ectonucleotide 中文名称:人卵磷脂胆固醇脂酰转移酶(LCAT)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Lecithin Cholesterol Acyltransferase (LCAT) 中文名称:人白介素19(IL19)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Interleukin 19 (IL19) 中文名称:人C-型凝集素域家族3成员B(CLEC3B)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for C-Type Lectin Domain Family 3, Member B 中文名称:人神经元正五聚蛋白Ⅱ(NPTX2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Neuronal Pentraxin II (NPTX2) 中文名称:人骨成型蛋白10(BMP10)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Bone Morphogenetic Protein 10 (BMP10) 中文名称:人自身免疫调节因子(AIRE)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Autoimmune Regulator (AIRE) 中文名称:人5羟色胺转运蛋白(SERT)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Serotonin Transporter (SERT) 中文名称:人补体成分9(C9)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Complement Component 9 (C9) 中文名称:人肾连蛋白(NPNT)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Nephronectin (NPNT) 中文名称:人白介素1受体辅助蛋白(IL1RAP)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Interleukin 1 Receptor Accessory Protein 中文名称:人髓细胞触发受体2(TREM2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Triggering Receptor Expressed On Myeloid Cells 2 中文名称:人泛素羧基端酯酶L1(UCHL1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Ubiquitin Carboxyl Terminal Hydrolase L1 (UCHL1) 中文名称:人HtrA丝氨酸肽酶1(HTRA1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for HtrA Serine Peptidase 1 (HTRA1) 中文名称:人丝氨酸肽酶抑制因子Kazal型1(SPINK1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Serine Peptidase Inhibitor Kazal Type 1 中文名称:人脯氨酰4-羟化酶α多肽Ⅲ(P4Hα3)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Prolyl-4-Hydroxylase Alpha Polypeptide III 中文名称:人干扰素γ诱导蛋白30(IFI30)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Interferon Gamma Inducible Protein 30 (IFI30) 中文名称:人轻肽神经丝蛋白(NEFL)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Neurofilament, Light Polypeptide (NEFL) 中文名称:人视黄醇结合蛋白1(RBP1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Retinol Binding Protein 1, Cellular (RBP1) 中文名称:人转化生长因子β受体Ⅱ(TGFβR2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Transforming Growth Factor Beta Receptor II 中文名称:人死骨片1(SQSTM1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Sequestosome 1 (SQSTM1) 中文名称:人胃内因子(GIF)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Gastric Intrinsic Factor (GIF)
  • Cell:无丝氨酸饮食,也许是对抗最致命胰腺癌的法宝
    一项研究发现,胰腺癌细胞通过向神经发出信号来避免饥饿,信号传递给神经,就会分泌营养,促进肿瘤生长。这是一项针对癌细胞,小鼠和人体组织样品进行的实验结果,相关论文发表在11月2日的Cell杂志上。胰腺导管腺癌(PDAC),也就是最致命的胰腺癌,五年生存率低于10%。此类肿瘤会促进压迫血管的致密组织的生长,从而减少诸如丝氨酸之类的血源性营养物质的供应。这种氨基酸是蛋白质的基本组成部分,也是癌细胞增殖所必需的。纽约大学格罗斯曼医学院等处的研究人员发现,饥饿的胰腺癌细胞会分泌一种叫做神经生长因子的蛋白质,该蛋白质向神经细胞发送信号,指导它们进入肿瘤,进一步发现这些轴突能分泌丝氨酸,帮助胰腺癌细胞避免,饥饿并恢复其生长。文章通讯作者,纽约大学Alec Kimmelman博士说,“神经将营养从血液中转移到胰腺肿瘤微环境中,这是一种一种令人着迷的适应能力,也许可以通过干扰这种特性来研发治疗方法。”研究发现,饥饿的丝氨酸胰腺癌细胞利用了将mRNA链(DNA指令的副本)翻译成蛋白质的过程。密码子将mRNA分子链的骨架解码为氨基酸,核糖体会读取每个密码子,让它们以正确的顺序将氨基酸连接在一起,但是如果缺少可用的氨基酸,核糖体就会失速。出乎意料的是,研究小组发现,丝氨酸饥饿的胰腺癌细胞显著降低了六个丝氨酸密码子中的两个(TCC和TCT)被翻译成氨基酸链的速度。在丝氨酸饥饿的情况下,这种变异性使癌细胞将某些蛋白质的产生减至最少(以保持饥饿时的能量储存),但继续建立诸如神经生长因子(NGF)之类的压力适应性蛋白质,而这种蛋白质恰好由少数TCC编码和TCT密码子。之前的研究NGF和其他因素会刺激神经生长成胰腺肿瘤,促进肿瘤生长。而最新研究是第一个表明轴突,即传递信号的神经元细胞的延伸,能通过在营养缺乏的区域分泌丝氨酸来为癌细胞提供代谢支持。一项2016年的研究表明,此类细胞向附近的星状细胞发送信号,导致它们将自己的细胞部分分解为可被肿瘤利用的构件。然后2019年12月进行的一项研究发现,胰腺癌细胞还劫持了一个称为巨胞饮作用的过程,正常细胞利用该过程通过其外膜吸收营养。有趣的是,这项新研究发现星状细胞和巨胞饮作用不能为这些癌细胞提供足够的丝氨酸生长,还是需要轴突递送。这项研究指出,喂食无丝氨酸饮食的PDAC肿瘤小鼠的肿瘤生长速度降低了50%。为了超越单纯饮食所能达到的效果,研究人员还使用美国FDA已经批准的一种名为LOXO-101的药物来阻止轴突进入PDAC肿瘤。该药物阻断与神经生长因子(也称为TRK-A)相互作用的神经元表面受体蛋白的活化,从而抑制神经元将其轴突送入肿瘤的能力。这组作者说,仅使用这种药物并不能减慢小鼠中PDAC肿瘤的生长,但是与单独使用饮食相比,与无丝氨酸饮食结合时,它可以使PDAC的生长速度进一步降低50%。研究人员说,这表明神经对于支持丝氨酸剥夺的肿瘤区域中的PDAC细胞生长是必要的。文章一作Robert Banh说:“由于TRK抑制剂已被批准用于某些癌症的治疗,因此在手术后大约40%不能产生丝氨酸的PDAC肿瘤患者中,它们可能与低丝氨酸饮食联合,这种方法是否可以通过限制营养供应来减少肿瘤复发,还需要在临床试验中证实。”
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 天美公司推出“皮革奶”中L-羟脯氨酸的检测方法
    &ldquo 三聚氰胺&rdquo 的阴影尚未完全散去,&ldquo 皮革奶&rdquo 又开始不断进入大家的生活。皮革水解蛋白是由皮革废料或动物皮毛、脏器等水解生成的一种蛋白粉,将其掺入牛奶或奶粉中可提高蛋白质的含量,因其氨基酸或者说蛋白含量较高,故称之为&ldquo 皮革奶&rdquo 。 天美公司积极关注于中国乳制品安全的问题,率先推出了柱前衍生测定&ldquo 皮革奶&rdquo 中的L-羟脯氨酸的检测方法。 检测方法: http://www.instrument.com.cn/netshow/SH100322/down_162263.htm#; http://www.techcomp.cn/HPLC/news/38/201133132744.htm。 本方法采用日立液相色谱仪、氨基酸方法包,很好地分离检测了L-羟脯氨基酸和常规水解17种氨基酸,获得了优异的重现性和检出限,同时该方法具有很好的重现性。
