当前位置: 仪器信息网 > 行业主题 > >

氮杂卓氯化物

仪器信息网氮杂卓氯化物专题为您提供2024年最新氮杂卓氯化物价格报价、厂家品牌的相关信息, 包括氮杂卓氯化物参数、型号等,不管是国产,还是进口品牌的氮杂卓氯化物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮杂卓氯化物相关的耗材配件、试剂标物,还有氮杂卓氯化物相关的最新资讯、资料,以及氮杂卓氯化物相关的解决方案。

氮杂卓氯化物相关的资讯

  • 硝酸盐、总磷、氯化物试剂整盒免费试用,不要错过!
    硝酸盐、总磷、氯化物试剂整盒免费试用,不要错过!哈希公司 申请条件立即申请!我们将从符合以上条件的申请者中,抽取5名幸运儿,可直接获得所申请的整盒试用试剂。点击下方【原文链接】即可填写试剂申请表,获得试用机会!上期获得试剂名单上期获得礼品名单预制试剂,将为您提供更加便捷可靠的水质测试方案点击下方的阅读原文申请试用吧!END
  • 青海省标准化协会发布《工业废水中氯化物的测定 电位滴定法》团体标准
    由海西中科生态环境监测有限公司、大柴旦吉利化工有限公司、大柴旦中环联生物科技有限公司、青海中航硅材料有限公司、海西州盐化工产品质量检验检测中心、青海盐湖工业股份有限公司、青海省专利服务中心有限公司、青海民族大学、青海创和科技咨询有限公司等单位起草的《工业废水中氯化物的测定 电位滴定法》团体标准,经征求意见、多次修改,已通过专家评审。根据《青海省标准化协会团体标准管理办法》相关规定,予以批准发布。标准发布日期为2023年12月14日,实施日期为2023年12月14日。团体标准号为:T/QAS 099-2023《工业废水中氯化物的测定 电位滴定法》 青海省标准化协会2023年12月14日工业废水中氯化物的测定 电位滴定法.pdf团体标准的公告.jpg
  • 《污(废)水处理用碳源药剂》标准首发!规定多项指标
    近日,中国技术经济学会批准发布《污废水处理用碳源药剂》T/CSTE0001—2021团体标准。本文件规定了污(废)水处理用碳源产品的技术要求、试验方法、检验规则、标志、包装、运输和贮存要求。本文件适用于污(废)水处理用的碳源产品,该产品主要用于废水、污水的生物反硝化脱氮过程中有机碳元素的补充、水质可生化性差时提高其可生化性。《污(废)水处理用碳源药剂T/CSTE 0001-2021》前言本文件按照 GB/T 1.1-2020《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定起草。请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。本文件由中国技术经济学会归口。本文件为首次发布。1、范围本文件规定了污(废)水处理用碳源产品的技术要求、试验方法、检验规则、标志、包装、运输和贮存要求。本文件适用于污(废)水处理用的碳源产品,该产品主要用于废水、污水的生物反硝化脱氮过程中有机碳元素的补充、水质可生化性差时提高其可生化性。2、规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB 190-2009 危险货物包装标志GB/T 191-2008 包装储运图示标志GB/T 261 闪点的测定 宾斯基-马丁闭口杯法GB/T 510-2018 石油产品凝点测定法GB/T 601 化学试剂 标准滴定溶液的制备GB/T 602 化学试剂 杂质测定用标准溶液的制备GB/T 603 化学试剂 试验方法中所制剂及制品的制备GB/T 6678 化工产品采样总则GB/T 6679 固体化工产品采样通则GB/T 6682-2008 分析实验室用水规格和试验方法GB 6944-2012 危险货物分类和品名编号GB/T 8170 数值修约规则与极限数值的表示和判定GB 11893 水质 总磷的测定 钼酸铵分光光度法GB 12268 危险货物品名表GB/T 21621 危险品 金属腐蚀性试验方法GB/T 22592 水处理剂 pH值测定方法通则GB/T 22594 水处理剂 密度测定方法通则GB/T 33086 水处理剂 砷和汞含量的测定 原子荧光光谱法GB/T 37883 水处理剂中铬、镉、铅、砷含量的测定 电感耦合等离子体发射光谱(ICP-OES)法HJ 505-2009 水质 五日生化需氧量(BOD5)的测定 稀释与接种法HJ 636-2012 水质 总氮的测定 碱性过硫酸钾-消解紫外分光光度法HJ 828-2017 水质 化学需氧量的测定 重铬酸盐法3、术语和定义下列术语和定义适用于本文件。3.1 碳源carbon source可为污(废)水生化处理系统的微生物生长代谢提供营养物的含碳元素化合物。3.2 有效碳源成分effective carbon source composition具有单一分子式和分子结构的、且易被微生物利用的有机化合物,包括甲醇、乙醇、丙醇、丁醇、乙二醇、丙三醇、丁醇、戊醇等小分子醇类,甲酸、乙酸、丙酸、乳酸、丁酸、乙酸盐、柠檬酸、柠檬酸盐等小分子有机酸和有机酸盐类,葡萄糖、果糖、蔗糖等糖类物质。规定有效碳源成分需符合相应的国家或者行业标准的要求。3.3 单一碳源single-component carbon source只含有一种有效碳源成分的碳源。3.4 复合碳源composite carbon source由两种或两种以上的有效碳源成分组成、有效碳源成分之间须兼容且无化学反应、不存在安全风险的碳源。本文件中所涉及的复合碳源不包含固体产品。4、技术要求4.1 用于生产单一碳源和复合碳源的有效碳源成分应符合已发布的国家标准、行业标准的质量要求和有关规定,其安全要求按照GB 12268-2012执行,详见附录A。4.2 碳源生产工艺宜采用国家鼓励的先进技术工艺,不应使用国家或有关部门发布的淘汰或禁止的技术、工艺或材料,不得超越范围选用限制使用的材料生产。4.3 以不危及自身或他人健康和安全的方式进行产品的生产和复配,碳源产品应稳定,无后续化学反应。4.4 液体单一碳源产品为无色或微黄色透明液体,不得有与产品原料气味不相符的气味。固体产品为无色透明或白色结晶粉末或结晶颗粒,无臭无异味,无肉眼可见杂质,溶于水。复合碳源产品为无色至棕黄色透明液体,不得有与产品配方中碳源有效成分不相符的气味。4.5 污(废)水处理用碳源产品按本文件规定的试验方法检测应符合表1要求。4.6 污(废)水处理用碳源产品的安全性指标应符合表 2 要求。5、试验方法5.1 通则本文件中,除另有规定外,所用试剂,在没有注明其他要求时,均指分析纯试剂;所用水为蒸馏水应符合 GB/T 6682 中三级规格的水或相应纯度的水。试验方法中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按 GB/T 601、GB/T 602 和 GB/T 603 之规定制备。所用溶液在未注明用何种溶剂配制时,均指水溶液。5.2 外观和气味检验在自然光下,于白色衬底的表面皿或白瓷板上观察色泽和状态,嗅其味。5.3 有效碳源成分含量的测定单一碳源的有效碳源成分按照成分所归属的行业标准或国家标准所规定的方法进行测定,此处不一一列出。本标准不对复合碳源的有效碳源成分含量进行限定。5.4 化学需氧量(CODCr)的测定5.4.1 方法提要在试样中加入已知量的重铬酸钾溶液,并在强酸介质下以银盐作催化剂,经沸腾回流后,以试亚铁灵为指示剂,用硫酸亚铁铵滴定水样中未被还原的重铬酸钾,由消耗的重铬酸钾的量计算出消耗氧的质量浓度。5.4.2 试样溶液的制备称取10 g试样,精确至0.01 g,加水转移至1 L容量瓶中,用水稀释至刻度,摇匀,此为试液A。移取适量试液A至100 mL容量瓶中,加水稀释至刻度,摇匀,采用逐级稀释法,使待测溶液中CODCr范围在50 mg/L~700 mg/L。若稀释液浑浊,用中速滤纸干过滤。5.4.3 测定取稀释后待测液按HJ 828-2017中9.2规定的方法测定。5.4.4 结果计算试样中化学需氧量(CODCr)以质量浓度ρ1计,单位以毫克每升(mg/L)表示,按式(1)计算:5.5 BOD5/CODCr 的测定5.5.1 试样溶液的制备称取10 g试样,精确至0.01 g,加稀释水(HJ 505-2009中的4.4)转移至1 L容量瓶中,用稀释水定容至刻度,摇匀,此为试液B。移取适量试液B于100 mL容量瓶中,采用逐级稀释法,用接种稀释水(HJ 505-2009中的4.5)稀释至刻度,摇匀,使待测溶液中BOD5范围在2 mg/L~6 mg/L。5.5.2 测定取稀释后的待测溶液按HJ 505-2009中的7.2规定的稀释接种法测定。5.5.3 结果计算5.5.3.1 五日生化需氧量(BOD5)试样中五日生化需氧量(BOD5)以质量浓度ρ2计,单位以毫克每升(mg/L)表示,按式(2)计算:5.5.3.2 BOD5/CODCr试样的 BOD5/CODCr 以 R 计,按式(3)计算:R = ρ2/ρ1..........................(3)式中:ρ2——试样中五日生化需氧量(BOD5)的质量浓度的数值,单位为毫克每升(mg/L);ρ1——试样中化学需氧量(CODCr)的质量浓度的数值,单位为毫克每升(mg/L)。计算结果保留两位有效数字。5.6 pH 的测定5.6.1 方法提要将配有测量电极和参比电极的酸度计浸入同一被测溶液中,测量试验溶液的 pH 值。5.6.2 仪器设备酸度计:精度为 0.02pH 单位,配有玻璃测量电极和饱和甘汞参比电极或复合电极。5.6.3 试验步骤将适量试样倒入烧杯中,将电极浸入溶液,在已定位的酸度计上读出 pH 值。5.7 密度的测定按 GB/T 22594 规定的方法测定。5.8 水不溶物含量的测定5.8.1 方法提要试样用水溶解后,经过滤、洗涤,烘干至恒量,求出水不溶物的含量。5.8.2 仪器设备5.8.2.1 坩埚式过滤器:滤板孔径为 5 μm~15 μm。5.8.2.2 电热干燥箱:温度可保持在 105 ℃±2 ℃。5.8.3 试验步骤称取约 30 g 试样,精确至 0.01 g,置于 400 mL 烧杯中,加 200 mL 水使之溶解。用已于 105 ℃±2 ℃恒量的坩埚式过滤器过滤,用水洗涤 10 次,每次用水 20 mL。将过滤器连同滤渣在 105 ℃±2 ℃下干燥至恒量。5.8.4 结果计算水不溶物含量以质量分数w1计,按式(4)计算:式中:m2——干燥后坩埚式过滤器和滤渣的质量的数值,单位为克(g);m1——坩埚式过滤器的质量的数值,单位为克(g);m——试料的质量的数值,单位为克(g)。计算结果表示到小数点后两位。5.8.5 允许差取平行测定结果的算术平均值为测定结果,两次平行测定结果的绝对差值不大于0.02%。5.9 总磷含量的测定5.9.1 原理在中性条件下用过硫酸钾使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。5.9.2 试样溶液的制备称取 10 g 试样,精确至 0.01 g,加水转移至 100 mL 容量瓶中,用水定容至刻度,摇匀,此为试液 C。移取适量试液 A 于 100 mL 容量瓶中,采用逐级稀释法,用水稀释至刻度,摇匀,使待测溶液中总磷含量范围在 0.01 mg/L~0.6 mg/L。5.9.3 测定移取稀释后的待测溶液 25 mL 按 GB/T 11893-1989 中的 6.2.1.1 进行消解,按 6.2.2~6.2.4 规定的方法测定,同时进行空白试验。若消解后的溶液呈黄色,则应减少待测溶液的取样量重新进行消解。5.9.4 结果计算试样中总磷的含量以质量分数�2计,按式(5)计算:5.10 总氮的测定5.10.1 原理在120 ℃~124 ℃下,碱性过硫酸钾溶液使样品中含氮化合物的氮转化为硝酸盐,采用紫外分光光度法于波长220 nm和275 nm处,分别测定吸光度A220和A275,两者差值为校正吸光度A,总氮(以N计) 含量与校正吸光度A成正比。5.10.2 试样溶液的制备称取10 g试样,精确至0.01 g,加水转移至100 mL容量瓶中,用水稀释至刻度,摇匀。此为试液D。移取10 mL试液D至100 mL容量瓶中,加上稀释至刻度,摇匀。必要时,采用逐级稀释法,用水稀释至刻度,摇匀,使待测溶液中总氮含量范围在0.20 mg/L~7.00 mg/L。5.10.3 测定移取10 mL 试样溶液于25 mL 具塞磨口玻璃比色管中,加入10.00 mL 碱性过硫酸钾溶液(HJ 636-2012 中的 6.11),按 HJ 636-2012 中的 9.1 规定的方法测定。在绘制校准曲线时,碱性过硫酸钾溶液的加入量为 10.00 mL。5.10.4 结果计算试样中总氮含量以质量分数w3计,按式(6)计算:5.11 氯化物(Cl)含量的测定5.11.1 方法提要在酸性条件下,溶液中的氯化物与硝酸银溶液反应生成氯化银沉淀,使溶液浑浊。与标准比浊溶液进行目视比浊。5.11.2 试剂和材料5.11.2.1 硝酸溶液:1+3。5.11.2.2 硝酸银溶液:17 g/L。5.11.2.3 氯化物标准贮备溶液( Cl ):0.1 mg/mL。5.11.2.4 氯化物标准溶液:10 ug/mL。移取 10.00 mL 氯化物标准贮备溶液,置于 100 mL 容量瓶中, 用水稀释至刻度,摇匀。此溶液现用现配。5.11.3 试验步骤5.11.3.1 样品溶液的制备:准确称取 10 g 样品,精确至 0.01 g,加水溶解后转移至 50 mL 容量瓶中, 加水稀释至刻度,摇匀。5.11.3.2 标准比浊溶液的制备:用移液管量取氯化物(Cl)标准溶液 5.0 mL 于 25 mL 比色管中,加2 mL 硝酸溶液,再加入 2 mL 硝酸银溶液,用水稀释至刻度,摇匀,于暗处放置 10 min。5.11.3.3 用移液管量取 2 mL 样品溶液于 25 mL 比色管中,与标准比浊溶液同时同样处理。其浊度不得大于标准比浊溶液。5.12 硫酸盐(SO4)含量的测定5.12.1 方法提要将试样用水溶解后,溶液中的硫酸盐与氯化钡反应生成硫酸钡沉淀,使溶液浑浊。与标准比浊溶液进行目视比浊。5.12.2 试剂和材料5.12.2.1 氯化钡溶液:100 g/L。5.12.2.2 盐酸溶液:1+4。5.12.2.3 硫酸盐(SO4)标准贮备溶液:0.1 mg/mL。5.12.2.4 硫酸盐标准溶液:10 ug/mL。移取 10.00 mL 硫酸盐标准贮备溶液,置于 100 mL 容量瓶中, 用水稀释至刻度,摇匀。此溶液现用现配。5.12.3 试验步骤5.12.3.1 样品溶液的制备:准确称取 10 g 样品,精确至 0.01 g,加水溶解后转移至 100 mL 容量瓶中,加水稀释至刻度,摇匀。5.12.3.2 标准比浊溶液的制备:用移液管量取硫酸盐(SO4)标准溶液 5.0 mL 于 25 mL 比色管中,加2 mL 盐酸溶液,再加入 5 mL 氯化钡溶液,用水稀释至刻度,摇匀,放置 5 min。5.12.3.3 用移液管量取 2 mL 样品溶液于 25 mL 比色管中,与标准比浊溶液同时同样处理。其浊度不得大于标准比浊溶液。5.13 重金属的测定5.13.1 汞(Hg)和 砷(As)含量的测定按 GB/T 33086 规定的方法测定。5.13.2 镉(Cd)、铬(Cr)和铅(Pb)含量的测定按 GB/T 37883 规定的方法测定。5.14 闪点的测定按 GB/T 261 规定的方法测定。5.15 金属腐蚀速率的测定按 GB/T 21621 规定的方法测定。5.16 凝点的测定取适量试样(不需要脱水处理)按 GB/T 510-2018 中的 9.1 规定的方法测定。6、检验规则6.1 组批产品按批次检验,以同原料、同配方、同工艺、同班次所生产的产品为一批次。每批次产品应不超过 100 t。6.2 抽样6.2.1 采样单元按 GB/T 6678 规定确定采样单元数。6.2.2 液体抽样对桶装液体产品,采样时应将采样器深入桶内,从上、中、下部位采样,每个部位采样量不少于300 mL,将所采样品混匀,从中取出约 800 mL,分装于两只清洁、干燥的玻璃瓶中,密封。对于贮罐装液体产品,用采样器从罐的上、中、下部位采样,每个部位采样量不少于 500 mL,将所采样品混匀,从中取出约 800 mL,分装于两只清洁、干燥的玻璃瓶中,密封。6.2.3 固体抽样固体产品采样时,用采样器垂直插入至料层深度 3/4 处采样,按 GB/T 6679 的规定进行抽样,用四分法将所采样品缩分至不少于 200 g,分装于两只清洁、干燥的玻璃瓶中,密封。6.2.4 样品保存在密封的样品瓶上粘上标签,注明:生产厂名、产品名称、批号、采样日期和采样者姓名。一瓶供检验用,另一瓶保存三个月备查用。6.3 检验本标准规定的全部指标项目为型式检验项目,在正常生产情况下每 6 个月至少进行一次型式检验, 其中外观、CODCr、pH 值、密度、水不溶物、总磷、总氮、氯化物、硫酸盐指标项目应逐批检验。有下列情况之一时亦应进行型式检验:a) 产品定型时;b) 停产半年以上,又恢复生产时;c) 工艺、原料或生产人员发生较大差异时;d) 质量技术监督部门提出型式检验要求时。6.4 判定规则抽取样品经检验,所检项目全部合格,判该批产品为合格。若检验结果中有 1 项~2 项指标不符合本标准要求时,应重新自两倍量的包装单元中采样复验,若复验结果仍有一项不符合本标准要求时,则判定该批产品为不合格产品。若检验结果中有 3 项及以上指标不合格,判该产品为不合格。7、标志、包装、运输和贮存7.1 标志产品外包装上应有牢固清晰的标志,其内容包括:生产厂名,产品名称、商标、生产日期或批号、净质量、厂址、主要成分(适用于单一液体碳源和固体单一碳源,复合碳源除外)及含量、本标准编号以及 GB/T 191-2008 中规定的“怕晒”、“怕雨”和“向上”标志。每批出厂产品应附有质量检验报告和质量合格证。7.2 包装固体产品采用双层包装袋包装,每袋净质量 25 kg、50 kg 或依顾客要求而定。液体产品采用聚乙烯塑料桶包装,每桶净质量 25 kg、50 kg、250 kg、吨桶或依顾客要求而定。包装容器应整洁、卫生、无破损,应符合 GB/T 15346 的规定。7.3 运输运输设备应清洁卫生,产品在运输过程中严防暴晒、雨淋和受潮,不得与有毒、有害、有腐蚀性及强氧化性的物品混装、混运。7.4 贮存产品的存放地点应保持清洁、通风干燥、阴凉、严防日晒雨淋、严禁火种。不得与有害、有毒、有腐蚀性和含有异味的物品堆放在一起。液体产品保质期应为 6 个月,固体产品保质期应为 12 个月。8、安全要求部分产品按GB 6944《危险货物分类和品名编号》判定其是否属于第8类腐蚀性物质。如属于第8类腐蚀性物质,应按GB 190规定的“腐蚀性物质”要求标识。附录A(规范性) 原料危险性本文件所规定原料所对应的联合国编号、危险类别、包装要求见表A.1。
