当前位置: 仪器信息网 > 行业主题 > >

溴吲哚满二酮

仪器信息网溴吲哚满二酮专题为您提供2024年最新溴吲哚满二酮价格报价、厂家品牌的相关信息, 包括溴吲哚满二酮参数、型号等,不管是国产,还是进口品牌的溴吲哚满二酮您都可以在这里找到。 除此之外,仪器信息网还免费为您整合溴吲哚满二酮相关的耗材配件、试剂标物,还有溴吲哚满二酮相关的最新资讯、资料,以及溴吲哚满二酮相关的解决方案。

溴吲哚满二酮相关的资讯

  • 专家漫谈|热分析技术在药物质量控制以及药物研究中的一些应用
    p style=" text-align: left "    strong 本文 /strong strong 作者:江苏省食品药品监督检验研究院 李忠红 /strong /p p style=" text-align: left "   热分析法,顾名思义,是围绕物体热量发生了变化来进行的一系列分析测试的技术的总称,包括记录给予被测物热量后物质发生变化的过程以及物体发生变化过程中吸收或放出热量的测定。药典中收录的热分析法,广义的有转化点/熔点测定法、热重分析法、差热/差示扫描量热分析法、热载台显微镜分析法、微量热法(欧洲/英国药典)、溶液量热法(欧洲/英国药典)。中国药典2020年版四部通则0661热分析法中只收录了其中的三种。 /p p style=" text-align: left "   目前来说,在我们药品检验工作中采用热分析法对药物进行质量控制的应用主要有:原料药熔点的测定、化学对照品的纯度测定、药物水分的测定等,应用的项目与品种并不多。中国药典2015年版并未收录具体的需要用热分析仪来做质量控制的品种,2020年版是否有品种收录目前还未知晓。在国家药品监督管理局批准的各企业注册标准中,采用差示扫描量热分析法(DSC)测定熔点的品种有替格瑞洛、利培酮等,下图1是一张不同企业替格瑞洛原料药的热分析图,从图中可以看出不同企业产品的熔点存在着一定的差异,其中微小的差异可能来自于不同的纯度,而较大的差异应该是来自于不同的晶型。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 522px " src=" https://img1.17img.cn/17img/images/202006/uepic/c71b7d9d-0621-4e0b-b52c-b8be3c48db91.jpg" title=" 图1 替格瑞洛DSC分析图.jpg" alt=" 图1 替格瑞洛DSC分析图.jpg" width=" 500" height=" 522" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1 替格瑞洛DSC分析图 /strong /p p   热分析法在药品质量控制中应用面较窄的这种情况的主要原因是因为热分析仪相对于一些传统的药品检验用仪器(例如熔点仪、烘箱、减压干燥箱等)价格要贵得多,客观上限制了在熔点测定与水分测定中的应用。而对于化学对照品的纯度测定,热分析法只是一个辅助测定的方法,或者说是一个验证用其他方法测定出的纯度值是否准确的方法,并不能用热分析法得到的纯度值去给对照品赋值。所以,热分析法对于化学对照品纯度的测定这一应用,只有在化学对照品发行单位得到较多的应用[1,2]。 /p p   当然,在药物的制造过程中,有不少企业已经采用快速水分测定仪(水分天平)来做中间体物料的水分监测。快速水分测定仪是利用热失重法测定样品的水分含量,由称量与加热装置(红外)组成。其原理与热重分析仪一样,也应该算是一种热分析的仪器。 /p p   尽管在药品终产品质量控制中的应用目前还不广泛,热分析技术作为一门成熟的分析技术,在药物研究过程中角色一直是不可或缺的。近5年来在药物研究过程中的应用主要有:药物多晶型的研究[3-6],药物共晶的研究[7],药物新剂型研究[8-18],生物相容性材料[19,20]的表征,药品包装材料(聚乙烯、聚丙烯等材质)与液体药物的相容性研究等。下面简要介绍一下其中的几个应用。 /p p    strong 一、药物多晶型的研究 /strong /p p   各国药典收载的多晶型药物有188种,水合物有307种,无定形(型)物有113种[21],这些药物的研究过程都或多或少地用到过热分析技术。 /p p   2015年研究者Akhtar Siddiqui等[3]发表的研究文章中用DSC结合化学计量学方法对尼莫地平两种晶型的定量测定进行了很好的研究,为质量控制提供了可能。 /p p   2016年研究者Yusuke Hattori等[4]发表的研究文章中用DSC研究了采用熔融-骤冷和研磨法获取加替沙星的无定形物。这两种方法制备的无定形物的X-射线粉末衍射图谱是无差别的,但是它们的DSC图谱存在着一定的差异。下图2就是两种无定形物的DSC图谱。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e018c82b-c99f-4dff-ae98-4fa8d738bd6f.jpg" title=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" alt=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" / /p p style=" text-align: center " strong 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱 /strong /p p style=" text-align: center " (A)研磨法制备 (B)熔融-骤冷法制备 /p p   对于低温下药物的结晶过程、低温下药物晶核形成的机理研究,是近年来另一个研究的热点。2017年研究者Ioannis Nikolakakis等[5]发表的研究文章中采用熔融-骤冷法对扑热息痛(对乙酰氨基酚)的结晶动力学进行了研究,熔融的过程以及对骤冷后得到的玻璃体进行表征均使用了DSC仪。2018年研究者Yuan Su等[6]发表的研究文章中用类似的方法对灰黄霉素进行了研究,提出在超低温状态下(低于玻璃化转变温度),玻璃体发生断裂,在断裂面形成了晶核,因此不仅熔融-骤冷法不一定能得到无定形药物,而且对于无定形药物的保存也要注意贮藏条件可能产生的影响。 /p p    strong 二、药物共晶的研究 /strong /p p   共晶是提高药物溶解度的一个有效手段,而DSC是表征共晶形成成功与否的强有力技术。2018年研究者Patrycja Garbacz等[7]发表的研究文章中对吲哚美辛与糖精共晶、呋塞米与对氨基苯甲酸共晶进行了研究,典型的DSC图谱见图3。由图中可见,原料比例为1:2时吲哚美辛与糖精形成了共晶,即熔点只有一个。其他检测方法,例如红外光谱法、拉曼光谱法,都无法区分物理混合物与共晶。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 251px " src=" https://img1.17img.cn/17img/images/202006/uepic/bfbfeed1-7583-4e9d-bab7-1ff5558465af.jpg" title=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" alt=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" width=" 500" height=" 251" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 吲哚美辛与糖精共晶研究的DSC图谱 /strong /p p style=" text-align: center "   (a)吲哚美辛与糖精物理混合物(1:1) /p p style=" text-align: center "   (b)吲哚美辛与糖精物理混合物(2:1) /p p style=" text-align: center "   (c)吲哚美辛与糖精物理混合物(1:2) /p p style=" text-align: center "   (d)吲哚美辛与糖精共晶(原料比例1:1) /p p style=" text-align: center "   (e)吲哚美辛与糖精共晶(原料比例2:1) /p p style=" text-align: center "   (f)吲哚美辛与糖精共晶(原料比例1:2) /p p style=" text-align: center "   (g)吲哚美辛 /p p style=" text-align: center "   (h)糖精 /p p    strong 三、药物新剂型的研究 /strong /p p   纳米脂质体、介孔二氧化硅纳米粒、聚L-乳酸电纺纤维、温敏性水凝胶都是近年来发展起来的一些药物载体,也是药物新剂型。对于药物载体是否成功载药的研究,DSC是一个有效的表征手段,以2018年Li Pan等[18]对载虾青素的纳米脂质体研究为例,图4为采用DSC对原料药、辅料、原料药与辅料的物理混合物、载药纳米脂质体进行研究的图。载虾青素的纳米脂质体显示了与辅料大豆磷脂酰胆碱以及二者的物理混合物不同的DSC曲线。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 390px " src=" https://img1.17img.cn/17img/images/202006/uepic/fc4b38c6-cf08-49f0-b45d-11e2bd953a3e.jpg" title=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" alt=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" width=" 500" height=" 390" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图4 载虾青素的纳米脂质体研究的DSC图谱 /strong /p p style=" text-align: center " (a)虾青素 /p p style=" text-align: center " (b)载虾青素的纳米脂质体 /p p style=" text-align: center " (c)大豆磷脂酰胆碱 /p p style=" text-align: center " (d)虾青素与大豆磷脂酰胆碱的物理混合物 /p p   对于载虾青素的纳米脂质体研究,研究者不仅使用了DSC,还使用了TG,图谱见图5。TG曲线可被分为三段,分别代表了三步分解过程:失水(138℃之前)、大豆磷脂酰胆碱分解(138~315℃)、虾青素分解(315~500℃)。TG曲线可以从一个侧面反映药物的组成。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 350px " src=" https://img1.17img.cn/17img/images/202006/uepic/cd90f3d6-0c0d-47b8-94ec-55fbf677c8b9.jpg" title=" 图5 载虾青素纳米脂质体的TG图谱.jpg" alt=" 图5 载虾青素纳米脂质体的TG图谱.jpg" width=" 500" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图5 载虾青素纳米脂质体的TG图谱 /strong /p p   由以上这些应用来看,随着采用热分析法对于药物多晶型的研究工作日益的广泛,以及仿制药与原研药一致性评价工作的需求,采用热分析技术作为成品的质量控制手段的可能性也会大幅提升。因此,可以预见,热分析技术在药物质量控制领域会发挥越来越大的作用。 /p p br/ /p p    a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" strong 热分析技术在药物质量控制中的应用专题 /strong : /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202006/uepic/275383cf-9219-4e35-ace8-f04a0943596e.jpg" title=" 192042020200616.jpg" alt=" 192042020200616.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p br/ /p p    strong 参考文献: /strong /p p   [1] 刘毅,吴建敏,严菁,等. 熔点对照品标化研究,中国新药杂志,2015,24(3):264-270 /p p   [2] 刘毅,吴建敏,吴涓,等. 差示扫描量热法在化学药品对照品纯度分析中的应用,中国新药杂志,2017,26(10):1115-1118 /p p   [3] Akhtar Siddiqui, Ziyaur Rahman, Mansoor A. Khan. Application of chemometric methods to differential scanning calorimeter (DSC) to estimate nimodipine polymorphs from cosolvent system. Drug Development and Industrial Pharmacy, 2015, 41(6):995-999 /p p   [4] Yusuke Hattori, Ayumi Suzuki, Makoto Otsuka. Characterization of melt-quenched and milled amorphous solids of gatifloxacin. Drug Development and Industrial Pharmacy, 2016, 42(11): 1851-1856 /p p   [5] Ioannis Nikolakakis, Kyriakos Kachrimanis. Crystallization kinetics of orthorhombic paracetamol from supercooled melts studied by non-isothermal DSC. Drug Development and Industrial Pharmacy, 2017, 42(2): 257-263 /p p   [6] Yuan Su, Lian Yu, Ting Cai. Enhanced crystal nucleation in glass-forming liquids by tensile fracture in the glassy state. Crystal growth & amp design, 2018, DOI: 10.1021/acs.cgd.8b01427 /p p   [7] Patrycja Garbacz, MarekWesolowski. DSC, FTIR and Raman Spectroscopy Coupled withMultivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules, 2018, 23, 2136 doi:10.3390/molecules23092136 www.mdpi.com/journal/molecules /p p   [8] 冯巧,张亚轩,夏志伟,等. 温敏型水凝胶聚(N-异丙基丙烯酰-乙烯基吡咯烷酮)的前端聚合法制备及性能. 高分子材料科学与工程,2015,31(4):37-46 /p p   [9] 王浩,康卫民,张亚秋,等. 壬苯醇醚聚ε-己内酯电纺纤维膜的表征及释放. 沈阳药科大学学报,2015,32(4):249-255,270 /p p   [10] 王浩,郭衎,刘影,等. 十六烷基磷脂酰胆碱复合聚ε-己内酯电纺微球的制备及表征. 辽宁医学院学报,2015,36(2):1-5,附页1-2 /p p   [11] 吕洁琼,林君红,崔升淼. 介孔二氧化硅纳米粒对穿心莲内酯载药性能及药物释放的影响. 广东药学院学报,2016,32(5):555-558 /p p   [12] 吕志阳,杨雨微,陈璟,等. 热熔挤出技术制备银杏总内酯固体分散体的研究. 中药材,2016,39(7):1610-1613 /p p   [13] Li Pan, Hongyan Wang, Keren Gu. Nanoliposomes as Vehicles for Astaxanthin Characterization In Vitro Release Evaluation and Structure-PXRD DSC. Molecules, 2018, 23:2822 doi:10.3390/molecules23112822 www.mdpi.com/journal/molecules /p p   [14] 赵娜,史雨,王中彦. 和厚朴酚固体分散体的制备及表征. 沈阳药科大学学报,2019,36(6):469-473 /p p   [15] 管庆霞,张悦,邹淑君,等. 马钱子碱纳米结构脂质载体的表征及体外释放行为分析. 中国中医药信息杂志,2019,26(8):66-70 /p p   [16] 郭爱灵,姚涛,潘斯庆,等. 复方葛根素水飞蓟宾固体分散体的制备及表征. 中国中医药信息杂志,2020,27(2):59-63 /p p   [17] 黄佳娜,崔银,张天,等. 载塞克硝唑泊洛沙姆复合聚L-乳酸电纺纤维的表征和释放行为考察. 中国医药工业杂志,2020,51(5):605-612 /p p   [18] 盛晓丹,刘臻,罗砚曦,等. 聚多巴胺修饰的载榄香烯介孔二氧化硅纳米粒的制备及其靶向抗肿瘤活性研究. 中草药,2020,51(10):2745-2754 /p p   [19] 王秦峰. 聚乳酸的热性能研究. 上海化工,2019,44(2):14-16 /p p   [20] Carlos David Grande Tovar, Jorge Ivá n Castro, Carlos Humberto Valencia, et al. Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 2020, 25:1203 doi:10.3390/molecules25051203 www.mdpi.com/journal/molecules /p p   [21] 张建军,钱帅,高缘主编. 晶型药物研发理论与应用,化学工业出版社,2019.1 /p p br/ /p
