当前位置: 仪器信息网 > 行业主题 > >

糠基异丙基硫醚

仪器信息网糠基异丙基硫醚专题为您提供2024年最新糠基异丙基硫醚价格报价、厂家品牌的相关信息, 包括糠基异丙基硫醚参数、型号等,不管是国产,还是进口品牌的糠基异丙基硫醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合糠基异丙基硫醚相关的耗材配件、试剂标物,还有糠基异丙基硫醚相关的最新资讯、资料,以及糠基异丙基硫醚相关的解决方案。

糠基异丙基硫醚相关的资讯

  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱   亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。   丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.      图1. Venusil HILIC 比传统正相色谱柱更稳定   样 品:VB1, VB6, VC, VB2   老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm      色谱柱: Atlantis C18 4.6×250mm,5μm   流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇   流 速: 1ml/min   柱 温: 25℃   检 测: UV 210nm      色谱柱:Venusil HILIC 4.6×250mm,5μm   流动相: A: 0.1%TFA水溶液,   B: 乙腈,   A:B=75:25   流 速: 1 mL/min   温 度: 25℃   检 测: UV 210 nm   图2. Venusil HILIC与C18分离井冈霉素对比色谱图   图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。   丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。      图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比   样品:葡萄糖标准品(购至Sigma)   检测:ELSD   色谱柱:4.6×250mm,5μm   色谱条件:乙腈/水(80:20),1mL/min,30℃   图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。   腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。      图4. 地西他滨有关物质分析色谱图   Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,   UV@244nm,室温 Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 上海有机所金属铱催化的烯丙基取代反应研究取得新进展
    过渡金属催化惰性碳氢键的直接官能团化反应在近年来受到化学研究工作者的极大关注,并取得了重要进展,但在这类反应中,剧烈的反应条件,当量氧化剂的使用,以及选择性难以控制等依旧是其应用中的主要制约因素。此外,从烯烃出发实现烯烃碳氢键活化的工作也非常少见。 铱催化剂催化烯丙基取代反应 2009年,中国科学院上海有机化学研究所金属有机国家重点实验室的研究人员发现金属铱催化的基于自由胺基协助双键末端碳氢键活化,在[Ir(COD)Cl]2和Feringa配体的催化体系作用下,邻胺基苯乙烯类化合物与烯丙基碳酸酯可以发生直接的烯丙基烯基化反应,立体选择性地得到顺式双键产物(J. Am. Chem. Soc. 2009, 131, 8346-8346),反应条件温和,原料简单易得。这一方法为构建顺式双键提供了新的策略和思路。结果发表以后被Synfacts积极评述(Synfacts, 2009, 9, 0987)。这也是金属铱催化直接烯丙基烯基化反应的首例报道。 铱催化剂催化合成苯并氮杂七元环化合物 最近,研究人员在这一研究发现的基础上,通过巧妙的设计,在[Ir(COD)Cl]2和Feringa配体的催化下,邻胺基苯乙烯类化合物和烯丙基双碳酸甲酯反应,可以实现串联的烯丙基烯基化与分子内不对称烯丙基胺化反应,高收率、高对映选择性地合成苯并氮杂七元环类化合物。所得具有光学活性的苯并氮杂七元环类化合物,可以方便地转化为结构复杂多环化合物,为合成苯并氮杂七元环这一在许多天然产物和药物分子中都广泛存在的一类骨架提供了有效的方法。这一部分工作已发表在Angew. Chem. Int. Ed., 2010, 49, 1496-1499上。结果发表以后被Synfacts积极评述(Synfacts, 2010, 4, 0446)。 这些研究工作获得国家自然科学基金委面上项目和科技部973项目的资助。(摘自有机化学网)
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 大连化物所铜催化不对称炔丙基转化研究取得新进展
    p   近日,中国科学院大连化学物理研究所研究员胡向平领导的研究团队在铜催化不对称炔丙基转化研究中取得新进展,通过运用一种脱硅活化的新策略,成功实现了Cu-催化的炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应,相关研究结果以通讯形式发表在最新一期的《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 5014-5018)上。 /p p   在炔丙基转化反应中,有效形成亚丙二烯基铜活性中间体是实现反应的关键。针对传统的由端基炔丙基化合物形成亚丙二烯基铜活性中间体能力不足的缺点,该研究利用铜能高效促进Csp-Si键开裂的特点,提出以三甲基硅基保护的炔丙醇酯为底物,通过脱硅活化的策略,实现亚丙二烯基铜活性中间体的不可逆形成。基于这一反应策略,研究组利用自主发展的高位阻手性P,N,N-配体,成功实现了炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应。这是该研究组继2014年提出脱羧活化的炔丙基转化策略(Angew. Chem. Int. Ed. 2014, 53, 1410-1414)后,在炔丙基转化反应中实现的又一催化活化策略。这些反应策略的提出与实现有效拓展了催化不对称炔丙基转化反应研究的思路。 /p p   上述研究工作得到国家自然科学基金委的资助。 /p p style=" text-align: center " img style=" width: 500px height: 216px " title=" W020160419304595129181.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201604/insimg/dc0e2990-2b81-4183-b6ca-5d3434096321.jpg" width=" 500" height=" 216" / /p p style=" text-align: center "    span style=" font-size: 14px " 大连化物所铜催化不对称炔丙基转化研究取得新进展 /span /p p style=" text-align: center " & nbsp /p
  • 美国对杀虫剂吡丙醚制定残留许可限量最终法规
    近日,美国环保署发布了吡丙醚(Pyriproxyfen)许可限量最终法规,对杀虫剂吡丙醚制定了残留许可限量的最终法规。   法规规定吡丙醚在叶类蔬菜(芸苔类除外)上的残留许可限量为3.0ppm 根茎块茎叶类蔬菜为2.0ppm 芦笋为2.0ppm。   吡丙醚(Pyriproxyfen)许可限量最终法规具体内容详见:   http://www.epa.gov/fedrgstr/EPA-PEST/2009/October/Day-28/p25689.pdf
  • 从0到1,“厦门智造”福流生物纳米流式仪助力疾病筛查
