当前位置: 仪器信息网 > 行业主题 > >

二丁酰环磷腺苷

仪器信息网二丁酰环磷腺苷专题为您提供2024年最新二丁酰环磷腺苷价格报价、厂家品牌的相关信息, 包括二丁酰环磷腺苷参数、型号等,不管是国产,还是进口品牌的二丁酰环磷腺苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二丁酰环磷腺苷相关的耗材配件、试剂标物,还有二丁酰环磷腺苷相关的最新资讯、资料,以及二丁酰环磷腺苷相关的解决方案。

二丁酰环磷腺苷相关的资讯

  • 新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。  cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。  为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。  在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。  研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。  为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。  研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。  该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。  研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 滴定仪在2020年版《中国药典》的应用—腺苷含量的测定
    7月2日,国家药品监督管理局、国家卫生健康委发布公告,正式颁布2020年版《中华人民共和国药典》。新版《中国药典》将于今年12月30日起正式实施。2020年版《中国药典》共收载品种5911种,其中,新增319种,修订3177种,不再收载10种,品种调整合并4种。 一、腺苷简介 腺苷作为天然核苷酸,是机体代谢的中间产物,也是体内重要活性成分之一。腺苷做成的注射液1989年美国首次上市。腺苷(Adenosine, AD)即腺嘌呤核苷,是机体RNA的代谢产物,属于生物小分子化合物,它是一种内源性核苷,能参与血管神经舒张活动,具有抗心律失常的功效。在中枢神经系统中,它对神经传递的调节及对抵抗缺血性与疾病性神经伤害等方面具有重要作用。
  • 深圳先进院开发出新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。图1.G-Flamp1探针在体外和培养细胞内的表征图2.不同刺激下果蝇Kenyon细胞中cAMP信号的变化图3.运动过程中小鼠皮质神经元内cAMP信号的变化图4.巴甫洛夫条件反射任务中小鼠NAc脑区cAMP信号的变化该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。 研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 【文献速递】肿瘤免疫治疗:靶向腺苷-A2AR代谢途径负反馈的特制纳米光热免疫抑制剂
    近日,同济大学医学院李永勇教授课题组证明了免疫抑制代谢物腺苷的增加在光热疗法(PTT)诱导的免疫原性细胞死亡(ICD)过程中起到负反馈调节作用,会严重抑制抗肿瘤免疫治疗的效果。在此基础上,该团队开发了一种具有强大抗肿瘤免疫效果的纳米系统,能够抑制原发肿瘤和异位肿瘤的生长,并减少其转移。相关研究成果已发表在国际知名期刊《Advanced Science》(IF: 16.806)。△ 图1国际知名期刊《Advanced Science》(IF: 16.806)肿瘤免疫治疗中,利用针对抗细胞毒性T淋巴细胞相关蛋白4(CTLA-4)和程序化细胞死亡蛋白1(PD-1)的免疫检查点抑制剂(ICB)治疗癌症,已在多种类型的肿瘤治疗中表现出显著疗效。但是,它们在实体瘤中效果有限。肿瘤微环境(TME)是肿瘤周围的细胞环境。研究发现,在TME中存在抑制免疫细胞的物质,其会导致肿瘤细胞逃脱免疫细胞的杀伤,影响ICB的治疗癌症效果。随着越来越多的难治性实体瘤患者出现,有必要对TME内的分子抑制机制有更深入的了解,开发更加有效的治疗手段。腺苷是TME中产生肿瘤免疫抑制的重要物质之一。由ATP分解,在TME中的含量是正常组织中的17倍,通过与免疫细胞和癌细胞上的腺苷2A受体(A2AR)结合,抑制免疫细胞的功能和免疫活性,使得肿瘤细胞逃脱免疫细胞的杀伤。已发现阻断腺苷-A2AR通路可增加TME中的NK细胞成熟,改善DC交叉呈递功能,并减少Tregs和MDSCs的肿瘤聚集。ICD是一种细胞死亡模式,通过促进抗原呈递细胞(APC)激活和触发抗原特异性CD8+T细胞反应,来增强抗肿瘤免疫反应。目前已经开发了多种组合策略,如PTT诱导的ICD、光动力疗法(PDT)诱导的ICD和化疗诱导的ICD。之前的研究表明,ICD效应不足以产生强大的抗肿瘤免疫。这意味着负反馈机制存在,就像在抗肿瘤免疫治疗中一样。考虑到ATP的显著升高是ICD的一个基本特征,可以假设腺苷-A2AR通路在ICD中起着关键的免疫抑制调节作用。基于上述背景,研究人员开展的实验发现PTT治疗导致肿瘤组织中腺苷的显著上调,这表明腺苷-A2AR途径起着平衡作用。在此基础上,研究人员开发了一种负载A2AR抑制剂SCH58261的聚多巴胺(PDA)纳米颗粒(NPs)载体,以实现肿瘤特异性递送和PTT增强的ICD免疫治疗。同时,为了增加A2AR拮抗剂的肿瘤积累,研究人员设计了一种酸响应的可拆卸PEG壳(PPDA)。当到达酸性肿瘤环境时,PEG壳被释放出来,呈现出负载抑制剂的PDA,其模仿贻贝的粘附性并将其粘连到肿瘤组织上,实现在肿瘤的滞留和聚集。代谢检查点A2AR的阻断降低了肿瘤浸润性免疫细胞中腺苷的代谢应激,并增强了ICD介导的有效抗肿瘤免疫反应(方案1)。该策略通过平衡腺苷的负反馈,为改善ICD免疫治疗提供了新的见解。△ 图2方案一:一种通过使用TME响应性PPDAIn(载有抑制剂SCH58261的PPDA)NPs阻断代谢检查点A2AR来增强ICD免疫治疗功效的策略。M1,M1型巨噬细胞。iDC,未成熟的树突状细胞。文章中,评估标记FITC的纳米材料在活体的分布代谢和肿瘤靶向情况,使用了博鹭腾多模式动物活体成像系统AniView100拍摄。△ 图3材料尾静脉注射后 24 小时后,主要器官和肿瘤的离体荧光图像(H)和荧光信号的定量分析(I)。论文链接https://doi.org/10.1002/advs.202104182广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了活体成像、分子影像、蛋白凝胶预制及印迹处理系统、发光检测四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • EZ7300 ATP(三磷酸腺苷)在线分析仪在发电厂对优化杀菌剂加药方案的应用
    EZ7300 ATP(三磷酸腺苷)在线分析仪在发电厂对优化杀菌剂加药方案的应用哈希公司哈希EZ7300 ATP(三磷酸腺苷)在线分析仪是一个全自动化的微生物检测系统,符合国际认可的ASTM D4012-81标准方法。传统的用于评估饮用水和工业用水中的细菌安全的方法由于采样频率、菌种筛选和操作不当、污染等限制,通常需要较长的反应时间。等到分析结果出来了,水已经被使用了。哈希为现有的检测方法提供了一个替代方案。哈希EZ7300 ATP(三磷酸腺苷)在线分析仪使用生物荧光法来测量ATP的含量,从而获得快速且准确的结果。该在线分析仪可以自动进行采样、分析和数据处理,可在0-250 ng/mL ATP (或者 0-500 pM ATP)的范围内快速对水中微生物负荷进行反馈。影响电厂冷却塔杀菌剂投加方案的主要因素有两个。首先,是排放许可证的要求,会对投加药剂的速度或时间有要求,第二,需要根据水中的微生物负荷来制定投加药剂的方案,且该方案会根据水的来源和是否需要循环利用而不同。印第安纳州一个发电厂的操作员需要实时信息来优化杀菌剂加药方案。操作员需要这些数据来确定否间歇加药或连续加药(氯胺浓度较低)哪种加药方式更有效且更具成本效益。减少冷却水回路和冷却塔中的总微生物负荷,减少生物膜的形成以及大型冷却塔军团杆菌爆发的相关风险也是必要的。发电厂对哈希EZ7300 ATP(三磷酸腺苷)在线分析仪进行为期2个月的试验,清楚地证明了连续监测的优势,间歇使用杀菌剂的数据显示与不使用杀菌剂相比,间歇使用杀菌剂对ATP水平和微生物负荷有显著影响。在试验之后,工厂订购了一台仪表并对两路水流进行连续监测,从而优化杀菌剂的剂量并降低潜在风险。其姊妹电厂也订购了一台EZ7300用于监测供水系统的微生物负荷。END
  • 上海市净水技术学会《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》 团体标准项目立项
    各有关单位:根据《上海净水技术学会标准管理办法》,我学会对《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》项目开展了团体标准立项审查,拟同意该团体标准项目立项,并于2023年3月30日至4月7日进行公示。截至目前,公示已毕,未受理疑义反馈,故《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》正式立项,请项目编制组根据立项审查相关意见启动团体标准编制工作。联系人:阮辰旼手机:13585990831邮箱:rcm@jsjs.net.cn上海市净水技术学会2023年4月10日
  • 上海市净水技术学会立项《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》 团体标准项目
    各有关单位:根据《上海净水技术学会标准管理办法》,我学会对《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》项目开展了团体标准立项审查,拟同意该团体标准项目立项,现对该项目予以公示。公示期为2020年3月30日至4月7日。在公示期内,对公示项目有异议的单位或个人,可将意见反馈至我学会秘书处。提出异议的单位或个人需签署真实姓名、所在单位、联系方式和依据,凡匿名提议、超出期限提议的不予受理。联系人:阮辰旼手机:13585990831邮箱:rcm@jsjs.net.cn上海市净水技术学会2023年3月30日
  • 上海市净水技术学会发布团团体标准《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法(征求意见稿)》
    各有关单位和专家:团体标准《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》已完成征求意见稿,现予征求意见。请将意见和建议于 2024年2月7日前反馈至学会秘书处。意见征询期:2024年1月31日~2月7日联系单位:上海市净水技术学会联系地址:上海市杨树浦路855号1楼 邮编:200082联系人: 阮辰旼 13585990831(同微信)邮箱:50706127@qq.com 附件:1、团体标准征求意见稿2、团体标准编制说明3、团体标准征求意见反馈表团体标准征求意见反馈表.docx征求意见稿-水中微生物三磷酸腺苷(ATP)的测定 生物发光法-红头文带附件完整20240131.pdf
  • 邻苯二甲酸酯,你了解吗?
