当前位置: 仪器信息网 > 行业主题 > >

羟乙基苦氨酸

仪器信息网羟乙基苦氨酸专题为您提供2024年最新羟乙基苦氨酸价格报价、厂家品牌的相关信息, 包括羟乙基苦氨酸参数、型号等,不管是国产,还是进口品牌的羟乙基苦氨酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟乙基苦氨酸相关的耗材配件、试剂标物,还有羟乙基苦氨酸相关的最新资讯、资料,以及羟乙基苦氨酸相关的解决方案。

羟乙基苦氨酸相关的资讯

  • 国家药监局关于修订羟乙基淀粉类注射剂说明书的公告
    国家药监局关于修订羟乙基淀粉类注射剂说明书的公告(2022年第72号)根据药品不良反应评估结果,为进一步保障公众用药安全,国家药品监督管理局决定对羟乙基淀粉类注射剂(包括羟乙基淀粉20氯化钠注射液、羟乙基淀粉40氯化钠注射液、高渗氯化钠羟乙基淀粉40注射液、羟乙基淀粉200/0.5氯化钠注射液、高渗羟乙基淀粉200/0.5氯化钠注射液、羟乙基淀粉130/0.4氯化钠注射液、羟乙基淀粉130/0.4电解质注射液)说明书内容进行统一修订。现将有关事项公告如下:  一、上述药品的上市许可持有人均应依据《药品注册管理办法》等有关规定,按照羟乙基淀粉类注射剂说明书修订要求(见附件),于2022年12月2日前报国家药品监督管理局药品审评中心或省级药品监督管理部门备案。  修订内容涉及药品标签的,应当一并进行修订,说明书及标签其他内容应当与原批准内容一致。在备案之日起生产的药品,不得继续使用原药品说明书。药品上市许可持有人应当在备案后9个月内对已出厂的药品说明书及标签予以更换。  二、药品上市许可持有人应当对新增不良反应发生机制开展深入研究,采取有效措施做好药品使用和安全性问题的宣传培训,指导医师、药师合理用药。  三、临床医师、药师应当仔细阅读上述药品说明书的修订内容,在选择用药时,应当根据新修订说明书进行充分的获益/风险分析。  四、患者用药前应当仔细阅读药品说明书,使用处方药的,应严格遵医嘱用药。  五、省级药品监督管理部门应当督促行政区域内上述药品的药品上市许可持有人按要求做好相应说明书修订和标签、说明书更换工作,对违法违规行为依法严厉查处。  特此公告。
  • 2012羟乙基淀粉(HES) 专题培训课程通知
    尊敬的用户: 您好!非常感谢您一直以来对美国怀雅特技术公司的支持,为了协助您更好的使用仪器开展工作,诚邀您参加2012年07月27日举办的 羟乙基淀粉(HES)专题培训课程,现将具体安排通知如下: 一、培训时间 2012年7月27日,共计1天。 二、培训日程安排 日 期 培 训 内 容 07月26日 报 到 07月27日 1. 静态光散射技术基本理论(MALS); 2. dn/dc与Optilab T-rEX/RID; 3. SOP解析:MALS & Optilab T-rEX/RID; 1. 光散射色谱联用技术(SEC-MALS)基本原理; 2. SOP解析:SEC-MALS; 3. SEC-MALS实践&数据处理与分析 三、培训地点 北京 四、培训费用 1500.00元/人;(含培训费及资料;工作餐(中餐));其他费用自理。 五、报名截止日期 2012年06月06日下午17:00(注: 报名截止日期后将不再受理培训报名); 六、联系人及联系方式 联系人:兰先生 ; Email:lanjing@wyatt.com.cn 电 话:010-82292806; 传 真:010-82290337 如您有意参加培训,敬请您于2012年06月06日17:00之前将以下回执单(HES下载)传真至010-82290337或者发送至lanjing@wyatt.com.cn,我们会根据回执回复顺序安排培训,并电话与您取得联系。
  • 食药总局提醒关注含羟乙基淀粉类药品安全风险
    新国家食品药品监督管理总局26日发布通报,提醒关注含羟乙基淀粉类药品对严重脓毒血症患者的肾损伤及死亡率增加风险。   含羟乙基淀粉类药品为血容量补充药,主要用于预防和治疗各种原因造成的低血容量,包括失血性、烧伤性及手术中休克等、血栓闭塞性疾患等。   近期,欧盟、美国、加拿大等国外药品管理部门就含羟乙基淀粉类药品对特定健康条件患者的肾损伤及死亡率增高风险陆续发布了多项风险控制措施。在我国收集到的羟乙基淀粉类药品不良反应报告中,用药原因主要为手术中或手术后补充血容量、失血性低血流量、脑梗塞、外伤、烧伤等 仅有1例用药原因为感染性休克,未发现有明显的使用风险。   为确保用药安全,食品药品监管总局针对其安全性问题再次进行了分析和评估。评估认为,含羟乙基淀粉类药品常见不良反应包括寒战、过敏性休克、呼吸困难、胸闷、高热/发热、过敏样反应、皮疹、肾功能损害等,在特定健康条件的患者中存在着死亡率升高、肾损害及过量出血等风险。   食品药品监管总局表示,将统一修改含羟乙基淀粉说明书。建议医务人员和患者应充分重视此类药品的安全性问题,详细了解含羟乙基淀粉类药品的禁忌症、不良反应、注意事项、相互作用。在治疗前,医生应询问患者的既往病史(如严重脓毒血症、肝肾功能障碍、凝血功能异常等),将可能存在的安全性隐患告知患者,在增加剂量或调整治疗方案时,应密切关注患者的不良反应发生情况。同时,医务人员应根据患者的健康条件,权衡利弊后谨慎使用。如在使用过程中患者出现肾功能异常、凝血机制异常等不良事件,应及时处置。
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • AKF-CH6卡尔费休水分仪在L-丙氨酸水分测定中的精确应用
    在生物化学与医药研究领域,L-丙氨酸作为构成人体蛋白质的重要氨基酸,其品质直接影响着其在营养补充、医药合成等应用中的效果。水分含量是评价L-丙氨酸纯度的关键指标之一,过高的水分不仅会影响其稳定性,还可能导致产品质量下降。因此,采用精确的水分测定技术对L-丙氨酸进行质量控制至关重要。本文介绍了一项应用AKF-CH6卡尔费休水分仪测定L-丙氨酸水分含量的实验,展示了该仪器在精细化学分析中的高效与精确性。 精密配置,确保测量准确实验采用的AKF-CH6卡尔费休水分仪,配备了全封闭安全滴定池组件、双铂针电极和隔膜电解电极,这一组合设计确保了在进行水分测定时的高精度与安全性。卡尔费休库仑法试剂的使用,进一步提升了检测的灵敏度,即使微量水分也能准确捕捉。 高效测定流程,优化操作体验实验过程中,通过选择固体样品测试方法,加热温度(150℃)和通气流量(25mL/min),确保样品在适宜条件下充分释放水分。自动电解档位与稳定的搅拌速度(5转/分钟)保证了滴定过程的平稳与高效。操作简便,仅需将称量好的样品放入进样瓶,放置于加热槽中,点击开始测量与穿刺按钮,系统即自动进行测定,大大节省了时间与人力。 数据准确,结果可靠在26.2℃的环境温度与51.1%的环境湿度条件下,测试时间仅为10分钟,显示了AKF-CH6卡尔费休水分仪的高效性。通过三次平行测试,得到了水质量分别为585.67ug、549.09ug和546.22ug,对应测试结果为335.2ppm、322.8ppm和328.4ppm。计算平均值,样品水分含量约为328.8ppm,显示了测定结果的稳定性和高重复性。序号样品量/g水质量/ug测试结果/ppm平均值/ppm10.5927585.67335.2 328.820.5021549.09322.830.4849546.22328.4AKF-CH6卡尔费休水分仪在L-丙氨酸水分含量测定中的应用,不仅展现了其在生物化学领域测定水分的高精度与快速响应能力,还凸显了仪器设计的实用性和操作的便捷性。通过该仪器的精确测定,能够有效控制L-丙氨酸的水分含量,确保其在后续应用中的稳定性和质量,对提升产品品质、促进医药及营养品行业发展具有重要意义。
  • 科研人员利用红外和拉曼光谱识别赖氨酸乙酰化特征
    近期,中科院合肥研究院智能所黄青研究员课题组利用红外和拉曼光谱识别赖氨酸乙酰化特征,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。相关研究成果发表在国际光谱专业期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。 乙酰化是生物学中常见且极其重要的蛋白质修饰,在细胞代谢中都起着关键性的调节作用。蛋白质乙酰化有两种方式,一是赖氨酸残基特有的乙酰化,二是多种氨基酸残基都可发生的N-末端乙酰化。目前一般用N-末端乙酰转移酶来标记判断赖氨酸残基是否发生乙酰化,但该方法的准确性仍存在争议。在分子水平识别蛋白质乙酰化是目前研究挑战之一,其关键是对赖氨酸的乙酰化进行准确定位表征,由此获得清晰和系统的认识。 针对这种情况,研究团队通过红外和拉曼光谱实验以及密度函数理论(DFT)计算,系统地研究L-赖氨酸三种乙酰化类型(、和)的结构变化及相应的振动光谱特征,发现酰胺基、羧基等基团的红外和拉曼特征谱带能用于有效识别不同的乙酰化类型。换言之,从红外和拉曼光谱特征即可判断赖氨酸是否乙酰化,也可判断赖氨酸发生了 乙酰化,还是 乙酰化,或者同时乙酰化。同时,研究团队对乙酰化的振动光谱识别策略在多肽模型中也得到验证。基于此,该项研究工作提供乙酰化赖氨酸的振动模式解析,并提出赖氨酸乙酰化的光谱识别和新的表征方法,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。   该研究工作得到了国家自然科学基金和安徽省自然科学基金的资助。赖氨酸和三种乙酰化赖氨酸的分子结构Lys-G4多肽及其赖氨酸残基乙酰化的理论计算红外光谱(红色为乙酰基,蓝色为乙酰基)
  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒   杂味的味精   小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。   小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。   小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。   小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。   “炒菜不用放盐了”   小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。   在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。   记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)   商户:这一个月我光在这个地方就十几吨吧。   商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。   商户:这个货就可以呀,一般酒店用都用这种。   商户:基本都是川菜馆。   商户:饭店都吃。   商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。   记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?   商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。   味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。   商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。   