    福流生物工作人员正在进行设备测试。  福流生物分子实验室研发场景。  文/厦门日报记者 林露虹 通讯员 郭文晨  图/厦门日报记者 张奇辉  纳米有多小?如果将1纳米和1米比较,就好像是高尔夫球和地球作比。1纳米相当于4倍原子大小,比单个病毒的尺寸还要小得多。  厦门创新创业园企业福流生物自主研发的纳米流式检测仪,就好比打开了一扇通往纳米世界的窗口。比如,它可以精准识别出癌细胞分泌的“小囊泡”,助力癌症早期筛查和诊断;再比如,在食品安全领域,它可以快速鉴别致病菌,让危害人体健康的微生物无处遁形。  凭借着灵敏度高的硬核实力,福流生物的纳米流式检测仪热销海内外,成为“中国智造”高端科研仪器走向世界的典型代表,梅奥诊所、美国德州大学安德森癌症中心、约翰霍普金斯大学医学院、美国国立卫生研究院、牛津大学等全球最顶尖研究机构和百时美施贵宝、阿斯利康、武田制药等高科技生物制药公司都是它的客户。  回国创业  实现产业化“从0到1”的突破  福流生物的故事要从创始人朱少彬博士说起。在厦门大学化学化工学院取得博士学位后,朱少彬赴海外从事博士后研究。2014年,他回国创业,立志让研究多年的纳米流式检测技术走出实验室。  起初,产业化之路并不平坦。“纳米流式检测技术是一种流动检测的方法,流体的稳定性决定着设备的稳定性。光流体的设计我们就改了20多个方案。”这是一项艰苦且枯燥的工作,朱少彬用母校厦门大学的校训“自强不息,止于至善”来激励自己,一次次修正、升级方案。  针对光机电一体的研发需要,朱少彬勇攀技术高峰,努力学习机械设计、自动化、软件等相关知识。最终,在他的带领下,团队仅用时一年多就研发了5代原型机。朱少彬事后总结说:“不断学习,在学习中提升信心,用信心支撑创业激情,这对一名创业者来说非常重要。”  功夫不负有心人。2016年夏天,福流生物研发的第一代商品化纳米流式检测仪亮相国际流式细胞大会。起初,参会者们并不觉得这个只有微波炉大小的仪器有什么特别之处。直到有专家和研发机构试用过样机后,他们惊讶地发现,仪器居然蕴藏着“大能量”——可以对细菌、病毒、亚细胞器、细胞外囊泡、纳米药物、功能化纳米颗粒等,在单颗粒水平进行高通量、多参数定量分析,较传统流式细胞仪的散射检测灵敏度提升4-5个数量级,粒径表征分辨率媲美透射电子显微镜,这在行业尚属首创。  2017年,随着福流生物的知名度逐渐提高,公司获得来自外泌体领域的国际领头羊企业Codiak Biosciences的第一张订单,至此,福流生物实现了产业化“从0到1”的突破。  解码细胞外囊泡信息  助力疾病筛查  细胞外囊泡检测是福流生物纳米流式检测仪的高频应用。“细胞外囊泡可以理解为细胞‘吐泡泡’,是细胞间物质通讯的重要介质,相比正常细胞,癌细胞可分泌更多的细胞外囊泡,且在‘吐泡泡’的过程中,会把蛋白核酸等物质带出来,进入血液、尿液等,所以我们可以借由血液、尿液等人体组织液的样本,通过使用纳米流式检测仪,快速实现癌症的早期诊断。”朱少彬说,纳米流式检测仪如同一个“解码器”,能解码人体组织液中的细胞外囊泡的信息奥秘,进而协助疾病筛查以及术前、术后的效果跟踪。  面对突如其来的新冠肺炎疫情,全世界都在与时间赛跑,加强疫苗研究、病毒研究,这也为福流生物带来了新机遇。“我们的仪器可以检测病毒的信息,以及疫苗的纯度、药物承载量等。疫情期间,公司加强病毒应用方面的宣传,得到越来越多的生物医药企业的认可,仪器在国内市场的销量也随之走高。”朱少彬说。  随着福流生物在业界知名度的提升,新的挑战也随之而来。“客户数量的增多,意味着需求变得多元化,技术升级的步伐得跟得上客户及行业的需求,同时还得做好精细化的服务,提升品牌价值。”朱少彬说,公司研发团队持续推动产品的迭代升级,丰富产品线,满足科研、临床、生物制药等领域的客户需求,接下来还将顺应智能化趋势,打造支持自动检测的仪器,提升检测效率,实现“样品进、结果出”的目标。
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 全新Blossmate益母草专用柱,呵护天下女性健康
    益母草一味中药相信大家都不陌生。关于益母草的由来,民间也流传着许多传说,但不论是哪种传说,其大意多为“母亲产子后体虚盈亏,久治不愈,儿女为使母亲康复,不畏辛苦,独自上山采药,此孝心感动天神,遂指明灵药,助孝子救母,并惠及一方百姓。”由此可见益母草功效是调经活血,是常用的妇科用药。《本草纲目》记载,“此草及子皆充盛密蔚,故名充蔚。其功宜于妇人及明目益精,故有益母之称。”“益母草之根、茎、花、叶、实,并皆入药,可同用。若治手、足厥阴血分风热,明目益精,调女人经脉,则单用充蔚子为良。若治肿毒疮疡,消水行血,妇人胎产诸病,则宜并用为良。盖其根茎花叶专于行,而子则行中有补故也。” 益母草可全草入药,其有效成分包括益母草素、益母草碱、水苏碱、益母草宁、益母草定等多种生物碱。在2020版《中国药典》中,对益母草药材中盐酸水苏碱的含量,是这样规定的:根据药典标准,月旭科技推出全新的益母草药典专用柱Blossmate® Polar-Propylamide,丙基酰胺键合相完全符合药典规定,全新的高端硅胶色谱填料,经过严格的质量控制和出厂测试,保证测试结果的稳定性。 2020版《中国药典》一部 益母草含量测定 色谱条件:色谱柱:Blossmate® Polar-Propylamide,4.6×250mm,5μm订 货 号:00604-21043流 动 相:乙腈:0.2%冰醋酸=80:20(v/v)柱 温:30℃流 速:1.0 mL/min检 测 器:ELSD进 样 量:10μL优异的批次重现性选取多个不同批次的益母草专用柱,对盐酸水苏碱进行测试,显示出批次重现性,结果更稳定,用户更放心。新版药典实施在即,月旭科技将与您一同携手,齐心呵护天下女性健康,共同维护中国药品的规范。
  • 残留溶剂检测专题系列——第一期岛津SH-I-624Sil MS助力精益生产
    第一期岛津SH-I-624Sil MS助力精益生产文末有好礼相赠哦!残留溶剂怎么测?何为残留溶剂?在原料药或辅料生产及制剂制备过程中使用或产生的挥发性有机物。这些溶剂在实际生产工艺中无法除尽。残留溶剂分类?残留溶剂一般分为I、II、III、IV类:为何需要检测?残留溶剂无实际治疗助益,当在药品中含量高于安全值时会危害人体或环境;残留溶剂在物料中可能影响物料安全性和质量稳定性,是药品关键质量属性。有何法规支持?ICH Q3C(R8):杂质:残留溶剂的指导原则(立足各国药典之上)《美国药典》USP有机挥发性杂质:残留溶剂的限制《中国药典》ChP残留溶剂测定法《欧洲药典》EP残留溶剂通则《日本药典》JP残留溶剂检测方案设计情况?方法选择:参考USP和ChP相结合仪器选择:多使用气相色谱仪+FID检测器柱子选择:多使用6%氰丙基苯基/94%二甲基聚硅氧烷(624)载气选择:多使用N2(经济)溶剂选择:多使用DMSO/DMF(溶解能力强)进样方式:多使用顶空进样(大部分组分沸点低、挥发性强)最终方案:HS-GC-FID+SH-I-624Sil MS、N2做载气、DMSO做溶剂优势对比:I类、II类A、II类B、III类与市售气相柱对比方案分析效果?小编今天给大家带来的是同仪器及方法、相同规格(30m x 0.32mm x 1.8 μm)色谱柱下I、II类A分离效果对比。 01 I 类残留溶剂II 类A残留溶剂#问卷有礼为了更好地满足您的需求,我们诚挚地邀请您填写以下信息,以便我们能够为您提供更好的产品及服务。完成并提交问卷即可获得岛津定制双肩包一个。活动时间:即日起至2024年5月31日扫描下方二维码参与活动!
  • 解决方案丨鸡肝中环丙氨嗪残留量的测定