    邻苯二甲酸酯(PAEs)又称酞酸酯, 大部分常用的邻苯二甲酸酯为邻苯二甲酰酐与醇的反应产物。该类化合物从邻苯二甲酸二甲酯到十三烷基酯共有20多种,大部分为无色液体(个别的为白色固体如二环己酯、二苯酯),无味或略带气味,难溶于水, 易溶于有机溶剂。邻苯二甲酸酯类常用作增塑剂和软化剂, 其含量有时可达高聚体本身的60%,用于增大塑料的可塑性和韧性。 PAEs与塑料本身很难牢固结合,很容易从中溶解出来, 从而进入环境。 为什么我们会摄入邻苯二甲酸酯? 一般人容易会在塑胶制品包装中接触到邻苯二甲酸酯类,在生活中有很多食物在加工、加热、包装、盛装的过程里可能会造成邻苯二甲酸酯的溶出且渗入食物中。例如:塑胶玩具、覆盖食物微波加热的保鲜膜、盛装食物的塑胶容器、室内装潢或家庭产品亦多数属于塑胶材质、吃手扒鸡的塑胶手套、医疗用的塑胶手套或输血袋等,都可见邻苯二甲酸酯类的踪影。 另外,有一些不法厂家,为了达到降低成本的目的,用邻苯二甲酸酯代替起云剂添加到食品当中,以达到增稠效果,将会给消费者带来巨大危害。 邻苯二甲酸酯有哪些危害? 研究表明邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,可干扰内分泌,使男子精液量和精子数量减少,精子运动能力低下,精子形态异常,严重的会导致睾丸癌,是造成男子生殖问题的“罪魁祸首”。 含有邻苯二甲酸酯的软塑料玩具及儿童用品有可能被小孩放进口中,如果放置的时间足够长,就会导致邻苯二甲酸酯的溶出量超过安全水平,会危害儿童的肝脏和肾脏,也可引起儿童性早熟。 在化妆品中,指甲油的邻苯二甲酸酯含量最高,很多化妆品的芳香成分也含有该物质。化妆品中的这种物质会通过女性的呼吸系统和皮肤进入体内,如果过多使用,会增加女性患乳腺癌的几率,还会危害到她们未来生育的男婴的生殖系统。 如何检测邻苯二甲酸酯? 邻苯二甲酸酯检测方法已非常成熟,国内外都发布了检测标准。一般是用有机溶剂萃取后使用气相色谱质谱联用仪(GC)进行检测。 主要检测标准有: ◆ GBT 22048-2008?玩具及儿童用品?聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定◆ EN 14372 儿童产品安全要求及测试方法(欧洲标准,采用索氏提取法)◆ SNT 1779-2006?塑料血袋中邻苯二甲酸酯类增塑剂的测定-气相色谱串联质谱法◆ SNT 2037-2007?与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定?气相色谱质谱联用法◆ SNT 2249-2009?塑料及其制品中邻苯二甲酸酯类增塑剂的测定?气相色谱-质谱法◆ WST 149-1999?作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法◆ GBT20388-2006 纺织品邻苯二甲酸酯的测定◆GBT21911-2008 食品中邻苯二甲酸酯的测定◆GBT21928-2008食品塑料包装材料中邻苯二甲酸酯的测定◆ EN 15777 纺织品.邻苯二甲酸酯测试方法(欧洲标准,采用索氏提取法)◆ CPSC-CH-C1001-09.3 邻苯二甲酸酯测试标准作业程序(美国标准,采用溶解凝固法)◆ Health Canada Method C34 聚氯乙烯产品中邻苯二甲酸酯的测定(加拿大标准,采用溶出法) 阿尔塔科技部分邻苯二甲酸酯产品 货号中文名称英文名称CAS#1ST1111邻苯二甲酸丁苄酯(BBP)Benzyl n-butyl phthalate85-68-71ST1112邻苯二甲酸二苯酯Diphenyl phthalate84-62-81ST1113邻苯二甲酸二丁氧基乙酯Bis(2-butoxyethyl) phthalate 117-83-91ST1114邻苯二甲酸二丁酯Di-n-butyl phthalate84-74-21ST1115邻苯二甲酸二环己酯Dicyclohexyl phthalate84-61-71ST1116邻苯二甲酸二甲酯(DMP)Dimethyl phthalate131-11-31ST1117邻苯二甲酸二戊酯(DPP)Di-n-pentyl phthalate131-18-01ST1118邻苯二甲酸二乙酯(DEP)Diethyl phthalate84-66-21ST1119邻苯二甲酸二异丁酯(DIBP)Diisobutyl phthalate84-69-51ST1120邻苯二甲酸二正己酯(DNHP)Di-n-hexyl phthalate84-75-31ST1121邻苯二甲酸二正辛酯(DNOP)Di-n-octyl phthalate117-84-01ST1122邻苯二甲酸双(2-甲氧基乙)酯Bis(2-methoxyethyl) phthalate117-82-81ST1123邻苯二甲酸双(2-乙氧基乙)酯Bis(2-ethoxyethyl) phthalate605-54-91ST1124邻苯二甲酸双(4-甲基-2-戊)酯Bis(4-methyl-2-pentyl) Phthalate146-50-91ST1125邻苯二甲酸双(2-乙基己)酯Bis(2-ethylhexyl) phthalate117-81-71ST1126邻苯二甲酸二壬酯Di-n-nonyl phthalate84-76-41ST1127邻苯二甲酸二丙酯(DPP)Dipropyl phthalate131-16-81ST1128邻苯二甲酸二异辛酯(DIOP)(异构体混合物)Diisooctyl phthalate (The mixture of isomers)27554-26-4
  • 清华胡泽平团队揭示代谢组学结合AI模型在胃癌诊断及预测患者预后中的临床应用潜能
    2024年2月23日,清华大学药学院胡泽平团队与合作者在《Nature Communications》发表题为“Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer”的研究论文,揭示了胃癌患者血浆的代谢重编程图谱,并发现基于代谢组学构建的机器学习模型能准确诊断胃癌患者,并预测患者预后风险。 研究背景 胃癌是东亚地区高发的致死性肿瘤。胃癌的早期确诊和及时干预对改善临床结果至关重要。然而,作为胃癌诊断金标准的内镜活检因其侵入性高且费用昂贵而限制了临床应用。因此,迫切需要开发具有高灵敏度和特异性的新型非侵入性胃癌检测方法。此外,对病人进行预后监测并及时进行干预有助于更好的临床结果。因此,开发一种更精确的患者预后预测方法至关重要。胃作为具有高度异质性的消化器官,其癌变和进展受到基因突变和环境扰动的双重影响,伴随显著的代谢重塑。然而,代谢重编程及其在胃癌诊疗中的潜在应用并未被系统性深入地研究过,未能满足临床对胃癌早诊和患者分层治疗的需求。目前的胃癌生物标志物研究很大程度上受限于队列规模小、缺乏独立的验证队列、样本类型和检测方法的差异导致的结果再现性低,以及受分析技术限制的检测灵敏度有待提高等问题。因此,使用多中心、大队列、特征明确的胃癌和对照人群进行代谢组学分析对于识别和验证具有转化潜力的生物标志物,从而开发和完善适合临床应用的代谢生物标志物的仍然势在必行。 研究过程 研究人员收集了702例胃癌患者和非胃癌对照的血浆样本,进行了靶向代谢组学数据分析。结果显示,胃癌患者血浆发生了明显的代谢重编程,其中最显著改变的代谢通路为谷胱甘肽代谢。通路中的两种关键代谢物 还原型谷胱甘肽GSH 和氧化型谷胱甘肽 GSSG 在胃癌血浆中显着降低。此外,作为氧化应激紊乱指示物的GSH/GSSG 比率在胃癌患者中显着上调,并随着疾病进展而逐渐增加。表明胃癌患者血浆中氧化应激严重失调。此外,胃癌患者的半胱氨酸和蛋氨酸代谢通路也发生显著失调。与非胃癌对照相比,胃癌患者的 S-腺苷-L-同型半胱氨酸 (SAH) 下调,S-腺苷甲硫氨酸 (SAM) 上调,并且 SAM/SAH 比值随疾病进展而增加。作为通用甲基供体,SAM 丰度和SAM/SAH 比值的失调可能反映了胃癌患者甲基池的扰动。这些胃癌血浆中的代谢重编程特征为开发胃癌检测和患者预后预测生物标志物奠定了基础。图1. 本研究设计及流程图尽管代谢组学在全面分析胃癌整体代谢特征方面具有独特的优势,能够大规模识别用于 GC 诊断和预后的有希望的生物标志物,但复杂的组学数据的解释始终是一个挑战。在过去的几年中,机器学习算法已被用于发现组学数据和疾病状态之间的潜在关联并创建预测模型。因此,研究人员分别使用随机森林和随机生存森林算法建立了基于10个代谢物的胃癌诊断模型(10-DM)和基于28个代谢物的胃癌患者预后预测模型(28-PM)并在测试集中验证了模型的优越性能。对模型效果评估时发现,10-DM诊断模型即使对早期胃癌患者(stage IA)也能准确诊断,表现出比临床正在使用的癌症蛋白标志物CEA,CA19-9,CA72-4等更优越的诊断效果(灵敏度0.925:0.428)。10-DM模型的准确性和重现性在覆盖521人的多中心队列中得到证实,表明该模型具有较高的稳健性和临床应用潜力。此外,28-PM预后模型比利用临床参数的传统模型的预测效果更好(C-index值0.816:0.591),并能有效地将患者分为高低两个风险组。在中位数为40个月的随访期间,28-PM 模型区分的高风险患者的预后与低风险患者相比更差,证明了模型的预测能力。被分层为高危险组的患者更有可能受益于强化监测、及时干预和新型治疗药物的试验。 研究结果 综上,该研究描述了胃癌患者血浆的整体代谢重编程,并结合机器学习算法构建了两个模型,分别识别胃癌患者并预测其预后。该工作有助于进一步理解胃癌的分子病理学特征,促进了胃癌早期检测的发展,并为实现胃癌的精准治疗提供理论基础。迄今为止报道的胃癌组学研究主要集中在探究以 DNA、RNA 和蛋白质作为胃癌生物标志物的潜力,而该工作强调了胃癌中循环代谢物的预测价值。通过使用高灵敏代谢组学技术分析覆盖共计702例胃癌和非胃癌对照的多中心样本已经独立测试集的设定,该研究成功应对了生物标志物探究工作普遍面临的结果再现性低,无法进行临床推广应用的挑战。未来可以通过建立靶向两个模型中代谢物的特定子集的靶向定量代谢组学检测方法以提高效率并降低成本,并在来自更多中心的更大规模临床样本中进行验证和优化。此外,基于这两种预测模型有望促进胃癌无创早期检测,并根据患者的风险分层为临床决策提供信息,从而实现辅助胃癌精准诊疗策略的临床转化。胡泽平 清华大学个人简介:分别于山东大学齐鲁医学院、中国食品药品检定研究院和新加坡国立大学获医学学士、药理学硕士和Ph.D.学位。后于美国西北太平洋国家实验室Richard D. Smith组从事生物质谱和代谢组学的博士后研究。2012年受聘于美国德克萨斯大学西南医学中心任研究助理教授、儿童研究所代谢组学平台技术主任。2016年12月起任清华大学药学院准聘系列PI、特别研究员,2024年1月任长聘副教授。研究方向为“基于新型代谢组学/多组学技术研发的疾病代谢重塑研究、新药靶标与生物标志物发现”,包括:1)肿瘤微环境中不同类型细胞(特别是神经细胞/神经递质与肿瘤细胞和免疫细胞间)的代谢互作与单细胞代谢异质性、功能与代谢调控分子机制解析,与新药靶标发现;2)心血管疾病的代谢重塑规律、功能、调控分子机制解析,与新药靶标发现;3)超灵敏、单细胞代谢组学技术,及基于AI的多组学数据智能化整合分析技术与大模型研发;近年来以通讯作者(含共同)在Cell Metabolism (2018), Nature Metabolism (2021a 2021b), Nature Cancer (2022), Science Translational Medicine (2018), Journal of Clinical Investigation (2022), Nature Cardiovascular Research (2022), Nature Communications (2024 2021a 2021b), Cancer Research (2024), Cell Discovery (2022), Analytical Chemistry (2021)等期刊发表论文多篇。获邀在Nature Metabolism (2023), TrAC Trends in Analytical Chemistry (2023), Acta Pharmaceutica Sinica B (2023), Pharmacology & Therapeutics (2021), Clinical Pharmacology & Therapeutics (2019)等期刊发表Viewpoints或综述,共已发表论文60余篇,引用8000余次(Google scholar),H-index为41。研究成果多次被Science, Nature Cancer, Nature Reviews Cancer等期刊作为研究亮点专评。先后主持/参与国家基金委面上项目、重大研究计划重点项目、集成项目、“未来生物技术”原创探索项目;科技部国家科技重大专项、重点研发专项(2项)等共7项国家级科研项目;及国际头部药企资助的新药研发合作项目。担任国家基金委项目会评专家,Nature Metabolism, Nature Communications, Science Advances, Cell Reports等多个期刊审稿人,及Life Metabolism, Acta Pharmaceutica Sinica B等期刊编委。
  • 含油脂食品中邻苯二甲酸酯类化合物的检测的样品前处理