果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。   这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。   商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。   包装是一回事实际含量是另一回事   记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。   商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。   商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。   虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。   商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。   商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。   记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。   发苦的味精   其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?   记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。   小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。   这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?   这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。   村民:它家一直就是味精厂。   这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。   添加物不止是盐、淀粉、石膏   记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。   销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。   这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。   销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。   销售员说,别看只比标准低几个点,利润就是这样省出来的。   销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。   这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。   销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。   在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。   销售人员:还有厉害的。   除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。   销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。   据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?   打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。   五、六百元的硫酸镁不可能是食品级的   这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。   记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)   记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)   记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。   销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。   味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?   记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。   结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。   建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • 迪马科技发布乳制品中L-羟脯氨酸的测定方法
    皮革水解蛋白是由皮革废料或动物皮毛、脏器等水解生成的一种蛋白粉,将其掺入牛奶或奶粉中可提高蛋白质的含量。对于乳与乳制品中皮革水解蛋白的鉴定,主要是通过对L-羟脯氨酸含量的测定。L-羟脯氨酸是胶原蛋白(皮革水解蛋白)特有的氨基酸,在乳酷蛋白中则没有,所以一旦检出,则可认为含有皮革水解蛋白,即为&ldquo 皮革奶&rdquo 。迪马科技应用实验室提供两种L-羟脯氨酸衍生方法,利用氨基酸分析柱,对L-羟脯氨酸进行分析检测,可根据实际情况进行选择。 详细检测方法:乳制品中L-羟脯氨酸的测定 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 使用共价标记质谱区分组氨酸互变异构体
    大家好,本周为大家分享一篇发表在Anal Chem.上的文章,Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry [1]。该文章的通讯作者是来自马萨诸塞大学阿默斯特分校的Richard W. Vachet教授。组氨酸是人体蛋白质结构中的重要组成氨基酸,研究发现,组氨酸具有Nδ-H和Nε-H两种互变异构体,通过两种互变异构体的转换,可以在蛋白质中介导质子转移。目前常使用2D NMR技术进行区分,但操作相对繁复。共价标记质谱是一种研究蛋白质结构的有力方法,具有操作简单,灵敏度高,结构分辨率高等优点。在本文中,作者尝试以焦碳酸二乙酯(DEPC)为标记试剂,采用共价标记质谱区分组氨酸互变异构体。组氨酸侧链的咪唑上具有两个氮原子,其中一个氮上的孤电子对参与芳香环π键的组成,而另一个氮原子仍保留孤对电子,更容易与DEPC等亲电子试剂反应。而组氨酸的两个互变异构体中都只有一个保留孤对电子的氮原子,且该氮原子位置不同,Nδ-H互变异构体中的Nε2与DEPC反应,而Nε-H互变异构体中的为Nδ1。因此以DEPC标记组氨酸以区分两个互变异构体的方法是可行的(图1)。图1. DEPC 结构及其与两种不同组氨酸互变异构体的反应 为了测试DEPC 标记区分两种互变异构体的能力,作者以几种含组氨酸的肽,在确保DEPC仅标记组氨酸条件下进行实验。以Fmoc-DGHGG-NH2为例子,该肽在N端包括一个Fmoc基团以确保仅标记组氨酸。采用等度洗脱来最大限度地利用LC分离两种异构体,并确保流动相组成不影响肽段电离效率,从而可以更好地量化每个互变异构体的比率。结果发现,在11.4和13.6分钟洗脱的峰具有相同的m/z值(图2)。根据串联MS数据,发现这两个峰代表着组氨酸上成功标记DEPC的单一物质(图3)。并且,这些同量异位离子的串联质谱不同,表明这两种物质为带有不同组氨酸互变异构体的物质。作者将先洗脱出的物质命名为修饰物质1,后洗脱出的为修饰物质2。根据MS/MS数据,两者的主要区别为修饰物质2具有更加丰富的羧基化a3离子(a3*)。图2. 未标记(蓝色迹线)和 DEPC 标记(红色迹线)肽 Fmoc-DGHGG-NH 2的提取离子色谱图。DEPC浓度比肽浓度高10倍,反应1分钟图3. 两种修饰的His异构体的串联质谱。(a)来自图2中的色谱图的修饰物质 1 的串联质谱。(b)来自图2中的色谱图的修饰物质2的串联质谱。标有星号 (*) 的产物离子包含羧基化产物此外,在重复实验中,作者发现物质2与物质1的丰度比为3.9± 0.2。而研究发现,在中性pH条件下,游离氨基酸Nε-H 互变异构体与 Nδ-H 互变异构体的比接近于4:1。因此,两物质的峰面积比表明物质1可能为 Nδ-H 互变异构体,而物质2可能为 Nε-H 互变异构体。结合以上发现,并考虑肽解离途径等因素,作者对两物质质谱图谱差异做出推测。当物质2为Nε-H互变异构体侧链时,DEPC 标记在Nδ1上,有利于肽通过bx-yz途径解离,随后通过bx-ax途径损失CO,因此物质2富含a3*离子。当物质1为Nδ-H 互变异构体时,DEPC 标记在Nε2上,肽通过组氨酸途径解离,并形成了稳定五元环,因此优先形成更稳定的b3*离子(图4)。以上发现进一步证明了Fmoc-DGHGG-NH2中物质1为 Nδ-H 互变异构体,物质2为 Nε-H 互变异构体。根据丰度比以及肽解离途径不同,作者在其他模型肽标记实验中也成功区分两互变异构体。由于组氨酸的pKa在一定程度上会影响互变异构体的比例,因此两互变异构体的丰度比可能会略有变化。总之,以上结果表明,DEPC共价标记质谱可以识别两个组氨酸互变异构体。图4. DEPC 标记的含组氨酸肽 CID 过程中两种异构体的肽片段化途径。左侧通路为物质1(Nδ-H互变异构体),右侧通路为物质2(Nε-H互变异构体)之后,作者还进一步研究了不同DEPC浓度对实验的影响。结果发现,在 DEPC 浓度范围超过一个数量级时,Fmoc-DGHGG-NH2的两种修饰形式的比率基本在4左右保持恒定,其他模型肽的比率略有不同(图5),但随着 DEPC 浓度的增加,给定肽的标记比率保持不变。在质谱可以确认互变异构体结构的肽中,Nε-H互变异构体总是丰度相对更高,洗脱相对较晚。此外,作者发现当组氨酸不是位于N末端残基时,Nε-H 互变异构体的an */bn *比率总是比Nδ -H 互变异构体的更高。但是,若组氨酸残基位于肽的N末端时,在质谱中观察不到b1和a1离子,将对结果造成影响。图 5. 在 DEPC 浓度增加时选择肽的两种修饰形式的标记比率。(a) Fmoc-DGHGG-NH2;(b) Ac-IQVYSRHPAENGK(Ac);(c) Ac-VEADIAGHGQEVLIR;(d) Ac-LFTGHPETLEK(Ac)。MS/MS 用于通过测量an /bn离子的比率来确认每个互变异构体总而言之,作者成功使用DEPC共价标记质谱区分肽与蛋白质中的组氨酸互变异构体,利用丰度比与洗脱时间,以及CID期间的肽解离模式,区分两种互变异构体。利用该方法,作者团队已经确定了几种蛋白质组氨酸互变异构体比率,并且相对于2D NMR方法,该方法更简单、更快、更精确,有利于探索蛋白质中组氨酸残基周围的局部结构,提供高分辨率的结构信息。[1]Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem. 2022 Jan 18 94(2):1003-1010.