    环丙氨嗪又名灭蛆灵、灭蝇胺,是一种新型的昆虫生长调节剂,对双翅目昆虫幼虫体有杀灭作用,尤其对在粪便中繁殖的几种常见的苍蝇幼虫(蛆)有很好的抑制和杀灭作用。它和一般灭蝇药的不同点是它杀幼虫-蛆,而一般灭蝇药只杀成蝇且毒性较大。该药具有触杀和胃毒作用,并有强内吸传导性,持效期较长,但作用速度较慢。短期内大量接触灭蝇胺对眼睛、皮肤有刺激作用,甚至引起急性中毒,产生恶心、呕吐、眩晕等健康危害,长期摄入对人体健康有不良影响。对于动物性食品中环丙氨嗪残留量的检测现可依据国家标准GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》,本方法参考上述标准,将试料中的环丙氨嗪,用三氯乙酸/乙腈溶液提取,混合阳离子交换固相萃取柱净化,高效液相色谱测定,外标法定量。图-1 环丙氨嗪的结构式仪器和耗材1仪器Fotector Plus高通量全自动固相萃取仪AH 50全自动均质器MPE系列高通量真空平行浓缩仪Auto EVA 80 全自动氮吹浓缩仪Agilent 1260高效液相色谱2 耗材MCX固相萃取柱(60 mg/3mL,P/N:RC-204-72855)3 试剂乙腈(色谱纯)甲醇(色谱纯)正己烷(色谱纯)乙酸乙酯(色谱纯)25 mmol/L乙酸铵溶液:取乙酸铵0.19 g,用水950 mL溶解,用乙酸调pH至5.0,用水稀释至1000 mL。1%三氯乙酸溶液:取三氯乙酸1g,用水溶解并稀释至100 mL。提取液:取1%三氯乙酸溶液15 mL,用乙腈稀释至100 mL。0.1 mol/L 盐酸溶液:取盐酸9 mL,用稀释至1000 mL。5%氨水甲醇溶液:取氨水5 mL,用甲醇稀释至100 mL。流动相:取25 mmol/L 乙酸铵溶液40.0 mL,用乙腈定容至1000 mL。样品制备称取试样5 g(准确到±0.01 g),于50 mL离心管中,使用AH 50全自动均质器自动加入提取液15 mL,并均质30 s。5000 r/ min离心5 min,取上清液于分液漏斗中,再于残渣中加提取液10 mL,重复提取一次,合并两次上清液,加正己烷30 mL,振摇2 min,静置使分层。收集下层液体于MPE浓缩杯中,于MPE真空平行浓缩仪50 ℃水浴中浓缩至1 mL,转至10 mL刻度离心管中,用提取液润洗浓缩杯2次,每次2 mL。合并两次提取液,以10000 r/min离心5 min,取上清液,备用。1 净化取MCX固相萃取柱安装在Fotector Plus高通量全自动固相萃取仪上,依次用甲醇5 mL、水3 mL活化,备用液过柱(控制流速约1.0 mL/ min)。依次用甲醇3 mL、0.1 mol/L盐酸溶液3 mL、水3 mL和甲醇3 mL洗柱,弃去洗出液。用5%氨水甲醇5 mL洗脱,收集洗脱液。洗脱液于EVA 80全自动氮吹浓缩仪上50℃氮吹吹干,用流动相1 mL溶解残余物,涡旋混匀,过滤,待上机分析。具体的固相萃取方法见图-2。2 固相萃取净化条件图-2 Fotector Plus固相萃取方法液相检测条件1 液相条件2 色谱图 图-3 环丙氨嗪标准溶液色谱图(200 µ g/L)图-4 鸡肝基质加标环丙氨嗪色谱图(25 µ g/kg)结果与讨论为了验证该方法的回收率,本实验向鸡肝样品中加入环丙氨嗪标准品进行低、中、高三种浓度梯度的基质加标回收验证(n=6),数据如表-1所示。加标回收率在74.5%~77.9%之间,RSD值控制在5%以内。说明该方法能够运用于动物性食品中环丙氨嗪残留量的检测。样品加标回收率及RSD值(n=6)总结本解决方案操作方便、提取和浓缩效率高、重现性好,符合GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》要求。均质过程采用AH 50全自动均质器,仪器自动加液,通过水洗、溶剂洗、超声洗三种刀头清洗方式,全方位杜绝样品间交叉污染。MPE真空平行浓缩仪实现批量、快速、高效的浓缩过程,采用水浴加热和平稳的圆周震荡模式,一批次完成16位大体积浓缩,同时保证样品的平行性和可靠性。浓缩完成后配合Fotector Plus高通量全自动固相萃取仪进行净化,从活化到上样、洗脱等一步到位,全自动过程排除人员操作带来的误差,且六通道同时进行萃取,能够实现高通量处理,最多一天能够处理180个样品;将净化后的样品直接置于EVA 80高通量全自动氮吹浓缩仪中,不仅避免转移的损失,又省时省力,真正为批量检测提供帮助。
  • 日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了
    日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼牛夏梦由于新污染物本身具有的生物毒性、环境持久性、生物累积性以及对人体健康存在的潜在风险引起大家的广泛关注。目前国际上广泛关注的新污染物包括全氟化合物(per-and polyfluoroalkyl substances,PFAS)、抗生素(Antibiotic)、阻燃剂(Flame Retardant,FR)、持久性有机污染物(Persistent Organic Pollutants,POPs)、内分泌干扰物(Endocrine-Disrupting Chemicals,EDCs)、微塑料(Microplastics),药物与个人护理品(Pharmaceuticals and personal care products,PPCP)等。健康风险有毒物质和疾病登记局(ATSDR)显示根据全氟化合物的动物试验研究发现PFAS 会对肝脏和免疫系统造成损害,还会导致实验动物出生体重低、出生缺陷、发育迟缓以及新生儿死亡;复旦大学医学研究院比较了全球范围内不同人群经呼吸道和胃肠道暴露于OPFRs的水平以及其在体内的负荷水平;归纳和总结了长期低水平的OPFRs暴露对儿童神经发育、成年人的生殖系统以及甲状腺功能等方面的潜在危害;抗生素的耐药性则是全球需要面对的公共卫生挑战,抗菌素耐药性增加是导致严重感染、并发症、住院时间延长和死亡率增加的原因。赛默飞新污染物解决方案新污染物覆盖种类较为广泛,目前除了主要关注的新污染物除了抗生素以外,热度比较高的新污染物还有全氟化合物PFAS以及阻燃剂,其中阻燃剂中添加型阻燃剂中的有机磷阻燃剂则是目前使用较多的一种,也是目前污染较为广泛的一类。赛默飞为了满足客户检测筛查更多种类的全氟化合物以及更广泛新型有机污染物的需求,进行了新污染物种类的扩项。本次方案更新亮点:更多的全氟化合物,赛默飞推出市面覆盖最多的全氟化合物的谱图库(Library)以及数据库(Database),100多种全氟化合物可供筛选,其中包括磺酸类、羧酸类、酰胺类及醇类;新类别的有机磷阻燃剂的筛查方案,增加了40多种有机磷阻燃剂,扩大大家对于新污染物的发现范畴,覆盖更广更全面;同一个的方法,有效数据级别up,新添加的化合物均存在出峰时间、分子式以及碎片的全部信息,方便大家实现更高级别的鉴定;当前最新方法包的新污染物类别组成如下:图1 数据库中新污染物类别分布(点击查看大图)有机磷阻燃剂存在较多的异构体,该方法包可以实现异构体的有效分离:图2 磷酸三(1-氯-2-丙基)酯和三(3-氯丙基)磷酸酯(上)、磷酸三丙酯和磷酸三异丙基酯(下)(点击查看大图)该方案基于赛默飞高分辨仪器平台Orbitrap Exploris系列静电场轨道阱质谱,Orbitrap超高的分辨率(12W以上)尽可能的实现分子量相近化合物的分离分析;精确的质量精度,在标配的Easy-IC功能下,可以做到小于1ppm的质量偏差,最大程度的解析未知物的元素组成;正负切换,得到的更多方向的二级碎片以及更多种类的化合物,更有利于目标物质的高通量筛查。赛默飞高分辨新污染物筛查数据库目前已更新400多种,之后也会进一步持续更新,助力更广度的新污染物筛查工作持续有效进行。赛默飞依托完整的产品线以及优异的质谱性能,助力新污染筛查分析,致力于世界更健康、更清洁、更安全。赛默飞推出的全新高分辨新污染物筛查方法包已上线,该方法包种包括仪器进样方法、数据处理方法、报告模板以及新污染物的具体信息,如需该方案致电联系相关销售即可免费获得。推荐阅读:● 重磅来袭|赛默飞新污染监测高通量方案再升级 ► 点击阅读 ● 磨砺以须 倍道而进|新污染物高分辨液质筛查方案就现在! ► 点击阅读 ● 简单上手 快速落地 | 新污染物液质解决方案看这里 ► 点击阅读 如需合作转载本文,请文末留言。
  • 吹扫捕集-气相色谱冷原子荧光光谱法 测定水中烷基汞解决方案
