当前位置: 仪器信息网 > 行业主题 > >

氮杂苯并咪唑

仪器信息网氮杂苯并咪唑专题为您提供2024年最新氮杂苯并咪唑价格报价、厂家品牌的相关信息, 包括氮杂苯并咪唑参数、型号等,不管是国产,还是进口品牌的氮杂苯并咪唑您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮杂苯并咪唑相关的耗材配件、试剂标物,还有氮杂苯并咪唑相关的最新资讯、资料,以及氮杂苯并咪唑相关的解决方案。

氮杂苯并咪唑相关的资讯

  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之六:氘代咪唑与苯并咪唑类抗菌药物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。2022年,阿尔塔科技获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”。阿尔塔科技将依托重点实验室继续深耕食品安全、环境安全、医药研发、临床检测等领域稳定同位素标记标准物质的结构设计合成和分离纯化、分析方法开发和质量控制,开展稳定同位素标记标准物质全产业链应用技术研究。阿尔塔科技陆续推出了五期稳定同位素标记物产业化基地建设成果系列报道,本期向您推荐稳定同位素标记的咪唑与苯并咪唑类抗菌药物,继续展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,让更多的国家标准制修订和实验室检测活动用上国产稳定同位素标记标准物质。部分咪唑与苯并咪唑类抗菌药物:了解更多产品或需要定制服务,请联系我们天津阿尔塔科技有限公司介绍天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 集美大学陈全胜教授团队食品顶刊综述: 基于纳米材料的光学传感器检测食品中苯并咪唑类杀菌剂的研究进展
    Introduction苯并咪唑类杀菌剂(BZD)是一类含有苯并咪唑环的内吸性杀菌剂。最常用的BZDs有苯菌灵、多菌灵(CBZ)、甲基硫菌灵(TPM)、噻菌灵(TBZ)、麦穗宁(FBZ)等。在现代农学中,BZDs广泛用于预防水果、蔬菜和其他作物的真菌病害,用于采前和采后处理;此外,它们还被用作广谱的驱虫药物,用于预防和治疗食源性动物体内寄生虫。因此,许多国家和国际权威机构都实施了严格的监管。 最近,基于纳米材料的光学技术,如比色、荧光和SERS技术,通过开发分析纳米技术在农药检测中的潜力,已经成为基于色谱技术一种替代方法。本文综述了近六年来基于纳米技术的光学传感器在水、食品和农产品中BDZ残留检测方面的研究进展。本研究特别强调了比色、荧光、SERS及其集成系统,为当前BZDs的检测现状提供了广泛的覆盖面。基于纳米材料的光学方法用于检测BDZ杀菌剂的示意图如图1所示。 图1 用各种光学方法检测BDZ的不同纳米材料及其综合方法的示意图 基于纳米材料的信号增强策略纳米材料在研究领域被广泛用于促进传感器的修饰。纳米材料由于其独特的性质,如表面修饰,生物相容性,表面等离子体共振,消光系数,催化活性等,可以提高不同传感器的检测效率。一般来说,信号增强的效果主要是因为来自大表面积的强吸附显示出优异的特异性,以及纳米材料的高电子转移速率,从而提高了不同传感器的传感效率。 基于纳米材料的光学传感器迄今为止,已经利用基于纳米材料的光学传感器构建了不同的BDZ传感技术。光学传感器在BDZ的现场检测方面具有很大的潜力和广泛的用途。图2是BDZ在基于纳米材料的光学传感器,特别是比色荧光和SERS及其集成系统的所有已发表论文的总结。图2 柱状图为基于纳米材料的比色(A)、荧光(B)和SERS(C)传感器检测BDZ杀菌剂的发展和发表论文情况比色传感器基于纳米材料的比色传感器因其对包括重金属、农药、真菌毒素、有毒细菌、生物标志物等在内的许多分析物的灵敏和选择性响应而受到了极大的关注。表面等离子体共振(SPR)是纳米材料的一个重要特征,由于纳米材料的聚集或分散,与分析物相互作用后,在可见光区域显示出明亮的颜色变化,并与分析物产生明显的线性或非线性关系。通常,有两种策略可用于制备基于比色的传感器:I)催化或结构变化引起的颜色变化;II)纳米粒子的形态转变或聚集。比色传感器中比色响应的方案如图3所示。表1是基于纳米材料的比色传感器检测食品中BDZ的研究结果。图3 比色传感器的比色响应表1 基于纳米材料的BDZ比色传感器荧光传感器荧光传感器的基本原理是荧光团或纳米粒子产生的光的发射,从激发态返回到基态。表2是基于纳米材料的荧光传感器检测食品中BDZ的研究结果。表2 基于纳米材料的BDZ荧光传感器基于非辐射能量转移的荧光传感器在检测食品和农产品中的有毒化学物质和致病菌方面引起了人们极大的研究兴趣。FRET是一种非辐射距离依赖的能量转移现象,作为一种独特、可靠、灵敏的分析技术被广泛应用于检测各种分析物。碳量子点或碳点是一种新型的发光碳纳米材料,可用于荧光分析法中的定量分析。如图4A所示,Wang课题组基于氮掺杂碳量子点和金纳米簇之间的FRET,通过两个线性响应开发了CBZ的"turnon"比率型荧光传感器,LOD分别为0.83和37.25 μmol/L。相反,考虑到上转换纳米颗粒的优势,有研究开发了一种上转换-二氧化锰发光共振能量转移生物传感器用于UCNPs对CBZ的灵敏检测,如图4B所示。图4 N-GQDs/AuNCs作为CBZ比率荧光开启传感器的示意图(A) CBZ荧光纳米传感器示意图(B) SERS传感器近年来,随着纳米技术的发展,获得了不同形态的纳米结构,它们被用作SERS活性基底,用于无标记和/或靶敏感检测各种分析物,包括农药残留水平。为了提高基于SERS的农药检测的准确度和精密度,研究人员不断致力于开发新型SERS基底、新型检测策略、原位检测系统等。表3总结了SERS技术在BDZ类杀菌剂检测和定量方面的研究进展。表3 BDZ用纳米材料SERS传感器 SERS活性基底的选择SERS活性基底的选择对SERS检测至关重要。为了制备用于BDZ的最佳SERS传感器,需要考虑三个关键点:i)SERS活性底物的拉曼信号增强能力,ii)SERS有源底物的均匀性和稳定性,iii)BDZ对SERS活性基质的亲和力。 SERS光谱的密度泛函理论(DFT)模拟在SERS信号中可以得到分子固有的拉曼信号,这可以通过DFT得到潜在的证实。理论拉曼信号借助高斯程序进行DFT分析,并给出合理的解释。然而,实验测得的拉曼和SERS信号与理论信号存在一定的差异,这可能与农药或基底的分子结构及其相互作用有关。因此,需要更多的研究来了解它们在实验上存在差异的确切原因。化学计量学对SERS传感器的影响化学计量学的关键优势在于能够从低质量的仪器数据中获得合理的检测结果,所得数据具有信号重叠性强、噪声水平高、分辨率低等特点。这种方法常应用于从光学(即比色、荧光、SERS等)、色谱、电化学和其他各种技术中获得的信号的定性和定量处理。有研究将竞争性自适应重加权采样-极限学习机(CARS-ELM)作为非线性化学计量学方法与SERS相结合,实现了苹果中TBZ浓度的快速测定;该方法在TBZ浓度为1、5、10 mg/L的蓄意污染苹果样品中的回收率为83.02%~93.54%;此外,通过PCA在P=0.05水平上的判别图确定了LOD(0.001 mg/L),如图5A所示。图5 利用SERS耦合CARS-ELM确定TBZ的方法示意图(A);SERS传感双杀菌剂界面自组装核壳二维Au@Ag纳米点阵列的制备示意图(B);便携式拉曼分析仪微滴捕获带(C);Ag-Au-IP6-Mil-101 (Fe)的制备示意图及TBZ的SERS测定(D)磁性纳米粒子(MNPs)对SERS传感器的影响磁性纳米粒子与贵金属纳米材料的结合在农药的SERS检测中开辟了新的途径,这归因于以下几个优点:MNPs的有序排列和良好调节的热点提供了完美的增强因子;磁性纳米粒子的磁性允许目标化合物从复杂基质中有效分离和富集;磁性纳米粒子的磁性赋予了SERS纳米复合基底可重复使用性;最后,磁性纳米粒子的生物相容性允许生物识别分子固定在其表面,提高了其对目标分子的特异性生物识别能力和与基质的分离能力。利用贵金属单、双金属SERS基底对BDZ进行无标记检测近年来,利用SERS技术实现痕量分子的无标记检测已成为原位应用的研究热点。如图5B所示,利用金核银壳纳米颗粒设计了一种二维纳米点阵列SERS基底,用于梨、苹果和橙汁中TBZ的可靠和可重复性测定,LOD为0.051 × 10-6。 基于氧化石墨烯(GO)的SERS传感器GO是一种单层碳材料,通过π-π堆积作用或静电作用对芳香分子具有突出的吸附能力;此外,由于电荷转移效应,它提高了拉曼信号,从而支持SERS检测。 硅基SERS传感器根据已发表的多篇文献,金属化硅由于具有大的表面积体积比可用于表面修饰、减少纳米材料之间的相互作用、独特的光学性质和易于制备等优点,已成为制备SERS基底的重要元素。基于聚二甲基硅氧烷(PDMS)的SERS传感器PDMS是柔性基底中备受研究者关注的一种聚合物凝胶,因其具有透明性、良好的拉伸强度、黏结性、无毒性和化学稳定性等优点。此外,它具有较低的拉曼截面,对拉曼信号的影响较小。 基于纸张和胶带的SERS传感器纤维素基纸模板具有三维结构、便携性、柔韧性、多孔性、非均相形貌、极小的SERS信号干扰等优点,是硅或玻璃晶片和多孔氧化铝模板的实际替代品。特别是,它可以通过毛细管作用吸收液体,使目标分析物在传感器纳米材料表面黏附和富集基于金属有机框架的SERS传感器。如图5C所示,通过在导电碳带上沉积Au纳米枝晶,生成了用于TBZSERS检测的创新型POCT装置"微液滴捕获带";作为一个自主的"微容器"用于吸附分析物。基于金属有机框架(MOFs)的SERS传感器MOFs的多孔结构是通过π-π相互作用、氢键或静电作用形成的,它们提供了一个大的比表面积来支持和稳定金属纳米结构,从而获得一种新型的SERS基底。将Au/Ag纳米结构固定到MOFs中作为一种高效的SERS基底近年来受到了广泛的关注。如图5D所示,开发了一种基于MOFs的SERS传感器(Ag-Au-IP6-Mil-101(Fe))检测果汁样品中的TBZ。 基于分子印迹聚合物(MIPs)的SERS传感器考虑到生物识别元件的局限性,MIP作为一种人工识别元件,具有与目标分子亲和力高、化学和机械稳定性好、价格低廉等优点,在检测、催化和固相萃取等领域具有广阔的应用前景;它通过具有酸性或碱性基团的单体聚合,在目标分子存在的情况下形成三维空腔,可以通过互补的形状、大小和官能团选择性地与目标分子结合。基于其他材料的SERS传感器受仿生材料的启发,将植物叶片组装到AuNPs上,产生电磁辐射热点,用于水中CBZ和TBZ的检测。有研究报道了一种用于检测水果样品中TBZ的模板生长磷烯基Au/Ag纳米复合材料SERS基底。另有研究报道了合成的聚氨酯胶束/纳米银簇用于不同果蔬表面TBZ的原位检测。集成传感器近年来,集成不同的技术来提高检测的选择性、准确性和精密度受到了广泛的关注。利用碳化钛MXene/Au-Ag纳米壳开发了一种双功能智能CBZ检测方法,如图6所示。通过电化学和SERS方法,该传感器在茶叶和大米中分别可以检测到低至0.002和0.01 μmol/L的CBZ(表4)。图6 Ti2C MXene/Au-Ag纳米杂化物用于CBZ的电化学和SERS检测表4 基于纳米材料的BDZ集成传感器Conclusion and Perspectives本文综述了基于纳米材料的检测策略,以实现对实际样品中BDZ的高效溯源。尽管这些基于纳米材料的光学及其集成传感器与传统方法相比具有一定的便利性,但在实际样品的检测中仍然存在一些挑战。在本研究中提到的BDZ中,苯菌灵和FBZ还没有被检测到。由于纳米材料与目标分析物结合的活性位点是有限的,因此关注简便和低成本的样品前处理过程是很重要的。也可以集中在芯片、纸张或带状传感器上,用于BDZ的现场检测,这将更有效地用于工业应用。——————————————————————————————————————— 陈全胜:集美大学海洋食品与生物工程学院教授,博士生导师,主要从事食品质量安全快速无损检测与智能化加工装备研发。近年来先后主持国家部省级项目20余项,出版学术英文学术著作1部,中文学术著作3部,以第一/通讯作者发表SCI论文150余篇(其中,IF10论文10余篇,ESI高被引论文15篇,ESI热点论文4篇),论文累计SCI他引6000余次,个人H指数43;累计授权发明专利50余件(含国际专利4件),成果先后获国家技术发明奖二等奖、江苏省科学技术奖一等奖和教育部自然科学奖二等奖等;先后获国家高层次人才、科技部中青年科技创新领军人才、中国高被引学者、ProSPER.Net-Scopus Young Scientist Award、中国青年科学之星和江苏省333中青年科技创新领军人才等国内外奖励和荣誉。为进一步促进动物源食品质量安全的发展,更好的保障人类身体健康和提高生活品质,仪器信息网于2023年11月15-17日举办“动物源性食品质量安全检测技术”主题网络研讨会。陈全胜老师也将在此次网络会中带来精彩报告!点击图片,免费参会
  • 沃特世为分析饮料中的2-甲基咪唑和4-甲基咪唑含量提供解决方案
    沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量 赵嘉胤.蔡麒.孙庆龙 引言 焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。 焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 沃特世(Waters® )公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC® H-CLASS PDA以及UPLC/Xevo® TQ MS的分析,完成出色的定性定量工作。 实验条件 样品前处理方案 固相萃取SPE解决方案&mdash &mdash Oasis® MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。 ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件: 色谱柱: ACQUITY UPLC® BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM甲酸铵 柱温: 35˚ C 检测波长: 215nm 进样量: 5&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件: 色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m 流动相 A: 乙腈 流动相 B: 5mM 甲酸铵 柱温: 35˚ C 进样量: 2&mu L 运行时间: 3min 梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6 实验结果及讨论 1、ACQUITY UPLC H-CLASS PDA分析 混合标准品色谱图 饮料空白样品图 基质添加回收色谱图 2、ACQUITY UPLC/Xevo TQ MS分析 混合标准品TIC 3.2.3 茶饮料样品加标与空白对比分析 3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。 同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。 结论 1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1&mu g/kg。 2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。 3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 月旭科技推出饮料中4-甲基咪唑的整体解决方案
    近日,一份源自美国监督机构环境健康中心的报告,再次将百事可乐推至焦糖色素风波中。该报告指出,在百事可乐的焦糖色素中再次检测出了含有可能致癌的4-甲基咪唑(简称4-MEI)。焦糖色素是一种允许使用的着色剂,但是,我国现行的食品质量标准中,可乐中焦糖色素没有限量标准,只规定&ldquo 按生产需要适量使用&rdquo 。 可乐中的4-甲基咪唑是在以亚硫酸铵为原料生产焦糖色素时产生的,焦糖色素能使可乐饮料变成棕褐色。4-甲基咪唑能导致动物长肿瘤,有可能给人体带来致癌风险。目前,我国国标中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 针对此次事件,月旭科技迅速建立了饮料中4-甲基咪唑的前处理和检测方法。本方法使用月旭Welchrom® P-SCX (60mg/3mL)富集饮料中4-甲基咪唑,所建立的固相萃取方法能够极大程度排除饮料中杂质的干扰,保证检测结果的准确性。 1. 仪器及材料 材料:饮料;超纯水;4-甲基咪唑标准品;月旭Welchrom® SCX 固相萃取小柱(60mg/3mL);玻璃移液管;洗耳球;烧杯,固相萃取装置等。 2. 实验步骤 2.1 SPE净化 SPE柱:Welchrom® SCX(60mg/3mL) 1)活化:3mL甲醇,3mL水; 2)上样:3mL 饮料样品溶液,弃去上样液 3)淋洗:3mL 100%甲醇,弃去淋洗液; 4)洗脱:3mL 10%氨化甲醇;收集洗脱液。挥干定容至0.5mL,进液相分析。 2.2 液相色谱测定 色谱柱:月旭Ultimate® XB-C18(4.6× 250mm, 5µ m) 流动相:缓冲液/甲醇=80/20 缓冲液的配置方法:将6.8g KH2PO4和1g庚烷磺酸钠至900mL,用H3PO4调pH为3.5,再定容至1000mL,即得。 检测波长:210nm 流速:1.0mL/min 进样量:20µ L 图1:4-甲基咪唑标准色谱图 3. 添加回收率试验结果 表1: 10µ g/mL添加回收实验结果(n=5) 次数 1 2 3 4 5 回收率98.2% 92.2% 95.1% 96.4% 93.6%
  • 【好文】牛奶中左旋咪唑残留量测定的前处理方法
    不敢独享!牛奶中左旋咪唑残留量测定的前处理方法坛墨质检标准物质中心 昨天左旋咪唑的危害及检测目的左旋咪唑作为一种广谱型抗线虫药,药源丰富,被广泛应用于畜禽养殖企业,效果良好。但不合理地使用左旋咪唑会造成动物产品中残留,研究表明,人体摄入过量左旋咪唑可引起畸变、癌变等症状,严重危害人类健康。为此我国农业农村部和国家市场监督管理总局2019年发布的gb 31650-2019《食品安全国家标准食品中兽药最/大残留限量》中明确规定了左旋咪唑在动物靶组织中的残留限量,并且规定泌乳期和产蛋期禁用。本文阐述了如何将左旋咪唑从样品基质中分离提取出来,并经过净化后,转化成高效液相色谱仪可以检测的形式。以提取、净化为重点,依据国标gb 29681-2013,为检测人员和相关领域研究人员提供一定的参考。检测项目:左旋咪唑应用范围:牛奶高效液相色谱法方法原理:试料中残留的左旋咪唑,用碳酸盐缓冲液和乙酸乙酯溶液提取,c18柱净化,甲醇洗脱,高效液相色谱测定,外标法定量。前处理仪器:分析天平(感量0.00001 g和0.01 g);均质机;冷冻高速离心机;电热恒温水浴锅;旋涡混合器;茄形瓶(50 ml);离心管;滤膜(0.45 μm)。检测仪器: hplc-pda 试样的制备与保存取适量新鲜或冷藏的空白或供试牛奶,混合均质。取均质后的供试样品,作为供试试料;取均质后的空白样品,作为空白试料;取均质后的空白样品,添加适宜浓度的标准工作液,作为空白添加试料。试料于零下20 ℃以下保存。前处理方法1.提取称取试料5 g± 0.05 g,于离心管中,加碳酸盐缓冲液5 ml,加乙酸乙酯10 ml,混匀,6000 r/min离心10 min,取上清液于茄形瓶中,再加乙酸乙酯10 ml萃取一次,合并两次上清液,于50 ℃水浴旋转蒸发至干,加碳酸盐缓冲液5 ml溶解残余物,备用。2.净化c18柱(3 ml/500 mg)依次用水3 ml、甲醇3 ml和碳酸盐缓冲液3 ml活化,取备用液过柱,用水3 ml淋洗,用甲醇5 ml洗脱,收集洗脱液,于50 ℃水浴氮气吹干,用流动相1.0 ml溶解残余物,滤膜过滤,供高效液相色谱测定。国标解读及注意事项1.左旋咪唑用甲醇配成1 mg/ml的标准储备液,在2 ℃~4 ℃保存,可使用3个月。2.本方法使用碳酸盐缓冲液提取,乙酸乙酯萃取,c18固相萃取柱净化的方式进行目标化合物的提取净化。3.本方法采用两次萃取的方式,提高目标化合物的回收率。4.为保证固相萃取净化效果,过柱时需要控制流速,使溶液一滴一滴地流下。水淋洗后完全抽干小柱,再进行洗脱。5.左旋咪唑也可以使用液质联用仪进行检测,同时添加相对应的盐酸盐同位素内标,进行回收率的校正。参考文献gb 29681-2013 食品安全国家标准 牛奶中左旋咪唑残留量的测定 高效液相色谱法图1 牛奶中左旋咪唑残留量测定的前处理流程图左旋咪唑标准物质信息表我是一个闪光的标题左旋咪唑标准品信息表本文版权归坛墨质检,未经许可请勿转载 坛墨质检-标准物质中心标准物质业务咨询联系方式北方地区王宏姝:13671388957南方地区汪丽红:13501101929扫一扫,获取更多标物信息——成立于2007年,是一家标准物质/标准样品研发、生产、销售、服务为一体的高新技术企业,是中国cnas标准物质/标准样品生产者认可实验室(注册号:cnas rm0024),并通过iso9001:2015质量管理体系认证。江苏常州公司总部地址:中国常州检验检测认证产业园2号楼7-8层北京分公司地址:北京市经济技术开发区宏达南路五号宏达利德工业园区2号楼4层客服电话:4008-099-669自动传真:010-64338939 010-64339205网 址:www.gbw-china.com邮 箱:gbw@gbw-china.com