  • 李灵军合作成果:mNeuCode支持精氨酸二甲基化的靶向蛋白质组分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation1,文章的通讯作者是威斯康星大学麦迪逊分校的李灵军教授和国家蛋白质科学中心的常乘、贾辰熙教授。  蛋白质精氨酸甲基化是一种广泛存在于真核生物中且相对保守的翻译后修饰,参与包括RNA加工、DNA修复、染色体组织、蛋白质折叠和基因表达在内的多种生物学过程。蛋白质精氨酸二甲基化在生物过程和人类疾病中发挥着重要作用,但与此同时,精氨酸二甲基化的相对丰度和化学计量通常很低,并且表现出较宽的动态变化范围,这些问题都给分析带来了巨大的挑战。在这篇文章中,作者设计了一种用于二甲基精氨酸代谢标记的mNeuCode标签,并开发了一个名为NeuCodeFinder的软件工具,用于在MS全扫描中筛选NeuCode信号,从而能够在蛋白质组范围内对蛋白质二甲基化进行靶向LC-MS/MS分析。作者将该方法应用到HeLa细胞精氨酸二甲基化的全蛋白质组分析中,证实了该方法的有效性:在70种蛋白质上鉴定到176个精氨酸二甲基化位点,其中38%是新位点。  图1 用于细胞培养代谢标记的mNeuCode的化学设计。含有由稳定同位素标记的甲硫氨酸和精氨酸的不同组合的mNeuCode-I(红色)和mNeuCode-II(蓝色)分别用于两组细胞培养。同位素标记的甲硫氨酸经过代谢转化为甲基供体S-腺苷甲硫氨酸(AdoMet ),随后由蛋白质精氨酸甲基转移酶(PRMT)催化转移到精氨酸侧链的甲基上。细胞裂解后,将两种样品混合并制备用于高分辨率LC-MS分析。含有二甲基精氨酸的肽的NeuCode同源物被解析后,将显示出43 mDa的质量差异并作为诊断峰。  图2 基于mNeuCode的精氨酸二甲基化靶向蛋白质组分析。(A)NeuCodeFinder从高分辨率质谱数据中筛选NeuCode同位素峰对的工作流程。从原始数据文件中提取全扫描质谱。单峰被配对以形成NeuCode等值线簇。最终的NeuCode对列表与提取的离子色谱(XIC)值一起导出。(B)靶向LC-MS/MS分析的工作流程,包括样品制备、富集以及MS1和MS2分析。  在mNeuCode-I标记组中,使用含有正常L-精氨酸和同位素标记L-蛋氨酸[D3]的培养基 在mNeuCode-Ⅱ标记组中,则使用同位素标记的L-精氨酸[15N4]和L-甲硫氨酸[13C]进行培养(图1)。收集两组全细胞蛋白提取物并等量混合,蛋白经还原烷基化与酶切后,得到的肽段通过StageTip分级分离和HILIC tip富集,以提高样品肽段的识别率。处理的样品先进行LC-MS全扫描,通过作者的自制软件NeuCodeFinder生成包含列表,此包含列表用于辅助进一步的平行反应监测(PRM)模式分析(图2)。    图3 已鉴定的精氨酸甲基化位点的生物信息学分析。(A)鉴定的精氨酸二甲基化位点和(B)精氨酸二甲基化蛋白质。橙色柱表示未报道的精氨酸二甲基化位点或蛋白质。绿色柱表示只有单甲基化是已知的,但是二甲基化还没有报道。(C)韦恩图显示,通过使用胰蛋白酶和镜像胰蛋白酶作为消化试剂,从两组实验中鉴定的精氨酸二甲基化位点。(D)蛋白质上位点数目的分布。每个蛋白质上精氨酸二甲基化位点的数量显示在饼图周围,蛋白质的数量列在饼图中。鉴定的精氨酸-二甲基化蛋白质的(E) GO富集和(F)KEGG途径分析。(G)使用STRING数据库将二甲基化蛋白质映射到蛋白质相互作用网络上。综合得分 0.4。(H)已鉴定的精氨酸二甲基化位点中-6和+6氨基酸残基的序列标志。  通过对数据结果的分析,最终共鉴定到70种蛋白质上的176个精氨酸二甲基化位点,其中37-38%的精氨酸二甲基化位点是新的修饰位点,29%的精氨酸二甲基化蛋白没有被报道过,这证明了mNeuCode方法的有效性。与常规的鸟枪法蛋白质组学策略所获得的数据相比,mNeuCode方法在鉴定低丰度精氨酸二甲基化肽方面具有独特的优势,并且能够补充许多传统鸟枪法蛋白质组学所无法鉴定到的精氨酸二甲基化位点。对mNeuCode方法鉴定到的精氨酸二甲基化蛋白进行生物信息学分析后,发现这些蛋白质主要与RNA的加工、剪接和稳定性相关,参与了RNA的代谢过程。  图4 FAM98A上精氨酸二甲基化位点的突变抑制了细胞迁移。(A)通过蛋白质印迹检测FAM98A在HeLa细胞中敲除和重建的效果。用siFAM98A-1和siFAM98-2沉默HeLa细胞,然后用Flag标记的WT或突变的FAM98A质粒重建。Anti-FAM98A显示内源性FAM98A的干扰。Anti-Flag显示外源FAM98A的重建。(B)图像和(C)柱状图显示了HeLa细胞的细胞迁移。  FAM98A是一种微管相关蛋白,与结直肠癌和非小细胞肺癌的增殖有关。有研究者发现FAM98A是PRMT1的底物,但未能确定确切的甲基化位点。而在作者的研究结果中,成功鉴定到FAM98A上五个新的精氨酸二甲基化位点。为了验证这些二甲基化位点是否参与细胞迁移的调节,作者使用FAM98A敲除和FAM98A WT或突变重建细胞系进行了伤口愈合试验。将HeLa细胞的FAM98A基因敲除后,分别用WT或突变的flag-FAM98A重建FAM98A沉默细胞,其中突变的flag-FAM98A将二甲基化位点R351、R360、R363、R371和R375突变为赖氨酸以抑制甲基化。实验结果显示,当FAM98A基因被敲除时,细胞的迁移能力受到抑制,WT FAM98A的重建挽救了FAM98A敲除导致的细胞迁移缺陷,但是突变型FAM98A的重建却不能挽救。该结果证实了FAM98A上的二甲基化位点在细胞迁移中起到的作用。  总之,在这篇文章中作者发明了一种mNeuCode方法,并开发了NeuCodeFinder软件,使得能够以全蛋白质组的方式进行精氨酸二甲基化的靶向MS/MS分析。实验结果证明了mNeuCode技术对于精氨酸二甲基化的靶向蛋白质组分析的能力和有效性,并证实HeLa细胞FAM98A上新的精氨酸二甲基化位点在细胞迁移调节中的功能,有助于更好地理解癌症发展的潜在机制,为蛋白质组分析的方法学提供了新的思路。  撰稿:梁梓欣  编辑:李惠琳  文章引用:mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Wang, Q., Yan, X., Fu, B., Xu, Y., Li, L., Chang, C., & Jia, C. (2023). mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical chemistry
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。   硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 黄超兰研究组发表精氨酸甲基化综述论文
    中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员黄超兰受邀在蛋白质组学国际期刊Expert Review of Proteomics上发表综述文章。黄超兰与博士彭超(该文第一作者)撰述的The Story of Protein Arginine Methylation: Characterization, Regulation, and Function 于1月5日在线发表在此杂志上。该论文系统地介绍了鉴定不同类型的精氨酸甲基化的技术方法及其发展历程,并对精氨酸甲基化不同类型的writers和erasers的最新进展、生物学功能以及与疾病的紧密联系进行了系统性的总结和展望。  精氨酸甲基化(Arginine methylation)是蛋白质后修饰中重要的一种,它参与了基因表达的调节、DNA的修复等重要的生命过程,与肿瘤、心血管疾病、病毒感染和自身免疫性疾病等多种疾病密切相关 甲基化水平异常的蛋白质可以作为潜在的生物标志物或药物研究靶点。该综述能使读者加深对精氨酸甲基化蛋白质、后修饰位点、表达水平以及其调控机制的了解,有利于人们进一步探索其在生命过程中的作用,特别是与疾病发生的关系,加快相关药物靶点的研究进程。  黄超兰研究组一直致力于质谱和基于质谱的蛋白质组学应用于蛋白质研究的难题技术研发,相关技术已经帮助广大科学家解决了众多的科学难题,大力促进了科学研究的发展。该项工作得到了中科院引进杰出技术人才、关键技术人才和国家基金委自然科学基金青年项目等的资助。
  • 关于公开征求丝氨酸蛋白酶等3种食品添加剂新品种意见
    根据《食品添加剂新品种管理办法》和《食品添加剂新品种申报与受理规定》,食品工业用酶制剂新品种丝氨酸蛋白酶、扩大使用范围的食品添加剂乳酸钙和三赞胶的申请,其安全性和工艺必要性已通过专家评审委员会技术审查(具体情况见附件),现公开征求意见。请于2023年5月22日前将相关意见反馈至我中心邮箱(zqyj@cfsa.net.cn),逾期将视为无意见。丝氨酸蛋白酶等3 种食品添加剂新品种相关材料.pdf
  • 国家市场监督管理总局批准发布《氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定》等431项推荐性国家标准和2项国家标准修改单