    吹扫捕集-气相色谱冷原子荧光光谱法测定水中烷基汞解决方案北分瑞利水质与土壤等环境中烷基汞由于生物富集的作用,其毒性远远高于无机汞,为了人类的身体健康,准确检测环境中的烷基汞含量就显得十分重要,然而由于环境中烷基汞的含量一般为超痕量,使得一般的分析仪器难以满足检测要求。吹扫捕集-气相色谱-冷原子荧光光谱法(PT-GC-AFD)由于进样量小、检出限低、灵敏度高、分析速度快及环境污染小等优点特别适合分析环境中超痕量的烷基汞。在《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》标准条件下测定样品中甲基汞、乙基汞的含量,使用峰面积进行计算。该方法在0.1-4ng/L的浓度范围内标准曲线的线性相关系数R在0.999以上,甲基汞的检出限为0.11pg,乙基汞检出限为0.16pg,具有较好的方法回收率和重复性。1 标准依据及测试原理测试结果符合2019年3月1日起实施的《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》。水样蒸馏后馏出液中的烷基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,吹扫后被Tenax管捕集,热脱附出来的组分经气相色谱分离,再高温裂解为汞蒸气,用冷原子荧光检测器检测。2 仪器设备与测试条件仪器配置仪器品牌型 号气相色谱仪北分瑞利SP-3530配毛细注样器和小型冷原子荧光检测器吹扫捕集北分瑞利BFRL-APT30S北分瑞利小型冷原子荧光检测器专利证书测试条件吹扫捕集测试条件吹扫温度:常温;吹扫气体:氩气(99.999%);吹扫时间:30min;吹扫流量:80mL/min;干吹时间:5min;捕集管解析温度:250℃;解析时间:1min;解析流量:15mL/min;烘烤温度:280℃;烘烤时间:10min;烘烤流量:300mL/min。气相色谱仪测试条件载气:氩气(99.999%),流量15mL/min,恒流模式;柱温箱升温程序:起始温度90℃,保持1min,以5℃/min升至100℃,保持2min;进样口温度220℃;进样方式:不分流模式;AFD设置:灯电流25mA,负高压630V,裂解温度800℃,补充气流量65mL/min。3 测试结果测试谱图图 1 烷基汞测试谱图序号中文名称保留时间min检出限/pg1甲基丙基汞2.0330.112乙基丙基汞3.3680.163丙基丙基汞4.630——甲基汞乙基汞结论吹扫捕集-气相色谱-冷原子荧光光谱法(PT-GC-AFD)测定环境中烷基汞的分析方法,符合《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》。甲基汞和乙基汞的检出限分别为0.11pg和0.16pg,达到国际先进水平。PT-GC-AFD在安装AFD的同时还可以加装FID、ECD、TCD等多种气相色谱仪检测器,增加了仪器的通用性和适用范围,使仪器除了测量烷基汞之外,还可以轻松扩项进行多种样品的分析。北分瑞利公司拥有原子吸收分光光度计、原子荧光光谱仪、原子发射光谱仪、紫外/可见分光光度计、傅立叶变换红外光谱仪、气相色谱仪、液相色谱仪等光谱与色谱分析仪器,为各行业提供全套应用解决方案。
  • 残留溶剂专题②|岛津SH-I-624Sil MS助力高效分析
    第二期 II类B残留溶剂上期回顾第一期I类残留溶剂和II类A残留溶剂的分析在残留溶剂专题①中我们介绍了I类残留溶剂和II类A残留溶剂的分析,我们对比了岛津SH-I-624Sil MS和市面某品牌624,岛津SH-I-624Sil MS对I类残留溶剂苯和1,2-二氯乙烷分离度更优,II类A残留溶剂整体峰形和灵敏度更好,同时溶剂峰DMSO和异丙基苯也展现出了更好的分离度。本期我们从II类B残留溶剂进一步展开介绍。方案设计参考方法:II类B:USP载气:N2色谱柱:适合顶空进样的残留溶剂:G43色谱柱(624) 适合直接进样的残留溶剂:G16色谱柱(PEG)溶剂:DMSO进样方式:顶空检测器:FIDII类B实验结果II类B残留溶剂标准溶液分离数据(岛津SH-I-624Sil MS)对于II类B残留溶剂,SH-I-624Sil MS整体分离效果良好。特别注意!# 吡啶容易出现响应不好的问题这是因为吡啶易与熔融石英表面硅羟基形成分子间氢键,从而导致吸附、拖尾、响应差等问题的出现。与此同时我们也发现甲苯和吡啶同时检测时容易共流出,干扰彼此定量。对于吡啶检测我们建议使用胺类专用柱SH-Volatil Amin(碱改性100%二甲基聚硅氧烷),碱处理色谱柱可有效改善胺类柱上吸附和峰形拖尾问题。(点击查看更多胺类专用柱相关)对甲苯和吡啶检测我们给出针对性测试方案:上:使用岛津SH-I-624Sil MS之前下:使用岛津SH-I-624Sil MS之后测试结果表明:使用岛津SH-I-624Sil MS之前甲苯和吡啶分离度仅为1.4,使用后该柱子后甲苯和吡啶分离度提升到1.9,吡啶响应良好。为提升吡啶响应,提供大家一种优化思路:小内径提升吡啶响应和灵敏度完整实验结果请查看“岛津实验器材”微信公众号或直接访问:https://mp.weixin.qq.com/s/PdHRKm8wcgxZrH-ItHEIEg 产品信息点击立即查看最新药斯卡排行榜
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 保障儿童健康,岛津疾病筛查方案守护每一朵希望之花
    导语儿童是国家的未来、民族的希望,儿童健康是经济社会可持续发展的重要保障。在日常生活中,“儿童”这个词,通常被认为就是年龄偏小的孩子,相对来说概念比较模糊。根据国际《儿童权利公约》界定:儿童是指18岁以下的任何人,其中儿童定义等同于我国法律上的未成年人。高等医药院校教材《儿科学》里把儿童年龄分为七个时期: 胎儿期、新生儿期、婴儿期、幼儿期、学龄前期、学龄期、少年期,均属于儿科学研究范畴。2021年11月5日国家卫健委妇幼健康司发布《健康儿童行动提升计划(2021-2025年)》,计划中突出强调坚持预防为主,防治结合。针对贫血、肥胖、视力不良、孤独症、听力障碍等严重危害儿童健康的风险因素,要求落实早筛查、早诊断、早治疗的防控策略,降低疾病负担,促进儿童健康;强调提高儿童血液病、恶性肿瘤等重大疾病的诊疗能力和救治水平。岛津公司在健康中国建设以及儿童健康保障提升行动中,一直孜孜不倦的进行着努力,为儿童相关疾病的早筛查、早诊断、早治疗提供丰富的解决方案,一起来看看吧!新生儿出生缺陷筛查与诊断新生儿疾病筛查是母婴保健技术的重要内容之一,其目的是对那些患病的新生儿在临床症状尚未表现之前或表现轻微时通过筛查,得以早期诊断、早期治疗,防止机体组织器官发生不可逆的损伤,避免患儿发生智力低下、严重的疾病或死亡。常见的新生儿筛查疾病涉及氨基酸代谢病、有机酸代谢病、内分泌疾病、血红素疾病、脂肪酸代谢病等几大类。筛查手段常见包括生化检测及质谱检测。1. 血尿同筛,双剑合璧,让遗传代谢病无所遁形目前针对氨基酸、酰基肉碱的筛查检测有衍生和非衍生LC-MS/MS法,而有机酸主要用GCMS分析。岛津公司提供可靠的LC-MS/MS法及GCMS法血尿同筛解决方案。LC-MS/MS法血筛方案简介LC-MS/MS法方案提供“即刻使用方法”,无需方法开发及方法优化,适配衍生化及非衍生化样本处理方法试剂盒;进样量1 μL,仅需60秒即可完成检测;提供专业Neonatal Solution遗传代谢病筛查软件,可一站式实现目标物数据库建立、分析方法设置、数据结果分析判断及质量控制等功能。该方案可对50余种相关疾病的诊断提供检测数据支持。LC-MS/MS法血筛方案GCMS法尿筛方案简介有机酸尿症又称有机酸血症,是儿童遗传代谢性疾病中较常见的病种, 是导致小儿神经系统损害的重要原因,迄今已发现了近 40 种疾患。有机酸尿症临床诊断困难,目前应用 GCMS 分析尿中有机酸是有机酸尿症筛查与诊断的可靠方法,已开始作为常规筛查手段运用于新生儿筛查或高危筛查。岛津公司开发的有机酸遗传代谢病辅助诊断软件,可自动对 40 种有机酸代谢病给出诊断结果,大大提高了分析效率。GCMS法尿筛方案2.纤毫毕现,精准筛查X-连锁肾上腺脑白质营养不良(XALD)X-连锁肾上腺脑白质营养不良(X-linked adrenoleukodystrophy,ALD)为过氧化物酶体功能异常导致的脂代谢异常疾病,属于遗传代谢病。本病较为罕见,预后差,主要以听觉和视觉功能损害、智能减退、行为异常、运动障碍为主要表现。2018年5月11日,该疾病被列入国家卫生健康委员会等5部门联合制定的《第一批罕见病目录》。岛津公司ALD筛查方案使用岛津LC-MS/MS液质联用系统及X连锁肾上腺脑白质营养不良筛查和诊断试剂盒(质谱生物科技有限公司),基于Neonatal Solution遗传代谢病筛查软件强大功能,通过对ALD诊断标志物4种溶血磷脂酰胆碱的测定,可快速、准确筛查ALD。X连锁肾上腺脑白质营养不良筛查和诊断方案在新生儿出生缺陷筛查与诊断领域,除上述方案以外,岛津还开发了基于LC-MS/MS法的先天性肾上腺皮质增生症筛查、肌酸缺乏综合征筛查、有机酸血症相关指标检测等方案。内分泌代谢相关疾病诊断标志物检测1. 揭秘“矮小症”,人血清胰岛素样生长因子-Ⅰ的测定矮小症是指儿童身高低于同性别、同年龄、同种族儿童平均身高的2个标准差,每年生长速度低于5厘米者。引起矮小症的原因很多,对于GHRH-GH-IGF(促生长激素释放激素-生长激素-胰岛素样生长因子)的功能评价是诊断儿童矮小症的关键,研究发现直接检测GH有局限性。检测IGF-Ⅰ可间接反映垂体分泌GH功能,有助于诊断GH缺乏引起的疾病。岛津应用LC-MS/MS液质联用系统开发了基于IGF-Ⅰ完整蛋白的检测方法。对方法的线性、准确度及精密度进行了考察。结果显示该方法线性良好,准确度及精密度均满足要求,可用于临床检测。