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 19F NMR/MRI在肿瘤靶向成像取得重要进展
    4月14日,国际著名学术期刊《ACS Nano》在线发表了中国科学技术大学化学与材料科学学院梁高林教授课题组的研究成果,文章标题为《Intracellular Self-Assembly and Disassembly of 19F Nanoparticles Confer Respective &ldquo Off&rdquo and &ldquo On&rdquo 19F NMR/MRI Signals for Legumain Activity Detection in Zebra?sh》。该文章报导了一种智能靶向Legumain(Lgmn)蛋白酶的19F磁共振探针的研制,并在构建有肿瘤模型的斑马鱼上验证了其优异的靶向成像效果(ACS Nano, DOI: 10.1021/nn5b00287)。   Lgmn是一种属于半胱氨酸蛋白酶C13家族的天冬酰胺内肽酶。它和炎症性疾病如动脉粥样硬化、中风和癌症等密切相关。并且Lgmn过表达在大多数肿瘤中,包括乳腺肿瘤、结肠肿瘤、前列腺肿瘤以及中枢神经系统肿瘤中。尽管Lgmn与很多恶性肿瘤关联紧密,但基质衍生Lgmn的确切作用仍然得不到完整的定义。这就需要更加灵敏的和生物兼容的方法来检测体外和体内的Lgmn活性。19F在体内极低的背景信号使得19F MRI具有很高的灵敏度和特异性,而核磁成像技术的强穿透性及无损等优点也使得19F MRI的研究得到越来越多的关注。但是19F MRI通常需要高剂量的探针来提供足够的信号,这就带来了剂量毒性的风险,并且需要耗费大量的化合物。因此发展出&ldquo 智能&rdquo 策略来降低探针剂量实现Lgmn靶向是十分必要的。   梁高林教授课题组报道了两种可以特异性检测Lgmn活性的19F NMR/MRI探针Cys(StBu)-Ala-Ala-Asn-Lys(FMBA)-CBT(1)及Ac-Ala-Ala-Asn-Cys(StBu)-Lys(FMBA)-CBT(2)。其中Ala-Ala-Asn是Lgmn的酶切底物,如下图所示,当探针1进入细胞内,胞内GSH会还原Cys上的双硫键,Cys和CBT之间则缩合并自组装成纳米粒子,继而导致19F NMR信号峰展宽,信号强度减小。在Lgmn蛋白酶的作用下,组成纳米粒子的二聚体被剪切断开,纳米粒子解组装呈游离单体,19F NMR信号峰得以重新恢复。因此这种on-off-on的过程可以用于相继检测GSH的浓度和Lgmn的活性。而对照探针2进入细胞后,19F NMR的信号是个on-on-off过程。利用这个&ldquo 智能&rdquo 策略和探针1,在生命科学学院胡兵教授课题组以及中科院强磁场科学中心王俊峰研究员课题组的帮助下,研究人员实现了斑马鱼体内Lgmn肿瘤的靶向核磁共振成像,显示该策略在肿瘤成像上有着极大的应用前景。   该论文第一作者为中国科学技术大学化学与材料科学学院博士生袁月。   该项目研究得到苏州纳米科技协同创新中心、合肥物质科学技术中心重要方向项目培育基金、国家自然科学基金(21375121,91127036,21175122,21372222)的资助。
  • 2011年全国生鲜乳中三聚氰胺/L(-)-羟脯氨酸/碱类物质/黄曲霉毒素/铅质量
    原料乳中三聚氰胺快速检测液相色谱法GB/T 22400&mdash 2008 用乙腈作为原料乳中的蛋白质沉淀剂和三聚氰胺提取剂,强阳离子交换色谱柱分离,高效液相色谱-紫外检测器/二极管阵列检测器检测,外标法定量。 该检测方法基本操作步骤如下: 称取混合均匀的15 g原料乳样品(准确至0.01 g),置于50 mL具塞刻度试管中,加入30 mL乙腈,剧烈振荡6 min,加水定容至满刻度,充分混匀后静置3 min,用一次性注射器吸取上清液用针式过滤器过滤后,作为高效液相色谱分析用试样。 分析图谱如下: HPLC测定方法: 色谱柱:强阳离子交换色谱柱, CNWSIL SCX,250 mm × 4.6 mm(i.d.),5 &mu m 流动相:磷酸盐缓冲溶液-乙腈(70+30,体积比),混匀。 流速:1.5 mL/min。 柱温:室温。 检测波长:240 nm。 进样量:20 &mu L。 乳与乳制品中动物水解蛋白检定-L(-)-羟脯氨酸含量测定法 本方法适用于乳与乳制品中L(-)-羟脯氨酸含量的测定,通过对L(-)-羟脯氨酸含量的测定,可判定是否为动物水解蛋白。 试样经酸水解,释放出羟脯氨酸。经氯胺T氧化,生成含有吡咯环的氧化物。用高氯酸破坏过量的氯胺T。羟脯氨酸氧化物与对二甲氨基苯甲醛反应生成红色化合物,在波长558nm 处进行比色测定。 下载完整资料请下载: 2011年全国生鲜乳中三聚氰胺/L(-)-羟脯氨酸/碱类物质/黄曲霉毒素/铅质量安全监测耗材选择指南.pdf
  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒   杂味的味精   小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。   小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。   小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。   小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。   “炒菜不用放盐了”   小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。   在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。   记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)   商户:这一个月我光在这个地方就十几吨吧。   商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。   商户:这个货就可以呀,一般酒店用都用这种。   商户:基本都是川菜馆。   商户:饭店都吃。   商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。   记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?   商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。   味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。   商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。   果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。   这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。   商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。   包装是一回事实际含量是另一回事   记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。   商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。   商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。   虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。   商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。   商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。   记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。   发苦的味精   其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?   记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。   小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。   这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?   这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。   村民:它家一直就是味精厂。   这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。   添加物不止是盐、淀粉、石膏   记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。   销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。   这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。   销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。   销售员说,别看只比标准低几个点,利润就是这样省出来的。   