    &mdash &mdash 《不同基质食品中邻苯二甲酸酯的检测的系统解决方案》更新之一 经过一段时间,笔者检测了多种实际食品样品中的邻苯二甲酸酯类化合物,发现最为困难的是含有油脂的样品的样品前处理。在之前的系统解决方案的基础上,将最近的心得总结如下: 1、样品提取方法: 纯油脂样品:用万分之一天平称取0.1g样品,置于玻璃离心管中,然后加入3mL乙腈,涡旋2min,超声2min,以4000rpm离心2min,将上清液转移至一玻璃管中,在40℃下以氮气吹干,加入1mL正己烷,轻轻振荡摇匀,作为待净化液。 其他含油脂样品:考虑到方法的普适性,参考GBT21911-2008,称取0.5g混合均匀的含油脂的样品,加5mL正己烷涡旋2min,(若样品中含有水,可在此时加入适量的无水硫酸钠),超声2min,以4000rpm离心2min,取上清液,作为待净化液。 2、固相萃取方法: 若样品中不含色素等杂质,可采用Cleanert PAE柱。具体方法如下: (1)活化:将Cleanert PAE固相萃取柱用5mL正己烷活化; (2)上样:将待净化液全部加到固相萃取柱中; (3)淋洗:用10mL 1%乙酸乙酯的正己烷溶液淋洗固相萃取柱; (4)洗脱:用5mL 50%乙酸乙酯的正己烷溶液洗脱固相萃取柱。 收集洗脱液,在40℃下以氮气吹干,加入1mL乙腈,涡旋1min,超声1min,以4000rpm离心2min,取上清液进GC/MS检测。 若样品中含有色素等杂质,可采用Cleanert PAE-C柱。具体操作方法同上。 补充说明: Cleanert MAS-PAE管和Cleanert MAS-PAEc管作为一种快速检测方法,被推荐用于不含油脂或含油脂较少的样品中,如牛奶、酸奶等。 本方案中Cleanert PAE和Cleanert PAE-C柱的固相萃取方法,理论上可适用于所有样品。相比之前的方案,增加了淋洗强度,有助于尽可能去除极性比邻苯二甲酸酯类物质小的甘油三酯(在油脂中的含量大于95%),从而提高了净化效果。 附件一: 气质联用法检测16种邻苯二甲酸酯 仪器:Agilent 7890/5975 GC/MS 色谱条件: 色谱柱:DA-5MS 30m*0.25mm*0.25&mu m 进样口:250℃,不分流进样 程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min) 进样量:1&mu L 流速:1 mL/min 质谱条件: 接口温度:280℃ 电离方式:EI 电离能量:70eV 溶剂延迟:7min 监测方式:SIM模式,监测离子见下表 序号 保留时间/min 中文名称 英文缩写 定量离子 辅助定量离子 1 8.351 邻苯二甲酸二甲酯 DMP 163 77 2 9.228 邻苯二甲酸二乙酯 DEP 149 177 3 11.018 邻苯二甲酸二异丁酯 DIBP 149 223 4 11.788 邻苯二甲酸二丁酯 DBP 149 223 512.135 邻苯二甲酸二(2-甲氧基)乙酯 DMEP 59 149、193 6 12.857 邻苯二甲酸二(4-甲基-2-戊基)酯 BMPP 149 251 7 13.231 邻苯二甲酸二(2-乙氧基)乙酯 DEEP 45 72 8 13.605 邻苯二甲酸二戊酯 DPP 149 237 915.805 邻苯二甲酸二己酯 DHXP 149 104、76 10 15.97 邻苯二甲酸丁基苄基酯 BBP 149 91 11 17.436 邻苯二甲酸二(2-丁氧基)乙酯 DBEP 149 223 12 18.108 邻苯二甲酸二环己酯 DCHP 149 167 13 18.345 邻苯二甲酸二(2-乙基)己酯 DEHP 149 167 14 18.511 邻苯二甲酸二苯酯 &mdash 225 77 15 20.785 邻苯二甲酸二正辛酯 DNOP 149 279 16 23.379 邻苯二甲酸二壬酯 DNP 149 57、71 在上述色谱条件下,16种邻苯二甲酸酯类化合物的谱图如图1所示。 图1、 16种邻苯二甲酸酯类化合物选择离子色谱图 出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP)
  • 丹麦延缓邻苯二甲酸盐禁令
    2012年11月26日丹麦环境部发布了法令BEK nr 1113,禁止含有DEHP(邻苯二甲酸二(2-乙基己)酯)、DBP(邻苯二甲酸二丁酯)、BBP(邻苯二甲酸丁苄酯)、DIBP(邻苯二甲酸二异丁酯)含量超过0.1%的室内物品进口或销售,若该物品直接与皮肤或粘膜接触。该禁令拟于2013年12月1日生效。   由于该四种邻苯二甲酸盐在日常用品中大量使用,因此业界无法按照预期完成禁用,故丹麦环境部将此实施日期延至2015年实施。   由于该禁令适用于室内使用的与皮肤或粘膜直接接触的产品,因此,其范围比欧盟的REACH法规范围大的多,值得业界的重视和关注。   详情可见:   http://www.mim.dk/Nyheder/20130528_ftalatforbududskydes.htm   https://www.retsinformation.dk/Forms/R0710.aspx?id=143212&exp=1
  • Nature 、Cell !微量给药套管助力发表高分文献合集来啦~
    什么是微量给药套管?微量给药套管又称脑立体定位仪埋植管,通过脑立体定位手术将定制的导管埋植到动物的目标脑区,通过连接注射器可实现对特定脑区的反复定量给药。产品多种规格适用于单侧或双侧给药,一次埋植实现多次给药,减小由多次手术带来的动物脑部损伤。 截至2024年4月,瑞沃德微量给药套管已助力发表文献超过500篇。我们整理了一份高分文献合集,包含5篇发表在不同期刊的文章,这些文章均使用瑞沃德微量给药套管得到了理想的实验结果。 01内容简介两种类型的多棘投射神经元 (dSPN 和 iSPN)中的蛋白激酶 A(PKA) 活性对于正常运动至关重要。dSPN 和 iSPN 之间不平衡可能导致运动障碍。急性腺苷积累与多巴胺释放相互作用,协调 SPN 中的 PKA 活性和动物运动过程中的适当纹状体功能。研究直接检测了运动过程中体内 SPN 的 PKA 活性。多巴胺激活了 dSPN 中的 PKA,而iSPN 中的 PKA 活性表现出更大的增加。腺苷在运动过程中急剧积累。当腺苷 A2A 受体被阻断时,iSPNs PKA 活性的增加在很大程度上被消除。因此腺苷是参与此过程的另一种神经调节剂。急性腺苷积累与多巴胺释放相互作用,协调 SPN 中的 PKA 活性和动物运动过程中的适当纹状体功能。了解多巴胺和腺苷在 PKA 调节中的相互作用,可能会为治疗运动相关疾病开辟新途径。套管应用场景在特定脑区预先埋置给药套管(图a - cannula)以满足同时成像和局部用药,以 0.1 μl/min 的速率连续注入药物。通过紧邻引导插管植入的输注插管注射时长超过10 分钟。在局部输注之前和之后20分钟对动物进行强制运动。然后通过比较两种不同条件下运动诱导的 PKA 活性来确定局部输注药物的效果。 02内容简介单次全身注射后,氯胺酮持续抑制爆发放电并阻断外侧缰核 (LHb) 中的 NMDAR 长达 24 小时。NMDAR 的这种长期抑制并非由于内吞作用,而是取决于 NMDAR 中氯胺酮的使用依赖性捕获。通过激活 LHb 并在不同血浆氯胺酮浓度下打开局部 NMDAR,利用氯胺酮与 NMDAR 相互作用的动态平衡,能够缩短或延长氯胺酮体内的抗抑郁作用。套管应用场景小鼠双侧LHb脑区埋置给药套管(图d),每侧以每 2.5 分钟 0.1 μl速率注射1 微升Ketamine 或 memantine药物。在药物输注后24小时、7天或14天对小鼠进行行为测试。 03内容简介微生物组调节小鼠特定大脑区域的神经元活动,以调节典型的应激反应和社会行为。通过微生物组分析和体内选择,研究人员鉴定出粪肠球菌促进社交活动并降低社交压力后小鼠的皮质酮水平。本研究表明特定的肠道细菌可以抑制下丘脑-垂体-肾上腺(HPA)轴的激活,微生物组可以通过介导大脑应激反应的离散神经元回路影响社会行为。套管应用场景在ABX hM4Di 和 mCherry 小鼠不同脑区预先埋置给药套管。将微量给药套管植入 PVN 脑区以输送 VEH 或 CRF,比较小鼠的非社交活动。在 DG 和 BNST 脑区注射VEH、CORT 或 DEX(图r - s)。 04内容简介在唐氏综合症背景下,人血浆中的β2-微球蛋白(B2M)升高,损害认知和突触功能,B2M 的外周耗竭可改善突触缺陷。文章证明B2M通过与 GluN1-S2 环相互作用拮抗NMDA受体功能,使用竞争性肽阻断 B2M-NMDAR 相互作用可恢复 NMDAR 依赖性突触功能。通过阻断 B2M-NMDAR 相互作用可纠正突触缺陷。证明 B2M 是一种内源性 NMDAR 拮抗剂,揭示了循环 B2M 在唐氏综合症和相关认知障碍的 NMDAR 功能障碍中的病理生理学作用。套管应用场景小鼠双侧海马CA1脑区埋置微量给药套管(图A),并注射入兔抗B2M抗体或对照,连续注射4周,每周注射一次,最后一次注射后五天,对小鼠进行行为测试和电生理学研究。 05内容简介本研究发现了丘脑和初级听觉皮层(A1)的环路,该环路涉及小清蛋白中间神经元( PV-IN )和丘脑输入,在抗应激方面发挥着至关重要的作用。具体来说,该回路调节个人从长期社会压力中恢复并保持心理健康的能力。此外,内侧膝状谷氨酸能神经元的早期超极化有助于应激恢复。套管应用场景微量给药套管埋置在 A1脑区 (AP: 2.45 mm, ML: ±4.30 mm, DV: 0.70 mm),通过连接注射泵以0.2 mL/min的速率向 A1 脑区注射 BIC、D-AP5、CNQX 或生理盐水。待药物扩散后对小鼠进行行为学实验(图M-O)。 引用文献1.Ma, L., Day-Cooney, J., Benavides, O.J. et al. Locomotion activates PKA through dopamine and adenosine in striatal neurons. Nature 611, 762–768 (2022).2.Ma, S., Chen, M., Jiang, Y. et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature 622, 802–809 (2023).3.Wu, WL., Adame, M.D., Liou, CW. et al. Microbiota regulate social behaviour via stress response neurons in the brain. Nature 595, 409–414 (2021).4.Gao Y, Hong Y, Huang L, Zheng S. et al. β2-microglobulin functions as an endogenous NMDAR antagonist to impair synaptic function. Cell. 2023Mar 2 186(5):1026-1038.e20.5.Li HY, Zhu MZ, Yuan XR, Guo ZX, Pan YD, Li YQ, Zhu XH. A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell. 2023 Mar 30 186(7):1352-1368.e18. 更多其他类型长期给药途径植入式缓释泵体积小,操作方便以精确稳定的速率持续给药可选给药种类和给药时间种类多应用于脑部、血管、腹腔等多场景给药 采血给药系统用于对实验动物静脉,动脉,胆管进行多频次、长周期的给药或采血操作降低因反复针刺给实验动物带来的感染风险可以有效减少动物应激反应,满足动物福利要求通过连接注射泵实现精确的定量给药或采血操作 应用于药理、毒理、药代动力学、代谢和成瘾等研究中长周期、多频次的采血给药操作。
  • 博纳艾杰尔不同基质食品中邻苯二甲酸酯的检测的系统解决方案