  • 使用超高效合相色谱系统测定雌二醇(Estradiol)色谱纯度
    目的 采用沃特世ACQUITY UPC2&trade 系统对雌二醇进行杂质分析,能获得和美国药典(USP)方法相当或者更好的结果。 背景 目前,美国药典(USP)检测雌二醇(estradiol)色谱纯度的方法使用4.6 x 250 mm的硅胶柱和含有2,2,4-三甲基戊烷、正丁基氯、甲醇45:4:1的流动相,流速2 mL/min。由于许多实验室都想限制脂肪烃和氯化物溶剂的使用,所以必须对替代性的色谱方法,如超临界流体色谱(SFC)进行评估。沃特世ACQUITY UPC2系统被用于开发测定雌二醇色谱纯度的方法。Ultra Performance Convergence Chromatography&trade (UPC2&trade )得到的结果直接和由目前的美国药典检测雌二醇杂质的方法对比。两种方法检测的结果相似,与美国药典使用的正相HPLC方法相比,UPC2方法检测雌二醇杂质的灵敏度更高。此外,使用UPC2时,样品的运行时间大大缩短,每次分析的总成本也显著降低(基于溶剂用量和废液处理成本计算)。 使用UPC2方法测定雌二醇的色谱纯度,其速度是目前正相HPLC方法的3倍,而单次分析的成本降低100多倍。 解决方案 使用现行美国药典方法制备和分析雌二醇,如图1所示。HPLC分析的结果同ACQUITY UPC2系统分析的结果(使用相同的样品制备方法)进行对比,如图2所示。 UPC2方法的条件如下: 色谱柱: ACQUITY UPC2 BEH,2.1 x 150 mm,1.7 微米 流动相: A=CO2 B=1:1甲醇/异丙醇 背压: 130 bar/1880 psi 柱温: 45 ° C 检测: UV /PDA,280 nm 两种测试方法得到的结果对比见表1。正相HPLC方法和UPC2均检出至少5种含量小于0.1%(按面积计算)杂质。两种方法在0.01%范围内峰的信噪比约为3:1,UPC2结果得到的值稍高。UPC2方法测得的最大杂质(以面积计约0.05%)的信噪比为16:1,正相HPLC方法测得的为9:1。这些实验结果清晰地表明,ACQUITY UPC2系统可成功地用于分析雌二醇中的微量杂质。UPC2方法的运行时间明显短于正相HPLC方法所用的时间(20min对比60min),从而提高了实验室的生产率。对每次运行的成本分析表明,正相HPLC的溶剂成本5.89美元,而使用UPC2,每次运行的成本仅为0.05美元。正相HPLC方法所产生需要处理的混合氯化物废液为108Ml2,2,4-三甲基戊烷、9.6mL正丁基氯和2.4mL甲醇。UPC2方法产生的需处理废液为甲醇和异丙醇各0.60mL。分离中使用的CO2通过实验室排气管排出。使用UPC2方法,废液处理成本降低了150倍之多。2,2,4-三甲基戊烷、9.6mL正丁基氯和2.4mL甲醇。UPC2方法产生的需处理废液为甲醇和异丙醇各0.60mL。分离中使用的CO2通过实验室排气管排出。使用UPC2方法,废液处理成本降低了150倍之多。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 《生活饮用水检验方法》(GB/T 5750-2006)拟立项修订,已经发布公示
    目的意义饮用水安全是公众健康的最基本保障,关系到国计民生,是需要关注的重要公共卫生问题之一。GB/T 5750《生活饮用水标准检验方法》是我国GB 5749《生活饮用水卫生标准》配套检验方法的系列标准,是开展生活饮用水卫生安全保障工作的重要技术基础。GB/T 5750—2006《生活饮用水标准检验方法》是由卫生部和中国国家标准化管理委员会联合发布的,于2007年7月1日开始实施,距今已有十余年时间,近年来,国内外水质检验技术得到快速发展,卫生、建设、水务等相关部门的各级检测机构水质检验仪器设备配置亦得到一定提升,为满足《生活饮用水卫生标准》中水质指标的检验需求,高效、准确开展饮用水水质检验工作,急需对《生活饮用水标准检验方法》进行滚动修订,对检验方法进行补充和完善,为贯彻实施《生活饮用水卫生标准》、开展生活饮用水卫生安全性评价提供检验方法。范围和主要技术内容第1部分:总则范围:本文件规定了生活饮用水水质检验的基本原则和要求。本文件适用于生活饮用水水质检验,也适用于水源水和经过处理、储存和输送的饮用水的水质检验。主要技术内容:检验方法的选择,检测结果的报告,试剂及浓度表示,实验用水,玻璃器皿与洗涤,检测仪器、设备的运行要求,实验室安全。第2部分:水样的采集和保存范围:本文件规定了生活饮用水及水源水的样品采集、保存、管理、运输和质量控制的基本原则、措施和要求。本文件适用于生活饮用水及水源水的样品采集与保存。主要技术内容:水样采集、水样保存、样品管理和运输、水样采集的质量控制。第3部分:水质分析质量控制范围:本文件规定了生活饮用水和水源水水质检验检测实验室质量控制要求与方法。本文件适用于生活饮用水和水源水水质的测定过程。主要技术内容:质量控制要求、分析误差、方法验证、质量控制方法、数据处理、测定结果的报告、数据的正确性判断第4部分:感官性状和物理指标范围:本文件规定了生活饮用水中色度、浑浊度、臭和味、肉眼可见物、pH、电导率、总硬度、溶解性总固体、挥发酚类、阴离子合成洗涤剂的测定方法。本文件规定了水源水中色度、浑浊度、臭和味、肉眼可见物、pH、电导率、总硬度、溶解性总固体、挥发酚类(4-氨基安替比林三氯甲烷萃取分光光度法、4-氨基安替比林直接分光光度法)、阴离子合成洗涤剂的测定方法。本文件适用于生活饮用水和(或)水源水中感官性状和物理指标的测定。 主要技术内容:色度、浑浊度、臭和味、肉眼可见物、pH、电导率、总硬度、溶解性总固体、挥发酚类、阴离子合成洗涤剂的测定方法。第5部分:无机非金属指标范围:本文件规定了生活饮用水中硫酸盐、氯化物、氟化物、氰化物、硝酸盐氮、硫化物、磷酸盐、氨氮、亚硝酸盐氮、碘化物、高氯酸盐的测定方法。本文件规定了水源水中硫酸盐、氯化物、氟化物、氰化物(异烟酸-吡唑啉酮分光光度法、异烟酸-巴比妥酸分光光度法)、硝酸盐氮、硫化物、磷酸盐、氨氮、亚硝酸盐氮、碘化物的测定方法。本文件适用于生活饮用水和(或)水源水中无机非金属指标的测定。主要技术内容:硫酸盐、氯化物、氟化物、氰化物、硝酸盐氮、硫化物、磷酸盐、氨氮、亚硝酸盐氮、碘化物、高氯酸盐的测定方法。第6部分:金属和类金属指标范围:本文件规定了生活饮用水中铝、铁、锰、铜、锌、砷、硒、汞、镉、铬(六价)、铅、银、钼、钴、镍、钡、钛、钒、锑、铍、铊、钠、锡、四乙基铅、氯化乙基汞、硼、石棉的测定方法。本文件规定了水源水中铝、铁、锰、铜、锌、砷、硒、汞、镉、铬(六价)、铅、银、钼、钴、镍、钡、钛、钒、锑、铍、铊、钠、锡、四乙基铅、氯化乙基汞(吹扫捕集气相色谱-冷原子荧光法)、硼、石棉的测定方法。本文件适用于生活饮用水和水源水指标的测定。主要技术内容:铝、铁、锰、铜、锌、砷、硒、汞、镉、铬(六价)、铅、银、钼、钴、镍、钡、钛、钒、锑、铍、铊、钠、锡、四乙基铅、氯化乙基汞、硼、石棉的测定方法。第7部分:有机物综合指标范围:本文件规定了生活饮用水中高锰酸盐指数、石油和总有机碳的测定方法。本文件规定了饮用水源水中高锰酸盐指数、生化需氧量(BOD5)、石油和总有机碳的测定方法。本文件适用于生活饮用水和水源水指标的测定。主要技术内容:高锰酸盐指数、生化需氧量(BOD5)、石油和总有机碳的测定方法。
  • 北京大学雷霆研究员Science:使用QSense E-QCMD技术研究半导体水凝胶电化学掺杂过程
    编者按:作者通过QSense E-QCMD技术研究了半导体水凝胶电化学掺杂过程中的质量变化和稳定性。相比于传统的有机混合离子电子导体,骨架为阳离子的半导体聚合物呈现出独特的质量下降的行为。这是由于还原过程中部分阴离子离去以维持体系电中性,剩余的阴离子保证交连体系的稳定性。体系去掺杂后,质量得以恢复。雷霆研究员出生于1987年,目前为北京大学工学院材料科学与工程系特聘研究员,为国家青年学科项目的带头人,长期致力于发展新型有机高分子电子材料和柔性电子器件。近年在Nat. Energy , Nat. Comm. , PNAS , Sci. Adv. , Acc. Chem. Res. , J. Am. Chem. Soc. , Adv. Mater.等顶级学术期刊发表论文超过60篇,总引用超过7000次。研究成果被国内外多家媒体报道,被多篇综述评论为该领域的重要进展。目前申请中国和国际专利10项,已获授权5项。部分专利成果已实现规模化生产,并与国内外多家公司开展了合作和产业化研究。最新Science:N型半导体水凝胶水凝胶由三维交联的亲水聚合物网络构成,具备保留大量水分的能力。相较于刚性无机材料和干燥聚合物,水凝胶的机械性能可以广泛调整,适用于模仿软骨、皮肤、肌肉及大脑等多种生物组织。其结构多样且易于改性,在生物功能工程中展现出杰出的多功能性,包括刺激响应性和优异的界面特性,应用广泛于传感器、致动器、涂层、声探测器、光学和电子学领域。尽管具有这些优点,但由于缺乏半导体特性,它们在电子学中的应用一直受到限制,传统上只能用作绝缘体或导体。在此,北京大学雷霆研究员团队开发了基于水溶性 n 型半导体聚合物的单网络和多网络水凝胶,赋予传统水凝胶以半导体功能。这些水凝胶显示出良好的电子迁移率和高导通/关断比,可用于制造低功耗、高增益的互补逻辑电路和信号放大器。作者证明,具有良好生物粘附性和生物相容性界面的水凝胶电子器件可以感应和放大电生理信号,并提高信噪比。相关成果以“N-type semiconducting hydrogel”为题发表在《Science》上,第一作者为李佩雲,Wenxi Sun为共同一作。单网络半导体水凝胶的设计与制备作者设计了一种 n 型水溶性半导体聚合物 P(PyV),它的阳离子骨架含有氯化物反离子,没有任何侧链(图 1B)。作者认为,无侧链聚合物设计可实现较高的电子性能,而离子骨架则为静电交联提供了可能性。通过密度泛函理论计算,发现苯磺酸离子与聚合物骨架的结合能优于氯离子,使热力学交换过程更为有利。作者选用1,3-苯二磺酸钠(DBS)作为体积小且对电子特性影响最小的交联剂。将P(PyV)和DBS混合后,形成不溶于水的亲水网络,显示出通过双离子静电交联形成的水凝胶结构。(图 1C,F)。利用旋涂和正交溶剂处理方法制备P(PyV)水凝胶薄膜,X射线光电子能谱(XPS)和紫外-可见-近红外光谱(UV-vis-NIR)结果证实了阴离子的完全交换和水凝胶的稳定性(图 1D )。掠入射广角X射线散射(GIWAXS)和扫描电子显微镜(SEM)分析显示,交联后的P(PyV)-H形成了稳定的三维多孔网络结构,适于储水及离子和分子的高效运输(图1E)。通过喷涂和水洗的方法实现了P(PyV)-H的图案化,此技术分辨率约200微米,简化了大尺寸水凝胶基器件的制造。这种半导体水凝胶的开发为构建与传统半导体类似的电路提供了新的可能性,并与生物组织保持良好的界面兼容性。图1.基于P(PyV)的单网络半导体水凝胶P(PyV)-H的半导体特性为探索水凝胶的电化学特性,作者进行了光谱电化学研究。在电化学还原过程中,阴离子离开P(PyV)-H,形成n掺杂水凝胶,其吸收带发生显著变化,得到DFT计算和化学掺杂实验的验证。作者利用有机电化学晶体管(OECTs)评估P(PyV)-H的半导体特性(图 2),发现其电子迁移率和体积电容的乘积μC*值非常高,表明其优异的离子存储和传输能力。通过电化学阻抗谱测量了电容,进一步证实了水凝胶的高电容性能。作者还利用P(PyV)-H制作了互补逆变器和逻辑电路(图2A),展示了其在低电压下的高增益和低功耗性能,验证了其构建集成电路的潜力(图2F-H)。此外,该水凝胶逆变器可用于生物电信号的有效放大,显示出在可穿戴式监测设备中的应用前景。这些结果突显了半导体水凝胶在高性能电子设备中的应用潜力(图2J,K)。图2. P(PyV)-H的半导体特性多网络半导体水凝胶的制备及性能P(PyV)-H可以与其他开发成熟水凝胶混合,形成多网络水凝胶(MNH),这些MNH展示了增强的机械性能和良好的生物粘附性(图 3A,B)。这些MNH包括三种聚合物网络:长链聚合物(如聚丙烯酰胺或聚丙烯酸)、生物聚合物(如聚乙烯醇或明胶)和半导体聚合物(P(PyV))。例如,MNH-1包含聚丙烯酰胺和聚乙烯醇,具有高拉伸强度和吸湿性;而MNH-2则包含聚丙烯酸和明胶,展现出良好的生物粘附性。MNH的含水量高达60%至70%,拉伸试验表明,MNHs 具有很高的拉伸性,断裂应变大于 100%。添加少量 P(PyV) 后,断裂应力急剧增加,因为 P(PyV) 比传统水凝胶更硬。随着 P(PyV) 的进一步增加,断裂应力基本保持不变,但断裂应变逐渐减小(图 3,C 和 D)。实验还表明,MNH在猪皮肤上显示出优异的界面韧性和剪切强度(图3E)。这些MNH在保持半导体性能的同时,能够与各种生物组织展示出更好的粘附(图3G,H),适合于制造电化学晶体管和逆变器,显示出稳定的电子性能和良好的信号放大功能,即使在受到物理应力的环境中也能保持性能稳定(图 3I,J)。图3.多重网络水凝胶的制备和性能用于生物信号扩增的半导体水凝胶半导体水凝胶的出色半导体性能促使作者探索其生物电子学应用。使用人类角质细胞进行的细胞活力测试表明,与传统聚合物相比,此水凝胶显示出较低的细胞毒性和出色的生物相容性(图4A),这可能得益于其高含水量和水可加工性。因此,这些水凝胶适合体内应用。利用P(PyV)-H的高容积容量,我们能够有效降低金电极的阻抗。作者还使用基于P(PyV)-H和MNH-2的放大器放大眼电图和心电图信号(图4B),与商用凝胶电极相比,基于水凝胶的放大器产生的信号强度高出40倍,显示出优异的信噪比。此外,此放大器在现场记录低电平生物信号如脑电图时(图4C),受到的噪声干扰极小,信噪比高。这些放大器被用于记录体内的皮层电图信号,展示了其在测量低频生物信号方面的巨大潜力,而P(PyV)-H则在测量较高频信号方面表现更佳(图4E-G)。研究表明,半导体水凝胶能够有效放大生物电子学中的各种电生理信号,具备优异的半导体特性、生物相容性、机械性能和生物粘附性,可用于构建逻辑电路和放大器。图 4. 半导体水凝胶放大器的应用原文链接: https://www.science.org/doi/10.1126/science.adj4397更多QSense E-QCMD技术详情请点击链接登录百欧林官网 查看。
  • 光致变色化合物——执光为笔,存储记忆