销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。   这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。   销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。   在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。   销售人员:还有厉害的。   除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。   销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。   据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?   打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。   五、六百元的硫酸镁不可能是食品级的   这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。   记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)   记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)   记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。   销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。   味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?   记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。   结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。   建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • 华盛顿大学研究人员利用“Serine Ligation”产生有效且稳定的GLP-1类似物
    大家好,今天为大家介绍一篇ACS Chemical Biology的文章,标题为“Generation of Potent and Stable GLP-1 Analogues Via ‘Serine Ligation’ ”,文章的通讯作者是来自美国华盛顿大学的David Baker教授。在这项工作中,作者受“Serine Ligation”方法的启发,介绍了一种具有位点特异性的生物偶联策略。该策略依赖于带有 1-氨基-2-羟基官能团的非天然氨基酸的多肽和水杨醛酯之间的偶联,实现多肽上的化学修饰。具体来说,作者利用这个技术对类似于索马鲁肽 (Semaglutide) 的胰高血糖素样肽-1 (GLP-1) 26位的赖氨酸以及18位的丝氨酸分别修饰,得到了GLP-1类似物G1和G2。结果显示,修饰后的G1和G2在基于细胞的激活试验中比GLP-1更有效,同时能提高其在人血清中的稳定性以及体内葡萄糖处理效率。这种方法展示了“Serine Ligation”在化学生物学中各种应用的潜力,特别是发展稳定的多肽治疗剂(图 1)。图 1 基于“Serine Ligation”的GLP-1位点特异性修饰胰高血糖素样肽-1 (GLP-1) 是一类多肽激素,源自于胰高血糖素原肽的组织特异性翻译后加工,具有通过增强胰岛素分泌从而降低血糖水平的能力。二肽基肽酶 (DPP-4)可以切割GLP-1 N端8位的丙氨酸,因此内源GLP-1的半衰期只有2 min左右。虽然有许多旨在于解决稳定性问题的方法,例如在降解位点引入“不可切割”的氨基酸,但这些方法通常以牺牲稳定性为代价来换取多肽的功能和效力。因此人们对开发既能维持效力,又能稳定多肽治疗剂的新技术产生了很大兴趣。另一方面,多肽和蛋白质的偶联彻底改变了人们对于引入各种官能团来扩展新应用的认识。其中便包括蛋白质组学和高分辨率成像技术。由于多肽或蛋白质中存在多个可反应的活性位点,利用传统的共轭策略,例如N-羟基琥珀酰亚胺 (NHS) 酯,会导致产物的异质性,进而引起分离提纯困难以及生物学活性下降等诸多问题。因而具有位点特异性的新修饰方法亟待开发。作者从“Ser/Thr Ligation”(STL) 中获取灵感,发现该偶联主要发生在C 端的水杨醛酯和 N 端含有丝氨酸或苏氨酸的残基之间。因此,作者通过合成和引入带有1-氨基-2羟基的非天然氨基酸,并将其与水杨醛酯的衍生物偶联,实现了多肽位点特异性的化学修饰(图 2)。图 2 “Serine Ligation”与引入非天然氨基酸的位点特异性生物偶联作者首先评估了该方法的普适性,合成了生物素、花青-3、一种棕榈酸类似物,以及单分散PEG 水杨醛酯。然后将这些探针特定地偶联到带有 1-氨基-2-羟基的非天然氨基酸的模型肽 1 上,生成产物 2-5(图 3)。为了代表性地评估产物的转化率和纯度,作者监测了多肽反应物1和生物素水杨醛之间的反应,发现几乎在30 min后实现了定量转换。图 3 对未保护模型肽的位点特异性修饰之后作者探究如何利用该生物偶联技术增强多肽的稳定性。最常用的方法包括聚乙二醇化和脂化。事实上,两种 GLP-1药物,索马鲁肽和利拉鲁肽都是脂化的,目前用于治疗 2 型糖尿病。基于此,作者利用STL合成了两种GLP-1类似物G1和G2。二者都含有一个类似索马鲁肽的杂合 PEG 和脂肪酸侧链。不同之处在于,G1的修饰在26位的赖氨酸上,与索马鲁肽的修饰位置相同。同时,为了增强稳定性,对G1多肽8号位的丙氨酸也进行了修饰,引入了2-氨基异丁酸 (Aib)。G2的修饰则在18位的丝氨酸上。借助于冷冻电镜,发现18位的丝氨酸在GLP-1与GLP-1受体的结合模型中是溶剂暴露的,因此不会干扰多肽激素的天然功能。在这种条件下,我们可以不对G2的8号位丙氨酸引入修饰,因为18号位丝氨酸引入的脂肪链离N端的距离近,可以保护8号位的丙氨酸不被蛋白水解(图 4)。图 4 GLP-1多肽类似物G1, G2的设计许多生化和结构研究表明GLP-1 内的一个扩展的两亲性 α-螺旋是负责与GLP 受体 (GLP-1R) 的细胞外结构域高亲和力结合的。为了去评估这些外加修饰是否会破坏多肽二级结构,作者使用圆二色谱 (CD) 来表征。相对于显示出特征性螺旋折叠的GLP-1,G1 和 G2 也都显示出螺旋结构;然而,它是低于天然GLP-1的。G1与G2的数据与在索马鲁肽上的脂质修饰相一致,说明了二级结构的丢失是脂质修饰引起的。GLP-1 与 GLP-1R 的内源性结合会导致募集G蛋白的细胞内重排,随后刺激cAMP的产生。cAMP来源于ATP并会导致葡萄糖刺激的胰岛素分泌。为了去评估GLP-1 类似物 G1 和 G2 去激活人源GLP-1R的能力,在过表达人 GLP-1R 的 CHO-K1 细胞中去监测cAMP的积累。细胞最初用天然 的GLP-1 和索马鲁肽进行处理。相比之下,G1 和G2 比未加修饰的GLP-1表现更好,并且与 Semaglutide 大致等效,EC50值为 0.97 ± 0.2 和 0.73 ± 0.2 nM(图 5A)。这些数据表明26位的赖氨酸和18位的丝氨酸的脂质修饰不会对其内源功能造成影响。为了补充体外的药理学分析,作者接下来用反向高效液相色谱 (RP-HPLC) 比较GLP-1类似物G1,G2,天然 GLP-1以及索马鲁肽在人血清中的稳定性。在这个测定中,每种肽在人血清中孵育最多48 小时,取出等分试样并通过 RP-HPLC 分析(图 5B)。相对于天然 GLP-1,G1 显示出显著的稳定性曲线,t1/2 ≈ 40 小时。同时G2也非常稳定,相对于天然 GLP-1 稳定性增幅超过了14倍,几乎与索马鲁肽相似。在得到理想的激活和稳定性数据之后,作者接下来使用标准葡萄糖耐量实验 (GTT) 在动物体内进行测试。更具体地说,在禁食 16 小时后,用 10 nmol/kg 剂量向小鼠注射多肽,其次是 2 g/kg 葡萄糖。血糖水平用血糖仪测量,然后在不同的时间长度之后进行定量(图 5C)。在这种急性 GTT 实验中,G1 和 G2 相比于天然的GLP-1显示出具有统计学意义的血糖控制能力,这与他们的体外数据相一致。这些数据表明脂质化修饰能够在不损害效力的前提下显著增加稳定性,从而改善急性高血糖小鼠模型的体内活性。图 5 脂化对细胞活性,蛋白水解的稳定性以及控制血糖能力的影响为了深入了解 G1 和 G2 是如何与GLP-1R相互作用,作者对相应的配体-受体复合物进行了计算建模。GLP-1R 肽结合模型是基于最近发表的GLP-1R 与未修饰的 GLP-1 复合物的Cryo-EM 结构。索马鲁肽、G1 和 G2 模型与 GLP-1R 的复合物表明脂质化18位的丝氨酸或26位的赖氨酸是溶剂暴露的,可能不会干扰与激活有关的相互结合作用(图 6)。图 6 GLP-1R-Semaglutide、GLP-1R-G1 和 GLP-1R-G2 复合物模型总结来看,作者介绍了一种强大的,基于“Serine Ligation”的位点特异性生物偶联策略。作者应用该方法合成了有效且稳定的GLP-1类似物。该类似物具有一个混合聚乙二醇和脂肪酸侧链,类似于广泛使用的糖尿病药物索马鲁肽。这两种化合物在激活GLP-1R的能力上与索马鲁肽等效;相比于天然的GLP-1,G1,G2在人血清中显示出显著改善的稳定性,并且在小鼠体内的改善血糖能力优于天然的GLP-1。在未来,该方法也显示出构建其他GPCRs稳定且有效的类似物潜力。原文:https://pubs.acs.org/doi/10.1021/acschembio.2c00075