  • 赫施曼助力电子烟中2,3-丁二酮的检测
    电子烟是一种模仿卷烟的电子产品,通过加热雾化产生具有特定气味的气溶胶。2,3-丁二酮因具有奶油香气常作为香精原料被添加在电子烟烟液中,经加热后吸入肺部可能沉积在肺气管中而导致阻塞,加重呼吸道炎症。根据GB 41700-2022,电子烟中释放物中羰基化合物2,3-丁二酮每口释放量不超过2.5微克。其检测方法为:高效液相色谱法。 1.试剂1.1 磷酸水溶液:量取60mL磷酸(质量分数不低于85%)于1L烧杯中,搅拌下缓慢加入440mL水,混合均匀。储存于试剂瓶中有效期为3个月。1.2 衍生化试剂:取1.00gDNPH-HCl(纯度不低于98%)于2L烧杯中,加入500mL乙腈(色谱纯)和40mL磷酸水溶液,溶解后加入500mL水,混合均匀。溶液转入棕色试剂瓶中避光储存,有效期为1周。1.3 2,3-丁二酮溶液:称取0.10g(精确至0.1mg)2,3-丁二酮(纯度不低于98%)于10mL棕色容量瓶中,用乙腈溶解,定容至刻度。-18℃避光储存,有效期为3个月。1.4 DNPH衍生化合物标准储备液:称取0.1mL2,3-丁二酮溶液于25mL棕色容量瓶中,加入20mL衍生化试剂,摇匀,室温反应20min。加入1mL吡啶(纯度不低于99%),用乙腈定容至刻度,-18℃避光储存,有效期为3个月。1.5 标准工作液:用乙腈将DNPH衍生化合物标准储备液逐级稀释,至少备制5个标准工作液,浓度范围宜为0.1-4μg/mL。在使用前配置。2.样品前处理2.1 电子烟烟液:称取0.50g(精确至0.1mg)样品于10mL棕色容量瓶中,加入5mL衍生化试剂,摇匀,室温反应20min。加入0.25mL吡啶,用乙腈定容至刻度,摇匀,用PTFE滤膜过滤于棕色色谱瓶中待测。2.2 固态雾化物:称取0.50g(精确至0.1mg)样品于15mL离心管中,加入10mL衍生化试剂,避光涡轮震荡反应20min。用PTFE滤膜过滤,移取5mL容量瓶于10mL棕色容量瓶中,加入0.25mL吡啶,用乙腈定容至刻度,用PTFE滤膜过滤于棕色色谱瓶中待测。3.绘制标准工作曲线设定高效液相色谱条件后测定标准工作溶液(1.5),以目标化合物峰面积和浓度建立标准工作曲线。每进行20次样品测定后加入一个中等浓度的标准工作溶液,如测定值与原值相差15%则重新绘制标准工作曲线。4.样品测定按照谱条件测定两个样品溶液,每个样品平行测定两次,并以两次测定结果的平均值为最终测定结果。以上实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 让国宝 “活起来”,岛津科技解密古漆器髹漆工艺
    导 语近年来,中央台的一档文博探索类节目《国家宝藏》,唤起了大众对文物保护、文明守护的重视。节目中的国宝守护人为大家讲述“大国重器”们的前世今生,解读中华文化的基因密码。岛津公司的Py-GC/MS作为一把研究古代漆器的利剑,可以很好的帮助我们了解历朝历代漆器组成、结构及髹(xiū)漆工艺的流变历程,为探讨文物的史学意义、文物的修复与保护提供科学依据,真正的实现让国宝“活起来”。 披津斩历,重塑辉煌一直以来,在人民群众的眼中,文物都是高高在上,冷艳而高不可攀的。许多科研工作者一直致力于在文物与人之间建立联结,拉近当代人与历史文物的距离,引导更多的科技生产投向古典文化,让更多的历史符号在新时代的新语境下,焕发出新的生命力,真正成为活着的传承。 漆器是中华民族珍贵的文化瑰宝,是中华民族对人类文明的伟大贡献。由于漆器样品的珍贵性和特殊性(不溶于酸、碱和有机溶剂,难以预处理),很难通过常规的分析方法来剖析。Py-GC/MS是一种分析聚合物、塑料、橡胶、涂料、染料、树脂、涂层、纤维、木材等不溶性材料和聚合物的分析方法。 岛津公司多功能热裂解仪EGA/PY-3030D特点主要有:热分解温度高达1050°C,快速升温(600°C/min)和快速冷却(100°C/min);可进行多步热脱附模式; 检索软件F-Search和多样质谱库(聚合物裂解产物质谱库、添加剂谱库等) Py-GC/MS系统分析具有用量少、灵敏度高、分析速度快,信息量大等特点,适用于各种形式的样品,可直接对固体样品进行测定。Py-GC/MS技术是直接将高分子聚合物裂解成小分子碎片混合物,经气相色谱分离后,由质谱检测器检测,最后通过对高聚物裂解后的分子碎片指纹信息的提取、拼接来获得其物质组成,是鉴别漆器等类似高分子材料化学成分的最佳方法之一。 热裂解-气相色谱质谱仪的分析原理图 武汉大学童华教授课题组近些年来一直致力于多层漆器复杂基质材料/组成、结构和髹漆工艺微损剖析方法的建立和不同历史时期漆器基质成分、工艺变化的源流探究。下面我们来看看他们是如何利用Py-GC/MS技术对多层漆器复杂基质材料的组成、结构和髹漆工艺进行研究的吧。 首先根据样品的层次结构剥离提取每层基质,再将纯化的样品进行Py-GC/MS分析,对测试结果进行深度剖析并与其它分析方法的分析结果相互结合、验证获得各层基质的物质组成。Py-GC/MS法对漆器基质组成的深度解析可采用提取离子技术与ESCAPE技术(盖蒂文物保护研究所Michael R. Schilling漆器研究团队研发)相结合的方法: 漆液种类来源的判断主要靠一系列烯烃烷烃类、苯酚类、烷基苯类、儿茶酚类等物质的裂解产物分布与苯环侧链基团的碳链长度来确定。 干性油类添加材料的特征裂解产物为甘油三酯、一系列一元和二元羧酸和部分标志性裂解产物,其具体种类的判断靠壬二酸二甲酯(A)与软脂酸甲脂(P)的比例、软脂酸甲脂(P)与硬脂酸甲脂(S)的比例、软脂酸甲脂与硬脂酸甲酯的总和占全部脂肪酸甲酯的比例及标志性裂解产物来确定。 虽然蛋白质类添加材料的基本组成单元为氨基酸,但值得注意的是检测到氨基酸的存在并不能确认漆膜中添加了蛋白质类物质,蛋白质类添加材料的确定必须通过一些含氮的裂解产物,如:1甲基-1氢-吡咯、吡咯、吲哚等等。这是因为蛋白质的标志性裂解产物不是氨基酸,而是氨基酸在高温下反应生成的含氮产物。 多层漆器各层基质有机物质组成相对含量图(例) 通过多层漆器各层基质漆液种类、干性油类、萜类、蛋白质类、蜡类、多糖类和其它有机物质组成相对含量图可以看出不同基质层物质组成的分布与差异。 最后通过多层漆器的层次结构、纹饰脉络、各层基质材料组成、历史资料及现代漆器处理技术可以对古代不同类型漆器的髹漆工艺步骤进行大致的推测,从而在一定程度上模拟和还原当时的髹漆工艺。 我国历史悠久,各类文物非常丰富。让文物“活起来”是文物保护的核心。随着社会的发展,文物保护工作越来越受到重视,各类大型分析仪器也在文物保护工作中扮演着越来越重要的作用。岛津公司的Py-GC/MS 联用系统可以为各类文物的分析提供强有力的技术支持,实现高灵敏度的微损分析。
  • 生物医药色谱会闭幕 12人获优秀青年报告奖
    仪器信息网讯 2010年5月9日,历时2天的2010年全国生物医药色谱会在“瓷都”景德镇落下圆满落下帷幕。闭幕式前是精彩的专家报告。 中国科学院大连化学物理研究所的关亚风研究员   中国科学院大连化学物理研究所的关亚风研究员以“多维色谱-质谱在线联用分析植物成份”为题,介绍其针对复杂痕量样品分析的方法。复杂样品的痕量分析对样品前处理、二维色谱分离、质谱检测都有很高的要求。关老师对此的解决方案是,针对挥发与半挥发样品采用毛细管液相×毛细管气相-MS在线联用 针对不挥发样品,采用 LC×GC-MS真空辅助溶剂蒸发接口技术。但是,目前毛细管液相×毛细管气相-MS在线联用面临HPLC流量与CGC进样量存在差别、接口的死体积和样品残留、第二维分离速度较长等三大难点,关亚风课题组研制出馏分存储型接口及新型的溶剂排出技术,搭建了微柱液相×毛细管气相-四极联用仪平台,并用此平台成功应用于植物中有机组分和生物大分子组分的分离。 解放军总医院医学实验测试中心的廖杰主任   解放军总医院医学实验测试中心的廖杰主任的报告题目是 “茶油中脂肪酸的分析及临床应用研究”。 地中海地区冠心病发病率低的重要原因是当地的“地中海膳食结构”(榄油+深海鱼+生蔬果 ,其中橄榄油起关键作用)。橄榄油与其它食用油的区别在于其油酸含量高(大于70%),茶油可视为中国的橄榄油。由此背景,廖杰老师研对茶油化学成份及其对健康促进机理进行研究,并分别做了动物实验、化学成份分析、临床研究,结果表明,富含、MUFA(单不饱和脂肪酸)的茶油对高脂饲料诱发的兔肝脂肪变性和血管周样硬化有抑制作用。 中科院化学所的聂宗秀研究员   中科院化学所的聂宗秀研究员介绍了其在生物颗粒质谱方面的研究工作。聂宗秀研究员在报告中提到,常规质谱的测量的分子量上限是100道尔顿,主要是因为随着粒子质量的增大,其传输速率迅速下降,而传统的检测器依赖于离子的碰撞速度。通常的ESI源是一个非常软性的电离方法,而MALDI在一定程度上会破坏生物颗粒,所以这两种方法都不太适用于研究生物颗粒样品。如果能够把一单个的粒子放入一个装置中,使其长时间的囚禁,那么其灵敏度将大大提高。聂宗秀研究员在实验中使用离子阱作为质量分析器,采用激光诱导软电离作为离子源,得到了正常人的红血球和病人的红血球的质量,还获得了白血病癌细胞的质量、牛痘病毒的质量等。通过采用圆柱型粒子阱,结合现代光学技术,使实验结果大大改进。聂研究员还表示,今后将在更小的病毒颗粒——80nm~10nm肝炎病毒颗粒方面展开研究。 东曹达(上海)贸易有限公司技术服务中心张琳先生   东曹达(上海)贸易有限公司技术服务中心张琳先生带来了报告“新型无孔离子交换色谱柱-TSKgelSTAT系列柱的性能评价及其在生物样品高分离快速分析中的应用”。张琳先生介绍, TSK-GEL STAT是一系列可用于分离生物大分子(如:蛋白质、多肽、核酸)的聚合物基质的离子交换色谱分析柱。采用了无孔树脂填料,可以在常用液相系统下实现高通量和高分辨率分离,其具有超高通量、可应用于低分子量化合物、低反压、更高的载量等特点。这些特性使得该系列柱子可以用于核酸分离、PCR产物的分离制备、β-乳球蛋白的PEG化过程监测、牛血清蛋白酶解产物分析等方面。 北京工商大学化学与环境工程学院、北京市植物资源研究开发重点实验室曹学丽教授   北京工商大学化学与环境工程学院、北京市植物资源研究开发重点实验室的曹学丽教授向大家介绍了“高速逆流色谱及其在生物活性成份分离中的应用”。高速逆流色谱(High-speed countercurrent chromatography, HSCCC)是二十世纪八十年代发展起来的一项连续高效的液-液分配色谱分离技术。该技术特别适合于生物活性成份的分离。同时由于被分离物质与液态固定相之间能够充分接触,使得样品的制备量大大提高,也是一种理想的制备分离手段。该技术相对于传统的固-液柱层析技术具有适用范围广、操作灵活、高效、快速、制备量大、费用低等优点。曹教授从溶剂体系的选择、大分子的分离、工业化放大三个方面就自己进行的研究与大家交流。其中,溶剂体系的选择是HSCCC构成体系的关键环节。曹教授表示,今后逆流色谱的发展趋势为:1)微型化以及与多种检测技术的联用 2)工业化仪器设备的研制及应用 3)在蛋白等生物大分子活性成份分离中的应用。   另西北大学现代分离科学研究所、现代分离科学陕西省重点实验室的耿信笃教授做了题为“液相色谱法分离整体蛋白速度极限探讨”的报告、中科院化所学刘国诠研究员做了题为“液相色谱柱进展与展望之填料三议”的报告,请见:快速&高分离度——色谱技术永恒不变的主题。   随后进行了简短的闭幕式和“东曹达”优秀青年报告奖的颁奖。刘虎威教授介绍了评奖委员会的成员、评选的标准、评奖程序及获奖名单。 颁奖瞬间   2010年全国生物医药色谱学术交流会“东曹达”优秀青年报告奖颁奖嘉宾与获奖者合影  (颁奖嘉宾从左至右依次为:中国科学院化学所赵睿研究员、中国科学院大连化学物理研究所许国旺研究员、中国色谱学会常务副理事长武杰研究员、东曹达贸易有限公司日本总部市场部部长饭国泰男先生、西北大学现代分离科学研究所耿信笃教授、中国科学院化学所刘国诠研究员)   评奖委员会:   北京大学化学与分子工程学院分析化学研究所 刘虎威 教授   中国科学院化学研究所 刘国诠 研究员   中国科学院化学研究所 赵睿 研究员   解放军总医院医学实验测试中心 廖杰 主任   中国科学院大连化学物理研究所 张丽华 研究员   评奖标准:   1. 报告人年龄不大于35周岁   2. 报告人论文收录在论文集中   3. 报告人所做工作是否具有创新性   4. 报告人讲解十分清楚生动   5. 报告人问题回答十分明了   6. 报告人所做研究工作的意义大小。   评奖程序:   各分会场主持人根据每个会场报告情况推荐0-1名候选人   评奖委员会讨论决定获奖人名单。   获奖人名单(12名) 报告人 题 目 单 位 推荐人 王 瑜 莽草酸分子印记聚合物的制备及其低压制备色谱研究 华东理工大学 吴海龙 汪海林 韩 彬 离子液体对胰酶解效率的影响 中国科学院生态环境中心 中国科学院大连化学物理所 齐 莉 张维冰 郑姝宁 抑郁症模型大鼠代谢指纹谱的色谱研究 沈阳药科大学 卫引茂 白 玉 刘 一 双环铂及卡铂与脱氧核苷酸相互作用的CE-MS分析 北京大学 刘 霞 屈 峰 王蔚芝 微流控芯片阵列多肽合成与HPLC分析 中国科学院化学所 张祥民 张书胜 韩晔华 植物激素茉莉酸的手性分离及CE-MS检测 北京大学 廖 杰 齐美龄 黄嫣嫣 吲哚类化合物显色体系的色谱分离分析 中国科学院化学所 赵书林 胡育筑 韦露莎 采用β2-肾上腺素受体色谱测定药物的EC50 西北大学 张经华 陈东英 张惠萍 加压毛细管电色谱法用于胰腺癌患者代谢指纹图谱的研究 上海交通大学 李晓东 徐远金 尹瑞川 丙烯醛-DNA加合物的鉴定和分析 中国科学院生态环境中心 胡春华 金美兰 刘 昭 聚合物整体柱微萃取与亲水作用色谱串联质谱联用定量分析植物样品中的细胞分裂素 武汉大学 牟世芬 颜流水 张 璐 毛细管区带点泳检测细胞调往方法学研究 北京理工大学 赵 睿 刘虎威
  • 第二期欧波同汽车清洁度分析应用培训班圆满结束
    2019年5月30日,第二期欧波同汽车清洁度分析应用培训班圆满结束,来浙江地区汽车行业的专家及技术人员,秉承精益求精的精神,共同学习探讨了清洁度检测方面的新技术、新工艺。本次培训班以技术理论和上机实践相结合的形式展开,技术报告主要内容为《清洁度分析方法》《光电联用在汽车清洁度上的应用》《清洁度样品萃取方法介绍》《显微分析在汽车零部件材料测试中的应用》。在下午的分组上机实践中,参加培训的学员在工程师的指导下,先后通过欧波同清洁度分析系统,对汽车零部件样品进行检测。随着人们对汽车质量理念、质量意识的变化,汽车市场对产品的安全性、可靠性,以及对其环保节能等方面提出了更高的要求。清洁度作为一项重要的产品质量指标,其重要性已受到越来越多的关注,随着产品制造技术的发展、演化,不同的工艺方法也会给确保产品的清洁度带来一些新的问题。欧波同(中国)有限公司作为实验室解决方案服务商,一直以来持续关注技术发展趋势,致力于衔接客户应用需求。针对汽车行业客户开展“欧波同汽车清洁度分析应用培训班”,培训内容围绕样品前处理技术、清洁分析系统解决方案、光电联用技术的应用展开,帮助客户更好地解决产品清洁度相关问题。此系列培训班将持续举办,相关信息会通过欧波同微信公众平台发布,有需求的用户请持续关注!
  • 新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!