    Light way- 点亮未来 - 光为人类带来无限可能,畅想未来与光相关的黑科技,光擦写技术无疑是具有无限升值空间的潜力股之一。例如光打印技术,无需油墨,重复擦写近100次,绿色环保,可节省纸张;又如新型记忆存储材料,超大密度海量信息记录,并可快速写入及擦除。 光擦写技术涉及到一种特殊的物质,即光致变色化合物,指某些化合物在一定的波长及强度的光作用下分子结构会发生改变,从而导致其对光的吸收峰值即颜色发生相应改变,且这种改变一般是可逆的,意味着这是反复可循环的过程。 光致变色化合物 利用光致变色化合物上述的特点,可将其制成计算机的记忆存储元件,实现信息的记忆与擦除,具有惊人的信息记录密度及良好的抗疲劳性能,能快速进行写入和擦除。这是新型记忆存储材料的一个新的发展方向。 光敏氯合物就属于一种光致变色化合物。从热稳定性的观点来看,光敏氯化合物可分为P型和T型。P型化合物通过光照生成的化合物是热稳定的,可逆变化需要再次光照。而T型化合物通过光照生成的化合物发生热可逆变化。 图1. a:P型光敏氯化物原始样品;b:365nm光照20min后;c:365nm先光照20min ,再使用550nm光照20min 图2. 样品在365nm光照下随时间变化的吸光度曲线 图3. 样品先经365nm光照后,在550nm光照下随时间变化的吸光度曲线 图4. a:T型光敏氯化物原始样品;b:365nm光照20min后;c:365nm先光照20min ,室温放置2h后 图5 样品在365nm光照下随时间变化的吸光度曲线 图6. 样品先经365nm光照后,室温下随时间变化的吸光度曲线 上述P型及T型光敏氯化物的光致变色反应使用岛津新推出的Lightway PQY-01光反应评价系统进行测试,PQY-01配置了快速光电二极管阵列检测器,可以对光致变色过程中的光谱变化进行快速追踪。
  • 岛津应用:矿泉水中氰化物和氯化氰的检测
    2014年12月22日,日本颁布了牛奶和奶制品成分标准的相关指令,以及食品、添加物等规格基准的部分修订指令(日本厚生劳动省令第141号、厚生劳动省告示第482号;同日实施),还规定了有关试验方法(食安发1222第4号)。指令中规定,矿泉水中的氰标准值为0.01 mg/L(氰化物离子和氯化氰的总值),试验方法为离子色谱柱后衍生化法。 本文向您介绍按照修订后的清凉饮料水试验方法(以下称为“指令”),使用岛津氰化物分析系统对矿泉水中的氰化物离子和氯化氰进行分析的示例。 按照指令规定,使用离子排斥柱将氰化物离子和氯化氰分离,然后使用4-吡啶羧酸吡唑啉酮法进行柱后衍生化,在波长638nm处进行检测。柱后衍生化反应分两步进行,第一步利用氯胺T 溶液进行氯化,第二步利用 1-苯基-3-甲基-5-吡唑啉酮/4-吡啶羧酸溶液进行显色。 按照指令规定的岛津氰化物系统流路图 了解详情,敬请点击《使用离子色谱柱后衍生化法分析矿泉水中的氰化物和氯化氰》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 新品上架| 阿尔塔助力氯化石蜡检测
    今年的6月9日是第十六个“世界认可日”,阿尔塔科技上新氯化石蜡检测标准品,助力食品安全认证认可检验检测。关于氯化石蜡:氯化石蜡(CPs),也称氯石蜡,是许多工业和商业过程中使用的一系列多氯代烷烃,一般含氯量为40%~70%。氯化石蜡是当今深受关注的新污染物,在全球生产、使用及排放量高,由于国家发文整治新污染物,且其对化学品管理和国家履约有重大需求,因此受到广泛重视。一般按照碳链长度的不同,氯化石蜡可分为:○短链氯化石蜡(Short Chain Chlorinated Paraffins,SCCPs,碳链长度为 10~13)○中链氯化石蜡(Medium Chain Chlorinated Paraffins,MCCPs,碳链长度为 14~17)○长链氯化石蜡(Long Chain Chlorinated Paraffins,LCCPs,碳链长度为 18~30)研究表明,碳链长度越短,对生态环境和人类健康的危害越大。短链氯化石蜡具有长距离迁移能力、持久性、生物累积效应及毒性和潜在致癌性等持久性有机污染物(POPs)的基本特征,是一种常见的有机污染物,在人类和动物体内具有生物蓄积性,并在食物链中逐级放大;对人类和野生生物等均具有毒性,具有致癌、致畸、致突变等”三致"效应。短链氯化石蜡作为新增持久性有机污染物已于2017年被正式列入《关于持久性有机物的斯德哥尔摩公约》附件A中,并于2023年列入重点管控新污染物清单。阿尔塔科技密切关注市场动态,为满足氯化石蜡监管与检测方面不断增长的市场需求,丰富氯化石蜡标准物质产品线,推出短链氯化石蜡及相关产品,帮助实验室标品检测添加助力。部分氯化石蜡产品了解更多产品或需要定制服务,请联系我们天津阿尔塔科技有限公司介绍天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 默克生命科学植物提取标准物质突破2千种
    https://www.sigmaaldrich.cn/CN/zh/products/analytical-chemistry/reference-materials/phytochemical-standards?utm_campaign=seo%20-%20china&utm_source=instrument&utm_medium=news生姜“七步之内必有芳草” 传说中神农尝百草以辨药性,一天神农误食毒蘑菇昏迷,醒来时发现自己躺倒的地方有一丛尖叶子青草,散发着香气。神农拔了这株草,连同它的根茎放在嘴里嚼。过后竟然中毒的症状全没了。神农姓姜,于是给这株救命草取名为“生姜”,意思是使自己起死回生。而今,生姜成为中国人餐桌上重要的调料。 青蒿“呦呦鹿鸣,食野之蒿。我有嘉宾,德音孔昭。”东晋葛洪所著的《肘后备急方》即有“青蒿方”用于治疗疟疾的记录。现代中国女药学家屠呦呦因开创性地从中草药中分离出青蒿素用于疟疾治疗而获得2015年诺贝尔生理学奖和医学奖。屠老师数十年的研究,成功研发出青蒿素和双氢青蒿素,挽救了全球数百万人的生命。草本植物-青蒿跨越千年而又熠熠生辉。 不断发展的现代科技,使人们能够不断了解、开发和利用植物的奥秘。植物提取物作为膳食补充剂、中草药品以及日化补充剂的良好来源,也在全球范围内越来越受欢迎。 神农尝百草的年代已经不复存在,可靠的标准物质在植物化学品成分的准确鉴定和定量测定中越发重要,成为了安全和质量的保障基石。 目前,默克生命科学可提供超过2,000种植物提取标准品及认证参考物质, 200多种不同植物属别,均已通过详尽测试,以确定其特性和色谱纯度,用于植物提取物的定性/定量分析检测和质量控制。此外,今年新增约200种植物提取标准品,包括Cerilliant® 植物提取物单标和混标CRM、分析标准品。同时我们和PhytoLab、HWI Analytik杰出的植物提取标准品生产商全球合作,极大地丰富了植物提取标准品产品线。选择植物提取标准品,选择默克Supelco。 HPTLC测定甜菊糖苷类提取物如下是经过样品前处理,根据USP 方法使用Merck HPTLC(高效薄层板) 分别在UV 366nm 和白光下分别对瑞鲍迪苷D、A、C、甜菊糖苷、瑞鲍迪苷B、杜尔可苷A、甜菊双糖苷和甜叶菊提取物标准品(HWI),以及甜叶菊叶1、甜叶菊叶2测定。更多分析细节及应用方案,欢迎随时联系我们。 产品描述包装货号生姜中6种姜辣素和姜烯酮混标1mLG-027绿茶8种儿茶素混标1mLG-016卡瓦胡椒9种混标1mLK-0076种大麻酚混标1mLC-218青蒿素10mg69532双氢青蒿素50mgD7439叶绿素A1mg96145对-香豆素50mg55823矢车菊素葡萄糖苷氯化物10mgPHL89616瑞鲍迪苷 A20mgPHL80067全缘千里光碱5mgPHL83968滨蓟黄苷10mgPHL85726柽柳黄素10mgPHL85778苦艾素10mgPHL84170积雪草苷 B10mgPHL84263蜂斗菜酸10mgPHL84767富马原岛衣酸5mgPHL82266 点击此处,了解更多植物提取标准品。https://www.sigmaaldrich.cn/CN/zh/products/analytical-chemistry/reference-materials/phytochemical-standards?utm_campaign=seo%20-%20china&utm_source=instrument&utm_medium=news
  • 新品推荐|天尔多功能饮用水检测仪器 TE-80
    天尔TE-80饮用水多功能水质检测仪是我们公司最新研发生产的一款便携式水质测定仪器,可广泛应用于饮用水、自来水、疾控、环保部门、城市供水、纯净水厂、饮料厂、化工、制药、食品等领域中水质污染物的快速检测.依据光电检测原理和化学比色测量原理研发设计,可用于测定饮用水中浊度、色度、余氯、总氯、二氧化氯、有效氯、化合性氯、亚氯酸盐、氨氮、亚硝酸盐、臭氧、尿素、总硬度、钙硬度、镁硬度、锰、铁、六价铬、高锰酸盐指数、pH、溶解氧、氯化物、电导率等项目(支持定制),搭载高清彩色液晶触摸屏,操作便捷,内置高容量锂电池,自带高强度防水耐酸碱便携箱,是一款可在野外,实验室提 供检测,监察,数据管理集一体的便携式水质检测系统.1.采用5寸高清液晶触摸显示屏,操作便捷,可直接显示被测物的浓度值及当次测量的吸光度,且嵌入实验操作步骤;2.内置工作曲线,配制标准溶液,即可实现样品的快速测定。曲线具有修正功能,用户可根据检测需求对相应的项目进行曲线修正和调整;3.具有独特干扰补偿算法,可有效屏蔽色度、光衰产生的测量偏差,设备使用方便、数据检测准确;4.用户可自设报警限值,超过限值自动提示;5.仪器可自动调零和自动校正,提高检测效率;6.内置热敏打印机,可随时打印当前数据及历史数据.检测项目:项目测量范围检测方法浊度0-20NTU/0-200NTU散/透射光法色度0.0-50.0°/0-500°铂-钴标准比色法余氯0.02-2.00mg/LDPD法总氯0.02-2.00mg/LDPD法二氧化氯0.04-5.00mg/LDPD法 有效氯1.0%-15.0%碘量光度法化合性氯0.02-2.00mg/LDPD法亚氯酸盐0.02-2.00mg/LDPD法氨氮0.02-5.0mg/L纳氏试剂法氨氮0.02-2.5mg/L水杨酸法亚硝酸盐0.005-0.200mg/L重氮偶合法臭氧0.01-2.00mg/LDPD法尿素0.05-5.00mg/L麝香草酚法总硬度0.05-4.00mg/L邻甲酚酞络合酮钙硬度0.05-4.00mg/L邻甲酚酞络合酮镁硬度0.10-4.00mg/L邻甲酚酞络合酮锰0.02-5.00mg/L甲醛肟法铁0.1-4.0mg/L邻菲咯啉分光光度法六价铬0.05-1.00mg/L二苯碳酰二肼法高锰酸盐指数0.5-5.0mg/L碱性高锰酸钾法pH6.5-8.5pH标准缓冲溶液法溶解氧0.5-15.0mg/L碘量光度法氯化物0.5-25.0mg/L硫氰酸汞分光光度法
  • 质谱仪“把关”净水器对比实验 结果竟然是这样......
    2月24日,民生实验净水器水质实验,中国家电研究院,工作人员利用电感耦合等离子体质谱仪,测试水中含有的重金属。  工作人员利用气相色谱质谱联用仪,测试水中挥发有机物。  纯净水处理器出水水质明显优于一般水质处理器 专家提醒选购时应了解净水器具体去除效果  净水器你真的会选吗?你知道一般水质净水器和纯净水净水器的区别吗?为了一探究竟,近日中消协做了一组对比实验。24日,中国消费者协会发布了四十款净水器商品比较实验报告。实验结果显示,纯净水处理器的出水水质明显优于一般水质处理器。  记者了解到,本次比较实验主要检测净水器的净化效果、出水水质和净水流量等性能。其中出水水质共测试28项,包括色度、浑浊度、总硬度、铝、铁、氯化物、三氯甲烷和游离余氯等。测试结果显示,40款样品的出水水质均符合我国饮用水要求。  但不同类别净水器的出水水质存在差别,一般水质处理器和纯净水处理器两类样品对总硬度、溶解性总固体、铁、硫酸盐、氯化物、氟化物和硝酸盐氮这7项指标的净化效果差别明显。实验结果显示,纯净水净水器的出水水质更纯净。重金属检测项目的铅检测方面,一般水质处理器样品对铅的去除能力有限。  专家提醒,选购净水器时,应根据当地水质,选择性价比高的净水器。如果重金属等方面去除效果要求高,最好选择纯净水处理器。  【实验】  实验样品:40款净水器,涉及22个品牌,其中包括88台一般水质处理器和18台纯净水处理器。样品均由经销商在消费者提出先送货暂不安装的要求下直接送的货品,测试单位按照样品说明书要求进行安装测试。  实验地点:中国家用电器研究院实验室  【实验过程】  ●安装:依据说明书,组装净水器样品并冲洗,随后接入供水系统。且供水管中水的数据要提前设置成统一参数,如压力为0.24兆帕(正负0.02兆帕)、水温为25℃(正负1℃)摄氏度的水。  ●输水:向净水器中输入有一定浓度的污染液,在额定总净水量区间内,全程输入污染液。本次实验输入的污染物主要是氯化物(无机物)、三氯甲烷(有机物)及铅(重金属)溶液,以检测净水器对其净化效果。  ●检测:在此过程中,根据每个净化器样品表明的额定总净水量(如一台净水器的额定总净水量为5000升,即可净化5000升的净水)进行测试。测试中通过持续净化,得到5000升的净水时,方可停止测试。根据额定总净水量不同,实验时间从1个月到数月不等。其中,反渗透净水器有两个口,分别出净水和废水,检测时需要额定总净水量的净水达到5000升,方可完成实验。  ●取样:在检测过程中,根据额定总净水量需在一定的区间点分别取样检测。如需要在5000升的0(净化前的原始数值)、四分之一、四分之二、四分之三、四分之四这几个区间分别取样,检测不同区间点净水器的出水水质。  ●计算:根据五个区间点的不同水质,判定一台净水器整个生命周期的氯化物最小净化效果。即五点中的最小值,为该净水设备的最终净化效果。  【实验结果】  22款一般水质净化器对氯化物的净化效果均较差  检测结果显示,在22款一般水质处理器样品中,只有1款样品宣称对氯化物有净化效果。实际上,经测试22款样品对氯化物的净化效果均较差,如“飞利浦”WP5801型号龙头净水器等。  18款纯净水处理器样品均宣称对氯化物有净化效果。经测试,这18款纯净水处理器对氯化物均有较好的净化效果。  三氯甲烷净化效果方面,18款纯净水处理器样品均宣称对三氯甲烷有净化效果 实测发现,其中只有13款的净化效果比较好,“史密斯”SR50-D3型号直饮水机等5款样品,并没有达到宣称的净化效果。  而在22款一般水质处理器样品中,经检测,其中“益之源”100188CH型号净水器等5款样品对三氯甲烷有较好的净化效果。  18款纯净水处理器对铅均有净化效果  重金属检测项目的铅检测方面,18款纯净水处理器样品均宣称对铅有净化效果。测试发现,这18款纯净水处理器对铅均有较好的净化效果。在22款一般水质处理器样品中,其中有3款宣称对铅有净化效果,经测试,共有6款样品对铅有较好的净化作用。而“飞利浦”WP3814/01型号滤水壶、“海尔”HT101-1型号龙头净水器等样品,对铅的净化效果较差。  无储水罐反渗透净水器样品更节水  净水产水率是衡量净水器节水的一项指标。一般水质处理器工作时不产生高浓度非饮用水,不存在节水问题。反渗透净水器在生产纯净水的同时要产生一定量高浓度的非饮用水,目前反渗透净水器分为有储水罐和无储水罐两种形式。  经测试分析发现,18款反渗透样品的净水产水率有一定的差别,无储水罐反渗透净水器(又名大通量净水器)样品的净水流量比较大,净水产水率较高,比较节水。  备注:本次净化效率比较实验仅针对无机盐(氯化物)、重金属(铅)和有机物(三氯甲烷)进行。并不能说明该产品对无机盐、重金属和有机物中的其他物质有相同的效果。  ■ 提示  应根据当地水质选择高性价比净水器  如何选购净水设备?负责本次实验的中国家用电器研究院理化分析测试中心主任王统帅介绍,购买净水器不是越贵越好。要根据当地水源情况选购净水器的类型。在相同条件下,优先购买性价比较高的产品。  王统帅介绍,净水器分为一般水质处理器和纯净水处理器。对于消费者来讲,如果水垢比较少即需要处理的水硬度不高,只有净化和改善水的口感而没有其他特别要求,宜选用一般水质处理器 如果处理的水硬度较高,消费者较适合选用纯净水净水器,以便去除水中的钙镁离子,降低水的硬度。  要去除重金属最好选择纯净水处理器  通过本次比较实验结果可以看出,一般水质处理器对重金属的净化能力有限。  王统帅表示,消费者如有特殊需求,在购买时应当仔细了解和询问净水器对所要去除的物质是否有净化能力和效果。如果消费者有去除水中重金属的特殊需求,建议咨询售后技术人员,可否通过增加过滤单元或其他方式来满足需求。纯净水处理器一般都能有效过滤水中的重金属。  中消协提醒,消费者在购买净水器时,对于产品宣称的去除效果,最好向销售商索取相应的检测报告。并明确产品对哪些具体物质有去除效果。
  • 新华社五问“毒跑道”:检不了,查不出?