  • 动物源食品中硝基咪唑残留量测定的前处理方法
    硝基咪唑类药物(nitroimidazole,NMZs)是一类具有抗原虫感染和抗厌氧菌的硝基杂环类抗菌药物,其具有抗菌和抗原虫作用。近年来作为饲料添加剂广泛应用于畜牧业生产中,同时也是一种生长促进剂,以促进畜禽的生长及改善饲料的转换率。由于这类化合物含有的硝基杂环类物质具有潜在致癌、致畸和致突变作用,因此欧美等发达国家已禁止在食源性动物中使用硝基咪唑类药物。我国也对硝基咪唑类药物进行了严格的限制,2020年生效实施的GB 31650-2019《食品安全国家标准 食品中兽药最大残留限量》中仅规定了甲硝唑和地美硝唑两种物质允许作治疗使用,但不得在动物性食品中检出;同年农业农村部公告第250号,将洛硝达唑、替硝唑列入《食品动物中禁止使用的药品及其他化合物清单》中。本文阐述了如何将硝基咪唑类化合物从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据国标GB/T 21318-2007,为检测人员和相关领域研究人员提供一定的参考。应用范围猪肉/鸡肉/牛肉/猪肝/鸡肝/牛肝/猪肾/牛肾/鱼肉/奶粉/蜂蜜方法原理样品中残留的8种硝基咪唑、2种代谢物用甲醇-丙酮均质或超声波提取,经乙酸乙酯液液分配,以凝胶色谱(GPC)净化,再经固相萃取(SPE)净化,采用液相色谱/串联质谱确证,外标法定量测定。前处理仪器凝胶色谱仪(配有馏份收集浓缩器);组织捣碎机;均质器;超声波发生器;旋转蒸发器;高速离心机;氮吹仪;固相萃取装置;具塞锥形瓶(250 mL);分液漏斗(250 mL);浓缩瓶(50 mL、250 mL)。检测仪器:LC-MS/MS+ESI源01提取肌肉组织、脏器组织样品及水产品准确称取约20 g样品(精确至0.1 g)于250 mL具塞锥形瓶中,加入10 g硅藻土(80目~120目)与样品充分混匀,再依次加入5 mL饱和氯化钠水溶液和70 mL甲醇-丙酮(3+1),高速均质提取3 min。将提取液移入离心管中,于10000 r/min离心2 min,将上层提取液移入250 mL浓缩瓶中。残渣每次再用50 mL甲醇-丙酮(3+1)重复提取两次,合并提取液。 蜂蜜、乳及乳制品样品准确称取约20 g样品(精确至0.1 g)于250 mL具塞锥形瓶中,加入10 mL饱和氯化钠水溶液和70 mL甲醇-丙酮(3+1),超声波提取30 min。移入离心管中,于10000r/min离心2 min,将上层提取液移入250 mL浓缩瓶中。残渣每次再用50 mL甲醇-丙酮(3+1)重复提取两次,合并提取液。02液液分配将提取液于40 ℃水浴中旋转浓缩至只剩水相,并转移至250 mL分液漏斗中,加入50 mL饱和氯化钠水溶液和25 mL乙酸乙酯,振摇3 min,静置分层,收集乙酸乙酯相。水相再用20 mL乙酸乙酯重复提取两次,合并乙酸乙酯相。经无水硫酸钠柱脱水,收集于250 mL浓缩瓶中,于40 ℃水浴中旋转浓缩至近干,加入5 mL乙酸乙酯-环己烷(1+1)溶解残渣,并用0.45 μm滤膜过滤,待净化。03净化凝胶色谱(GPC)净化凝胶色谱净化条件如下:净化柱:700 mm×25 mm,Bio Bcads S X3,或相当者;流动相:乙酸乙酯-环己烷(1+1);流速:4.7 mL/min;样品定量环:5.0 mL;预淋洗体积:50 mL;洗脱总体积:210 mL;开始弃去体积:90 mL;收集体积:90 mL;最后弃去体积:30 mL。04凝胶色谱净化步骤如下将5 mL待净化液按照凝胶色谱净化条件进行净化,合并馏份收集器中的收集液于250mL浓缩瓶中,于40 ℃水浴中旋转浓缩至近干,加入5 mL甲醇以溶解残渣,待净化。05固相萃取(SPE)净化使用前用5 mL甲醇预淋洗C18固相萃取柱(1 g,6 mL),将5 mL溶解液倾入C18固相萃取柱中,以1 mL/min的速度收集流出液,再用10 mL甲醇进行洗脱。收集全部洗脱液于50 mL浓缩瓶中,于40 ℃水浴中旋转浓缩至干。用甲醇溶解并定容至1.0 mL,经0.45 μm滤膜过滤后,供液质测定和确证。国标解读及注意事项1.硝基咪唑标准物质用甲醇配成1000 μg/mL的标准储备液,在0 ~4 ℃条件下避光保存,可使用12个月。2.如果有条件,建议凝胶色谱净化系统中配合使用紫外检测器,准确监测目标化合物及杂质的流出情况。3.固相萃取净化过程中,C18柱作为净化柱使用,注意上样过程中就需要收集流出液,再和洗脱液进行合并。4.国标方法中使用基质添加标准曲线,外标法进行回收率的校正。注意做肉类样品的基质添加标准曲线前,先进行洗涤,然后加标,再进行后续提取净化等流程。5.建议使用硝基咪唑标准物质相对应的同位素内标,进行回收率的校正。参考文献:GB/T 21318-2007 动物源食品中硝基咪唑残留量检验方法图1 肌肉组织、脏器组织样品及水产品中硝基咪唑残留量测定的前处理流程图图2 蜂蜜、乳及乳制品样品中硝基咪唑残留量测定的前处理流程图坛墨相关产品推荐点击图片即可购买
  • 可口可乐中4-甲基咪唑各国含量标准不一
    据英国《每日邮报》报道,美国某公益组织检测全球多个国家的可口可乐中4-甲基咪唑的含量,发现美国355毫升可口可乐中4-甲基咪唑含量为4微克,中国为56微克,英国为135微克,巴西则高达267微克。中国人什么时候能喝上跟美国相同的可乐?本报就此联系了可口可乐大中华区相关负责人。   对于中国市场上的可乐产品的4-甲基咪唑含量,可口可乐大中华区相关负责人表示他们一直在积极做相关工作,&ldquo 因为这涉及到全球供应商的标准统一问题,所以解决需要时间。&rdquo   这位负责人表示,可口可乐一直努力要在最短的时间内降低中国市场可口可乐产品中的4-甲基咪唑含量,但是目前还不能给记者一个明确的时间点,&ldquo 当然,我们的产品肯定是符合中国所有法律法规的要求的。&rdquo
  • 欧盟拟放宽多种作物中咪唑菌酮最大残留限量
    2014年3月31日,据欧洲食品安全局(EFSA)消息,欧洲食品安全局就修订大蒜等多种作物中咪唑菌酮(Fenamidone)的最大残留限量(MRL)发布了意见。   据了解,依据欧盟委员会(EC)No 396/2005法规第6章的规定,法国收到一家公司要求修订大蒜等多种作物中咪唑菌酮的申请。为协调咪唑菌酮的最大残留限量(MRL),法国建议对其残留限量进行修订。   依据欧盟委员会(EC)No 396/2005法规第8章的规定,法国起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。检验检疫部门提醒相关生产企业,一是生产过程中科学适量施打咪唑菌酮 二是重视对产品的抽检工作,确保相关残留符合欧盟标准 三是关注口岸相关法规标准变化,及时调整生产工艺,避免通报和退货风险。
  • 东西分析高效液相色谱法应对可乐中4-甲基咪唑测定
    美国消费者倡导组织公共利益科学中心(Center for Science in the Public Interest)发布报告称在碳酸饮料可乐中发现了致癌化学物质4-甲基咪唑,一时间舆论哗然。4-甲基咪唑是一种存在于焦糖剂中的化学物质,它是在生产焦糖色素时产生的,主要用于合成大宗胃药西咪替丁,也可用作环氧树脂固化剂和金属表面防护剂等。 国外曾经有几项研究关于4-甲基咪唑,主要都是集中在啮齿类动物身上。TOX-67试验中,2-甲基咪唑、4-甲基咪唑会对老鼠的骨髓、血液微核产生负面影响;2011年,美国加州公布4-甲基咪唑会对老鼠致癌,而且加州据此计算了4-甲基咪唑对人体的&ldquo 无显著风险水平&rdquo 值为16 &mu g/天。而且目前并无任何研究显示这种物质能导致人类患上癌症。 为应对该事件,东西分析应用实验室迅速反应,利用东西分析LC-5510色谱产品,在短时间内研究建立了三氯甲烷-无水乙醇液液萃取提取,旋转蒸发浓缩,C18柱分离,紫外检测器检测的高效液相色谱测定可乐中4-甲基咪唑的方法,得到良好的结果。
  • Detelogy饲料中兽残抗生素检测前处理解决方案——以硝基咪唑类、硝基呋喃类、硝基喹啉类为例
    据报道“全球每年消耗的抗生素总量90%用在食源动物身上,致使细菌耐药性和药物残留等问题日益突出。”本文以硝基咪唑类、硝基呋喃类、硝基喹啉类为例,针对饲料中兽残抗生素检测提供了高效智能前处理解决方案。本方案适用于饲料中异丙硝唑、甲硝唑、替硝唑、塞克硝唑、卡硝唑、奥硝唑、地美硝唑、罗硝唑8种硝基咪唑类药物,呋喃唑酮、呋喃它酮、呋喃妥因、呋喃西林4种硝基呋喃类药物和卡巴氧、喹乙醇、乙酰甲喹、喹烯酮4种喹啉类药物的前处理方案。本方案适用于畜禽配合饲料、浓缩饲料、添加剂预混合饲料和精料补充料中硝基咪唑类、硝基呋喃类和喹啉类药物的前处理方案。本标准的检出限为0.05 mg/kg,定量限为0.10 mg/kg。实验步骤:一、提取称取试样2 g(精确至.01 g)于50 mL离心管中,准确加入200 mL提取液(甲醇V:乙腈V:超纯水V,3:3:4)用MultiVortex多样品涡旋混合器混合后,水浴超声提取10 min,振荡15 min。8000 rpm离心5 min,取1.00 mL上清液于40℃下用FV64全自动智能氮吹仪吹至近干,残余物用0.1 mol/L磷酸二氢钠溶液5.0 mL溶解,超声10 min,备用。二、净化将HLB固相萃取柱固定于iSPE-864全自动智能固相萃取仪上,固相萃取条件如下:将洗脱液用FV64全自动智能氮吹仪吹干。准确加入60%乙腈溶液1.00 mL溶解残余物,使用MultiVortex多样品涡旋混合器混匀后,超声10 min,过0.22 μm微孔滤膜,供液相色谱串联质谱仪测定。注:操作过程中注意避光,试样上机前酌情稀释,避免造成仪器污染。所用Detelogy智能前处理设备建议选型● 高转速搭载3mm圆周振幅,保证每个样品充分混合● 外观灵巧轻便,主机低重心设计,运行噪声低,进阶实现稳健高转速● 5寸高清触屏,支持手动自动双模式,中英文界面自由切换● 64位高通量,氮吹针自动下降● 支持全自动延时氮吹和延时增压● 10.1寸高清触屏控制,可存方法● 8通道,批量处理64位样品● 自动完成活化、上样、淋洗、氮吹、洗脱等固相萃取全流程
  • 贵州大学绿色农药全国重点实验室在病毒病防控又有新发现
    植物病毒病严重危害农作物的整个生长发育周期,是农业生产中仅次于真菌的第二大类世界性植物病害。其中马铃薯Y病毒(potato virus Y,PVY)是十大植物病毒病害之一,其主要危害茄科、豆科和藜科等农作物,给农业生产带来了极为严重的损失。PVY在植物体内绝对寄生性,植物体对其又缺乏完整有效的免疫系统,使PVY在实际的生产活动中的防治变得特别困难。目前,田间用于防治PVY的商品化药剂主要有氨基寡糖素、病毒唑和宁南霉素等,但是这些商品化的药剂仍不同程度的存在防治效果不够理想和防治成本高等问题。因此,创制高效、绿色友好和作用机制独特的抗PVY活性药物分子,仍然是现代农业生产中一个亟待解决的科学问题。植物病毒的功能性外壳蛋白(Coat protein, CP)对于病毒生命周期的多个阶段至关重要,参与病毒颗粒组装、病毒基因组保护、宿主细胞间运动和媒介传播等。因此,战略性地靶向PVY CP的抗病毒策略已经备受关注。然而,尽管许多抗病毒药物是基于PVY CP而设计或者是宣称其可能靶向CP,但这些药物具体是如何作用于 CP 来抑制病毒致病性的,在很大程度仍是未知的。2024年3月13日,贵州大学绿色农药全国重点实验室宋润江教授作为通讯作者、博士生韦春乐作为第一作者在Advanced Science(影响因子IF=15.1)发表了题为“Innovative Arylimidazole-Fused Phytovirucides via Carbene-Catalyzed [3+4] Cycloaddition: Locking Viral Cell-To-Cell Movement by Out-Competing Virus Capsid-Host Interactions”的文章,该研究通过氮杂环卡宾催化合成得到的手性苯并咪唑并二氮杂卓衍生物-3j (S)具有较好抗PVY活性,进一步机制研究揭示了小分子-3j (S)与PVY CPR¹⁹¹形成的氢键影响了PVY CP与NtCPIP蛋白之间的互作,进而影响PVY在宿主细胞间的移动从而实现对病毒侵染的抑制。 研究结果1、氮杂环卡宾催化高效合成手性的苯并咪唑并二氮杂卓衍生物作者以具有广泛生物活性的苯并咪唑类衍生物1a和α-溴代肉桂醛2a作为模型反应对反应条件进行筛选,通过N-杂环卡宾(NHC)一步合成苯并咪唑并二氮杂卓衍生物3a。最终以NHC A作催化剂、碳酸钾作碱和THF作溶剂,在室温下反应12h,以优秀的收率和对映选择性得到目标化合物(图1)。在最优条件下对底物普适性进行研究,该反应在不同取代基的苯并咪唑类衍生物1a和不同取代基的α-溴代肉桂醛2a下反应都能以高收率和高对映选择性得到目标化合物(图2)。图1. 反应条件的优化图2. 底物的普适性研究2、苯并咪唑并二氮杂卓衍生物的抗PVY活性测试通过半叶枯斑法测试了所有苯并咪唑并二氮杂卓衍生物的目标化合物的抗PVY活性。测试的结果表明,部分苯并咪唑并二氮杂卓衍生物对PVY表现出了较好的抑制活性。其中,化合物-3j (S)(239、198和98 μg/mL)抗PVY的治疗、保护和钝化活性均优于对照药剂病毒唑(650、627和242 μg/mL),表现出最佳的抗PVY活性。值得注意的是,化合物-3j表现出了与手性构型相关的活性差异。其中,-3j (S)的活性优于其对映异构体-3j (R)以及外消旋体-3j (rac)。这意味着-3j (S) 可能作为一种潜在的手性药物。表1. 目标化合物抗PVY活性的EC₅₀值 (μg/mL)3、潜在靶标位点的筛选和功能验证PVY CP是一个多功能的关键靶标蛋白,与病毒的细胞间移动、长距离移动和蚜虫的传播等密切相关,常常被作为潜在的靶标蛋白进行研究。活性小分子-3j (S)与PVY CP进行的分子对接表明,PVY CPR¹⁹¹和PVY CPN¹⁵¹可能是小分子-3j (S)作用于PVY CP的潜在靶标位点。作者通过原核表达分别纯化了野生型和突变型的PVY CP,并通过微量热涌动法测试了突变前后与小分子-3j (S)结合力的差异,验证了潜在的靶标位点。通过定点突变策略构建了突变的PVY CPR¹⁹¹A-GFP和PVY CPN¹⁵¹A-GFP侵染性克隆,在活体上对潜在的靶标位点进行验证和功能分析。结果表明PVY CPN¹⁵¹位点对病毒的系统侵染几乎没有影响,而PVY CPR¹⁹¹位点病毒的系统侵染至关重要。图3. 潜在靶标位点的筛选与验证图4. 潜在的靶标位点的验证与功能分析为进一步解释PVY CPR¹⁹¹和PVY CPN¹⁵¹结合位点对PVY系统侵染的影响,作者通过激光共聚焦显微镜观察了不同处理组浸润烟草后的胞间移动现象。结果表明,突变型PVY CPN¹⁵¹A-GFP的胞间移动效率与野生型PVY-GFP相当,而将PVY CPR¹⁹¹突变后,能破坏病毒的胞间移动。进一步验证小分子-3j (S)对病毒侵染影响的实验表明,与DMSO处理组后相比,经小分子-3j (S)处理后,PVY-GFP在本氏烟中的胞间移动效率和系统侵染显著受到抑制。图5. 潜在的靶标位点的验证与功能分析4、寄主关键蛋白的筛选和功能验证植物寄主因子对植物病毒的有效侵染至关重要,参与马铃薯Y病毒属的胞间移动同时与CP相互作用的寄主因子也被逐渐揭示。其中来自烟草的DnaJ样蛋白NtCPIPs,主要参与病毒的细胞间运动,并在与CP相互作用后导致PVY在宿主植物中的有效扩散。作者通过共免疫沉淀实验验证了寄主因子NtCPIP与野生型GFP-PVY CP和突变型GFP-PVY CPR¹⁹¹A蛋白的互作差异。同时,在烟草植株上过表达NtCPIP后,促进了PVY在烟草中的侵染。总的来说,实验的数据表明PVYR191A-GFP的胞间移动受阻可能是由于PVY CPR¹⁹¹A和NtCPIP之间的相互作用中断,并且NtCPIP能有效促进病毒的胞间移动和系统侵染。图6. 潜在的靶标位点的验证与功能分析总结研究团队通过NHC催化[3+4]七元氮杂环化合物的不对称合成,实现了手性苯并咪唑并二氮杂卓类化合物的高效合成。以PVY为研究对象,通过半叶枯斑法从75个目标化合物中筛选出最佳抗PVY活性的苯并咪唑并二氮杂卓衍生物-3j (S),化合物-3j (S)抗PVY的治疗、保护和钝化活性均优于市售的对照药剂病毒唑,表现出良好的应用前景。初步的作用机制研究揭示了手性的活性小分子-3j (S)与PVY CPR¹⁹¹形成的氢键竞争性地阻碍了PVY CP与NtCPIP蛋白之间的正常互作,进而影响PVY病毒粒子在宿主植物细胞间的移动,导致植物中病毒的积累水平下降,从而实现对病毒侵染的抑制。总之,这项工作通过不对称催化与生物活性测试相结合发现了具有良好抗PVY活性的手性小分子,并利用分子生物学技术深入揭示其分子机制,为促进交叉学科发展提供了研究基础。此工作部分结果近期发表于Advanced Science。贵州大学绿色农药全国重点实验室博士生韦春乐为论文第一作者。图7. 活性分子抑制PVY侵染可能的作用机制模式图
  • 国家药监局发布《化妆品中四氢咪唑啉等5种组分的测定》化妆品补充检验方法
    近日,国家药监局根据《化妆品监督管理条例》,国家药监局批准《化妆品中四氢咪唑啉等5种组分的测定》化妆品补充检验方法并发布。方法详情如下:
  • 大连化物所设计开发出具有K+高效传输能力的离子传导膜
    近日,中科院大连化学物理研究所储能技术研究部(DNL17)李先锋研究员团队与分子反应动力学国家重点实验室分子模拟与设计研究组(1106组)李国辉研究员团队合作,在离子传导膜材料的结构设计与研究方面取得新进展。团队通过对膜内离子传输通道的设计,实现了K+快速传输,并对膜结构和离子传输机理进行了详细地研究和探讨。   具有快速离子选择性传输能力的膜材料在工业分离、能源等应用领域具有广阔的应用前景。这些应用场景通常涉及从复杂混合物中分离特定离子,因此设计具有高效离子选择性传导的膜材料至关重要,但仍然存在挑战。在本工作中,团队通过金属离子与聚苯并咪唑的配位构建了具有可控离子传输通道的膜材料。研究表明,Zn2+与聚苯并咪唑PBI配位得到均匀的聚合物配位网络,形成连续的水通道,并暴露出更多的极性基团,促使K+的快速传输。团队通过分子动力学模拟计算K+在聚合物网络中的运输行为,揭示K+与聚合物链上的-N=相互作用,并靠近链段的含氧醚键,从而快速通过聚合物膜。 同时,配位膜的自由体积增大,形成亚纳米级分子通道。纳米通道的物理约束和膜的静电相互作用使K+在浓盐和浓碱溶液中的迁移不受溶液浓度的影响,迁移数高达0.9,与阳离子交换膜相当。采用K+高效传输离子传导膜组装碱性锌铁液流电池,可有效缓解电池运行过程由于锌沉积带来的离子强度失衡进而导致水迁移的问题。研究提供了一种通过金属离子配位调节聚合物链结构,进而调控聚合物膜离子传输特性的策略;同时加深了对金属配位聚合物膜离子传输机制的理解。   相关研究成果以“Metal-coordinated polybenzimidazole membranes with preferential K+ transport”为题,于近日发表在《自然—通讯》(Nature Communications)上。该工作的共同第一作者是我所DNL17博士研究生吴金娥、1106组副研究员廖晨伊。上述工作得到国家自然科学基金、中科院电化学储能技术工程实验室等项目的支持。
  • 青岛能源所利用质谱技术研究铜纳米团簇配体效应获得进展