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
  • 食品中的砷污染有什么危害?
    砷,俗称砒,是一种非金属元素,在化学元素周期表中位于第4周期、第VA族,原子序数33,元素符号As,单质以灰砷、黑砷和黄砷这三种同素异形体的形式存在。砷元素广泛的存在于自然界,共有数百种的砷矿物是已被发现。砷与其化合物被运用在农药、除草剂、杀虫剂,与许多种的合金中。 在古代,三*化*砷被称为*霜,但是少量的砷对身体有益。其实,我们身边就有砷的存在类金属砷,虽然出身非金属一族,但却有很多与重金属类似的特性,所以食品的重金属污染也不能忽视。地壳的风化把我吹进了大自然的土壤、空气和水中,通过动植物的吸收,食品中也随处可见我的身影,不过食品砷污染与天然来源的砷关系不大,都是工业污染、含砷农药及添加剂的使用惹的祸。人们在吃海产品、大米、水等食物时最容易吃到砷。1,砷对人体健康的作用主要有以下几个方面:2,参与蛋白质的代谢3,影响血清碱性磷酸酶、γ-谷氨酸转移肽酶的活性4,刺激造血器官5,抑制皮肤老化6,提高人体免疫力砷中毒:砷及其化合物具有毒性,所以当人体砷摄入量过多时,就会造成砷中毒。一般来说,无机砷比有机砷的毒性大,三价砷比五价砷的毒性大。砷的氧化物(如三*化*砷)和盐类绝大部分属高毒,而砷化氢则属剧毒物质,是目前已知的砷化合物中毒性最大的一个。过量的砷会干扰细胞的正常代谢,影响呼吸和氧化过程,使细胞发生病变。砷还可直接损伤小动脉和毛细血管壁,并作用于血管舒缩中枢,导致血管渗透性增加,引起血容量降低,加重脏器损害。三*化*砷和三氧化砷对眼、上呼吸道和皮肤均有刺激作用。同时在食品里以无机和有机两种形态存在,有机形态的毒性较弱,三价的无机砷毒性很大。急性砷中毒会让你呕吐、腹痛、腹泻甚至像武大郎一样七窍流血而亡,而长期接触我可能导致黑脚病,甚至引发皮肤癌、膀胱癌等。所以食品中的砷污染是不得不防的。深圳市芬析仪器制造有限公司生产的重金属多功能检测仪能够快速检测重金属砷,重金属镉,重金属铬,重金属汞,重金属铅等。可以简单快速检测砷的含量,用来杜绝砷中毒的隐患。维护食品安全。深圳市芬析仪器制造有限公司愿为食药监系统、农业系统、畜牧系统、渔业系统、食品企业等提供专业的检测产品、先进的技术支持和高效的整体解决方案。
  • 科研人员利用红外和拉曼光谱识别赖氨酸乙酰化特征
    近期,中科院合肥研究院智能所黄青研究员课题组利用红外和拉曼光谱识别赖氨酸乙酰化特征,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。相关研究成果发表在国际光谱专业期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。 乙酰化是生物学中常见且极其重要的蛋白质修饰,在细胞代谢中都起着关键性的调节作用。蛋白质乙酰化有两种方式,一是赖氨酸残基特有的乙酰化,二是多种氨基酸残基都可发生的N-末端乙酰化。目前一般用N-末端乙酰转移酶来标记判断赖氨酸残基是否发生乙酰化,但该方法的准确性仍存在争议。在分子水平识别蛋白质乙酰化是目前研究挑战之一,其关键是对赖氨酸的乙酰化进行准确定位表征,由此获得清晰和系统的认识。 针对这种情况,研究团队通过红外和拉曼光谱实验以及密度函数理论(DFT)计算,系统地研究L-赖氨酸三种乙酰化类型(、和)的结构变化及相应的振动光谱特征,发现酰胺基、羧基等基团的红外和拉曼特征谱带能用于有效识别不同的乙酰化类型。换言之,从红外和拉曼光谱特征即可判断赖氨酸是否乙酰化,也可判断赖氨酸发生了 乙酰化,还是 乙酰化,或者同时乙酰化。同时,研究团队对乙酰化的振动光谱识别策略在多肽模型中也得到验证。基于此,该项研究工作提供乙酰化赖氨酸的振动模式解析,并提出赖氨酸乙酰化的光谱识别和新的表征方法,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。   该研究工作得到了国家自然科学基金和安徽省自然科学基金的资助。赖氨酸和三种乙酰化赖氨酸的分子结构Lys-G4多肽及其赖氨酸残基乙酰化的理论计算红外光谱(红色为乙酰基,蓝色为乙酰基)
  • 大连化物所开发超灵敏DPP-IV活性检测技术 提供个性化用药新工具
    近日,中国科学院大连化学物理研究所药用资源开发研究组葛广波、杨凌团队研发了一种全新的二肽基肽酶-IV(DPP-IV, CD26)高特异性荧光探针,并将其用于人血及组织中DPP-IV的活性检测以及活细胞和组织层面的目标酶功能成像研究,相关研究成果发表在Biosensors and Bioelectronics上。  DPP-IV是哺乳动物体内分布的一种重要的丝氨酸水解酶,其参与体内多种生物活性多肽(如肠促胰岛素、神经肽、胃泌素释放肽、生长激素释放激素等)的水解进而导致其部分或完全失活。DPP-IV可快速水解胰高血糖素样肽-1(GLP-1)进而影响胰高血糖素的合成与分泌,因此其在糖代谢过程中扮演重要角色,被认为是2型糖尿病治疗的关键靶点。此外,DPP-IV还参与了机体的免疫调节、细胞移行、细胞黏附和细胞凋亡等过程,其表达/功能的异常与肿瘤等多种疾病的发生发展密切相关。因此,建立适用于复杂生物样品中的DPP-IV活性的高效且实用的检测方法对于糖尿病治疗药物的筛选及临床个性化用药,以及DPP-IV表达/功能异常与疾病的关联性研究等具有重要意义。  该工作中,研究者基于DPP-IV的酶催化特性,设计研发了一种全新的高特异性双光子荧光探针底物GP-BAN,并基于该探针开发了利用微孔板高通量检测复杂生物样本中DPP-IV活性的超灵敏检测方法。该方法具有以下优点:(1)特异性高,可直接用于血样、细胞及组织等复杂生物样品中DPP-IV的检测 (2)操作简单且可实现高通量检测,单位测试成本低 (3)检测灵敏度高(可达皮摩尔级),样品需求量小,如血液样品只需2μ L (4)可通过比率法进行目标酶的活性检测,抗干扰能力强。利用该探针不仅可实现活细胞及活组织中目标酶的精确定位及实时动态检测,还可以血液为酶源开展DPP-IV抑制剂的高通量筛选与表征。上述工作不仅为新药研发及临床DPP-IV抑制剂的个性化用药提供了新的工具,也为后续开发商业化的DPP-IV生化检测试剂盒奠定了工作基础。  上述研究工作得到了国家自然科学基金项目和国家重点基础研究发展计划的支持。  大连化物所二肽基肽酶-IV生化检测研究获进展
  • 南方医科大学研究团队成果:人参皂苷Rg1通过调节肠道菌群、色氨酸代谢和血清素能系统功能减轻吗啡依赖
    南方医科大学研究团队发表相关论文,英文题目:GinsenosideRg1 mitigates morphine dependence via regulation of gut microbiota,tryptophan metabolism, and serotonergic system function。中文题目:人参皂苷Rg1通过调节肠道菌群、色氨酸代谢和血清素能系统功能减轻吗啡依赖研究背景吗啡依赖是一种毁灭性的神经精神疾病,可能与肠道菌群失调密切相关。人参皂苷Rg1(Rg1)是从人参根中提取的活性成分,对神经系统具有潜在的保健作用。然而,它在物质使用障碍中的作用仍不清楚。该文探索了Rg1在对抗吗啡依赖中的潜在调节作用。研究结果1.人参皂甙 Rg1 抑制吗啡诱导的小鼠的条件位置偏好(CPP)调理训练后各组小鼠体重略有增加,但是未观察到显著差异(图1C)。使用Smart3.0软件在15分钟内跟踪小鼠头部并记录它们的轨迹和停留时间。对照组和其他组之间的轨迹或CPP分数没有显着差异。在吗啡注射后在白室中花费的时间与基线相比以及在盐水处理后在白室中花费的时间显着增加(图1C,D),表明吗啡成功诱导CPP在实验小鼠中。MRH和MRL组与模型组相比,MRL和MRH小鼠在药物配对隔室的停留时间和轨迹显着减少。然而,在单独用人参皂甙Rg1治疗的小鼠中,没有观察到CPP评分和活动途径的变化。2.人参皂甙Rg1改善CPP小鼠肠道菌群失调阿片类药物成瘾通常与肠道菌群失调有关。为了进一步探索Rg1介导的抗成瘾机制,对粪便进行了16S rRNA 基因扩增子测序,以评估有或没有Rg1处理的CPP小鼠肠道微生物群的组成。维恩图显示了对照组和其他组小鼠共有476个OTU(图2A)。然而,对照组有1108个OTU,M组有1304个,MM组有19个,MRL组有548个,MRH组有1702个,CR组有195个。这些数据暗示了吗啡治疗诱导的肠道微生物群紊乱和人参皂苷Rg1给药后的部分恢复。值得注意的是,使用Chao1指数进行的α多样性分析显示,Rg1阻止了吗啡引起的细菌丰富度下降(图2B);然而,各组之间的香农指数没有差异(图2C)。通过Bray-Curtis主坐标分析(PCoA)研究肠道菌群的整体结构表明,吗啡组的细菌组成发生了变化,与对照组不同,表明肠道菌群失调吗啡处理诱导了微生物群(图2D)。然而,MRL、MRH、MM和CR组显示了四种不同的细菌组成簇。值得注意的是,MRL中的微生物群与MRH组中的微生物群更紧密地聚集在一起。我们在门水平上进一步分析了每组的肠道细菌组成。人参皂甙Rg1显着增加吗啡诱导的拟杆菌门和厚壁菌门相对丰度的降低(图2E),并显着降低吗啡诱导的蓝藻和变形杆菌的相对丰度增加。在家族水平上的进一步分析显示,吗啡处理导致随着叶绿体和线粒体的增加,拟杆菌属、Sutterellaceae和Tannerellaceae的相对丰度急剧下降。在MRL和MRH组中,吗啡诱导的丰度变化不同程度地逆转(图2F,G)。此外,Kruskal-WallisH检验用于评估指定组之间在物种水平上的差异的显着性,并观察到15个优势物种(图2H)。考虑到报告显示吗啡依赖模型中拟杆菌属的丰度低于对照,我们专注于拟杆菌属物种B.vulgatus、B.xylanisolvens和B.acidifaciens。