    国家市场监督管理总局(国家标准化管理委员会)批准《液压传动连接 金属管接头 第1部分:24°锥形》等431项推荐性国家标准和2项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2023-08-06附件相关标准如下:序号标准编号及标准名称代替标准号实施日期1GB/T 20706-2023 可可粉质量要求GB/T 20706-20062024-03-012GB/T 20705-2023 可可液块及可可饼块质量要求GB/T 20705-20062024-03-013GB/T 22427.7-2023 淀粉黏度测定GB/T 22427.7-20082024-03-014GB/T 26174-2023 厨房纸巾GB/T 26174-20102024-09-015GB/T 42957-2023氨基酸产品和添加剂预混合饲料中赖氨酸、蛋氨酸和苏氨酸含量的测定2024-03-016GB/T 42762-2023 杯壶类产品通用技术要求2024-03-017GB/T 42821-2023 贝类包纳米虫病诊断方法2024-03-018GB/T 15000.5-2023 标准样品工作导则 第5部分:质量控制样品的内部研制2023-08-069GB/Z 42962-2023 产业帮扶 猪产业项目运营管理指南2023-08-0610GB/Z 42963-2023 产业帮扶 竹产业项目运营管理指南2023-08-0611GB/T 42893-2023 电子商务交易产品质量监测实施指南2023-12-0112GB/T 41247-2023 电子商务直播售货质量管理规范2023-10-0113GB/T 42958-2023 肥料产品使用说明编写指南2024-03-0114GB/T 42954-2023 肥料中植物生长调节剂的测定 气相色谱-质谱联用法2024-03-0115GB/T 42955-2023 肥料中总氮含量的测定 杜马斯燃烧法2024-03-0116GB/T 27021.12-2023 合格评定 管理体系审核认证机构要求第12部分:协作业务关系管理体系审核与认证能力要求2023-08-0617GB/T 27000-2023 合格评定 词汇和通用原则GB/T 27000-20062023-08-0618GB/T 1270-2023 化学试剂 六水合氯化钴(氯化钴)GB/T 1270-19962024-03-0119GB/T 667-2023 化学试剂 六水合硝酸锌(硝酸锌)GB/T 667-19952024-03-0120GB/T 669-2023 化学试剂 硝酸锶GB/T 669-19942024-03-0121GB/T 686-2023 化学试剂 丙酮GB/T 686-20082024-03-0122GB/T 684-2023 化学试剂 甲苯GB/T 684-19992024-03-0123GB/T 9722-2023 化学试剂 气相色谱法通则GB/T 9722-20062024-03-0124GB/T 603-2023 化学试剂 试验方法中所用制剂及制品的制备GB/T 603-20022024-03-0125GB/T 649-2023 化学试剂 溴化钾GB/T 649-19992024-03-0126GB/T 678-2023 化学试剂 乙醇(无水乙醇)GB/T 678-20022024-03-0127GB/T 26176-2023 家用和类似用途豆浆机GB/T 26176-20102024-03-0128GB/T 42812-2023 连作障碍土壤改良通用技术规范2024-03-0129GB/T 29344-2023 灵芝孢子粉采收及加工技术规范GB/T 29344-20122024-03-0130GB/T 22638.11-2023 铝箔试验方法 第11部分:力学性能的测试2024-03-0131GB/T 42916-2023 铝及铝合金产品标识2024-03-0132GB/T 22648-2023 铝塑复合软管、电池软包用铝箔GB/T 22648-20082024-03-0133GB/T 42817-2023 农产品产地土壤改良剂使用技术规范2024-03-0134GB/T 42819-2023 农产品产地重金属污染土壤钝化通用技术规程2024-03-0135GB/T 29490-2023 企业知识产权合规管理体系 要求GB/T 29490-20132024-01-0136GB/T 42936-2023 设施管理 过程管理指南2023-08-0637GB/T 42931-2023 设施管理 基准比较分析指南2023-08-0638GB/T 42935-2023 设施管理 信息化管理指南2023-08-0639GB/T 14699-2023 饲料 采样GB/T 14699.1-20052024-03-0140GB/T 42959-2023 饲料微生物检验 采样2024-03-0141GB/T 22260-2023 饲料中蛋白质同化激素的测定 液相色谱-串联质谱法GB/T 22260-20082024-03-0142GB/T 13882-2023 饲料中碘的测定GB/T 13882-20102024-03-0143GB/T 8381.3-2023 饲料中林可胺类药物的测定 液相色谱-串联质谱法GB/T 8381.3-20052024-03-0144GB/T 42956-2023饲料中泰乐菌素、泰万菌素、替米考星的测定 液相色谱-串联质谱法2024-03-0145GB/T 13883-2023 饲料中硒的测定GB/T 13883-20082024-03-0146GB/T 13093-2023 饲料中细菌总数的测定GB/T 13093-20062024-03-0147GB/T 12956-2023 卫生间配套设备要求GB/T 12956-20082024-03-0148GB/T 10510-2023 硝酸磷肥、硝酸磷钾肥GB/T 10510-20072024-03-0149GB/T 42828.1-2023 盐碱地改良通用技术 第1部分:铁尾砂改良2024-03-0150GB/T 42828.2-2023 盐碱地改良通用技术 第2部分:稻田池塘渔农改良2024-03-0151GB/T 42828.3-2023 盐碱地改良通用技术 第3部分:生物改良2024-03-0152GB/T 13217.7-2023 油墨附着力检验方法GB/T 13217.7-20092024-03-0153GB/T 42944-2023 纸、纸板和纸制品 有效回收组分的测定2024-03-0154GB/T 42945-2023 纸浆 细小纤维质量分数的测定2024-03-0155GB/T 42943-2023 纸浆模塑制品技术通则2024-03-0156GB/T 42748-2023 专利评估指引2023-09-0157GB/T 22461.1-2023 表面化学分析 词汇 第1部分:通用术语及谱学术语GB/T 22461-20082024-03-0158GB/T 27921-2023 风险管理 风险评估技术GB/T 27921-20112023-08-0659GB/T 27914-2023 风险管理 法律风险管理指南GB/T 27914-20112023-08-0660GB/T 7139-2023 塑料 氯乙烯均聚物和共聚物 氯含量的测定GB/T 7139-20022024-03-01
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • N-聚糖唾液酸结合异构体鉴定——SialoCapper™ -ID试剂盒+MALDI-8020
    唾液酸(SA)是酸性单糖的家族名称,包括 N-乙酰神经氨酸 (NeuAc) 和 N-羟乙酰神经氨酸 (NeuGc),主要存在于聚糖的非还原末端。是一种天然存在的碳水化合物,最初由颌下腺粘蛋白分离出,因此而得名。唾液酸通常以低聚糖,糖脂,糖蛋白的形式存在。唾液酸可以以 α2,3- 或 α2,6- 键类型存在。这样的连接异构体在生物学上很重要,因为不同连锁类型可能与各种疾病有关,例如病毒感染和癌症。 近年来,质谱技术已被广泛应用于分析聚糖。然而,鉴定含有多个唾液酸残基的复杂聚糖的唾液酸键类型仍然具有挑战性。本研究工作通过使用“SialoCapper-ID 试剂盒”进行独特的衍生化,然后进行 MALDI-8020 MS分析,从而鉴定2-氨基吡啶(PA)标记的聚糖上的酸谱系类型。 SialoCapper-ID 试剂盒是一种用于聚糖预处理的新型试剂盒,可简化获得专利的唾液酸键特异性烷基酰胺化 (SALSA 方法)步骤。SALSA通过中和残留物来防止在聚糖预处理和 MS 分析过程中唾液酸残留物的损失。此外,它允许通过以特定键的方式衍生残基来基于 MS 区分唾液酸键异构体。 SALSA法的衍生方案 本实验中,N-连接聚糖通过肼解作用从51只大鼠102只耳蜗血管纹衍生的糖蛋白中释放出来的。N-聚糖的还原端用PA标记。然后根据唾液酸的数量通过 DEAE 阴离子交换 HPLC 对 PA 标记的聚糖进行分离,并在 ODS 柱上使用反相 (RP) HPLC 进一步分离。使用酰胺柱和 LC-MS 通过正相 (NP) HPLC 分析分级的 N-聚糖,并根据二维 (2-D) HPLC 分析 (RP/NP) 的结果确定 N-聚糖的结构 和 LC/MS 分析。最后,使用 SialoCapper-ID Kit 进行唾液酸键特异性衍生化,用于未确定唾液酸键类型的分离。 在用碳芯片对 14 份 PA 标记的聚糖进行脱盐后,使用 SialoCapper-ID 试剂盒在试管中以液相反应的形式进行唾液酸键特异性衍生化。除了通过 2-D HPLC 和 LC/MS 进行结构测定外,研究者另辟蹊径,使用MALDI-8020+ SialoCapper-ID 试剂盒根据唾液酸键特异性衍生化产生的质量变化来区分唾液酸键类型。相对于LC/MS,MALDI-MS有利于轻松快速鉴定唾液酸键类型,特别是在分析多个样品时。 A1-14 组分的质谱图和唾液酸键型鉴定结果A2-16 组分的质谱图和唾液酸键型鉴定结果 MALDI-8020+SialoCapper-ID 试剂盒唾液酸结合异构体鉴定优势1 无需与标准聚糖样品的分析结果进行比较,即可识别复杂聚糖的唾液酸键类型。2 SialoCapper-ID Kit可应用于标记糖链,无需改变常规分析流程即可进行唾液酸键联分析。3 无需 LC 分离, MALDI-MS 直接鉴定唾液酸键类型。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(55dB)● 可视化工作状态 参考文献:岛津应用新闻:Sialic Acid Linkage Isomer Discrimination of N-glycansderived from Rat Cochlea using SialoCapper-ID KitM. Inuzuka, T. Nishikaze 本文内容非商业广告,仅供专业人士参考。
  • 科华生物同型半胱氨酸(HCY)定量测定试剂盒取得医疗器械注册证
    2011年1月21日,科华生物研发的同型半胱氨酸(HCY)定量测定试剂盒(液体)(循环酶法)产品,取得了上海市食品药品监督管理局颁发的《医疗器械注册证》,准许准产注册。注册证编号为沪食药监械(准)字2011第2400060号。本产品是心脑血管疾病诊断的参考指标之一。   该项医疗器械注册证的取得,丰富了公司生化试剂产品线,对公司销售将产生一定的正面影响。
  • 2022年4月份将要实施的那些标准