    随着现代食品工业的发展,人们为了增加食品的风味、改善色泽和延长货架期等,采用了多种现代食品加工技术,但是不幸的是,由于种种原因,在某些食品加工过程中使用了危害人们健康的物质,比如最近出现的食品中添加&ldquo 塑化剂&rdquo 邻苯二甲酸酯类物质。 以往,由于人们对邻苯二甲酸酯类的安全性认识不足,多种食品都涉嫌&ldquo 被添加&rdquo 。博纳艾杰尔科技根据不同食品基质的具体情况,开发了一系列的检测方案,以供大家参考。 相关产品或技术咨询请拨打400-606-8099或E-mail至service@agela.com.cn 博纳艾杰尔网站www.agela.com.cn 1.水性样品 此类样品包括瓶装纯净水、矿泉水,茶、果汁和功能饮料等;某些可水溶解的固体样品。可以先制成水溶液,然后全部作为待处理液,如无脂糖果。推荐前处理柱为Cleanert DEHP (500mg/6mL)。 样品处理:取10mL样品,进行固相萃取富集处理 固相萃取方法: 活化:5mL甲醇、5mL水 上样:10mL水性样品 淋洗:5mL5%甲醇水,真空抽干20min。 洗脱:5mL甲醇 检测:将洗脱液用氮气吹干后,以1mL甲醇定容,然后用液相色谱法检测。 说明:此法多适用于配套液相色谱检测,当样品中邻苯二甲酸酯类的含量较低时,需要采用固相萃取富集才能检测的情况。 一般来说,对于此类样品,可以采用正己烷液液萃取的办法,用GC/MS(灵敏度较高)直接检测。 2.低脂液体样品 此类样品包含液态奶制品、果酱、糖浆等。推荐前处理产品为Cleanert MAS-PAE管。 样品处理:向玻璃离心管中加入2mL样品,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 3.低脂固体食品 此类样品包括奶粉、饼干、糕点、果冻、奶糖等,推荐产品为Cleanert MAS-PAE管。 样品处理:取1g已制成粉末状的样品,2mL水,加入到Cleanert MAS-PAE离心管中,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 4.高脂样品 此类样品包括植物油脂、动物油脂、奶酪、动物组织性食品等,推荐前处理柱为Cleanert PAE。 4.1 动植物油脂样品的处理 取0.2g样品,用1mL正己烷溶解,作为待净化液。 固相萃取方法: 活化:5mL正己烷 上样:全部待净化液 淋洗:7mL正己烷 洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。 40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡 3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL玻璃样品瓶中,作为待 检液。 检测:GC/MS检测。 4.2其他样品的处理 取样品0.5g,以5mL正己烷于密封玻璃瓶中超声提取,然后以4000rpm转速,离心5min,取上清液作为待净化液。若样品中含有水,视情况加入适量无水硫酸钠后,再进行上述操作。 固相萃取方法: 活化:5mL正己烷 上样:全部待净化液 淋洗:3mL正己烷 洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。 40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡 3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。 检测:GC/MS检测。 5.复杂样品 此类样品多为油水混合态,同时添加有多种风味物质,成分比较复杂,包括方便面调味包,酱油、醋、用来调味的其它酱汁等。根据样品中的脂肪含量,对于高脂样品推荐前处理柱为Cleanert PAE-C柱,对于低脂样品推荐使用Cleanert MAS-PAEc管。 5.1 以Cleanert PAE-C柱进行样品处理,以方便面调味包为例: 取0.5g样品,加入5mL正己烷,涡旋振荡3min后,再加入500mg无水硫酸钠,涡旋振荡3min后,以4000rpm转速,离心5min,取全部上清液作为待净化液。 固相萃取方法: 活化:5mL正己烷 上样:全部待净化液 淋洗:3mL正己烷 洗脱:3mL乙酸乙酯:正己烷:甲苯(50:40:10,v/v),洗脱2次,合并洗脱液。 40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡 3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。 检测:GC/MS检测。 5.2 以Cleanert MAS-PAEc管进行样品前处理,以酱油为例 样品处理:向Cleanert MAS-PAE离心管中加入2mL样品,然后加入4mL乙腈:甲苯(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAEc填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 附件一: 高效液相色谱法检测15种邻苯二甲酸酯的含量 色谱柱:Agela Venusil XBP C18-L ,4.6× 250mm,5µ m,150Å (订货号:VX952505-L) 流动相:A:水,B:甲醇:乙腈=50:50 Time/min A/% B/% 0 60 40 2 50 50 10 40 6012 30 70 20 30 70 31 0 100 40 0 100 40.01 60 40 流 速:1.0 mL/min 波 长:242 nm 进样量:5 µ L(100ppm),50µ L(10ppm) 样 品:15种邻苯二甲酸酯 浓 度:100 ppm(正己烷),10 ppm(40%流动相A) 溶 剂:正己烷 /40%流动相A 柱 温:30℃ 图1 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:10ppm) (邻苯二甲酸二甲酯DMP,邻苯二甲酸二乙酯DEP,邻苯二甲酸二正丁酯DBP,邻苯二甲酸二辛酯DEHP,邻苯二甲酸丁苄酯BBP,邻苯二甲酸二(2-乙基己基)酯DEHP,邻苯二甲酸二(2-甲氧基)乙酯DMEP,邻苯二甲酸二丁氧基乙酯DBEP,邻苯二甲酸二戊酯DPP,邻苯二甲酸二(4-甲基-2-戊基)酯BMPP,邻苯二甲酸二乙氧基乙基酯DEEP,邻苯二甲酸二环己酯DCHP,邻苯二甲酸二异丁酯DIBP,邻苯二甲酸二己酯DNP,邻苯二甲酸二壬酯DINP) 结论:Agela Venusil XBP C18-L色谱柱能够较好的分离15种邻苯二甲酸酯类物质,分离度较好,完全满足LC检测15种邻苯二甲酸酯类物质的含量。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件二 气质联用法检测15种邻苯二甲酸酯 仪器:Agilent 7890/5975 GC/MS 色谱条件: 色谱柱:DA-5MS 30m*0.25mm*0.25&mu m 进样口:250℃,不分流进样 程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min) 进样量:1&mu L 流速:1 mL/min 质谱条件: 接口温度:280℃ 电离方式:EI 电离能量:70eV 溶剂延迟:7min 监测方式:SIM模式,监测离子见下表 序号 保留时间/min 中文名称 英文缩写 SIM离子 1 8.265 邻苯二甲酸二甲酯 DMP 163、77 2 9.135 邻苯二甲酸二乙酯 DEP 149、177 3 10.888 邻苯二甲酸二异丁酯 DIBP 149、223 4 11.637 邻苯二甲酸二丁酯 DBP 149、223 5 11.979 邻苯二甲酸二(2-甲氧基)乙酯 DMEP 59、149、193 612.72邻苯二甲酸二(4-甲基-2-戊基)酯 BMPP 149、251 7 13.044 邻苯二甲酸二(2-乙氧基)乙酯 DEEP 45、72 8 13.41 邻苯二甲酸二戊酯 DPP 149、237 9 15.552 邻苯二甲酸二己酯 DHXP 104、149、76 10 15.694邻苯二甲酸丁基苄基酯 BBP149、91 11 17.153 邻苯二甲酸二(2-丁氧基)乙酯 DBEP 149、223 12 17.81 邻苯二甲酸二环己酯 DCHP 149、167 13 18.056 邻苯二甲酸二(2-乙基)己酯 DEHP 149、167 14 20.444 邻苯二甲酸二正辛酯 DNOP 149、279 15 22.98 邻苯二甲酸二壬酯 DNP 57、149、71 结论:Agela DA-5ms气相色谱柱能够很好的分离15种邻苯二甲酸酯类物质,完全满足15种邻苯二甲酸酯类物质的几十ppb级含量的定量测定。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件三 牛奶中15种邻苯二甲酸酯的添加回收率 按正文第2项方法进行某种牛奶的添加回收率实验,得到的数据如下: 表1、某种牛奶中添加15种邻苯二甲酸酯(在样品中的浓度为50&mu g/L)的回收率结果列表 序号 保留时间/min
  • 新品上市-肉品新鲜度测定仪
    我公司最新推出的肉品新鲜度测定仪可以快速全自动检测肉品、水产品等样品的新鲜度K值,直接评估样品新鲜度。研究背景:肉品是人类重要的食物来源,除了营养丰富外,肉品的美味也是人类渴望享用而感受美好生活的重要原由。而新鲜的肉品无疑是优质食材选择的一个重要标准,fubai的肉不仅会影响人类的身体健康,更重要的是严重影响口感(除特殊发酵或腌制加工工艺的风味肉品),在大众心理中不新鲜的肉就代表不美味或不能食用。在现实生活中,人们想尽各种办法减缓ATP的分解进程而保持肉品的新鲜度,如冷藏、充气MAP包装等,同时依据肉品的新鲜程度也选择的不同的食品加工工艺,如特别新鲜度的鱼肉、海鲜等可以刺身生吃,次之的可以通过加入各种调味料进行烹饪等,再次之的可以通过腌制、风干或其他特殊加工工艺制成特殊风味的食品,最后fubai变质严重(新鲜度K值很高时)就只能销毁或挪作他用。故此,检测肉品新鲜度可以确定肉品品质、定价及加工处理方式等。 仪器亮点:我们推广的肉品新鲜度测定仪采用电泳法检测肉品新鲜度K值的方法,具体讲就是通过特殊电泳技术将肉品中次黄piaoling腺苷和次黄piaoling同三磷酸腺苷、磷酸腺苷、腺苷酸、肌苷酸等物质进行分离,分离后的物质在特定试剂及环境下产生荧光,荧光的强度大小反映了主要成分的含量,通过整体比对直接计算出新鲜度K值。这种方法的优势是检测结果同液相色谱法同样准确,由于不需要分析每种物质的具体浓度含量,所以影响检测结果准确性的环节较少,操作简单,分析速度快,检测成本低,对实验环境及操作人员技能要求不高,因此具有非常好的实用性。
  • 珀金埃尔默覆盖40多种新生儿遗传代谢病的串联质谱检测试剂盒上市
    珀金埃尔默重磅推出新一代串联质谱检测试剂盒NeoBaseTM2。该检测试剂盒(国械注准20223400429)拥有独家的检测指标物和病种覆盖,可精准、快速、便捷地进行四十多种新生儿遗传代谢病的筛查,为及时有效的诊断和针对性治疗提供强有力的支撑。遗传代谢病是影响儿童智力和体格发育的严重疾病,其防治关键在于早筛查、早诊断、早治疗。目前通过采集新生儿足跟血进行串联质谱检测可以早期对这些危及生命的遗传代谢病进行筛查,通过早期诊断和治疗,大部分患儿可以控制病情,避免重要器官出现不可逆的损害,以保障儿童正常的身体发育和智力发育。珀金埃尔默此次发布的NeoBaseTM2可检测57种指标物,具有更出色的疾病筛查特异性和准确性。除了主要的三大类遗传代谢病(即氨基酸代谢病、有机酸代谢病和脂肪酸氧化代谢病)筛查外,新增了两种疾病类型,过氧化物酶体病——X连锁肾上腺脑白质营养不良(X-ALD)和嘌呤代谢病——腺苷脱氨酶缺乏症ADA-SCID(ADAD)。这两种疾病均为致死率很高的罕见病,通过早期诊断和干预,可明显提高患者存活率和生活质量,为罕见病群体带来福音。浙江大学医学院附属儿童医院主任医师,中华预防医学会出生缺陷预防与控制专业委员会新生儿遗传代谢病筛查学组组长赵正言教授指出:“新生儿疾病筛查作为出生缺陷防控的第三道防线,有效地促进和保障了儿童健康。在过去的多年里,通过同仁们在筛查、诊断和治疗上的努力,让无数的新生儿能够无忧无虑地成长,也让他们身后的家庭拥有幸福的生活。这些离不开每个家庭父母亲的全心付出,离不开同仁们对工作的高质量要求,也离不开工作中所使用到的质量过硬的各种设备和试剂。NeoBaseTM2试剂盒在全球和国内都是独家,希望新一代的串联质谱试剂盒能够让我们的新生儿筛查工作走得更远,让更多的孩子和家庭受惠,创造更好的未来。”上海交通大学医学院附属新华医院小儿内分泌、遗传代谢病研究室主任、上海市儿童罕见病诊治中心主任顾学范教授指出:“新生儿疾病筛查作为公共卫生健康的手段之一,是保证一个国家新生儿人群未来健康的重要措施。新华医院儿研所从上世纪80年代开始首次在国内开始新生儿疾病筛查的研究,从苯丙酮尿症到先天性甲低再到四病筛查,随着检测技术的进步,从这个世纪初开始,我们也用上了串联质谱技术进行多种遗传代谢病筛查,随着技术的更新换代,我们的工作更加高效,能够筛查的病种也是越来越多,这样就造福了越来越多有出生缺陷问题的新生儿家庭,通过新生儿疾病筛查尽量减少了因为疾病带来的伤害和家庭经济负担。珀金埃尔默本次推出的新产品NeoBase2试剂盒在筛查病种上更加丰富了,这无疑是为我们未来的工作提供了更有力的工具。”据了解,肾上腺脑白质营养不良(x-linked adrenoleukodystrophy,ald)是x染色体上(xq28)abcd1(adenosine triphosphate-binding cassette d1)基因突变引起的过氧化物酶体功能异常而导致的脂代谢异常的罕见病,发病率1/21 000~1/15 500。临床主要表现为大脑白质进行性脱髓鞘病变和肾上腺皮质功能不全。该病有两种遗传方式:①常染色遗传,新生儿期发病,较为少见;②x连锁隐性遗传,儿童或青年期发病,主要以听觉和视觉功能损害、智能减退、行为异常、运动障碍为主要表现,预后差。如果在患儿出现临床症状之前早期诊断、积极干预,可提高患者生活质量,延长患者生命。已有临床研究证实,早期患者经造血干细胞移植后5年生存率高达95%,而未经造血干细胞移植的患者5年生存率只有54%。腺苷脱氨酶缺乏症ADA-SCID(ADAD)是由腺苷脱氨酶(ADA)缺陷引起的免疫缺陷病,可导致重症联合免疫缺陷病(SCID),因为严重的复发性感染,在婴儿期通常是致命性的。如果在患儿出现临床症状之前早期筛查,则可实现早期诊断和早期干预治疗。已有的临床研究证实,患者在3.5个月内进行造血干细胞移植,可大大提高患者存活率。目前开展SCID新生儿筛查的方法以TREC分子检测为主,如将串联质谱技术与TREC分子检测相结合,可迅速指明是ADAD或其他类型的SCID,也更有利于检测晚发型ADAD(约占ADAD的~15%-20%)。珀金埃尔默大中华区诊断事业部总经理徐晔女士表示:“我们选择母亲节之际发布NeoBaseTM2串联质谱检测试剂盒,是希望给每个新生儿宝宝扫除成长路上的潜在风险,让宝宝们健康快乐的成长,更让妈妈们安心。我们期许在社会各界的努力下,在专家们的指引下,通过技术的进步造福更多的遗传代谢病患者。未来珀金埃尔默也将继续秉承为创建更健康的世界而持续创新的公司愿景和使命,坚持研发新的产品,为中国新筛事业贡献自己的力量。”
  • Sigma-Aldrich SPME + GCMS 快速、灵敏检测邻苯二甲酸酯