    金属纳米团簇是一类由几个到数百个金属原子组成,尺寸一般小于2 nm的新型无机材料。纳米团簇确定的组成和结构、高的比表面以及不饱和配位点,使其成为一种在原子/分子水平研究催化反应构效关系的理想模型。铜团簇(Cu NCs)由于较低的成本和丰富的自然储量,在实际应用中具有广阔的前景。然而,Cu NCs生长机制的不确定性和结晶过程的复杂性阻碍了对其特性的深入理解和开发。特别是,配体效应对Cu NCs的结构和性质具有重要影响,然而其在原子/分子水平上的调控机制仍然不清楚。   前期孙晓岩研究员带领的团簇化学与能源催化研究组利用基于质谱技术的离子-分子反应方法,探究了高价态铁氧物种活化甲烷的本证活性并揭示了其生成甲二醇的微观机理(J. Phys. Chem. Lett. 2023, 14, 1633-1640)。受气相反应的启发,并结合质谱技术的优势,该团队将质谱应用于凝聚相团簇中,来探究配体效应对Cu NCs生长、结构、性质以及反应活性的调控规律。   研究人员通过化学还原法成功合成了三种不同配体(2-巯基苯并咪唑、2-巯基苯并噻唑和2-巯基苯并恶唑)保护的相同核数的Cu6 NCs(Cu6-1,Cu6-2和Cu6-3),这三种仅有微小差异的配体结构为精准对比配体效应提供了良好的模型(图1)。团队首先利用实时监测质谱技术探究了配体对Cu6 NCs合成过程的影响,发现团簇的生长过程经历“尺寸聚焦-热力学平衡-氧化刻蚀”三个阶段,由于配体的作用,使得这三个过程在时间维度上出现了显著差异,因此,通过质谱对团簇尺寸聚焦过程的准确监测能够为实现多种Cu NCs的精准合成提供重要思路。针对Cu团簇难以获得晶体结构的问题,团队利用碰撞诱导解离(CID)质谱技术进一步解析和对比了三种配体对团簇结构及稳定性的影响(图2)。基于碎片离子与O2的反应,并结合密度泛函理论计算,推导出Cu团簇催化燃料电池阴极氧还原反应(ORR)的活性位点,并筛选出Cu6-3可能具有较高的ORR活性。这项工作不仅为质谱技术研究团簇的配体效应提供了基本的见解,也为凝聚相中精准设计高活性的Cu基纳米催化剂提供了重要的思路。图1. 三种不同配体Cu6团簇的合成与表征 图2. 三种不同配体Cu6团簇结构和多级质谱分析   相关工作近日发表在Small上。青岛能源所博士生张丽丽为论文第一作者,孙晓岩研究员为通讯作者。该工作得到了山东能源研究院科研创新基金和山东省自然科学基金等项目的支持。
  • “货期更快”不是口号,CATO美国标准品在筹建亚洲区国际级实验室
    在CATO美国标准品的全球化进程中,亚洲市场一直扮演着重要角色。在全球经济发展的背景下,亚洲市场以中国为首一直占领着推动全球经济增长的较大份额。随着经济不断的发展,各种社会问题频发,食品、工业品、环境、药物等领域的检测需求在不断攀升,市场也对标准品也提出了更高的要求。而CATO美国标准品作为国际上知名的产品,也因此受到亚洲市场的高度认可。自2016年在中国搭建亚洲运营中心后,在亚洲市场的攻势一发不可收拾。CATO的工业品检测标准品、食品检测标准品、农药残留检测标准品、兽药残留检测标准品、环境检测标准品、药物杂质检测标准品、天然提取物等产品,被广泛应用于政府机构、检测机构、实验室、高等院校以及医药、化工、食品等行业,同时也收到了用户对品种、货期、混标开发等方面的建议。责任CATO美国总部对亚洲市场有着很高的期待,要想成为标准品行业上不折不扣的领 袖,也意味着必须正视和解决用户提出的建议。对此,CATO美国总部正式决定,CATO亚洲运营中心(广州佳途科技有限公司)将进行战略性调整,作为第 1个海外区域总部,并在原已取得CNAS和美国CPSC认可,日本玩具协会ST授权,同时也通过了CCC、CQC、QS、FDA、ISO Guide 34等多个认证体系的大中华区实验室进行能力扩容,逐步实现研发与生产功能,引入国际上顶 尖的科研人才,使其达到国际级别的实验室。从而实现“因亚洲而改变”的策略方针,为亚洲市场研发专 供产品,以及本土化生产让货期更快。优势食品、农残、兽残、工业消费品以及环境等领域将是CATO未来的重点发展方向。目前,CATO在这几个领域上也具备了不少优势的产品,如DHNUP,多溴联苯和多溴二苯醚混标,黄曲霉毒素系列等。这些产品在市场上很少有品牌在销售,客户可选择的少,即使有,货期也很漫长。针对这些客户痛点,CATO研发出稀有产品,并且在亚洲市场备足库存,弥补检测领域上的缺口。值得一提的是,CATO的食品类检测标准品已能满足2019年国家食品安全监督抽检计划检测项目的90%以上。在这里,列举一些主要的标准品:? 黄曲霉毒素系列8种? 邻苯系列35种? 偶氮系列30种? 四环素类药物有25种? 青霉素类药物有30种? 磺胺类药物有25种? 喹诺酮类药物有44种? 咪唑与苯并咪唑类药物有60种? 荧光增白剂20种? 硝基呋喃药物及其代谢物有19种? 大环内酯类抗生素有18种? 其他类抗生素有8种? 甾体激素类有65种? β-受体激素/瘦肉精类有35种? 孔雀石绿与结晶紫有6种? 其他兽药标准品有56种 展望未来,CATO亚洲运营中心不再依附美国总部,而是以亚洲区总部的形象面向客户,并且以研发为导向,除了以建立行业高标准为目标以外,也将联动中国、韩国、日本等国的高校及科研机构的优势研究力量,支持和参与检测领域上的国际合作,为亚洲区的经济发展保驾护航。
  • 动物源性食品中多种碱性药物残留量的检测方法 液相色谱-质谱质谱法(SN/T 26
    动物源性食品(猪肉、猪肝、鸡蛋、虾、牛奶)中76种兽药(&beta -受体激动剂类、磺胺类、苯二氮卓类、硝基咪唑类、苯并咪唑类、三苯甲烷类)残留量的制样和液相色谱-质谱测定。 下载: 动物源性食品中多种碱性药物残留量的检测方法 液相色谱-质谱质谱法(SN/T 2624-2010).pdf 了解更多产品请进入安谱公司网站 http//www.anpel.com.cn/
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。   一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。   二、各兽药残留基准实验室药物检测范围   (一)国家兽药残留基准实验室(中国兽医药品监察所)   1.一般兽药品种   (1)抗微生物药   四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙   星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。   (2)抗寄生虫药   二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。   2.禁用药物清单品种   β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。   (二)国家兽药残留基准实验室(中国农业大学)   酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、   一般兽药品种抗微生物药   磺胺类:磺胺二甲嘧啶、磺胺甲   磺胺间甲氧嘧啶、甲氧苄啶。   抗寄生虫药   阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西   磺胺类:磺胺喹   钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、   癸氧喹酯、氢氢溴酸常山酮。   具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种   氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。   3.禁用药物品种   洛硝达唑   (三)国家兽药残留基准实验室(华南农业大学)   β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄   一般兽药品种抗微生物药一般兽药品种抗微生物药   西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。   咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡   啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、   氟胺氰菊酯。   性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。   杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。   群勃龙、醋酸氟孕酮。   (四)国家兽药残留基准实验室(华中农业大学)   氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。   苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。   糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。   喹噁啉类:卡巴氧   硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋   喃妥因、呋喃西林。   硝基化合物:硝基酚钠、硝呋烯腙。   杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动   物)。   砜类抑菌剂:氨苯砜。   三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。   二0一一年七月二十九日
  • 工业和信息化部关于111项行业标准、9项行业标准外文版及2项行业标准修改单报批公示
    根据行业标准制修订计划,相关标准化技术组织已完成《橡胶家用手套》等55项化工行业标准、《金刚石线母线钢丝》等18项黑色冶金行业标准、《电喷枪》等38项机械行业标准的制修订工作,《海藻酸类肥料》等9项化工行业标准外文版的编制工作,《肥料级磷酸二氢钾》1项化工行业标准及《焦炭孔隙构造及原料煤岩相显微分析方法》1项黑色冶金行业标准的修改工作。在以上标准、标准外文版及标准修改单发布之前,为进一步听取社会各界意见,现予以公示,截止日期2023年5月19日。以上标准报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2023年4月19日-2023年5月19日附件:1.111项行业标准名称及主要内容等一览表2.9项行业标准外文版名称及主要内容等一览表3.1项化工行业标准修改单4.1项黑色冶金行业标准修改单工业和信息化部科技司2023年4月19日附件1111项行业标准名称及主要内容等一览表序号标准编号标准名称标准主要内容代替标准采标情况化工行业1 HG/T 2888-2023橡胶家用手套 本文件规定了橡胶家用手套的要求、试验方法、检验规则以及标识、包装、运输和贮存。手套的安全和正确使用方法不在本文件范围之内。 本文件适用于以天然橡胶胶乳或丁腈橡胶胶乳、天然橡胶胶乳与丁腈橡胶胶乳并用为主体材料制成的可作为家用的绒里及光里手套。HG/T 2888-20102 HG/T 2821.1-2023V带和多楔带用浸胶聚酯线绳 第1部分:硬线绳 本文件规定了V带和多楔带用浸胶聚酯硬线绳的产品分类、技术要求、试验方法与试验环境、检验规则以及标志、包装、贮存和运输。 本文件适用于V带和多楔带用浸胶聚酯硬线绳的品质鉴定和验收,其他橡胶制品用浸胶聚酯硬线绳也可以参照执行。HG/T 2821.1-20133 HG/T 2737-2023非金属化工设备 丙烯腈-丁二烯-苯乙烯、聚氯乙烯、均聚聚丙烯、聚偏氟乙烯和玻璃纤维增强聚丙烯球阀 本文件规定了丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC-U、PVC-C)、均聚聚丙烯(PPH)、聚偏氟乙烯(PVDF)和玻璃纤维增强聚丙烯(FRPP)球阀的材料、设计、零部件设计、制造和装配、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于公称压力小于或等于1.6MPa,使用温度:ABS为-40℃~70℃、 PVC-U为-5℃~60℃、PVC-C为-5℃~95℃、PPH为-10℃~90℃、PVDF为-40℃~120℃、FRPP为-14℃~100℃,公称通径大于或等于DN15mm至DN300mm的法兰连接和对接连接式球阀。HG/T 2737-20044 HG/T 2643-2023非金属化工设备 丙烯腈-丁二烯-苯乙烯、聚氯乙烯、均聚聚丙烯、聚偏氟乙烯和玻璃纤维增强聚丙烯隔膜阀 本文件规定了丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC-U、PVC-C)、均聚聚丙烯(PPH)、聚偏氟乙烯(PVDF)和玻璃纤维增强聚丙烯(FRPP)屋脊式隔膜阀的材料、设计、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于公称压力小于或等于1.0MPa,使用温度:ABS隔膜阀为-40℃~70℃;PVC-U隔膜阀为-5℃~60℃、PVC-C隔膜阀为-5℃~95℃;PPH隔膜阀为-10℃~90℃;PVDF隔膜阀为-40℃~120℃;FRPP隔膜阀为-14℃~100℃,公称通径大于或等于DN15mm至DN250mm的法兰连接式和对接连接式隔膜阀。公称通径大于DN250mm的隔膜阀可参照使用。HG/T 2643-19945 HG/T 3731-2023非金属化工设备 玻璃纤维增强聚氯乙烯复合管和管件 本文件规定了玻璃纤维增强聚氯乙烯复合管和管件的原材料、设计、制造、要求、试验方法、检验规则、标志、包装、运输、贮存及随行文件。 本文件适用于以硬聚氯乙烯(PVC-U)或氯化聚氯乙烯 (PVC-C)热塑性塑料为内衬,以不饱和聚酯树脂、环氧乙烯基酯树脂为基体,以玻璃纤维纱或其织物为增强材料,公称直径大于或等于20mm至1 200 mm,工作温度:以PVC-U为内衬时,为-5℃~70℃,以PVC-C为内衬时,为-5℃~95℃;设计压力小于或等于1.6MPa的玻璃纤维增强聚氯乙烯复合管和管件。HG/T 3731-20046 HG/T 6158-2023硫化促进剂 二异丁基二硫代氨基甲酸锌(ZDIBC) 本文件规定了硫化促进剂二异丁基二硫代氨基甲酸锌(简称硫化促进剂ZDIBC)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以二异丁胺、二硫化碳、含锌化合物为主要原料经反应制得的硫化促进剂ZDIBC。7 HG/T 6159-2023橡胶防老剂 2-巯基-4(或5)-甲基苯并咪唑锌(ZMMBI) 本文件规定了橡胶防老剂2-巯基-4(或5)-甲基苯并咪唑锌(简称橡胶防老剂ZMMBI)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以2-巯基-4(或5)-甲基苯并咪唑、液碱、硫酸锌(或氯化锌)等为主要原料制得的橡胶防老剂ZMMBI。8 HG/T 3062-2023橡胶配合剂 沉淀水合二氧化硅 二氧化硅含量的测定 本文件规定了橡胶配合剂沉淀水合二氧化硅中二氧化硅含量的测定方法。 本文件适用于橡胶配合剂沉淀水合二氧化硅。HG/T 3062-2008ISO 3262-19:2000,MOD9 HG/T 6160-2023橡胶配合剂 硅橡胶用气相二氧化硅 本文件规定了硅橡胶用气相二氧化硅技术要求、测试方法、检验判定规则、取样及包装、标识、贮存与运输。 本文件适用于硅橡胶用气相二氧化硅。ISO 18473-3:2018,MOD10 HG/T 6161-2023硫化促进剂 N-环己基-双(2-苯并噻唑)次磺酰亚胺(CBBS) 本文件规定了硫化促进剂N-环己基-双(2-苯并噻唑)次磺酰亚胺(简称硫化促进剂CBBS)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以苯胺、环己胺、二硫化碳为主要原料经氧化反应制得的硫化促进剂CBBS。11 HG/T 6181-2023发动机油底壳橡胶密封垫 本文件规定了发动机油底壳橡胶密封垫的符号、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于发动机油底壳橡胶密封垫。12 HG/T 6183-2023球墨铸铁管接口防滑止脱橡胶密封圈 本文件规定了球墨铸铁管及管件柔性接口防滑止脱橡胶密封圈的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于球墨铸铁管及管件柔性接口防滑止脱橡胶密封圈。13 HG/T 6162-2023复配抗氧剂试验方法 本文件规定了复配抗氧剂的外观、加热减量、细粉含量、颗粒长度符合率、颗粒直径、堆积密度、溶解性、透光率、组分含量的试验方法。 本文件适用于复配抗氧剂产品的检测。 本方法中组分含量的测定方法适用于抗氧剂含量大于5%的复配抗氧剂。14 HG/T 6163-2023橡胶助剂 预分散母料试验方法 本文件规定了橡胶助剂预分散母料的术语和定义、试验方法。 本文件适用于表面不粘连、橡胶助剂含量大于40%、载体是聚合物的橡胶助剂预分散母料。15 HG/T 2490-2023疏浚用钢丝或织物增强的橡胶软管和软管组合件 规范 本文件规定了二个型别、七个类别和三个级别的公称内径从100到1300的疏浚用钢丝或织物增强的橡胶软管和软管组合件的要求。在每一个类别内,所有级别和尺寸都具有相同的最大工作压力。本文件适用于在-20℃到+40℃环境温度下输送或吸引的相对密度介于1.0到2.3之间的混有泥浆、沙砾、珊瑚和小石头的海水或淡水的橡胶软管。本文件适用的软管分为以下两个型别:Ⅰ型 漂浮型,仅用于输送,包括为软管提供浮力的漂浮材料;Ⅱ型 非漂浮型,用于输送和吸引。本文件没有对软管或软管组合件的使用寿命作出规定。用户如有此要求,应与软管制造商协商。HG/T 2490-2011ISO 28017:2018,MOD16 HG/T 3038-2023吸油和排油用橡胶软管及软管组合件 规范 本文件规定了4种型别的用于输送石油包括原油和其它液体石油产品的排吸油软管及软管组合件的性能。每种型别依据芳烃含量划分为3个组别。本文件不适用于输送液化石油气和液化天然气。 符合本文件的软管组合件能够在-20 ℃~+80 ℃温度范围内使用。 所规定的软管公称内径范围从50~500,可为光滑内壁、粗糙内壁、铠装粗糙内壁和轻量型。HG/T 3038-2008、HG/T 3039-2008ISO 1823:2015,IDT17 HG/T 3041-2023油槽车输送燃油用橡胶软管和软管组合件 本文件规定了两组最大工作压力为1.0 MPa的装、卸液态烃类燃油用橡胶软管和软管组合件的要求。 两组软管都设计用于: a) 芳烃体积含量不超过50%、含氧化合物含量达到15%的烃类燃油。 b) 工作温度范围为-30 ℃~+70 ℃,静态贮存温度为-50 ℃~+70 ℃。注:若软管用于-30 ℃以下的温度,最终用户宜向制造商咨询。本文件不适用于LPG系统、航空燃油系统、燃油站系统或海上使用的软管和软管组合件。HG/T 3041-2009ISO 2929:2021,IDT18 HG/T 6164.1-2023流体传输用大口径扁置橡胶软管规范 第1部分:输水软管 本文件规定了流体传输用大口径扁置输水橡胶软管的结构、技术要求、检验规则、标志、包装、运输、贮存。 本文件适用于公称内径不小于100、输送不超过70 ℃的压裂液、油气田供排水、农业灌溉、应急(消防、抢险)供排水、管道修复等系统用扁置软管。19 HG/T 6165-2023汽车发动机点火线圈橡胶护套 本文件规定了汽车发动机点火线圈橡胶护套的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输及贮存。 本文件适用于以汽油、乙醇汽油、天然气及氢气为燃料的汽车发动机点火线圈橡胶护套。20 HG/T 4116-2023滚筒洗衣机观察窗橡胶密封垫 本文件规定了滚筒洗衣机观察窗橡胶密封垫的结构、要求、检验规则、标志、包装、运输和贮存,描述了滚筒洗衣机观察窗橡胶密封垫的性能试验方法。 本文件适用于烘干型和非烘干型滚筒洗衣机用喷涂或非喷涂观察窗橡胶密封垫。HG/T 4116-200921 HG/T 6166-2023织物浸渍聚氨酯胶乳手套 本文件规定了织物浸渍聚氨酯胶乳手套的术语与定义、分类、要求、检验规则、试验方法、包装、标志、运输和贮存。 本文件适用于以织物为内衬、表面经过浸渍聚氨酯胶乳而制成的手套。22 HG/T 4786-2023胶乳色浆 本文件规定了胶乳制品用水性色浆的要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于天然胶乳和丁苯胶乳、丁腈胶乳、丁基胶乳、氯丁胶乳等合成胶乳制品用水性色浆。HG/T 4786-201423 HG/T 4666-2023胶乳海绵 本文件规定了胶乳海绵的要求、试验方法、检验规则和包装、标志、运输和贮存。 本文件适用于由天然胶乳、丁苯胶乳、氯丁胶乳、天然胶乳和丁苯胶乳并用、氯丁胶乳和丁苯胶乳并用以及氯丁胶乳和天然胶乳并用制成的海绵。HG/T 4666-201424 HG/T 2949-2023电绝缘橡胶板 本文件规定了电绝缘橡胶板的外观质量、规格尺寸、电性能、物理性能等技术要求,描述了相应的试验方法和检验规则,规定了标志、包装、运输与贮存等方面的内容,同时给出了便于技术规定的产品分类。 本文件适用于以橡胶为主体材料制成的,作为电气设备辅助安全用具的电绝缘橡胶板的合格评定。HG/T 2949-199925 HG/T 2793-2023工业用导电和抗静电橡胶板 本文件规定了工业用导电和抗静电橡胶板的规格尺寸及公差、外观、性能等技术要求,描述了相应的试验方法和检验规则,规定了标志、包装、运输与贮存等方面的内容,同时给出了便于技术规定的产品分类。 本文件适用于以橡胶为主体材料制成,用于需要采取预防措施防止静电积累场所,对人员和物体起到安全防护作用的胶板的合格评定。HG/T 2793-199626 HG/T 4615-2023增塑剂 柠檬酸三丁酯(TBC) 本文件规定了增塑剂柠檬酸三丁酯的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以柠檬酸和正丁醇经酯化法制得的增塑剂TBC。HG/T 4615-201427 HG/T 4616-2023增塑剂 乙酰柠檬酸三丁酯(ATBC) 本文件规定了增塑剂乙酰柠檬酸三丁酯的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以柠檬酸和正丁醇经酯化,用乙酸酐乙酰化制得的增塑剂ATBC。HG/T 4616-201428 HG/T 6137-2023摆锤式轿车轮胎撞击试验机 本文件规定了摆锤式轿车轮胎撞击试验机的结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件。 本文件适用于采用摆锤法进行轿车轮胎耐撞击性能测试的设备。29 HG/T 6138-2023比表面积及孔径分析仪 本文件规定了比表面积及孔径分析仪的术语和定义、结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件。 本文件适用于根据静态气体吸附法对橡胶添加剂如炭黑或其他粉体材料进行比表面积及孔径分布测试的分析仪。39 HG/T 4501-2023工业氯化锶 本文件规定了工业氯化锶的要求、试验方法、检验规则、标志和随行文件、包装、运输、贮存。 本文件适用于工业氯化锶。&nbs