方法学考察结果2.儿童肝胆疾病诊断-一针法快速分析17种胆汁酸胆汁酸由胆固醇代谢产生,根据合成途径,可以分为由胆固醇为原料直接合成的初级胆汁酸和代谢产生的次级胆汁酸。胆汁酸含量异常可以反馈相应肝胆疾病及肠胃疾病,如胆汁淤积、儿科肝脏疾病等。而不同的胆汁酸亚型在临床上具有不同的诊断意义,因此检测每一种亚型的胆汁酸在体内的水平而非简单地定量测量总胆汁酸水平,对于肝胆疾病的筛查、诊断具有重要意义。岛津应用LC-MS/MS液质联用系统开发了10 min内同时检测17种胆汁酸的定量方案。前处理采用蛋白沉淀法,简便快速;特色Velox 色谱柱保证了对同分异构体的完美分离,该方案可辅助筛查诊断肝胆疾病、胃肠道疾病及代谢性疾病等,实现理想化临床检测,“一针分析,多种诊断”。17种胆汁酸色谱图及线性结果营养及健康状况评估1.体内维生素及氨基酸水平筛查评估体内维生素以及氨基酸水平对于儿童生长发育及疾病防治具有积极意义。此类成分的检测可以作为健康评估或疾病筛查的重要手段,为预防疾病、改善身体营养状态和营养补充提供参考。例如:血清中25-羟基维生素D2/D3(25(OH)D2/D3)的浓度测量,已经应用于监控人体内维生素D的状况及低血钙代谢性骨疾病和高血钙代谢性骨疾病的鉴别诊断。血清脂溶性维生素含量测定岛津开发了7 min一次进样同时分析人血清中5种脂溶性维生素的检测方案,经方法学评价,该方法样品处理简单、分析速度快、灵敏度高、专属性强,可供临床参考应用。标准曲线最低浓度点色谱图线性及准确度结果血清全谱氨基酸检测应用LC-MS/MS液质联用系统三重四极杆液质联用系统开发了同时测定人血清42种氨基酸的分析方法。该方法采用内标法定量,42种氨基酸线性相关系数均在 0.993以上,加标回收率在 76.5~119.4% 之间,方法准确可靠,可用于临床样品的检测。部分氨基酸标准曲线最低点 MRM 色谱图治疗药物监测应用由于儿童处于快速成长的阶段,因此,其药物代谢动力学性质与成人有显著不同。在新药研发过程中,一般受试对象为健康成年人,很多药物在儿科患者中的应用尚缺乏经验,因此相对于成人,儿童是TDM的特殊人群,其 TDM 的价值更大。2015 年 9 月由中华医学会儿科学分会临床药理学组发布的《儿童治疗性药物监测专家共识》,旨在为中国儿童TDM 提供参考,促进儿童合理用药,保障儿童用药安全。专家共识中筛选出七类推荐行TDM的药物,包括抗菌药物、抗癫痫药物、抗肿瘤药物、心血管药物、平喘药、免疫抑制剂及抗精神病药物。《儿童治疗性药物监测专家共识》推荐行TDM药物列表岛津经过多年的积累,已建立了169个药物品种的检测方法,均收录在《治疗药物监测(TDM)质谱分析方案》中,基本覆盖儿童行TDM药物品种,可为儿童治疗药物监测提供检测方法参考,助力儿童用药安全。结语儿童健康关系未来,岛津方案守护希望。在“以科学技术向社会做贡献”的创业宗旨和实现“为了人类和地球的健康”这一愿望的经营理念的指导下,岛津公司在儿童健康与疾病防治方面,积累了丰富可行的检测方案,未来将持续为儿童相关疾病的早筛查、早诊断、早治疗提供更加进步、丰富的产品及解决方案,守护儿童健康,助力健康中国建设。文中推荐技术方法方案仅用于医学等相关专业人士技术交流,不作为临床诊断依据。
  • 欧盟拟修订大米中丙环唑的最大残留限量
    根据欧盟委员会(EC)No 396/2005法规第6节的规定,意大利收到一份来自先正达植保公司(Syngenta Crop Protection)要求修改大米中的一活性物质丙环唑(propiconazole)最大残留限量(MRL)的申请。为了与意大利范围内大米中丙环唑的最大残留限量相适应,该公司建议将大米中丙环唑的最大残留限量由现行的0.05mg/kg提高至1mg/kg。意大利依据欧盟委员会(EC)No 396/2005法规第8节的规定起草了一份评估报告,并提交至欧盟委员会,之后于2010年12月1日转至欧洲食品安全局。   欧洲食品安全局根据评估报告、评估草案、芬兰提供的附录、联合国粮农组织以及世界卫生组织农药残留会议意见等进行了审核,对丙环唑的毒理学概况进行了评审,做出如下决定: 商品代码 商品 现行MRL(mg/kg) 建议MRL(mg/kg) 建议理由 0500060 大米 0.05* 0.7 该提议的最大残留限量支持数据充分,并不会对消费者构成健康风险。理论每日最大摄入量(TDMs)的风险评估不能展开。
  • 卫生部公布14种食品添加剂质量规格标准
    根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现公布磷酸酯双淀粉等14个食品添加剂的质量规格标准。   特此公告。   附件:磷酸酯双淀粉等14个食品添加剂的质量规格标准.doc 一、磷酸酯双淀粉 项目 指标 干燥失重/(g/100g) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用三偏磷酸钠或三氯氧磷为酯化剂 二、醋酸酯淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯/ (mg/kg) ≤ (仅限用乙酸乙烯酯作为酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 三、辛烯基琥珀酸淀粉钠和辛烯基琥珀酸铝淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 砷/(mg/kg) (以As计) ≤ 0.5 铅/(mg/kg) ≤ 1.0 辛烯基琥珀酸基团/(%) ≤ 3.0 辛烯基琥珀酸残留量/(%) ≤ 0.3 注:生产辛烯基琥珀酸淀粉钠时,辛烯基琥珀酸酐用量不超过3.0%(占淀粉干基,w/w);生产辛烯基琥珀酸铝淀粉时,辛烯基琥珀酸酐用量不超过2.0%,硫酸铝用量不超过2.0%(均为占淀粉干基,w/w)。 四、氧化羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羧基含量/(%) ≤ 1.1 羟丙基含量/(%) ≤ 7.0 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w),用过氧化氢作氧化剂,使用量中的活性氧不超过0.45%(占淀粉干基,w/w);用环氧丙烷作醚化剂,使用量不超过25%(占淀粉干基,w/w)。 五、羧甲基淀粉钠 项目 指标 干燥失重/(%) ≤ 10 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯化物(以cl计)/(%) ≤ 0.43 硫酸盐(以SO4计)/(%) ≤ 0.96 注:一氯乙酸为醚化剂。 六、淀粉磷酸酯钠 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:用正磷酸、磷酸钠、磷酸钾或三聚磷酸钠酯化。 七、氧化淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 羧基含量/(%) ≤ 1.1 注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w)。 八、酸处理淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 注:采用盐酸、正磷酸或硫酸处理。 九、乙酰化双淀粉己二酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 乙酰基含量/(%) ≤ 2.5 己二酸盐/(%) ≤ 0.135 注:用已二酸酐(用量占淀粉干基不超过0.12%,w/w)交联,乙酸酐(用量占淀粉干基不超过8.0%,w/w)酯化。 十、羟丙基淀粉 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/( mg/kg ) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 氯丙醇/(mg/kg) ≤ 1.0 羟丙基含量/(%) ≤ 7.0 注:用环氧丙烷作醚化剂(用量占淀粉干基不超过25%,w/w)。 十一、磷酸化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4 注:采用三聚磷酸钠和三偏磷酸钠作酯化剂。 