吗啡显着降低了B.acidifaciens、B.vulgatus和B.xylanisolvens 的丰度。值得注意的是,B.vulgatus的相对丰度在Rg1给药后显着增加(图2I)。除了16SrRNA 测序外,我们还用B.vulgatus特异性引物进行了定量PCR,证实吗啡显着降低了丰度,人参皂苷Rg1处理后丰度显着增加(图2J)。图片图片图23.人参皂甙 Rg1抑制肠道微生物群衍生的水平和CPP小鼠血清色氨酸代谢物在药物依赖期间,肠道代谢谱发生变化,宿主代谢途径可能发生改变。我们假设人参皂苷Rg1可能通过肠道微生物发酵过程中产生的代谢物影响CPP。基于这一理论,我们使用非靶向代谢组学来识别可能在小鼠血清和肠道中改变的关键代谢物和代谢途径。MRL组和MRH组对吗啡诱导的CPP的疗效没有观察到统计学差异;然而,行为分析数据显示,MRH组的疗效优于MRL组。因此,我们选择MRH组作为非靶向代谢组学分析的代表性药物干预组。在血清和粪便中分别鉴定出1955和559种代谢物。偏最小二乘判别分析(PLS-DA)模型分别在血清和粪便中的CONTROL、MODEL和MRH组中显示出显着的聚类分离(图3A、G)。热图分析显示,CPP导致代谢物发生显着变化,小鼠粪便和血清中共有177种代谢物(96种上调和81种下调)和69种代谢物(44种上调和25种下调)分别显着改变(图3D和J)。此外,对代谢物途径的分析表明,与对照组相比,CPP小鼠的以下途径发生了显着变化:色氨酸、α-亚麻酸、甘油磷脂、精氨酸和脯氨酸、苯丙氨酸、酪氨酸和色氨酸代谢。值得注意的是,色氨酸代谢受到粪便和血清中吗啡的显着影响(图3B和H)。将MRH与MODEL组进行比较,在人参皂苷Rg1处理后,粪便和血清中的195种代谢物(94种上调和101种下调)和115种代谢物(60种上调和55种下调)分别显着改变(图3E和K)。代谢组学图显示色氨酸代谢受到Rg1补充的显着影响(图3C和I)。色氨酸代谢在微生物组-肠-脑轴中起关键作用。在这种情况下,我们专注于色氨酸代谢相关的代谢物。具体而言,色氨酸代谢相关代谢物的热图分析表明,参与色氨酸代谢的四种主要中间代谢物L-色氨酸、吲哚、N' -甲酰基犬尿氨酸和血清素是对吗啡的反应最显着增加的代谢物,它们的水平在Rg1处理后,粪便或血清中的含量降低。具体来说,我们发现与模型组相比,Rg1处理的肠道色氨酸和血浆血清素水平下调(图3F和L)。4.人参皂甙 Rg1 改善 CPP 小鼠海马 5-羟色胺能系统的变化血清色氨酸浓度会影响大脑的血清素系统。我们推测宿主色氨酸代谢物的变化可能与CPP小鼠的海马血清素能系统和其他神经递质有关。为了验证这一假设,使用酶联免疫吸附法检测海马和外周血清中谷氨酸、多巴胺、γ-GABA和5-HT的表达水平。在海马中,相对于对照组,CPP小鼠表现出显着升高的多巴胺水平和降低的γ-GABA水平(图4C)。然而,组间谷氨酸和血清素的浓度没有差异(图4A)。与M组相比,MRH组海马中GABA含量增加。此外,在MRL和MRH小鼠中观察到多巴胺水平显着下降。注射吗啡后血清中血清素和多巴胺水平升高,γ-GABA水平降低。所有CPP诱导的变化都被Rg1处理逆转(图4B、D、S2B)。为了进一步探索Rg1介导的抗成瘾机制,我们使用qPCR检测了小鼠海马中奖赏相关基因mRNA的相对转录水平,包括脑源性神经营养因子(BDNF)、神经营养酪氨酸激酶受体2型(TrkB)和血清素受体。与Rg1治疗组的转录水平相比,吗啡组中5-羟色胺受体(5-HTR1B和5-HTR2A)、BDNF和TrkB的转录水平因人参皂苷Rg1给药而下调(图4E、F)。这些数据表明人参皂甙Rg1可能通过抑制血清素系统来改善吗啡依赖。5.肠道微生物组的调控影响人参皂甙 Rg1 对吗啡诱导的小鼠 CPP 的抑制作用为了研究肠道菌群失调对吗啡诱导的小鼠行为的影响,我们在进行吗啡依赖性CPP训练之前,给BALB/cSPF 小鼠施用了不可吸收的抗菌剂或无菌水的混合物7天,然后进行CPP测试(图5A)。ATM治疗后各组小鼠体重下降,调理训练后略有增加;然而,各组之间没有观察到差异(图5B)。ABX与对照组相比,同时给予多种抗生素后,所有抗生素治疗小鼠在药箱中的停留时间均增加。此外,与ABX组相比,AM组在药物配对隔室中的停留时间明显增加。令人惊讶的是,小鼠在AMRL、AMRH和AMM组的药物配对隔室中的停留时间与AM组没有显着差异(图5D)。我们在鼠标头部轨迹中观察到相同的现象(图5C)。为了评估抗生素暴露后小鼠肠道微生物群发生的变化,通过16SrRNA 基因测序测定了粪便细菌组成。抗生素治疗极大地改变了微生物组并减少了细菌负荷(图5E)。为了研究肠道菌群失调对吗啡诱导的小鼠行为的影响,我们使用了维恩图显示了对照组和其他抗生素治疗小鼠共享的476个OTU;然而,1606个OTU是对照组独有的,48-68个OTU是其他六个抗生素治疗组独有的。随后用抗生素混合物治疗导致肠道微生物群显着消耗,细菌多样性显着降低。PCoA显示抗生素治疗的小鼠与对照小鼠相比具有显着不同的微生物群落(图5F)。但ABX、AM、AMRL、AMRH、AMM和AR组的细菌多样性没有显着变化,说明抗生素治疗根除大部分共生菌,吗啡和人参皂苷Rg1治疗后没有显着变化.我们在ABX小鼠的粪便中发现了几种细菌门,这些细菌门相对于对照组的粪便发生了改变(图5G)。优势门不同,伴随着Proteobacteria的丰度显着增加,而Verrucomicrobiota、Cyanobacteria、Firmicutes和Deferribacterota的丰度在抗生素处理后下降。然而,用抗生素治疗小鼠并没有改变拟杆菌的相对丰度,尽管抗生素治疗耗尽了肠道微生物组成。最后,我们用B.vulgatus特异性引物进行了定量PCR,并证实与对照组相比,抗生素治疗组的细菌显着减少了数百至数千倍(图5H)。此外,吗啡和人参皂甙Rg1并没有改变B.vulgatus对抗生素的反应。6.肠道微生物组的消耗影响色氨酸代谢并抑制 Rg1 诱导的基因表达接下来检测了抗生素混合物治疗对吗啡诱导的CPP小鼠代谢物和代谢途径的影响。偏最小二乘判别分析(PLS-DA)模型显示,在粪便中的代谢物方面,对照组和ABX组之间的簇显着分离(图6A)。值得注意的是,抗生素治疗后ABX、AM和AMRH组之间没有明显的代谢物聚集。我们专注于色氨酸代谢途径,并观察到参与色氨酸代谢的代谢物被ATM显着改变。然而,在ABX、AM和AMRH中未观察到显着变化。因此,这些数据表明抗生素治疗强烈降低了粪便中色氨酸代谢物的水平(图6C),并且由吗啡和Rg1引起的代谢改变被消除。此外,在血清中,PLS-DA结果显示四组(对照组、ABX、AM和AMRH)的代谢物谱不同(图6B)。ATM显着改变了色氨酸代谢物。值得注意的是,与 ABX小鼠相比,注射吗啡的小鼠的代谢物发生了相当大的变化。具体而言,与 AM组相比,色氨酸代谢物在Rg1处理后没有显示出显着变化(图6D)。我们发现 Rg1治疗组和模型组在ABX治疗后肠道色氨酸和血浆血清素水平没有差异(图6E和F)。随后,我们发现微生物组消耗抵消了 Rg1在CPP小鼠海马体中诱导的变化(图6G-L)。Rg1治疗未能逆转5-HT、多巴胺、5-HTR1B/5-HTR2A 和BDNF-TrkB信号通路。7.B.vulgatus 协同增强人参皂苷 Rg1 抑制吗啡诱导的小鼠 CPP因为肠道B.vulgatus 减少和增加与吗啡诱导的CPP增加和Rg1降低CPP一致,并且在抗生素处理的小鼠中消除了人参皂苷Rg1对CPP的改善,我们探讨了B.vulgatus 是否在吗啡中起作用依赖。作为典型的拟杆菌属物种,普通拟杆菌是小鼠肠道中的主要细菌物种,我们试图确定普通拟杆菌是否会影响CPP进展。我们首先使用抗生素治疗来消耗肠道微生物群,然后再用B.vulgatus 定植。在吗啡诱导的CPP小鼠模型中检查B.vulgatus 对吗啡成瘾的影响(图7A)。抗生素治疗或B.vulgatus 移植没有显着改变体重(图7B)。单独使用B.vulgatus (AMBV) 进行灌胃显着降低了白框中的停留时间和轨迹百分比,而吗啡则增加了该百分比(图7C、7D)。值得注意的是,与B.vulgatus 和人参皂苷Rg1(AMBVR)共同治疗的小鼠在药物配对隔室中的停留时间和轨迹百分比显着降低。这些数据清楚地表明AMBVR在抑制CPP方面比AMBV取得了更好的功效。值得注意的是,在我们的研究中,用“吗啡”微生物组(AMF)进行肠道再定殖并没有诱导CPP行为。8.B.vulgatus 可以改变肠道微生物组成小鼠粪便样本的16SrRNA 基因测序揭示了用活的B.vulgatus灌胃肠道微生物群组成的变化。拟杆菌门的相对丰度从AM组的不到20%增加到AMBV组的40%和AMBVR组的60%(图7E)。定量PCR证实,与对照组相比,AMBV和AMBVR组灌胃后肠道中的细菌显着过度生长数百至数万倍(图7F)。这些数据表明,人参皂甙Rg1提高了CPP小鼠中普通双歧杆菌的丰度。9.B.vulgatus 改变了肠道微生物群衍生和宿主色氨酸代谢物对小鼠的粪便和血清进行了代谢组学分析。偏最小二乘判别分析(PLS-DA)显示AM、AMBV和AMBVR组之间完全分离(图8A和D)。热图分析显示,仅用B.vulgatus灌胃导致CPP小鼠代谢物发生显着变化,粪便中有332种代谢物(211种上调和121种下调),血清中有82种代谢物(58种上调和24种下调)。我们对具有已知KEGGID 的332和82种显着不同的代谢物进行了KEGG途径富集分析,并分别鉴定了14和11种富含色氨酸代谢的代谢物。同时,将AMBVR与AM组进行比较,粪便中的313种代谢物(237种上调和76种下调)和血清中的82种代谢物(44种上调和38种下调)在与普通芽孢杆菌和人参皂甙Rg1共同处理后显着改变。在粪便中发现了13种代谢物,血清中发现了11种代谢物富集到色氨酸代谢,AMBV和AMBVR都改变了肠道微生物群衍生和宿主色氨酸代谢。我们随后检查了粪便和血清中由AMBV和AMBVR改变的色氨酸代谢物的相对丰度(图8B,C)。用B.vulgatus 灌胃下调色氨酸和血清素水平(图8E-I和9B)。10.B.vulgatus 协同增强人参皂甙-Rg1 诱导的吗啡诱导的海马 5-羟色胺能变化的抑制作用最后,为了证实人参皂甙Rg1通过影响肠道微生物群衍生的色氨酸代谢-血清素途径来减轻吗啡依赖,我们测定了海马和血清中5-HT、多巴胺和GABA的水平。CPP小鼠中血清素和多巴胺的血浆浓度较低,而GABA的血浆浓度高于单独用普通双歧杆菌灌胃或与Rg1共同治疗的小鼠(图9A-D)。值得注意的是,AMBVR小鼠的海马5-HT浓度显着低于AM小鼠。qPCR进一步证实了血清素受体和BDNF-TrkB的mRNA水平升高。我们观察到5-HTR1B、5-HTR2A和BDNF-TrkB的表达被B.vulgatus 定植和Rg1处理有效抑制(图9E、F)。研究结论该研究表明人参皂苷Rg1对吗啡依赖的改善作用与肠道微生物群有关。此外,我们发现微生物组的消耗和拟杆菌的补充可以影响吗啡依赖性并影响Rg1的功效,伴随着色氨酸代谢和5-羟色胺的变化。该研究结果提供了一个新的框架来理解中药通过肠道微生物群-色氨酸代谢和血清素能系统拮抗吗啡成瘾的机制,可能会带来新的诊断和治疗策略。