  • 科学岛团队发展可视化快速检测多菌灵残留新策略
    近期,中科院合肥研究院固体所能源材料与器件制造研究部蒋长龙研究员团队,在基于光致电子转移的比率荧光传感体系,用于快速可视化定量检测环境和食品中多菌灵残留研究方面取得新进展。相关研究成果发表在国际分析领域TOP期刊Analytical Chemistry上。   多菌灵是一种苯并咪唑类农药,具有广谱杀菌特征,在农业生产中应用广泛。但多菌灵在自然界中降解速度较慢,其残留随呼吸、皮肤吸收或误食进入体后,药物毒素会对肾脏造成破坏,甚至导致肾功能受损、精神恍惚等中毒症状,严重危害消费者安全。目前,国内外用于多菌灵残留检测的主要分析方法仍然局限于实验室仪器及免疫分析法等,这些方法通常存在成本高、操作复杂、耗时长等问题。因此,发展快速、低成本、特异性强、灵敏度高的多菌灵检测新方法具有非常重要的意义。   鉴于此,研究团队基于光致电子转移(PET)机理建立了简单、高效、可靠的比率荧光传感体系,并开发了新型便携式传感平台用于多菌灵的快速可视化定量检测。该传感器由超薄石墨氮化碳纳米片(g-C3N4 nanosheet)和罗丹明B(RB)构成,多菌灵通过静电作用与氮化碳纳米片反应,并由光致电子转移引发氮化碳纳米片的蓝色荧光猝灭,而罗丹明B橙色荧光保持不变。传感器通过由蓝到紫的灵敏荧光色度变化,实现对多菌灵的快速可视化响应及读数检测,检测限(LOD)低至5.89 nM,远低于国家最大残留标准。此外,借助3D打印技术及智能手机颜色识别器,研究团队设计的便携式智能传感平台成功应用于实际样品中多菌灵检测,并表现出良好的抗干扰能力,为农药残留现场高灵敏度快速检测提供了新策略。   上述研究工作得到了国家重点研究与发展计划、国家自然科学基金项目、安徽省重点研究与开发计划的支持。图1. 比率荧光传感器快速可视化定量检测多菌灵残留的机理示意图。图2. (A)便携式多菌灵检测传感平台设计与基本操作流程;(B)荧光颜色对不同浓度多菌灵的响应;(C)传感平台操作界面;(D)R/B比值与多菌灵浓度的线性关系。
  • 傅若农:珠联璧合功能尽显的金属有机框架化合物(MOFs)吸附剂
    往期讲座内容见:傅若农老师讲气相色谱技术发展    金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。配体,通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景。  在20世纪前,多孔材料一般有两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900年之后才发现的,因其优良的吸附功能,在20世纪后半叶广泛用于各个领域。但是在多种多样的要求下。这些材料已经不能满足人们的需要,于是就有新型的无机-有机杂化金属有机骨架材料的诞生。  1995年亚希(Yaghi)研究组在Nature上报道了第一个MOFs的材料,它是具有二维结构的配位化合物,由刚性的有机配体均苯三甲酸与过渡金属 Co 形成,成为这类化合物发展史上的一个里程碑(Yaghi O M,et al,,Nature,1995,378:703-706)。图1是Yaghi 研究组合成的MOFs。图1 Yaghi 研究组合成的MOFs  1999年,Yaghi研究组在Science 杂志上报道了在原有的基础上进行的改进、以刚性有机配体对苯二甲酸和过渡金属Zn合成的具有简单立方结构的三维 MOF 材料(Li H,et al, Nature,1999,402:276- 279)。2002年,Yaghi研究组通过拓展有机配体的长度合成了一系列与M0F-5具有相同拓扑网络结构的金属-有机骨架多孔材料IRMOF( Isoreticular Metal-organic Framework ),IRM0F-8(N. L. Rosi, et al, Science,2003,300:1127-1129。 这一系列晶态孔材料的合成,成为有纳米孔洞MOF材料的第二次飞跃。  2004年,Yaghi研究组又以三节点有机羧酸配体BTB构筑了MOFs材料MOF-177, 因相对于传统材料的大分子骨架和高比表面积使它的应用范围和吸附性大大增加(Chae H K,Nature,2004,427:523-527)。  2005年法国Férey 研究组在Science发表具有超大孔特征的类分子筛型MOFs 材料——MIL-101。  2006年,Yaghi 研究组合成出了十二种类分子的咪唑骨架(ZeoliticImidazolate Frameworks,ZIFs)材料 (Férey G ,et al, Science,2005,309:2040-2042)。ZIFs具有与沸石相似的拓扑结构,它所展现出的永久孔性质和高的热化学稳定性引起了人们很大的注意,ZIFs的优越性能使其成为气体分离和储存的一类新型材料。2010年,又在 Science杂志上提出了一个新的概念——多变功能化金属有机骨架(MVT-MOFs)材料,即在同一个晶体结构的孔道表面同时修饰上不同种类功能团的 MOFs 材料,并报道了十八种MVT-MOF-5材料。  2013年Yaghi研究组在Science 上以“金属-有机骨架材料的化学和应用”为题总结了金属-有机骨架材料在化学及应用反面的发展,他们涉及了图2所列的材料(SCIENCE, 2013,341:1230444-1-1230444-12)。图 2 MOFs 分子中的无机单元(A)和有机配体(B)的结构  图中颜色:黑—C,红—O,黄—S ,紫—P,浅绿—Cl, 氯—N,蓝--多面体,金属离子,  AIPA, 三(4-(1H-咪唑-1- )苯基)胺 ADP, 脂肪酸 TTFTB4– --4,4′ ,4′ ′ ,4′ ′ ′ -([2,2′ bis(1,3- dithiolylidene)] -4,4′ ,5,5′ -tetrayl)tetrabenzoate.  1. MOFs 在吸附剂中的应用  MOFs 已经有众多应用领域,在分析化学中的应用如下图所示。在分析化学的应用中,很多过程都涉及使用吸附剂(如样品收集、贮存、固相萃取、固相微萃取、色谱分离等)。Zhi-Yuan Gu, Cheng-Xiong Yang, Na Chang, and Xiu-Ping Yan*Acc. Chem. Res., 2012, 45 (5):734–745图 3 MOFs 在分析化学中的应用  MOFs材料分为微孔、介孔、和大孔。介孔材料在有腔尺寸范围2-50 nm,这一尺寸相当于典型有机物分子大小(除了聚合物)。因此,介孔材料是特别有前途的吸附剂,用于许多领域。图3是2002-2015年间发表的有关MOFs介孔材料的文章数据(Chem. Eur. J. 2015, 21:16726 – 16742)。近年发表的有关MOFs介孔材料的文章急剧上升,到2014年后大顶峰,如图3所示。图3 2002-2015年间发表的有关MOFs介孔材料的文章数据  MOFs 比一般吸附剂具有更大的比表面和可调的孔径,图 4是近年合成的MOFs材料比表面和孔径逐年提高的情况。图 4 近年合成的MOFs材料比表面和孔径逐年提高的情况(括号中的数据是孔容(cm3/g)  2010年 A Samokhvalov 的综述“溶液中芳烃和杂环芳烃在介孔金属-有机框架化合物上的吸附”(Adsorption on Mesoporous Metal–Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds)。系统地分析了在溶液中介孔材料的吸附/解吸研究的化学机制,讨论了介孔材料在水中稳定性、吸附容量和选择性。((Chem. Eur. J. 2015, 21:16726-16742)  2012年,中科院大连化学物理研究所孙立贤应邀为Energy & Environmental Science杂志撰写了题为:介孔金有机框架化合物:设计和应用(Mesoporous Metal Organic Frameworks: Design and Applications)的综述文章,详细介绍了介孔金属有机骨架材料的设计合成、研究进展及其在气体储存、催化、传感、VOC吸附和药物释放等领域的潜在应用。介孔MOFs的设计合成方法主要包括:(1)通过延长配体的长度,调节次级结构单元大小,从而提高MOFs孔径 (2)采用混合配体,构筑新型次级结构单元,获得介孔MOFs (3)利用表面活性剂作为模板,合成介孔MOFs材料 (4)设计合成次级结构配体,构建中孔MOF材料。  (http://www.cas.cn/ky/kyjz/201203/t20120331_3547949.shtml)(Energy Environ. Sci. 2012, 5:7508–7520.)  同年上海交通大学崔勇等也发表了” 介孔MOFs材料“(Mesoporous metal–organic framework materials)的总综述章,讨论了介孔材料的设计与合成,孔隙率、活化和表面改性,以及在贮存与分离,催化,药物输送及影像学的应用。其特性是依赖于笼形或通道的孔形状、大小和化学环境。(Chem Soc Rev , 2012, 41:1677–1695)。  2 典型的介孔MOFs材料  MOFs材料有很多很多,有代表性的介孔MOFs见下表1.  表1 有代表性的介孔MOFs介孔MOFs/分子式比表面积/ (m2 /g)窗口或孔道/?孔容/(cm3 /g)结构类型拓扑的符号g文献BETLangmuirCd-MOF/Cd(NH2BDC)? (4,4,-bpy)?4.5H2O?3DMF——18x23—3D通道kagJ. Am. Chem. Soc.,2010, 132:5586CMOF-2/[Zn4O(L4)3] ?22DEF?4H2O——26,20x16—3D通道pcu J. Am. Chem. Soc., 2010, 132:15390.CMOF-3/[Zn4O(L5)3] ?42DMF——20,15x7—3D通道pcu同上CMOF-4/[Zn4O(L5)3] ?37DMF?23EtOH?4H2O——32,25x23—3D通道pcu同上CMOF-2a/Cu2L1a(H2O)2?15 DMF?11 H2O0—22x15—3D通道{43 62 8}n Nat. Chem., 2010,2: 838CMOF-3a/Cu2L2a(H2O)2?12 DEF?16 H2O240—30x20—3D通道{43 62 8}同上CMOF-4a/Cu2L3a(H2O)2?10 DEF?14 DMF?5 H2O0—32x24—3D通道{43 62 8}同上CMOF-2b/Cu2L1b (H2O)2?11 DEF?3 H2O0—22x15—3D通道{43 62 8}同上CMOF-3b/Cu2(L2b) (H2O)2?13 DMF?11iPrOH?4.5 H2O0—30x20—3D通道{43 62 8}同上CMOF-4b/Cu2(L3b) (H2O)2?6.5 DEF?19DMF?8.5iPrOH?2 H2O0—32x24—3D通道{43 62 8}同上IRMOF-12/Zn4O(HPD)3?10DEF?H2O—175024.5 0.613D通道pcuScience, 2002, 295, 469.IRMOF-14/Zn4O(HPD)3?6DEF?5H2O—193624.50.693D通道pcu同上IRMOF-16/Zn4O(HPD)317DEF?2H2O1910—28.8—3D通道pcu同上JUC-48/[Cd3(BPDC)3(DMF)] ?5DMF?18H2O62988021.1x24.90.191D通道etbAngew. Chem., Int. Ed., 2007, 46: 6638mesoMOF-1/Cu3(TATAB)2(H2O)38DMF?9H2O729—22.5x26.13D通道borJ. Chem. Soc., 2006, 128:16474.MIL-100(Cr)/Cr3FO(H2O)3(BTC)2?nH2O(n=28)—310025,291.16笼型MTNAngew. Chem., Int. Ed., 2004, 43: 6296.MIL-101(Cr)/Cr3F(H2O)2(BDC)3?25H2O4200b, 2800-4230c5900 b 4000-5900 c29,34 b2.01笼型MTN16, Science, 2005, 309, 2040;49MOF-180/Zn4O(BTE)2(H2O)3?H2O15x231.37-2.15笼型qomScience, 2010, 329, 424MOF-200/Zn4O(BBC)2(H2O)3?H2O45301040018x283.59笼型qom同上MOF-210/Zn4O(BTE)4/3(BPDC)62401040026.9x48.33.9笼型toz同上NOTT-116(PCN-68)/Cu3(PTEI)(H2O)3?16DMF?26H2O4664d 5109c6033c12.0,14.8,23.2e2.13d,2.17笼型rhtJ. Am. Chem. Soc., 2010,132:409219NU-100(PCN-610)/Cu3(H2O)3(TTEI)?19H2O?22DMFa6143f—13.4,15.4,27.4f 12.0,18.6,26c28.2 f笼型rhtAngew. Chem., Int. Ed.,2010, 49:535720PCN-100/Zn4O(TATAB)2?17DEF?3H2O—86027.30.58笼型pyrInorg. Chem., 2010, 49:11637PCN-101/Zn4O(BTATB)2?16DEF?5H2O—11400.75笼型pyr同上UMCM-1/Zn4O(BDC) (BTB)4/34160650024x291D通道—Angew. Chem., Int. Ed.,2008, 47:677ZIF-95/Zn(5-氯代苯并咪唑)21050124025.1x14.3 30.1x200.43笼型pozNature, 2008, 453:207ZIF-100/Zn20(5-氯代苯并咪唑)39 OH59578035.60.37笼型moz同上Cu6O(TZI)3(H2O)9(NO3)?15H2O2847322312.088 13.077 20.2471.01笼型rthJ. Am. Chem. Soc., 2008, 130: 1833Cu2(L7)(H2O)2?14DMF?5H2O1020112721.2x3.5—3D通道ptsAngew. Chem., Int. Ed., 2009, 48: 9905.JT-1/{Cu7(OH)2(L6)3}{Cu6(OH)2(SO4)-(S3O10)2}?10H2O375—23.6—笼型f—Angew. Chem., Int. Ed., 2011,50:1154JT-2/{Cu7(OH)2(L6)3}2{Cu6(OH)2- (SO4)6 (S2O7)}{Cu3(SO4)(H2O)6} ?18H2O421—18.23—笼型f—同上  a --同一化合物会有不同的名称 b --数据源于文献:Science, 2005, 309: 2040 c--数据源于文献Angew.Chem., Int. Ed., 2006, 45: 8227 d--数据源于文献: J. Am. Chem. Soc., 2010,132:4092 e--数据源于文献: Angew.Chem., Int. Ed.,2010, 49:5357 f--数据源于文献:20 Nat. Chem., 2010, 2: 944 g—要理解拓扑符号参阅 http://rcsr.anu.edu.au/ and http://www.iza-structure.org/databases/ h—Schlafli 符号 i—手性MOF  2. 介孔MOFs材料在水中的稳定性  MOFs材料常用于吸附水中的物质,所以它在水中的稳定性至关重要。许多MOFs在水中是不稳定的,这是由于金属和配体的连接的配合物遇水会水解。在水中稳定的MOFs可用于水的净化,表2是这类MOFs。  表2 MIL-101 家族在水中的稳定性MOF后改性液体/蒸汽液相测试条件a吸附的表征结构文献MIL-100(Cr)(F)无蒸汽--变温T, RHXRD24h元素分析,滴定,XRD, N2吸附稳定25,Adv Mater, 2011, 23:3294–3297MIL-101(Cr)(F)无蒸汽-40–140℃ , 5.6 kPaH2O and N2吸附稳定21,Eur. J. Inorg. Chem, 2011, 471–474MIL-101(Cr)(F)无液体NaOH 或 HCl水中RTXRD, ζ -电位在pH 2-10稳定,pH 12不稳定22,Chem Eng J, 2012, 183: 60–67MIL-101(Cr)-X X=-H X=-NO2 X=-NH2 X=-SO3H 无 无 还原 无蒸汽--25℃同步辐射XRD,吸附水, TGA稳定26,Microporous Mesoporous Mater,2012, 157: 89–93MIL-101(Cr)(F) MIL-101(Cr)无蒸汽--100℃XRD, TGA,吸附稳定24,Energy Fuels 2013, 27: 7612–7618MIL-101(Cr)(F) MIL-101(Cr)-NO2 MIL-101(Cr)-NH2无HNO3/H2SO4 还原蒸汽--40–140℃TGA, DSC, XRD, BET反复40次,稳定15,Chem Mater,2013, 25:790–798MIL-101(Fe)-NH2无液体水RT,24 hXRD--33,Chem Commun,2013, 49:143–145.MIL-101(Al)-NH2无液体水液体水RTXRD,NMR, AAS稳定 7天30,Chem Eur J, 2015, 21:314–323  4 MOFs 用作分离富集吸附剂  MOFs具有比表面积大、孔道和性质可调等的特点,非常适合于气态样品的采样和预富集。Yaghi研究较早合成的的MOF-5其比表面积约为3 000 m2/g,2004年,他们合成报的MOF-177,比表面积可达到4 500 m2/g,而2010年合成出MOF-210,以BET法测定比表面积可达6 240 m2/g,这为从混合物中分离富集微量目标物提供了很好的条件。  2007年 Ji Woong Yoon 等合成了 [Co3(2,4-pdc)2(μ 3-OH)2]?9H2O (2,4-pdc =嘧啶-2,4-二羧酸二价阴离子, NC5H3- (CO2)2-2,4) (CUK-1),以CUK-1作填充气相色谱柱,可以很好地分离几种永久气体组成(氢、氧、氮、甲烷和二氧化碳)[B-4],这样要比无机分子筛要优越多了(二氧化碳不会在低温下永久吸附)。  