十二、乙酰化二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg)≤ 20 铅/(mg/kg) ≤ 1.0砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 乙酰基含量/(%) ≤ 2.5 乙酸乙烯酯残留量/(mg/kg) ≤ (仅限用乙酸乙烯酯作酯化剂) 0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 十三、羟丙基二淀粉磷酸酯 项目 指标 干燥失重/(%) ≤ 谷类淀粉: 15.0;土豆淀粉: 21.0;其他单品淀粉: 18.0 SO2残留量/(mg/kg) ≤ 30 重金属(以Pb计)/(mg/kg) ≤ 20 铅/(mg/kg) ≤ 1.0 砷/(mg/kg) (以As计) ≤ 0.5 磷酸盐残留量(以P计)/(%) ≤ 马铃薯和小麦淀粉0.14;其他淀粉0.04 羟丙基含量/(%) ≤ 7.0 氯丙醇/(mg/kg) ≤ 1.0 注:采用三氯氧磷(用量占淀粉干基不超过0.1%,w/w)或三偏磷酸钠酯化交联,环氧丙烷醚化(用量占淀粉干基不超过10%,w/w)。 十四、聚丙烯酸钠 项 目 指 标 硫酸盐(以SO4计),w/ % ≤ 0.49 重金属(以Pb计)/(mg/kg) ≤ 20.0 砷(以As计)/(mg/kg) ≤ 2.0 残存单体,w/ % ≤ 1.0 低聚合物,w/ % ≤ 5.0 干燥失重,w/ % < 6.0 烧灼残渣,w/ % ≤ 76.0 pH(0.1%水溶液) 8~10 0.2%水溶液粘度 (60rpm.20℃) 250~430 cps 注:生产工艺,丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。 分送:各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,部直属各单位。 卫生部办公厅 2010年7月21日印发
  • 月饼硫残留是公开秘密 国家标准无相关限制
    “今年油、面粉、糖和做馅用的各种原料价格上涨,月饼主要生产企业整体市场零售价随之上涨10%,然而市场上仍有相当一部分小的月饼厂家借机大打价格战,为了缩减制作成本,月饼馅料二氧化硫残留有可能发展成产业内的一场'三聚氰胺危机’。”日前,华南月饼制造业资深人士卢超明(化名)告诉本报记者。记者4日在广州某大超市看到,店内至少销售20款月饼,价格参差不齐,以一盒四个普通装双黄白莲蓉月饼为例,最低不到30元一盒,而最高超过200元一盒。卢超明称,国内月饼市场容量达200亿元,而前十名的大企业只占约10%的市场份额,中小品牌众多以及巨大的市场空间给行业的质量监控提高了难度。   原材料价格上涨月饼普涨   “受农副产品市场价格影响,今年生产月饼的主要原材料成本与去年同比大幅上涨,如莲子价格约为4.8万元/吨,同比上涨165% 五仁类原材料同比上涨40%-60% 糖约为5500元/吨,同比上涨30% 花生油约为1.7万元/吨,同比上涨50% 面粉约为5000元/吨,同比上涨15%。”广州酒家集团利口福食品有限公司总经理吴家威告诉本报记者,广州酒家今年中秋月饼原材料成本平均升幅高达30%。由于主要原材料成本大幅上涨,记者发现去年广式月饼主要品牌月饼系列的价格不超过百元的月饼占到六七成,但是今年预计单价超过或接近百元左右的品种占月饼总销量的70%。“从1994年开始,安琪月饼只提过一次价,今年是第二次。”深圳市场月饼龙头老大深圳安琪食品有限公司董事长梁球胜告诉本报记者,今年安琪双黄白莲蓉月饼每盒零售价从原来的108元提高10元,标价118元,产品平均增幅在10%左右。   从制定国内月饼国家标准,到生产企业强制Q S认证,国内月饼市场近年得到较大程度的规范,然而国内月饼市场容量达200亿元,而前十名大企业只占约10%的市场份额。“国内目前月饼的生产巨头有上海杏花楼、广州酒家、深圳安琪、北京稻香村、北京好利来和东莞华美等大品牌,销售额最大的杏花楼不过3亿元左右,广州酒家约2.5亿元,深圳安琪约2亿元,排名前十位的生产企业的市场销售总额接近20亿元,只占200亿的市场整体容量的10%份额。”华南月饼制造业资深人士卢超明(化名)告诉本报记者。   以劣充好,食品安全隐患上升   依据国家月饼标准,包括以莲子为主要原料加工成馅的月饼,除油、糖外的馅料原料中,莲子含量应不低于60%,然而由于今年莲蓉价格大涨,不少企业以“薯粉”冒充莲蓉。然而化学物在月饼中的残留,造成的质量影响更大。“月饼制作过程中不少企业为图价格优势,使用硫化糖,该类糖含有一定的二氧化硫残留,并容易带入月饼馅料中。除此外,莲蓉的制作过程中,为令莲子漂白,行内普遍用食用碱水,但是有不法商家为加快进程,用一种含有二氧化硫的化学物,这无疑增加了莲子硫残留风险。”卢超明称。当前关于月饼的国家标准中,并没有针对硫残留含量限制的相关条款,而月饼的硫残留已成为行业公开的秘密。   乳业三聚氰胺危机令乳业巨头掀起奶源基地兴建热潮,苏丹红风波令食品行业加强对色素的监管,而月饼行业的安全隐患却鲜为人知。“广式月饼的主要原料有莲子、蛋黄、面粉、糖、油等,其中又属莲子和蛋黄最关键。”安琪董事长梁球胜告诉记者。为把控莲蓉的品质监控,今年安琪在湖北仙桃建立逾万亩湘莲种植基地,并与武汉大学开展无公害莲业科研合作,该项合作被列为“十一五”国家支撑计划重大项目。而在湖北仙桃沙湖,安琪也建立了非饲料养殖的养鸭基地。“苏丹红事件后,使用工业色素'上色’的投机行为少了,但市场上不少表面看上去颜色鲜亮的咸蛋黄,其实养殖过程中鸭农仍然喂饲了可食用的胡萝卜素。相比之下富含天然胡萝卜素的麦黄角草是沙湖的特产,以该草料喂养的鸭子所产咸蛋,出油、起沙和色泽都是最出色的。该莲子和养鸭基地一年可以为安琪提供充足的莲蓉和咸蛋黄,这标志着安琪正突破当前月饼产业收购莲子中间存在原料多重购销环节的模式,从莲子种植、莲业研发、莲蓉制作,到月饼产销,开创月饼全产业链时代。”梁球胜称。
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax® 柱,符合USP通则中色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX® 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气@ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX® 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX® 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv® GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 上海有机所等在高活性天然产物生物合成中发现新自抗性机制
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   GyrI-like蛋白广泛存在于原核与真核生物中,并被注释为小分子结合蛋白。近期,中国科学院上海有机化学研究所生命有机化学国家重点实验室唐功利课题组与周佳海课题组以及瑞士洛桑联邦理工学院袁曙光合作,以抗肿瘤抗生素谷田霉素(YTM)和CC-1065为研究对象,报道了GyrI-like家族的一个亚家族蛋白具有水解YTM和CC-1065环丙基的特性,且这类酶能够赋予微生物对YTM和CC-1065的抗性。相关研究成果在线发表于《自然· 通讯》( i Nat.Commun. /i 2017, DOI: 10.1038/s41467-017-01508-1)。 /p p   谷田霉素家族化合物是一类来源于微生物、含有环丙烷药效团的高活性天然产物,目前包括YTM、CC-1065和多卡霉素。这些化合物主要是对细胞内的遗传物质DNA进行烷基化修饰,从而达到杀死细胞的目的(IC50为pM级)。唐功利课题组长期以来致力于谷田霉素家族化合物的生物合成研究,此次发现是继克隆了YTM和 CC-1065的生物合成基因簇,以及揭示 DNA 糖苷酶 YtkR2开启DNA修复机制以来取得的又一突破。 /p p   该研究得到了国家自然科学基金委、上海市科委、中科院战略性先导科技专项的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171211356416650773.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/87622366-468a-46b7-99e7-63c86a510812.jpg" / /p p style=" text-align: center " GyrI-like家族环丙基水解酶赋予微生物对YTM和CC-1065的抗性 /p