    新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!关于产品 DLM-10-10/氘代二甲亚砜/2206-27-1 的具体详情:CAS号:2206-27-1编号:DLM-10-10包装:10g纯度/规格:D, 99.9%品牌:美国CILDLM-10-10/氘代二甲亚砜/2206-27-1 公司为答谢新老客户对我们长期以来的支持,现有大量新品上市,低价优惠促销活动,欢迎新老客户前来咨询选购!企业其他相关产品推荐:bs-9642R,17号染色体开放阅读框57抗体|C17orf57抗体价格姜酮对照品/标准品CAS:2212-67-1,禾草知标准品/对照品价格CAS:53411-70-4,D-葡萄糖-6-磷酸三钠盐,6-磷酸葡萄糖三钠盐,6-磷酸葡萄糖酸三钠盐,G-6-P-Na32,4,5-三氯联苯标准品|对照品,cas:15862-07-42,6-(盐酸尼卡地平杂质)对照品/标准品次野鸢尾黄素标准品,cas:41743-73-1对照品CAS:9028-48-2,异柠檬酸脱氢酶,ICDH,Isocitrate dehydrogenasebs-2713R,肾损伤分子1抗体(甲型肝炎细胞受体1)|HAVCR1抗体价格CAS:10031-30-8,过磷酸钙价格重组人 HSPD1/HSP60 蛋白(His & GST 标签)/11322-H20E小鼠血小板衍生生长因子AB(PDGF-AB)ELISA检测试剂盒说明书铑标准溶液,cas:7440-16-6乌药醚内脂标准品,cas:13476-25-0对照品猪血管生成素1(ANG-1)ELISA试剂盒,96T/48T兔子肝细胞生长因子(HGF)ELISA检测试剂盒说明书CAS:61438-64-0,氯碘柳胺钠现货供应CAS:51503-28-7,固红片剂,固红-萘磺酸TR片剂,快红片剂,快红TR片剂,Fast red TR Tablets常山碱乙标准品,cas:24159-07-7对照品bs-15575R,kappa轻链可变区抗体|IGKV A18抗体价格人骨特异性碱性磷酸酶B(ALP-B)ELISA检测试剂盒说明书1,2-|CAS号306-37-6|1,2-Dimethylhydrazine dihydrochlorideCAS:41532-84-7,1,1,2-三甲基-1H-苯并[e]吲哚H-苯并[e]吲哚价格bs-13014R,DNA聚合酶δ2/DNA pol δ 2抗体|DNA polymerase delta p50抗体价格丙硫氧嘧啶对照品/标准品CAS:327-97-9,绿原酸价格CAS:18686-82-3,2-巯基-1,3,4-噻二唑价格沙苑子苷标准品,cas:116183-66-5对照品bs-2679R,细胞粘附分子CD112抗体|CD112抗体价格bs-2978R,硫氧还蛋白过氧化物酶Ⅱ/巯基抗氧化蛋白抗体|Peroxiredoxin 2抗体价格朝藿定A标准品,cas:110623-72-8对照品bs-11975R,周期蛋白结合蛋白抗体|CACYBP抗体价格CAS:1072-98-6,2-氨基-5-氯吡啶价格212304/琼脂,A级培养基厂家
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 德祥圆满参展“2011第二届中国国防装备维修与诊断技术交流展示会”
    2011年6月23-25日,由中国军工项目研究会、中国航空航天工具协会、北京航空航天学会、航空维修专业委员会、航空工程专业委员会、航空材料专业委员会等单位联合发起&ldquo 2011第二届中国国防装备维修与诊断技术交流展示会&rdquo 。 德祥,作为国防检测设备的领导供应商,此次展位位于8号馆,为军队及各军工企业带来了全新的解决方案。 德祥参展的产品有:美国spectro inc在用油状态监测分析仪器、德国Binder环境模拟温控试验箱、美国Thermo手持式不明化学物质鉴定分析仪、美国Innov&mdash X快速无损合金元素分析仪和便携式X射线衍射仪、美国Tracedetect微检痕量金属分析仪、荷兰Microlan便携式水质综合生物毒性分析仪、新西兰Scitox便携式水质生物毒性分析仪、美国Hysitron纳米压痕仪。 环境模拟温控试验箱和手持式不明化学物质鉴定分析仪厂家也亲临展会现场,协助产品在国防领域的推广,希望各位合作伙伴继续关注和支持。 谢谢新老客户的支持,在各位的帮助下圆满完成了本次展会,德祥将携手各位新老客户,为国防建设贡献一份力量。 德祥展台 不明化学物质鉴定分析仪FirstDefender、TrueDefender、TureScreen、合金分析仪Delta、油品状态监测仪FluidScan Binder厂家明磊先生亲临Tegent展位协助产品推广 Thermo厂家杨翔宇先生、刘芳女士亲临Tegent展位协助产品推广 产品专家与客户交流解决方案 产品专家与客户交流解决方案
  • “欧波同杯”长春师范大学金相技能大赛圆满结束
    2019年5月23日,“欧波同杯”长春师范大学金相技能大赛决赛在工程学院圆满落幕。本次大赛由长春师范大学工程学院主办,欧波同(中国)有限公司冠名赞助。大赛共吸引了一百余位学生报名参加,经过初赛、复赛较量,最终三十五位选手进入决赛,并选拔出三位优胜者参加全国大学生金相大赛。此次比赛分为磨制、抛光、腐蚀和观察四个阶段。评委根据选手操作规范、金相图像质量和样品表面质量三部分评分。经过激烈角逐,在评委们认真细致的评审下,最终评选出特等奖一名,一等奖三名,二等奖五名,三等奖九名。欧波同代表出席了大赛闭幕式,并为获奖学生颁奖。金相技能大赛是对金属材料基础知识和实验技能的双重选拔,学生们通过金相大赛,展示了非常优秀的专业能力。通过理论与实践的结合,促进材料学科人才的能力提升。欧波同作为实验室解决方案服务商,目前拥有非常全面的显微分析产品线和非常专业的行业解决方案。客户群体涉及多个领域,与全国各地企业、高校、科研院所建立了广泛的合作。除了为高校教研工作提供高品质的显微分析设备以外,更加注重技术的交流合作,多次支持全国各地高校举办的金相技能大赛。欧波同也希望能够通过本次大赛,为培养专业型创新人才助力,推进高校材料学科的快速发展。
  • 同心同力,共赢未来——天瑞仪器上市十周年庆典活动圆满举行
    十年并肩前行,十年破茧而出,十年风华正茂,十年硕果累累。 2021年9月8日,天瑞仪器上市十周年庆典活动在昆山文化艺术中心圆满举行。天瑞仪器本部全员及天瑞环境、贝西生物、国测检测、磐合科仪、仙桃天瑞、雅安天瑞、安岳天瑞、四川天瑞、沁水璟盛、天蓝祥瑞等子公司代表欢聚一堂,共话十年奋斗的欣喜,共庆十年收获的喜悦。一、振奋人心●博士致辞天瑞仪器董事长刘召贵博士为晚会致辞 庆典晚会伊始,刘召贵博士发表了热情洋溢的致辞。他首先代表公司董事会,向长期以来一直关心和支持公司发展的社会各界朋友和付出辛勤劳动的全体员工表示衷心的感谢和诚挚的敬意。同时也肯定了天瑞仪器公司上市十年来取得的骄人成绩。刘博士表示做出高端的科学分析仪器是我们永远追求的目标,他将带领天瑞仪器持续深耕大健康产业,创造大健康产业链,牢记“助力国人健康”的初心和使命,砥砺前行,实现“坚定地做健康守护人”的伟大愿景。二、视觉盛典●文艺表演 晚会在热烈、喜庆的开场歌舞《牛牛牛》中拉开了帷幕,热烈的情绪渲染了整个现场。本次晚会主题分四个篇章进行,分别为:第一篇章:激情岁月 筑梦起航;第二篇章:携手同行 共创辉煌;第三篇章:开拓进取 放眼未来;第四篇章:众志成城 再创辉煌。整场晚会紧紧围绕主题,以歌唱,舞蹈、小品、诗朗诵、脱口秀、乐器等各式各样的表演形式汇聚一堂, 展现了一个又一个精彩绝伦的经典时刻。 三、荣耀表彰●颁奖仪式天瑞仪器董事长刘召贵博士与总经理应刚为优秀员工颁奖 在天瑞,有那么一群人,他们无时无刻不在发光发热,默默无闻的付出。他们把公司当成了家,为他拼搏奋斗,为他添砖加瓦。大家的辛劳换来了公司的腾飞,腾飞的公司也带给了大家惊喜。在今天的舞台上,公司为他们颁发了“优秀员工奖”。四、激动人心●抽奖活动 除了颁奖仪式,公司还为晚会设置了抽奖活动。不仅为大家带来了意外的惊喜,也使晚会的气氛推向一个又一个高潮。五、难忘今宵●台前幕后 演职人员合影 近三个半小时的时光,仿佛一场精美的文化盛宴,带给大家完美的视听享受,欢歌笑语深深地留在天瑞人的记忆中。这是一次鼓舞士气、振奋精神的活动,充分展示了天瑞员工的风采和活力,彰显了天瑞仪器的凝聚力和战斗力,也为天瑞继续谱写崭新篇章献上不竭的动力。 雄关漫道真如铁,而今迈步从头越。上市十周年庆典是天瑞仪器发展的里程碑,是一个满怀豪情的新起点。在刘召贵博士的带领下,全体天瑞人“同心同力,共赢未来”的号角已经吹响,以此上市十周年庆典活动为契机,勠力同心,携手同行,以更加饱满的热情,更加奋发的精神,更加昂扬的斗志,同心同力,共赢未来!
  • 揭开仪器替代不了的嗅辨员神秘面纱 不能喷香水、不能情绪不稳
    广东省环境监测中心实验室邱祖楠说:“社会上有闻酒师、闻香师这些职业,我们则有‘闻臭师’,专业的名字是嗅辨员。”嗅辨员是由空气中来历不明的臭气催生的一种新职业,有严格的要求,不是随随便便就可以当。抽烟的、喝酒的、有鼻炎的都不行,“嗅辨员不能有嗅觉器官疾病,经嗅觉检测合格的,可连续三年承担嗅辨员的工作。”邱祖楠透露。  “闻臭师”在人们印象中是一种颇为神秘的工作,这些被称为“空气小护士”的嗅辨员究竟是如何工作的呢?日前,记者跟随广东省环境监测中心的嗅辨员们进行了现场采样、实验室嗅辨的全过程体验。  现今的环境监测中各类仪器众多,但对于臭气,检测主要还是靠鼻子。因为臭与不臭,用仪器很难确切判断。业内人士告诉记者,臭气的味道不仅取决于它的种类和性质,也取决于它的浓度。浓度不同,同一物质的气味也会改变。例如将极臭的吲哚稀释成极低的浓度时就会变成茉莉的香味,低浓度的丁醇则会发出苹果酒的芳香。相反,高浓度的香水也会给人不愉快的感觉。因此,在评价臭气时,是以感受到的浓度强弱为准,而不是以“香”和“臭”来划分。  据中心实验室主任肖文透露,现在实验室正式的嗅辨员有十来个人,臭气浓度监测相对其他污染物检测分析来说比较少做,因此很多嗅辨员都兼其他污染物的检测。嗅觉测定法如今已被世界各国普遍认同,我国也早在1994年实施国标法——《空气质量恶臭的测定三点比较式臭袋法》。“三点比较式臭袋法测定是目前我们实验室用来检测臭气的方法,通俗地说,就是将三只无臭袋中的一只充入一定稀释比例的被测样品,剩下的两只充入清洁空气,让嗅辨员识别、记录有臭气袋,若需要则再逐级进行稀释、嗅辨,直到实验终止。”邱祖楠解释说。  据悉,嗅辨员用鼻子鉴定的结果具有法律效应。按照规定,某地一旦被判异味超标,有关部门将按相关的法规进行处理,违法、违规单位有可能受到相应的处罚。  垃圾场蹲点采样 每个点采集3次  那么,看似有趣的嗅辨,实操是怎样的体验呢?日前,记者随同省环境监测中心应急科的8人浩浩荡荡地奔赴深圳,准备进行臭气现场采样。采样瓶、真空泵、真空表、硅橡胶塞̷̷采样人员早早地就在进行准备工作了。“我们采样前要对采样瓶采用空气吹洗,再用真空排气处理系统抽真空。”省监测中心应急科周智解释说。据了解,这些处理好的真空采样瓶要在24小时内使用。  另外,对采样地点(臭气环境)的污染调查也要提前做好。“这次的采样有10个点,围绕着这个垃圾处理厂,从上风口到下风口都有点。”实际上,臭气采样过程是枯燥的,每个点都要采集三次,每次间隔一个小时,采样人员顶着大太阳在路边窝着,每次垃圾车经过还不时飘来异味̷̷  每次收集完,再写好标签贴上,每个点重复这个步骤三次。采集完的样品编号、采样记录都要核实无误放入玻璃仪器采样箱内,在24小时内完成测定,保证结果的有效性。  臭气不断稀释 6名嗅辨员“闻臭”  完成采样后,下一步进行的就是实验室嗅辨。按照规定,臭气样品要稀释后才能进行嗅辨。由实验人员首先在3L无臭袋内按稀释梯度配制几个不同稀释倍数的样品,进行嗅辨尝试,从中选择能嗅出气味又不强烈刺激的样品,以此为初始稀释倍数。  实验员将18只3L无臭袋分为6组,每组的三只袋分别标上A、B、C号,其中一只注入稀释样品,另外两只注入清洁空气,清洁空气是怎么得到的呢?当然不是。据邱祖楠介绍,清洁空气是没有受到臭气污染的自然空气经过活性炭的过滤,由嗅辨员嗅辨确认无异味的气体。接着将准备好的这6组18只气袋分别发给六名嗅辨员进行嗅辨,挑出有味气袋。  嗅辨室要保证远离散发臭味的场所,室内能通风换气并保持温度在17~25℃。“为了保证结果的准确性,嗅辨当天是不能喷香水或者擦有味道的化妆品的,有刺激性气味的食物也不能吃,要是嗅辨员有情绪不稳定的也不能参加测定。”  他表示:“很多时候严格测试结果是达标的,但是投诉人觉得结果不对。可能因为其他原因,比如天气,或者采样人员在采样时刚好处在它浓度较低的时候。”
  • 曼秀雷敦旗下眼药水中日俩标准 中国产品含防腐剂
    同款儿童用眼药水,中国销售的含有防腐剂,而日本销售的却不含。曼秀雷敦公司旗下的世界销量第一的滴眼液品牌乐敦(Rohto)中日执行双重标准,眼科专家指出含防腐剂儿童眼药水有健康隐患,呼吁跨国公司在全球应该执行同一最高标准。   中国乐敦滴眼液全有防腐剂   中国销售的乐敦滴眼液主要有五种,分别为新乐敦、小乐敦、乐敦清、乐敦莹和乐敦康,均为曼秀雷敦(中国)药业有限公司生产的国药准字号OTC外用药品。曼秀雷敦(中国)药业有限公司是美国曼秀雷敦公司在中国的独资公司,而美国曼秀雷敦公司已经被日本乐敦制药收购。   据产品包装上的成分显示,在中国的乐敦系列滴眼液全部添加了防腐剂,其中新乐敦、小乐敦、乐敦康中添加的是苯扎氯铵溶液,乐敦莹添加的是浓氯化洁尔灭溶液50(同苯扎氯铵),乐敦清添加的是山梨酸钾。在这五个产品中,防腐剂的名称全部列在辅料成分中,缺乏化学知识的人根本无法辨识。   不过,在眼药水中添加防腐剂似乎是业内普遍现象。健康时报记者走访药店发现,多个品牌在售的滴眼液均含苯扎氯铵等防腐剂。中国医院协会全国合理用药监测办公室专家组专家孙忠实指出,根据我国《药用辅料管理办法》,防腐剂可作为眼药水中抑菌的辅料。而不含防腐剂的药品,一般包装更严格,容量较小。   据记者调查了解,国内在售的无防腐剂滴眼液多为单支包装,每支只限一日内使用,而且价格普遍比较昂贵。第二军医大学长征医院眼科主任魏锐利介绍,虽然国内药店里也能买到无防腐的剂眼药水产品,由于在保存时间和价格上都会有所区别,相对而言销量也会受到影响。   日本儿童青少年乐敦均无防腐剂   乐敦在日本本土推出的滴眼液又是如何对待防腐剂问题呢?据了解,乐敦在日本上市的滴眼液产品较中国丰富,多数产品也含有防腐剂,这表明防腐剂在日本也是允许添加入眼药水的。   但健康时报记者同时发现,乐敦在日本推出的两款针对儿童和青少年使用的滴眼液中,全部都不含防腐剂。在面对15岁以下儿童使用的こどもソフト(Kodomo soft,儿童舒适型)和面对青少年的ジュニア—ル(JR,青少年)两款产品包装盒上,均明确标注了“※防腐剤(ベンザルコニウム塩化物、パラベン)を配合していません”的字样,即意为不含防腐剂(苯扎氯铵、苯甲酸酯)。   乐敦在中国也推出了一款针对15岁以下儿童的滴眼液,即小乐敦。在小乐敦的产品外包装成分一栏中,明确标注了该产品使用了苯扎氯铵作为辅料。虽然,日本的乐敦儿童舒适型滴眼液在规格、配方和价格上与小乐敦并不相同,但二者均为乐敦在当地推出的唯一一款针对15岁以下儿童的滴眼液产品。   小乐敦13mL/瓶,价格为15元人民币左右 乐敦儿童舒适型8mL/瓶,则为630日元,折合人民币约42元。根据当地物价,一瓶小乐敦和一瓶乐敦儿童舒适型差不多都是一碗牛面拉面的价格。   儿童眼睛相对成人更加娇嫩。如果说国内企业添加防腐剂是工艺水平上的问题,可从日本的情况看来,乐敦显然已经具备在多剂量滴眼液中不添加防腐剂的制造工艺,而且价格也没有高得离谱。但很遗憾的是,乐敦却并未像在日本一样,把防腐剂从中国儿童用滴眼液中去掉,而是选择了区别对待的双重标准。   防腐剂眼液对儿童有隐患   “科室里常会遇到一些患者出现流泪、异物感、干涩、发红、视力模糊,用裂隙灯显微镜仔细观察角膜,发现有缺损、不平整的现象。询问后得知患者多有长期自行使用眼药水的习惯。”中国中医科学院眼科医院眼科主任谢立科说,角膜像透明的防护墙,保护着双眼,也是外界光线射入眼睛经过的第一关,而防腐剂会影响角膜上皮细胞的生长与修复。   对于儿童来说,眼药水中的防腐剂则存在更多的隐患。谢立科认为,儿童处于生长发育阶段,眼睛过多地接触眼药中的防腐剂,除了可能造成上面说的现象外,角膜的发育也可能受到影响。谢立科提醒,一些父母认为孩子用眼压力大,长期为他们购买儿童滴眼液使用,这其实是有害的。   记者就儿童滴眼液添加防腐剂中日有别一事,致电曼秀雷敦公司。其客服代表回应是,所有产品都是经过临床测试,目前没有发现不良反应的事件 各国法规不同,日本的情况他们不清楚。   曼秀雷敦客服甚至并不承认小乐敦中添加了防腐剂,而是说苯扎氯铵在不同浓度下所起的作用并不一样。不过其在日本的产品外包装盒上却在“不含防腐剂”的后面还专门加了个“(苯扎氯铵、苯甲酸酯)”。   北京医院眼科主任医师戴虹认为,我国对小儿眼药水暂没有一套针对性的法规,国外的确已经在小儿眼药水中开始不加防腐剂了。谢立科也认为,国内眼药水也面临和其他药品一样的困境,法规上没有对成人和儿童进行区分,医生多短期内给患者用药,在选择时主要考虑的治疗作用,很少考虑防腐剂问题。   记者采访过程中,多位儿童眼科医生坦言,儿童眼药水加入防腐剂是符合国家规定的,但是防腐剂健康隐患这个话题过于敏感,不便发表任何意见。   一些中国家长已开始从日本代购无防腐剂儿童滴眼液。在某知名电商网站的一家店铺,日本原装乐敦儿童舒适型滴眼液售价高达69元,而国内含防腐剂的小乐敦为每盒18元左右,即便如此,页面显示也有近200条成交记录。   ※链接   曼秀雷敦近年被媒体曝光事件:曼秀雷敦止痛膏被警告:2012年9月,美国食品药品监督管理局(FDA)发出警告称,5款止痛膏容易导致轻度甚至重度灼伤,曼秀雷敦强力摩擦膏榜上有名,其也同样为被警告涉及的所有产品中销量最好的一款。新快报 2012年10月11日   乐敦含防腐剂未注明:近日网上曝光一些知名眼药水含防腐剂,且未在成分中对防腐剂或其化学名有任何注明,乐敦滴眼液也身在其中。证券时报 2012年12月27日
  • 筑未来 谱新篇!逸云天2023新年联欢会暨优秀员工表彰大会圆满落幕
    凯歌高奏辞旧岁,春风拂柳迎新年。  值此岁末年初,辞旧迎新之际,逸云天与全体员工一起共赴新年之约。在波澜壮阔的2022年,逸云天持续乘风破浪,一往无前,留下了不平凡的脚印。这一年,风雨同舟 这一年,砥砺前行。岁末回望过去,有太多的感动与故事,岁首企盼未来,有更多的期望与梦想。2022年12月17日,逸云天“同心筑未来,奋进谱新篇”2023新年联欢会暨优秀员工表彰大会盛大启幕!公司全体员工欢聚一堂举杯同庆,共同见证逸云天在2022年砥砺前行中丰收的喜悦,展望更加充满挑战和机遇的2023!  Part 1:年会开场致词 + 颁奖环节  年会开始,伴随着主持人热情的开场,逸云天年会正式拉开序幕,四位领导先后上台致辞,为此次2023年新年联欢会发布致辞,总结2022年所取得傲人的成绩,展望2023年的发展目标。并对今年“逸云天”人的共同努力表示衷心的感谢,向所有人员致以新春的祝福。  在领导致辞以及节目表演完成后 ,一年一度的优秀员工表彰大会也在如火如荼进行中。“最佳新人奖”“最具成长力奖”“优秀员工奖”“优秀管理者奖”等奖项陆续出炉,这些获奖者站在领奖台上,凭借自己的努力与汗水获得属于自己的荣耀和勋章。每一份沉甸甸的奖项背后,都载满了逸云天人不懈奋斗的汗水。不同的奖项,同样的感恩,在时光的酝酿里,愈加醇厚深沉!  为了更好推动企业文化建设,表彰对公司业绩、创新、质量、企业文化推广等方面为做出很大贡献的团队或个人,逸云天公司在今年新设立了两个“特殊奖”奖项(“销售冠军团队奖”和“攻艰克难奖”),以及“最佳活动统筹奖”。  Part 2:抽奖 + 惊喜  在全部的节目表演以及奖项颁布完成后,就迎来了我们的重头戏——那就是我们的抽奖环节啦。此次抽奖环节包括三等奖(数量20人)、二等奖(数量13人)、一等奖(数量7人)、特等奖(数量2人),搏一搏奖(用原奖去换抽取特等奖的资格,原奖回收再抽一次)、以及阳光普照奖(22人,仅限未抽到奖的同事)。激动人心抽奖环节让现场惊喜不断、欢笑连连,不断掀起年会新的高潮。掌声、欢呼声在会场上荡漾,整场联欢会高潮迭起,呈现出逸云天大家庭的欢乐与和谐。  Part 3:大鹏古城 + 团建  您以为在2023新年联欢会结束后,快乐就这样结束了吗?不,我们还有一场大鹏古城的团建活动。青砖灰瓦,斑驳的城墙,处处诉说着这座古城的历史,千百年风吹雨打仍屹立不倒,逸云天团队相约走进其中,寻找、探索、解密,了解古城文化内涵,收获团队正能量。  大鹏古城夜晚游玩、各种美食、各种精彩的活动项目,大家聚在一起唠唠嗑,吹吹咸咸的海风,空气仿佛都充满了新年的味道,互动氛围非常热烈,这一场琳琅满目的盛宴为岁末的日子增色不少。至此,逸云天2023新年联欢会暨优秀员工表彰大会,以及团建活动均圆满落幕!  在这里,再次致敬每一位在岗位上努力付出的员工,希望在2023年能够涌现更多像他们一样优秀的员工,为逸云天的明天添光添彩!时光荏苒,流光易逝,从2006年到2022年,这是一条17年的追梦之旅,也是所有逸云天人凝心聚力、奋斗拼搏的鎏金岁月。山河日月镌刻璀璨初心,17载春秋写就举世华章!17载我们一起拼搏,昨天的成就永载丰碑 新时代,筑梦远行,明天的征程任重道远,2023年让我们以梦为马,全新出发!