2010年严秀平研究组就研究了 MOF-5[ Zn4O(BDC)3, BDC =对苯二甲酸]和MOF-5单斜(沸石咪唑酯骨架结构材料ZIF-8 的吸附性能,用脉冲气相色谱、静态蒸气吸附、穿透吸附方法研究二了甲苯位置异构体和乙苯混合物在这两种金属框架配位化合物上的吸附行为。他们合成MOF-5的方法: Zn(NO3)26H2O(600 mg,2mmol)和对苯二甲酸(170mg,1mmol)溶解在DMF(20mL) 混合转移到一个聚四氟乙烯衬里的小反应釜中,密封后在120℃烘箱中加热21 h后,冷却至温,过滤得到的混合物为无色立方晶体。用DMF洗涤合成的MOF-5,在室温下干燥后再在减压下于250℃烘干, MOF-5在真空下储存以免受潮水解破坏结构,BET法测得比表面积773 m2/g。他们测得MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线,见图 5.图 5 MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线  2010年年严秀平研究组利用MOF-5吸附剂现场对大气中的甲醛进行吸附取样预浓缩,然后直接热脱附,用GC-MS进行分析。这一吸附剂比Tenax TA(有机聚合物)吸收效率高53-73倍。 取样和分析过程如图5所示(Anal Chem,2010,82:1365-1370)。图6用MOF-5吸附剂现场取样分析大气中的甲醛  2012年扬州大学曾勇平研究组用巨正则蒙特卡罗模拟法考察金属有机框架IRMOF-1和Cu-BTC吸附噻吩和苯的问题,仿真结果表明,吸附质与之间的静电相互作用主导吸附机制。结果表明,噻吩分子优先被吸附 IRMOF-1比Cu-BTC[ BTC =均苯三甲酸]有较高的吸附容量(Sep Pur Tech,2012,95:149–156)。  2013年同济大学乔俊莲研究组合成了MOF MIL-53(Al){Al(OH)[O2C-C6H4-CO2]}和MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} 用作吸附剂去除水样品中双酚A(BPA)。BPA的吸附动力学数据符合拟二级动力学模型,二者对BPA的平衡吸附量达到329.2± 16.5和472.7± 23.6mg/g,远高于活性炭(从129.6到263.1 mg/g),可以快速去除水中的BPA,所需的接触达到平衡的时间约 90 min (J Colloid Interface Sci,2013,405:157–163)。双酚A吸附情况如图7所示。图 7 在MIL-53(A)上吸附双酚A的示意图 2014年江苏大学的刘春波和南京师大的张继双研究组用Cu-BTC [ BTC =均苯三甲酸](MOF HKUST-1)去除染料废水中的亚甲基蓝,Cu-BTC具有中孔,高表面积和大孔隙体积,具有很好的吸附能力(Micropor Mesopor Mater,2014,193 :27–34)。Cu-BTC的晶体结构如图6所示。Cu-BTC能用乙醇溶液再生,并保留吸附能力。因此,作者们认为这些Cu-BTC MOFs材料为载体可以成为最有前途的分离污染物的吸附剂,其晶体结构如图8。图8 Cu-BTC的晶体结构  4 小结  MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在吸附剂应用领域有广泛的应用前景。MOFs在固相萃取中的应用下一篇讨论。
  • SunFire色谱柱:沃特世最优硅胶基质通用色谱柱,为食品安全检测提供更佳工具
    沃特世公司推出的SunFire C 18和C8 色谱柱为行业内的硅胶基质反相C 18 和C8 柱建立了性能新标杆,沃特世公司多年来在填料颗粒合成和键合封尾技术的研究及在柱产品开发方面的努力,造就了SunFire色谱柱的卓越性能。而这些性能,完美符合今天食品安全检测技术的特点与需求。 普遍优异的峰形 中 -低pH条件下对各种化合物普遍具有极佳峰形,适用于多组分残留检测 高容量设计 特别适用于痕量组分分析,耐受高进样量而不容易出现过载问题 优异柱效与分辨率 特别有利于样品基质相对复杂的食品安全检测,包括多组分残留检测 多种粒径与柱规格 粒径2.5,3.5,5µ m,柱内径范围1.0-4.6mm,柱长度20-250mm,适用于各种分析需要。窄内径可直接适配MS 检测器而无需分流。小粒径与短柱长,可帮助色谱工作者获得更高的灵敏度与更高的分析通量。不同柱规格之间,方法转移轻松自如。 优异的质谱兼容性 因其出色的颗粒合成技术与键合/封端技术,即使使用低离子强度条件(如0.1%甲酸条件),仍能获得对碱性分析物的良好峰形,而不容易出现鲨鱼鳍似的过载峰,确保了分离度与灵敏度,这尤其适用于以LCMS检测平台为主的食品安全检测。 其出色的低pH条件下的稳定性,确保了使用LCMS技术时不受键合相流失的背景噪音困扰,以及更稳定耐用的色谱柱使用寿命。 对杀真菌剂多组分残留的检测 苯并咪唑类(Benzimidazoles),如涕必灵(Thiabendazole),是常规用于保护水果以及蔬菜的杀真菌剂。但是对这些物质进行液相分析通常比较麻烦。例如,涕必灵,在大多数反相硅胶色谱柱上,会显示出明显的拖尾,特别是当分析在酸性pH条件下进行时。涕必灵和多菌灵(Carbendazim)用pH 10条件在沃特世杂化颗粒技术色谱柱如XTerra ® MS C 18柱上会得到很好的保留和峰形;但是高pH条件不适合于其他种类的杀真菌剂组分的同时检测,例如,硫菌灵(Thiophanate)和甲基硫菌灵(Thiophanate Methylate),它们是氨基甲酸酯类杀真菌剂,在高pH流动相中不稳定,如使用高pH条件进行检测时将被漏检或检测浓度不准确。 使用SunFire TM C 18色谱柱,在低pH条件如pH 3.7,可以对所有这些杀真菌剂分析物都得到极好的保留与峰形。可以看到,使用pH3.7条件对涕必灵和多菌灵进行等梯度分时,10%峰高处的拖尾因子仅为1.2,可以与XTerra ® 色谱柱在高pH条件下所得到的峰形相媲美。而这一结果,是其他硅胶C 18柱在相似条件(低pH)下很难匹及的。 测试条件 SunFire™ C18: 2.1x100mm,3.5um,PN 186002534 流动相A: 水 流动相B: 乙腈 流动相C: 500mM甲酸铵缓冲液(pH 3.7)梯度或等度条件如谱图说明所示 柱温:30℃ 仪器:Alliance 2695,Waters ZQ MS 质谱条件: 锥孔电压25V,ESI+模式(源温度120℃,去溶剂化温度350℃) 分析物 母离子[M+1]+ 多菌灵(Carbendazim) 192 涕必灵(Thiabendazole) 202 甲基硫菌灵(Thiophanate Methylate) 343 硫菌灵(Thiophanate) 371 腈菌唑(Myclobutanil) 289 丙环唑(Propiconazole) 342 SPE条件 3cc Oasis MCX小柱 活化与平衡: 1mL甲醇润洗,1mL水平衡 上样: 样品溶液用甲酸调节至PH3,以5mL/min速度上样 清洗:1mL 20:89:1 甲醇/水/浓氨水 洗脱:2mL 2%氨水甲醇 因氨基酸酯类在碱溶液中不稳定,将洗脱液挥干,用流动相溶解
  • 赛默飞推出针对食品安全检测的《TSQ三重四极杆质谱简明应用手册》
    2015年1月15日,上海——赛默飞近日推出《TSQ三重四极杆质谱简明应用手册——食品安全检测》,可以帮助客户使用液质联用TSQ三重四极杆质谱快速开发日常法规检测项目的检测方法。 《TSQ三重四极杆质谱简明应用手册》这本手册包括22个食品安全检测中常见检测方法,涉及农药残留分析包括400多种农药残留检测方法、苯并咪唑类抗菌剂、苯甲酰脲类农药检测方法、氨基甲酸酯类农药检测方法、有机磷类农药检测方法等;兽药残留分析包括β- 受体激动剂、常见抗生素类药物、激素类药物、抗球虫病类药物、抗蠕虫病类药物等;还包括生物毒素分析。每个检测方法均包含液相方法、质谱方法及详细的SRM条件,可作为参考资料辅助食品安全检测方法的开发。此外,这本手册还包括使用增强定量数据关联二级扫描(QED-MS/MS)的功能进行目标危险物筛查时的应用实例。TSQ三重四极杆质谱仪广泛应用于环保、农业、检疫、食品安全等方面的快速分析测试,完全可以胜任农作物、畜禽产品、奶制品及相关加工食品中日常法规检测项目的分析测试,如食品中农药残留、兽药残留、真菌毒素、添加剂、营养强化剂及有机污染物等项目,帮助您轻松应对日常大批量样品的法规检测和目标危险物筛查检测。欲了解更多《TSQ三重四极杆质谱简明应用手册》,请见以下链接:www.thermo.com.cn/article6952.html -----------------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 全球防晒产品法规差异:出海必备指南
    近年来随着防晒化妆品市场需求不断增加,越来越多的国货防晒产品进入国际市场。如不了解拟出口国家或地区对防晒剂的监管规定,可能面临产品扣留、被拒绝入境、召回等问题。中贸合规中心在此总结中国、欧盟、美国、东盟以及中国台湾地区对防晒剂的监管规定,对比防晒剂使用限制,帮助企业防晒产品顺利出海。1 中国 防晒产品在中国属于特殊化妆品,所用的防晒剂成分需满足《化妆品安全技术规范》(2015年版)化妆品准用防晒剂(表5)的规定要求。其中,当二氧化钛或氧化锌用作防晒剂又用作着色剂时,防晒类化妆品中该物质的总使用量不应超过25%。《化妆品安全技术规范》(2015年版)收录了27种化妆品准用防晒剂,但需要注意的是,早在2021年5月,国家药监局发布了关于更新化妆品禁用原料目录的公告(2021年第74号),将“3-亚苄基樟脑”列为禁用组分,因此目前我国共有26种化妆品准用防晒剂。2 欧盟防晒产品在欧盟属于化妆品,在管理方式上与其它化妆品不做区分。产品中的防晒剂须满足欧盟化妆品法规EC 1223/2009附录VI《化妆品准用防晒剂清单》中的限制要求。欧盟委员会根据欧盟消费者安全科学委员会(SCCS)发布的防晒剂评估意见,对防晒剂清单进行修订和更新。目前,欧盟《化妆品准用防晒剂清单》所列防晒剂共有34种,其中5种原料的纳米形式也被收录在内。2021年12月,欧盟委员会对胡莫柳酯在化妆品中的安全用量重新修订,由之前的最大安全用量10%降至7.34%,并限制仅应用于“除推进剂喷雾产品外的面部产品”。相关法规规定,不符合该要求的化妆品,自2025年1月1日起禁止在欧盟市场上市,自2025年7月1日起禁止在欧盟市场销售。3 美国美国将防晒产品作为药品进行监管。如符合相应非处方药(OTC)专论的要求,则不需要美国食品药品监管局(FDA)批准即可投放市场,但应按要求进行通报。如使用了未被收录在专论中的防晒剂,则作为新药管理,需要经FDA审查批准方可投放市场。美国联邦法规第352.10条及非处方药(OTC)专论规定了16种可接受的防晒剂及其最大允许使用浓度。需要注意的是,美国不同州对防晒剂的管理存在差异,例如美国夏威夷、佛罗里达等部分地区禁止在州内销售含有二苯酮-3和甲氧基肉桂酸乙基己酯的防晒产品。4 东盟防晒化妆品在东盟属于化妆品,在管理方式上与其它化妆品不做区分。产品中使用的防晒剂须满足《东盟化妆品指令》附录VII 《化妆品准用防晒剂清单》限制要求。东盟化妆品委员会(ACC)参考欧盟化妆品法规、SCCS评估意见结论,通过召开会议,动态调整化妆品防晒剂及其限制要求。东盟化妆品防晒剂清单中共有35种防晒剂,其中5种原料的纳米形式也被收录在内。与欧盟准用防晒清单相似,但也存在差异之处,例如“薄荷醇邻氨基苯甲酸酯”在东盟可作为防晒剂,但未被纳入欧盟准用防晒剂清单中。需要注意的是,东盟各成员国的防晒剂清单也存在差异,例如二苯酮-3、甲氧基肉桂酸乙基己酯、4-甲基亚苄基樟脑在泰国禁止用于防晒产品中,但在新加坡、马来西亚等国家均属于准用防晒剂。5 中国台湾地区2024年5月30日,中国台湾地区卫生福利部发布公告,为保障消费者的化妆品使用安全,参考国际间的化妆品管理规范,并根据《化妆品卫生安全管理法》规定,有关特定用途化妆品的规定于2024年7月1日停止适用,所有化妆品统一按照登录制进行管理。在中国台湾地区,防晒剂的使用需满足《化妆品防晒剂成分使用限制表》要求,该表由原《特定用途化妆品成分名称及使用限值表》中防晒剂部分及《化妆品成分使用限制表》中的二氧化钛相关规定合并而成,共计27个成分,已于2024年7月1日生效。6 总结由上文可知,不同国家地区对防晒剂的监管方式不同,准用防晒剂清单也存在很多差异:①从数量上来看,欧盟、东盟的防晒剂数量最多,而美国的防晒剂最少。对于有出口美国市场需求的国内企业,需注意防晒产品使用的防晒剂是否已收录于非处方药(OTC)专论中。②同一防晒剂,INCI名称可能不同。例如乙基己基三嗪酮在中国和欧盟的INIC名称均为“Ethylhexyl triazone”,但在东盟为“Octyl triazone”。③欧盟禁用成分在中国仍作为防晒剂使用。例如,4-甲基苄亚基樟脑在欧盟属于禁用原料,但在中国仍作为防晒剂使用,最大安全浓度为4%。④防晒剂使用限制条件不同,例如,胡莫柳酯在欧盟的限用浓度为7.34%,并限制仅应用于“除推进剂喷雾产品外的面部产品”,但在美国为15%,中国和东盟为10%,且未限制应用的产品类型。不同国家或地区的部分防晒剂在化妆品使用时的最大允许浓度对应汇总梳理如下。从表中可以看出,目前我国的防晒剂清单与其他国家及地区有一定的差异。故企业应了解拟出口国家或地区相关法规,关注产品处罚通报案例,并对产品及时进行自查,在产品进入市场前做好合规,以减少由于产品不合规造成的产品召回、销毁等经济和品牌声誉损失。序号中文名称化妆品使用时的最大允许浓度中国欧盟美国东盟台湾地区14-甲基苄亚基樟脑4%禁用/4%4%2二苯酮-310%(a)面部产品、手部产品和唇部产品,不包括推进剂和泵喷雾产品:6%(b)身体产品包括推进剂和泵 喷产品:2.2%(c)其他产品:0.5%6%(夏威夷、弗罗里达州禁用于防晒产品)(a)面部产品、手部产品和唇部产品,不包括推进剂和泵喷雾产品:6%(b)身体产品包括推进剂和泵 喷产品:2.2%(c)其他产品:0.5%6%(作为保护剂用途,限量≤0.5%)3丁基甲氧基二苯甲酰基甲烷5%5%3%5%5%4甲氧基肉桂酸乙基己酯10%10%7.50%10%10%5胡莫柳酯10%7.34%(仅限除气雾剂产品外的面部产品)15%10%10%6奥克立林10%(以酸计)(a)气雾剂:9%(b)其他产品:10%10%(a)气雾剂:9%(b)其他产品:10%10%(以酸计)7苯基苯并咪唑磺酸及其钾、钠和三乙醇铵盐8%(以酸计)8%(以酸计)苯基苯并咪唑磺酸4%8%(以酸计)8%(以酸计)(表格来源:中贸合规中心)
  • 利用XP色谱柱改进美国药典(USP)噻康唑有机杂质分析方法
    利用eXtended Performance(XP)色谱柱改进美国药典(USP)噻康唑有机杂质分析方法 Kenneth D.Berthelette、Mia Summers和Kenneth J.Fountain 沃特世公司,美国马萨诸塞州米尔福德 方案优势 ■ 使用XP色谱柱改进耗时的USP美国药典有机杂质分析方法,实现更快速的分析并减少溶剂的使用量,同时仍符合美国药典章指南的规定。 ■ 将样品运行时间缩短80%,从而提高了生产能力。 ■ 将溶剂用量减少90%,降低了运行成本。 沃特世提供的解决方案 ACQUITY UPLC® H-Class系统 Alliance® HPLC系统 XSelect&trade CSH&trade C18色谱柱 Empower® 3软件 eXtended Performance [XP] 2.5 &mu m色谱柱 TruView&trade LCMS认证最大回收样品瓶 关键词 美国药典方法、噻康唑、ACQUITY UPLC色谱柱计算器、沃特世反相色谱柱选择表、仿制药 引言 全世界的制药企业在日常工作中都需要对仿制药中的有机杂质进行分析。使用较为陈旧的仪器和色谱柱技术进行有机杂质分析,因为需要长时间使用大量的溶剂,所以既耗时又费钱。然而通过使用显著改进的仪器和色谱柱技术有机杂质分析会变得更高效。2.5&mu m 粒径的eXtended Performance(XP)色谱柱设计用于高效液相色谱和超高效液相色谱。该色谱柱是改进美国药典方法的理想选择,因为其能够使色谱分析工作者实现更小粒径和低扩散系统带来的利益,同时能够符合美国药典章色谱分析指南的规定。章列出了允许的方法变化幅度。 噻康唑是一种用于治疗酵母菌感染的咪唑类抗真菌化合物。被转换的方法是噻康唑有机杂质的分析方法2。有机杂质分析方法用于测定样品中是否存在杂质及其含量。该XP色谱柱方法是从最初在HPLC系统上的色谱柱规模的美国药典方法缩放至HPLC和UPLC仪器上的。在HPLC仪器上使用XP色谱柱对现行美国药典方法进行改进能够缩短运行时间,从而提高了常规分析实验室的样品通量。而在UPLC系统上使用XP色谱柱则可以比HPLC进一步缩短运行时间并减少溶剂的使用,从而节约了总成本。 实验条件 Alliance 2695 HPLC色谱条件 流动相: 44:40:28乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18,4.6 x 250 mm,5 &mu m, 部件号:186005291;XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111 柱温: 25 ℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 ACQUITY UPLC H-Class色谱条件 流动相: 44:40:28 乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111;XSelect CSH C18 XP,2.1 x 150 mm,2.5 &mu m, 部件号:186006727 柱温: 25℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 数据管理: Empower 3软件 样品描述 用100%的甲醇将噻康唑样品制备成表1所述的浓度。将样品转移至一个进样用的TruView最大回收样品瓶中(部件号:186005662CV)。 结果与讨论 全世界制药企业都需要对常规方法制备的噻康唑进行日常分析。本应用纪要使用美国药典专论中规定的有机杂质分析方法,在几种不同规格的色谱柱上对噻康唑及其有关物质A、B、C的分离进行了比较。因为噻康唑许多杂质缺乏实际可用性,所以将噻康唑有关物质A、B、C用作低浓度杂质标准品。美国药典所列的有机杂质分析方法用于分析复杂的样品处方。样品中多种成分的有效分离通常需要使用更长的色谱柱。使用较大填料粒径(&ge 3.5 &mu m)的长色谱柱会使运行时间加长,溶剂使用量增大。例如,最初的美国药典中的噻康唑有机杂质分析需要使用4.6 x 250 mm,5 &mu m的色谱柱,分离时间长达30分钟,每分析一个样品需要耗费30 mL溶剂。但是,使用2.5&mu m粒径的eXtended Performance(XP)色谱柱,可以在缩短运行时间的同时仍然符合考核的要求。由于运行时间缩短,样品通量得到了提高,每次分析所需溶剂减少,从而降低了总成本。现行的美国药典章色谱分析指南规定了允许的方法变化幅度。这些允许的变化包括± 70%的色谱柱长度变化,-50%的粒径变化,± 50%的流速变化。1美国药典要求有关物质B和C之间的分离度要达到1.5,本应用纪要证明:在不同的色谱柱和不同的色谱系统之间进行的方法转换完全满足对这两个难分离化合物的苛刻要求。 在HPLC仪器上使用XP色谱柱进行有机杂质分析 噻康唑的有机杂质分析方法需要使用L1专用色谱柱,为该分离而列出的色谱柱是LiChrosorb RP-182。参照沃特世反相液相色谱柱选择表,本文选用更先进的XSelect CSH C18固定相色谱柱。之所以选择XSelect CSH C18色谱柱是由于其与所列出的色谱柱相类似,并且能提供适用于HPLC UPLC仪器的各种规格和粒径。本文首先使用一根XSelect CSH C18,4.6x250mm,5&mu m色谱柱在Alliance HPLC系统上运行美国药典方法,流速1.0mL/min。如表2所示,本次分离符合考核标准。本次分离的总运行时间为30分钟,在连续批量分析样品时,将面临着时间和成本管理的双重挑战。如果使用原始的美国药典方法, 8小时的一个工作日仅能分析16个样品,要消耗480mL溶剂。通过使用XP色谱柱,在同样的8小时工作日内可分析80个样品,且仅需使用240mL溶剂,显著地提高了样品通量并降低了运行成本。 在不同的系统上使用2.5&mu m XP色谱柱改进的标准方法具有通用性,同时仍符合美国药典章指南的要求,如图1所示。