    2022年4月份将要实施的标准2022年4月份将要实施的科学仪器及检测相关的国家标准仅有8条。但将要实施的行业标准较多,一共有99条,其中主要包括轻工、气象、环境、机械、化工、卫生医药等。另外还有20条与仪器及检测相关的团体标准也将实施。需要相关标准的,点击链接即可下载收藏↓国家标准GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南 GB/T 10782-2021 蜜饯质量通则 GB/T 19702-2021 体外诊断医疗器械 生物源性样品中量的测量 参考测量程序的表述和内容的要求 GB/T 10781.1-2021 白酒质量要求 第1部分:浓香型白酒 GB/T 39849-2021 无损检测仪器 超声衍射声时检测仪 性能测试方法 GB/T 39948-2021 食品热力杀菌设备热分布测试规程 GB/T 10781.11-2021 白酒质量要求 第11部分:馥郁香型白酒 GB/T 39945-2021 罐藏食品热穿透测试规程 行业标准交通标准JT/T 1386.10-2022 海事电子证照 第10部分:危险化学品水路运输从业资格证书 JT/T 316-2022 货运挂车产品质量检验评定方法 JT/T 1411-2022 天然气营运货车燃料消耗量限值及测量方法 气象标准QX/T 636—2022 气候资源评价 气候生态环境 QX/T 637—2022 气候预测检验 热带气旋 QX/T 638—2022 气候预测检验 热带大气季节内振荡 QX/T 639—2022 中国雨季监测指标 东北雨季 QX/T 640—2022 气象业务综合监视数据要求 QX/T 641—2022 称重式电线横向积冰自动观测仪 QX/T 642—2022 自动标准气压发生器技术要求 QX/T 643—2022 气象用水电解制氢设备操作规范 QX/T 644—2022 气象涉氢业务设施建设要求 QX/T 645—2022 风电机组测风资料质量审核与订正 QX/T 646—2022 雷电防护装置检测资质认定现场操作考核规范 QX/T 41—2022 空气质量预报 食品 轻工标准JJF 1070.3-2021 定量包装商品净含量计量检验规则 大米 QB/T 5636-2021 品牌培育管理体系实施指南 食品行业 QB/T 2968-2021 口腔清洁护理用品 牙膏中锶含量测定的方法 QB/T 2623.10-2021 肥皂试验方法 肥皂中甘油含量的测定 QB/T 5638-2021 口腔清洁护理用品 牙膏中叶绿素铜钠盐含量的测定高效液相色谱法 QB/T 1915-2021 阳离子表面活性剂 脂肪烷基三甲基卤化铵及脂肪烷基二甲基苄基卤化 铵 QB/T 5656-2021 油墨中苯类溶剂含量测定方法 QB/T 5637-2021 口腔清洁护理用品羟基磷灰石 牙膏用 QBT 5636-2021品牌培育管理体系实施指南 食品行业(报批征求意见稿) 有色金属YS/T 3042-2021 氰化液化学分析方法 金量的测定 YS/T 3041.1-2021 火试金法测定金属矿石、精 矿及相应物料中银量的 校正方法 第 1 部分:全流程回收率法 YS/T 3041.2-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 2 部分:熔渣和灰 皿回收法 YS/T 3041.3-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 3 部分:熔渣回收 和灰吹校准法 环境标准HJ 1230—2021 工业企业挥发性有机物泄漏检测与修复 技术指南 HJ 1189-2021 水质 28种有机磷农药的测定 气相色谱-质谱法 HJ 1190-2021 水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法 HJ 1191-2021 水质 叠氮化物的测定 分光光度法 HJ 1192-2021 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 化工标准HG/T 5912-2021 导电胶粘剂 HG/T 5911-2021 LED 照明器件用加成型有机硅密封胶 HG/T 5913-2021 高分子防水卷材用热熔压敏胶粘剂 HG/T 5914-2021 无衬纸铝箔压敏胶粘带 HG/T 5915-2021 热成像银盐打印胶片 HG/T 5916-2021 照相化学品 防灰雾剂2,5-二羟基-5-甲基-3-(4-吗啉基)-2-环戊烯-1-酮 HG/T 5918-2021 电池用硫酸钴 HG/T 5919-2021 电池用硫酸镍 HG/T 5920-2021粗碳酸锰 HG/T 5931-2021 肥料增效剂 腐植酸 HG/T 5932-2021 肥料增效剂 海藻酸 HG/T 5933-2021 腐植酸有机无机复混肥料 HG/T 5934-2021 黄腐酸中量元素肥料 HG/T 5935-2021 黄腐酸微量元素肥料 HG/T 5936-2021 腐植酸碳系数测定方法 HG/T 5937-2021 腐植酸与黄腐酸含量的快速 测定方法 HG-T 5938-2021 腐植酸肥料中氯离子含量的 测定自动电位滴定法 HG/T 5917-2021 黑白感光材料涂层溶解测定方法 HG/T 5921-2021 碳化法工业重铬酸钠 HG/T 2427-2021 肥料级氰氨化钙 HG/T 5939-2021 肥料级聚磷酸铵 HG/T 5941-2021 稳定同位素13C标记的辛酸 HG/T 5942-2021 稳定同位素15N标记的氨基 酸 HG/T 5943-2021 C.I.分散红152 HG/T 5944-2021 液体C.I.直接红254 HG/T 5945-2021 液体C.I.直接蓝290 HG/T 5909-2021 美罗培南合成催化剂化学成分分析方法 HG/T 5910-2021 双金属负载型聚醚多元醇合成催化剂化学成分分析方法 HG/T 4701-2021 电池用磷酸铁 HG/T 4133-2021 工业磷酸二氢铵 HG/T 4132-2021 工业磷酸氢二铵 HG/T 2568-2021 工业偏硅酸钠 HG/T 5922-2021 工业氰氨化钙 HG/T 5923-2021 化纤用二氧化钛 HG/T 5924-2021 废(污)水处理用生物膜载体 HG/T 3926-2021 水处理剂 2-羟基膦酰基乙酸(HPAA) HG/T 5925-2021 水处理用生物药剂 硝化菌剂 HG/T 5926-2021 水处理用生物药剂 反硝化菌剂 HG/T5927-2021 生物化学试剂 L-白氨酸(L-亮氨酸) HG/T 5928-2021 生物化学试剂 L-胱氨酸 HG/T 5929-2021 化学试剂 色谱用一水合庚 烷磺酸钠 HG/T 5930-2021 化学试剂 色谱用一水合辛烷磺酸钠 HG/T 5946-2021 1-(3-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5947-2021 1-(4-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5948-2021 1-(4-甲基苯基)-3-甲基-5-吡唑啉酮 HG/T 5949-2021 红色基KD(3-氨基-4-甲氧基-苯甲酰替苯胺) HG/T 5950-2021 色酚AS-IRG(4-氯-2,5-二甲氧基乙酰乙酰苯胺) HG/T 5951-2021 邻甲氧基乙酰乙酰苯胺 HG/T 5952-2021 邻氯乙酰乙酰苯胺 HG/T 5953-2021 纺织染整助剂 涤棉一浴皂洗剂 净洗效果的测定 HG/T 5954-2021 纺织染整助剂产品中异噻唑啉酮类化合物的测定 机械交通标准JB/T 14223-2021 无损检测仪器充电式交流磁轭探伤仪 JB/T 14155-2021 偏轴菲涅尔透镜 JB/T 14156-2021 投影光学非球面超短焦物镜 JB/T 14140-2021 食品机械 化糖设备 JB/T 14141-2021 食品机械 调配设备 JB/T 14142-2021 淀粉降解母粒生产线 JB/T 14144-2021 夹心软糖生产线 JB/T 14145-2021 全自动花色硬糖生产线 JB/T 4297-2021 泵产品涂漆 技术条件 JT/T 1393—2021 船舶压载水指示性分析取样与检测要求 卫生医药标准WS/T 787-2021 国家卫生信息资源分类与编码管理规范 WS/T 788—2021 国家卫生信息资源使用管理规范 WS/T 789—2021 血液产品标签与标识代码标准 YY/T 1416.5—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第5部分:甘氨酸 YY/T 1416.6—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第6部分:咪唑烷基脲 YY/T 1465.7—2021 医疗器械免疫原性评价方法 第7部分:流式液相多重蛋白定量技术 YY/T 1735-2021 丙型肝炎病毒抗体检测试剂(盒)(化学发光免疫分析法) YY/T 1771-2021 弯曲-自由恢复法测试镍钛形状记忆合金相变温度 YY/T 1772-2021 外科植入物 电解液中电偶腐蚀试验方法 YY/T 1775.1-2021 可吸收医疗器械生物学评价 第1部分:可吸收植入物指南 YY/T 1776-2021 外科植入物聚乳酸材料中丙交酯单体含量的测定 团体标准DB12/T 3027-2022 液氨贮存使用单位环境风险防控技术规范 T/CSTM 00470-2022生物炭膨润土复合污水处理剂 T/CSTM 00469-2022 生物炭凹凸棒石土壤重金属钝化剂 T/CPCIF 0168-2021 水中亚硝酸盐、硝酸盐、氨氮的快速检测试剂盒 T/GZSXH 02-2022 饮用天然泉水 T/CIESC 0033-2022 工业用四氢糠醇 T/CIESC 0032-2022 工业用丙二酸二乙酯 T/CIESC 0031-2022 工业用氰乙酸乙酯 T/CIESC 0030-2022 工业用N-乙基吡咯烷酮 T/CIESC 0029-2022 工业用原甲酸三乙酯 T/CIESC 0028-2022 工业用羟乙基甲基纤维素 T/CIESC 0027-2022 工业用乙基纤维素 T/JATEA 001-2022 农田地膜残留量调查与监测DB11/T 374-2021 水生动物疫病检测实验室管理规范 DB11/T 455-2021 动物疫病紧急流行病学调查技术规范 DB11/T 456-2021 动物防疫员防护技术规范 DB11/T 1000.2-2021 企业产品标准编写导则 第2部分:主要技术内容 DB51/T 2874-2022 检验检测机构保护客户秘密实施指南 DBS33/ 3013-2022 食品安全地方标准 酥饼生产卫生规范 DB31 2026-2021 食品安全地方标准 预包装冷藏膳食生产经营卫生规范 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 贝克曼库尔特公布2011年第一季度财报