  • 天津市“恒宇-欧波同杯”首届大学生金相技能大赛圆满落幕
    2019年4月27日,天津市“恒宇-欧波同杯”首届大学生金相技能大赛在天津大学材料科学与工程学院圆满结束。本次大赛由天津市热处理学会主办,天津大学材料科学与工程学院承办,来自天津大学、河北工业大学、天津理工大学、天津工业大学、天津中德应用技术大学、天津科技大学和天津商业大学的七个团队进入决赛。欧波同(中国)有限公司作为冠名单位为本次大赛提供大力支持。图1:参赛合影27日上午8:30,天津市“恒宇-欧波同杯”首届大学生金相技能大赛暨第八届全国大学生金相技能大赛预选赛在天津大学材料科学与工程国家级实验教学示范中心顺利拉开帷幕。本次大赛参赛选手达五百余人,经过初赛严格选拔,最终产生七十名选手进入复赛、决赛环节。图2:比赛进行中图3:比赛进行中在磨制、抛光、浸蚀等环节全部完成后,评委老师根据金相制备过程和金相图像质量两方面进行了评审打分,由欧波同提供的蔡司倒置式显微镜Axio Vert.A1为评委们呈现了参赛作品的最佳图像。最终,共评选出一等奖七名,二等奖十五名,三等奖二十五名,并且根据参赛整体表现,评选出最佳组织奖一名,优秀团队奖一名。图4:严格评审图5:严格评审27日下午,大赛颁奖典礼在天津大学材料科学与工程学院报告厅举行,欧波同(中国)有限公司代表与天津市热处理学会领导、各参赛高校领导共同出席颁奖典礼,并为获奖选手进行颁奖。图6:颁奖典礼本次大赛旨在提高材料、机械和冶金学科大学生的金相制备及观察实验操作技能,增强金相图谱分析能力,推动高校材料学科实验教学改革,不断提高人才培养质量。为广大学子提供了一个互相交流和学习的平台,提高了同学们研究材料知识的热情和实践探索的自信。欧波同将持续展开与高校间的交流合作,推动科研事业发展,助力高校人才培养,打造实验室解决方案服务商的领军品牌。
  • 庚雨仪器赞助第二届“海西有机青年学者论坛”圆满成功
    2018年1月13日-14日由中国科学院海西研究院主办、杭州庚雨仪器有限公司赞助的“第二届海西有机青年学者论坛”取得圆满成功,此次会议是为了促进中科院海西研究院内有机化学课题组之间的沟通和了解,营造开放的学术交流氛围。庚雨仪器总经理作开幕式致辞会议主要围绕参加本次论坛的有机化学课题组展开研究交流,课题组工作人员及研究生们系统全面地汇报了2017年度的研究工作,交流最新研究成果,展望学科未来发展趋势。大家还通过交流和讨论科研成果,提出新的研究方案。庚雨仪器作为国内优秀的有机化学仪器研究开发生产企业赞助本次论坛,同时庚雨仪器的研发工程师也积极参与各个课题组的研究讨论,为了满足未来有机研究发展趋势的需要,庚雨仪器将针对本次会议的研究建议、方向在未来有机化学仪器研发方面作出更好的贡献。本次会议对优秀报告人进行了嘉奖,庚雨仪器总经理刘建伟先生作为颁奖嘉宾预祝大家在未来的工作中创新发展,取得更优秀的科研发成果。海西有机青年学者论坛颁奖现场 庚雨仪器总经理刘建伟颁发特等奖海西研究研究经过50多年发展,获得国家科技三大奖及中科院科技进步特等奖等230多项重要科技成果和奖励,已成为在国际上具有重要影响力的结构化学、新材料与器件集成与应用的综合研究基地。庚雨仪器作为行业内的优秀企业,在未来发展的历程中将紧密与海西研究院合作,针对有机化学研究提供更好的助力,也将针对自身的优秀产品:旋转蒸发仪、低温冷却循环泵、化学隔膜泵、高低温循环装置等仪器进一步改良为有机化学研究提供更多的帮助。“2018第二届海西有机青年学者论坛”为期两天的会议取得圆满成功,庚雨仪器会通过“持久创新,不断超越”的理念提供更优质的产品和服务,在有机化学研究领域贡献自己的绵薄之力。
  • 珀金埃尔默职通车,邀请优秀的你们加入
    Sr. Software Development Engineer - 太仓 本科或以上学历; 熟悉C#,有WPF开发经验; 医疗/仪器行业背景优先。北区销售经理/华东大区销售经理 - 北京/上海 负责北区(包括华北和东北)免疫/分子/POCT产品的销售管理工作; 根据公司要求以及相关市场策略及时完成区域指标;独立开发新市场、新客户,维护并增进已有的客户关系; 建立并管理相关的经销网络;5年以上团队销售管理经验, 有重要目标医院和重要客户管理经验,具备相关代理商/经销商管理经验; 负责华东(江浙沪和安徽)区域免疫/分子/POCT产品的销售管理工作; 根据公司要求以及相关市场策略及时完成区域指标;独立开发新市场、新客户,维护并增进已有的客户关系; 建立并管理相关的经销网络; 5年以上团队销售管理经验, 有重要目标医院和重要客户管理经验,具备相关代理商/经销商管理经验。Field Marketing Manager - 上海 负责制定免疫/分子/POCT全产品线的区域营销策略; 本科或以上学历,5年以上相关工作背景; 具有销售思维和经验, 有微观市场分析能力; 具备区域营销管理经验,具备团队人员的管理经验。Sr. Clinical Affairs Specialiste - 上海 根据项目背景及法规要求选择符合要求的临床试验中心; 参与试验方案及试验计划制定,并对试验工作进行监查,确保试验过程符合试验方案、法规及要求; 生物技术、临床医学、临床检验学等相关专业,本科以上学历; 临床监察3年以上经验,能独立负责IVD项目; 有IVD项目背景及熟悉相关法规优先。Supplier Quality Manager - 太仓 管理和发展SQE团队,并确保供应商质量管理工作稳步进行; 8年以上SQE经验,有管理团队经验; 英文听说读写优秀,医疗行业背景优先。Sr. Software Development Engineer-C# Full Stack - 上海 本科或以上学历,计算机相关专业; 熟悉C#,有全栈开发经验; 医疗/仪器行业背景优先。Sr. MarCom Specialist - 上海 本科及以上学历; 优秀的文字功底,有线下活动支持经验,医疗行业背景优先。Electronics Design Engineer - 上海 本科以上学历,电子工程相关专业,5年以上相关经验; 有模拟/数字设计、分析仪器设计经验者优先。Customer Support Engineer-色谱 - 上海 本科或以上学历,自动化,机械,生物,医学等相关专业; 3年及以上色谱仪器的安装、维修、维护经验; 良好的责任心和与客户的沟通能力。Project Engineer - 武汉 本科或以上学历,2年以上实验室仪器管理或售后支持服务经验,沟通能力强。即刻发送邮件至:chunmei.feng@perkinelmer.com来投递您心仪的职位吧👉 注意简历投递邮件主题为:职位名称+工作地点👉点击阅读原文, 或扫描下方二维码,可浏览更多职位:
  • 贝克曼库尔特CytoFLEX流式细胞仪荣膺“2014科学仪器行业优秀新产品”
    中国,北京&mdash &mdash 2015 年 4月22日&mdash &mdash 贝克曼库尔特生命科学事业部2014重磅推出的新品CytoFLEX流式细胞仪在&ldquo 2015(第九届)中国科学仪器发展年会(ACCSI 2015)&rdquo 上荣膺&ldquo 2014科学仪器行业优秀新产品&rdquo 奖项。 此奖项是中国科学仪器发展年会新品评审组主导,为了鼓励各厂商积极创新,推出满足中国市场需求的仪器新产品而设置的。&ldquo 2014科学仪器行业优秀新产品&rdquo 评选活动自2006年开始,已经连续举办了八届,新品评审组每年邀请超过60位业内资深专家、20位资深用户在网上进行独立评分,并且对所有入围的仪器在仪器信息网公示。 &ldquo 2014科学仪器行业优秀新产品&rdquo 评选共有587台2014年度上市的仪器新品申报,121台仪器入围,最终,CytoFLEX流式细胞仪以其独特的创新点和优秀的仪器性能突围而出,成为获此奖项的优秀产品之一。 贝克曼库尔特CytoFLEX首次将现代化通讯行业的多项专利技术整合于流式细胞仪之中,从而获得了无与伦比的检测性能及灵敏度。激光体积、能耗缩小至传统仪器的5~10分之一,功率提高了2~4倍,同时寿命与稳定性大大增强。Clear Focus物镜一体化石英杯流动室最高支持7个独立激光检测点。 WDM整合式检测器系统体积缩小至十分之一以下;专利FAPD检测器灵敏度为PMT的5~10倍;全线性的FAPD检测器。21种灵活的配置可选,最高4激光13色检测器以及自动上样装置,均包含在40 cm3机身内,节约实验空间,可轻松放置于生物安全柜内。安装过程简单快捷,运输过程不会对光路造成任何影响,开机即用;图形化软件设计,附带中文版操作系统,快速入门直观易用。标准化的生产安装过程,稳定的现代化技术的应用、全自动的QC程序、轻松地实验条件导出导入,使室间、远程合作变得无比轻松,这将推动整个流式细胞仪行业的标准化发展。 CytoFLEX流式细胞仪 欲了解更多CytoFLEX流式细胞仪的相关信息,请访问: http://www.beckmancoulter.cn/ls-discovery/flow/researchflow/cytoflex.html 关于贝克曼库尔特生命科学事业部 贝克曼库尔特生命科学事业部一直致力于改善全世界人类的健康。处于全球领先地位的贝克曼库尔特公司,为广大科研、商业实验室的生命科学研究工作者们提供先进的仪器系统、试剂和世界级的技术服务与支持,不断促进生物学科研的新技术发展。作为离心机和流式细胞仪的行业领导者,贝克曼库尔特公司长期以来一直是毛细管电泳、颗粒表征和实验室自动化的创新者,其产品主要用于最前沿的重要研究领域,包括基因组学、蛋白质组学等。欲了解更多信息,敬请访问贝克曼库尔特全球网站www.BeckmanCoulter.com和中文官方网站www.beckmancoulter.cn。 更多详情,欢迎您联系: 贝克曼库尔特商贸(中国)有限公司 总部地址:上海市福山路500号城建国际中心12层
  • 314万!西安交通大学第二附属医院发布微生物试剂采购项目
    近日,西安交通大学第二附属医院发布微生物组试剂采购项目,计划采购全自动细菌鉴定与药敏检测试剂、细菌质谱鉴定检测试剂、全自动染色仪检测试剂等一年使用量的耗材,总预算为314万元。以下为标讯详细信息:项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次预算金额:314.0000000 万元(人民币)采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片 AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片 AST-GN13VITEK 2革兰氏阴性细菌药敏卡片AST-GN16VITEK 2 革兰氏阴性细菌药敏卡片AST-XN04VITEK 2 革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK 2 革兰氏阴性细菌药敏卡片 AST-N334VITEK 2 革兰氏阴性细菌药敏卡片 AST-N335VITEK 2 革兰氏阳性细菌药敏卡片 AST-P639β-内酰胺酶快速检测试剂Genbag 厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEK MS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶 BacT/ALERT FA全自动血培养仪1厌氧微生物培养瓶 FN需氧微生物培养瓶 SA厌氧和兼性厌氧微生物培养瓶 SN需氧和兼性厌氧微生物培养瓶 PF厌氧和兼性厌氧微生物培养瓶BacT/ALERT FN Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT FA Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT PF Plus半自动鉴定及药敏检测试剂(进口)ID 32 GN 革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID 32 C 酵母菌鉴定试剂盒(比色法)RAPID ID 32 A 厌氧菌鉴定试剂盒(比色法)ID 32 E 肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID 32 STAPH 葡萄球菌鉴定试剂盒(比色法)RAPID ID 32 STREP 链球菌快速鉴定试剂盒(比色法)FUNGUS Ⅲ酵母样真菌药敏试剂盒(微量稀释法)ATB ENTEROC 5 肠球菌药敏试剂盒(比色法)ATB G-5 肠细菌药敏试剂盒(比色法)ATB STAPH 5 葡萄球菌药敏试剂盒(比色法)ATB PSE 5 假单胞菌和非发酵菌药敏试剂盒(比色法)ATB HAEMO 嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATB STREP 5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl 0.85#% 悬浮液悬浮液(3ml)(100支/盒)ATB Medium 肉汤培养基FB(坚固兰)(FAST BLUE BB)JAMES 吲哚试剂麦氏比浊管 McFarland StandardAPI MINERAL OIL 矿物油NIN 马尿酸NIT1 + NIT2 硝酸盐试剂丙酮酸反应检测液(VP1 + VP2)STERILE ATB 无菌加样吸头BCP 二甲苯试剂EHR 色氨酸试剂XYL 溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)--D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP 5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法) P 10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX 30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX 30ugCT0030B米诺环素药敏实验纸片(扩散法)MH 30ugCT0013B氯霉素药敏实验纸片(扩散法)C 30ugCT0064B克林霉素药敏实验纸片(扩散法)DA 2ugCT0020B红霉素药敏实验纸片(扩散法)E 15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK 30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM 20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD 30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法) FOT 20ugCT0058B万古霉素药敏实验纸片(扩散法)VA 30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM 30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP 10ugCT0054B四环素药敏实验纸片(扩散法)TE 30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM 30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO 30ugK6101 奥普托欣纸片 5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF 105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV 5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN 10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM 10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)GC琼脂平板乙腈甲酸头孢硝噻吩纸片