  • 黄超兰研究组发表精氨酸甲基化综述论文
    中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员黄超兰受邀在蛋白质组学国际期刊Expert Review of Proteomics上发表综述文章。黄超兰与博士彭超(该文第一作者)撰述的The Story of Protein Arginine Methylation: Characterization, Regulation, and Function 于1月5日在线发表在此杂志上。该论文系统地介绍了鉴定不同类型的精氨酸甲基化的技术方法及其发展历程,并对精氨酸甲基化不同类型的writers和erasers的最新进展、生物学功能以及与疾病的紧密联系进行了系统性的总结和展望。  精氨酸甲基化(Arginine methylation)是蛋白质后修饰中重要的一种,它参与了基因表达的调节、DNA的修复等重要的生命过程,与肿瘤、心血管疾病、病毒感染和自身免疫性疾病等多种疾病密切相关 甲基化水平异常的蛋白质可以作为潜在的生物标志物或药物研究靶点。该综述能使读者加深对精氨酸甲基化蛋白质、后修饰位点、表达水平以及其调控机制的了解,有利于人们进一步探索其在生命过程中的作用,特别是与疾病发生的关系,加快相关药物靶点的研究进程。  黄超兰研究组一直致力于质谱和基于质谱的蛋白质组学应用于蛋白质研究的难题技术研发,相关技术已经帮助广大科学家解决了众多的科学难题,大力促进了科学研究的发展。该项工作得到了中科院引进杰出技术人才、关键技术人才和国家基金委自然科学基金青年项目等的资助。
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》征求意见稿
    国家标准计划《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 四川威尔检测技术股份有限公司 、中国农业科学院农业质量标准与检测技术研究所[国家饲料质量监督检验中心(北京)] 、通威股份有限公司 。附件:国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》编制说明.pdf国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》征求意见稿.pdf
  • 解读《关于假肠膜明串珠菌等28种“三新食品”的公告》
    一、新食品原料假肠膜明串珠菌(Leuconostoc pseudomesenteroides)属于明串珠菌属,从传统发酵乳制品中分离得到。该菌种已被列入欧洲食品安全局资格认定(QPS)名单的推荐生物制剂列表以及国际乳品联合会公报(BulletinoftheIDF514/2022)的“在发酵食品中证明安全的微生物品种目录”,并在丹麦、加拿大、韩国等国家已被批准使用。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对假肠膜明串珠菌的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌种的使用范围包括发酵乳、风味发酵乳、干酪、发酵型含乳饮料和乳酸菌饮料(非固体饮料),不包括婴幼儿食品。该原料的食品安全指标须符合以下规定:铅(以Pb计,干基计)≤1.0 mg/kg,总砷(以As计,干基计)≤1.5 mg/kg,微生物限量为沙门氏菌0/25 g(mL),金黄色葡萄球菌0/25 g(mL),单核细胞增生李斯特氏菌0/25 g(mL)。待食品加工用菌种制剂的食品安全国家标准发布后,按照食品加工用菌种制剂的标准执行。二、食品添加剂新品种(一)聚天冬氨酸钾1.背景资料。聚天冬氨酸钾申请作为食品添加剂新品种。本次申请用于葡萄酒(食品类别15.03.01)。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局允许其作为食品添加剂用于葡萄酒。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为稳定剂和凝固剂用于葡萄酒(食品类别15.03.01),改善产品稳定性。其质量规格按照公告的相关要求执行。(二)氨基肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的氨基肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质氨基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(三)蛋白酶1.背景资料。李氏木霉(Trichoderma reesei)来源的蛋白酶申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、法国食品安全局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(四)磷脂酶A21.背景资料。李氏木霉(Trichoderma reesei)来源的磷脂酶A2申请作为食品工业用酶制剂新品种。美国食品药品管理局允许其用于食品。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化磷脂的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(五)麦芽糖淀粉酶1.背景资料。酿酒酵母(Saccharomyces cerevisiae)来源的麦芽糖淀粉酶申请作为食品工业用酶制剂新品种。澳大利亚和新西兰食品标准局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化淀粉的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(六)木聚糖酶1.背景资料。地衣芽孢杆菌(Bacillus licheniformis)来源的木聚糖酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化木聚糖水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(七)乳糖酶(β-半乳糖苷酶)1.背景资料。Papiliotrema terrestris来源的乳糖酶(β-半乳糖苷酶)申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化乳糖水解和转糖基反应。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(八)羧肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的羧肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质羧基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(九)脱氨酶1.背景资料。米曲霉(Aspergillus oryzae)来源的脱氨酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、日本厚生劳动省允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化5’-腺嘌呤核苷酸(5’-AMP)的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(十)2-己基吡啶1.背景资料。2-己基吡啶申请作为食品用香料新品种。美国食用香料和提取物制造者协会、国际食品用香料香精工业组织、欧盟委员会等允许其作为食品用香料在各类食品中按生产需要适量使用。2.工艺必要性。该物质配制成食品用香精后用于各类食品(《食品安全国家标准食品添加剂使用标准》表B.1食品类别除外),改善食品的味道。该物质的质量规格按照公告的相关内容执行。(十一)富马酸1.背景资料。富马酸作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于胶基糖果、面包、糕点、果蔬汁(浆)类饮料等食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 富马酸》(GB 25546)。