    日前,诊断测试和仪器公司贝克曼库尔特公司公布了其2011年第一季度财报。财报显示,贝克曼库尔特第一财季业绩与去年同期相比,略微爬升了约2个百分点。   在贝克曼库尔特向美国证券交易委员会提交的第一财季报表显示,截至2011年3月31日的前3个月,贝克曼库尔特收入8.954亿美元,低于华尔街预测的9.050亿美元 其2010年同期则为8.811亿美元。   财报显示,贝克曼公司医疗诊断部门收入为8.016亿美元,与去年同期的7.758亿美元相比增长3%。其中,化学及临床实验室自动化业务由去年的3.230亿美元增长至3.267亿美元;细胞分析业务由去年的2.391亿美元增至2.482亿美元;免疫测定及分子诊断学业务则由去年的2.137亿美元增长至2.267亿美元。   贝克曼库尔特生命科学部门的业务则由去年的1.053亿美元降至9390万美元,下降11个百分点。   该公司的研发支出则从去年同期的7010万美元降至6150万美元,下降了12%;而销售总务管理支出则由去年的2.229亿美元增长至2.431亿美元,增长了9%。   此外,贝克曼库尔特公司本季度净利润为1030万美元(合每股0.14美元),去年同期为3870万美元(合每股0.54美元)。   同时,贝克曼库尔特还表示,公司从2010年开始了一项库存产品销售成本的保守陈述,并为此做了耗资1410万美元的前期调整。   在本季度末,贝克曼库尔特公司的现金及现金等价物总价值为5.848亿美元。
  • Cell:无丝氨酸饮食,也许是对抗最致命胰腺癌的法宝
    一项研究发现,胰腺癌细胞通过向神经发出信号来避免饥饿,信号传递给神经,就会分泌营养,促进肿瘤生长。这是一项针对癌细胞,小鼠和人体组织样品进行的实验结果,相关论文发表在11月2日的Cell杂志上。胰腺导管腺癌(PDAC),也就是最致命的胰腺癌,五年生存率低于10%。此类肿瘤会促进压迫血管的致密组织的生长,从而减少诸如丝氨酸之类的血源性营养物质的供应。这种氨基酸是蛋白质的基本组成部分,也是癌细胞增殖所必需的。纽约大学格罗斯曼医学院等处的研究人员发现,饥饿的胰腺癌细胞会分泌一种叫做神经生长因子的蛋白质,该蛋白质向神经细胞发送信号,指导它们进入肿瘤,进一步发现这些轴突能分泌丝氨酸,帮助胰腺癌细胞避免,饥饿并恢复其生长。文章通讯作者,纽约大学Alec Kimmelman博士说,“神经将营养从血液中转移到胰腺肿瘤微环境中,这是一种一种令人着迷的适应能力,也许可以通过干扰这种特性来研发治疗方法。”研究发现,饥饿的丝氨酸胰腺癌细胞利用了将mRNA链(DNA指令的副本)翻译成蛋白质的过程。密码子将mRNA分子链的骨架解码为氨基酸,核糖体会读取每个密码子,让它们以正确的顺序将氨基酸连接在一起,但是如果缺少可用的氨基酸,核糖体就会失速。出乎意料的是,研究小组发现,丝氨酸饥饿的胰腺癌细胞显著降低了六个丝氨酸密码子中的两个(TCC和TCT)被翻译成氨基酸链的速度。在丝氨酸饥饿的情况下,这种变异性使癌细胞将某些蛋白质的产生减至最少(以保持饥饿时的能量储存),但继续建立诸如神经生长因子(NGF)之类的压力适应性蛋白质,而这种蛋白质恰好由少数TCC编码和TCT密码子。之前的研究NGF和其他因素会刺激神经生长成胰腺肿瘤,促进肿瘤生长。而最新研究是第一个表明轴突,即传递信号的神经元细胞的延伸,能通过在营养缺乏的区域分泌丝氨酸来为癌细胞提供代谢支持。一项2016年的研究表明,此类细胞向附近的星状细胞发送信号,导致它们将自己的细胞部分分解为可被肿瘤利用的构件。然后2019年12月进行的一项研究发现,胰腺癌细胞还劫持了一个称为巨胞饮作用的过程,正常细胞利用该过程通过其外膜吸收营养。有趣的是,这项新研究发现星状细胞和巨胞饮作用不能为这些癌细胞提供足够的丝氨酸生长,还是需要轴突递送。这项研究指出,喂食无丝氨酸饮食的PDAC肿瘤小鼠的肿瘤生长速度降低了50%。为了超越单纯饮食所能达到的效果,研究人员还使用美国FDA已经批准的一种名为LOXO-101的药物来阻止轴突进入PDAC肿瘤。该药物阻断与神经生长因子(也称为TRK-A)相互作用的神经元表面受体蛋白的活化,从而抑制神经元将其轴突送入肿瘤的能力。这组作者说,仅使用这种药物并不能减慢小鼠中PDAC肿瘤的生长,但是与单独使用饮食相比,与无丝氨酸饮食结合时,它可以使PDAC的生长速度进一步降低50%。研究人员说,这表明神经对于支持丝氨酸剥夺的肿瘤区域中的PDAC细胞生长是必要的。文章一作Robert Banh说:“由于TRK抑制剂已被批准用于某些癌症的治疗,因此在手术后大约40%不能产生丝氨酸的PDAC肿瘤患者中,它们可能与低丝氨酸饮食联合,这种方法是否可以通过限制营养供应来减少肿瘤复发,还需要在临床试验中证实。”
  • 【安捷伦】单抗药物电荷异质性分析的新时代现已来临!
    2018 年,关于肿瘤免疫的那些事儿6 月:国内首款 PD-1 单克隆抗体药物获批,中国跨入肿瘤免疫时代10 月:诺贝尔生理学或医学奖授予美国科学家詹姆斯艾利森 (James Allison) 与日本科学家本庶佑 (Tasuku Honjo) ,以表彰他们在癌症免疫治疗方面所做出的贡献12 月:国内首款国产 PD-1 单克隆抗体药物获批,开启肿瘤免疫治疗“亲民”时代肿瘤免疫治疗的火爆让单克隆抗体药物(下文简称单抗)的研究越来越受到关注,今天我们就来聊聊单抗的一大特性——电荷异质性。抗体是指能与相应抗原特异结合的具有免疫活性的球蛋白,而单抗是由单一 B 细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体。同其它蛋白一样,单抗常常存在广泛的翻译后修饰和降解,如糖基化、碳端赖氨酸丢失、脱酰胺化、二硫键错配、糖化和氧化等。几乎这些所有的翻译后修饰都会直接或间接的引起单抗表面电荷的变化,这就是单抗的电荷异质性。电荷异质性影响单抗的体外及体内的活性、安全性、可行性和质量,在新药研发和生物类似药的开发中都非常重要。电荷异质性的检测通常采用基于电荷分离的技术手段,如离子交换色谱、毛细管等电聚焦(CIEF),以及成像毛细管等电聚焦(iCIEF)等。与主峰 (Main peak) 相比,这些变异体峰通常被称为酸性峰 (Acidic variants) 和碱性峰 (Basic variants) 。大部分的人源 IgGs 具有碱性的等电点,因此,阳离子交换色谱通常被用于分离。在主峰前面的峰通常称为酸性峰,因为其带有的正电荷较少,洗脱较快;在主峰后面的峰称为碱性峰。酸碱峰的鉴定采用离线收集鉴定或多维液相-质谱联机在线鉴定。图 1. 阳离子交换色谱分离酸碱峰示例图毛细管等电聚焦(CIEF)是电荷异质性表征的主要手段,但采用 CIEF 分离时收集馏分用于鉴定非常困难,所以 CIEF 通常用于监控电荷异质性而不能用于表征。质谱检测虽然广泛应用于单抗的表征,但是将 CIEF 和 MS 联机一直是非常大的挑战。质谱在线检测的缺失也限制了 CIEF 在蛋白电荷异质性的表征上的应用。将 CIEF 分离的高分辨特性和质谱的表征能力结合起来是电荷异质性表征迫切需要的技术。Agilent 7100 CE-QTOF 联机的特点无与伦比的毛细管分离的分辨率:甘油改性剂降低非 CIEF 电泳迁移和区带展宽两性电解质:兼顾电泳分辨率和质谱灵敏度质谱友好的阳极液和阴极液优化的鞘流液组成:有效的聚焦、迁移和电喷雾离子化纳流级别的鞘流液流速:基于电渗流技术的纳流鞘流液最大限度提高检测灵敏度优化的 CIEF 运行参数:进样量、电场强度、压力灵敏度高、抗污染的质谱:Agilent 6200 系列 TOF,6500 系列 Q-TOF图 2. Agilent 7100 CE-QTOF 联机图CIEF-MS 的方法可行性及卓越表现采用等电点标记物(pI markers)进行验证,等电点和迁移时间之间具有良好的线性相关性 (R^2=0.99)。此外,CIEF-MS 方法采集的四种单抗的电荷变异体分离的轮廓图也通过成像毛细管等电聚焦紫外方法比对验证一致。pI markers 的绝对迁移时间的相对标准偏差小于 5%(n=4)。贝伐单抗三次进样的相对迁移时间 RSD 小于 1%,绝对迁移时间小于 2.3%,峰面积的 RSD 小于 7%。并且,单抗的电荷变异体可通过质谱直接测得其分子量。CIEF-MS 采集的电荷变异体轮廓分布和 iCIEF-UV 检测具有高度的一致性。iCIEF-UV 通过全柱成像检测去除了等电聚焦后分析物迁移到检测器端的步骤,CIEF-MS 和 iCIEF-UV 检测结果的高度一致性证明了在线 CIEF-MS 分析单抗电荷变异体史无前例的高分辨率。除了高分辨率之外,该方法具有非常好的重现性。CIEF-MS 电荷异质性分析的应用实例大集结贝伐珠单抗的分析CIEF-MS 和 iCIEF-UV 分析得到的酸碱峰比例接近,分别为酸性峰: 主峰: 碱性峰= 23% : 72% : 5% 和 27% : 68% : 5%。除了 CE 的高分离度之外,质谱数据优异的原始谱图是实验分析制胜的关键,尤其是在鉴定跟主峰质量差别很小的变异体时,如在分析一个脱酰胺 (+1Da) 质量差时,一款性能优异的质谱是 CIEF-MS 分析的必备之选。贝伐珠单抗的主峰分子量为 149 202 Da,碱性峰 B1 和主峰之间的质量差为 +128 Da,和碳端赖氨酸 (+128 Da, +1K) 异质性匹配;碱性峰 B2 (?=-17Da) 和氮端焦谷氨酸环化修饰 (-17Da) 匹配;酸性峰 A1 (?= 1Da) 和脱酰胺修饰匹配。酸性峰 A1 和主峰只有 1 Da 的质量差别,虽然我们会担心质谱准确度因素带来的不确定性,但酸性峰的位置和正好 1 Da 的质量差让我们有理由相信酸性峰 A1 是脱酰胺的修饰峰。A2 峰的信号非常弱,可能是高糖基化修饰的峰。图 3. 贝伐珠单抗 CIEF-MS 分析结果图曲妥珠单抗的分析曲妥珠单抗和贝伐珠单抗的电荷异质性分布的差异较大。