  • iMeta | 齐碳纳米孔测序助力揭示桑黄多酚抗结肠炎肠道分子机制
    近日,浙江省农业科学院李有贵、天津中医药大学吴崇明和中国农科院深圳基因组所刘永鑫等团队在iMeta在线联合发表了题为《The gut microbiota-aromatic hydrocarbon receptor (AhR) axis mediates the anticolitic effect of polyphenol-rich extracts from Sanghuangporus》的研究成果。基于齐碳纳米孔测序平台及二代测序平台开展研究,通过16s rRNA基因测序评估SH处理对小鼠肠道微生物群落结构的影响;通过对肠道微生物群落的宏基因组测序,确定与5-羟色胺-3-乙酸(5HIAA)生物合成相关的功能基因序列;通过对微生物,尤其是Alistipes onderdonkii等关键菌株的全基因组测序及组装,进一步理解微生物如何影响宿主健康。最终,本研究证明了桑黄多酚(SH)通过调节肠道菌群有效减轻葡聚糖硫酸钠(DSS)诱导小鼠的结肠炎病理症状,揭示了基于SH和肠道菌群之间的相互作用开发结肠炎治疗策略的潜在途径。背景炎症性肠病(IBD)主要包括溃疡性结肠炎(UC)和克罗恩病(CD),是一个全球性的健康问题,影响全球约0.5%人口。IBD的典型症状包括急性腹泻、间歇性腹痛、直肠出血和体重减轻。除了显著降低生活质量外,IBD还增加了结肠癌的患病风险,从而给个人和社会带来了沉重负担。目前,IBD缺乏明确的治疗药物,虽然常用临床药物具有较高的缓解率,但往往会出现继发性失败。因此,迫切需要寻找更有效、更安全的新的治疗干预措施。越来越多的证据证明了肠道菌群失调与IBD 的发生发展内在联系。Machiels等人发现,UC患者肠道微生态失调表现为产丁酸盐物种,如Roseburia hominis和Faecalibacterium prausnitzii的显著减少。丁酸钠治疗可减轻结肠炎的炎症状态和肠黏膜病变。吲哚衍生物是重要的微生物代谢物,已被证实是改善实验性溃疡性结肠炎的有益药物。例如,吲哚-3-乙酸(IAA)、吲哚-3-甲醇(I3C)和吲哚-3-丙酮酸(IPA)可以作为芳基烃受体(AhR)的天然配体,通过提高血清和组织抗炎白细胞介素水平来减轻IBD。因此,肠道菌群及其代谢产物,特别是吲哚衍生物,可能是开发新的抗IBD治疗干预措施的有效途径。成果概述中药(TCM)在中国已成功治疗疾病数千年。越来越多的证据强调了天然药物资源的药理益处。食药用食物已成为一种很有前途的疾病治疗方法。桑黄是一种可食用的药用真菌,可作为药物和膳食补充剂。研究证明,桑黄具有多种药理作用,包括抗炎、抗肿瘤和抗氧化。此外,它还具有调节肠道菌群的能力。然而,桑黄对于IBD的治疗潜力尚未被探索。本研究旨在确定桑黄多酚(SH)的抗结肠炎作用,并探讨其有益作用是否与肠道菌群密切相关,以及潜在的肠道分子机制。本研究首先评估了SH抗结肠炎活性,并通过一种涉及体内功能验证和粪菌移植的综合方法证实了肠道菌群在其抗结肠炎作用中的重要贡献。此外,本研究还确定了关键的肠道细菌种类及其活性代谢产物5-羟基吲哚-3-乙酸(5HIAA),他们是SH改善结肠炎作用的关键介质,主要通过激活AhR信号通路发挥抗结肠炎作用。本研究不仅有助于更深入地了解SH的治疗潜力,而且也为今后探索SH和肠道菌群治疗结肠炎的治疗途径奠定了科学基础。成果亮点1.SH减轻DSS诱导的C57BL/6小鼠结肠炎桑黄在中国已经实现了大规模的人工栽培(图S1A)。SH是桑黄多酚提取物(93.86% ± 2.78%)(图S1B;表S1)。本研究首先评价了SH在葡聚糖硫酸钠(DSS)诱导小鼠中的抗结肠炎作用(图1A)。与正常小鼠相比,结肠炎小鼠表现出体重减轻(图S2A)、疾病活动指数增加(DAI)(图1B)、结肠长度缩短(图1C;图S2B)、隐窝和结肠组织结构受损(图1D;图S2C),以及明显的炎症反应(TNF-α、IL-1β、IL-6、MCP-1和IL-17α增加,IL-4、IL-10和IL-22降低)(图S3)。低剂量和高剂量SH均可改善结肠炎病理症状,主要表现在增加体重,改善结肠长度和结构损伤(图1B-D;S2)。此外,SH给药以剂量依赖性方式逆转了炎症细胞因子水平的变化(图S3),表明SH具有强大的抗炎作用。氧化应激和肠黏膜屏障对于维持肠道通透性以抵御毒素、致病菌和其他有害物质至关重要。团队在转录和翻译水平上评估了SH对上皮细胞紧密连接蛋白表达的影响,并检测了氧化应激相关基因的表达。与DSS组相比,SH处理组紧密连接蛋白基因Occludin、Claudin-3和Claudin-4的转录水平明显升高(图S4A),结肠组织中NF-kB、Nox4和Stat3的表达水平明显下调(图S4B)。同时,SH也增强了紧密连接蛋白的蛋白表达水平(图S4C-D),证实了SH对粘膜屏障的正向调控作用。此外,经过SH处理后,杯状细胞的数量也显著增加(图S4E)。以上结果表明,SH可显著改善DSS诱导的小鼠结肠炎症状。图1.SH缓解DSS小鼠实验性结肠炎症状,并改变其肠道菌群(A)动物实验示意图;(B)疾病活动指数(DAI)评分;(C)结肠组织图片;(D)苏木精&伊红染色(H&E)结肠病理图(比例尺= 50µ m);(E)基于Chao1指数和Shannon指数评价肠道菌群Alpha多样性。(F)基于加权UniFrac距离的肠道菌群主坐标分析(PCoA);(G)属水平上肠道微生物群的分类特征。(H)DSS相关细菌的核心微生物群。内环代表了在NC-DSS-SHL-SHH队列中可重复检测到的OTUs。不同微生物群落的相对丰度显示为蓝色(NC)、绿色(DSS)、红色(SHL)和青色(SHH)热图。alpha多样性分析采用Wilcoxon非参数检验,PCoA分析采用置换多元方差分析(PERMANOVA)。数据显示为平均值±标准误(n = 8)。*p 0.05,**p 0.01,***p 0.001。NC,阴性对照;DSS,葡聚糖硫酸钠;SHL,低剂量桑黄多酚组(250 mg/kg/d);SHH,高剂量桑黄多酚(400 mg/kg/d);DAI,疾病活动指数。2.肠道菌群在SH抗结肠炎作用中起关键作用为了评估肠道菌群对SH抗结肠炎作用的贡献,团队进行了16S rRNA基因测序分析,以评估SH治疗对肠道菌群的影响。DSS诱导结肠炎小鼠肠道菌群α-多样性明显低于正常小鼠(p 图2.粪菌移植(FMT)揭示SH调节肠道菌群的抗结肠炎作用(A)动物实验示意图;(B)小鼠体重(g);(C)疾病活动指数(DAI)评分;(D)结肠长度(cm);(E)苏木精&伊红染色(H&E)结肠病理切片(上)(比例尺= 200µ m)和Claudin-4紧密连接蛋白免疫荧光图(下)(比例尺= 50µ m);(F)血清抗炎细胞因子IL-10 水平;(G)血清抗炎细胞因子IL-22 水平;(H)血清促炎细胞因子(TNF-α、IL-1β、IL-6和IL-17α)水平;(I)结肠组织中Occludin,Claudin-3和Claudin-4的蛋白表达。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 3.SH富集Alistipes onderdonkii改善结肠炎接下来,团队在属水平上仔细研究了肠道菌群的分类组成,以确定SH抗结肠炎作用的核心细菌。结果显示,与DSS组相比,对照组、SHL组和SHH组中,共有12个菌属表达上调,25个菌属表达下调(图S7A)。与对照组相比,模型组有34个菌属增加,13个属菌降低。低剂量SH处理使得10个菌属上调,4个菌属下调。高剂量SH处理后,20个菌属上调,4个菌属下调(图S7B)。差异表达分析显示,只有Alistipes在DSS组显著减少,而在SH治疗后显著增加(图S7C)。进一步Spearman相关分析表明,3个菌属与DAI评分显著负相关、与结肠长度显著正相关,其中Alistipes相关性最为显著(图S7D)。这些结果表明,SH可以显著调节肠道微生物群落,特异性富集Alistipes。进一步,团队通过物种特异性定量PCR(qPCR)对粪便Alistipes进行定量,发现Alistipes onderdonkii是SH富集的主要菌种(图S7D-E)。团队获得了3株A. onderdonkii,并评价了它们对DSS诱导的结肠炎影响。结果显示,三个菌株中,两个A. onderdonkii 菌株(#1:FDB8和#2:FDFM)可有效预防体重减轻,降低DAI评分,恢复结肠组织损伤,改善炎症状态(图3A-E)。此外, A. onderdonkii提高了紧密连接蛋白的表达,以增强肠道屏障功能(图3F-H)。因此,A. onderdonkii可能是介导SH抗结肠炎作用的关键有效物种。有趣的是, A. onderdonkii(#3)几乎没有改善结肠炎,甚至造成了有害的影响(图S8),表现出了菌株特异性的功能。图3.A. onderdonkii减轻DSS诱导的C57BL/6小鼠结肠炎(A)小鼠体重百分比(%)和体重变化(g);(B)DAI评分和DAI评分的AUC;(C)苏木精&伊红染色(H&E)的结肠病理切片(比例尺= 200µ m)。(D)血清抗炎细胞因子IL-10和IL-22的水平;(E)血清促炎细胞因子IL-1β和MCP-1的水平;(F)结肠组织Occludin,Claudin-2,Claudin-3,Claudin-4和ZO-1的mRNA表达水平;(G)结肠组织Occludin、Claudin-3和Claudin-4的蛋白表达;(H)Claudin-4紧密连接蛋白免疫荧光图(比例尺= 50µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 4.5-羟基吲哚-3-乙酸(5HIAA)是一种关键活性代谢产物考虑到SH对肠道菌群的调节作用,团队对粪便样本进行了代谢组学分析,旨在识别功能微生物代谢产物。如图S9A所示,与NC小鼠相比,DSS诱导结肠炎小鼠中代谢物水平发生显著改变(图S9A),而SH处理组的代谢物谱与NC组接近,表明SH显著恢复了微生物代谢物的分布(图S9A)。随后,团队确定5HIAA在SH处理后显著升高(图S9B-C)。通过对3株A. onderdonkii功能基因序列的全面分析,发现2株A. onderdonkii(#1:FDB8和#2:FDFM)的基因组中含有一个与诱导吲哚化合物生物合成相关的tpl基因。相比之下,第三株菌株(#3:FDPA)的基因组缺乏这个特定的基因(图S9D)。为了证明A. onderdonkii确实具有产生5HIAA的能力,团队采用高效液相色谱(HPLC)对A. onderdonkii培养上清液中5HIAA含量进行检测,发现5HIAA浓度高达33.5 μg/mL。值得注意的是,5HIAA的产生与A. onderdonkii改善结肠炎的作用相关,主要表现为两个有效的A. onderdonkii菌株产生的5HIAA(33.5和16.83 μg/ml)多于无效菌株(0.83μg/ml)(图S9E)。代谢物与结肠炎指数的相关分析显示,有22种代谢物与结肠炎症状密切相关,其中5HIAA与结肠长度呈正相关,与DAI评分呈负相关(图S9F)。因此,SH可以促进5HIAA产生,这可能是与SH抗结肠炎作用相关的关键微生物代谢产物,尤其是A. onderdonkii。据报道,肠道微生物产生的IAA可以缓解结肠炎。因此,团队研究了与IAA密切相关的衍生物5HIAA对DSS诱导结肠炎的影响(图4A)。IAA治疗显著改善了结肠炎的症状(图4B-F),这与之前的报道结果一致,而5HIAA在缓解结肠炎方面的表现明显优于IAA(图4B-F)。此外,这两种吲哚衍生物都能有效地提高抗炎因子的水平,降低促炎因子的水平,以减轻炎症反应(图S10A-B)。在DSS诱导小鼠中,吲哚衍生物也降低了氧化应激相关基因(NF-kB、Nox4和Stat3)的相对表达(图S10C)。此外,IAA和5HIAA均上调了紧密连接蛋白Occludin和Claudins的表达,后者具有显著性(图S10D-E)。图4.5HIAA治疗可减轻DSS诱导的C57BL/6小鼠结肠炎(A)动物实验示意图;(B)体重百分比(%);(C)小鼠DAI评分;(D)小鼠结肠长度(cm);(E)苏木精&伊红染色(H&E)的结肠病理图(比例尺= 200µ m)和小鼠组织学评分;(F)Claudin-4紧密连接蛋白免疫荧光图(比例尺= 50µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 5.结肠AhR激活对SH抗结肠炎具有重要作用既往研究表明,微生物来源的吲哚衍生物可以通过结合并激活AhR来保护结肠炎,提示SH可能通过富集Alistipes及其代谢物5HIAA来激活AhR,从而改善结肠炎。为了证实这一假说,团队首先检测了AhR下游基因(Cypa1、Cypa2和Cypb1)在结肠中的表达水平。结果显示,5HIAA和SH两种处理均显著上调了Cypa1、Cypa2和Cypb1(图5A-B)基因水平,表明AhR在结肠组织中被激活。随后,团队用AhR抑制剂处理DSS小鼠,以验证AhR信号通路对SH抗结肠炎疗效的贡献。AhR拮抗剂StemRegenin 1基本上消除了5HIAA对结肠炎的改善作用,如体重、DAI、结肠长度、血清IL-22和IL-10水平,以及结肠组织病理学(图5C-H)。AhR拮抗剂消除了SH治疗对体重的有益作用(图5C-H),但对DAI、结肠长度等指标的消除作用明显减弱(图5C-H)。通过对Caco-2细胞的体外实验,进一步验证了AhR信号通路的激活情况。CCK-8检测结果显示,五种浓度的5HIAA对Caco-2细胞都没有细胞毒性作用(图S11A)。虽然5-HIAA处理后Caco-2细胞中AhR的表达没有明显变化,但Cypa1、Cypa2和Cypb1的表达明显增加(图S11B),提示5HIAA部分激活了AhR信号通路。以上结果表明,SH至少大部分通过激活AhR信号通路来缓解结肠炎。图5.AhR抑制剂可削弱SH和5HIAA的抗结肠炎作用(A)5HIAA处理结肠炎小鼠结肠组织中Ahr、Cypa1、Cypa2和Cypb1的相对mRNA水平;(B)SH处理结肠炎小鼠结肠组织中Ahr、Cypa1、Cypa2和Cypb1的相对mRNA水平;(C-D)小鼠体重(C)及体重变化(D);(E)DAI分数;(F)小鼠结肠长度(cm);(G)血清抗炎细胞因子(IL-22和IL-10)水平;(H)结肠组织和苏木精&伊红染色(H&E)结肠病理图(比例尺= 200µ m)。采用单因素方差分析和Dunnett’s检验进行统计学分析。数据显示为平均值±标准误(n = 8)。*p 0.05, **p 0.01, ***p 0.001。AhR,芳香烃受体。
  • 2023BCEIA 兰友大秀 圆满落幕