(十二)乙酸钠(又名醋酸钠)1.背景资料。乙酸钠作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于复合调味料和膨化食品的食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 乙酸钠》(GB 30603)。(十三)环己基氨基磺酸钠(又名甜蜜素)1.背景资料。环己基氨基磺酸钠(又名甜蜜素)作为甜味剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于冷冻饮品、果酱、面包、糕点、饮料类、果冻等食品类别。本次申请扩大使用范围用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06)。国际食品法典委员会允许其作为甜味剂用于焙烤制品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-11 mg/kg bw。2.工艺必要性。该物质作为甜味剂用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06),赋予食品甜味。其质量规格执行《食品安全国家标准 食品添加剂 环己基氨基磺酸钠(又名甜蜜素)》(GB 1886.37)。(十四)维生素E1.背景资料。维生素E作为抗氧化剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于油炸面制品、方便米面制品、复合调味料、膨化食品等食品类别。本次申请扩大使用范围用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04)。美国食品药品管理局、日本厚生劳动省等允许其作为抗氧化剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0.15-2 mg/kg bw。2.工艺必要性。该物质作为抗氧化剂用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04),减缓食品氧化褪色。其质量规格执行《食品安全国家标准 食品添加剂 维生素E》(GB 1886.233)。(十五)聚二甲基硅氧烷及其乳液1.背景资料。聚二甲基硅氧烷及其乳液作为食品工业用加工助剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于肉制品、啤酒、焙烤食品、饮料、薯片等加工工艺。本次申请扩大使用范围用于胶原蛋白肠衣加工工艺。澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-1.5 mg/kg bw。2.工艺必要性。该物质作为食品工业用加工助剂用于胶原蛋白肠衣加工工艺,消除胶原蛋白肠衣加工过程中产生的泡沫。其质量规格执行《食品安全国家标准 食品添加剂 聚二甲基硅氧烷及其乳液》(GB 30612)。(十六)硬脂酸镁1.背景资料。硬脂酸镁作为乳化剂、抗结剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于蜜饯凉果类、可可制品、巧克力和巧克力制品以及糖果的食品类别。本次申请作为食品工业用加工助剂用于泡腾片压片工艺。美国食品药品管理局、澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为食品工业用加工助剂用于泡腾片压片工艺,可减少压制泡腾片过程中物料与模具表面的摩擦力,使片面光滑,避免出现裂片。其质量规格执行《食品安全国家标准 食品添加剂 硬脂酸镁》(GB 1886.91)。三、食品相关产品新品种(一)环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物1.背景资料。该物质常温下为淡黄绿色粉末,不溶于水、乙醇和丙酮,可溶于氯仿。欧盟委员会和日本厚生劳动省均允许该物质用于食品接触用PCN塑料材料及制品。2.工艺必要性。该物质用作PCN材料的添加剂,可以提高其抗冲击性。(二)2-[2-(2,4-二氨基-6-羟基-5-嘧啶)二氮烯基]-5-甲基苯磺酸1.背景资料。该物质在常温下为黄色粉末,微溶于水。美国食品药品管理局和日本化学研究检验所均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质是一种黄色着色剂,在各类塑料中具有较高的着色力。(三)丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和N,N'-亚甲基双丙烯酰胺的共聚物1.背景资料。该物质常温下为浅黄色液体,可溶于水。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用纸和纸板材料及制品。2.工艺必要性。该物质作为干强剂用于食品接触用纸和纸板材料及制品,可增强纸张的拉伸强度、内结合强度和耐破强度。(四)β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯1.背景资料。该物质常温下为白色结晶性粉末,不溶于水。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于食品接触用橡胶、油墨、黏合剂以及聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)等多种塑料材料及制品。本次申请将其使用范围扩大至涂料及涂层。欧洲委员会、日本厚生劳动省和南方共同市场均允许其用于食品接触用涂料及涂层。2.工艺必要性。该物质是一种抗氧化剂,用于涂料时,可避免环境中的氧气和其他化学物质导致的降解;也可用于涂布过程,避免涂膜收缩起皱。(五)萘磺酸与甲醛聚合物的钠盐1.背景资料。该物质常温下为淡黄棕色粉末,可溶于水。GB 9685-2016已批准该物质作为添加剂用于食品接触用涂料及涂层、黏合剂以及纸和纸板。本次申请将其使用范围扩大至丙烯腈-丁二烯-苯乙烯共聚物(ABS)塑料材料及制品。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用ABS塑料材料及制品。2.工艺必要性。该物质作为乳化剂用于ABS塑料材料及制品,可减少凝结物的形成。(六)C1~C18单、多元脂肪醇的脂肪酸酯1.背景资料。该物质在常温下为白色固体。GB 9685-2016已批准该物质作为添加剂用于食品接触用纸和纸板材料及制品。本次申请将其使用范围扩大至食品接触用塑料材料及制品。美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质能够改善加工过程中塑料材料的流动性,提高整体加工速度或改善表面性能。(七)二氯二甲基硅烷与二氧化硅的反应产物1.背景资料。该物质为白色粉末,不溶于水。GB 9685-2016、原国家卫生计生委2017年第9号公告和国家卫生健康委2018年第11号公告中已批准该物质作为添加剂用于食品接触用聚对苯二甲酸乙二酯(PET)、PP和聚偏氟乙烯(PVDF)等多种塑料材料及制品和涂料及涂层。本次申请将其使用范围扩大至食品接触材料及制品用黏合剂和油墨。欧盟委员会和日本厚生劳动省允许该物质用于食品接触材料及制品用黏合剂;瑞士联邦食品安全和兽医办公室和欧洲油墨协会均允许该物质用于食品接触材料及制品用油墨。2.工艺必要性。该物质用作黏合剂的消泡剂,利于黏合剂的生产及使用;用作油墨的分散剂,达到提高粘度的效果。(八)一氧化碳-乙烯-丙烯三元聚合物1.背景资料。该物质在常温下为白色固态颗粒,不溶于水。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质主要用于复合包装,具有较高的阻隔性能,可有效阻隔氧气渗透,防止内容物氧化。(九)4-乙基苯酚与间甲酚、对甲酚、对叔丁基苯酚和甲醛的聚合物1.背景资料。该物质常温下为深琥珀色固体,不溶于水,溶解于醇类、酮类溶剂。欧洲委员会和美国食品药品管理局均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料的主要成膜物质,可增加涂层的柔韧性和延展性。(十)乙二醇与2,2-二甲基-1,3-丙二醇、对苯二甲酸、间苯二甲酸、己二酸和衣康酸的聚合物1.背景资料。该物质常温下为透明固体,不溶于水,可溶于酯类溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层;南方共同市场和日本黏合剂行业协会均允许该物质用于食品接触材料及制品用黏合剂。2.工艺必要性。以该物质为原料生产的涂料具有较高的表面张力,可提升涂层的防污性能;以该物质为原料生产的黏合剂则具有较高密封强度和易揭等性能。(十一)间苯二甲酸与间苯二甲胺和己二酸的聚合物1.背景资料。该物质常温下为无色透明颗粒,不溶于水。国家卫生健康委2022年第2号公告已批准该物质用于食品接触用塑料材料及制品,使用温度不得超过100℃,本次申请将其使用温度限值提高至121℃。欧盟委员会和日本厚生劳动省均允许该物质在使用温度不超过121℃时用于食品接触用塑料材料及制品。2.工艺必要性。以该物质为原料生产的塑料薄膜,具有良好的氧气阻隔性能、热稳定性能和热成型性能。