    SPME + GCMS 快速、灵敏检测邻苯二甲酸酯 &mdash &mdash Sigma-Aldrich/Supelco 应对方案 下载详细资料请至: http://www.instrument.com.cn/netshow/SH101420/down_170241.htm 关键词:起云剂 邻苯二甲酸酯 SPME 固相微萃取 气相色谱 前言 邻苯二甲酸酯类物质常被用于增塑剂、起云剂等添加到柔软的聚氯乙烯类产品中,从而增加塑料材质的韧性、通透度、强度和寿命。近期研究发现,邻苯二甲酸酯类物质主要会引起内分泌紊乱(女孩性早熟,男性生殖损害),致癌(乳腺癌)和肝毒性等方面的健康危害。出于公众健康方面的考虑,邻苯二甲酸酯类已经在美国、加拿大和欧盟等地域的部分产品中禁用。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 Sigma-Aldrich公司的Supelco SPME 摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。 检测方法: SPME 萃取头:7 &mu mPDMS (货号:57302) 萃取方式:直接浸没,15分钟,快速搅拌 载气:氦气 流速:40 cm/sec; 质谱:45 - 465 m/z 进样口温度:280 ° C 色谱柱:PTE-5, 30 m × 0.25 mm I.D × df0.25 &mu m (货号:24135-U) 柱温:60 ° C (3 min) -320 ° C(10 ° C/min) 检测结果: 结论: 通过使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头的样品前处理,对加标样品浓度10~200ppb进行考察(方法625和8060)。实验结果数据中,稳定的响应因子和浓度值表现出良好的线性,多点加标(n=5)相对方差(RSD)和标准方差反映了实验卓越的重现性和SPME令人满意的表现。 (表1. 使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头实验结果相应因子) 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mmI.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 41F/ K. Wah Centre / 1010 Huai Hai Zhong Road / Shanghai 200031 / China Ordering Email: orderCN@sial.com Toll-Free(免费订购电话): 400 620 3333, 800 819 3336
  • 糖尿病药物治疗史里程碑成果:林圣彩团队破解二甲双胍靶点
    二甲双胍作为一种天然化合物的衍生物自1957 年上市后,历经 60 多年的发展,至今仍作为一 线药物在临床被广泛使用,而且近年来发现二甲双胍有越来越多的益处,有“神药”之称。然而业内人士谈到其具体的作用靶点时总是争论不休,以至于学术圈都觉得“神药”之所以神就是因为没有明确靶点,久而久之没有明确靶点成了“广泛共识”。今日,来自厦门大学的林圣彩教授团队经历7年的科研攻关,用“钓鱼”的方法破解了破解二甲双胍直接作用靶点之谜,围绕二甲双胍发表的论文已经有近3万篇,林圣彩团队的这项工作称得上是里程碑式的工作,相关研究以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题发表在Nature杂志上,鉴于该工作的重要意义,来自复旦大学附属中山医院李小英教授和原新加坡分子细胞生物学研究所所长 CHRIS Y H TAN对这项工作进行了精彩点评,以飨读者!如果要我们列举几种自己所熟悉的药物,那么二甲双胍一定能占据一席之地。它不仅仅是治疗二型糖尿病的一线药物:便宜、降糖效果好且副作用小,更因为近年来不断发现的各种神奇功效:降低糖尿病人的体重、缓解脂肪肝,甚至于有潜在的抵抗由于糖尿病所引起的多种癌症的效果等,而被称为“明星”药物。特别地,对于健康人群,二甲双胍也很可能有抵抗衰老、延长寿命的作用。因此,它经常和卡路里限制一起,被列为人类未来通向健康长寿之路的重要手段之一。在国外,有数个大规模的探索二甲双胍对人类寿命影响的长期临床实验已经展开,目的就是要找到这一“健康密码”的最终证据,造福于我们的子孙后代。然而,尽管二甲双胍有着如此耀眼的作用,它的分子靶点却一直没有弄清,这极大地限制了我们对二甲双胍的理解和应用——我们不知道二甲双胍的这些神奇效果是从何而来,由哪些分子所介导,当然也就没办法“举一反三”,去借助这些原理,设计相应策略来更好地行使这些功能。换句话说,我们还没有真正理解二甲双胍这一健康密码的本质。更何况,二甲双胍的作用是有局限性的,例如它只能作用于肝脏、肠道等少数几个组织,对于脂肪组织则无可奈何。因此,如果我们想使用二甲双胍,在减少脂肪的同时保留健硕的肌肉,而不是(因为吃得少)一起减少,那就是要尤其慎重的。如果能设计出专一性靶向脂肪组织里的二甲双胍靶点的药物,突破这一瓶颈,一定能为眼下日益严重的营养过剩等各种代谢性疾病的治疗带来福祉。厦门大学林圣彩院士团队正是在二甲双胍的分子靶点研究方面取得了突破。他们团队长期致力于代谢稳态和代谢疾病发生机制的研究,而从2014年起,他们就对二甲双胍产生了兴趣。那时人们已经发现,二甲双胍能够通过激活一个名为AMPK的蛋白行使上述的诸多功效,然而对于它如何激活AMPK,靶点又是什么,则完全没有弄明白:和二甲双胍相比,其它合成的AMPK激活剂并不具有二甲双胍的所有功效,而二甲双胍(超过临床剂量的除外)对于AMPK在体内的天然激活剂——AMP的水平提升也没有任何作用。种种迹象表明,二甲双胍对AMPK的激活可能是“另辟蹊径”的。经过探索,他们团队在2016年于Cell Metabolism上报道了二甲双胍可能通过他们先前发现的,机体感应饥饿和葡萄糖水平下降时所用的一条名为“溶酶体途径”的通路,激活AMPK的初步结论,为二甲双胍的功效行使指明了一个粗略的方向(关于这条中国人自己发现的新通路,详见林圣彩团队参与撰写的重要综述:『珍藏版』“Must-Read”综述丨阴阳相济的中庸之道——AMPK和mTORC1营养感知与细胞生长调节)。在上述基础上,他们又经过了五年多的探索,最终找到了二甲双胍的分子靶点——PEN2(γ-secretase的亚基),并搞清了它导向溶酶体途径,激活AMPK的具体方式,相关工作以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题于2022年2月24日发表在Nature杂志上。在这一工作中,林圣彩团队首先通过和厦门大学邓贤明团队合作,后者通过一系列摸索,突破了多个化学合成上的难题,合成了二甲双胍的化学探针。简单地说,这个探针的工作原理就像我们钓鱼一样,前端的“鱼钩”是二甲双胍这个分子,后端的“钓竿”则是一个名为生物素的标签:当前端的二甲双胍分子碰到了它所结合的蛋白,也就是靶点以后,我们就可以通过后端的标签,把二甲双胍连同它的靶点一起“钓”上来,再通过质谱等手段分析,就能知道二甲双胍结合的这个靶点是什么。通过这种方法,他们从细胞中“钓”出了2000多种可能和二甲双胍结合的蛋白。由于二甲双胍可以独立地通过溶酶体途径激活AMPK,他们于是从中筛选出了317种存在于溶酶体上的蛋白进行进一步验证。鉴于这些蛋白又很可能有不少是被“拔出萝卜带出泥”的,他们于是逐一验证了二甲双胍和这些蛋白的相互作用,又从中筛选到了113种,真正直接结合了二甲双胍的蛋白。之后,他们又逐一在细胞中敲低这些蛋白,最终找到了一个名为PEN2的蛋白,能够介导二甲双胍对AMPK的激活。后续的实验进一步表明,PEN2就是二甲双胍启动溶酶体途径激活AMPK的前提,而敲除了PEN2,二甲双胍不但不能激活AMPK,它对于降低脂肪肝、缓解高血糖、延长寿命等诸多效果就都不存在了。这些结果充分说明,二甲双胍确实通过PEN2激活AMPK,并起到各种功效,也就是说,PEN2就是二甲双胍的靶点。林圣彩团队的这一发现无疑加深了我们对二甲双胍这一“健康密码”的理解,不但首次从分子角度勾画出了二甲双胍行使功能的路线图,还为二甲双胍替代药品的筛选提供了潜在的靶点,从而在治疗糖尿病和其他代谢性疾病方面产生更好的疗效。有意思的是,尽管具体的分子靶点有些许不同,但二甲双胍和饥饿(葡萄糖水平下降)走的是同一条路线,即上述的溶酶体途径,可见大自然的大道至简。联想到卡路里限制可以看做是一种大尺度下的饥饿,而它和二甲双胍的功效又大有相似之处,这又让我们不得不喟叹长寿之路的万化归一,而我们祖先所推崇的辟谷养生是多么有前瞻性!当然,这一切的机制的解析的背后,离不开林圣彩团队长期以来的辛勤工作。据林圣彩老师透露,实际上在目前,解析类似于二甲双胍这样的小分子和蛋白质的相互作用,仍是一个很前沿,或者说是很不成熟的领域。以他们此次发现二甲双胍的靶点的经历来看,事实上二甲双胍在水溶液中就像溶于其中的无数盐离子一样,而它所能结合的同样是水溶性的蛋白分子,就如同水中的各种盐离子一样,也是数不胜数。即使对于PEN2这个靶点本身,他们都发现了多个能结合二甲双胍的位点,这可能也是为什么他们课题组最后从2000多个潜在靶点中只找到了一个真正的靶点的原因。对于这种极高的“假阳性”,目前并没有任何手段加以避免,只能说是小分子和蛋白质结合的本质就是如此。因此,唯一的方法只能是不厌其烦地逐一筛选,而这需要的是热爱和执着,以及对小分子“见微知著”的坚定信念。据悉,本文的第一作者马腾是厦门大学2014级博士,从博士入学时起就参与了这一系列工作,为该靶点的最终鉴定付出了长达七年的辛勤努力。而本文的另外两位共同第一作者田潇和张保锭,也都长期高强度地投入在本课题的研究工作上,和本文其他作者一起,为该靶点的鉴定做出了重大贡献。特别值得一提的是,本文的共同通讯作者之一、林圣彩教授培养的得意弟子张宸崧博士(如今也是厦门大学生命科学学院教授)长期围绕AMPK做出的一系列创新性工作,包括2017年作为第一作者发表在Nature上颠覆性工作(颠覆性发现:林圣彩组Nature破解葡萄糖感受的新机制)。我们在此期待着林圣彩团队未来能有更多的成果,也许在那时,我们“游于空虚之境,顺乎自然之理”的长寿之路,就将不再遥远。近年来,林圣彩教授以细胞代谢稳态调控为研究核心,针对细胞对营养物质与能量的感知机制以及代谢紊乱相关疾病的发生发展的分子机制进行研究,取得了一系列原创性成果,特别是发现和鉴定了细胞感应葡萄糖缺乏的溶酶体途径和所在的“葡萄糖感受器”,及其激活AMPK的方式,并打破了传统的“AMPK的激活仅依赖于AMP浓度的变化”的认知(Cell Metabolism, 2013, 2014 Nature, 2017 Cell Research, 2019)。基于本团队发现的溶酶体AMPK通路,他们揭示了二甲双胍激活AMPK是通过该通路(Cell Metabolism, 2016),以及AMPK依赖于不同应激的状态的时空调控(Cell Research, 2019),揭示了钙离子通道TRPV介导了缩醛酶感知葡萄糖到AMPK激活的过程,让葡萄糖感知的通路全线贯通(Cell Metabolism, 2019),围绕AMPK分别与Grahame Hardie和Michael Hall发表两篇重要综述(Cell Metabolism,2018,2020)。专家点评李小英 教授 (复旦大学附属中山医院内分泌代谢科主任)揭开二甲双胍的神秘面纱 随着生活方式和饮食结构的改变,糖尿病呈现全球流行趋势。2015 年全球糖尿病患者达到 4.15 亿,预计 2040 年糖尿病患者将会上升至 6.42 亿。在糖尿病治疗药物的广阔天空中,二甲双胍无疑是一颗耀眼的明星。过去65年,二甲双胍一直作为糖尿病患者治疗的主要手段,长期占据糖尿病治疗一线药物的地位。它引导我们不断深入探索,以期真正揭开这一经典降糖药物的作用靶点和分子机制。近日,厦门大学林圣彩院士团队及其合作者发表在Nature杂志上的研究,发现了治疗剂量的二甲双胍的直接作用靶点及其分子机制,取得了历史性突破。为糖尿病的治疗,乃至抗肿瘤、抗衰老的药物研发和应用提供了崭新的思路,有望成为糖尿病药物治疗史上的一座闪亮的里程碑。二甲双胍于上世纪20年代从植物山羊豆中分离得到,50年代法国医生Jean Sterne开始研究二甲双胍的降糖作用,直到1957成功用于糖尿病患者的治疗。二甲双胍的同类药物苯乙双胍、丁双胍等均因其乳酸酸中毒发生风险和心脏病事件死亡率增高而于70年代退出市场。70年代以来,以UKPDS为代表的大型糖尿病心血管结局研究证明二甲双胍具有显著的降糖效果、良好的安全性、对肥胖的2型糖尿病患者具有心血管保护作用,长期以来一直是2型糖尿病治疗的一线用药,也是应用最为广泛的口服抗糖尿病药物。随着二甲双胍在临床上的广泛使用,人们发现二甲双胍还具有抗肿瘤、延缓衰老、缓解神经退行性疾病症状等作用。因此,解析二甲双胍的作用机制一直是科学家们的梦想。二甲双胍是一种极亲水的小分子药物,在生理情况下通常以带正电荷的质子化形式存在。其主要通过肠道上皮细胞肠腔侧的血浆单胺转运体(PMAT)吸收,而肝脏对二甲双胍的摄取主要是通过肝细胞基底侧的有机阳离子转运体1(OCT1)。二甲双胍的生物利用度约为50%-60%,1-2g/天(或20 mg/kg)二甲双胍摄入达到血药浓度约为10 µM -40 µM。既往在研究二甲双胍作用机制的不同报道中使用的二甲双胍浓度差异很大,常常远高于二甲双胍治疗剂量的血药浓度,并且二甲双胍的作用还受到给药途径的影响。这些问题都导致二甲双胍的作用机制研究产生不一致的结论。本世纪初,El-Mir和Owen分别发现二甲双胍可以特异性的作用于线粒体呼吸链复合体Ⅰ,抑制电子跨膜流动和膜电位形成,从而降低线粒体氧耗,并抑制三磷酸腺苷(ATP)的生成,使AMP/ATP比值升高。