iCIEF-UV 测得的低含量碱峰在CIEF-MS上未检出,同时其对酸峰的分离效果也优于 CIEF-MS 分离。质谱检测结果清晰的展示了酸性峰中四种主要的糖型变异体。曲妥珠单抗的主峰分子量为148 224 Da,酸性峰 A1 (?m = +1Da) 和酸性峰 A2 (?m = +2Da) 和脱酰胺修饰匹配,并且和 2D CZE-MS 的结果一致。图 4. 曲妥珠单抗 CIEF-MS 分析结果图英夫利昔单抗的分析英夫利昔单抗的三个电荷变异体峰在 CIEF-MS 上有良好的分离。解卷积结果显示两个碱峰为碳端赖氨酸变异体,碱性峰 B1 (?m = +258 Da) 和两个赖氨酸匹配;碱性峰 B2 (?m = +129 Da) 和一个赖氨酸匹配;酸性峰 A (?m = +5Da) 小的质量偏差显示其可能为脱酰胺的修饰。图 5. 英夫利昔单抗 CIEF-MS 分析结果图西妥昔单抗的分析西妥昔单抗是人鼠嵌合的 IgG-1 单抗,具有高度的微观不均一性,该特性主要源于高度复杂的糖基化修饰。西妥昔单抗重链的 Fab 和 Fc 上各有一个糖基化位点,同时有碳端赖氨酸的不完全剪切,这些高度的异质性会造成分离上的困难。采用 CIEF-MS 实现了八个电荷变异体的良好分离,不仅和 iCIEF-UV 的结果一致,同时也和文献报道一致。但是由于西妥昔单抗复杂的糖基化修饰,通过质谱获得的分子量信息不足以反应修饰的情况。图 6. 西妥昔单抗 CIEF-MS 分析结果图西妥昔单抗亚基水平的分析针对西妥昔单抗这类具有复杂异质性的抗体,通过 IdeS 酶切和 DTT 还原降低其复杂程度,更利于质谱检测。通过高分辨质谱检测,IdeS 酶切后的八个变异体峰及 IdeS 酶切同时 DTT 还原后得到的 11 个变异体都得以检测。研究发现,西妥昔单抗的电荷异质性主要源于 Fc 区末端赖氨酸的异质性、Fd’ 区 N-羟乙酰神经氨酸和可能存在的脱酰胺修饰。轻链上未发现有电荷异质性。图 7. 亚基水平 CIEF-MS 分析流程图安捷伦 CE-QTOF 解决方案不仅兼顾了毛细管电泳的高效分离,离子源接口的高灵敏度和高分离度,也实现了质谱的高灵敏高分辨检测。在完整蛋白分析的层次上增加亚基水平的解决方案,即使是具有高度复杂异质性的抗体分析也能轻松应对。访问安捷伦药典系列文章,了解更多信息。参考文献:1. 安捷伦应用文献 5994-0672EN2. Jun Dai,*,? Jared Lamp,? QiangweiXia,? and Yingru Zhang?, Capillary Isoelectric Focusing-Mass SpectrometryMethod for the Separation and Online characterization of Intact Monoclonal AntibodyCharge Variants. Anal Chem. 2018 Feb 6 90(3):2246-22543. Jun Dai, and Yingru Zhang, AMiddle-Up Approach with Online Capillary Isoelectric Focusing-Mass Spectrometryfor In-depth Characterization of Cetuximab Charge Heterogeneity. Anal. Chem.,2018, 90 (24), pp 14527–14534扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》征求意见稿
    国家标准计划《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 四川威尔检测技术股份有限公司 、中国农业科学院农业质量标准与检测技术研究所[国家饲料质量监督检验中心(北京)] 、通威股份有限公司 。附件:国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》编制说明.pdf国家标准《饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速测定 近红外光谱法》征求意见稿.pdf
  • 液相色谱,你问我答(十五)
    反相填料的水解稳定性问有的厂家说他们的柱子的使用pH可以到9或10,而另外的则建议不要大于8。我zui近有根反相柱要用到pH9,因为只有这个条件下我的样品才能完全分离。这超出厂家所说的适用范围,但是柱子的寿命还可以接受。现在我想知道我们应该怎样看待厂家所推荐的pH适用范围。实验已经做出了zui好的回答:如果柱子寿命可以接受那么就可以在推荐的pH范围之外使用。但是我想知道用不同品牌的柱子做的结果是否一样。如果确实一样的话,那么这样用就没什么问题了。填料的pH稳定性是一个比较复杂的问题,很难用一个简单的规则来说明。为了更好的理解我从一些细节上来解释一下。碱性pH中,OH-会攻击并分解硅胶。分解的速度与流动相中的OH-浓度,OH-到填料表面的通道及分解后的硅胶在流动相中的溶解性有关。如你所见,流动相中的pH浓度只是其中一个因素。另外上面所有的过程都与温度有关。在室温下可能工作良好,但是到60℃柱子寿命可能就会明显降低。OH-到填料的通道在填料的稳定性中扮演着重要的角色,填料表面覆盖了致密的C18或C8可以很好的改善稳定性。另外末端封尾也是很重要的。填料表面覆盖的疏水基团可以保护填料免受OH-攻击,其密度是衡量保护能力的尺标。所以我们可以说表面覆盖率高的填料比表面覆盖率低的填料稳定,另外末端封尾的质量也非常重要。在酸性pH中,硅胶自己会分解。因此,键合物的特性只起次要的作用。在相同的键合水平下,单功能结合的硅烷与三功能键合的硅烷其稳定性是没有差别的。但是OH-到填料的通道是zui重要的,因此单功能键合的大的异丙基侧链其稳定性是弱于标准键合相的,因为其zui大覆盖率低。如果柱子一直是使用同一种流动相而没有用有机溶剂冲洗,那么键合相的去吸附和分解是非常缓慢的,因此保留时间也没什么改变。但是硅胶在慢慢的分解。导致的结果就是,柱子可能会毫无征兆的突然坍塌。当然,这种情况下填料密度也是很重要的。孔隙体积大的硅胶没有孔隙体积小的硅胶稳定,因为它的骨架更脆弱。硅胶的孔隙一般在40%-70%,但是它的强度是呈10倍变化的。所以可以根据填料密度来推测键合相的差别。另外,随着填料孔径变大,表面积会减少。所以其他条件一致的话,孔径大的填料要比孔径小的稳定。流动相组分的特性对填料的稳定性也是很重要的。pH相同时,有机缓冲液如氨丁三醇缓冲液【Tris:(HOCH2)3CNH2】,柠檬酸缓冲液和羟乙基呱嗪乙硫磺酸(HEPES)缓冲液的攻击性比通常用的磷酸缓冲液要弱。另外硼酸和甘氨酸即使在pH10也是很温和的。要指出的是在已知的关于填料稳定性的理论研究中都是在等度条件下进行的。当你换到有机溶剂去清洗柱子的污染物的时候,那些吸附在填料上没有键合的基团也可能被洗脱掉。所以,清洗过程也会对柱子的稳定性产生影响。上面的都是针对C18和C8柱的研究。很多极性柱如CN基柱即使在正常的操作过程中其稳定性都要小很多。在pH7时,CN基填料的水解速度是C18和C8填料的1000倍。这样,只要合理操作,即使超过推荐的pH范围,柱子的寿命也还是可以的。zui稳定的柱子是使用高密度硅胶的基质,键合了高密度的C18或C8,加末端封尾。流动相组分的性质对柱子的寿命影响很大,要小心选择。但是,如果分析需要,然后柱子寿命也可以接受,那么大胆的挑战柱子的极限吧!
  • Agela Venusil AA HPLC法测定"皮革奶"中羟脯氨酸
    方法摘要: Venusil AA 氨基酸分析的原理为目前广泛使用的PITC(异硫氰酸苯酯)衍生法。经过简化后的衍生方法有很多优点:方便、快速;衍生物单一、稳定,-20℃可贮存数月;采用Venusil AA 柱分析时间短;结果准确;试剂、副产物、溶剂等多种干扰因素可通过快速萃取去除;紫外检测(254nm)灵敏度高。样品:取某品牌牛奶0.5g,按照博纳艾杰尔氨基酸分析方法包进行水解衍生,并取混合氨基酸标准溶液(准确量取氨基酸标准溶液1.0 mL,置于5mL容量瓶中,加0.1mol/L盐酸溶液定容至刻度)加内标正亮氨酸,然后进行衍生。(异硫氰酸苯酯为衍生剂)色谱柱:Agela Venusil AA,4.6×250mm,5µ m,100Å (订货号:VA952505-K)流动相:A:称取15.2g无水醋酸钠,加水1850mL,溶解后用冰醋酸调pH至6.5,然后加乙腈140mL,混匀,用0.45µ m滤膜过滤。B:80%(V/V)乙腈溶液 时间 流动相A 0 0 2 0 15 10 25 30 33 45 33.1 100 39 100 39.1 0 45 0 流速:1.0mL/min进样体积:10μL温度:40℃波长:254nm Agela Venusil AA HPLC法测定牛奶中羟脯氨酸混和标准品图谱 (6.50min为羟脯氨酸) Agela Venusil AA HPLC法测定牛奶中羟脯氨酸图谱(6.51min为羟脯氨酸) 技术咨询请拨打18622038116
  • NAR | 许伟团队揭示BAF155蛋白的精氨酸甲基化修饰水平影响恶性肿瘤转移的新机制