  • 国家市场监督管理总局批准发布《氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定》等431项推荐性国家标准和2项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《液压传动连接 金属管接头 第1部分:24°锥形》等431项推荐性国家标准和2项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2023-08-06附件相关标准如下:序号标准编号及标准名称代替标准号实施日期1GB/T 20706-2023 可可粉质量要求GB/T 20706-20062024-03-012GB/T 20705-2023 可可液块及可可饼块质量要求GB/T 20705-20062024-03-013GB/T 22427.7-2023 淀粉黏度测定GB/T 22427.7-20082024-03-014GB/T 26174-2023 厨房纸巾GB/T 26174-20102024-09-015GB/T 42957-2023氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定2024-03-016GB/T 42762-2023 杯壶类产品通用技术要求2024-03-017GB/T 42821-2023 贝类包纳米虫病诊断方法2024-03-018GB/T 15000.5-2023 标准样品工作导则 第5部分:质量控制样品的内部研制2023-08-069GB/Z 42962-2023 产业帮扶 猪产业项目运营管理指南2023-08-0610GB/Z 42963-2023 产业帮扶 竹产业项目运营管理指南2023-08-0611GB/T 42893-2023 电子商务交易产品质量监测实施指南2023-12-0112GB/T 41247-2023 电子商务直播售货质量管理规范2023-10-0113GB/T 42958-2023 肥料产品使用说明编写指南2024-03-0114GB/T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法2024-03-0115GB/T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法2024-03-0116GB/T 27021.12-2023 合格评定 管理体系审核认证机构要求第12部分:协作业务关系管理体系审核与认证能力要求2023-08-0617GB/T 27000-2023 合格评定 词汇和通用原则GB/T 27000-20062023-08-0618GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴)GB/T 1270-19962024-03-0119GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌)GB/T 667-19952024-03-0120GB/T 669-2023 化学试剂 硝酸锶GB/T 669-19942024-03-0121GB/T 686-2023 化学试剂 丙酮GB/T 686-20082024-03-0122GB/T 684-2023 化学试剂 甲苯GB/T 684-19992024-03-0123GB/T 9722-2023 化学试剂 气相色谱法通则GB/T 9722-20062024-03-0124GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备GB/T 603-20022024-03-0125GB/T 649-2023 化学试剂 溴化钾GB/T 649-19992024-03-0126GB/T 678-2023 化学试剂 乙醇(无水乙醇)GB/T 678-20022024-03-0127GB/T 26176-2023 家用和类似用途豆浆机GB/T 26176-20102024-03-0128GB/T 42812-2023 连作障碍土壤改良通用技术规范2024-03-0129GB/T 29344-2023 灵芝孢子粉采收及加工技术规范GB/T 29344-20122024-03-0130GB/T 22638.11-2023 铝箔试验方法 第11部分:力学性能的测试2024-03-0131GB/T 42916-2023 铝及铝合金产品标识2024-03-0132GB/T 22648-2023 铝塑复合软管、电池软包用铝箔GB/T 22648-20082024-03-0133GB/T 42817-2023 农产品产地土壤改良剂使用技术规范2024-03-0134GB/T 42819-2023 农产品产地重金属污染土壤钝化通用技术规程2024-03-0135GB/T 29490-2023 企业知识产权合规管理体系 要求GB/T 29490-20132024-01-0136GB/T 42936-2023 设施管理 过程管理指南2023-08-0637GB/T 42931-2023 设施管理 基准比较分析指南2023-08-0638GB/T 42935-2023 设施管理 信息化管理指南2023-08-0639GB/T 14699-2023 饲料 采样GB/T 14699.1-20052024-03-0140GB/T 42959-2023 饲料微生物检验 采样2024-03-0141GB/T 22260-2023 饲料中蛋白质同化激素的测定 液相色谱-串联质谱法GB/T 22260-20082024-03-0142GB/T 13882-2023 饲料中碘的测定GB/T 13882-20102024-03-0143GB/T 8381.3-2023 饲料中林可胺类药物的测定 液相色谱-串联质谱法GB/T 8381.3-20052024-03-0144GB/T 42956-2023饲料中泰乐菌素、泰万菌素、替米考星的测定 液相色谱-串联质谱法2024-03-0145GB/T 13883-2023 饲料中硒的测定GB/T 13883-20082024-03-0146GB/T 13093-2023 饲料中细菌总数的测定GB/T 13093-20062024-03-0147GB/T 12956-2023 卫生间配套设备要求GB/T 12956-20082024-03-0148GB/T 10510-2023 硝酸磷肥、硝酸磷钾肥GB/T 10510-20072024-03-0149GB/T 42828.1-2023 盐碱地改良通用技术 第1部分:铁尾砂改良2024-03-0150GB/T 42828.2-2023 盐碱地改良通用技术 第2部分:稻田池塘渔农改良2024-03-0151GB/T 42828.3-2023 盐碱地改良通用技术 第3部分:生物改良2024-03-0152GB/T 13217.7-2023 油墨附着力检验方法GB/T 13217.7-20092024-03-0153GB/T 42944-2023 纸、纸板和纸制品 有效回收组分的测定2024-03-0154GB/T 42945-2023 纸浆 细小纤维质量分数的测定2024-03-0155GB/T 42943-2023 纸浆模塑制品技术通则2024-03-0156GB/T 42748-2023 专利评估指引2023-09-0157GB/T 22461.1-2023 表面化学分析 词汇 第1部分:通用术语及谱学术语GB/T 22461-20082024-03-0158GB/T 27921-2023 风险管理 风险评估技术GB/T 27921-20112023-08-0659GB/T 27914-2023 风险管理 法律风险管理指南GB/T 27914-20112023-08-0660GB/T 7139-2023 塑料 氯乙烯均聚物和共聚物 氯含量的测定GB/T 7139-20022024-03-01
  • 澳新拟降低婴儿配方奶粉中L-组氨酸的最低限量要求
    据澳新食品标准局(FSANZ)消息,近日雀巢公司向澳新食品标准局发出申请,请求该局将婴儿配方奶粉中L-组氨酸的最低限量要求由原先的12 mg/100 kJ降至10 mg/100 kJ。   澳新食品标准局首席执行官麦卡臣(Steve McCutcheon)表示,L-组氨酸限量调低后可与国际限量保持一致,减少贸易摩擦,而且调低后的L-组氨酸限量仍可抵得上母乳中L-组氨酸的水平,完全可以维持哺乳期婴儿的生长需求,不会影响婴儿的健康。   目前澳新食品标准局正就此申请征求意见,截止日期为2012年12月20日。
  • Agela Venusil AA HPLC法测定"皮革奶"中羟脯氨酸
    方法摘要: Venusil AA 氨基酸分析的原理为目前广泛使用的PITC(异硫氰酸苯酯)衍生法。经过简化后的衍生方法有很多优点:方便、快速;衍生物单一、稳定,-20℃可贮存数月;采用Venusil AA 柱分析时间短;结果准确;试剂、副产物、溶剂等多种干扰因素可通过快速萃取去除;紫外检测(254nm)灵敏度高。样品:取某品牌牛奶0.5g,按照博纳艾杰尔氨基酸分析方法包进行水解衍生,并取混合氨基酸标准溶液(准确量取氨基酸标准溶液1.0 mL,置于5mL容量瓶中,加0.1mol/L盐酸溶液定容至刻度)加内标正亮氨酸,然后进行衍生。(异硫氰酸苯酯为衍生剂)色谱柱:Agela Venusil AA,4.6×250mm,5µ m,100Å (订货号:VA952505-K)流动相:A:称取15.2g无水醋酸钠,加水1850mL,溶解后用冰醋酸调pH至6.5,然后加乙腈140mL,混匀,用0.45µ m滤膜过滤。B:80%(V/V)乙腈溶液 时间 流动相A 0 0 2 0 15 10 25 30 33 45 33.1 100 39 100 39.1 0 45 0 流速:1.0mL/min进样体积:10μL温度:40℃波长:254nm Agela Venusil AA HPLC法测定牛奶中羟脯氨酸混和标准品图谱 (6.50min为羟脯氨酸) Agela Venusil AA HPLC法测定牛奶中羟脯氨酸图谱(6.51min为羟脯氨酸) 技术咨询请拨打18622038116
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制