  • 美调查:50%以上受检婴儿床垫含TRIS阻燃剂
    原标题:美国调查发现半数以上受检婴儿床垫含TRIS阻燃剂   美国知名媒体《芝加哥论坛报》于日前发布一份针对婴儿床垫产品中磷酸三脂(TRIS)阻燃剂含量情况调查报告。来自民间调查的这批受检产品来自于Angeles,Babies R Us以及Foundations三家企业于2011年和2012年在售的27款婴儿床软垫,对当中的磷酸三(1,3-二氯丙基)酯(TDCPP,CAS:78-43-3)和磷酸三(β-氯乙基)酯(TCEP,CAS:115-96-8)以及磷酸三(2-氯丙基)酯(TCPP,cas号13674-84-5)含量进行统计分析。经检测,几乎在半数以上受检产品中发现上述阻燃剂的情况。   TDCPP、TCEP、TCPP三种物质因其对健康具威胁性,在婴儿床垫中的使用受限。TDCPP被世界卫生组织(W.H.O.)以及消费者安全协会(CPSC)鉴定为潜在致癌物质。美国国家毒理计划、欧盟委员会以及其他相关组织也认定TCEP具有潜在致癌性。对于TCPP的相关研究则较少,但因其结构与TCEP和TDCPP类似,也被怀疑具有相似的致癌特性。在产品适用过程和适用该产品的区域周围的空气粉尘皆可产生有毒化学品暴露。   20世界70年代的美国,TDCPP仅被用于儿童睡衣,目前该物质位列加州65致癌物清单以及华盛顿州儿童产品需高度关注物质(CHCC)清单之列 TCEP也在加州65致癌物清单中,同样也被华盛顿州和纽约州限制适用。加拿大已经禁止TCEP用于供三岁以下儿童适用的产品中。   仅仅在刚过去的2012年,美国民间和政府对化学阻燃剂的相关活动就不少:   2012年3月,美国最大儿童汽车座椅Britax向密歇根州儿童环境健康和生态中心承诺将逐步淘汰儿童产品中的溴化阻燃剂、氯化阻燃剂使用   2012年5月,美国参议院致信环境保护署(EPA)要求EPA全面调查阻燃剂安全性,限制有毒化学阻燃剂使用   2012年7月,美国儿童产品行业巨头Graco children's products Inc. 宣布在所有的产品系列中禁用有毒化学阻燃剂   2012年10月,美国华盛顿州引入《无毒儿童法案》(Toxic Free Kids Act),对使用对象为12岁以下儿童的产品中的磷酸酯类阻燃剂:TDCPP和TCEP颁布禁令。该法案预计于2014年7月1日生效。   化学阻燃剂的安全问题更多的为各界所关注,对环保阻燃剂和物理阻燃方式的呼声越来越热烈。这样的形势下,对企业的产品生产就提出了更多的要求,相关企业应重点关注法规变化,调整产品生产环节,保证产品顺利行销。
  • 镉米冲击波仅冰山一角 全面重金属危机需警惕
    专家呼吁,重金属污染导致的健康危机将继续出现,有关部门应早做准备   自2月14日报道“镉米杀机”后,中国多地政府部门迅速作出反应。北京、南京、海口、昆明、厦门、青岛等城市的质监部门均对媒体表示,近期当地市场抽检未见镉米。   本刊记者还从多个渠道获悉,此次镉米舆情,已经传递到相关部委高层。农业部官员则告诉本刊记者,镉米污染问题由国务院食品安全委员会牵头负责。   多地关注镉米   2月14日以来,中国内地多个城市的农业、质监或粮食部门陆续通过媒体,称本地市场上没有镉超标大米。还有一些地区的政府部门,表示将进行摸查或调查。   据《北京晨报》报道,京粮集团相关负责人表示,北京市民餐桌上的大米主要来自黑龙江、辽宁、吉林等地,极少量来自南方,但也都远离本刊“中国大米污染不完全分布图”上所显示的广西阳朔兴坪镇等地。   上海市粮油行业协会秘书长赵志伟对《新闻晨报》称,上海市售大米主要来自东北、江苏等地,很少有湖南、江西等地的大米,且大米在进入正规粮油便利店、超市、卖场之前,供应商须提供产地合格证。   广东也迅即表态。据《新快报》报道,广州市质监局表示,尽管根据国家标准,镉并非大米的必检项目,但近两三年质监部门已经把镉纳入检测中,目前尚未发现本地产大米出现镉超标现象。广州市工商局则表示,针对媒体曝光的镉超标产地大米,已着手对批发市场和零售市场进行摸查登记。而广东省农业厅表示,广东大米一直都有检测镉,尚未收到相关报告,目前正积极了解调查广东大米的相关情况。   《南国都市报》报道称,海口市质监部门相关负责人表示,春节期间曾对海口及周边县份进行检测,检测中凡是获证企业的大米都未出现镉超标。镉一般在重工业比较多的地方土壤中存在,而海口周边没有重工业。   广西南宁农业局办公室副主任杜勇则告诉《当代生活报》,几年前确曾听说桂林阳朔县出现过稻米镉金属超标,但南宁市多年来未接到有关镉米的任何报告。此外,他在第一时间将镉米的相关媒体报道转给局里的农艺师和稻米专家看,大家认为稻米镉金属超标主要分布在矿山密集区域或者是大型化工企业常年存在的地方,而这两个条件南宁市均不具备。   《东南快报》记者从福建省质监部门获得的消息则是,该省2011年1月13日公告的2010年四季度全省粮食加工品监督抽查结果,共抽查442家企业生产的456批次粮食加工品,产品抽样批次不合格率为零。   不过,与一些地方政府部门的表态相比,学者的研究却揭示出另外一番景象。例如,广州大学环境科学与工程学院陈迪云教授等人近几年发布的多篇论文披露,福建沿海一些地区稻米中镉含量超标。该研究小组2008年在福建沿海地区10条主要流域布点采集水稻样品185件,结果有16.8%的样品铅超标,11.4%的样品镉超标,而镉和铅含量高的样品主要集中分布在漳州、福州、福清等工业发达的城市周边地区。   警惕环境健康危机   除了政府部门,多位专家也就镉米问题发表观点。   国务院发展研究中心于保平研究员表示,他在2002年就听说过这方面的问题,一些地区的地方政府说耕地受到重金属严重污染。但一些地区,明知有污染,还让老百姓种,“污染面太大,地方政府也管不过来。”   当然,有专家表示,镉米问题在中国并不算突出,镉米对人体的伤害也没有人们想像中那么严重。一位研究人员称:“在我多年的研究中,的确发现有些地方土壤污染严重,而当地百姓又常年食用被镉污染了的大米,有的群众确实吃了20年、30年,甚至年头更长。但是据我们观察,没有出现大的严重健康问题,只是有一些初步症状,有些污染区人群甚至看不到明显的健康异常。”   本刊记者还获悉,2010年11月,环保部科技标准司在贵阳召开了《贵州省赫章县污染及人群健康状况调查》项目验收会议。这是中国首次按照《环境镉污染所致健康危害区判定标准》(GB/T17221-1998)技术要求,对镉污染区进行系统性评价,调查结果显示:赫章县土壤环境镉污染严重,当地人群日均和最大累积镉摄入量仍超过世界卫生组织建议最大允许暴露值,但人群健康损害尚未达到该标准的判定条件。   北京大学医学部公共卫生学院教授潘小川表示,目前中国还没有出现普遍的镉中毒现象。可能在一些职业病中有体现,但缺乏流行病学上的证据。   不过,潘小川指出,随着政策管控的不断加强,近些年工业排污问题在一定程度上有所减轻和改善,但环境污染造成的健康危害需要长期积累才会显现,在时间上具有滞后性。中国正在进入因重金属污染造成的环境健康危机高发期。   在日本富山县,由于镉污染导致的痛痛病患者从上世纪60年代开始维权,1972年诉讼获胜,但直到最近两年仍有人被认定为痛痛病患者。   专家指出,从某种意义上讲,镉米只是土壤重金属污染问题的一个缩影。根据各个污染区的不同情形,稻米中超标的有害重金属不只是镉,可能还包括砷、汞、铅等。除了稻米,其他农作物同样可能受到重金属超标的影响。无论如何,以镉米为代表的重金属污染问题,都值得全社会警惕。   潘小川教授强调,除了加强污染控制,政府应该牵头组织资料收集、整理工作,尤其在尚未爆发环境健康危机但有过严重污染历史的地区,需亡羊补牢,早做准备,包括建立预警机制、对暴露人群实施保护措施等。可以预见,环境污染导致的健康危机将继续出现,“想压也压不住。”   镉污染调查难   多位专家表示,在镉米等重金属污染以及对健康影响的问题上,相关调查和基础性研究极为缺乏。而现实中这方面的调查研究可能遭遇重重阻力。   中国疾病控制中心环境所研究员尚琪表示,他们近年到镉污染区进行健康调查时,面临不少难题。   通常的情况是,疾病控制机构的调查未及全面展开,当地即出现聚众和上访事件 随后,地方政府便不支持学术机构的调查 最终这类调查往往不了了之。   尚琪说,这种情况导致学术界和高层政府无法全面了解镉污染区居民健康状况。因此,他呼吁公众未来能够支持调查,理性看待镉污染问题。   