    2023年9月6日,两年一届的北京分析测试学术报告会暨展览会(BCEIA 2023)在中国国际展览中心(顺义)盛大开幕。作为国内规模最大,影响力最大的分析仪器展会之一,BCEIA已经走过了38年,见证了一批批优秀的国内外分析仪器行业优秀厂商的成长,在促进国际间的科学技术交流,推动我国分析测试科学和仪器制造技术的发展起到了重要作用。本届会议围绕“生命 生活 健康 面向绿色未来”的主题开展学术报告会、论坛和仪器展览会。 兰友科技聚焦环境与安全领域,现场展出的土壤与地下水监测的完整解决方案亮相,其中涵盖土壤样品采集、制备与流转、智能化保存;土壤有机质分析机器人;地下水低流速采样系统;走航式水环境通量监测系统等诸多产品亮相,引起了线上线下观众的高度关注。 “一王带三新”的亮眼组合 兰友科技自主研发、拥有完全自主知识产权的智能化土壤样品存储管理系统(SIMS)、FASP-M型车载式全自动土壤样品制备仪首次亮相BCEIA;为第三方制样单位量身定制的更加小巧灵活的FASP-01型单样品自动制备仪全新上线;加之BCEIA金奖产品FASP-05型全自动土壤样品制备系统带着全新的战绩王者归来,形成了“一王带三新”亮眼组合。一新:智能物联高密的样品存储管理系统 智能化土壤样品存储管理系统(SIMS)是本次兰友展台的最大亮点,它是兰友科技基于土壤三普建设永久样品保存库的需求,开发出的一套安全、准确、便捷的创新型样品保存系统,并且可以扩展至种质资源、标准品、生物医药品、试剂等多种样品保存应用场景。 正如清华大学邢志教授在探访兰友展台时所说的:这个样品存储管理系统是非常具有创新意义的,尤其是在样品存储密度、样品入库出库管理、样品标签和样品瓶的安全性、承重均匀程度、样品展示性等等用户特别关注的样品库刚需问题,都给出了非常好的解决方案。二新:国家重点研发计划成果-FASP-M FASP-M型车载式全自动土壤样品制备仪是兰友科技在国家重点研发计划项目支持下的全新研发成果,现已实现商品化并正式推向市场。别看它个头不大,但是干燥、研磨、筛分、称量、装样、清洁、质量控制等功能样样俱全,可以说是浓缩了FASP系列成熟产品的精华,因此研发进程非常顺利。2023年4月进行实战演练,圆满完成了所有测试任务,为年底的项目交付和验收奠定了坚实的基础。三新:更高效,更灵活的FASP-01 FASP-05系列产品取得的成功给兰友的研发和营销团队甚至是合作伙伴强大的信心;在FASP系统推广期间,很多用户专家老师都提出了各种各样非常有建设性的建议和意见。干样进样、单个样品制备效率提升、保持粗磨样品颗粒度,防止样品研磨过细,预留可扩展空间,为后续扩项或者样品量增加做好准备,开发“制样流水线”......这些都是老师们对自动制样系统提出的期待和想法。带着用户们殷切的期盼,兰友科技的工程师们深入调研,全面评估,潜心研发,最终推出了这款可以说基本全面满足上述要求的设备——FASP-01型单样品自动制样系统。 FASP-01型单样品自动制样系统没有干燥模块,省去了大体积的辅机,体积更加小巧;粗磨过程采用二级擀压式研磨,最大程度上减少样品过度研磨的情况,保持样品颗粒度,制备出完美的“板蓝根”颗粒样品;细磨则与FASP系列相同,制备出60目和100目的样品。同时,保留了FASP-05系列与土壤接触部件不含金属元素、“扫-吹-吸”三步清洁、降噪控制等多项“优良传统”;并且可实现多台联用,扩展为制样“流水线”,满足制样量达10000样/月以上用户单位的需求。一王:不断突破的FAPS-05系列 兰友科技的金牛产品FASP-05DB依旧是全场的焦点,观众们对这个“大块头”已不再陌生,但是与上一届荣获金奖时相比,它又增长了哪些“大智慧”呢?依然让关注他的观众们无比期待。 FASP-05系列全自动土壤样品制备系统经过几个版本的迭代,特别是在用户端的全面测试和应用,这几年更加成熟稳定,特别是在交叉污染、噪声、干燥和研磨温度等方面的控制更加出色,取得了浙江省计量院的校准报告和检测证书;2022年通过科学鉴定,被浙江省经信厅认定为2022年度浙江省制造业首台(套)装备;兰友科技是国内首个牵头制定全自动土壤样品制备设备技术规范及评价方法标准的企业;成功将应用领域扩展到了核素样品制备及高校科研等。可以说,从产品性能,到应用拓展,再到市场推广,FASP-05系列产品在这两年中都有了巨大的飞跃! 旧雨新知 高朋满座的兰友展台 从2019年兰友科技首次亮相BCEIA以来,在这个行业盛会上“兰友”们便有了聚会的“根据地”,同时也在这里结识了越来越多的“新兰友”;大家或是一起追忆过往并肩战斗的从前,或是共话未来携手并进的明天。两天半的展会期间,兰友不大的展台总是高朋满座,热闹非凡,大家笑称兰友的马总“自带流量”,为旧雨新知们提供了相互学习相互交流的好地方。当然,来自静宁兰友果园的无公害大苹果也一不小心成了网红,打出了“好土产好果”的金字招牌。专家团探秘兰友展台第二季 2021年BCEIA展会上,兰友科技在会议期间邀请到国家环境分析测试中心董亮主任探秘兰友科技展台,围绕土壤环境监测自动化解决方案,董主任以目前环境监测现状、客户实际需求、质控核心环节结合未来发展趋势等,做出深度点评,受到广泛关注和好评。 本届BCEIA,兰友科技举办了“专家团探秘兰友展台第二季”,邀请行业内知名专家以圆桌mini Forum的形式,与兰友科技创始人/总经理马放均先生一起共话技术发展趋势,探讨企业成长方向,为观众们带来了一场干货满满的现场深度对话! 清华大学邢志教授来到兰友展台,就智能化样品保存系统的样品安全性、样品架抗震性、自动化出入库应用流程、FASP-M的实测效果、FASP-05近年来取得的成绩以及FASP-01的技术特点等等这些代表广大用户关注点的问题,跟马总进行了深入探讨和交流。 中国分析测试协会汪正范老师、北京矿冶研究总院冯先进老师和兰友科技创始人、总经理马放均先生一起为在线观众带了一场mini Forum,就“通过原始创新实现高质量发展”的企业发展路线以及土壤环境监测的发展趋势,发表了独特的见解,同时也对兰友一直以来坚持的“正向创新”发展路线表示赞赏,希望兰友能够继续勇于攀登创新高峰! 两场直播在线观看人次突破8000,视频的回放和图文报道后续将在兰友网站、仪器信息网等多渠道发布,敬请关注!邢志老师探访兰友展台 冯先进老师、汪正范老师、马放均先生“锵锵三人行”兰友们,下届BCEIA见! 相聚的时光总是短暂的,兰友在这2天半的时间里为专业观众呈现了近2年来的发展成果,由于时间和空间均有限,我们总是无法全面展示和交流。感谢各位线上线下的观众们对兰友的关注和支持,我们将秉持“空杯心态”,站在新的起点上,不忘初心,深耕行业,匠心打磨科学分析重器,立志成为行业客户的最佳合作伙伴!
  • 范桂芳:路漫漫其修远兮,吾将上下而求索
    我2006年从清华大学化学系硕士毕业后,到清华大学核研院成为了一名工程师。2011年进入了清华大学核研院生物质能研究室,研究室开发了甜高粱秆乙醇连续固体发酵工艺,需要对发酵过程进行监控,领导提到用近红外光谱。硕士期间跟随导师张复实教授研究光化学,听到分子光谱就感到很亲切。做了一点调研后,我就跟领导讲近红外的原理、特征等等。领导觉得我似乎还懂,决定带我去拜访中国近红外光谱的领路人——尊敬的陆婉珍院士。  我的工作记录显示,拜访陆院士那天是2011年5月24日,这天是值得纪念的日子,开启了我的近红外之门。带着一篇近红外光谱测酵母的文献就去拜访陆院士了,我们向陆院士咨询在发酵罐上进行近红外在线检测的可行性。陆院士针对我们的情况,建议我们先将样品拿到她们的仪器上离线检测,如离线的模型行得通再考虑在线检测。后续的工作陆院士让我们联系褚小立博士,并将褚老师介绍给我们。我们攒够了40个样品后,6月16日再去石科院,褚老师为我们的发酵体系做了第一个定量模型。在我们还没下定决心买近红外光谱仪时,ABB的曾贤臣先生对我们的工艺感兴趣,给我们提供了一台样机,王军工程师也帮助我们建了定量模型。这期间我们也考察了拉曼光谱。过程控制需要在检测速度与精度之间权衡,最终我们决定购置近红外光谱仪进行更为系统的研究。  2014年4月我们买的近红外光谱仪到货,研究就更方便了,鉴于我们做低浓度样品的固体漫反射,我们选了有积分球配件的赛默飞的仪器。第一次我们用60个发酵样品建立了近红外光谱的定量模型。PLS回归后,软件给出了乙醇这一组分的纯光谱,我看着这个纯光谱,认为这不是乙醇的光谱,学《分子光谱学》课程时,唐应武教授开玩笑的讲过:“判断光谱是洛伦茨线型的成分大还是高斯线型的成分大就看光谱是胖一点,还是瘦一点。”所以,我心里对光谱的位置和形状是有预期的。根据量子理论,能级都处于定态,而实际的光谱则是能级差对应频率周围的带状谱。这也许不是常规近红外定量分析需要考虑的问题,而我却纠结了一段时间。  我开始了解算法,了解到模型回归过程是以波长作为变量来考虑的,组分波长重叠严重是近红外光谱的特点。在多变量数据分析时,通过主成分分析来对数据进行降维是很有效的处理方法,而这些主成分又不能与体系中的组分直接对应,某一组分是这些主成分的组合。对于我来说,这是全新的思维方式,也许研究各种变量选择与模型回归算法是近红外光谱研究的主流,近红外光谱群里也闪耀着梁老师、吴老师、邵老师等化学计量学大咖。  对近红外光谱技术了解得多一些之后,我明白了近红外光谱技术是为满足质量控制和过程监控的应用需求发展起来的。这些场合,有量大、无损、或者快速的需求,对检测精度的要求是其次的。是先有应用需求,再有提高模型预测能力的各种算法。龚伟教授也讲,搞近红外要有哲学的思想。我也暂时抛开了因果关系,来考虑数据之间的相关关系。  说到相关性,我们知道用相关性来进行模型拟合的前提是存在一个固定规律,我们用大量数据来拟合出这个规律。目前,我们听到的是大数据给各行各业带来的机遇,我想谈的是做近红外光谱大数据的隐忧。隐忧来自近红外光谱本身的不确定性,可能包含光源的波长与能量的稳定性、检测器对于光子的线性响应、背景光影响、待测物质的变化、温度的影响。温度对物质吸收光的影响可能要具体体系具体分析。  每一种检测方法,都有检测范围,近红外光谱也一样。我们要做的是对这个方法的使用进行规范,使这个方法满足我们的检测目的,输出检测结果。这个过程艰辛漫长,这也许是近红外光谱有别于其它方法的特点。所以也总听圈里人说,做近红外光谱要顶得住压力,耐得住寂寞。做光谱应用的人们,都在这条路上走着,也许走的人多了就不寂寞了。  在近红外光谱领域里,我是比较幸运的,也许是因为一开始就有高人指路,走的弯路就少。我没有做特别多的光谱,也没有用太多算法,我做的近红外光谱在甜高粱秆乙醇连续固体发酵过程监控中的探索性工作发表在JNIRS中国专辑上 这部分工作作为“甜高粱秆乙醇连续固体发酵工程化研究”成果的一部分通过了教育部组织的成果鉴定(国际领先水平)。我知道这个方法真用上还要做很多工作,搞清楚多元回归模型的置信度问题,解决自动控制问题等。也许我看到了门里的一点风景,这将激励我继续向前。对于近红外光谱,我想说的最后一句话是:“路漫漫其修远兮,吾将上下而求索”。
  • 李昂 雷晓光获四面体青年科学家奖
    p   近日,国际出版集团爱思唯尔(Elsevier)宣布,中国科学院上海有机化学研究所李昂研究员、北京大学雷晓光教授获得2017年“四面体青年科学家奖(Tetrahedron Young Investigator Award)”。这是除美国外,四面体青年科学家奖首次授予同一个国家的两名学者。两位获奖者将应邀出席2017年6月27日-30日在匈牙利布达佩斯举办的第18届四面体会议并作大会报告。 br/ /p p   四面体青年科学家奖由《四面体》系列杂志2005年设立,是有机化学领域的重要国际奖项。该奖分“有机合成”、“生物有机与药物化学”两个领域单独评审,每年仅分别评出一名获奖者,旨在奖励40岁以下的杰出青年有机化学家。该奖的获奖者包括普林斯顿大学戴维· 麦克米兰(David MacMillan)、斯坦福大学卡罗琳· 贝尔托齐(Carolyn R. Bertozzi)等国际著名的有机合成或生物有机化学家。作为之前唯一获奖的中国学者,北京大学施章杰教授曾于2012年获得有机合成领域的四面体青年科学家奖。 /p p   李昂研究员主要从事天然产物全合成研究。他发展了6p电环化-芳构化和Prins环化等高效构建多取代六元环的创新策略,完成了虎皮楠生物碱、五味子降三萜、台湾杉醌二萜二聚体、噁唑二萜、吲哚单萜生物碱、吡咯并吲哚生物碱、吲哚萜类等10多个家族天然产物的全合成。电环化-芳构化策略打破了从苯环起始原料出发逐级取代的传统思路,提高了立体化学环境复杂的多取代苯环的合成效率。李昂研究员曾获得2012年优秀青年科学基金项目和2015年国家杰出青年科学基金项目资助(项目编号:21222202,21525209)。 /p p   雷晓光教授主要从事分子探针导向的化学生物学研究。他系统地利用小分子探针,揭示出一系列新颖的程序性细胞死亡生物作用机制和化学调控方法 高效构建了一系列倍半萜多聚体类、石松生物碱天然产物分子探针,阐明了它们的生物作用靶点和全新的分子作用机制,进而开发出对肿瘤、感染性疾病与自身免疫性疾病有良好治疗前景的、基于天然产物的药物先导。雷晓光教授曾获得2012年优秀青年科学基金项目和2016年国家杰出青年科学基金项目资助(项目编号:21222209,21625201)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/noimg/8400429e-755f-4b41-883a-3de1f7ad7245.jpg" title=" 未标题-1.jpg" / /p
  • 解读|GB/T 39560.12-2024 《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》
    2024年6月29日,《电子电气产品中限用物质的限量要求》(GB/T 26572-2011)的《第1号修改单》获得正式批准。这一修改单扩大了中国RoHS限用物质的范围,新增了四种邻苯二甲酸酯类物质。受管控的限用物质总数增至10项,标志着中国在电子电气产品环保管理方面迈出了重要一步。该修改单预计将于2026年1月1日起正式实施。同时,第14号公告还批准发布了标准GB/T 39560.12-2024《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。这项标准作为中国RoHS检测邻苯类物质的方法,将于2024年10月1日开始实施。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf近日,GB/T 39560.12-2024全文也已公布,该标准规定了气相色谱-质谱法同时测定聚合物中多溴联苯、多溴二苯醚和邻苯二甲酸酯。目的在于确定一种适应于同时测定电子电气产品中多溴联苯、多溴二苯醚和邻苯二甲酸酯的技术方法。制定背景此次GB/T39560系列标准是为了适应产业对新种类有害物质限制的要求和新型检测技术发展,保持我国RoHS检测技术及结果国际一致。在推动实现中国RoHS与国际的对接互认,努力成为全球电器电子行业绿色发展的参与者、引领者的过程中起到了重要的作用。制定过程本文件等同采用IEC 62321-12:2023《电工产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。本文件还做了下列编辑性修改:-为了与我国现有标准系列一致,将标准名称改为《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多澳二苯醚和邻苯二甲酸酷》:更改了IEC原文的两误,将11.2e)中的“用5个校准点的结果(根据表5)”更改为“用5个校准点的结果(根据表6)”标准GB/T 39560.12-2024主要内容原理:聚合物中不同种类的化合物,如PBB、PBDE、BBP、DBP、DEHP和DIBP等,通过超声辅助同时萃取,然后采用气相色谱-质谱仪(GC-MS)的全扫描模式和(或)单(或“选择”)离子监测(SIM)模式进行定性和定量分析。仪器设备:分析天平、容量瓶、超声波清洗器、带有聚四氟乙烯螺帽的离心管、离心机、去活进样口衬管、铝箔、微升注射器或者自动移液管、巴斯德吸管、带100μL玻璃衬管和PTFE衬垫的1.5mL样品小瓶或根据分析系统选择合适的样品瓶(带棕色或琥珀色)、微型振荡器(已知的如漩涡器或漩涡混合器)、使用带毛细管柱连接质谱检测器(电子电离,EI)的气相色谱、对PBB、PBDE和邻苯二甲酸酷化合物有足够分离效率的约15m长的色谱柱、0.45m聚四氧乙滤膜、预清洗过的滤纸。试验过程:1、 制样:推荐使用液氮冷却的低温研磨,并通过500μm的筛子。否则样品切成小于1mm✖ 1mm。2、 制备储备液:PBB、PBDE、邻苯二甲酸酯、内标。3、 萃取:称取100mg±10mg样品加入4mL丙酮/正己烷于离心管中,再加入标记物(分析回收率),超声水浴提前15min,水浴温度不超过40℃。超声结束后5000r/min离心5mim,取上清液于25mL容量瓶,再次加入萃取重复2次后定容。4、加入内标,将内标储备液稀释后加入萃取液中测定。5、 GC-MS检测:优化特定的GC-MS系统可能需要不同的条件,以实现所有校准同系物的有效分离,并满足质量控制(QC)和检测限(LOD)的要求。 色谱柱:非极性(苯基亚芳基聚合物,相当于5%苯基-甲基聚硅氧烷)长度15m;内径0.25mm;膜厚度0.1μm。应尽量使用高温色谱柱。 进样系统:程序升温、冷柱、分流/不分流进样器或类似的进样系统。 进样衬管:4mm在底部带玻璃棉(去活)的单底锥形玻璃衬管。 载气:氦气 1.0mL/min,恒定流量。 柱温箱:100℃保持2min,20℃/min升至320℃保持3 min。 传输线温度:300℃。 离子源温度:230℃。 电离方法:电子电离(EI),70eV 驻留时间:在SIM模式下为50ms.6、标准曲线制定(难点)7、 分析物浓度计算。我们将陆续邀请多位权威标准制定专家深入阐释“中国RoHS升级解读”相关内容,敬请持续关注本话题的最新动态。