    蛋白质精氨酸甲基化修饰是一类由精氨酸甲基转移酶(Arginine methyltransferases, PRMTs)介导的翻译后修饰作用。PRMTs不仅能够通过甲基化修饰组蛋白上特定位点的精氨酸来调控下游靶基因的转录活性,还参与修饰了多种非组蛋白类作用底物,以此来影响RNA剪接、蛋白质翻译、细胞周期等一系列细胞生物学行为。近年来,越来越多的证据表明蛋白质精氨酸甲基化水平的失调与恶性肿瘤的发生、发展密切相关。因此,PRMTs作为潜在的肿瘤治疗靶点,逐渐引起了全球科学家的关注。2021年11月19日,威斯康星大学麦迪逊分校医学院许伟教授团队在Nucleic Acid Research上发表题为BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity的研究成果。该研究发现,精氨酸甲基化修饰的BAF155蛋白可以通过操纵增强子、破坏机体的抗肿瘤免疫能力,从而促进恶性肿瘤的转移 。BAF155是染色质重组复合物SWI/SNF的重要亚单位之一。2014年,许伟课题组在Cancer Cell发文,首次证实了PRMT4(又称CARM1)能够通过甲基化修饰BAF155蛋白第1064位精氨酸,起到促进三阴性乳腺癌转移的作用【1】。近日,该课题组以基因编辑的乳腺癌细胞系与小鼠模型为基础,结合多组学技术揭示了me-BAF155促进乳腺癌转移的内在分子机制。超级增强子(Super-enhancers, SEs)是基因组中大量增强子富集的转录调控区域。在转录过程中,通过富集多种转录因子和辅因子(BRD4等)来大幅度激活下游靶基因的转录活性。本研究中,作者采用ChIP-seq技术对me-BAF155的基因组结合位点进行全局定位分析,发现me-BAF155和BRD4在SEs处共定位,以此调节关键癌基因的表达水平。CARM1抑制剂(CARM1i)的处理,能够使得me-BAF155和BRD4从SE上解离,减少SE数量,激活干扰素α/γ通路,增强宿主免疫反应,起到抑制肿瘤生长和转移的治疗效果。最后,作者采用VERSA技术分离循环肿瘤细胞,证实me-BAF155在高转移特性的三阴性乳腺癌患者的循环肿瘤细胞中呈稳定、持续的强阳性表达(图1)。该研究首次揭示了me-BAF155在促进恶性肿瘤转移中具有双重作用:通过招募BRD4激活增强子依赖的癌基因转录活性;通过抑制干扰素α/γ通路以削弱宿主免疫反应。尽管CARM1抑制剂具有较低的细胞毒性,但是在体外依然能够显著抑制三阴性乳腺癌细胞的迁移,在体内显著抑制肿瘤生长和转移。因此,作者提出CARM1抑制剂有望被开发成为单独使用的抗癌药物,或与其他治疗药物(如免疫治疗)联合使用,用于治疗转移性恶性肿瘤。另外,相较于现有的CARM1抑制剂,开发me-BAF155(R1064)靶点特异性的小分子抑制剂,有望产生抑癌效果更好、副作用更少的新型抗肿瘤药物。
  • 一种可用于3D生物打印的抗菌ε -聚赖氨酸衍生生物墨水
    凭借其个性化定制的优势,3D生物打印受到了组织工程研究人员的广泛关注。生物墨水在打印过程中起着保护细胞,并在打印后提供促进细胞生长和组织再生的支架的作用。此外,不同的3D生物打印方法需要具有不同特性的生物墨水。然而目前用于3D生物打印的生物墨水是不足的,这限制了3D生物打印在组织工程中的应用。另一方面,细菌感染严重威胁着3D生物打印及后续组织工程技术的实现,并可能导致移植物植入失败和术后严重并发症。因此,引入一种具有固有抗菌特性的新型生物墨水用于组织工程,将促进3D生物打印在组织工程中的发展。近日,湖南大学刘海蓉教授课题组提出了一种新型可用于3D生物打印的抗菌ε-聚赖氨酸衍生生物墨水。体外抗菌实验表明,基于ε-聚赖氨酸的水凝胶对大肠杆菌和金黄色葡萄球菌均具有较强抗菌性能。通过使用面投影微立体光刻技术(nanoArch S140, 摩方精密),该研究成功打印了不同形状的高保真载软骨细胞水凝胶。在体内异位成软骨实验中,载细胞水凝胶经过4周培养形成了软骨样组织。总的来说,此项研究提出了一种很有前景的3D生物打印抗菌生物墨水,为3D生物打印在组织工程中的应用提供了一个新的选择。相关论文在线发表在《Journal of Materials Chemistry B》,湖南大学何亚辉为本文第一作者,刘海蓉、周征为通讯作者,韩晓筱课题组为本文3D生物打印提供了支持。图1 (a)EPLGMA-H水凝胶制备工艺示意图。(b)EPLGMA-1、EPLGMA-2和EPLGMA-3在D2O中的1H NMR谱。(c)蓝光照射后的EPLGMAs凝胶化照片。(d)EPLGMA-H凝胶过程的动态实时流变学分析。图2 大肠杆菌和金黄色葡萄球菌分别与PBS、EPLGMA-1H、EPLGMA-2H、EPLGMA-3H共混后的(a)生长情况,(b)细菌存活率,(c)活/死细菌染色照片。图3 (a-c)3D生物打印制备的细胞负载EPLGMA-3H的3种不同形状的俯视图。(d-i)3D生物打印载细胞EPLGMA-3H培养3天后的活细胞照片,(g-i)分别为(d-f)的放大照片。 原文链接:https://doi.org/10.1039/D1TB02800F
  • 采用电位滴定法快速、准确地测定方便面酱包中的谷氨酸钠含量
    谷氨酸钠作为调味品在人类的饮食生活中是不可或缺的,通常对原料的检测,采用高氯酸非水溶液滴定法,即以a-萘酚苯基甲醇作为指示剂,滴定溶液至绿色为其终点。 此外,也有采用高氯酸指示剂滴定法测定鸡精中谷氨酸钠含量,但对于指示剂的选择使用有严格要求,并且不同的样品有可能会影响指示剂的终点判定。如果采用禾工CT-1Plus全自动电位滴定仪和PH值非水相电极对方便面酱包中的谷氨酸钠含量进行测试,就可以有效地排出了对指示剂的选择使用要求及用指示剂法进行滴定时基本产生的终点判定干扰。 CT-1PLUS多功能全自动滴定仪可以根据滴定过程中电极电位的变化来自动确定终点,对于电位变化不明显的反应,也可自动根据摄像头采集的颜色变化来自动判断滴定终点,大大简化和降低的认为的操作和判断误差,提高的测试的准确性。 利用电位滴定法能快速、准确地测定方便面酱包或其它调料包中的谷氨酸钠含量,对科研开发及方便面生产厂家在线监测具有较强的实际应用价值。
  • 岛津应用:应用蛋白质测序仪PPSQ-53A测定N-末端部分甲硫氨酸缺失的蛋白质类药物的N-末端氨基酸序列
    生物体在合成蛋白质时,N-末端首位的甲硫氨酸在蛋白质加工过程中可能被酶切除。本文以蛋白质类药物重组人粒细胞巨噬细胞刺激因子注射液原液为例,演示了应用蛋白质测序仪PPSQ-53A进行N-末端甲硫氨酸部分缺失的蛋白质分析的方法和结果。本应用蛋白质测序仪PPSQ-53A测定了发生N-末端部分甲硫氨酸切除的蛋白质类药物重组人粒细胞巨噬细胞刺激因子的-N未端前16个氨基酸的序列,结果与理论序列一致。除了氨基酸定性,根据信号峰强度,可以粗略估计样品N-末端甲硫氨酸的缺失比例。以上表明应用PPSQ-53A可以测定N-未端部分甲硫氨酸缺失的蛋白质的N-末端氨基酸序列。可作为此类生物药物样品分析时的参考。 ?了解详情,敬请点击《应用蛋白质测序仪PPSQ-53A测定N-末端部分甲硫氨酸缺失的蛋白质类药物的N-末端氨基酸序列》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 果汁检测用试剂——钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸,抵制 “烂果门”
    果汁检测用试剂&mdash &mdash 钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸 &ldquo 烂果门&rdquo 事件,怎可坐以待毙! 近期有媒体暗访指多家内地果汁生产商涉嫌使用腐烂果汁。国产果汁巨头卷入&ldquo 烂果门&rdquo ,你是否忧心忡忡?大多果汁含量无据可依,你该如何选择?国家统计局的数据显示,2012年全国饮料行业总产量为13024.01万吨,比上年增长10.73%,其中,国内果汁和蔬菜汁饮料产量为2229.17万吨(最主要为果汁饮料),占到饮料总产量的17.16%,较2011年增长16.09%。这些果汁真的如消费者理解的哪样健康自然高品质吗? 上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。 自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。 上海甄准生物提供果汁检测的钾、总磷、氨基酸态氮、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸检测标准品和试剂。 产品信息: 货号 描述 规格 可溶性固形物检测ZZSRIBS07S 折光率标准液1.343253 (± 0.00004)@20C 15ml ZZSRIBS10S 折光率标准液1.347824 (± 0.00004)@20C 15ml ZZSRIBS112S 折光率标准液1.349682 (± 0.00004)@20C 15ml ZZSRIBS115S 折光率标准液1.350149 (± 0.00004)@20C 15ml ZZSRIBS12S 折光率标准液1.35093 (± 0.00004)@20C 15ml ZZSRIBS125S 折光率标准液1.35093 (± 0.00004)@20C 15ml ZZSRIBS15S 折光率标准液1.355679 (± 0.00004)@20C 15ml ZZSRIBS20S 折光率标准液1.363842 (± 0.00004)@20C 15ml ZZSRIBS25S 折光率标准液1.372328 (± 0.00004)@20C 15ml ZZSRIBS30S 折光率标准液1.381149 (± 0.00004)@20C 15ml ZZSRIBS35S 折光率标准液1.390322 (± 0.00004)@20C15ml ZZSRIBS40S 折光率标准液1.39986 (± 0.00004)@20C 15ml ZZSRIBS45S 折光率标准液1.409777 (± 0.00004)@20C 15ml ZZSRIBS50S 折光率标准液1.420087 (± 0.00004)@20C 15mlZZSRIBS55S 折光率标准液1.4308 (± 0.00004)@20C 15ml ZZSRIBS60S 折光率标准液1.441928 (± 0.00004)@20C 15ml 总D-异柠檬酸检测 ZZK-ISOC D-异柠檬酸检测试剂盒 100 test L-脯氨酸检测 ZZS1568506 L-脯氨酸标准品 200MG ZZR70501 茚三酮显色液 2L 钾检测 ICCS03 钾离子 K+ 1mg/ml 1000ppm 100ml ICCT03 钾离子 K+ 0.2mg/ml 200ppm 100ml 甄准,甄心倾听您每一个标准!
  • 澳新拟降低婴儿配方奶粉中L-组氨酸的最低限量要求
    据澳新食品标准局(FSANZ)消息,近日雀巢公司向澳新食品标准局发出申请,请求该局将婴儿配方奶粉中L-组氨酸的最低限量要求由原先的12 mg/100 kJ降至10 mg/100 kJ。   澳新食品标准局首席执行官麦卡臣(Steve McCutcheon)表示,L-组氨酸限量调低后可与国际限量保持一致,减少贸易摩擦,而且调低后的L-组氨酸限量仍可抵得上母乳中L-组氨酸的水平,完全可以维持哺乳期婴儿的生长需求,不会影响婴儿的健康。   目前澳新食品标准局正就此申请征求意见,截止日期为2012年12月20日。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制