    从新疆到东北,从内蒙古到深圳,近两年来,校园“毒跑道”事件层出不穷,学生家长怒发冲冠̷̷集中爆发的校园“毒跑道”事件已经成为一个全国性事件,而其产生的根源之复杂、持续时间之长、涉及地域之广、带来危害之大可能超乎想象。  本来应该是增强学生体质的场地,却成为损害孩子健康的“武器”。新华社记者调查发现,“毒操场”、“毒跑道”之所以一路“绿灯”查不出来,其背后是劣质产品盛行、低价中标、违规施工、标准缺失、验收不严,相关环节的监管形同虚设。  场地为何“五毒俱全”  从今年5月20日开始,成都、北京、沈阳等地不约而同地爆发出了校园“毒跑道”事件。而在2015年,据不完全统计,“毒跑道”至少波及江苏、广东、上海、浙江、江西、河南等6省市,具体城市则多达15个。  据深圳市计量质量检测研究院和广东省标准化研究院于2015年12月提交的《聚氨酯塑胶场地挥发性有害物风险监测分析报告》摘要中显示,他们在省内进行的抽样调查中,总体存在不合理风险的聚氨酯塑胶场地比例高达25%。  “毒跑道”、“毒操场”究竟有什么毒?广东省体育设施制造商协会副会长、长河集团董事长赵文海向新华社透露,劣质的聚氨酯塑胶产品可谓“五毒俱全”。  近些年来,中国学校体育蓬勃发展,政府、学校、家长对孩子身体健康越发重视,对操场、跑道的需求日益增加。市场蛋糕大了,很多不具备资格的企业马上“杀进来”——聚氨酯厂商里,国际田联认证的全国有十几家,中国田协审定的也是十几家,但实际在做的有数千家,去年就新增了近3000家。  《聚氨酯塑胶场地挥发性有害物风险监测分析报告》里提到,这些无资质、无技术、无生产管理和质量保障的小型作坊,一年就占有了市场的50%甚至更多。而这些产品的质量很难保障。  塑胶跑道大致可分为聚氨酯现浇型和预制型橡胶卷材两大类。预制型主要使用橡胶等原料,是一种环保型产品,但因为造价较高,国内并不普及 聚氨酯是目前市场占有量最大的传统型材料,占了目前国内市场的95%,目前出问题的跑道、操场都是这一类型。  根据记者调查,业内人士对于“毒跑道”产生来源的说法并不完全统一。这是由于聚氨酯跑道需要的原料多,生产铺设环节也比较多。基本原料是聚氨酯双组分(A、B)胶水,施工时按一定比例将A、B两种胶水混合,并加入黑色颗粒,铺设过程中还会使用溶剂。由于使用的双组分胶水、黑色颗粒和溶剂涉及多种化工材料,几乎每个部分都有出问题的可能。  不过,在去年到今年的许多案例中,许多学生的一个突出表现是流鼻血、咳嗽和皮肤过敏。赵文海表示,这应该是游离TDI(甲苯二异氰酸酯)造成的。  据广州同欣体育产业集团有限公司副总裁、化学博士陈晨介绍,目前聚氨酯跑道普遍是TDI型,其胶水A成分是聚醚和TDI反应形成的预聚体,如果反应不充分就会有游离TDI存在,对人体产生危害。TDI被国家列为职业高级危害的化学物质,是有毒致癌物,对眼睛、呼吸道和皮肤都有刺激。  曾经留美的陈晨透露,在美国是禁用TDI的。不过,美国塑胶跑道行业对此规定一直颇有非议,因为如果反应完全,就不会有残留的TDI。而在国内,TDI型聚氨酯是聚氨酯跑道的“主力军”。  赵文海认为,除了游离TDI,聚氨酯胶水中使用的有些塑化剂如短链氯化石蜡,受阳光照射会分解挥发氯化氢气体等氯化物,以及铺设过程中使用的毒性大的有机溶剂(甲苯、二甲苯)等,“一般就是这三种东西,导致很多问题跑道有呛鼻的气味”。  但有毒物质并不止这三种。全国体育标准化技术委员会设施设备分技术委员会秘书长刘海鹏去年曾撰文指出,塑胶跑道可能产生的危害来源于多种物质,主要是聚氨酯(PU)胶水中的氯化物、游离TDI、苯类化合物、黑色颗粒中的硫化物、多环芳烃中多种化合物、颗粒及胶水中重金属。这些不仅危害人的健康,还会污染环境。  赵文海说,除了能闻到的,还有一些有害物质是没有气味的,可能还未被发现,“因为不知道具体做的人都加了什么垃圾材料”。他还提到传统聚氨酯胶水中使用的交联剂MOCA具有致癌性。不过,这个说法业内尚存争议。  近期,有报道称韩国首尔共51所中小学校的聚氨酯塑胶跑道因含有过量铅、镉等重金属被勒令停用。其中大部分问题学校跑道铅成分超标10倍以内,但有甚者超出标准值30倍。陈晨认为,这可能是由于在聚氨酯胶水中使用了有机金属类的催化剂。  毒跑道是如何进入学校的?  劣质产品是如何进入学校的呢?这往往和招标环节脱离不了关系。  “塑胶跑道现在的价格比十几年前还低,怎么会合理?现在,80、90%是废料做的。”谈到这些,广东省体育设施制造商协会副会长、长河董事长赵文海十分感慨。  然而,目前的学校塑胶场地建设招标环节,往往标准就是“低价”。  为改善校园体育设施滞后局面,近年来各地加大校园操场的建设力度,需要大量的资金投入。重庆某区一位教育部门干部介绍,当地有120多所中小学校,40多所各级校园足球特色学校,除了近几年新建的十几所学校有标准场地外,其他学校的场地都需要改扩建。不算征地成本,一个配备有看台等附属设施的标准塑胶操场每平方米的成本约600元。近几年,当地每年在学校运动场地改扩建的投入数千万元,资金压力很大。  较少的投入加上招标唯低价是取,严重影响校园操场的工程质量。  记者采访的多个相关人士在谈到聚氨酯跑道问题时,都提到目前市场价格过低的问题。  据介绍,性能好又安全环保的塑胶跑道价格应该在280元/平方米以上,但实际上的招标价格少于150元的比比皆是。《聚氨酯塑胶场地挥发性有害物风险监测分析报告》显示,甚至部分政府出台的“指导价”也只有180元/平方米。  同时,招投标中,评标体系明显倾向于大型建筑工程企业,使专长于体育设施制造和施工的中小企业处于明显劣势。现实中往往是大型企业中标后,才转包给中间人或制造商,形成层层转包。多次转包,导致原本就不合理的项目经费落到施工方手中更是大打折扣,最后只能通过偷工减料或使用劣质原料来保证利润。  广州同欣体育产业集团有限公司副总裁、化学博士陈晨表示,采购机构对塑胶跑道的成本、有害物质等不够了解,缺乏专业知识,也没有深入咨询,对工程商、原材料厂商没有资质的要求,市场也缺乏有效监管,导致恶性的低价竞争。  赵文海谈到不少学校采用最低价中标的问题时表示,因为这样最简单,领导不用负责任。“工程公司为了找活,先中标再说,结果赚不了钱,只好不断降低成本,加各种垃圾材料”。  他解释说,使用量最大的聚氨酯胶水(优质的)一万多块钱一吨,但为了降成本有人会加石粉,石粉才一百多块钱一吨。石粉无害,但加多了会导致硬度太大,而塑胶跑道需要有弹性,那么就要加塑化剂,塑化剂中短链氯化石蜡是最便宜的,但也是气味、毒性最大的。又为了提高强度,可能就会加交联剂MOCA(莫卡)。铺设的时候,还要加黑色颗粒,加了颗粒后会太稠不好铺设,就需要加溶剂,除了苯类的溶剂,实际还有其他有机物。  全国体育标准化技术委员会设施设备分技术委员会秘书长刘海鹏去年也谈到,许多小型作坊往往没有资质和技术,没有质量保障体系和安全生产管理措施,也没有产品检验检测手段,制造成本很低。  这种低端、有缺陷的产品有着无可比拟的价格优势,在一切靠价格说话的招标之后,有全套管理制度和认证系统、有研发能力和检测手段的企业产品反而面临被取而代之的窘境。  一位生产人造草坪的厂商表示,由于市场混乱,监管不力,招投标把关不严,这种劣币驱逐良币的现象在相关行业里十分典型。  施工,还是施毒?  过低的价格带来了劣质的产品,也带来了劣质的施工。  新华社记者辗转联系到一位不愿透露姓名的施工承包人。他介绍,目前都是低价中标,谁价格低谁就有优势,同时中标还要看有没有关系,有的经过几道手层层转包,到实际上的施工方手上已经利润很低,只能用劣质原材料。  “以前投标需要体育场馆施工专业承包资质,2014年底这个规定取消了。现在招标会招建筑商来,房建市政大企业中标,又转包给其他公司。目前这个行业陷入恶性循环,价格越来越低,转包的越来越多,品质越来越差。”广州同欣体育产业集团有限公司副总裁、化学博士陈晨说。  2001年,建设部(现住建部)制定发布体育场地设施工程三种级别承包资质,塑胶场地工程需由专业资质企业承包建设。这项规定于2014年被取消。中标企业在中标之后,招来的施工队伍并不一定具备专业资质,施工过程存在不少瑕疵。  陈晨表示:“国内能安装预制型的(施工)队伍,大概30个。安装聚氨酯的队伍,3000个都有。而实际上聚氨酯跑道由于要对原材料进行现场调配,对施工队资质的要求更高。所以这就很不正常。”  利润空间很低的中标价格,鱼龙混杂的施工队伍,造成施工过程中的违规添加。广东省体育设施制造商协会副会长、长河集团董事长赵文海表示,为降低成本,不少施工方在铺设工程中大量添加苯类等有毒物质。  陈晨认为,聚氨酯跑道的一个突出问题是“不好控制”。由于原材料需要现场混合,再进行铺设,人为因素影响较大,对胶水调配比例、温度、湿度等施工要求较高。即使原材料商卖出的双组分胶水、黑色颗粒等都是合格的,工程商仍然有可能在施工时不严谨导致出问题,或为了降低成本加入其他垃圾材料和有害物质。  而《聚氨酯塑胶场地挥发性有害物风险监测分析报告》指出,对于风险监测源的分析发现,塑胶场地的苯、甲苯、二甲苯、甲醛和TDI等有害化学物质主要来自胶粘剂、溶剂、黑色颗粒等原材料,而施工方为了节约成本,违规添加含有甲苯、二甲苯的有机溶剂,是劣质塑胶场地“有毒”的首要原因 另外,不科学的配方和施工工艺等,也可能导致有害物质的超标。  重庆一位基层校园足球教练告诉记者,一些学校的塑胶跑道天气一热味道十分刺鼻,连成人都受不了,何况孩子。  为何天一热就出事?根据长河集团提供的资料,首先有些物质会在强光、高温下分解释放有毒气体,比如短链氯化石蜡分解出氯化氢。其次,据陈晨介绍,温度高时,TDI、甲苯、二甲苯等挥发性的有毒物质挥发得更快。  “毒跑道”为什么检不了,查不出?  校园塑胶操场、跑道是否符合相关标准?记者采访发现,相关标准制定和修订相对滞后,无法完全保证校园塑胶操场、跑道质量。  业内人士表示,正因为目前没有严格对口的安全环保方面的强制标准,一些跟招标方关系好的工程商,就会建议对方把自己手中已经满足的标准列入招标条件,达到自己中标的目的。  严格来说,在聚氨酯跑道铺设的施工前、中、后都要进行检测和监督。但在招标、施工环节相继“沦陷”后,最后的验收环节也多半是走形式。一位不愿透露姓名的施工承包人透露,在施工过程中,只要铺得平整,视野效果好,质量方面甲方一般也不会说什么,验收基本都会通过,不用送检。即使要送检,送检的样品和实际使用的也会不一样,而且专业的检测机构很少,一般位于省城,送检耗时费力。  另一位不愿意透露姓名的某地教育局分管基建的副局长对记者坦言,2015年之前,塑胶跑道的工程验收从未包括甲醛、苯、二甲苯等有毒物质检测,验收内容仅为跑道厚度等内容。2015年,江苏等地相继曝出“毒跑道”事件后,各地增加了塑胶跑道挥发成分的抽检。这位副局长表示,这个地区的抽检率为50%。  业内人士介绍,校园操场建设目前普遍使用或适用的两项国家标准是GB/T 22517.6-2011《体育场地使用要求及检验方法第6部分:田径场地》和GB/T 14833-2011《合成材料跑道面层》,规定了苯、甲苯和二甲苯、游离甲苯二异氰酸酯(TDI)、重金属(铅、镉、铬、汞)这些有害物质的限量。  广州同欣体育产业集团有限公司副总裁、化学博士陈晨表示,目前广泛被提到的国家标准,都不是强制性的标准,T代表推荐 且国标2011版实际是在1993年国标的基础上进行了修改而形成的,“很少这么大时间跨度不更新的,一般要几年更新一次”。  广东省体育设施制造商协会副会长、长河集团董事长赵文海认为目前国标已经“不够用了”,比如对于氯化物、TVOC(总挥发性有机物)等有害物质没有规定,需要与时俱进。  陈晨说,去年“毒跑道”事件爆发之后,由深圳市教育局委托深圳市建筑科学研究院编制完成的《合成材料运动场地面层质量控制标准》,广州同欣等广东省体育设施制造商协会成员也参与了起草。这是国内首个塑胶跑道工程建设标准,在今年3月向社会公示并征求意见,目前处于试行阶段。这个标准主要在GB/T 14833-2011基础上,扩大了有害物检测范围,引入了对多环芳烃、短链氯化石蜡和TVOC等限量标准,并且对进场材料、施工过程、跑道成品都要进行检测和监管。  据介绍,深圳标准还明确规定了哪一项不合格要怎么处理,比如重金属超标必须铲除,TVOC超标则可以放置一个月再检测。  对于检测的监管,赵文海无奈地说:“现在的送样检测广受吐槽,因为送样检测报告有可能作假,送去的样本未必是实际使用的东西。应该是原材料检测,做完后现场检测。”  部门之间监管职责不明也是“毒操场”验收环节形同虚设的主因。一位厂商表示:“塑胶跑道的监管确实有点三不管,教育部门说我不懂,属于体育部门 体育部门说学校的事情怎么会跟我有关 质监那边说你们这属于基建,走的是基建招标,不是货物采购,不归我管 住建部门又说,你这又不是房子,跟我们没什么关系。”  陈晨说,这些年来,由于监管不力、归口管理模糊、片面追求低价、没有对口强制标准等问题,情况比以前更加恶化了。“确实需要警醒,并进行严格监管。”  更为重要的是,在多地集中出现“毒操场”事件后,却鲜有人被问责。一位业内人士说:“去年‘毒跑道’的事情,最后说来说去都是材料的事,招投标本身没有追责,违法成本太低。”  十多年前就有预警,为何堵不住漏洞?  新华社记者调查发现,早在2003年底,就已经有专家提出TDI聚氨酯跑道的危害,当时虽然引起了一定重视,但由于种种复杂的原因,这个问题在实践中并没有得到很好的解决。从目前媒体曝光和厂商透露的情况看,问题反而更加恶化。  2003年10月,在第二届中国学校体育科学大会上,有专家呼吁“必须尽快终止学校体育场地铺设塑胶跑道”。有媒体称,中国室内装饰协会室内环境监测中心确认,TDI生产的材料,在炎热或强光的条件下,会有TDI气体释放出来,对人体有很大危害。此事引发了媒体的广泛报道。  但随后华东理工大学材料与工程学院、中国田径协会田径场地人工合成面层检测实验室提供的调查结果显示,TDI塑胶跑道无毒。  当时的新华社报道就提出,无论有毒无毒,焦点在于:“我国目前还没有关于校园塑胶跑道的化学毒性检测标准和专门的检测机构,在建造过程中,单靠学校检验以达到环保要求很不现实。”  争论之后,2003年12月在教育部、国家体育总局举行的学校体育场地建设研讨会上,教育部有关部门负责人针对此问题表示,学校塑胶体育场地建设不能叫停,但一定要严格按照环保要求去建设施工。  2004年3月,中国青年政治学院体育教学中心教师王哲广在《环境保护》杂志上发表了《铺设TDI聚氨酯塑胶跑道的危害与对策》的文章,指出TDI聚氨酯跑道除TDI外,组分中还含有多种催化剂、二元胺类扩链剂、有机分子增塑剂、溶剂、橡胶配合剂、苯溶剂等有毒有害化学物质。同时由于难以自然降解,还有可能成为新的环保公害。他呼吁要尽快制止校园中使用TDI型塑胶跑道。  广州同欣体育产业集团有限公司副总裁、化学博士陈晨表示,当年此事包括王哲广的论文确实在业内引起了关注和讨论,但由于当时还没有目前这种集中爆发的案例,而且焦点还集中在TDI,导致他的意见没有得到采纳。而且,TDI确实是非常好用的聚氨酯材料,且如果技术过关、严格监管,优质的TDI聚氨酯经过充分反应,应该是安全的。  因此即便身为一家生产预制型跑道公司的副总裁,他也不赞同禁止铺设聚氨酯塑胶跑道,认为这样造成打击面过宽。但他说:“没有想到情况会恶化到今天的局面。”  全国体育标准化技术委员会设施设备分技术委员会秘书长刘海鹏去年也曾表示,如果配方科学,优秀环保的塑胶跑道中各化学单体会完全充分反应,有害物的残留会非常少甚至没有,哪怕在高温环境中也没有味道。但不科学的配方,反应不完全,就肯定会有残留。  根据记者查到的资料,在王哲广之后还有专家提出了更加折中和实际的建议,提倡应在学校体育场地建设中慎重选择铺设材料和施工企业,不在室内铺设TDI体系聚氨酯跑道材料。同时,研制和使用对人体危害较小的MDI合成面层材料,在近3年内逐步淘汰TDI体系。大力研制性能先进、高科技含量的、安全的、可再生的、适合各种条件下使用的环保型合成材料面层。有条件的学校可一步到位,使用预制型卷材。  然而,十年前就在说的事情现在进展依然缓慢,加上各种监管不力,事态更加恶化。  在2015年问题集中爆发之后,在当地部门“整改”之后,在2016年,“毒跑道”又在别的地方发生了。  一位厂商向记者透露,去年各地不少聚氨酯问题跑道曝光后,当时他们行业微信群里就讨论认为“明年天一热,可能还会出事”。  结果不幸言中。  炎热的夏天还没有结束,关于“毒跑道”的风波、议论和追责并没有结束,也不应该结束。