  • 叶坚团队在光照安全剂量内实现拉曼光学信号穿透14 厘米肌肉组织的检测
    无创检测体内肿瘤病灶对于临床医学肿瘤诊疗至关重要。医学成像技术如计算机断层扫描、核磁共振或正电子发射计算机断层扫描等虽然能诊断体内深层病灶,但存在采集时间长、仪器昂贵或辐射剂量大等原因,更常用于术前检查。与之相比,光学检测和成像方法具有实时、高灵敏、非电离辐射、采集方便等优势,结合外源性造影剂可以提供生物体结构、功能和分子的精确信息,是肿瘤诊断的绝佳工具。但是,现有的肿瘤光学检测技术的进一步发展也面临着瓶颈:组织穿透深度较低,无法检测深层病灶。由于生物组织对光子强烈的散射和吸收作用(如图1),光在生物组织中的穿透深度受限一直是这个领域中的巨大挑战。例如,近红外区域肌肉组织的传输平均自由程只有1~2 mm,目前广泛使用的荧光成像技术的组织穿透深度通常只有几毫米。临床结果发现,基于吲哚菁绿的分子影像无法检测到距离胸膜深度超过1.3 cm的肺结节,容易造成假阴性。图1. 生物组织对光子的散射与吸收表面增强拉曼光谱(SERS)对金属纳米颗粒附近的分子的拉曼信号实现极大地增强,具有高特异性和高灵敏度等优点,非常适合用于生物光谱检测。为了获取更高的检测深度,已经报道了光源和探测器间具有一定空间偏移的空间偏移拉曼光谱装置。它利用了生物组织的高散射特性,即来自深层的光子到达表面时会有更大的横向偏移。空间偏移拉曼光谱抑制了表层的背景信号,因此提高了来自深层信号的信噪比。它的一种特殊形式是透射拉曼光谱,它将激光和拉曼探测器放置在样品的两侧。据报道,透射拉曼光谱技术可以实现具有高组织穿透能力的无创检测。尽管如此,透射拉曼光谱技术的最新水平仍未能满足实际生物医学应用的需求。首先,目前文献报道的透射拉曼光谱技术的检测深度或组织厚度仍远低于与人体相关的厚度值。例如,人类的腹背距离超过10 cm。然而,使用透射拉曼光谱技术穿透超过10 cm厚的体外组织或活体动物的可行性迄今尚未得到证实。其次,光子在透射拉曼检测中的传播过程以及测量因素如何决定信号尚不清楚。透射拉曼信号不仅受组织散射系数和吸收系数的影响,还可能与SERS纳米探针的亮度、病灶埋深、组织总厚度等因素有关。评估这些决定性因素之间的关系至关重要。第三,激光的安全性是光学模态临床转化中一个长期关注的问题。临床激光的光安全性通常由最大允许照射量来评估,即对暴露的身体表面造成损伤的风险可忽略不计的最高激光辐射水平。然而,目前大多数体内SERS研究使用的激光剂量远远高于光安全剂量限值,这在很大程度上阻碍了SERS技术的临床转化。图2. 使用透射拉曼装置和超亮SERS探针对小鼠深部肿瘤进行无创成像(示意图)以及透射拉曼光谱信号的理论计算为了解决本领域的上述重要问题,上海交通大学生物医学工程学院叶坚团队首先从透射拉曼光谱测量过程中拉曼光子传播的理论建模和计算入手,研究了实验参数(组织厚度、SERS纳米探针位置、纳米探针亮度、激光功率和光束尺寸)对透射拉曼光谱探测深度的影响(如图2)。理论计算表明,透射拉曼信号与信号源的埋深之间呈不对称的U型关系,说明病变位于组织中部时信号最弱,对透射拉曼信号的检测是最具挑战性的。而提高SERS纳米探针的亮度是增加检测深度/透射组织厚度最直接有效的途径。此外,光束尺寸的增大对深部病灶的透射拉曼检测强度几乎没有影响。因此,可以采用较大的激光束尺寸来降低功率密度。图3. 扩散光束照明的体外透射拉曼光谱检测基于这些发现,该团队设计制备了超亮SERS纳米探针与自制的透射拉曼装置相结合,开发了一个拉曼检测/成像系统。该系统具有以下优点:(1)深度检测能力,使用了低至单颗粒检测水平的超亮SERS纳米探针 (2)临床光安全,样品表面的激光功率密度低于安全光照剂量阈值。利用该系统,团队成功地在安全光照剂量内通过体外14cm厚的组织实现了对包埋在其中的SERS纳米探针的检测(图3),与目前已报道的透射拉曼光谱检测研究相比,穿透深度提高了约97%。进一步地,团队在安全光照剂量内实现了1.5 cm厚未剃毛活鼠体内深层SERS纳米探针的体内无创成像(图4),相比之下,传统的背散射拉曼成像无法获得显著信号。这项工作为透射拉曼光谱技术在体内非侵入性生物医学检查方面的发展提供了新的见解,证明透射拉曼光谱有望成为未来临床癌症诊断的可行工具。图4. 活体小鼠无创光安全透射拉曼光谱检测
  • 用磁场做导航 纳米机器人精准搏杀肿瘤细胞
    团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  上映于1966年的科幻电影《神奇旅程》,讲了这么一个故事:为给一名科学家实行高难度血管手术,5名医生被缩小成头发丝大小,置于针筒中,注射进他体内。5人驾驶着“潜艇”,躲过了免疫细胞的攻击,一路乘风破浪,成功完成任务。  50多年过去,当初的幻想,已经部分成为了现实。微纳米医疗机器人,就被认为是一种颇具前途的智能给药平台,目前被广泛用于肿瘤的靶向治疗。  近日,北京航空航天大学机械工程及自动化学院“卓越百人”副教授、博士生导师冯林课题组,研究出了一种新的更为智能的肿瘤靶向机器人。它有了伪装,还有了导航,能够在磁场的驱动下,精准抵达战场,投掷杀伤肿瘤的弹药。  让巨噬细胞吞下纳米药物,变身微纳米机器人  让纳米机器人装载药物,到达指定地点,定向治疗炎症或清除肿瘤,这是医学纳米技术的终极目标之一。但传统微纳米机器人在人体内的运动,其实靠的是分子之间的结合力,这是一种“被动靶向”,难免脱靶。“就好比我们知道,人群中具有某种特质的两类人可能会碰上。但茫茫人海中你最后碰上的是不是想要的人,其实要打一个问号。”冯林说。  而且,也如当初那部电影里所展示的,被注射进人体内的纳米机器人,稍有不慎,就会遭到兢兢业业工作的免疫细胞的攻击。  能不能让这类医疗机器人更为安全且精准地到达要去的地方?  2016年从日本回国后,冯林就一直思考这个问题。在北航机器人所的支持下,冯林和陈华伟老师合作申请获批了国家重点研发计划—机器人重大项目“靶向给药微纳米机器人”。在一次讨论中,陈华伟问可不可以让活细胞作为载体。这句看似很随意的提问提醒了冯林:直接让活的细胞吞进载药纳米颗粒变身微纳米机器人行不行?  他们想到了巨噬细胞——这是一种喜欢吞食并处理异物的细胞。  合适的载体和“伪装”找到了,接下来,就是设计机器人的“导航系统”。  磁性纳米颗粒可以由磁场来控制,药物释放可以利用红外或者超声波。几乎是从零开始,冯林团队自行设计了复合磁控系统。他们从电子线圈开始设计,一点点调整、摸索技术参数。磁性纳米颗粒进入小鼠体内后,通过这套系统,他们可以在体外对其行走路径进行高精度控制。  再接下来,就是让磁性纳米颗粒装载药物,并让它在合适地点,通过合适方式,释放药物。  这款机器人其实设计有许多层。在阿霉素外层,是聚乙二醇,一种具有良好水溶性的高分子化合物;再外一层,是吲哚菁绿,它是药物研究中常用的荧光标记物,帮助科研人员判断机器人所在的位置。最后他们还包裹了一层脂质体,它具有非常高的生物相容性。  团队还为机器人设计了一个开关——近场红外光。近红外光穿透表层皮肤,磁性纳米颗粒吸收光线,产生热量,会释放出阿霉素。  如此一来,纳米机器人基本实现“指哪打哪”的效果。  “接收指令,执行指令,完成任务,在我们做机械的人眼中,具备这些能力的,才是智能的机器人。”冯林说。  团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  9月,纳米科学领域权威期刊《小》(Small)以封面文章的形式报道了课题组的研究成果。  在机械学院,他们建立生物医学实验室  冯林的团队中,有好几个医学生物专业出身的博士。在他的机械实验室里,还有一块专门区域,用来做生物医学实验。  所以,你能看到这样一个略显奇特的景象——实验室里,有各类机械模型,有专业级的显微镜,以及小白鼠。  去采访时,由于已经结束了上一轮的实验,小白鼠所剩不多,正在笼子里踱来踱去,安度余生。  冯林是“80后”,本科学的电子信息工程,硕士专业是生物机器人,博士留学日本名古屋大学,跟着导师新井史人教授一头扎进了更为微观的世界——微纳米机器人。  回国后,冯林来到北航,获得北航“卓越百人”,加入了机械学院张德远老师领导的仿生与微纳系统研究所,之后又得到北京市“科技新星”资助。北航提倡“医工结合”,冯林也被聘入了北京市生物医学工程高精尖中心,更深入地进入到医疗机器人领域。  “不能只是炒概念,说纳米机器人未来能如何如何。”冯林一直存着这个念头,就是要真正把纳米机器人打入体内,真正杀死体内的肿瘤细胞。  就在不久前,冯林指导的学生团队凭借Medcreate磁悬浮胶囊机器人在第七届中国国际大学生“互联网+”创新创业大赛中获得本科生创意组全国第五名。  它用到的技术,也是“复合场磁控”。  这是一款主动可控高速图像传输型胶囊机器人,能对胃部等大体积消化道器官进行全方位无死角视频探查。胶囊机器人可以悬浮运动,无需改变患者体位,就能完成整个胃部的覆盖式检查。  冯林为学生取得的成绩高兴,但他也知道,要完善各类治疗型的微纳米机器人,还“路漫漫其修远兮”。  从小鼠到人体,从试验到临床,还需要一步步完善和摸索,这并非坦途。“你要舍得花一辈子的时间。”冯林说。
  • 金坛亿通祝贺南京信息工程大学与金坛市签约会圆满成功
    金坛亿通热烈祝贺南京信息工程大学与金坛市签约会圆满成功 5.15日由金坛市市长谭子祥,金坛市科学技术局局长王洪祥率领,市团委组织部、镇科长团主任和10家重点骨干企业领导和负责人组成的考察团赴南京,与南京信息工程大学进行签约仪式,南京信息工程大学前身是有&ldquo 中国气象人才摇篮&rdquo 美誉的南京气象学院,始建于1960年,1978年被确定为全国重点大学,2004年更名为南京信息工程大学,是江苏省人民政府、教育部和中国气象局三方共建的全国重点高校,是江苏省重点建设大学,教育部本科教学工作水平评估优秀学校,具有完善的学士、硕士、博士教育培养体系,并设有博士后科研流动站 。 南京信息工程大学党委副书记李刚,科学技术处副处长赵显富及学校各院系的院长教授分别出席了这次会议。很荣幸我公司(金坛市亿通电子有限公司)也出席并在此对接活动中受益匪浅。 江苏省金坛市亿通电子有限公司、是一家专业从事生产环境监测、卫生防疫用的分析仪器、医疗器械,以及实验室仪器、比色皿、烧杯、量筒、移液管、玻璃仪器的生产企业、公司的所有产品通过国家ISO9001认证。 亿通电子公司从成立以来、将优秀的环境监测仪器、分析仪器、水质 大气 土壤采样器和实验室仪器推入市场、为出入境检验检疫局、全国数以万计的卫生防疫站、疾病控制中心、环境监测站、大专院校提供了大量技术先进的便携式仪器。卫生监督机构。 公司主要产品有: 大气采样器、粉尘采样器、六级微生物采样器、气溶胶采样器、呼吸性粉尘采样器、气体检测仪、四合一在线气体检测仪、远程传输在线气体检测系统、空气采样装置。 个人剂量报警仪,多功能核辐射仪、垃圾场气体分析仪 瓶式深水采样器、全自动深水采样器、在线式水质远程检测系统,多参数水质检测、水质分析仪、水质检测仪、土壤采样器、污泥采样器、标准采样设备。 PHS-3C酸度计、肺活量计、电导仪、测汞仪、消煮炉、数字恒温消解仪。 实验室仪器和辅助设备: 生化培养箱、光照培养箱、恒温恒湿培养箱、振荡培养箱、恒温摇床培养箱、电热恒温干燥箱、冷却水循环机、霉菌培养箱、立式双层恒温摇床。 大功率磁力搅拌器、集热式磁力搅拌器、、电动搅拌器。 离心机、高速离心机、 高速匀浆机、组织捣碎机、固体样品粉碎机。 恒温水浴锅、三用恒温水箱、恒温干式器、试管加热器、低温恒温槽。 水浴恒温振荡器、微量振荡器、脱色摇床、冷冻水浴恒温振荡器、全温振荡器、冷冻气浴振荡器、内置式超级恒温水浴、超级恒温油浴 石英亚沸蒸馏器、双重蒸馏水器。 隆重推出以下产品 四合一水质检测系统、水质在线检测远程传输系统、、四合一气体检测系统、有害气体在线检测远程传输系统 。注:本公司是这四种新产品的国内首家生产商, 江苏金坛市亿通电子有限公司 地 址:金坛市经济开发区华兴路180号 邮编:213200 电 话:0519-82616576 82616366 传 真:0519-82613699 E-mail:yt82616576@163.com 联系QQ:1318436540 1377263351 网 址:www.eltong.com www.kx17.net.cn http://jtsytdz.cn.alibaba.com/
  • 人和科仪“免费维修月”圆满结束
    上海人和科学仪器有限公司为期2个月的&ldquo 免费维修月&rdquo 活动已圆满落下帷幕,自2009年3月开始,联合国外厂商开展的免费维修月活动,得到了广大客户的大力支持,取得了良好的社会效应。 此次活动人和科仪本着&ldquo 热情、周到、诚信、高效&rdquo 的服务宗旨,在让客户得到充分实惠的同时,更让客户感受到了来自人和科仪的热忱关怀。在活动中,对于任何送修的仪器,我们的技术人员都会为其提供免费的人工检测及维修服务。我们凭借过硬的技术实力,快捷的维修速度,解决了客户的一切后顾之忧。 &ldquo 免费维修月&rdquo 结束了,但我们的热情犹在。感谢一路支持我们的客户朋友们,我们将竭诚为大家创造更好的服务环境,提供更多的优惠选择! 上海人和科学仪器有限公司 地址:上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司十数年一直致力于提升中国实验室生产力水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现&ldquo 为客户创造更多价值&rdquo 的承诺。主要代理品牌:德国IKA、MEMMERT、ILMVAC、Miele、SIEMENS、EXAKT、美国COLE-PARMER、HACH、BROOKFIELD、AMETEK、日本ATAGO、ESPEC、MINOLTA等。】
  • Sigma-Aldrich携手瑞士万通 举办卡尔费休水份滴定技术培训班