值得注意的是,Owen等人在实验中使用了极高浓度(10 mM)的二甲双胍处理,其结果可能无法反应真实的生理效应。Zhou等人提出:二甲双胍通过单磷酸腺苷激活的蛋白激酶(AMPK)依赖的机制抑制肝脏糖异生——该作用对于二甲双胍缓解糖尿病人的高血糖表型可能十分重要,这在深入探讨二甲双胍作用机制的漫漫长路上无疑是一个里程碑式的发现。随后,Shaw等人的研究进一步证实LKB1/AMPK信号通路的激活是二甲双胍抑制糖异生的重要分子机制。 此外,AMPK 介导的二甲双胍降低肝糖输出的可能机制还包括:1)二甲双胍通过AMPK信号通路上调小异二聚体伴侣(SHP),SHP进而与转录因子CREB直接作用,阻止CREB对CRTC2的招募,从而下调糖异生基因的表达;2)二甲双胍通过AMPK信号通路,上调肝脏去乙酰化酶SIRT1基因的表达,SIRT1使CRTC2去乙酰化,促进其泛素化降解,进而下调糖异生基因的表达。除了在糖尿病中发挥作用以外,AMPK还被认为在二甲双胍所介导的延长寿命、延缓衰老等功能上发挥了作用。近年来的研究也进一步发现了许多二甲双胍不依赖于AMPK行使作用的机制,例如Foretz等人发现,在小鼠肝脏特异性敲除AMPK的α催化亚基,并未对小鼠的血糖或二甲双胍的降糖作用产生影响。而肝脏LKB1特异性敲除的小鼠,虽然在基础状态下存在肝糖输出增加和血糖升高的表现,但并不影响其对二甲双胍的反应性。进一步地,Madiraju等人的研究揭示了二甲双胍在线粒体的另一个作用靶点——线粒体甘油磷酸脱氢酶(mGPD)。二甲双胍通过抑制mGPD的活性,阻断α-磷酸甘油穿梭的过程,使NADH在胞浆内聚积,增加胞浆的还原状态而降低线粒体内的还原状态,最终使以乳酸和甘油为底物的糖异生过程受到抑制。此外,Duca等人最近的研究又为我们认识二甲双胍的作用机制提供了崭新的视角。他们发现,二甲双胍发挥降糖作用的第一靶点可能在肠道。经肠道给药后的短时间内,二甲双胍迅速激活肠道AMPK及其下游信号通路,进而通过分布于肠道的迷走神经传入纤维将局部信号传递至中枢,再通过迷走神经传出纤维支配肝脏,最终抑制肝脏的葡萄糖输出。林圣彩团队发现,低剂量的二甲双胍不会引起线粒体呼吸链复合体I的抑制以及AMP/ATP比值的升高,相对地,它可与PEN2分子直接结合。结合二甲双胍的PEN2进一步与溶酶体膜ATP6AP1结合形成复合物。作为v-ATPase的亚单位,ATP6AP1与PEN2复合物则抑制v-ATPase活性,从而激活溶酶体上的AMPK(图1),这种小范围内的AMPK激活,类似于热卡限制情况下的AMPK激活,避免了整个细胞AMPK激活带来的副作用,包括心肌损伤等。林圣彩团队还分别在小鼠肝脏和肠道,以及线虫敲除PEN2,观察到二甲双胍减少肝脏脂质沉积的作用减弱,二双胍的降糖作用受到影响,以及二甲双胍延长寿命的作用消失。该研究表明,深入认识基于细胞内亚细胞器的区域化精准信号通路调控,对提高药物靶点的安全性和有效性都至关重要。图1 二甲双胍激活AMPK机制专家点评Chris YHTan (新加坡分子细胞生物学研究所前所长,)健康活到120岁将不是梦想!【译文】人类对长生不老孜孜不倦地追求始于文明之初。著名的秦始皇49岁英年早逝,太医配制的延年益寿仙丹含有水银,对长生不老的向往让秦始皇死于水银中毒。寿命延长的追求持续到了现代。1975年,国会批准NIH建立国立衰老研究院(National Institute of Ageing)。一开始科学家们对于如何开展关于衰老的研究没有一丝头绪。我在发现了干扰素和抗氧化酶SOD-1的作用机制后,从耶鲁来到NIA,这些基因也和神经疾病及长寿相关。衰老过程伴随位于染色体两侧的DNA序列--端粒的改变,端粒酶可以阻止端粒变短。寻找激活端粒酶的分子给予了科学家长生不老成药的希望。但是,端粒酶的激活分子也存在危险,可以使衰老的细胞变成永生的癌细胞。研究停滞不前。科学家发现在果蝇中增加SOD-1的基因剂量可使寿命成倍增加,这一发现掀起了另一波探索的热潮。然而SOD-1使寿命延长的机制迟迟未能阐明,基于SOD-1开发长寿药也毫无进展。现在,机缘和实力的加持,来自于厦门大学的林圣彩团队发现了长寿的秘密。二甲双胍是治疗糖尿病的一线药物,近年来又发现了抗衰老和抗癌等神奇功效。林圣彩团队发现了二甲双胍通过低葡萄糖感知通路激活AMPK调节寿命的机制,我将此命名为“林通路”。他们发表在本期Nature的文章研究成果找到了二甲双胍的作用靶点进一步证实这一理论。林通路的发现开启了我们对葡萄糖代谢新的认知认识。在过去的一个世纪,科学研究揭示了葡萄糖代谢产能的中心角色。没有葡萄糖,生命难以延续。从1921年Banting和Best因发现胰岛素而获奖开始,多个诺贝尔生理医学奖授予了葡萄糖代谢的研究。现在多数人会认为葡萄糖研究的热潮已经过去。林团队在模式生物的研究揭示了葡萄糖在寿命延长中重要调控机制,重新发掘葡萄糖代谢的中心地位。他们发现了葡萄糖感受器,在饥饿状态、低葡萄糖水平情况下,果糖(1,6)二磷酸水平降低,其醛缩酶被征召至细胞器溶酶体表面,和v-ATPase形成复合物,激活AMPK,抑制mTORC的活性,抑制细胞生物合成。林通路葡萄糖感受器的发现将AMPK调控的分解代谢和mTOR调控的合成代谢联系起来,组成了细胞阴阳两面。林团队的研究使我们从全新角度思考葡萄糖的功能:葡萄糖不仅仅是能量分子,它也是重要的信使分子。目前,林团队握有崭新的一整个系列先导分子的专利,将可能使我们保持健康活得更长。林团队开启了以前难以想象的药物研发新篇章,首次实现通过无毒药物将癌症变为可控疾病的可能。这些先导分子可预防癌症,可治疗肥胖和脂肪肝。在不远的将来,也可能在我们身上,健康活到120岁将不是梦想!
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售 中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP) Dimethyl phthalate (DMP) 131-11-3 邻苯二甲酸二乙酯(DEP) Diethyl phthalate(DEP) 84-66-2 邻苯二甲酸二异丁酯(DIBP) Phthalic acid, bis-iso-butyl ester 84-69-5 邻苯二甲酸二丁酯(DBP) Di-n-butyl phthalate 84-74-2 邻苯二甲酸双(2-甲氧基乙)酯(DMEP) Phthalic acid, bis-methylglycol ester 117-82-8 邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester 146-50-9 邻苯二甲酸双-2-乙氧基乙酯 Phthalic acid, bis-2-ethoxyethyl ester 605-54-9 邻苯二甲酸二戊酯(DPP) Diamyl phthalate 131-18-0 邻苯二甲酸二正己酯(DNHP) Dihexyl phthalate 84-75-3 邻苯二甲酸丁苄酯(BBP) Benzyl butyl phthalate 85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP) Phthalic acid,bis-butoxyethyl ester 117-83-9 邻苯二甲酸二环己酯(DCHP) Dicyclohexyl phthalate 84-61-7 邻苯二甲酸二(2-乙基)己酯(DEHP) Di(2-ethyl hexyl) phthalate (DEHP) 117-81-7 邻苯二甲酸二苯酯 Diphenyl phthalate 84-62-8 邻苯二甲酸二正辛酯(DNOP) Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯 Phthalic acid, bis-nonyl ester 84-76-4 相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • 市场监管总局公开征求防控油脂类、酒类食品受邻苯二甲酸酯类物质污染风险有关意见
    p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 为落实企业食品安全主体责任,加强食品安全管理,防控油脂类、酒类食品受邻苯二甲酸酯类物质(俗称“塑化剂”)污染风险,保障食品安全。依据《中华人民共和国食品安全法》、《食品安全国家标准 食品生产通用卫生规范》(GB14881)、《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685)等规定,市场监管总局制定了《关于防控油脂类、酒类食品受邻苯二甲酸酯类物质污染风险的公告(征求意见稿)》(附件1),现向社会征求意见。公众可通过以下方式反馈意见: /span /p p span style=" font-family: 宋体,SimSun "   一是登录国家市场监督管理总局官方网站(具体网址:http://www.samr.gov.cn),进入首页“互动”栏目下的“征集调查”提出意见。 /span /p p span style=" font-family: 宋体,SimSun "   二是填写《征求意见表》(附件2),以电子邮件形式反馈。电子邮箱:zhishichu@samr.gov.cn。 /span /p p span style=" font-family: 宋体,SimSun "   意见反馈截止日期:2019年10月25日。 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 公告中指出,油脂类食品包括食用植物油、食用油脂制品、食用动物油脂、含油调味料及富含油脂的食品等脂肪性食品,酒类食品包括白酒、食用酒精、葡萄酒、配制酒、黄酒、果酒和其他蒸馏酒等乙醇含量高于20%的食品。 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " 为保障食品安全,要加强原辅料管控、加强食品相关产品管控、加强生产经营过程防控、加强产品控制、加强监督管理。 /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " & nbsp 此外,公告中还提到,企业生产经营的油脂类、酒类食品要符合国务院卫生行政部门关于塑化剂限量的规定。白酒和其他蒸馏酒中邻苯二甲酸二(α-乙基己酯)(DEHP)和邻苯二甲酸二丁酯(DBP)的含量分别不高于5 mg/kg和1 mg/kg。油脂类、酒类食品中DEHP(白酒、其他蒸馏酒除外)、邻苯二甲酸二异壬酯(DINP)、DBP(白酒、其他蒸馏酒除外)最大残留量分别为1.5 mg/kg、9 mg/kg、0.3 mg/kg。 /span /p p style=" text-indent: 2em " strong span style=" font-family: 宋体,SimSun " 附件 /span /strong span style=" font-family: 宋体,SimSun " : /span /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " /span /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a title=" 关于防控油脂类、酒类食品受邻苯二甲酸酯类物质污染风险的公告(征求意见稿).doc" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201909/attachment/798cfe70-0b8f-4a4d-bf91-a43f1bf53fd0.doc" 关于防控油脂类、酒类食品受邻苯二甲酸酯类物质污染风险的公告(征求意见稿).doc /a /p p style=" line-height: 16px text-indent: 2em " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a title=" 征求意见表.docx" style=" color: rgb(0, 102, 204) font-size: 12px " href=" https://img1.17img.cn/17img/files/201909/attachment/05dad8ac-f6f8-4ab0-ae42-d15f58478365.docx" 征求意见表.docx /a /p p style=" text-indent: 2em " span style=" font-family: 宋体,SimSun " /span /p p & nbsp /p
  • SPE-GC/MS法检测纯油脂中邻苯二甲酸酯类化合物