  • 一正科技携智能化学分析仪及全自动消解仪参加中国科学院武汉植物园学术交流会
    近年来,武汉植物园分子生物学以及理化仪器逐渐趋于饱和或者已经更新换代结束, 无论从事分子生物学研究或者从事育种等研究,最终都离不开对植物光合等生长生理上的研究以及植物土壤营养盐的测定。为了进一步加强和与用户之间的技术交流与沟通,我公司携手汉莎科技集团定于2018年2月1日在中国科学院武汉植物园召开学术交流会,介绍生理生态仪器以及连续流动分析仪,全自动间断化学分析仪等理化分析仪器及全自动消解仪等样品前处理设备在植物研究中的应用。时间内容主讲人13:30-14:00签到14:00-15:00汉莎科仪生理生态仪器在研究中的应用及介绍姚广15:00-15:15有奖问答15:15:15:30休息15:30-16:30AMS & alliance理化分析仪器及Questron样品前处理设备在植物科学研究中的应用及介绍张晓君16:30-16:50有奖问答交流会时间:2018.02.01(星期四)下午14:00-17:00交流会地点:武汉植物园光谷园区行政楼2008会议室关于全自动间断化学分析仪自动取样器+ 自动稀释器+ 反应控制器+ 比色计+工作站全自动间断化学分析仪沿用经典的比色法,并借助最新机器人技术,其自动取样针可将试剂和样品精确地加入比色杯中,待反应完成,再通过高精度双光束数字检测器直接测量生成颜色物质的吸光度,以此确定待测样品的浓度。对于不同的常规测量参数,无需购买或更换模块,Smartchem 仪器可以自动进行方法切用户只需要编排测试顺序,选择好相应方法,并装载对应的试剂和样品,然后进入仪器自动测量模式,便可一次进行多参数测量。土壤及植物应用:氨氮、硝酸盐、亚硝酸盐、硼、钙、磷酸盐、氯化物、总氮、总磷、镁、赖氨酸、尿素关于连续流动化学分析仪连续流动分析仪(CFA)是将比色分析自动化的一种分析测试系统。样品溶液泵入分析模块后可以自动进行样品前处理如消解,蒸馏,透析,萃取,前处理过的样品溶液被均匀的小气泡分割成连续的片段,再将试剂以特定的比例和顺序加入到每个片段的样品中,然后边流动,边混合,边反应,最后生成颜色物质通过比色计检测吸光度,得到相应的峰值电信号,再通过与标准曲线比较自动计算得到相应的浓度。土壤植物应用:实现土壤,植物,化肥中多种检测项目的自动分析,广泛应用于各高校农科院,林科院;农产品检测站;肥料检测站;粮油检测站等,符合GB或行业标准测量参数:总氮、总凯氏氮、铵态氮、总磷、磷酸盐、硝酸盐、亚硝酸盐、钾、氯化物、硅酸盐、硫酸盐、生物量、硼、CEC、碳酸盐、碳、电导率、铜、铁、苯酚、钙、镁、锰、钼、铝、锌关于全自动消解仪Questron全自动样品消解仪在电热消化炉的基础上集成了全塑通风橱、酸液添加以及液位传感定容模块组件,并配备了符合流体力学的排酸系统和PC软件,可一站式完成消解样品时的酸液添加、消解、赶酸、冷却、定容、混匀和转移等操作。应用领域:适用于土壤、水、固废、食品、药品、海产品、谷物等多种样品的消解处理;适用于ICP、AAS、AFS、连续流动分析仪、全自动间断化学分析仪等检测设备的样品预处理工作关于一正科技:一正科技代理产品主要包括:荷兰Chemtrix公司微通道反应器、英国AM公司连续搅拌多级反应器、催化加氢系统、英国NiTech公司连续结晶反应器和英国AWL连续过滤干燥仪、意大利AMS公司的连续流动分析仪、全自动间断化学分析仪、消化炉和全自动蒸馏器及加拿大Questron全自动消解工作站、全自动液体工作站、消化炉等。此外,一正科技已取得了Ezone 商标,持续为广大客户提供更多自主研发产品。关于汉莎科仪汉莎科学仪器有限公司隶属于汉莎科技集团有限公司,是一家专业致力于生命科学、植物生理、农业生态、环境生态等领域先进科研仪器推广及前沿技术咨询服务的公司。公司作为美国PP SYSTEMS和英国HANSATECH公司中国总部,近二十年来一直全面负责其产品在中国大陆、香港及澳门地区的销售及相关产品的技术支持;同时也是美国SPECTRUM、美国WESCOR、意大利LSI等多家国际知名科学仪器生产厂在中国的销售代表。
  • 山东首台水质检测车亮相烟台 检测标准达40几项
    “氯化物25mg/L,氨氮0.01mg/L,铁0.01mg/L,亚硝酸盐无,悬浮物无……”近日鹿鸣小区,由青岛浦康水处理设备有限公司研发的全省首台水质检测车率先在烟台分公司投放使用,引得现场不少市民围观。   在检测现场记者看到,水质检测车的车体分为驾驶区、办公区和无菌试验室三部分,无菌试验室里配备了无菌箱、高精度水质检测仪等先进检测设备,质检员从自动售水机里现场取样、检测并公布结果。“公司研发的这种水质检测车,由中型客车改装而成,目前山东省仅此一台,价值40多万元!”青岛浦康烟台分公司负责人李经理说。   据悉,目前港城的浦康自动售水机已经遍布鹿鸣、黄海、南山世纪华府、东方巴黎、新世界、惠安、富豪花园、夹河苑等150多个居民社区,用户总量近10万。如此多的用户,保证产品质量尤为关键。“以前,我们检测水质都用检测笔,检测的项目还不到10个。”李经理说,为了进一步保证用户的饮水健康,公司研发了这种水质检测车,车上的设备可对活净水的硝酸盐、氯化物、PH值、电导率、杂质含量、总大肠菌群等40几个项目,按照国际标准进行检测,一旦发现有项目超标,立马更换自动售水机的RO膜。   在水质检测车上,记者还发现了一种侧面带“把”的浅蓝色水桶,个头不大,显得灵巧可爱。据李经理介绍,这种手提桶是青岛浦康投入500万巨资,购进德国进口生产线,采用全进口德国拜耳PC材质制成。“这项发明已获国家专利,质地坚硬有弹性,耐100度高温,能使用5-8年,而且可承重200斤不变形。”李经理说,“最主要的是,相比于一般产品,这种手提桶可有效防止杂质进入桶内,使用起来更环保、更健康!”
  • 兰州自来水异味 水质检测已符合饮用标准
    据兰州市官方9日通报称,经市环保、市疾控中心等有关部门对威立雅水务公司供水水质连续跟踪监测表明:兰州市自来水水厂取水、供水出水、自来水末梢水各项监测数据呈现下降趋势,尤其是产生异味的氨氮含量下降明显,异味已逐渐消失,水质已基本无味, 水质检测后符合国家安全饮用标准。 兰州市环保局在水厂取水口水质检测数据:高锰酸盐1.9mg/L(国标 6mg/L)、硝酸盐1.63mg/L(国标 10mg/L)、氨氮0.495mg/L(国标 1mg/L)、氯化物39.7mg/L(国标 250mg/L)、阴离子表面活性剂未检出(国标 0.2mg/L)。执行《地表水环境质量标准》(GB3838-2002),以上指标全部达标。自来水 自来水是指水厂将江河、湖泊的淡水经过“混凝、沉淀、过滤、消毒”等净水工序,最后由机泵通过输配水管道供给用户的水。一些国家和地区规定,必须符合国家生活饮用水卫生标准。 水质检测不达标的水,容易引发腹泻、霍乱、伤寒、肝炎、痢疾等传染病和氟中毒、砷中毒等地方病。城市自来水的国家标准(GB5749-85) 总大肠菌群(MPN/100mL或CFU/100mL)不得检出;耐热大肠菌群(MPN/100mL或CFU/100mL)不得检出;大肠埃希氏菌(MPN/100mL或CFU/100mL)不得检出;菌落总数(CFU/mL)100。 色度 度不超过15度;浑浊度 NTU 不超过3度;嗅和味 不得有异嗅异味;肉眼可见物不得含有;PH 6.5-8.5;总硬度(以CaCO3计)mg/L 450;铁 mg/L 0.3;锰 mg/L 0.1;铜 mg/L 1.0;锌 mg/L 1.0;挥发酚(以苯酚计)g/L 0.002;阴离子合成洗涤剂 g/L 0.3;硫酸盐 g/L 250;氯化物 g/L 250;溶解性总固体 g/L 1000;氟化物 g/L 1.0;氰化物 g/L 0.05;  氯仿 g/L 60;细菌总数 个/L 100;总大肠菌群 个/L 3;余氯 g/L ≥0.30。自来水消毒 现在自来水消毒大都采用氯化法,氯气用于自来水消毒具有消毒效果好,费用较低,几乎没有有害物质的优点。但我们经过对理论资料了解、研究,认为氯气用于自来水消毒还是有在一定的弊端。氯化消毒后的自来水能产生致癌物质,目前有关方面专家也提出了许多改进措施。 目前世界上安全的自来水消毒方法是臭氧消毒,不过这种方法的处理费用太昂贵,而且经过臭氧处理过的水,它的保留时间是有限的,至于能保留多长时间,目前还没有一个确切的概念。所以目前只有少数的发达国家才使用这种处理方法。水质检测 水是生命之源,人类在生活和生产活动中都离不开水,生活饮用水水质的优劣与人类健康密切相关。随着社会经济发展、科学进步和人民生活水平的提高,人们对生活饮用水的水质要求不断提高,饮用水水质标准也相应地不断发展和完善。北京智云达科技有限公司专业研发、生产的ZYD-HF水质检测仪,在使用配套试剂的情况下,不需要配制标准溶液、绘制标准曲线,可直接将样品或稀释溶液放入仪器进行定量水质检测, 水质检测结果准确,操作简便。
  • 防锈油脂盐雾测定仪的知识普及
    腐蚀给金属材料造成的直接损失巨大。有人统计每年全世界腐蚀报废的金属约一亿吨,占年产量的20%~40%。而且随着工业化的进程,腐蚀问题日趋严重化,美国1949年腐蚀消耗(材料消耗和腐蚀)为50亿美元,1975年达700亿美元,到1985年高达1680亿美元,与1949年相比增加了80余倍。估计全世界每年因腐蚀报废的钢铁设备相当于年产量的30%。显然,金属构件的毁坏,其价值远比金属材料的价值大的多;发达国家每年因腐蚀造成的经济损失约占国民生产总值的2-4%;美国每年因腐蚀要多消耗3.4%的能源;我国每年因腐蚀造成的经济损失至少达二百亿。腐蚀的巨大危害不仅体现在经济损失上,它还会带来惨重的人员伤亡、环境污染、资源浪费、阻碍新技术的发展、促进自然资源的损耗。 一、腐蚀:是材料或其性能在环境的作用下引起的破坏或变质。大多数的腐蚀发生在大气环境中,大气中含有氧气、湿度、温度变化和污染物等腐蚀成分和腐蚀因素。 二、盐雾:是指大气中由含盐微小液滴所构成的弥散系统,是人工环境三防系列中的一种,很多企业产品需模拟海洋周边气候对产品造成的破坏性,盐雾试验就是模拟这种现象的产生,所以检测设备--盐雾试验箱应运而行。 三、盐雾腐蚀:就是一种常见和破坏性的大气腐蚀。模拟海水环境的加速腐蚀方法,其耐受时间的长短决定耐腐蚀性能的好坏。这里讲的盐雾是指氯化物的大气,它的主要腐蚀成分是海洋中的氯化物盐——氯化钠,它主要来源于海洋和内地盐碱地区。盐雾对金属材料表面的腐蚀是由于含有的氯离子穿透金属表面的氧化层和防护层与内部金属发生电化学反应引起的。同时,氯离子含有一定的水合能,易被吸附在金属表面的孔隙、裂缝排挤并取代氯化层中的氧,把不溶性的氧化物变成可溶性的氯化物,使钝化态表面变成活泼表面。造成对产品极坏的不良反应。
  • 异味自来水“没问题”暴露了“大问题”
    自今年1月以来,全国已曝出十余起自来水异味事件,而其中有多数“问题水”经当地机构检测认定“水质达标”,一些水务部门甚至拍胸脯告知民众“可放心饮用”,这就让许多人心生疑惑:仅凭感官就能发现异味的自来水,何以经过科学检测后却“没了问题”? 事实上,我国从2012年7月起开始执行的生活饮用水卫生标准,检测指标达106项,与世界最严的欧盟水质标准基本持平,标准中规定“生活饮用水的感官性状要良好”,在“臭和味”一项中更明确要求“无异臭、异味”。作为强制性标准,这意味着106项指标中任意一项不合格都代表水质有问题,当然也包括“异味”在内。而被普遍反映有异味的“问题水”被检测为“合格”,这究竟是由于公众的嗅觉“集体失灵”,还是相关机构“选择性失明”,答案不言自明。一些部门为了逃避责任,不惜“ 睁眼说瞎话”、把“异味水”认可为“达标水”,既暴露了对于国家标准的不屑一顾,更暴露了对民生问题的公然漠视。 自来水水质检测标准 根据GB5749-85、GB5750-85自来水质量标准在感官性状和一般化学指标:色度不超过15度;浑浊度不超过3度;不得有臭味、异味;不得含有肉眼可见物;PH在6.5-8.5;总硬度(以碳酸钙计):450mg/L 氯化物250mg/L 细菌学指标:细菌总数:100个/ml;总大肠菌群3个/L 游离余氯:在与水接触30分钟后不低于0.3mg/L,集中式给水,除出厂水应符合以上条件外,网管末梢水应不低于0.05mg/L。 水质检测方法 色:铂钴标准比色法:用氯铂酸钾和氯化钴配成标准色列,与水样进行比较,规定相当于1毫克铂在1升水中所具有的颜色成为1度,作为色度单位。 浑浊度:是反应天然水饮用水的物理性状的一项指标。天然水的浑浊度是由于水中含有泥沙、粘土、有机物、微生物等微粒悬浮物所致。一般采用分光光度法。 臭和味:去水样100ml,置于三角瓶中,振摇后闻水的气味,用适当的词句描述,并按六级记录其强度。同时取少量的水入口,不要下咽,尝尝水的味道,并加以描述,按六级记录其强度。   肉眼可见物:直接观察。 PH值:PH值是水中氢离子活度倒数的绝对值。水的PH值了用PH电位计法和比色法制定。PH电位法比较准确,比色法简易方便。 总硬度:水的硬度戏指沉淀肥皂的程度。 氯化物:氯化物几乎存在于所有的饮用水中,饮用水中氯化物的测定方法常用的有硝酸银滴定法及硝酸汞滴定法。硝酸银滴定法操作简单,但终点不甚明显;硝酸汞滴定法终点敏锐,但水质检测要求严格控制PH。 总大肠菌群:多管发酵法或滤膜法检验。 相关危害 不合格水对人体的危害,有看得见的,有看不见的。看得见的通常是微生物污染危害,可能致人突发急性疾病,消费者食用微生物超标严重的食品,很容易患痢疾等肠道疾病,可能引起呕吐、腹泻等症状,危害人体健康安全。好在国人习惯饮用开水,可以杀死微生物污染物,这个危害表现并不明显。 看不见的危害,容易被忽视但更值得关注。自来水的有机化合物总量(CODMn)超标易导致慢性疾病。 饮用水中氟化物超标并长期使用,最严重的情况会引起氟骨症。氟斑牙的牙齿变色是氟元素的过量摄入引起的,这主要是由环境因素所造成的。氟斑牙及称斑釉牙或黄斑牙,是一种慢性氟中毒在牙齿中的表现。这种病是因为平常饮用水中的氟元素含过高。氟是一种在自然界含量很小的化学物质,它既有防龋齿的作用,又能致病。水中如果缺少含氟的物质,会减低儿童牙齿抵抗龋齿 的能力 如果氟含量过高,又会沉积在体内,引起慢性的氟中毒,在牙齿就会表现出氟斑牙。 快速水质检测水是大家每天都必会饮用的,所以水的安全也是我们所关注的,我们对生活饮用水的水质要求也不断提高。水质检测可以帮助您在家中轻松完成检测。智云达科技有限公司研发生产的水质大肠菌群检测纸片和水中余氯(消毒液有效氯)速测试纸可以帮助您快速检测饮用水的质量安全。