而本刊记者访问的大多数食用镉米的村庄中,村民皆表示政府部门从未组织过镉是否超标的体检,也未听说有卫生或疾病控制部门的调查人员来过。   多位学者向本刊记者确认,由于担心出现上访事件,地方政府往往阻挠学者的调查,同时也不愿让村民知道较为真实的镉污染现状。   中国政法大学环境资源法研究所所长、污染受害者法律帮助中心主任王灿发教授还指出,与土壤污染相关的诉讼很难开展。   2008年,王灿发接触过湖北省大冶市镉污染严重的一个村子。“当时有村干部找到我们,希望通过打官司要点赔偿,但后来由于种种原因再无下文。”王灿发的团队希望找到具体村民,以受害个体提起诉讼,但村干部要求代表整体村民,不让他们接触具体村民。   此外,在广东省北部的大宝山矿区,有研究人员的研究成果显示,当地的镉等重金属污染非常严重。“河水都是红色的。”王灿发说,但等到2007年着手诉讼时,检测显示当地土壤和居民体内的镉超标又不那么严重了,“不知道是怎么回事。”   台湾如何应对镉米   台湾农业部门官员表示,岛内土壤污染管控推行多年,近年来未再传出镉污染消息   连日来,台湾平面及电视媒体皆引述本刊的“镉米杀机”报道,关注大陆镉米污染的情况及后续处理。   其实,台湾人对镉米并不陌生。上世纪八九十年代台湾也曾爆发镉米事件,其中学课本还详细记录了当初的“镉米事件”,并对镉污染造成的“痛痛病”有清楚的描述。   1982年,桃园县出现台湾第一宗镉米事件。调查发现,污染源头是工厂的含镉废水。农民用污水灌溉,产出的大米镉含量超过台湾规定的允许值0.4毫克/千克。这个标准与日本相仿,比大陆的0.2毫克/千克宽松。此事曝光后,政府强制农田休耕,并要求环保部门提出整治计划。   但镉污染并未销声匿迹。1996年,台湾中南部的彰化和美、云林虎尾、台中大甲也出现一连串镉米事件。媒体调查后更发现,彰化平原的米仓已被工厂废水污染几十年,只是消息一直被掩盖。   上世纪70年代台湾开始的中山高速公路等“十大建设”,带动了台湾出口导向的经济发展。而彰化平原上一块块良田上,也盖起了违规电镀工厂,其排出的重金属废水对环境造成伤害。   台湾“农委会”统计,全岛80多万公顷农地中,按照台湾标准,第4级农地污染面积约5万公顷,第5级农地污染面积约790公顷。第5级是指土壤中有外来重金属介入,应列为重点监测地区,并进行相关工作。   与大陆相比,台湾重金属污染土地的面积其实相当有限,但在环保意识逐渐抬头的台湾,镉米等重金属污染事件一度引发民众哗然。   “人民生活水平提高,就会开始关心吃的健康。”台湾主妇联盟环境保护基金会董事长陈曼丽告诉本刊记者,“当时我们非常关注爆发的镉米事件,就像一群什么都管的婆婆妈妈,觉得面对生活环境的病态与教育的缺失,应该勇于行动。”   从走上街头抗议镉米事件开始,这家成立于1989年的非政府组织,开始推动台湾的土壤保护。多个环保团体也逐渐以结盟的方式,发动地方民众与民意代表,向政府部门陈情。   在政府层面,土壤重金属污染开始受到管控。1999年,台湾“经济部”发布《台湾省地下水管制办法》 2002年,“环保署”公布《农地土壤重金属调查及列管计划》 2005年,《土壤及地下水污染整治法》通过。台湾农地污染管控也有了更详细的权责分工——“环保署”负责农地污染管理,定期进行水质、土壤的采样检验 “农委会”担任辅导农民的角色 “卫生署”职掌市售商品的检验。   2005年底,时任台湾“环保署长”的郝龙斌率队稽查全台污染农田周围的非法电镀工厂,他还强调,依据法律,未来所有严重污染的土地都要整治,现在要找出污染制造者,并课以重罚,以支付未来农地整治每公顷上千万新台币的庞大经费。   对于遭受污染的土地,台湾“环保署”用“翻土稀释”方法等进行修复整治。“农委会农粮署”黄科长告诉本刊记者,台湾在土壤整治处理上的固定程序,已使岛内农业土地有了严格管控。   据他介绍,台湾农业区设置了地下水抽测机,定期筛检地下水的重金属含量 在工厂附近则设置“水质监测站”,一旦工厂排出废水,马上会有反应,然后用大尺度到小尺度的方式抽检土壤和作物。大尺度是以每1000米抽一个样品来做检验,再缩小到500、200、100米的范围,“其实有镉污染的农作物会长得很差的,看作物也可以有端倪。”   “这些工作行之有年,我们现在仍在进行后续的追踪。近几年台湾没有再传出有镉污染的消息了。”黄科长说。
  • 联影高端医疗装备“破冰”曼哈顿|三款设备聚焦肿瘤、心脏等相关疾病
    近日,上海联影医疗科技股份有限公司自主研发的世界首款75厘米超大孔径3.0T磁共振“uMR Omega”、中国首款超高端640层CT“天河640”以及智能数字PET-CT“uMI 550”陆续进入美国纽约曼哈顿上东区AMRIC医疗影像中心。这是中国高端医疗装备首次进入纽约中心城区。三款设备将聚焦肿瘤、心脏、神经系统相关疾病,为患者提供精准诊断解决方案。AMRIC发言人表示:“我们希望通过与联影医疗合作,充分借助其卓越的成像技术,为我们的患者制定最佳服务方案。”联影医疗董事长兼首席执行官张强说:“联影医疗研发的高端医疗装备成功进入美、日、欧市场,过硬的领先的创新技术是关键。同时,具备高水平的科研合作能力,满足顶尖医疗科研机构的前瞻科研需求,开展产学研医深度协作源头创新也很关键。”据悉,联影医疗于2013年在休斯敦建立了北美研发中心。2018年,公司在休斯敦建立了集研发、生产、市场营销于一体的北美区域总部。那里的未来实验室,从全球招募科研人才。截至目前,实验室已经与耶鲁大学、加利福尼亚大学戴维斯分校联合承担了脑计划重大项目。作为工业合作伙伴,联影医疗为该项目打造了新型高灵敏度脑部专用PET系统,与美国顶尖分子影像团队联手打造了世界首台2米PET-CT。公司还与17位诺贝尔生理学或医学奖得主诞生地——华盛顿大学医学院建立了长期合作关系,基于1.5T MR在心脏磁共振领域协同创新,并通过人工智能技术为心脏磁共振扫描、处理、阅片与诊断赋能。在核医学领域全球最具影响力的学术会议——2022核医学与分子影像协会年会上,加利福尼亚大学戴维斯分校科研团队宣布了一项重要成果:基于联影医疗研发的全身PET-CT“uEXPLORER探索者”,人类首次通过肉眼、以无创方式观测到免疫T细胞在新冠肺炎康复期患者体内的分布情况,探索免疫系统对病毒的响应机理。T细胞在对抗新冠病毒、评估相关免疫反应、疫苗反应等方面,起着关键性作用,所以这项成果对新冠疫苗、药物研发评估具有重要价值。“uEXPLORER探索者”长近2米,可覆盖全身人体进行扫描,被誉为“观测人体内部的哈勃望远镜”。这款设备已进入复旦大学附属中山医院、河南省人民医院、密歇根州立大学等多家国内外一流医院和科研机构。日本作为全球核医学大国,在高端医疗装备领域的地位也举足轻重。2017年,联影医疗超清光导PET-CT进入日本最大单体医院——藤田保健卫生大学医院,首度实现大型国产高端医疗装备在日本市场的破冰。此后,日本综合南东北医院、藤田保健卫生大学医院再度引进了两台联影医疗数字光导PET-CT。在欧洲,联影医疗于2018年在波兰设立了欧洲子公司,以拓展和服务当地客户。今年5月,西欧首台数字光导PET-CT系统“uMI 780”进入一家具有百年历史的意大利医院,为肿瘤诊疗开启全新视野。迄今为止,联影医疗研发的医疗装备已进入美国、日本、意大利、新西兰、波兰、印度、韩国等53个国家和地区。未来,公司将强化海外本地化平台能力建设,抓住中国高端医疗装备制造行业转型升级的契机,以高端设备的突破带动全线产品的突破,持续提升企业综合竞争力和市场覆盖率。
  • “基因编辑”新突破能对抗恶性肿瘤?
    【英国《独立报》网站7月27日报道】题:科学家宣布用DNA编辑技术Crispr对抗致命疾病有突破性进展  一项极其精确地“编辑”人类基因组的革命性技术,首次被用于“剪贴”一种关键类型的免疫细胞的基因。该型免疫细胞参与保护机体免受从糖尿病、艾滋病病毒到癌症等范围广泛的一系列疾病的侵害。  科学家相信,这一新进展最终能够带来对抗病毒感染和恶性肿瘤的新方法。  研究人员首先在实验室中对免疫系统的T细胞进行“基因编辑”,然后把它们放回患者体内来预防疾病。  医疗研究人员多年来一直尝试对血液中的T细胞进行精确的基因治疗。T细胞参与防范病菌入侵和癌症,以及免疫系统攻击机体自身组织的自体免疫性疾病,比如I型糖尿病等。  牵头进行这项最新研究的美国加利福尼亚大学旧金山分校的亚历山大弗朗西斯科说,此前,研究人员在切除突变,然后准确地用健康DNA链取而代之的技术上一直未能取得成功。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制