    仪器信息网讯 2010年10月22日,西格玛奥德里奇(上海)贸易有限公司(Sigma-Aldrich(China))与瑞士万通中国有限公司(Metrohm China LTD.)在北京燕山大酒店联合举办“2010卡尔费休水份滴定技术培训班”。此次卡尔费休水份滴定技术培训班,分别在中国广州、上海、北京三地巡回举办。10月22日北京是此次讲座的最后一站。   此次培训班特别邀请到了来自Sigma-Aldrich公司Karl Fischer HYDRANAL® 生产原厂的专家——Helga Hoffmann女士。Helga Hoffmann女士从事Karl Fischer研究30余年,拥有多项Karl Fischer产品专利。   技术培训班现场   本次技术培训班由西格玛奥德里奇(上海)贸易有限公司产品专员马蕊华女士主持,Helga Hoffmann女士与瑞士万通中国有限公司高级应用工程师龚雁女士分别作了报告,旨在希望能够通过让广大用户更好地了解Karl Fischer试剂的应用,来帮助他们更好地使用Karl Fischer滴定方法和卡氏水份测定仪检测水份。来自石化、药品、食品等领域的80余名学员参加了本次技术培训班,仪器信息网作为特邀媒体也参加了本次活动。   Karl Fischer滴定方法专家 Helga Hoffmann女士   Helga Hoffmann女士的报告内容主要内容可分为三方面:   (1) Karl Fischer滴定的基本原理   报告内容涉及:卡尔费休完美水份滴定的必备要素 卡尔费休法反应方程式;pH值对卡尔费休法的影响;容量法与库仑法的特点与适用范围说明;卡尔费休法的基本滴定操作步骤等。   (2) 困难样品的Karl Fischer滴定   Helga Hoffmann女士在报告中说到:日常水份测定试验中会遇到糖果、药品、醛酮类、含硫化合物、酸/碱性样品等复杂样品,这些复杂样品须通过加入助溶剂、使用卡式炉与均质器、调整反应温度、控制载气流速等方式加以处理,使得实验结果保持准确性。同时,在实验过程中,一定要注意空气中水份影响结果的准确性,以及排除副反应对Karl Fischer滴定的影响。   (3) 日常Karl Fischer滴定操作技巧   Karl Fischer滴定的准确性和可信度受反应时间、漂移值、副反应、电极、滴定度、使用干燥剂、样品处理等多种因素影响,Helga Hoffmann女士针对这些方面,对在日常操作中如何提高Karl Fischer滴定准确性的方法做了详细阐述。   报告中,Helga Hoffmann女士也结合具体的应用介绍了Sigma-Aldrich公司Fluka/Riedel-de haen品牌的Karl Fischer无吡啶水分测定试剂——HYDRANAL® 系列试剂产品。Fluka/Riedel-de haen拥有Karl Fischer的50余项专利,产品通过了严格的ISO 17025质量认证,具有滴定速度快、终点稳定、结果精确、低毒性、保质期长等优点。同时,针对不同的使用情况,Fluka /Riedel-de haen均有对应的产品,这对用户而言非常便捷。     Metrohm瑞士万通中国有限公司高级应用工程师 龚雁女士   龚雁女士在报告中介绍了瑞士万通的发展情况、瑞士万通水份仪及滴定仪的技术、性能特点:Metrohm(瑞士万通)成立于1943年,是研究多种离子分析和电化学技术的跨国分析仪器公司,现旗下拥有Metrohm、Applikon和Autolab三大品牌,产品包括离子色谱仪、电位滴定仪、Karl Fischer水分滴定仪、伏安极谱痕量分析仪、电化学工作站、SPR、精密pH计、电导仪、离子计等。2010年,瑞士万通中国有限公司成立十周年,十年来,公司获得了很大的发展。   Metrohm 的Karl Fischer水分滴定仪包括容量法卡氏水份测定仪、库仑法卡氏水份测定仪,以及集容量法与库仑法于一体的水份测定仪,产品逐渐自动化、智能化。852 Titrando卡氏水份测定仪堪称世界上最高端的卡氏水份测定仪:汇集了瑞士万通专利的无死体积滴定管与多项智能化技术;兼具库仑法/容量法两种卡氏水份滴定方法,水份测定范围从微克到100%;采用tiamoTM软件控制,可同时进行两种测定。 西格玛奥德里奇(上海)贸易有限公司产品专员马蕊华女士主持会议   现场展出的瑞士万通852 Titrando卡氏水份测定仪   学员踊跃提问   附录1:西格玛奥德里奇(上海)贸易有限公司   http://www.sigmaaldrich.com   附录2:瑞士万通中国有限公司   http://www.metrohm.com.cn/
  • 获奖名单揭晓!“欧波同杯”第九届失效分析能力赛圆满闭幕
    仪器信息网讯 2024年8月25日上午,“欧波同杯”第九届失效分析能力赛暨第七届材料专业大学生研究能力挑战赛的夺标赛在扬州大学扬子津校区文体馆三楼报告厅打响!经过为期3天如火如荼的挑战赛和决赛,以及25日上午的激烈夺标赛,在本届评委会专家、全体参赛师生、大赛会务组全体工作人员和承办单位学生志愿者等的协同努力下,比赛顺利完成了所有评审程序,最终获奖结果在当天下午闭幕式上揭晓并颁奖。闭幕式现场本届大赛期间,由15位专家组成的评委会,本着“公平、公正、公开、科学、规范”的原则,从参赛作品的选题重要性、检测可靠性、分析准确性、结论正确性等方面,对每一件作品的实用性、可行性、合理性等进行了评判,按照得分高低,确定了各奖项的归属。本届赛事共决出精研赛第一名21 项、第二名 55 项、第三名 32 项,创新赛第一名 14 项、第二名 36 项、第三名 21 项,挑战赛第一名 5 项、第二名 13 项、第三名 7 项,失效分析能力赛国际学生组获奖 5 项,夺标赛第一名 6 项、第二名 6 项、第三名 5 项;对所有获奖项目指导教师均授予优秀指导教师奖,以上为项目类奖项;本届赛事还设置了“承办纪念奖”授予大赛承办单位——扬州大学。大赛秘书长、中国体视学学会金相与显微分析分会副主任委员、东北大学尹立新教授主持闭幕式尹立新教授介绍到,出席闭幕式的领导和嘉宾有:扬州大学教务处处长严长杰教授;大赛执行主席、复旦大学杨振国教授;中国机械工程学会失效分析分会理事长、北京航空航天大学张峥教授;欧波同(中国)有限公司费明非总监;扬州大学机械工程学院尤玉军书记;扬州大学机械工程学院张超院长等。出席闭幕式的还包括组委会代表、评委会各位专家、承办单位扬州大学各位领导、协办单位领导、全体参赛师生。尹立新教授代表组委会向远道而来的各位领导、专家和同仁们表示热烈的欢迎!向在比赛中展现卓越才华的各位参赛选手们致以诚挚的祝贺!向承办单位扬州大学机械工程学院的老师和志愿者同学们的辛勤付出表示衷心的感谢!扬州大学教务处处长 严长杰教授 代表承办单位致辞严长杰教授首先对大赛的成功举办表示祝贺,并对本次大赛主办单位、协办单位,以及所有关心和支持扬州大学发展的各界朋友表达了诚挚感谢。比赛中,评审专家们以专业和高质量的评审工作,确保了比赛的公正性和权威性。参赛队员们奋力拼搏,展现出了新的水平和高度,无论是对经典案例的深入挖掘,还是对前沿思维和方法的探索,都彰显了失效分析领域的广阔前景。严教授还提到,党的二十届三中全会强调了科教兴国、人才强国和创新驱动发展的战略,鼓励青年才俊投身科学研究,激发全社会的创新热情。失效分析大赛作为全国范围内具有影响力的项目,有效培养了学生的科技创新能力、工程实践能力和团队协作能力,得到了广大师生的积极响应。通过本次大赛,师生们的创业积极性得到了进一步的调动,培养了严谨求实的学习态度和勇于探索的科学精神。扬州大学作为深化创新创业教育改革的示范高校,将倍加珍惜这一机遇,总结办赛经验,为大赛的持续高质量发展和教育强国建设贡献力量。大赛执行主席、复旦大学杨振国教授致辞杨教授首先对本次大赛的所有参与人员表示了感谢,包括领导、评委、指导教师、参赛选手以及会务组的志愿者等。他指出,本届赛事在新形势下,将比赛分为大奖赛和挑战赛两个部分,选手们展现了出色的表述、分析和创新能力,对我国失效分析领域的进步和发展具有积极影响。参赛作品内容广泛,涉及10多个行业,从传统结构材料到先进功能材料,再到国家重大需求的机电设备,均体现了选手们对实际问题的深刻理解和解决方案的创新性。杨教授特别提到,本届赛事中不少作品具有新意,选手们展现出清晰的思路、流畅的陈述和准确的回答,反映了青年人的进取精神和专业素养。评委们的专业评审也是赛事成功的关键。14位评委以公平公正的态度,耐心听取每位选手的陈述,既肯定了他们的研究成果,也指出了改进之处,为选手们指明了方向。最后,杨教授对资助方、承办方、协办方以及中国机械工程学会失效分析分会和可靠性分会的支持表示感谢。同时,也对评委的精彩点评、指导老师的精心指导以及会务组和志愿者的辛勤工作表示了诚挚的感谢。接着,受本届评审委员会全体专家委托,现场依次宣布揭晓了本届评审委员会产生的获奖名单并颁奖、合影留念。颁奖环节一:失效分析能力赛——本科生精研赛第一、二、三名颁奖扬州大学机械工程学院张超院长为部分本科生精研赛第三名获奖同学代表颁奖并合影本科生精研赛第三名获奖全名单姓名学校/单位本科生精研赛A-D组第三名禹富森丁华波中北大学郑苏文周顺志湖南工业大学王治强许立平江苏理工学院毛鑫豪安徽工业大学许玉波姚昕宇晋中学院罗远流陈楚霖百色学院张一涵陆佳萍晋中学院邵雅菲伍俊燕西南石油大学王昭翔谢敏幸西南石油大学张旋旋王杰晋中学院关钰凡谢天宇晋中学院张浚哲李孟翔中北大学张晨彬张淑媛晋中学院本科生精研赛E-H组第三名纪守晔韩乾瑞湖北汽车工业学院科技学院曹璨谢跃龙岩学院黄仁禄陈晓婷龙岩学院苏凯吴昊江西科技师范大学潘尔镝康君同中南大学徐杭忆柴宗旭龙岩学院周婉莹尹孙蓉中南大学刘湘田季衍名南京工业大学查瑞琦张妍西安航空学院霍博雄西安航空学院张越月岳永乾西安航空学院杨阳张心睿江苏理工学院李航宇叶培林龙岩学院王亚非阳启航中南大学扬州大学机械工程学院尤玉军书记为部分本科生精研赛第二名获奖同学代表颁奖并合影本科生精研赛第二名获奖全名单姓名学校/单位本科生精研赛A-D组第二名王紫涵王朝阳河海大学鱼田宇雷佳乐西安石油大学陈雅诗王珞琦南京理工大学周政琦张家妮南京理工大学李煜朱梓瑗中南大学刘星宇郑仁奕南京工业大学吕偲妮袁晶江西科技师范大学鄢秀圆李书涵江西科技师范大学刘杰王一凡中国石油大学(华东)杨佳俊饶瀚宇南京工业大学闫心雨曹翔宇西安石油大学章锐哲卢晓骏中南大学张云轩何维钊西安石油大学朴贤政刘慧杰南京理工大学张炜霖李嘉兴西安石油大学裴梅羽张书桐中北大学王晨溪杨蕊子西安航空学院查川阳符义森西安石油大学黄昊泽杨存玙晋中学院向冬东段武林西安航空学院刘苗苗张雨帆山西晋中理工学院赵洛瑶李世晶中北大学庞志海张应骏西安工业大学本科生精研赛E-H组第二名颜志杰张锦阳中国石油大学(华东)周梓炫高欣东北大学秦皇岛分校张海啸焦钰婷西安工业大学刘思灵黄小玻百色学院文梅刘彤中国石油大学(华东)黄佳佳孙一啸南京理工大学高鹤菲于佳爽中国矿业大学安枭枭黎文福江西科技师范大学付文珊张海月江西科技师范大学杨阳安徽工业大学胡昊涵黄伟伟中国矿业大学刘志扬张超中国矿业大学祝恒亮江顺扬州大学杨鑫吕志豪扬州大学李木子李雪梅中国矿业大学王子文陈菁南京工业大学于延泽张云燕中国石油大学(华东)顾金龙黄嘉雯中国矿业大学茅佳烨陈静怡江苏理工学院钱佳怡栾欣铭中国石油大学(华东)李邵琦张乐天湖北汽车工业学院王照壹吴佳颖龙岩学院刘霖马江鑫湖北汽车工业学院科技学院赵富强翟佳文湖北汽车工业学院欧波同公司费明非总监为部分本科生精研赛第一名获奖同学代表颁奖并合影本科生精研赛第一名获奖全名单姓名学校/单位本科生精研赛A-D组第一名张丽马五旦湖南工业大学陈宏炜赵洋南京工业大学黄心玫张钧赫厦门理工学院张易易任聪西南石油大学徐剑胡峻源西安石油大学纪健李铃南京工业大学吴琦美甘茂埼西南石油大学方雨欣郭树轩西南石油大学欧阳辉宋鹏九江学院本科生精研赛E-H组第一名黄京悦仲伟健湖南工业大学岳思宇王磊扬州大学翟志鹏龚鹏湖北汽车工业学院张晨阳王君玫西安航空学院余家娴胡静莹中国矿业大学江源勇贾榆鸿龙岩学院吴晚晴董焕雨江西科技师范大学王贺王艺涵南京理工大学董姿宇陶柳湖南工业大学颁奖环节二:失效分析能力赛——本科生创新赛第一、二、三名颁奖评委赵红利老师为部分本科生创新赛第三名获奖同学代表颁奖并合影本科生创新赛第三名获奖全名单姓名学校/单位本科生创新赛第三名孙昊天赵佳敏中南大学贾昌明马佳宇晋中学院蓝宇豪湖南工业大学刘张有赵佳欣中国矿业大学何爽徐枭龙湖北汽车工业学院马五旦黄京悦湖南工业大学段嘉宜姚星元西安理工大学周芃宇粟心钰河海大学刘文杰陈旋河海大学周军豪张云轩西安石油大学胡安琦郭琳滢龙岩学院黎文湛蓝昌佳东莞理工学院王志诚赵丹萌西安航空学院闫昊博杨显平东北大学秦皇岛分校评委刘婉颖老师为部分本科生创新赛第二名获奖同学代表颁奖并合影本科生创新赛第二名获奖全名单姓名学校/单位本科生创新赛第二名谢槟堃吴钺中南大学戴佳明严邵君湖北汽车工业学院科技学院史昕禾张海峰山东科技大学穆俊儒满小宁内蒙古科技大学任嘉玮万凯青南昌航空大学朱昕怡南京工业大学陈泽林陈争平西安石油大学魏文星张欣宇佳木斯大学彭宇杨牧天中国科学技术大学赵小红刘祖松西安石油大学黄天宇舒奇湖北汽车工业学院王假李建锐湖北汽车工业学院科技学院彭家鑫黄昱豪中南大学王昊畅乐斌西南石油大学陈煜宋利群湖北汽车工业学院王艺霖李兴灿中国科学技术大学米卓任弘川西安航空学院俞凡朱菁茹江苏理工学院王先友高天旭河海大学张津玮张鹤佳木斯大学吴璇王鹏扬州大学李健西安航空学院邱立进孙海楠哈尔滨工业大学(深圳)评委刘澄老师为部分本科生创新赛第一名获奖同学代表颁奖并合影本科生创新赛第一名获奖全名单姓名学校/单位本科生创新赛第一名张铭隽贺正杰西安石油大学闫兵兵余嘉乐常州大学孙思玥王方圆西安理工大学姚佳辉谢攀西南石油大学刘竹溪银庆璐西南石油大学伍倩佟李炳燏华中科技大学王靖博王爱爱晋中学院宋慧慧刘丽娟西南石油大学康亚轩尹泳力南昌航空大学颁奖环节三:失效分析能力赛——研究生精研赛第一、二、三名颁奖评委潘安霞老师为部分研究生精研赛获奖同学代表颁奖并合影研究生精研赛获奖全名单姓名学校/单位研究生精研赛第一名王鑫鑫王雨晗东北大学白浩龙刘忠湖北汽车工
  • 欧波同材料显微分析技术交流培训班—福州站圆满结束
    2019年11月8日,欧波同材料显微分析技术交流培训班—福州站圆满结束,来自福建及周边地区的近百位材料显微分析专家和技术人员莅临会议现场,共同探讨蔡司光镜、电镜在材料领域的显微分析应用技术,与会专家展开热烈讨论,课题涉及汽车、机械、电子、化工、新材料、新能源等多个领域。会议现场还展示了蔡司智能超景深三维数码显微镜Smart zoom 5、研究级体视显微镜 Stemi 508及最新推出的智能数字显微镜Axio Scope 5。会议现场首先,欧波同(中国)有限公司副总经理于小涛先生介绍了欧波同产品线及公司业务成长趋势。作为德国蔡司在亚太区的重要合作伙伴,欧波同集团历经十几年的高速发展,倾力打造出国内一流的实验室解决方案服务品牌,逐步完善了以蔡司光学、电子显微镜为核心的显微分析产品线,生态业务布局涉及理化检测产品平台、软件与解决方案、耗材与售后服务、第三方检测平台、标准物质等多个领域。欧波同(中国)有限公司副总经理于小涛先生作公司介绍在技术报告环节,应用专家们围绕“蔡司显微镜在材料分析领域的应用”“现代金相分析技术在工业生产中的应用”“ 欧波同显微分析新技术”及“显微分析技术在材料测试中的应用”等主题展开报告,详细介绍了在材料分析研究中如何有效地利用光学显微镜和电子显微镜来实现技术突破,使显微分析技术更好地服务于质控和研发工作。欧波同(中国)有限公司光镜技术部经理王守壮先生介绍《蔡司显微镜在材料分析领域的应用》中国科学院金属研究所研究员盖秀颖女士作技术报告《现代金相分析技术在工业生产中的应用》欧波同(中国)有限公司产品应用工程师卞鹏举先生介绍《欧波同显微分析新技术》北京欧波同检测技术有限公司产品工程师吴成先生介绍《显微分析在材料测试中的应用》培训会议现场所展示的蔡司光学显微镜:智能超景深三维数码显微镜Smart zoom 5、研究级体视显微镜 Stemi 508及最新推出的智能数字显微镜Axio Scope 5,吸引着现场客户围观、体验。客户参观体检欧波同显微分析设备欧波同集团能够在激烈的市场竞争中实现稳步转型,实现企业发展的巨大突破与飞跃,关键在于把握住科技创新这个核心竞争力。自成立以来,欧波同始终注重技术团队培养,不断完善服务体制,积极拓展分析产线,与国际化公司深入交流市场战略。顺应行业技术发展趋势,着眼客户根本需求,与合作伙伴携手并进,为实现自主创新、科技领先而砥砺前行!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制