  • 蓝天 碧水 净土 三大保卫战——石化环境污染物分析及溯源技术进展
    石化产业是能源及化工原料的提供者,在国民经济中占有重要的地位,但因其高耗能、高污染的特点,相关污染防治工作一直受到社会各界的高度重视。在炼油化工生产过程,部分物料具有易燃易爆和毒害性质,不可避免地就会产生污染,其中就包括水污染、大气污染、固体废物污染和噪声污染等,将会对环境造成不利影响。自2014年以来,国家陆续出台了新《环境保护法》、“气十条”、“水十条”、“土十条”及石油炼制工业和石油化学工业污染排放新标准等法律法规,环保政策导向由污染物总量控制转为环境质量改善,对炼化企业环保工作提出了更高的要求。“气不上天、油不落地、水不乱排、废不乱放、声不扰民”,“清洁、低碳”既是对石化产品的要求,也是对生产过程所提出的要求。炼化企业环境监测对时空性和准确性的要求也越来越高,实验室检测、在线监测及现场快速监测技术都在各石化企业得到了广泛应用,而有条件的石化、化工类工业园区已开展走航监测、网格化监测以及溯源分析等工作。石化行业的相关排放标准有GB 31570-2015石油炼制工业污染物排放标准,GB 31571-2015 石油化学工业污染物排放标准,GB 15618-2018 土壤环境质量农用地土壤污染风险管控标准,GB 36600-2018 土壤环境质量建设用地土壤污染风险管控标准,GB 34330-2017 固体废物鉴别标准-通则,GB 5085.7-2019 危险废物鉴别标准 通则,国家危险废物名录(2021)… … ,以及更加严格的地方排放标准,如DB 31/387-2018《上海市锅炉大气污染物排放标准》等。环境监测与评价方法废气污染物监测技术及进展炼化企业废气污染物包括SOx、NOx、粉尘、烃类气体、其他挥发性有机化合物(简称VOCs)、恶臭气体等有毒有害气体。目前,SOx、NOx的实验室检测技术和在线监测技术已经非常成熟,包括滴定法、电化学方法及分光光度法等,而VOCs和恶臭气体的检测以气相色谱法(简称GC)、气相色谱质谱法(简称GC-MS)和高相液相色谱法为主,分析技术比较成熟,相关标准比较齐全。气相色谱法是应用最早、最普遍的技术,最初的分析模式为大体积采样和填充柱分析,在后续解决了采样预浓缩(低温)及热解析等预处理技术后,结合不同极性毛细管色谱柱组合的强大分离技术,形成了吸附管采样-热解析-毛细柱分离-GC/MS监测和苏玛罐采样-低温预浓缩-热解析-毛细管分离-GC/MS监测两种分析模式,实现了117种VOCs的准确测定。但该技术具有采样复杂、分析周期长、数据滞后的缺点,较难反映统一监测点位的浓度变化趋势。为了解决目前VOCs传统监测方法获取数据时空代表性不足的问题,在线监测、便携式监测技术已经成为石化行业VOCs现场监测的发展趋势。目前,可用于气体在线监测的分析技术主要包括传感器技术、光谱技术、色谱技术和质谱技术等多种类型,具体的应用模式包括分析小屋和走航监测等。便携式分析仪主要用于应急检测、污染源追踪监测、环保部门执法抽查检测、泄露和敞开面VOCs检测等方面。目前,国内许多检测部门、企业已经逐步配备便携式VOCs分析仪。VOCs的异常排放及精准溯源更是目前炼厂VOCs排放的研究热点之一。水质分析及循环水漏油溯源技术进展石化行业的水质分析方法主要包括重量法、容量法、分光光度法、原子吸收光谱法、电感耦合等离子体原子发射光谱、离子色谱、电化学法、气相色谱法、高校液相色谱法、气相色谱-质谱法、比色法、生物监测法等。其中钙硬度、碱度、氯化物、硫酸盐和电导率等可以反映水质的腐蚀性和结垢性,铁离子、铜离子可以反映阻垢缓蚀剂的缓蚀性能,浊度和游离氯可以反映循环水系统的物料泄露情况和微生物控制情况等。目前,炼厂水质的常规监测及在线监测技术均比较成熟。那么,当监测指标发生异常时,对异常点位的及时准确溯源就成为了炼厂最为关心的问题。事实上,循环水系统的油料泄漏问题在国内石化行业非常普遍,有泄漏现象的装置达到85%以上。一旦发生油料泄露,会在设备表面形成油膜,不仅大大增加了装置的能耗,也会给炼油装置运行带来安全隐患。如果能及时找到漏油的源头,即精准溯源,将会极大的节约成本。现有的溯源方法并不完善,如下图所示:中国石化石油化工科学研究院(简称石科院)基于烃指纹技术开发了智慧循环水溯源专家系统,通过将自行开发的水中油高效样品预处理方法以及烃指纹分析技术(基于气相色谱或气相色谱-质谱技术)相结合,利用智慧循环水溯源软件,可以对循环水中的泄漏物料与炼厂的典型油品烃组成数据库进行匹配,并根据智能算法等技术,自动完成循环水泄露的智能监测和溯源,减少人为主观判断,提高循环水物料泄露源查找方法的自动化水平。该溯源方法具有高灵敏、高智能化的特点,在循环水系统发生泄露早期,即可快速给出泄露位置,避免造成更大的污染和浪费。石化企业循环水油料泄露溯源专家系统固废危废分析技术及进展在目前固体废物减量化、无害化及资源化的国家大政策下,部分城市和炼厂已率先提出固体废物零排放的年度计划,这就要求对现有企业的固体废物进行资源属性、环境属性的全面表征,并对固废进行炼厂正常工况条件的协同处置时,有可能产生的腐蚀和安全风险开发快速的过程控制分析技术。石科院目前已经开发了对含油污泥、石油焦等固体废物的资源属性及部分环境属性的表征技术,如油泥适度预处理耦合造气技术,可实现油泥梯级资源化利用与无害化处置,油泥梯级资源化利用技术路线如下图所示:油泥梯级资源化利用技术路线附:中国石化石油化工科学研究院分析平台中国石化石油化工科学研究院具有的CNAS/CMA认证资质:标准号标准名称 CNAS/CMA认证1HJ639-2012水质挥发性有机物的测定 吹扫捕集/气相色谱-质谱法√2HJ605-2011 土壤中挥发性有机物的测定 吹扫捕集-气相色谱质谱法√3HJ741-2015土壤中挥发性有机物的测定 顶空/气相色谱法√4HJ 834-2017 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法√5HJ 803-2016 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法√6HJ 832-2017土壤和沉积物 金属元素总量的消解 微波消解法√7HJ 501-2009水质 总有机碳的测定 燃烧氧化-非分散红外吸收法√… … … √40GB/T 14424-2008 工业循环水中余氯的测定√作者:中国石化石油化工科学研究院 钱钦
  • 自来水公司水厂常规检验检测项目标准
    1 总大肠菌群 MPN/100ml 不得检出 未检出 2 耐热大肠菌群 MPN/100ml 不得检出 未检出 3 大肠埃希氏菌 MPN/100ml 不得检出 未检出 4 菌落总数 &le 100 CFU/mL <1 5 砷 &le 0.01 mg/L <0.001 6 镉 &le 0.005 mg/L <0.0005 7 铬(六价) &le 0.05 mg/L <0.004 8 铅 &le 0.01 mg/L 0.006 9 汞 &le 0.001 mg/L 0.0001 10 硒 &le 0.01 mg/L <0.0002 11 氰化物 &le 0.05 mg/L <0.002 12 氟化物 &le 1.0 mg/L 0.61 13 硝酸盐(以N计) &le 10,地下水源限制时为20 mg/L 0.200 14 三氯甲烷 &le 0.06 mg/L 0.052 15 四氯化碳 &le 0.002 mg/L <0.0003 16 色度(铂钴色度单位) &le 15 <5 17 浑浊度(散射浑浊度单位)&le 1,水源与净水技术条件限制时为&le 3 NTU 0.7 18 臭和味 无异臭、异味 无 19 肉眼可见物 无 无 20 PH 6.5&le X&le 8.5 7.75 21 铝 &le 0.2 mg/L 0.10 22 铁 &le 0.3 mg/L 0.18 23 锰 &le 0.1 mg/L <0.05 24 铜 &le 1.0 mg/L <0.05 25 锌 &le 1.0 mg/L <0.05 26 氯化物 &le 250 mg/L 75.5 27 硫酸盐 &le 250 mg/L 110 28 溶解性总固体 &le 1000 mg/L 480 29 总硬度(以CaCO3计) &le 450 mg/L 235 30 耗氧量(CODMn法,以O2计) &le 3,水源限制,原水耗氧量>6mg/L为 5 mg/L 2.75 31 挥发酚类(以苯酚计) &le 0.002 mg/L <0.002 32 阴离子合成洗涤剂 &le 0.3 mg/L 0.07 33 氯气及游离氯制剂(游离氯) &ge 0.05 mg/L 0.60 34 氨氮 &le 0.5 mg/L 0.060
  • 252.8万!海委水文局地下水测站水质样品检测项目
    项目编号:HWSWJHT2022-032项目名称:海委水文局地下水测站水质样品检测预算金额:252.8000000 万元(人民币)最高限价(如有):252.8000000 万元(人民币)采购需求:主要工作内容包括配合甲方开展海河流域565个地下水测站(包括25个地下水水源地取水口、186个保留生产井、354个国家地下水监测工程监测井)水质样品采集的有关协调工作,完成海河流域790个地下水样品的实验室检测分析,检测指标为《地下水质量标准》(GB/T14848-2017)中39项地下水质量常规指标:色、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表面活性剂、耗氧量(CODMn法)、氨氮、硫化物、钠、总大肠菌群、菌落总数、亚硝酸盐、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、铬(六价)、铅、三氯甲烷、四氯化碳、苯、甲苯、总α放射性、总β放射性。出具地下水水质样品检测报告和相关数据。合同履行期限:自合同生效之日起1年本项目( 不接受 )联合体投标。
  • GC Smart+HS-10测定生活饮用水中氯仿、四氯化碳应用方案
    随着社会的发展,人们对生活饮用水的质量要求也在不断提高,不仅仅是需要清洁、卫生,更需要“安全”。国家从2007年7月1日全面实施《gb 5749-2006 生活饮用水卫生标准》,总共规定了106项水质指标,分为微生物指标、毒理指标、化学指标和放射性指标。其中毒理指标涉及氯仿和四氯化碳。通过监测生活饮用水中氯仿、四氯化碳的浓度可以指导生产中的加氯量,避免加氯量过大对人体健康造成危害或加氯量过小导致微生物指标不达标。现行国标《gb/t 5750.8-2006 生活饮用水标准检验方法 有机物指标》中规定了顶空法结合气相色谱ecd检测器测定生活饮用水中氯仿、四氯化碳。顶空法采用气体进样,不需要进行有机溶剂萃取等前处理,操作简单。ecd检测器是一种高灵敏度、高选择性检测器,对电负性物质具有极高的灵敏度。本解决方案参照国标《gb/t 5750.8-2006》,建立了顶空进样结合气相色谱ecd检测器测定生活饮用水中氯仿、四氯化碳含量的方法。岛津公司 hs-10 顶空自动进样器延续了 hs-20 系列的良好重复性,gc smart 气相色谱仪采用载气手动控制模式并结合了 apc 高精度控制技术,两者通过工作站 labsolutions le实现分析的全自动化。本方法操作简单、检出限低,样品中氯仿、四氯化碳加标回收率分别为 99.3%和 98.4%,方法准确可靠,对于生活饮用水中氯仿、四氯化碳含量控制具有现实意义。所谓顶空,是指"物质上部的空间",在液体或固体的上部存在着液体或固体中所含的挥发性成分,特别是低沸点的成分。顶空进样器将样品放置于密封恒温系统中进行一定时间恒温,当气液或气固两相达到热力学平衡后采样并导入气相色谱仪(gc)进行分析。通常应用于食品中的香气成分、化学制品的气味成分,环境水中的有害挥发性成分的定性或定量分析。hs-20系列顶空进样器为从研究部门到品质管理部门所有涉及挥发性成分的分析提供有力的支持。hs-20 系列顶空进样器包括定量环采集模式hs-20/hs-20lt型和冷阱模式hs-20trap型。 卓越的性能良好的重现性极低的交叉污染友好的界面设计样品盘设计人性化维护简便灵活的扩展性电子冷却捕集阱条形码阅读器选件hs-20系列顶空进样器加热炉温度上限可以达到300℃,全惰性化样品传输管线,可以分析以往顶空进样器难以分析的高沸点化合物。环硅氧烷是硅氧烷生产的一种原料,常痕量存在于硅油、液体橡胶和某些化合物中。环硅氧烷具有挥发性,可能造成电子部品接点不良,所以控制环硅氧烷的含量非常重要。hs-20系列顶空进样器可在相同条件下测定从环硅氧烷到邻苯二甲酸酯等成分。
  • 废水中余氯的检测方法