XP色谱柱是一款2.5-&mu m颗粒的HPLC和UPLC色谱柱,经高效填装并能够承受UHPLC系统的高压,使XP色谱柱在HPLC和UPLC仪器上均能使用。 本纪要的标准方法首先从最初的4.6 x 250 mm,5 &mu m色谱柱转换至4.6 x 150 mm,2.5 &mu mXP色谱柱,用以说明使用更小粒径的色谱柱可以缩短运行时间。使用更小的粒径还可以提高分离能力,用色谱柱长度与粒径的比值(L/dp)即可预测。在本例中,L/dp从50,000(初始条件)提高到60,000(4.6 x 150 mm XP色谱柱)。根据ACQUITY UPLC色谱柱计算器的计算,用于该XP色谱柱的最佳流速为2.0 mL/min3。但是,这个流速超出了美国药典章指南规定的变化范围。故采用1.0 mL/min的流速以保证符合美国药典指南的规定,同时也适应HPLC系统反压的限制。噻康唑及其有关物质在原始色谱柱上与在4.6 x 150 mm XP色谱柱上的分离进行了对比,如图2A-B所示。4.6 x 150 mm XP色谱柱将运行时间缩短43%,分离度提高5%,如图2所示。 接着使用一根更短的4.6 x 100 mm,2.5 &mu m XP色谱柱进行分离,用以说明在实现更快速分离的同时,仍保持着合格的分离度。运行时间的缩短对于有机杂质分析尤其有用归因于附加的分离复杂性,这些方法一般比其他方法具有较长的运行时间。需要注意的一个重要问题是,不一定任何时候都会选用具有较低分离能力(L/dp 40,000)的较短色谱柱。例如在辅料和杂质洗脱时间很接近的情况下可能需要保持原始的分离能力。图2C显示了使用4.6 x 100 mm,2.5&mu m XP色谱柱进行分离时,与初始条件相比,运行时间缩短57%,并且仍然符合所有的考核标准,如图2所示。在这种情况下,L/dp从50,000(初始条件)降低至40,000导致有关物质B与C之间的分离度降低15%;但分离度仍然符合要求,这取决于原始分离的复杂程度。 在UPLC仪器上使用XP色谱柱进行有机杂质分析 如图1所示,通过同时使用XP色谱柱和ACQUITY UPLC色谱柱计算器,该方法可以从Alliance HPLC系统转换至ACQUITY UPLC H-Class系统上。更新的仪器,例如ACQUITY UPLC H-Class系统,可以实现更快速、更高效的分离,归因于其高反压耐受能力、进样之间更快速的平衡以及显著降低的系统体积和扩散。为了对比HPLC和UPLC系统之间的分离能力,将图2B中所示的使用4.6 x 150 mm,2.5 &mu m颗粒的 XP色谱柱进行的有机杂质分析方法在ACQUITY UPLC H-Class系统上重新运行,如图3A所示。仅仪器本身的变化&mdash &mdash 从HPLC变到UPLC,会使B与C色谱峰之间的分离度增加5%,使运行时间缩短12%,如表2和表3所示。分离度的增大归因于UPLC系统的低系统体积和低扩散,因为这两个属性都可以改善峰形。 为进一步说明UPLC仪器的优点,如图3B所示在UPLC系统上使用4.6 x 100 mm XP色谱柱进行分离。此分离操作使B与C色谱峰之间的分离度从使用HPLC系统时的1.6(参见表2)提高到使用UPLC系统时的1.8(参见表3)。在UPLC系统上使用4.6 x 100 mm XP色谱柱,得到与在HPLC系统上用原始方法分离相同的分离度,但是比原始方法快57%。 最后,将标准方法转换至一根2.1 x 150 mm 2.5 &mu m XP色谱柱上。这根色谱柱的测试结果说明通过减小色谱柱的内径,在保留相同分离度的同时,还能进一步缩短运行时间,并且大大减少溶剂用量。根据ACQUITY UPLC色谱柱计算器的计算,适合这根色谱柱的流速为0.42 mL/min。但这个流速超出了美国药典章指南的要求,因此实验使用符合规定的0.5 mL/min流速。分析得到的色谱图(如图3C所示)显示,如表3所示与原始条件相比运行时间缩短80%,而适用性要求仍很容易达到。此外,仅仅通过减小色谱柱的内径分析就比使用4.6 x 150 mm XP色谱柱快63%,如图3A所示。最后,通过使用2.1 x 150 mm XP色谱柱,与原始的标准方法相比,溶剂用量减少90%,显著地节约了成本。当对流速进行调整,以保持在美国药典章指南规定的范围内时,B和C色谱峰的分离度从1.9下降至1.8,但仍符合考核标准。 结论 在进行既耗时又费钱的有机杂质分析时,在现有HPLC系统上使用eXtended Performance [XP] 2.5 &mu m色谱柱,与原始的美国药典方法相比,可以缩短运行时间和减少溶剂用量57%。通过将XP色谱柱与UPLC仪器相结合,运行时间可减少80%,溶剂用量可减少90%。既能在HPLC仪器上运行又能在UPLC仪器上运行的XP色谱柱的实用性可以用于在遵循现行美国药典章指南的同时,改进美国药典方法。在常规分析实验室中,使用经更小粒径色谱柱改进的美国药典方法,可以节约大量的时间和运行成本。 参考文献 1. USP General Chapter , USP35-NF30, 258. The United States Pharmacopeial Convention, official from August 1, 2012. 2. USP Monograph. Tioconazole, USP35-NF30, 4875. The United States Pharmacopeial Convention, official from August 1, 2012. 3. Jones MD, Alden P, Fountain KJ, Aubin A. Implementation of Methods Translation between Liquid Chromatography Instrumentation. Waters Application Note 720003721en. 2010 Sept.
  • 百灵威食品中多菌灵、噻菌灵方案
    多菌灵、噻菌灵均属苯并咪唑类杀菌剂,往往是高效低毒、广谱、内吸性杀菌剂,目前广泛应用于蔬菜、水果等多种病害的防治。多菌灵化学性质稳定, 能通过作物叶片和种子渗入植物体内, 耐雨水冲洗, 对哺乳动物有y定的毒性,往往通过食道进入人体使人中毒。因此,人们食用的农产品中多菌灵残留量的测定越来越受到重视和关注。 百灵威作为分析l域行业引l者,拥有全球化大型标样库,产品系列涉及农药、石化、环境、食品、无机和烟草等多个l域。所有化学对照物质都达到或c过了美g化学会z新的分析试剂规格标准,符合ACS 标准、NIST/NVLAP、ISO9001 认证的要求,可满足z高质量控制体系要求,每份标准样品均附带原批次质检报告、材料安全数据卡,确保实验可溯源,并且可以为用户提供专业标样的定制服务。 百灵威参考SN/T 1753-2006《进出口浓缩果汁中噻菌灵、多菌灵残留量检测方法》以及相关文献资料,分别开发多菌灵与噻菌灵的分析方法,保证分析的精确度。 ■ 多菌灵检测方案 分析柱:C18, 250× 4.6 mm, 5 &mu m 流动相:乙腈:水 =25:75 检测器:FLEx 285 nm Em 315 nm(GL-7543A FL Detector) 流 速 :0.7 mL/min 产品编号 产品名称 包装 目录价 P-278N 多菌灵 Carbendazim 10 mg ¥169 C 10990100 氘代多菌灵D3 Carbendazim D3 10 mg¥2124 C 10990200 氘代多菌灵D4 Carbendazim D4 10 mg ¥4,320 S02302 C18液相色谱柱 HPLC column C18 250× 4.6 mm 5 &mu m 1 支 ¥2,800 134752 乙腈 Acetonitrile, 99.9% [HPLC/ACS] 4 L ¥400 187553 水 Water [HPLC] 4 L ¥375 ■ 噻菌灵检测方案 分析柱:C18,250× 4.6 mm,5 &mu m 流动相:甲醇:0. 02 mol/L磷酸盐缓冲液(pH 3.5)=50:50 检测器:280 nm (DAD Detector) 流 速 :0.8 mL/min 产品编号 产品名称 包装 目录价 P-068N 噻菌灵 Thiabendazole 10 mg ¥169 S02302 C18液相色谱柱 HPLC column C18 250× 4.6 mm 5 &mu m 1 支 ¥2,800 116481 甲醇 Methanol, 99.9% [HPLC/ACS] 4 L ¥180 187553 水 Water [HPLC] 4 L ¥375987575 磷酸二氢钾 Potassium phosphate monobasic, 99% 500 g ¥51 127325 磷酸氢二钾 Potassium phosphate dibasic, 99% 250 g ¥281 ■ 其他相关分析耗材产品 产品编号 产品名称 包装 目录价 12108603 Bond Elut Plexa PCX, 60 mg, 3 mL 50 /pk ¥1111 ZTLMGL-4.1 针筒式滤膜过滤器 Ф13, 0.2 &mu m(有机相) 100 片/包 ¥150 WKLM-4.2 微孔滤膜 Ф50, 0.45 &mu m(有机相) 100 片/包 ¥210 901275 J&K 瓶口分配器(5.0-50.0 mL) 1 支 ¥2,000 958945 J&K单道手动可调移液器(100-1000 &mu L) 1 支 ¥340 928429 J&K磁力搅拌器(数显、加热、不锈钢) 1 台 ¥3,112 5182-0553 螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫) 100 个/包 ¥527 5182-0728 聚丙烯螺纹瓶盖(无隔垫) 100 个/包 ¥109 5183-4759 高j绿色隔垫(带预穿孔) 50 个/包 ¥699 CER-001-1 1.5 mL标准毛细储存瓶 1 个 ¥240
  • 多款化妆品检测不合格,防晒、美白功能成问题
    在2024年国家化妆品抽样检验工作中,经福建省食品药品质量检验研究院等单位检验,产品标签标示为云南贝泰妮生物科技集团股份有限公司生产的薇诺娜清透防晒乳SPF48 PA+++等36批次化妆品不符合规定(见附件)。根据《化妆品监督管理条例》《化妆品生产经营监督管理办法》《化妆品抽样检验管理办法》,国家药品监督管理局要求浙江省、广东省、云南省药品监督管理局对上述不符合规定化妆品涉及的注册人、备案人、受托生产企业等依法立案调查,责令相关企业立即依法采取风险控制措施并开展自查整改。各省(区、市)药品监督管理部门责令相关化妆品经营者立即停止经营上述化妆品,依法调查其进货查验记录等情况,对违法产品进行追根溯源;发现违法行为的,依法严肃查处;涉嫌犯罪的,依法移送公安机关。  特此通告。36批次不符合规定化妆品信息如下:(原文查看附件:国家药品监督管理局2024年第33号附件.doc.doc)序号标示产品名称标示化妆品注册人/备案人、受托生产企业、境内责任人(经销商)等名称特殊化妆品注册证编号/普通化妆品备案编号标示生产许可证号检验机构名称不符合规定项目检验结果规定要求备注1薇诺娜清透防晒乳SPF48 PA+++云南贝泰妮生物科技集团股份有限公司国妆特字G20151938云妆20160004福建省食品药品质量检验研究院成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:双-乙基己氧苯酚甲氧苯基三嗪、甲氧基肉桂酸乙基己酯、乙基己基三嗪酮、亚甲基双-苯并三唑基四甲基丁基酚产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致云南贝泰妮生物科技集团股份有限公司提出样品真实性异议。经云南省药品监督管理局审查,该企业未生产或者进口过该批次抽检不符合规定产品。2塑美大健康隔离防晒乳注册人:广东御神健康咨询管理股份有限公司,生产企业:广州市绮易美化妆品有限公司国妆特字G20180369粤妆20160695宁夏回族自治区药品检验研究院成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑、奥克立林产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/3塑美大健康隔离防晒乳注册人:广东御神健康咨询管理股份有限公司,生产企业:广州市绮易美化妆品有限公司国妆特字G20180369粤妆20160695广西壮族自治区药品检验研究院成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑、奥克立林产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致 /4塑美大健康隔离防晒乳注册人:广东御神健康咨询管理股份有限公司,生产企业:广州市绮易美化妆品有限公司国妆特字G20180369粤妆20160695广西壮族自治区药品检验研究院成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑、奥克立林产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/5水焕玑防晒霜SPF50+PA+++广东全力医药科技有限公司国妆特字20221913粤妆20200203广西壮族自治区药品检验研究院成分比对(1)检出产品标签及注册资料载明的技术要求未标示的防晒剂:亚甲基双-苯并三唑基四甲基丁基酚。(2)未检出产品标签及注册资料载明的技术要求标示的防晒剂:二乙氨羟苯甲酰基苯甲酸己酯产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/6雪佳漾美白防晒喷雾SPF50+PA+++广东全力医药科技有限公司国妆特字20221568粤妆20200203广西壮族自治区药品检验研究院成分比对 (1)检出产品标签及注册资料载明的技术要求未标示的防晒剂:苯基苯并咪唑磺酸。(2)未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑、甲氧基肉桂酸乙基己酯、胡莫柳酯产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/胡莫柳酯未检出6.40%(w/w)-9.60%(w/w)甲氧基肉桂酸乙基己酯未检出5.60%(w/w)-8.40%(w/w)水杨酸乙基己酯0.49%3.20%(w/w)-4.80%(w/w)亚甲基双-苯并三唑基四甲基丁基酚0.048%0.80%(w/w)-1.20%(w/w)4-甲基苄亚基樟脑未检出1.60%(w/w)-2.40%(w/w)7安罗拉冰爽防晒喷雾SPF50 PA++++注册人:广州市阿西娜化妆品制造有限公司,生产企业:惠州市宝姿生物科技有限公司国妆特字20221573粤妆20190024广西壮族自治区药品检验研究院4-甲基苄亚基樟脑1.03%2.96%(w/w)-4.00%(w/w)/奥克立林2.03%5.24%(w/w)-7.86%(w/w)(以酸计)丁基甲氧基二苯甲酰基甲烷0.96%3.60%(w/w)-5.00%(w/w)二乙氨羟苯甲酰基苯甲酸己酯1.00%2.64%(w/w)-3.96%(w/w)双-乙基己氧苯酚甲氧苯基三嗪0.92%2.64%(w/w)-3.96%(w/w)乙基己基三嗪酮0.96%3.60%(w/w)-5.00%(w/w)8ANGEYI美白防晒喷雾广州安歌依健康产业有限公司国妆特字20233258粤妆20200166广西壮族自治区药品检验研究院成分比对(1)检出产品标签及注册资料载明的技术要求未标示的防晒剂:4-甲基苄亚基樟脑、甲氧基肉桂酸乙基己酯。(2)未检出产品标签及注册资料载明的技术要求标示的防晒剂:丁基甲氧基二苯甲酰基甲烷、奥克立林产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/9OEANHUT水感透亮美白防晒乳SPF50+广州雅升生物科技有限公司 国妆特字20221486粤妆20180244广西壮族自治区药品检验研究院4-甲基苄亚基樟脑1.94%3.2%(w/w)-4%(w/w)/甲氧基肉桂酸乙基己酯4.98%8%(w/w)-10%(w/w)水杨酸乙基己酯2.32%4%(w/w)-5%(w/w)10海圣美白隔离防晒乳SPF50+PA+++注册人/生产企业:广州姿采化妆品厂,品牌商:广州仟色生物科技有限公司国妆特字G20212375粤妆20160994广东省药品检验所成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:4-甲基苄亚基樟脑产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/11雪媚格舒缓防晒乳经销商/境内负责人:广州雪媚格医学美容科技有限公司,生产商:克里斯廷施拉默克医学博士美容有限及两合公司国妆特进字J20200017/广东省药品检验所成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:甲氧基肉桂酸乙基己酯产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/12YIMIAOSI美白防晒乳广州函美诗生物科技有限公司国妆特字20234456粤妆20190245四川省药品检验研究院(四川省医疗器械检测中心)成分比对未检出产品标签及注册资料载明的技术要求标示的防晒剂:双-乙基己氧苯酚甲氧苯基三嗪、二乙氨羟苯甲酰基苯甲酸己酯、甲氧基肉桂酸乙基己酯、水杨酸乙基己酯、乙基己基三嗪酮、亚甲基双-苯并三唑基四甲基丁基酚、苯基苯并咪唑磺酸产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/13摩肯樱桃花润泽BB霜21号境内责任人:杭州喆仁贸易有限公司,备案人:玥之秘株式会社,生产企业:COSMAX,INC国妆网备进字(浙)2019000160/初检机构:江苏省食品药品监督检验研究院,复检机构:上海市食品药品检验研究院成分比对检出备案资料载明的技术要求未标示的防晒剂:甲氧基肉桂酸乙基己酯(复检结果)产品检出成分应当与该产品备案资料载明的技术要求一致/14颜乐滋轻润隔离防护乳广东人和国妆生物科技有限公司粤G妆网备字2023134498粤妆20210257贵州省食品药品检验所成分比对检出备案资料载明的技术要求未标示的防晒剂:4-甲基苄亚基樟脑、丁基甲氧基二苯甲酰基甲烷、甲氧基肉桂酸乙基己酯、水杨酸乙基己酯、奥克立林产品检出成分应当与该产品备案资料载明的技术要求一致/15尚惠鱼子酱精华轻垫粉底液备案人/生产企业:广州市巧迪精细化工有限公司,授权:尚惠国际集团有限公司粤G妆网备字2021573800粤妆20160591重庆市食品药品检验检测研究院成分比对检出备案资料载明的技术要求未标示的防晒剂:甲氧基肉桂酸乙基己酯产品检出成分应当与该产品备案资料载明的技术要求一致/16贝丽贝拉水润修颜隔离霜 02#清新绿广州市露琪化妆品有限公司粤G妆网备字2023395933粤妆20170202初检机构:陕西省食品药品检验研究院,复检机构:浙江省食品药品检验研究院铅934mg/kg(复检结果)≤10mg/kg/17克璐丝清爽净透隔离乳东莞市国丰化妆品有限公司 