    ——《不同基质食品中邻苯二甲酸酯的检测的系统解决方案》更新之二 一、实验目的 以某食用植物油为样品,利用GC/MS和Cleanert PAE固相萃取柱建立对16种邻苯二甲酸酯类化合物的检测方法。 二、仪器及试剂 仪器:Agilent7890/5975 GC/MS;离心机;万分之一天平;涡旋混合器;超声仪;氮吹仪; 试剂: Cleanert PAE柱为天津博纳艾杰尔科技有限公司产品;16种邻苯二甲酸酯混标(1000ppm);乙腈(色谱纯);正己烷(色谱纯);乙酸乙酯(色谱纯); 三、实验过程 3.1 样品处理 用万分之一天平取0.1g食用植物油,置于玻璃样品瓶中,加入3mL乙腈,涡旋2min,超声2min,以4000r/m离心2min,将上清液转移至另一干净样品瓶中,于40℃氮气吹干,加入1mL正己烷,摇匀,作为待净化液。 SPE过程如下: (1)活化:用5mL正己烷活化Cleanert PAE柱; (2)上样:将待净化液全部上样; (3)淋洗:10mL乙酸乙酯/正己烷(1:99,v/v); (4)洗脱:5mL乙酸乙酯/正己烷(1:1,v/v); 将洗脱液于40℃下氮气吹干,加入1mL乙腈,涡旋混合1min,超声1min,4000r/m离心2min,取上清液进GC/MS测定。 3.2 标准曲线绘制 将16种邻苯二甲酸酯混标用正己烷稀释成20ppb、50ppb、100 ppb、200 ppb、500 ppb、1ppm、2ppm,用GC/MS进行测定,根据定量离子绘制标准曲线。所选定量离子及各个物质的标准曲线见附录1、附录3。 3.3 GC/MS条件 色谱柱:DA-5MS 30m*0.25mm*0.25μm 进样口:250℃,不分流进样 程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min) 进样量:1μL 流速:1 mL/min 接口温度:280℃ 电离方式:EI 电离能量:70eV 溶剂延迟:7min 四、实验结果 4.1 谱图在上述色谱条件下,16种邻苯二甲酸酯类化合物的谱图如图1所示。 图1 16种邻苯二甲酸酯类化合物选择离子色谱图(500ppb) 出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP) 4.2 加标回收率及精密度 取5份食用油,在食用油中加入一定量的标准品,按照样品处理方法(3.1)做5份平行样品,回收率及方法精密度见表1。所得色谱图见附录2。 表1 食用油中16种邻苯二甲酸酯类化合物的添加回收率及精密度 峰号 化合物 简称 保留时间 加标浓度100ppb 加标浓度500ppb 平均回收率 RSD(n=5) 平均回收率 RSD(n=5) 1 邻苯二甲酸二甲酯 DMP 8.315 150.35% 15.19% 165.61% 3.72% 2 邻苯二甲酸二乙酯 DEP 9.185 141.48% 15.09% 109.62% 2.99% 3 邻苯二甲酸二异丁酯 DIBP 10.96 121.48% 8.11% 70.87% 6.94% 4 邻苯二甲酸二丁酯 DBP 11.723 80.13% 15.75% 91.53% 25.75% 5 邻苯二甲酸二(2-甲氧基)乙酯 DMEP 12.073 111.25% 10.09% 98.52% 5.55% 6 邻苯二甲酸二(4-甲基-2-戊基)酯 BMPP 12.828 102.90% 8.50% 82.96% 3.85% 7 邻苯二甲酸二(2-乙氧基)乙酯 DEEP 13.167 104.08% 7.08% 95.11% 3.73% 8 邻苯二甲酸二戊酯 DPP 13.54 92.05% 6.62% 88.51% 4.17% 9 邻苯二甲酸二己酯 DHXP 15.718 91.04% 5.48% 89.17% 4.95% 10 邻苯二甲酸丁基苄基酯 BBP 15.875 100.67% 5.69% 97.01% 5.20% 11 邻苯二甲酸二(2-丁氧基)乙酯 DBEP 17.342 89.50% 5.72% 96.64% 5.34% 12 邻苯二甲酸二环己酯 DCHP 18.006 84.37% 6.96% 88.87% 5.52% 13 邻苯二甲酸二(2-乙基)己酯 DEHP 3.96% 15 邻苯二甲酸二正辛酯 DNOP 20.669 79.56% 7.48% 82.41% 5.88% 16 邻苯二甲酸二壬酯
  • 武汉大学袁必锋团队发现了一种新的RNA修饰
    RNA 分子具有多种修饰,这些修饰在各种生物过程中发挥着重要的调节作用。已在 RNA 分子中鉴定出超过 150 种修饰。N6-甲基腺苷 (m6A) 和 1-甲基腺苷 (m1A) 是哺乳动物的各种 RNA 物种中普遍存在的修饰。除了腺苷的单甲基化(m6A 和 m1A)外,据报道,在腺苷的核碱基中发生的双重甲基化修饰,例如 N6,N6-二甲基腺苷 (m6,6A),也存在于哺乳动物的 RNA 中。除了 m6,6A 之外,腺苷的核碱基中是否存在其他形式的双重甲基化修饰仍然难以捉摸。2022年9月12日,武汉大学袁必锋团队在Nucleic Acids Research (IF=19)在线发表题为“Formation and removal of 1,N6-dimethyladenosine in mammalian transfer RNA ”的研究论文,该研究报告了在活生物体的 tRNA 中存在一种新的腺苷双甲基化修饰,即 1,N6-二甲基腺苷 (m1,6A)。该研究证实 m1,6A 位于 tRNA 的第 58 位,并且在哺乳动物细胞和组织中普遍存在。tRNA 中 m1,6A 的测量水平范围为 0.0049% 至 0.047%。此外,该研究证明了 TRMT6/61A 可以催化 tRNA 中 m1,6A 的形成,并且 m1,6A 可以被 ALKBH3 去甲基化。总的来说,m1,6A 的发现扩大了 RNA 修饰的多样性,并可能引发新的 tRNA 修饰介导的基因调控途径。  除了四种典型的核碱基之外,RNA 分子还带有多种修饰。近年来,为了揭示和表征 RNA 上存在的修饰,人们付出了巨大的努力,这些修饰具有调节 RNA 代谢的潜力。据报道,超过 150 种不同类型的修饰存在于各种 RNA 。RNA 分子中这些自然发生的修饰在影响 RNA 结构方面发挥着关键作用,也拓宽了我们对 RNA 分子功能的理解。以类似于 DNA 的方式,越来越多的证据表明 RNA 分子中的这些修饰参与调节 RNA 过程。甲基化是哺乳动物 RNA 分子中最普遍的修饰。据报道,N6-甲基腺苷 (m6A) 和 1-甲基腺苷 (m1A) 的两种异构腺苷甲基化修饰广泛存在于哺乳动物的不同 RNA 中。m6A 存在于真核信使 RNA (mRNA)、转移 RNA (tRNA)、核糖体 RNA (rRNA) 和非编码 RNA (ncRNA)。近年来对 m6A 的深入研究表明 m6A 与广泛的关键功能有关,从细胞发育和分化 、应激反应到癌症的发展 。在分子水平上,m6A 参与 RNA 稳定性、翻译调控和 microRNA 生物合成 。m1A 是一种修饰,主要在 rRNA 和 tRNA 的保守位点中观察到。m1A 也在哺乳动物 mRNA 中发现,在 5' 非翻译区 (5' UTR) 中富集。RNA 中的 m1A 可以影响核糖体的生物合成,对环境应激作出反应,并介导细菌的抗生素耐药性。  文章模式图(图源自Nucleic Acids Research )  除了腺苷(m6A和m1A)的核碱基上的单甲基化外,据报道,腺苷的核碱基中发生的双重甲基化修饰,例如N6,N6-二甲基腺苷(m6,6A)也存在于RNA中。m6,6A 是在人类 18S rRNA 中发现的保守修饰,在核糖体生物发生中起关键作用 。由于 m1A 和 m6A 都是哺乳动物 RNA 中普遍存在的修饰,研究人员推测除 m6,6A 之外的二甲基化腺苷,例如 1,N6-二甲基腺苷 (m1,6A),可能存在于 RNA 中。然而,与 m6,6A 不同的是,m1,6A 从未在包括古生菌、细菌和真核生物在内的三域系统的生物体中被发现。RNA 中 m1,6A 的存在仍然是一个悬而未决的问题。在这项研究中,报道了哺乳动物细胞和组织的 tRNA 中存在一种新的腺苷双甲基化修饰,即 m1,6A。值得注意的是,该研究证明了 m1,6A 位于 tRNA 的第 58 位。此外,该研究证明了 TRMT6/61A 负责 tRNA 中 m1,6A 的形成,而 ALKBH3 能够使 tRNA 中的 m1,6A 去甲基化。总的来说,m1,6A 的发现扩大了 RNA 修饰的多样性,并可能引发新的 tRNA 修饰介导的基因调控途径。
  • Eurofins Discovery | 片段药物发现新「组合拳」
    01研究背景Eurofins Discovery是全球领先的早期药物研发服务平台,拥有超过40年的药物发现研究经验。作为业内领导者,Eurofins Discovery为研究者提供包括但不限于药物化学、合成化学、体外药理学、安全性药理学与功效、ADME-Tox(药物吸收、分布、代谢、排泄和毒性研究)以及定制蛋白质和检测服务。Eurofins Discovery支持多种药物发现,如GPCRs(G蛋白偶联受体)、激酶、离子通道、核激素受体以及其他蛋白质和酶。在药物研发领域,GPCR家族因其在细胞信号传导中的重要作用而备受关注。近日,Eurofins Discovery团队利用前沿的生物物理技术--光谱位移(Spectral Shift, SpS),在属于GPCR家族的人类腺苷A2A受体(A2AR)上发现了新拮抗剂片段,为GPCR药物设计提供了新视角。与此同时,该研究也利用了来自NanoTemper公司专利的MST(微量热泳动)、TRIC(温度依赖的荧光强度变化)和nanoDSF技术设计GPCR配体。这项研究不仅为GPCR药物开发提供了新策略,也为基于片段药物发现设计(FBDD)带来了新「组合拳」!02技术亮点基于Eurofins Discovery片段文库和Eurofins CALIXAR专利的去垢剂,利用MST-TRIC和超灵敏光谱位移技术,可以在单剂量实验中,从2342个片段库快速筛选出826个片段,作为第一轮初步Hits筛选。之后,利用MST-TRIC和光谱位移技术进行第二轮Hits确认。利用Echo® MS声滴喷射技术,实现了在384孔板中的纳升级精确分配,确保了数据的稳健性。利用nanoDSF技术作为正交检测手段,进一步确认这些片段Hits的稳定性。最后进行A2AR与参考化合物和片段苗头化合物的分子对接研究(Docking Studies)。点击此处,解锁海报全文 Eurofins Discovery | 片段药物发现新「组合拳」 原创_诺坦普科技(北京)有限公司 (instrument.com.cn)03关于NanoTemperNanoTemper的愿景是致力于创造一个任何疾病都可以被治愈的世界!NanoTemper是全球领先的科学仪器制造商,2008年成立于德国慕尼黑,历经十余载发展,在全球13个国家设立分支机构。卓越的产品和优质的服务使NanoTemper成为全球成千上万的制药公司、学术研究机构及科技公司的首选合作伙伴。Dianthus 高通量筛选平台 可直接在溶液中检测亲和力,无需固定 检测一个Kd仅需1min 标准规格384孔板,单次运行可检测32个Kd 无微流控系统,无需清洗维护 专利技术加持:TRIC(温度依赖的荧光强度变化),Spectral Shift(光谱位移)PR Panta 蛋白稳定性分析仪 高数据质量,超高分辨率,多参数精准表征 天然条件下检测,无需染料标记 检测浓度范围广,低样品消耗量 可同时支持四大技术模块:nanoDSF,DLS,SLS,背反射
  • 沃特世18种邻苯二甲酸盐UPLC/MS/MS分析解决方案
    风起“云”涌——沃特世18种邻苯二甲酸盐UPLC/MS/MS分析解决方案   近日,台湾媒体报道了起云剂遭受增塑剂污染的事件,导致食品安全检测市场顿时风起“云”涌,邻苯二甲酸盐的检测再度成为人们关注的焦点。   起云剂(又名浑浊剂、乳浊剂、增浊剂)也就是我们常说的乳化稳定剂。主要应用于饮料和奶类制品。在饮料中使用,有助于释放与保留果汁饮料的香气,包埋果汁饮料的异味、杂味,也能增强果汁饮料口感的润滑性、厚实感,尤其是有效改良果汁饮料的天然感观,显著提高果汁饮料的品质质量。起云剂的主要成分为风味油、单体香油、增重剂、乳化稳定剂、乳化剂、水,它本身对人体并没有危害,本次事件的发生是由于少数起云剂生产厂家为降低成本使用在食品中禁用的增塑剂类物质邻苯二甲酸盐代替原本应该使用的棕榈油,从而引发了食品安全事件。   确保食品添加剂或者食品本身是否含有邻苯二甲酸盐类物质的一个途径就是使用分析手段对其进行检测。   我们常说的邻苯二甲酸盐是一类结构比较相似的化合物,在2011年6月,中国卫生部将17种邻苯二甲酸盐类物质列入《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单(第六批)》名单,如下:   邻苯二甲酸二(2-乙基)己酯(DEHP)、   邻苯二甲酸二异壬酯(DINP)、   邻苯二甲酸二苯酯(DPP)、   邻苯二甲酸二甲酯(DMP)、   邻苯二甲酸二乙酯(DEP)、   邻苯二甲酸二丁酯(DBP)、   邻苯二甲酸二戊酯(DPP)、   邻苯二甲酸二己酯(DHXP)、   邻苯二甲酸二壬酯(DNP)、   邻苯二甲酸二异丁酯(DIBP)、   邻苯二甲酸二环己酯(DCHP)、   邻苯二甲酸二正辛酯(DNOP)、   邻苯二甲酸丁基苄基酯(BBP)、   邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、   邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、   邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、   邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)   本方法介绍了两种基于沃特世超高效液相色谱技术(UPLC技术)分析18种(含台湾FDA要求)邻苯二甲酸盐的方法,方法一为采用沃特世超高效液相色谱质谱联用技术(UPLC/MS/MS),该方法具有分析速度快,灵敏度高的特点。适用于实验室拥有质谱系统并追求检测灵敏度的用户。方法二为采用沃特世超高效液相色谱系统和二极管阵列检测器(UPLC/PDA)分析方法,适用于暂时还不具有质谱系统的用户。   