    余氯是指水中加氯后会与水中的细菌、微生物、有机物等作用,这个过程会消耗一些氯,一段时间后水中还剩下一些氯。这些氯通常被称为余氯,通常是游离氯。一般饮用水、自来水、泳池池水、医疗废水等都需要检测余氯,余氯含量过高,对人体健康有较大的危害,因为其可以刺激眼鼻喉等呼吸道系统,浓度过高还会麻痹中枢神经,长期饮用或接触含余氯的水也会慢性中毒,致癌。基于以上危害,对于水中余氯我们要如何实现快速检测呢?解决方案检测方法:DPD法依据标准:HJ586-2010 水质游离氯和总氯的测定 N.N-二乙基对苯二胺(简称:DPD法) 分光光度法方法原理:在PH6.2-6.5条件下,游离氯直接与(DPD)发生反应,生成红色化合物,在相对应的波长下,采用分光光度法测定其吸光度。检测仪器:SH-3900A型多参数水质分析仪SH-3900A型多参数水质分析仪用于水样检测的智能仪器,可以快速、准确的检测水中主要污染物,如氨氮、总磷、总氮、化学需氧量(COD),各类阴离子如氯化物、硫酸盐、硝酸盐、亚硝酸盐、氰化物、挥发酚、余氯、总氯等,重金属元素等,广泛应用于环境、医疗、卫生、食品、造纸、印染、石化、冶金等行业的水质检测。仪器特点:◆显示界面:8寸彩色触屏液晶显示,中文菜单人机交互,数据直读;◇仪器光源:进口光源,稳定可靠,自动开启与关闭,延长使用寿命;◆测试方式:支持比色管360°旋转比色及4联池比色皿自动比色两种测定方式;◇项目参数:支持所有水质常规项目及可定制化扩展项目;◆曲线调用:分类别标准曲线,简单直观,支持客户自定义及编辑曲线;◇曲线校准:具有标样一键校准功能;◆数据编辑:可对测量数据实时编辑及保存,方便客户整理检测结果;◇仪器校准:开机自动校准及预热;◆数据平台:支持物联网功能,数据实时上传至盛奥华云数据服务中心,方便客户日常管理及分析,为污水处理的平稳运行提供数据支持;◇光学结构:采用凹面闪耀全息光栅,性能卓越,3秒内切换至任意波长;◆领域扩展:支持光度计功能,可实现光度测量及全波长扫描功能;◇软件升级:可实现软件版本远程升级;◆散热方式:优化结构,配以大风量静音风扇高效降温,延长仪器使用寿命;◇流程优化:配套专用检测试剂及配件,减少客户操作步骤,简便安全;技术参数:性能参数物理参数波长范围190-1100nm屏幕参数8寸高清触摸彩屏光路稳定性≤±0.002Abs/h比色方式比色杯(皿),比色管光度重复性0.2%T用户曲线>240条杂散光≤0.005%T数据传输远程物联网光谱带宽2nm打印方式内置热敏型光度准确性±0.5%T操作界面中文AOS操作波长分辨率1nm仪器电源AC(220±10%)50Hz波长准确度±1nm使用环境温度0-50℃湿度10-90%波长重现性0.2nm仪器尺寸460*320*350mm吸光度重现性±0.003Abs仪器重量约20kg吸光度准确性230-900nm±0.005abs额定功率60W序号测定项目测量范围序号测定项目测量范围1COD5-6000mg/L(分段)21氰化物0-0.5mg/L2氨氮0.01-100mg/L(分段)22磷酸盐0-0.5mg/L3总磷0.001-8mg/L(分段)23铜0-2.5mg/L4总氮0.01-100mg/L(分段)24铁0-5mg/L5色度0-400度25锌0-1mg/L6浊度0-200NTU26镍0-5mg/L7悬浮物0-200mg/L27银0-1mg/L8硫化物0-1mg/L28锰0-5mg/L9总油0-16mg/L29总铬0-2mg/L10余氯0-3mg/L30六价铬0-2mg/L11苯胺0-2mg/L31氨氮(水杨酸)0-1mg/L12挥发酚0-2.5mg/L31硝酸盐氮(可见光)0-10mg/L13高锰酸盐指数0-10mg/L(分段)33总氮(可见光)0-10mg/L14硝酸盐氮(紫外)0-10mg/L34总硬度10-600mg/L15亚硝酸盐0-0.2mg/L35二氧化氯0-3mg/L16硫酸盐1-150mg/L36铝0-0.25mg/L17氟化物0-1.5mg/L37硅酸盐0.2-40mg/L18臭氧0-2mg/L38二氧化硅0.2-30mg/L19总氯0-3mg/L39氯离子10-400mg/L20甲醛0-4mg/L40阴离子表面活性剂0.1-2.5mg/L检测试剂:余氯试剂量程:0-3mg/L应用范围:适用于地表水、工业废水、医疗废水、生活污水、中水和污水再生的景观用水中的游离氯的测定。实验步骤:1、向试管1/2中加入水样2、分别加热专用试剂1和试剂2 0.5ml3、试管1/2中分别加入纯净水5ml4、摇匀调出曲线57号5、试管外壁擦干净后放入仪器中读数
  • 新闻 I 赛莱默闪耀第三届进博会
    11月初的上海,风清气爽,阳光和煦,第三届中国国际进口博览会如约而至。展馆内彩旗招展,欢腾有序,来自全球的参展商准备就位,热情洋溢。本届进博会共设六大展区,展览面积超过上届规模,吸引了国内外各地区优秀企业参展。赛莱默作为一家专注于解决世界上最具挑战性和最基本的水质问题的全球性公司,在150余个国家的实验室中都有其产品身影。倾听、交流是赛莱默一直坚守的品质,此次进博会赛莱默展台位于技术装备展区 3A8-003,展台大气,设计鲜明,展品丰富。赛莱默感受着来自上海的热情,也向世界展示着蓬勃的活力。此次亮相展台的产品中不乏引领行业的科技新品,让我们一睹为快。1、ProQuatro便携式多参数水质仪ProQuatro是一款手持式多参数水质仪。可测量溶解氧、电导率、比电导、盐度、电阻率、总溶解固体(TDS)、pH、ORP、 pH/ORP组合、铵盐(氨)、硝酸盐、氯化物和温度的多种组合。具有抗冲击、IP67防水外壳、现场取样更快、寿命长、耗材少等特点。2、RS5 轻便小巧精准获取可靠数据的ADCPRS5引入了SonTek SmartPulse+ 专利算法,融合了宽带和脉冲相干声学处理方法。从而确保以最精确、最友好的方式进行数据采集。RS5中内置有电池和蓝牙无线模块,这样无需连接外部电气模块便可实现流畅的用户体验。依靠集成的、现代的、高速和低功耗的无线蓝牙(BLE5)模块,工作距离可达100m。加上长达五分钟的数据缓冲区,能够有效的防止数据丢失并减少冗余工作量。体积更是轻便小巧到可以装进袋子里!3、EXO NitraLED™ 用于淡水环境的 UV 硝酸盐传感器EXO NitraLED™ 是一款光学硝酸盐传感器,利用先进的 UV LED 技术,设计为长期,低漂移监测。内置针对天然有机物(NOM)和浊度的校正功能,最大程度地减少淡水环境中的干扰因素。外形紧凑,可与任何 EXO 多参数仪实现无缝集成。具有减轻成本、无需配置外部硬件的特点。4、Chlorine 3017M DPD氯分析仪Chlorine 3017M DPD氯分析仪常用于饮用水和废水、工业应用、水产养殖和水生栖息地等使用场景中,可检测残留的游离氯和总氯,实现持续的精确监控。产品精准可靠,采用DPD比色方法测量游离氯或总氯。此种高精度分析方法可以为流程优化、控制与报告提供可靠数据。且低维护成本,流动注射分析可简化维护工作,节省时间。简化的管道和低试剂使用量降低了仪器维护的频率。采用两个可配置继电器,可让用户连接至 PLC,从而自动化控制化学加药流程。5、Alyza IQ 氨氮分析仪的简单选择Alyza IQ NH4可作为传感器完全集成到IQ Sensor Net中。新分析仪可在2020系统和282/284系统中运行。使用氨氮测量方法,即水杨酸法(根据DIN 38 406)。颜色由样品中的镂离子与次氯酸盐离子和石炭酸或石炭酸衍生物在碱性条件下(pH约为12.6)反应产生。如需加速反应,可使用催化剂。提高反应溶液的温度可以进一步加速反应。然后在红色光谱范围内,对有色样品进行光度分析。具有试剂消耗少、操作简单、更换试剂更安全等特点。近年来,赛莱默不断开拓新的行业、探索新的领域,其产品服务赢得更广大的中国客户。进博会现场,赛莱默展台前围绕着众多企业采购人员、技术专家团、行业学者,关于赛莱默产品应用、价格、服务进行热烈交谈。更为引人瞩目的是,已有不少企事业单位与赛莱默达成合作。现场还举行了浙江防疫医疗物资国际合作签约仪式、济南交易分团签约仪式等。未来,赛莱默一定不遗余力为合作用户提供产品创新和技术支持,新一轮的合作,也将带来新的期待,迸发出新的商机。科技创新在这里交流,资源配置在这里完成。赛莱默凭借在仪器和服务方面的创新基础,长期为客户提供深厚的专业知识和丰富的产品,被广泛的应用于环保及水文水利行业,高品质的仪器和完善的服务体系,为客户提供可靠的监测数据,在全人类赖以生存的水事业测量管理事业中做出贡献。
  • 新研究:海洋是天然雾霾“净化器”
    美国加州南部海岸最新测试表明,海洋表面在夜晚会吸收雾霾中的氧化氮,大约一个夜晚可以消除雾霾中15%的化学物质。   氧化氮形成于化石燃料燃烧过程,能够产生光化学烟雾。研究小组指出,2月份一个夜晚,正巧风流将污染空气从洛杉矶盆地吹至海岸线区域,使研究人员能够跟踪分析氧化氮气体吹过海洋表面所发生的变化。   研究负责人加州大学圣地亚哥分校化学系副教授蒂姆-伯特伦(Tim Bertram)说:&ldquo 人们容易忽略的是海洋对污染空气的反应,海水中富含盐,海平面具有进行多样性化学反应的潜在性。&rdquo   为了跟踪大气层氮循环,他们研究分析了五氧化二氮,它是氧化氮氧化后的分子结构。五氧化二氮能够与海盐中的氯化物发生反应,例如:反应形成硝基氯。   当阳光照射次日清晨海面上的硝基氯,将产生氧化氮,并释放氯基物质,&ldquo 攻击&rdquo 其它分子并发生反应形成臭氧。一支大气化学家小组将该研究报告发表在3月3日出版的《美国国家科学院院刊》上。   大气化学家分析了五氧化二氮分子的&ldquo 源与汇&rdquo &mdash &mdash 证实它们在空气中消失,被海水吸收。美国加州大学圣地亚哥分校研究生米歇尔-基姆(Michelle Kim)在加州La Jolla码头布置了一套仪器,用于测量空气中五氧化二氮的流通量。   2013年2月20日夜晚,海岸逆风提供了测量空气和海洋交换作用的重要线索。同时,她还测量了从洛杉矶吹至海面的气团。   这使得米歇尔能够测量经过一个夜晚五氧化二氮及其产物硝基氯的最终归宿,通过同时测量海面空气中分子和湍流的浓度,她观测到五氧化二氮进入海水的净移动,同时空气中没有硝基氯的净流出。   米歇尔说:&ldquo 之前的研究分析了氧化氮在各种介质表面的损耗,例如:浪花、积雪等,这项研究是首次证实海洋是夜间五氧化二氮的终极沉积区。&rdquo
  • 玩具材料中短链氯化石蜡测定标准即将颁布
    导语遥控汽车、拼图积木… … 又到了欢乐“六一”,想好给孩子们送什么玩具礼物了吗?随着社会的发展和进步,玩具花样也越来越多。但另一方面,玩具的安全性,如化学添加物质(增塑剂、阻燃剂等)也愈发引起关注。2017年,欧盟RAPEX通报了27起中国出口的消费品短链氯化石蜡超标案例,其中有6起涉及儿童玩具产品,包括了玩具小马、玩具步枪、绳子、沐浴玩具、塑料娃娃等。为适应国内外市场的要求,2019年,由上海海关机电产品检测技术中心牵头,着手开展制定《玩具材料中短链氯化石蜡含量的测定 气相色谱-质谱联用法》的国家标准。期间,岛津分析中心积极协助上海海关专家,参与了标准品和玩具材料实际样品的验证工作,并就技术问题与制标单位专家进行协商和沟通,推动项目的进展,目前该标准已通过报批程序,即将颁布并实施(标准号:GB/T 41524-2022),一起来看看吧! 氯化石蜡——年产量超过百万吨的化学品短链氯化石蜡(SCCPs,碳原子数10-13个)是一类人工合成的直链正构烷烃氯代衍生物。SCCPs主要用作金属加工润滑剂、增塑剂、涂料、皮革加脂剂以及阻燃剂等。SCCPs具有持久性、生物富集性以及潜在生物毒性,被IARC归为2B类致癌物。2007年,欧盟REACH将SCCPs列入第一批高关注物质清单;EU 2015/2030规定物品中的短链氯化石蜡含量不得等于或大于0.15%,否则不能投放市场。2017年4月,SCCPs被正式列入关于持久性有机污染的《斯德哥尔摩公约》受控名单(附录A)中。 表1. 关于SCCPs的管控情况中国是世界第一大氯化石蜡生产国,2013年的年产量超过100万吨,年产能超过160万吨。同时,我国也是世界玩具生产大国和出口大国,每年全球约75%的玩具来自中国,氯化石蜡常作为增塑剂和阻燃剂添加至玩具中,玩具材料中短链氯化石蜡的过量使用不仅会成为影响我国玩具出口的重大隐患,也会影响了我国玩具制造业的国际形象。图1. 氯化石蜡全球产量与使用量[1] 短链氯化石蜡——分析化学的前沿热点之一氯化石蜡及短链氯化石蜡的检测一直是环境、消费品等分析化学的难点之一。下图是市售某氯含量的短链氯化石蜡标准品谱图,由于同族分子种类众多,在仪器谱图上呈现簇峰,且保留时间跨度范围大,易与其它污染物干扰。因此,氯化石蜡及短链氯化石蜡的分析需要综合考虑前处理分离、仪器的分离度、分辨率、灵敏度等因素。迄今,尚无关于其检测的统一/黄金方法标准。 图2. 典型氯化石蜡的工业标准品谱图 相对而言,气相色谱-负化学电离质谱联用法(NCI-GCMS)目前是分析短链氯化石蜡常用的方法之一。 表2. NCI-GCMS的分析SCCPs的特点需要特别指出一点,NCI-GCMS的响应随氯原子数增大而增大,这会导致样品与标准品若氯含量有明显差异,则得到的定量结果不准确[2]。因此若使用NCI-GCMS,目前主流的方法是使用氯含量-响应因子做校准曲线[3]。图3. NCI模式下,相同浓度下不同氯含量的响应对比,由下到上依次为50ppm,氯含量51.5%、53.5%、55.5%、56.25%、57.75%、59.25%和63%的总离子流图。 岛津应对利器使用NCI-GCMS法,岛津分析中心协助上海海关机电中心对开展标准制订工作用的标准品和玩具样品进行方法学验证。图4. GCMS-QP2020 NX及方法参数信息 l 方法学结果节选——质量色谱图图5. 氯含量55.5%的SCCPs工业标准品单体质量色谱图(以CnCl7为例) l 某玩具材料样品的实例谱图图6. 某玩具材料样品的TIC谱图(浓度约2000 mg/kg) 结语作为世界知名的仪器产商,岛津公司始终秉持“为了人类和地球健康“的经营理念,不仅提供优良性能的仪器,同时也提供丰富的理化检测解决方案,针对国内外关注的玩具中短链氯化石蜡超标问题,协助国内制标单位开展标准制定工作,让下一代玩的放心,拥有快乐的童年。 参考文献[1] Gluge J., Wang Z.J., Bogdal C et al. Global production, use, and emission volumes of short-chain chlorinated paraffins – A minimum scenario. Science of the Total Environment, 2016, 573: 1132-1146.[2] Reth M., Oehme M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins. Anal Bioanal Chem, 2004, 378: 1741-1747.[3] Reth M., Zencak Z., Oehme M et al. New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry. Journal of Chromatography A, 2005, 1081:225-231. 本文内容非商业广告,仅供专业人士参考。
  • 靠‘谱’系列之VOCs走航案例未知因子判定---以四氯化碳为例