粤G妆网备字2022127019粤妆20161795广西壮族自治区药品检验研究院成分比对检出备案资料载明的技术要求未标示的防晒剂:4-甲基苄亚基樟脑、丁基甲氧基二苯甲酰基甲烷、甲氧基肉桂酸乙基己酯、水杨酸乙基己酯产品检出成分应当与该产品备案资料载明的技术要求一致/18鲜比淡斑净白精华液广东芭薇生物科技股份有限公司国妆特字G20202950粤妆20160687初检机构:湖南省药品检验检测研究院,复检机构:湖北省药品监督检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的美白剂:3-邻-乙基抗坏血酸(复检结果)产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/19鲜比焕采透白亮肤霜广东芭薇生物科技股份有限公司国妆特字G20202516粤妆20160687初检机构:湖南省药品检验检测研究院,复检机构:湖北省药品监督检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的美白剂:3-邻-乙基抗坏血酸(复检结果)产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/20衡美肤焕彩臻白乳广州青岚生物科技有限公司国妆特字G20190229粤妆20160605初检机构:湖南省药品检验检测研究院,复检机构:湖北省药品监督检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的美白剂:3-邻-乙基抗坏血酸(复检结果)产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/21肤研美白祛斑霜广州市爱莲化妆品有限公司国妆特字G20191511粤妆20170506上海市食品药品检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的祛斑美白剂:α-熊果苷产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/22景颜堂染发膏(棕黑色)广州市绮妆化妆品有限公司国妆特字20233703粤妆20161398安徽省食品药品检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的染发剂:4-氨基-2-羟基甲苯产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/23红鑫龙染发膏(栗棕色)广州红鑫龙化妆品有限公司国妆特字20223599粤妆20170252广东省药品检验所成分比对检出产品标签及注册资料载明的技术要求未标示染发剂:对氨基苯酚产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/24凯维斯染发霜(酒红色)广州市凯维斯化妆品有限公司国妆特字G20202055粤妆20161261初检机构:湖北省药品监督检验研究院,复检机构:广东省药品检验所成分比对 检出产品标签及注册资料载明的技术要求未标示的染发剂:1-萘酚(复检结果) 产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/25澳亿染发膏-棕黑色注册人:广州市澳亿化妆品有限公司,生产企业:广州市贝嘉欣化妆品有限公司国妆特字20222929粤妆20170041宁夏回族自治区药品检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的染发剂:苯基甲基吡唑啉酮产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/26益孝堂炫彩染发膏(栗棕色 5.4)广东益孝堂医药科技有限公司国妆特字20222051粤妆20210101广西壮族自治区药品检验研究院成分比对检出产品标签及注册资料载明的技术要求未标示的染发剂:对氨基苯酚、甲苯-2,5-二胺硫酸盐、2-氨基-3-羟基吡啶产品检出成分、产品标签应当与该产品注册资料载明的技术要求一致/27寇之肤玫瑰籽海藻面膜佛山市诗曼诺化妆品有限公司 粤G妆网备字2023490719粤妆20220134贵州省食品药品检验所菌落总数1.2×103CFU/g≤1000CFU/g/28凯秀野生小颗粒海藻面膜广州市凯秀化妆品有限公司 粤G妆网备字2019016812粤妆20161740贵州省食品药品检验所菌落总数1.8×104CFU/g≤1000CFU/g/霉菌和酵母菌总数1.0×103CFU/g≤100CFU/g29花芝语石斛润颜海藻面膜广州柏美生物医药科技有限公司 粤G妆网备字2022217325粤妆20180036贵州省食品药品检验所菌落总数2.0×105CFU/g≤1000CFU/g /30NUDUUN植物香氛润肤露汕头市嘉华日化有限公司粤G妆网备字2021768262粤妆20210379广西壮族自治区药品检验研究院菌落总数48000CFU/ml≤1000CFU/ml /31NUDUUN植物香氛润肤露汕头市嘉华日化有限公司粤G妆网备字2021768262粤妆20210379广西壮族自治区药品检验研究院菌落总数82000CFU/ml≤1000CFU/ml/32肤秘堂明魅眼部喷雾精华液广州天新生物科技有限公司粤G妆网备字2023387747粤妆20160270广西壮族自治区药品检验研究院菌落总数12000CFU/ml≤500CFU/ml/33伊露莹赋颜抗皱嫩滑霜兴富生物科技(广东)有限公司粤G妆网备字2023328730粤妆20230009上海市食品药品检验研究院菌落总数2.1×104CFU/g ≤1000CFU/g /34上官博士紧致抗皱盈润面霜广州欧丽雅生物科技有限公司粤G妆网备字2023291329粤妆20190191福建省食品药品质量检验研究院菌落总数3.0×103CFU/g≤1000CFU/g/35瓷龄堂洋甘菊修护精华水广州市皇熙化妆品有限公司粤G妆网备字2020239775粤妆20190051广西壮族自治区药品检验研究院菌落总数71000CFU/ml≤1000CFU/ml/36KOUQI蔻琦B5保湿舒缓喷雾广东艾琪生物科技有限公司粤G妆网备字2023263566粤妆20200032云南省食品药品监督检验研究院菌落总数7.9×103CFU/ml≤1000CFU/ml/霉菌和酵母菌总数3×103CFU/ml≤100CFU/ml
  • 【阿拉丁】溴化乙锭——美丽而危险
    溴化乙锭——美丽而危险 溴化乙锭(Ethidium bromide,EtBr)是一种经典的荧光染料,在分子生物学研究中有着广泛应用。其化学结构为三苯并咪唑,能够通过嵌入DNA或RNA 的碱基对之间进行非共价结合,从而显著增强荧光信号。这种染料最初作为兽医用药被发现,因其具有强效的诱变性和便捷的核酸染色能力,现已广泛应用于核酸检测、电泳分析及多种生物医学实验中。 一、 化学特性与结合机制 溴化乙锭是一种小分子染料,能够嵌入双链DNA和RNA的碱基对之间,显著增强其荧光强度。与双链 RNA 结合时,荧光强度可增强21倍;与双链DNA 结合时,荧光强度可增强25倍。虽然溴化乙锭在结合单链和三链DNA时亲和力较低,但其结合特性仍足以抑制DNA聚合酶的活性。这些特性使其成为研究 DNA复制、修复及转录的重要工具。 二、 溴化乙锭在科研中的应用 核酸检测 溴化乙锭在分子生物学实验中广泛用于核酸检测,特别是在琼脂糖凝胶和聚丙烯酰胺凝胶电泳中。通过在凝胶中加入溴化乙锭,研究人员可以在紫外光下观察到清晰的DNA或RNA条带,从而确定核酸的存在和大小。这种方法简便且高效,是实验室常规操作之一。 荧光定量分析 溴化乙锭的荧光特性使其在荧光定量分析中得到了广泛应用。例如,在定量 PCR和定量RT-PCR中,溴化乙锭通过测量荧光强度来定量分析DNA或RNA。溴化乙锭的高荧光增强效应显著提高了这些分析方法的灵敏度和准确性,广泛用于基因表达研究、病毒载量检测等领域。 细胞膜完整性评估 在细胞生物学研究中,溴化乙锭常用于评估细胞膜的完整性。由于溴化乙锭不能穿透完整的细胞膜,因此只有在细胞膜受损时才能进入细胞并与核酸结合发出荧光。这一特性使溴化乙锭成为检测细胞死亡和细胞膜损伤的有力工具,可用于药物筛选和细胞毒性评估。 线粒体 DNA 研究 溴化乙锭在线粒体DNA研究中也发挥着重要作用。线粒体DNA是研究细胞代谢、遗传疾病和衰老过程的重要对象。溴化乙锭能够有效地分离和分析线粒体DNA,为深入研究其功能提供了工具。例如,在研究线粒体DNA复制和突变时,溴化乙锭可用于追踪和定量分析线粒体DNA。 基因组编辑和转基因研究 在基因组编辑和转基因研究中,溴化乙锭也起到了重要作用。在使用 CRISPR-Cas9等基因编辑技术时,研究人员需要精确检测和定量目标基因的编辑效果。溴化乙锭染色结合荧光显微镜观察,可以帮助研究人员评估编辑效率和识别成功编辑的细胞。此外,在转基因生物的筛选过程中,溴化乙锭可用于检测转基因的插入和表达情况。 三、 光谱特性 溴化乙锭具有独特的光谱特性,其紫外/可见光吸收峰位于多个波长处,包括210 nm、285 nm、316 nm 和343 nm。当溶解在不同溶剂中时,这些吸收峰会发生变化。例如,在水中溶解时,吸收峰位于480 nm,而在甲醇中溶解时则位于520 nm。当与核酸结合时,溴化乙锭的吸收峰会发生红移(向更长波长移动)。 荧光特性 溴化乙锭的荧光特性在不同溶剂和环境中有所不同。在水溶液中,溴化乙锭的激发波长为526 nm,发射波长为605 nm。在磷酸盐缓冲盐水(PBS)中,其激发波长为360 nm,发射波长为590 nm。此外,在10 mM TBE 缓冲液(pH 8.0)中,其激发波长为525 nm,发射波长为600 nm。随着溶剂极性的降低,溴化乙锭的荧光产量增加,使其在各种生物实验中具有广泛应用。 四、 储存和处理 溴化乙锭应在避光、干燥的条件下储存,以确保其稳定性。在室温下储存时,溴化乙锭粉末可保持稳定至少两年。处理溴化乙锭时应采取适当的安全措施,因为它是一种已知的诱变剂和潜在的致癌物。废弃的溶液和材料应按照规定的生物危害废弃物处理程序进行处理。 五、 配制溶液 在室温下,溴化乙锭在水中以10 mg/mL 的浓度溶解,形成红色溶液。它在水中最多可溶解到20 mg/mL,在乙醇中可溶解到2 mg/mL。水或PBS中的储备溶液在避光条件下至少可稳定两年。 六、 电泳染色步骤 在电泳实验中,溴化乙锭通常以0.5mg/mL 的浓度添加到凝胶和电泳缓冲液中。电泳后,可以将凝胶浸入含有溴化乙锭的缓冲液或水中染色30-45分钟。在某些情况下,可以通过将染色后的凝胶浸泡在水或1 mM MgSO4中进行脱色,以减少背景荧光,从而提高DNA的检测灵敏度。 七、 安全注意事项 由于溴化乙锭具有诱变和致癌风险,处理时应佩戴防护手套和护目镜,并在通风良好的地方进行操作。所有含有溴化乙锭的废弃物应按生物危害废弃物处理,确保对环境和人体的安全。 溴化乙锭作为一种重要的分子生物学研究工具,其独特的荧光特性和广泛的应用领域使其在核酸检测和分析中发挥着关键作用。通过对其特性的深入了解和正确的使用方法,可以更好地应用溴化乙锭进行科学研究。
  • 一文了解|五大材料热性能分析方法
    | 热分析简介热分析的本质是温度分析。热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,即P = f(T)。按一定规律设计温度变化,即程序控制温度:T = (t),故其性质既是温度的函数也是时间的函数:P =f (T, t)。| 材料热分析意义在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。| 常用热分析方法解读根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,常用的热分析方法包括热重分析法(TG)、差示扫描量热法(DSC)、静态热机械分析法(TMA)、动态热机械分析(DMTA)、动态介电分析(DETA)等,它们分别是测量物质重量、热量、尺寸、模量和柔量、介电常数等参数对温度的函数。(1)热重分析(TG)热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。应用范围:(1)主要研究材料在惰性气体中、空气中、氧气中的热稳定性、热分解作用和氧化降解等化学变化;(2)研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣、吸附、吸收和解吸、气化速度和气化热、升华速度和升华热、有填料的聚合物或共混物的组成等。原理详解:样品重量分数w对温度T或时间t作图得热重曲线(TG曲线):w = f (T or t),因多为线性升温,T与t只差一个常数。TG曲线对温度或时间的一阶导数dw/dT 或 dw/dt 称微分热重曲线(DTG曲线)。图2中,B点Ti处的累积重量变化达到热天平检测下限,称为反应起始温度;C点Tf处已检测不出重量的变化,称为反应终了温度;Ti或Tf亦可用外推法确定,分为G点H点;亦可取失重达到某一预定值(5%、10%等)时的温度作为Ti。Tp表示最大失重速率温度,对应DTG曲线的峰顶温度。峰的面积与试样的重量变化成正比。实战应用:热重法因其快速简便,已经成为研究聚合物热变化过程的重要手段。例如图3中聚四氟乙烯与缩醛共聚物的共混物的TG曲线可以被用来分析共混物的组分,从图1中可以发现:在N2中加热,300~350℃缩醛组分分解(约80%),聚四氟乙烯在550℃开始分解(约20%)。影响因素:(a)升温速度:升温速度越快,温度滞后越大,Ti及Tf越高,反应温度区间也越宽。建议高分子试样为10 K/min,无机、金属试样为10~20K/min;(b)样品的粒度和用量:样品的粒度不宜太大、装填的紧密程度适中为好。同批试验样品,每一样品的粒度和装填紧密程度要一致;(c)气氛:常见的气氛有空气、O2、N2、He、H2、CO2 、Cl2和水蒸气等。气氛不同反应机理的不同。气氛与样品发生反应,则TG曲线形状受到影响;(d)试样皿材质以及形状。(2) 静态热机械分析 (TMA)热机械分析,是指在程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量物质的膨胀系数和相转变温度等参数。应用范围:静态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的热膨胀系数;玻璃化转变温度;熔点;软化点;负荷热变形温度;蠕变等进行测试。实战应用:(a)纤维、薄膜的研究:可测定其伸长、收缩性能和模量及相应的温度,应力-应变分析、冷冻和加热情况下应力的分析;(b)复合材料的表征,除纤维用TMA研究外,复合材料的增强,树脂的玻璃化转变温度Tg、凝胶时间和流动性、热膨胀系数等性质,还有多层复合材料尺寸的稳定性、高温稳定性等都可以用TMA快速测定并研究;(c)涂料的研究:可了解涂料与基体是否匹配及匹配的温度范围等;(d)橡胶的研究:可了解橡胶在苛刻的使用环境中是否仍有弹性及尺寸是否稳定等。影响因素:(a)升温速率:升温速率过快样品温度分布不均匀(b)样品热历史(c)样品缺陷:气孔、填料分布不均、开裂等(d)探头施加的压力大小:一般推荐0.001~0.1N(e)样品发生化学变化(f)外界振动(g)校准:探头、温度、压力、炉子常数等校准(h)气氛(i)样品形状,上下表面是否平行应用(3) 差示扫描量热法(DSC)原理:差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。差示扫描量热法有补偿式和热流式两种。试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。图4中展示了典型的DSC曲线。应用范围:(1)材料的固化反应温度和热效应测定,如反应热,反应速率等;(2)物质的热力学和动力学参数的测定,如比热容,转变热等;(3)材料的结晶、熔融温度及其热效应测定;(4)样品的纯度等。影响因素:(a)升温速率,实际测试的结果表明,升温速率太高会引起试样内部温度分布不均匀,炉体和试样也会产生热不平衡状态,所以升温速率的影响很复杂。(b)气氛:不同气体热导性不同,会影响炉壁和试样之间的热阻,而影响出峰的温度和热焓值。(c)试样用量:不可过多,以免使其内部传热慢、温度梯度大而使峰形扩大和分辨率下降。(d)试样粒度:粉末粒度不同时,由于传热和扩散的影响,会出现试验结果的差别。(4) 动态热机械分析(DMA)动态热机械分析测量粘弹性材料的力学性能与时间、温度或频率的关系。样品受周期性(正弦)变化的机械应力的作用和控制,发生形变。应用范围:动态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的玻璃化转变温度、负荷热变形温度、蠕变、储能模量(刚性)、损耗模量(阻尼性能)、应力松弛等进行测试。DMA基本原理:DMA是通过分子运动的状态来表征材料的特性,分子运动和物理状态决定了动态模量(刚度)和阻尼(样品在振动中的损耗的能量),对样品施加一个可变振幅的正弦交变应力时,将产生一个预选振幅的正弦应变,对粘弹性样品的应变会相应滞后一定的相位角δ,如图5所示。DMA技术把材料粘弹性分为两个模量:一个储存模量E´,E´与试样在每周期中贮存的最大弹性成正比,反映材料粘弹性中的弹性成分,表征材料的刚度;而损耗模量E",E"与试样在每周期中以热的形式消耗的能量成正比,反映材料粘弹性中的粘性部分,表示材料的阻尼。材料的阻尼也成为内耗,用tanδ表示,材料在每周期中损耗的能量与最大弹性贮能之比,等于材料的损耗模量E"与贮能模量E´。DMA采用升温扫描,由辅助环境温度升温至熔融温度,tanδ展示出一系列的峰,每个峰都会对应一个特定的松弛过程。由DMA可测出相位角tanδ、损耗模量E"与贮能模量E´随温度、频率或时间变化的曲线,不仅给出宽广的温度、频率范围的力学性能,还可以检测材料的玻璃化转变、低温转变和次级松弛过程。例如损耗峰能够代表某种单元运动的转变,图6为聚苯乙烯tg随温度变化的曲线,从图中可以推断峰可能为苯基绕主链的运动;峰可能是存在头头结构所致;峰是苯环绕与主链连接键的运动。影响因素:升温速率、样品厚度、有无覆金属层,夹具类型等(5) 动态介电分析(DETA)动态介电分析是物质在一定频率的交变电场下并受一定受控温度程序加热时,测试物质的介电性能随温度变化的一种技术。介电分析原理:具有偶极子的电介质,在外电场的作用下,将会随外电场定向排列。偶极子的极化和温度有关并伴随着能量的消耗。一般以介电常数(ε)表示电介质在外电场下的极化程度,而介电损耗(D)则表示在外电场作用下,因极化发热引起的能量损失。偶极子在外电场作用下的定向排列也会随外电场的去除而恢复杂乱状态。偶极子由有规排列回复到无规排列所需的时间称“介电松弛时间T”,按德拜理论:(其中:η介质粘度,a分子半径,K玻尔兹曼常数,T温度K)。松弛时间和分子的大小、形状以及介质的粘度有关。而式中tgδ损耗角正切,ε0静电场下介电常数;ε∞光频率下的介电常数。由此见,ε、tgδ都是和松弛时间τ有关的物理量,因此也和分子的结构、大小、介质粘度有关,这就是利用介电性能研究物质分子结构的依据。由(a)(b)两式可以证明,当时,ε´有极大值,f0称“极化频率”。即当外电场频率为极化频率时,介电损耗极大。应用范围:这一技术已被广泛地应用于研究材料电介质的分子结构、聚合程度和聚合物机理等。从应用对象讲,有聚丙烯酸甲酯、聚氯乙烯、聚酰胺、聚酰亚胺、聚苯乙烯、酚醛、环氧、聚蜡等热塑性和热固性树脂。此外还有耐高温树脂中的聚苯枫、聚苯并咪唑,生物化合物中的蛋白质等。其具体应用也包括增强塑料、模压材料、涂料、粘合剂、橡胶甚至玻璃、陶瓷等金属氧化物。在实验室中,DETA可作为粘弹性研究的有力工具,如动态机械性能和热机械性能测试。在工业生产中,它可应用于树脂制造、质量控制、预固化和固化程度控制等。| 结语该文针对热分析技术的概念入手分析,从五个方面:热重分析法、差示扫描量热法、静态热机械法、动态热机械分析、动态介电分析,简要论述了材料测试中几种典型的热分析方法。热分析已有百年的发展历程,随着科学技术的发展,热分析技术展现出新的生机和活力,不断发展进步。
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法
  • 《食品中百草枯等54种农药最大残留限量》发布
    中华人民共和国卫生部 中华人民共和国农业部 公告 2011年第2号   根据《食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布食品安全国家标准《食品中百草枯等54种农药最大残留限量》(GB26130—2010),自2011年4月1日起实施。   特此公告。   二〇一一年一月二十一日   附件: 食品中百草枯等54种农药最大残留限量.doc   目 录   前 言. 3   1 范围. 4   2 规范性引用文件. 4   3 术语和定义. 5   4 技术要求. 5   4.1 百草枯(paraquat). 6   4.2 苯丁锡(fenbutatin oxide). 6   4.3 苯菌灵(benomyl). 6   4.4 苯醚甲环唑(difenoconazole). 6   4.5 吡蚜酮(pymetrozine). 7   4.6 丙森锌(propineb). 7   4.7 草甘膦(glyphosate). 7   4.8 虫酰肼(tebufenozide). 7   4.9 除虫脲(diflubenzuron). 8   4.10 春雷霉素(kasugamycin). 8   4.11 敌百虫(trichlorfon). 8   4.12 地虫硫磷(fonofos). 9   4.13 丁硫克百威(carbosulfan). 9   4.14 毒死蜱(chlorpyrifos). 9   4.15 多菌灵(carbendazim). 9   4.16噁草酮(oxadiazon). 10   4.17噁霉灵(hymexazol). 10   4.18二嗪磷(diazinon). 10   4.19氟虫腈(fipronil). 10   4.20氟硅唑(flusilazole). 11   4.21氟氯氰菊酯(cyfluthrin). 11   4.22腐霉利(procymidone). 11   4.23 甲胺磷(methamidophos). 12   4.24甲基毒死蜱(chlorpyrifos-methyl). 12   4.25甲基硫菌灵(thiophanate-methyl). 12   4.26甲基异柳磷(isofenphos-methyl). 12   4.27甲萘威(carbaryl). 13   4.28甲氧虫酰肼(methoxyfenozide). 13   4.29腈苯唑(fenbuconazole). 13   4.30喹啉铜(oxine-copper). 13   4.31 乐果(dimethoate). 14   4.32硫丹(endosulfan). 14   4.33马拉硫磷(malathion). 14   4.34咪鲜胺(prochloraz). 15   4.35嘧菌酯(azoxystrobin). 15   4.36灭多威(methomyl). 15   4.37灭瘟素(blasticidin-S). 15   4.38灭锈胺(mepronil). 16   4.39嗪草酮(metribuzin). 16   4.40噻虫嗪(thiamethoxam). 16   4.41噻菌灵(thiabendazole). 16   4.42噻嗪酮(buprofezin). 17   4.43噻唑磷(fosthiazate). 17   4.44三唑锡(azocyclotin). 17   4.45杀螟丹(cartap). 17   4.46杀螟硫磷(fenitrothion). 18   4.47五氯硝基苯(quintozene). 18   4.48烯唑醇(diniconazole). 18   4.49辛硫磷(phoxim). 18   4.50氧乐果(omethoate). 19   4.51乙烯利(ethephon). 19   4.52 乙酰甲胺磷(acephate). 19   4.53异丙甲草胺(metolachlor). 20   4.54异菌脲(iprodione). 20   农药英文通用名称索引. 21   农药中文通用名称索引. 23   前 言   本标准按照GB/T 1.1-2009给出的规则起草。   本标准中乙酰甲胺磷和甲胺磷在糙米中的相关规定代替GB 2763-2005中乙酰甲胺磷和甲胺磷在稻谷上的相关规定。   本标准与国际食品法典委员会(CAC)标准《食品中农药最大残留限量》(2009)中的相关规定的一致性程度为非等同。   食品中百草枯等54种农药最大残留限量   1 范围   本标准规定了食品中百草枯等54种农药的最大残留限量。   本标准适用于与限量相关的食品种类。   2 规范性引用文件   下列文件对于本标准的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。   GB/T 5009.21 粮、油、菜中甲萘威残留量的测定   GB/T 5009.102 植物性食品中辛硫磷农药残留量的测定   GB/T 5009.103 植物性食品中甲胺磷和乙酰甲胺磷农药残留量的测定   GB/T 5009.107 植物性食品中二嗪磷残留量的测定   GB/T 5009.144 植物性食品中甲基异柳磷残留量的测定   GB/T 5009.145 植物性食品中有机磷和氨基甲酸酯类农药多种残留的测定   GB/T 5009.147 植物性食品中除虫脲残留量的测定   GB/T 5009.184 粮食、蔬菜中噻嗪酮残留量的测定   GB/T 5009.201 梨中烯唑醇残留量的测定   GB/T 19648 水果和蔬菜中500种农药及相关化学品残留的测定 气相色谱-质谱法   GB/T 19649 粮谷中475种农药及相关化学品残留量的测定 气相色谱-质谱法   GB/T 20769 水果和蔬菜中450种农药及相关化学品残留量的测定 液相色谱-串联质谱法   GB/T 23376 茶叶中农药多残留测定 气相色谱/质谱法   GB/T 23380 水果、蔬菜中多菌灵残留的测定 高效液相色谱法   GB/T 23750 植物性产品中草甘膦残留量的测定 气相色谱-质谱法   NY/T 761 蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定   NY/T 1016 水果蔬菜中乙烯利残留量的测定 气相色谱法   NY/T 1096 食品中草甘膦残留量测定   NY/T 1453 蔬菜及水果中多菌灵等16种农药残留测定 液相色谱-质谱-质谱联用法   NY/T 1680 蔬菜水果中多菌灵等4种苯并咪唑类农药残留量的测定 高效液相色谱法   SN 0150 出口水果中三唑锡残留量检验方法   SN 0340 出口粮谷、蔬菜中百草枯残留量检验方法 紫外分光光度法   SN 0493 出口粮谷中敌百虫残留量检验方法   SN 0592 出口粮谷及油籽中苯丁锡残留量检验方法   SN/T 1923 进出口食品中草甘膦残留量的检测方法 液相色谱-质谱 质谱法   SN/T 1975 进出口食品中苯醚甲环唑残留量的检测方法 气相色谱-质谱法   SN/T 1976 进出口水果和蔬菜中嘧菌酯残留量检测方法 气相色谱法   SN/T 1982 进出口食品中氟虫腈残留量检测方法 气相色谱-质谱法   SN/T 1990 进出口食品中三唑锡和三环锡残留量的检测方法 气相色谱-质谱法   SN/T 2158 进出口食品中毒死蜱残留量检测方法   SN/T 2236 进出口食品中氟硅唑残留量检测方法 气相色谱-质谱法   JAP-018 吡蚜酮检测方法   JAP-055 氟定脲、除虫脲、虫酰肼、氟苯脲、氟虫脲、氟铃脲和氟丙氧脲检测方法   德国食品与饲料法(LFGB §64) 推荐官方分析方法(2010年版)   3 术语和定义   下列术语和定义适用于本文件。   3.1   残留物 pesticide residues   任何由于使用农药而在农产品及食品中出现的特定物质,包括被认为具有毒理学意义的农药衍生物,如农药转化物、代谢物、反应产物以及杂质等。   3.2   最大残留限量 maximium residue limits (MRLs)   在生产或保护商品过程中,按照农药使用的良好农业规范(GAP)使用农药后,允许农药在各种农产品及食品中或其表面残留的最大浓度。   3.3   每日允许摄入量 acceptable daily intakes (ADI)   人类每日摄入某物质至终生,而不产生可检测到的对健康产生危害的量,以每千克体重可摄入的量(毫克)表示,单位为mg/kg bw。   4 技术要求   每种农药的最大残留限量规定如下。   4.1 百草枯(paraquat)   4.1.1 主要用途:除草剂   4.1.2 ADI: 0.005 mg/kg bw   4.1.3 残留物:百草枯阳离子   4.1.4 最大残留限量:应符合表1的规定。   表 1 食品名称 最大残留限量( mg/kg) 棉籽 0.2 香蕉 0.02 苹果 0.05* *: 因该数值为方法的最低检出限,该限量为临时限量,下同。   4.1.5 检测方法:按SN 0340规定的执行。   4.2 苯丁锡(fenbutatin oxide)   4.2.1 主要用途:杀螨剂   4.2.2 ADI: 0.03 mg/kg bw   4.2.3 残留物:苯丁锡   4.2.4 最大残留限量:应符合表2的规定。  表 2 食品名称 最大残留限量(mg/kg) 柑橘 1   4.2.5 检测方法:参照SN 0592规定的方法测定。   4.3 苯菌灵(benomyl)   4.3.1 主要用途:杀菌剂   4.3.2 ADI: 0.1 mg/kg bw   4.3.3 残留物:苯菌灵和多菌灵的总和   4.3.4 最大残留限量:应符合表3的规定。   表 3   食品名称 最大残留限量(mg/kg) 柑橘 5** 梨 3** **: 因无相关的监测方法,该限量为临时限量,下同。   4.3.5 检测方法:参照GB/T 23380、NY/T 1680规定的方法执行。   4.4 苯醚甲环唑(difenoconazole)   4.4.1 主要用途:杀菌剂   4.4.2 ADI: 0.01 mg/kg bw   4.4.3 残留物:苯醚甲环唑   4.4.4 最大残留限量:应符合表4的规定。   表 4 食品名称 最大残留限量(mg/kg) 茶叶 10 大蒜 0.2 柑橘 0.2 荔枝0.5   3.4.5 检测方法:按GB/T 19648、GB/T 20769、SN/T 1975规定的方法执行。   4.5 吡蚜酮(pymetrozine)   4.5.1 主要用途:杀虫剂   4.5.2 ADI: 0.03 mg/kg bw   4.5.3 残留物:吡蚜酮   4.5.4 最大残留限量:应符合表5的规定。   表 5 食品名称 最大残留限量(mg/kg) 小麦 0.02   4.5.5 检测方法:按JAP-018规定的方法执行。   4.6 丙森锌(propineb)   4.6.1 主要用途:杀菌剂   4.6.2 ADI: 0.007 mg/kg bw   4.6.3 残留物:丙森锌(以CS2计)   4.6.4 最大残留限量:应符合表6的规定。   表 6 食品名称 最大残留限量(mg/kg) 大白菜 5 番茄 5 黄瓜 5   4.6.5 检测方法:按GB/T 20769规定的方法执行。   4.7 草甘膦(glyphosate)   4.7.1 主要用途:除草剂   4.7.2 ADI: 1 mg/kg bw   4.7.3 残留物:草甘膦   4.7.4 最大残留限量:应符合表7的规定。   表 7 食品名称 最大残留限量(mg/kg) 茶叶 1 柑橘 0.5 苹果 0.5   4.7.5 检测方法:茶叶、柑橘按SN/T 1923规定的方法执行 苹果按GB/T 23750、NY/T 1096规定的方法执行。   4.8 虫酰肼(tebufenozide)   4.8.1 主要用途:杀虫剂   4.8.2 ADI: 0.02 mg/kg bw   4.8.3 残留物:虫酰肼   4.8.4 最大残留限量:应符合表8的规定。   表 8 食品名称 最大残留限量(mg/kg) 结球甘蓝 1   4.8.5 检测方法:按GB/T 20769 规定的方法执行。   4.9 除虫脲(diflubenzuron)   4.9.1 主要用途:杀虫剂   4.9.2 ADI: 0.02 mg/kg bw   4.9.3 残留物:除虫脲   4.9.4 最大残留限量:应符合表9的规定。   表 9   食品名称 最大残留限量(mg/kg) 茶叶 20   4.9.5 检测方法:按JAP-055或参照GB/T 5009.147规定的方法执行。   4.10 春雷霉素(kasugamycin)   4.10.1 主要用途:杀菌剂   4.10.2 ADI: 0.113 mg/kg bw   4.10.3 残留物:春雷霉素   4.10.4 最大残留限量:应符合表10的规定。   表 10 食品名称 最大残留限量(mg/kg) 糙米 0.1** 番茄 0.05**   4.11 敌百虫(trichlorfon)   4.11.1 主要用途:杀虫剂   4.11.2 ADI: 0.002 mg/kg bw   4.11.3 残留物:敌百虫和敌敌畏的总和。   4.11.4 最大残留限量:应符合表11的规定。   表 11 食品名称 最大残留限量(mg/kg) 糙米 0.1 结球甘蓝 0.1 普通白菜 0.1   4.11.5 检测方法:糙米按SN 0493规定的方法执行 甘蓝、普通白菜按GB/T 20769、NY/T 761规定的方法执行。   4.12 地虫硫磷(fonofos)   4.12.1 主要用途:杀虫剂   4.12.2 ADI: 0.002 mg/kg bw   4.12.3 残留物:地虫硫磷   4.12.4 最大残留限量:应符合表12的规定。   表 12 食品名称 最大残留限量(mg/kg) 花生 0.1 甘蔗 0.1   4.12.5 检测方法:花生按GB/T 19649规定的方法执行 甘蔗按GB/T 19648、GB/T 20769、NY/T 761规定的方法执行。   4.13 丁硫克百威(carbosulfan)   4.13.1 主要用途:杀虫剂   4.13.2 ADI: 0.01 mg/kg bw   4.13.3 残留物:丁硫克百威、克百威、3-羟基克百威的总和。   4.13.4 最大残留限量:应符合表13的规定。   表 13 食品名称 最大残留限量(mg/kg) 糙米 0.5 柑橘 1 苹果 0.2 花生 0.05 黄瓜 0.2 节瓜 1 结球甘蓝 1   4.13.5 检测方法:柑橘、苹果、黄瓜、节瓜、甘蓝按NY/T 761规定的方法执行 花生、糙米按LFGB §64规定的方法执行。   4.14 毒死蜱(chlorpyrifos)   4.14.1 主要用途:杀虫剂   4.14.2 ADI: 0.01 mg/kg bw   4.14.3 残留物:毒死蜱   4.14.4 最大残留限量:应符合表14的规定。   表 14 食品名称 最大残留限量(mg/kg) 荔枝 1   4.14.5 检测方法:按GB/T5009.145、GB/T 19648、GB/T 20769、NY/T 761、SN/T 2158规定的方法执行。   4.15 多菌灵(carbendazim)   4.15.1 主要用途:杀菌剂   4.15.2 ADI: 0.03 mg/kg bw   4.15.3 残留物:多菌灵   4.15.4 最大残留限量:应符合表15的规定。   表 15 食品名称 最大残留限量(mg/kg) 柑橘 5 西瓜 0.5 韭菜 2   4.15.5 检测方法:按GB/T 23380、NY/T 1453、NY/T 1680规定的方法执行。   4.16噁草酮(oxadiazon)   4.16.1 主要用途:除草剂   4.16.2 ADI: 0.0036 mg/kg bw   4.16.3 残留物:噁草酮   4.16.4 最大残留限量:应符合表16的规定。   表 16 食品名称 最大残留限量(mg/kg) 糙米 0.05 花生 0.1 棉籽 0.1   4.16.5 检测方法:糙米按GB/T 19649规定的方法执行 花生、棉籽按LMBG §35规定的方法执行。   4.17噁霉灵(hymexazol)   4.17.1 主要用途:杀菌剂   4.17.2 ADI: 0.2mg/kg bw   4.17.3 残留物:噁霉灵   4.17.4 最大残留限量:应符合表17的规定。   表 17 食品名称 最大残留限量(mg/kg) 糙米 0.1**   4.18二嗪磷(diazinon)   4.18.1 主要用途:杀虫剂   4.18.2 ADI: 0.005 mg/kg bw   4.18.3 残留物:二嗪磷   4.18.4 最大残留限量:应符合表18的规定。   表 18 食品名称 最大残留限量(mg/kg) 花生 0.5   4.18.5 检测方法:按GB/T 5009.107、GB/T 19649或参照NY/T 761规定的方法执行。   4.19氟虫腈(fipronil)   4.19.1 主要用途:杀虫剂   4.19.2 ADI: 0.0002 mg/kg bw   4.19.3 残留物:氟虫腈母体。   4.19.4 最大残留限量:应符合表19的规定。   表 19 食品名称 最大残留限量(mg/kg) 结球甘蓝 0.02 糙米 0.02   4.19.5 检测方法:甘蓝按GB/T 19648、GB/T 20769规定的方法执行 糙米按GB/T 19649、SN/T 1982规定的方法执行。   4.20氟硅唑(flusilazole)   4.20.1 主要用途:杀菌剂   4.20.2 ADI: 0.007 mg/kg bw   4.20.3 残留物:氟硅唑   4.20.3 最大残留限量:应符合表20的规定。   表 20 食品名称 最大残留限量(mg/kg) 黄瓜 1 刀豆 0.2 葡萄 0.5 香蕉 1   4.20.5 检测方法:按GB/T 19648、GB/T 20769、SN/T 2236规定的方法执行。   4.21氟氯氰菊酯(cyfluthrin)   4.21.1 主要用途:杀虫剂   4.21.2 ADI: 0.04 mg/kg bw   4.21.3 残留物:氟氯氰菊酯   4.21.4 最大残留限量:应符合表21的规定。   表 21 食品名称 最大残留限量(mg/kg) 蘑菇 0.3   4.21.5 检测方法:按GB/T 19648、NY/T 761规定的方法执行。   4.22腐霉利(procymidone)   4.22.1 主要用途:杀菌剂   4.22.2 ADI: 0.1 mg/kg bw   4.22.3 残留物:腐霉利   4.22.4 最大残留限量:应符合表22的规定。   表 22 食品名称 最大残留限量(mg/kg) 番茄 2   4.22.5 检测方法:按GB/T 19648、NY/T 761规定的方法执行。   4.23 甲胺磷(methamidophos)   4.23.1 主要用途:杀虫剂   4.23.2 ADI:0.004mg/kg体重   4.23.3 残留物:甲胺磷(乙酰甲胺磷的代谢物)   4.23.4 最大残留限量:应符合表23的规定。   表 23 食品名称 最大残留限量(mg/kg) 糙米 0.5   4.23.5 检测方法:按GB/T 5009.103。   4.24甲基毒死蜱(chlorpyrifos-methyl)   4.24.1 主要用途:杀虫剂   4.24.2 ADI: 0.01 mg/kg bw   4.24.3 残留物:甲基毒死蜱   4.24.4 最大残留限量:应符合表24的规定。   表 24 食品名称 最大残留限量(mg/kg) 棉籽 0.02 结球甘蓝 0.1   4.24.5 检测方法:棉籽按GB/T 19649规定的方法执行 甘蓝GB/T 19648、GB/T 20769、NY/T 761规定的方法执行。   4.25甲基硫菌灵(thiophanate-methyl)   4.25.1 主要用途:杀菌剂   4.25.2 ADI: 0.08 mg/kg bw   4.25.3 残留物:甲基硫菌灵和多菌灵之和   4.25.4 最大残留限量:应符合表25的规定。   表 25 食品名称 最大残留限量(mg/kg) 小麦 0.5 糙米 1   4.25.5 检测方法:按GB/T 20769、NY/T 1680规定的方法执行。   4.26甲基异柳磷(isofenphos-methyl)   4.26.1 主要用途:杀虫剂   4.26.2 ADI: 0.003 mg/kg bw   4.26.3 残留物:甲基异柳磷   4.26.4 最大残留限量:应符合表26的规定。   表 26 食品名称 最大残留限量(mg/kg) 玉米 0.02   4.26.5 检测方法:按GB/T 5009.144或参照NY/T 761规定的方法执行。   4.27甲萘威(carbaryl)   4.27.1 主要用途:杀虫剂   4.27.2 ADI: 0.008 mg/kg bw   4.27.3 残留物:甲萘威   4.27.4 最大残留限量:应符合表27的规定。   表 27 食品名称 最大残留限量(mg/kg) 普通白菜 1******: 因膳食暴露评估依据的数据不充分,该限量为临时限量,下同。   4.27.5 检测方法:按GB/T 5009.21、GB/T 5009.145、GB/T 20769、NY/T 761规定的方法执行。   4.28甲氧虫酰肼(methoxyfenozide)   4.28.1 主要用途:杀虫剂   4.28.2 ADI: 0.1 mg/kg bw   4.28.3 残留物:甲氧虫酰肼   4.28.4 最大残留限量:应符合表28的规定。   表 28 食品名称 最大残留限量(mg/kg) 结球甘蓝 2 苹果 3   4.28.5 检测方法:按GB/T 20769规定的方法执行。   4.29腈苯唑(fenbuconazole)   4.29.1 主要用途:杀菌剂   4.29.2 ADI: 0.03 mg/kg bw   4.29.3 残留物:腈苯唑   4.29.4 最大残留限量:应符合表29的规定。   表 29 食品名称 最大残留限量(mg/kg) 糙米 0.1   4.29.5 检测方法:按GB/T 19648、GB/T 20769规定的方法执行。   4.30喹啉铜(oxine-copper)   4.30.1 主要用途:杀菌剂   4.30.2 ADI: 0.02 mg/kg bw   4.30.3 残留物:喹啉铜   4.30.4 最大残留限量:应符合表30的规定。   表 30 食品名称 最大残留限量(mg/kg) 苹果 2** 黄瓜
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制