    四氯化碳(CCl4),也称四氯甲烷或氯烷,常态下是一种无色透明的挥发性液体,具有特殊的芳香气味,味甜。在四氯化碳分子中,4个氯原子是由共价键以正四面体的结构分布碳原子的四周。因为其结构对称,所以四氯化碳呈非极性,常温下化学性质稳定。四氯化碳是一种优良的有机溶剂,可以作为有机物的氯化剂、药物的萃取剂而应用于物理、化学和医学等领域 也用作香料的浸出剂、纤维的脱脂剂、粮食的蒸煮剂、织物的干洗剂。四氯化碳是一种可致癌的有机化学物,人体吸入高浓度的四氯化碳蒸气后,可迅速出现昏迷、抽搐等急性中毒症状。四氯化碳作为原料生产的氟氯化碳,光解能产生氯自由基,对臭氧层具有极强的破坏性。图1 四氯化碳结构式PTR-TOF对于四氯化碳的测量方法,我国标准(GB/T 16132-1995)中有利用气袋对现场气体进行采集,再带到实验室进行气相色谱离线检测的方法[1]。或者环境监测中,使用气相色谱/氢离子火焰检测器对四氯化碳直接测量的方法(采样频率10分钟),学术届也有使用拉曼光谱对四氯化碳进行光学测量的方式[2]。这些方法有的需要漫长的预处理过程增加了样品的不确定性,有的时间分辨率低达不到走航测量的要求,有的检测限不够低需要预先富集或其他前处理。近年来,利用快速分析飞行时间质谱仪进行车载走航VOCs检测成为了对污染排放源的环境空气影响进行跟踪溯源的重要技术手段(什么是VOCs走航监测技术(VOCs走航车)? )(中国东部大气气态芳烃的移动观测 靠‘谱’系列之VOCs走航案例未知因子判定---以氟苯为例)图2 Vocus小精灵仪器捕捉到的原始四氯化碳质谱图及信号强度变化图3 四氯化碳质谱图位置及信号强度在2022年秋季中国进口博览会空气保障—大气VOCs走航监测任务中。搭载 Vocus Elf PTR-TOF(Vocus 小精灵)的大气走航观测车对华东地区某工业园区的大气VOCs组分进行了走航监测。监测车在园区内某区位走航过程中,在m/Q 116.9659的位置检测到较强的响应(见图2),经确认,该精确质量离子分子式是CCl3+。结合前期标气测量结果,该离子信号定性为四氯化碳(CCl4)质谱信号,该峰相关同位素分布符合含3个氯的特征。同时,该信号的变化趋势与丙酮、苯、二甲苯等物质的信号趋势明显不同(见图3),半定量其峰值浓度为156 ppbV(时间分辨率1秒)。目前对四氯化碳的排放规定较少,在山东省地方标准《挥发性有机物排放标准》(DB37-2801)厂界监测点浓度限值中,四氯化碳的无组织排放浓度规定为0.3mg/m3,计算为48 ppbV。故按照该标准此次排放事件四氯化碳浓度已超标。参考文献1. GB/T 16132-1995 居住区大气中三氯甲烷、四氯化碳卫生检验标准方法 气相色谱法2. 四氯化碳级联受激拉曼散射研究[D].长春.吉林大学.2022
  • 重返餐桌“地沟油”都是升级货
    昨日,武汉市食品药品监督管理局相关负责人表示,尚未发现有加工点可以将“地沟油”提纯到真假难辨的水平,粗加工的“地沟油”既混浊又刺鼻难闻,根本无法销售。向本报报料的从业者梁新则认为,精加工技术已经由原先的加入火碱改进为添加生物制剂,效果更好,成本更低,也更难检测。   观点   市食品药品监督管理局——   未发现武汉有提纯“地沟油”水平   加工点对于回收好的地沟油如何处理呢?武汉市食品药品监督管理局执法处负责人介绍,通常的做法都是先将回收来的“地沟油”原料放入水中煮沸,然后把漂浮在最上面的油舀出来,因为舀出的“地沟油”含有大量各种杂质,然后需要在其中加入硫酸将杂质去除。   “最后加工出来的油是人都不会买。”该负责人认为,粗加工的“地沟油”和真正的成品油相比,既混浊又刺鼻难闻,根本无法销售。此外,该负责人坦言,执法多年来从未发现过武汉有加工点可以将“地沟油”提纯至真假难辨的水平。   据悉,针对市民怀疑煎早餐点、火锅店、烧烤摊经常使用“地沟油”,该局去年6月份曾做过一次大规模批量检测,结果305批的用油检测全部合格。   该负责人表示,去年,该局不仅检查了受检食品行业的用油来源记录,还对正在使用的油进行了质量检测。该负责人表示,如果是“地沟油”,则一定会含有盐,所以还专门检测了油品的氯化钠含量。   即使含有氯化钠,是否和好油按比例勾兑后就检测不出呢?该负责人强调,他们使用监测工具 气相质谱仪和液相质谱仪,只要含有氯化钠,不管多少都检测的出来。   报料人梁新——   加生物制剂精炼后更难检测   针对食品药品监督局方面的说法,梁新表示,自己干了16年,在行内也算一个“专家”了。执法部门查处的都是一线粗加工的小作坊,这些经过粗加工的“地沟油”还将送往上游进行深加工。   “粗加工的程序就是经过简单过滤、加热、沉淀、分离出暗淡浑浊、略呈红色的膏状物。”他透露,会有专门的人来收这些膏状物进行二次深加工,深加工的地方武汉很少,主要集中在江浙和广东一带,地沟油的精炼最早就是发源于广东佛山等地。   他表示,深加工的具体技术环节很复杂,主要是加入火碱洗涤、蒸馏、脱色、脱臭后就清亮了。   “现在还有更先进的生物制剂,脱色脱臭变清亮的过程更短,加工后的食用油更耐看耐闻。”他说,精炼后的地沟油还会掺入少量的食用油,更是难以检测。
  • 气溶胶质谱在线分析北京雾霾成分
    16日夜间开始,北京经历今年来持续时间最长、程度最重的雾和霾天气过程。北京南部部分站点空气质量指数爆表,天地间一片昏暗。此时,网络上、朋友圈里各类关于空气质量的言论开始流传,其中人们最为关注的是“这次雾霾里主要是含硫酸铵,̷̷原来伦敦有次硫酸铵超标,有好多人没有防护而死亡”。  网络流传硫酸铵会致命。  此次重污染天气过程中,我们呼吸的空气里这到底包含什么物质?和之前的重污染天气相比有何不同?硫酸铵会直接导致死亡吗?为此,中国天气网记者采访了中国气象科学研究院大气成分所副研究员张养梅。  北京的霾里到底有哪些成分?  中国气象科学研究院位于北京市海淀区中国气象局大院内,在气科院大楼的楼顶,气溶胶质谱仪一直默默值守,在线采集、分析北京亚微米气溶胶的成分。张养梅介绍道,所谓亚微米气溶胶是指直径在1微米以下的粒子。大家熟悉的PM2.5其实是一个总称,包括空气中直径小于或等于2.5微米的固体颗粒或液滴。研究显示,直径1微米及以下的粒子占PM2.5的60%左右,因此质谱仪采集的数据对于分析大气成分是具有代表性的。  各类颗粒在采样颗粒中所占比重。绿色代表有机气溶胶,橙色为硫酸盐、蓝色为硝酸盐,粉色为氯化物,浅橙色为铵盐。有机气溶胶所占比重最大,硝酸盐次之。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过仪器采集数据及分析,12月5日至20日采集到的1微米及以下的粒子,主要包括有机气溶胶、硝酸盐、硫酸盐等构成。有机气溶胶是一个总称概念,具体的组成目前还没有完全研究清楚,大家经常听说的多环芳烃就是有机气溶胶的一种。硫酸盐主要来自燃煤,燃煤排放的二氧化硫发生一系列氧化反应,成为硫酸铵。硝酸盐主要来自燃煤和机动车排放,氯化物的主要来源包括垃圾焚烧、燃煤以及燃放烟花爆竹等。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过对12月16日至20日对北京的采样颗粒进行分析后,结果显示有机气溶胶是其中占比最大的颗粒,高达45% 硝酸盐颗粒占比24%排第二,主要来自燃煤和机动车排放等 硫酸盐占比15%,主要来自燃煤等 铵盐占比12%,氯化物占比4%。  北京霾和伦敦烟雾一样吗?有致命成分?  就在北京空气质量持续恶化之时,网络谣言也开始流传。针对网上流传的硫酸铵会致命,张养梅表示这是不可能的。空气质量好时,空气中也存在有机气溶胶、硫酸盐等颗粒,只是浓度较低、颗粒物较小。霾天气时,仪器不会观测到硫酸铵,观测到的是硫酸、铵两个离子,他们结合成硫酸铵的可能性很大,空气重污染时浓度更高一些。空气中含有硫酸铵并不是政府发布红色预警的必要条件。  硫酸铵是颗粒物,和二氧化硫气体有明显区别,颗粒物对人体健康的影响程度没有气体迅速。如果空气中二氧化硫气体浓度很高的话,相当于人在“吸毒气”,对人体有致命影响。当年的伦敦烟雾在短短几天内造成数千人死亡,就是因为空气中酸性气体浓度太高。监测显示,12月5日以来,北京硫酸盐的浓度峰值出现在20日,达40-50微克/立方米,远远低于伦敦烟雾事件时的浓度。  当然,硫酸铵等颗粒物也会影响人体健康。它们会随着呼吸进入人体肺部,引发心脑血管和呼吸道的疾病。另外,北京的空气污染物中,含有一定比例的铵,会和硫酸、硝酸发生中和形成颗粒,和酸性气体相比,颗粒的危害性相对轻一些。  污染物浓度日间变化明显 夜间高白天低  分析还表明,空气中各种污染物的浓度整体呈现白天低、夜间高的变化规律。分析时,将12月5日至20日每天同一时次颗粒浓度做分类平均统计,显示颗粒物夜间浓度明显偏高,白天下降明显。  各类颗粒的浓度白天下降明显,夜间明显上升。  张养梅表示,浓度变化主要受排放量和气象条件两个因素影响。在排放量相同的情况下,从气象条件来说,夜间湿度增大,可以吸附更多污染物。同时,冬季夜间气温较低,大气边界层下压。在气体容量不变的情况下,体积变小,空气污染物浓度升高。白天,大气边界层抬升,体积增大,污染物浓度降低。  和2008年相比硫酸盐浓度下降  总体来说,和之前相比,北京空气中的颗粒种类的浓度分布排位没有太大变化,有机气溶胶的浓度一直是最大。但是分析显示,今年12月和2008年1月相比,硫酸盐在不同颗粒物比重的排位下降。  从图中可见,今年12月5日至20日,硝酸盐(蓝色)在颗粒物组成中浓度上升,基本都排在第二位,硫酸盐下降排在第三位 而2008年1月5日至2月2日,硫酸盐浓度排第二位,硝酸盐排第三位。张养梅表示,这一数据的变化也可以说明,政府对二氧化硫排放的监管和控制,比如煤改气措施、工厂加装脱硫设备等发挥了作用。硝酸盐浓度的上升,则与燃煤、机动车排放增加有一定关系。  北京的雾霾将在明天减弱消散,但在近几年中,霾仍将在秋冬季反复出现。张养梅提醒大家,虽然霾天气对人体的危害没有那么“激烈”,但仍需防护,尽量减少在户外活动的时间,外出时戴口罩。在室内时,也可启动空气净化器等设备,营造相对安全的空气环境。
  • 用TOC分析仪进行海水TOC分析的最佳操作方法
    简介海水中的总溶解性固体含量较高,而且氯化物会消耗氧化剂,因此对海水样品(氯化物含量为3.5-5%)进行总有机碳TOC分析时就会面临很大挑战。在传统的湿化学系统上运行分析时,由于氯化物干扰,海水样品显示极低的TOC回收率。相比之下,燃烧系统在分析海水样品时显示较高的TOC回收率,但燃烧系统的维护周期短,运行成本高,信号有漂移,且需要进行频繁的重新校准。Sievers® InnovOx实验室TOC分析仪采用专利的超临界水氧化(SCWO,Super Critical Water Oxidation)技术,能消除氯化物干扰,在提供一流分析性能的同时减少了昂贵且费时的分析仪维护工作,从而成为对海水样品进行TOC分析的理想设备。本文概述了如何正确设置和配置Sievers InnovOx实验室分析仪,在分析海水样品时发挥最佳性能。操作模式 建议用“不可吹除有机碳(NPOC,Non-Purgeable Organic Carbon)”模式来代替TOC模式进行海水分析,除非还需要测量可吹扫或挥发性的有机物。在大多数海水样品中,可吹扫或挥发性有机物的含量极小,因此NPOC约等于TOC。在NPOC模式下,测量结果并非是由2项单独的测量数据计算而来【TOC=总碳(TC)–无机碳(IC)】,因此NPOC模式运行得更快、测量得更准确。用NPOC模式代替TOC模式是行业中常见的做法,是几乎所有市面上出售的TOC分析仪的标准操作模式。只有当样品中含有挥发性化合物或者需要测量IC浓度时,才采用TOC模式。测量范围和校准海水样品中的TOC浓度较低,通常小于1 ppm。理论上来说,Sievers InnovOx实验室分析仪可以在最小测量范围(0-100 ppm)内运行海水样品,但由于海水样品的基质复杂,在最小测量范围内运行海水样品时可能会产生较大的测量偏差。因此,建议在0-1000 ppm范围内运行海水样品。Sievers InnovOx实验室分析仪的内部设置能够在不降低测量的准确性和精确性的前提下,对0-1000 ppm范围基质效应的补偿优于对0-100 ppm范围基质效应的补偿,因此最佳操作是采用0-1000 ppm范围。当采用0-1000 ppm范围分析低浓度样品时,无需将分析仪校准到测量范围的最高点。校准点只需覆盖样品的预期TOC浓度范围即可。例如,如果样品的最高预期结果是1 ppm左右,可以将校准的最高点设为5 ppm。校准前,必须彻底冲洗分析仪。请运行高质量的去离子(DI)水(最好是18MΩ-cm的去离子水),直到达到0.45 µg或更低的稳定碳质量响应为止(见下图)。在冲洗过程中,只需注意峰值窗口中的碳质量响应,可以忽略实际NPOC结果。可能需要几个小时的连续测量才能达到此目的,具体时间取决于仪器状况和之前分析过的样品。酸剂:海水样品中含有大量的钙和镁,因此建议对所有海水分析使用3N HCl。盐酸产生的氯化物不会干扰样品中的化合物。如果用6M H3PO4,则会产生不溶性磷酸钙和磷酸镁,堵塞甚至损坏反应器。对于海水分析,建议采用“添加5%酸剂”这一默认值。氧化剂:请用30%(质量浓度)过硫酸钠作为氧化剂。请勿使用Sievers M系列TOC分析仪配置的15%(质量浓度)过硫酸铵氧化剂,因为超临界条件下,铵会消耗掉一部分添加的氧化剂,被氧化形成硝酸盐,从而降低总氧化剂的氧化强度。对于海水分析,建议添加25%的氧化剂。尽管0-1000 ppm或更大范围的默认氧化剂设置通常为15%,但这个比例对海水分析来说不够。在加热阶段,海水中的一部分氯化物在达到超临界状态之前就被氧化,从而降低了总氧化剂的氧化强度。如果氧化剂配量不足,或者使用过期的或失效的氧化剂,就会导致反应器管破裂,特别是对2020年之前生产的配备老式钛反应器管的Sievers InnovOx实验室分析仪来说,情况更严重。新款的Sievers InnovOx实验室分析仪采用钽反应器管,可以降低管子破裂的风险,但氧化剂配量不足仍不利于回收有机物。吹扫时间:海水中有大量的无机碳(IC),而0.8分钟的默认喷除时间不足以去除大部分无机碳。海水样品中的无机碳浓度比TOC浓度高数倍,未被去除的无机碳会严重影响NPOC测量结果。建议将无机碳喷除时间延长到2.0分钟。较长的喷除时间不仅能彻底去除无机碳,还能将样品和试剂混合得更均匀。但在校准时,只需分析KHP或蔗糖标准品即可,因此可以保留0.8分钟的默认喷除时间。冲洗:为了最大程度清除样品残留,并防止气/液界面结晶,建议在每次样品分析之后,用去离子水冲洗分析仪。冲洗分析仪的最方便的做法是,对去离子水样品运行无机碳测量。只需运行1次重复测量即可。在工作日结束后,应彻底冲洗分析仪,清除系统中的残留样品。请用装有去离子水的40 mL样品瓶运行以下冲洗任务:载气供应:大多数Sievers InnovOx实验室分析仪都配备内置的气泵和空气过滤器,能够提供不含CO2的载气。此配置能够在整个测量范围内获得准确结果。如需测量低浓度TOC(即在分析仪的定量限附近进行测量),建议将分析仪连接到高规格的氮气供气源。取样:对于海水分析,建议使用外部吸管或带冲洗站选件的Sievers InnovOx自动进样器,以实现最佳取样效果。请勿使用样品瓶端口,因为样品瓶端口难以被清洗干净,残留的样品会腐蚀设备。如要用HCl来预酸化样品瓶中的海水样品,建议用塑料部件来替换不锈钢材质的取样口和自动进样器管接头(见下图)。需要以下更换件:★
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制