样品提取(台湾FDA方法):   取混匀后样品1g,精确称量,置于50ml容量瓶,加入约45ml 甲醇,超声波震荡30min, 冷却后用MeOH 定容到50ml。静置后,取上部溶液约5ml置于离心管中,于 3500rpm离心10min,取上清液装瓶,待测。对于基质比较复杂的样品,对于提取后的样品可以采用进一步的固相萃取净化手段。 【方法一:UPLC/MS/MS方法】实验条件A.UPLC 条件LC系统: ACQUITY UPLC H Class系统色谱柱: ACQUITY UPLC HSS C18,1.7um,2.1X100mm,流动相A:0.1%FA水溶液流动相B:乙腈流速:0.4ml/min梯度洗脱: 梯度表 时间(分) 流速(ml/min) A(%)B(%) 曲线 0.00 0.40 65 35 * 1.50 0.40 25 75 6 2.00 0.40 0 100 6 6.20 0.40 0 100 6 7.50 0.40 65 35 1 进样体积:10uL柱温:35℃, 样品温度: 10℃强洗溶剂: ACN 弱洗溶剂: H2O :ACN= 95:5运行时间: 7.5分钟B. MS条件:系统: ACQUITY UPLC TQD离子化模式:ESI+电离电压: 3.2KV离子源温度:120℃脱溶剂气温度: 400℃脱溶剂气流量: 650L/Hr 18种邻苯二甲酸盐分析结果(浓度:10ppb)(DMP、DMEP、DEEP、DEP、DPhP、DEHP、BBP、DIBP、DBP、DBEP、DPP、DCHP、BMPP、DHXP、DNOP、DINP、DNP、DIDP)部分MRM 通道:【方法二:UPLC/PDA方法】A.UPLC/PDA 条件仪器系统:Waters UPLC H-Class/PDA 色谱柱:ACQUITY UPLC HSS C18 (1.7um, 2.1×100mm)波 长:225nm,柱 温:45℃, 流 速:0.4mL/min流动相:A-水,B-乙腈,进行梯度洗脱18种邻苯二甲酸盐色谱分析结果如下图所示 保留时间(min) 中文名称 英文名称 峰序列 4.482 邻苯二甲酸二甲酯 DMP 1 4.896 邻苯二甲酸二(2-甲氧基)乙酯 DMEP 2 8.483 邻苯二甲酸二乙酯 DEP 3 8.622 邻苯二甲酸二(2-乙氧基)乙酯 DEEP 4 14.176 邻苯二甲酸二(2-丙基庚)酯 DPHP 5 15.137 邻苯二甲酸丁基苄基酯 BBP 615.311 邻苯二甲酸二异丁酯 DIBP 7 15.464 邻苯二甲酸二丁酯 DBP 8 15.616 邻苯二甲酸二-(3-丁氧基)乙酯 DBEP 9 17.894 邻苯二甲酸二戊酯 DPP 10 18.013 邻苯二甲酸二环己酯 DCHP 11 19.416 邻苯二甲酸二(4-甲基-2戊基)酯 DMPP 12 19.929 邻苯二甲酸二己酯 DHXP 13 22.644 邻苯二甲酸二(2-乙基)己酯 DEHP 14 23.103 邻苯二甲酸二正辛酯 DNOP 15 23.727 邻苯二甲酸二异壬酯 DINP 16 24.335 邻苯二甲酸二壬酯 DNP 17 24.570 邻苯二甲酸二异癸酯 DIDP 18 饮料基质1加标与空白结果饮料基质2加标与空白结果关于Waters ACQUITY UPLC H-ClassHPLC的操作方法,UPLC的卓越性能如果您正在进行常规分析,或方法开发,或仅仅是喜欢四元泵系统多溶剂的灵活使用,而又渴望获得UPLC技术带来的快速、高灵敏度、高分离度的性能,那么沃特世公司ACQUITY UPLC H-Class系统是您目前唯一的选择。ACQUITY UPLC H-Class系统是一套经过优化的先进系统,具有四元溶剂混合的灵活性和简易性,并带有一个流通式进样器,可实现UPLC分离的先进性能——高分离度、灵敏度和高通量,同时还保持了ACQUITY系统所被公认的耐用性和可靠性。选择ACQUITY UPLC H-Class,您可以在面向未来的LC平台上继续运行现有的HPLC方法,并可实现向UPLC分离的无缝转换。当您一切准备就绪后,即可使用集成系统工具和可靠的色谱柱工具包进行方法转换和方法开发,以简化过渡流程。特色:多溶剂混合:QSM可将四种溶剂按任何组合或比例混合。使用选配的内部溶剂选择阀,将可选溶剂扩展到多达九种,方法更加灵活。直接注射取样:SM-FTN的针流入路径采用专门的技术,在高压力下能够保证精确的进样针密封性,可实现高精度注射,具有极佳的样品回收率。下一代色谱柱温箱:我们的新式UPLC色谱柱加热器和管理器已实现了标准化,具有易于操作、体积小的主动式溶剂预加热器,使系统之间具有相同的效率。色谱柱预热器保证了稳定的热效能;色谱柱管理器提供了多区域的灵活性,温度范围为4 至 90 °C ,并可叠加使用。受控的滞留体积:ACQUITY UPLC H-Class 的SmartStart技术(专利待批)可同时对梯度起始时间和各个预注射步骤进行自动管理。通过将这些典型的连续过程叠加起来,能够最大程度地缩短循环时间。关于Waters ACQUITY UPLC TQD沃特世TQ 检测器是为一体化的UPLC® /MS/MS定量分析而开发的仪器,达到串联四极杆MS的最佳选择性、稳定性、速度及准确性。 为契合UltraPerformance LC® (UPLC)的超高性能,TQ检测器以最快的速度采集数据。与ACQUITY UPLC® 系统一同使用,ACQUITY® TQD 系统为用户所有的定量分析提供领先的分析检测限分辨率及样品通量,应用范围包括:生物分析、ADME筛选、食品安全、环境监测、临床学、法医学等。特色:l 自动化的系统检查,用户界面简单友好,使用方便,优化的MS/MS检测,满足最苛刻的定量分析需求l 数据采集速度快,色谱峰面积测量方面的准确性、重现性好l 可靠耐用的ZSpray™ 大气压离子源,ESI、APCI、ESCi、APPI、ASAP等各种离子源模式可选l 工业级领先的多模式检测能力,一次运行时,可同时进行多模式的采集l 自动化的仪器优化与定量方法开发工具,精巧的应用软件工具包,适合用户的特定分析要求。l 快速的数据采集能力,(采用T-Wave™ 碰撞池技术、多模式离子化技术、极性快速转换技术) 欲了解邻苯二甲酸盐分析方法的更多信息,请拨打800(400)-820-2676或邮件至qi_cai@waters.com
  • 白酒中16种邻苯二甲酸酯类物质检测整体解决方案-GC/MS法、HPLC法
    一、实验目的建立白酒中塑化剂的前处理和检测方法,使用Cleanert DEHP(500mg/6mL,玻璃柱)富集白酒这类极性基质中的邻苯二甲酸酯类物质,建立固相萃取方法,以期得到优良的加标回收率,保证检测结果的准确性。二、仪器及材料材料:白酒;纯化水,16种邻苯二甲酸酯(PAEs)混标1ppm;Cleanert DEHP(500mg/6mL,玻璃柱管);玻璃移液管;洗耳球;烧杯仪器:Agilent GC/MS 7890-5075c,Agilent HPLC1200,氮吹仪三、实验过程注意事项:实验过程中,试剂及容器必须为玻璃,尽量避免接触塑料制品。甲醇和乙酸乙酯必须是进口色谱纯。3.1 溶液配制(1)将白酒用去离子水稀释,使其中的乙醇的含量为5%。例如:某种白酒含酒精52%,那么取9.6mL白酒,用去离子水稀释定容至100mL,即可得5%的酒精含量的样品液。(2)取1mL甲醇加入19mL去离子水,混匀,得到5%甲醇水溶液,为淋洗液。3.2 固相萃取活化:用玻璃移液管分别取5mL乙酸乙酯、5mL甲醇,5mL水,在重力状态下依次过柱;上样:用玻璃移液管取100mL样品液加到柱上;淋洗:用玻璃移液管取5mL 5%甲醇/水溶液淋洗固相萃取柱。淋洗结束之后,开启真空泵,抽20min,抽干之后,加入2mL甲醇浸泡柱床约1min;洗脱:用10mL乙酸乙酯洗脱固相萃取柱,收集洗脱液。将洗脱液分别于35℃氮吹至干,用1mL甲醇定容,将溶液转移至进样样品瓶,进行GC/MS或HPLC检测,具体检测方法参见附录1及附录2。四、实验结果及结果分析取2份10mL含5%酒精的白酒样品溶液,各加入1ppm邻苯二甲酸酯类混标100&mu L,按照上述方法进行操作和GC/MS检测,得到的色谱图见图1,回收率数据见表1.4.1 实验谱图 图1加标样品洗脱液色谱图(定容浓度为100ppb)4.2 实验数据 表1 回收率数据化合物保留时间/min样品1样品2邻苯二甲酸二甲酯8.258139.38%122.06%邻苯二甲酸二乙酯9.128121.19%138.34%邻苯二甲酸二异丁酯10.889171.77%159.59%邻苯二甲酸二丁酯11.637176.37%137.97%邻苯二甲酸二(2-甲氧基)乙酯11.97131.02%99.47%邻苯二甲酸二(4-甲基-2-戊基)酯12.72897.79%83.94%邻苯二甲酸二(2-乙氧基)乙酯13.051130.83%102.72%邻苯二甲酸二戊酯13.418105.87%66.29%邻苯二甲酸二己酯15.56887.54%62.29%邻苯二甲酸丁基苄基酯15.726129.39%95.98%邻苯二甲酸二(2-丁氧基)乙酯17.169164.31%125.40%邻苯二甲酸二环己酯17.843111.14%86.31%邻苯二甲酸二(2-乙基)己酯18.073105.94%89.61%邻苯二甲酸二苯酯18.207170.57%117.68%邻苯二甲酸二正辛酯20.481123.82%99.88%邻苯二甲酸二壬酯23.023121.05%97.86%注意:邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二异丁酯、邻苯二甲酸二丁酯是使用非常普遍的增塑剂,广泛的存在于环境中,因而测试时十分容易造成背景过高的干扰问题。尤其需要注意的是氮吹时,使用的氮吹仪,应该是专用的仪器,而且必须定期用进口色谱纯的乙酸乙酯清洗氮吹的针头。 附录1 GC/MS法检测16种邻苯二甲酸酯类化合物仪器:Agilent 7890/5975c GC/MS色谱条件:色谱柱:DA-5MS(30m*0.25mm*0.25&mu m)(订货号:1525-3002);进样口:250℃,不分流进样;进样量:1&mu L;程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min);流速:1 mL/min。质谱条件:接口温度:280℃;电离方式:EI;电离能量:70eV;溶剂延迟:7min;监测方式:SIM模式,监测离子见表2。表2 16种邻苯二甲酸酯类化合物定量离子及定性离子序号保留时间/min中文名称英文缩写定量离子辅助定性离子18.258邻苯二甲酸二甲酯DMP1637729.128邻苯二甲酸二乙酯DEP149177310.889邻苯二甲酸二异丁酯DIBP149223411.637邻苯二甲酸二丁酯DBP149223511.97邻苯二甲酸二(2-甲氧基)乙酯DMEP59149、193612.728邻苯二甲酸二(4-甲基-2-戊基)酯BMPP149251713.051邻苯二甲酸二(2-乙氧基)乙酯DEEP4572813.418邻苯二甲酸二戊酯DPP149237915.568邻苯二甲酸二己酯DHXP149104、761015.726邻苯二甲酸丁基苄基酯BBP149911117.169邻苯二甲酸二(2-丁氧基)乙酯DBEP1492231217.843邻苯二甲酸二环己酯DCHP1491671318.073邻苯二甲酸二(2-乙基)己酯DEHP1491671418.207邻苯二甲酸二苯酯&mdash 225771520.481邻苯二甲酸二正辛酯DNOP1492791623.023邻苯二甲酸二壬酯DNP14957、71 图2 100ppb标样色谱图表3 16种邻苯二甲酸酯类化合物GC/MS检测标准曲线表峰序号简称标准曲线方程R21DMPy = 63.4 * x + 44412DEPy = 62.1 * x + 31713DIBPy = 98.8e * x + 323014DBPy = 115 * x + 140015DMEPy = 32.2 * x + 3980.9996BMPPy = 25 * x + 45.217DEEPy = 14.6 * x + 3050.9958DPPy = 105 * x + 78619DHXPy = 110 * x - 90.2110BBPy = 45.9 * x + 30500.99711DBEPy = 16.7 * x + 11.3112DCHPy = 74 * x + 198113DEHPy = 61 * x + 2050114&mdash y = 41.6 * x + 438115DNOPy = 92.8 * x + 259116DNPy = 78.7 * x + 8000.999结论:Agela DA-5ms气相色谱柱能够很好的分离16种邻苯二甲酸酯类物质,完全满足16种邻苯二甲酸酯类物质的几十ppb级含量的定量测定。由于条件所限,笔者手头上只有16种邻苯二甲酸酯物质,所做实验,供大家参考。 附件2 HPLC法检测16种邻苯二甲酸酯类化合物色谱柱:Agela Venusil XBP C18-L ,4.6× 250mm,5µ m,150Å (订货号:VX952505-L)流动相:A:水,B:甲醇:乙腈=50:50表4 梯度洗脱表Time/minA/%B/%060402505010406012307020307031010040010040.016040流 速:1.0 mL/min波 长:242 nm进样量:5 µ L(100ppm),50µ L(10ppm)样 品:16种邻苯二甲酸酯浓 度:100 ppm(正己烷),10 ppm(40%流动相A)溶 剂:正己烷 /40%流动相A柱 温:30℃ 图3 16种邻苯二甲酸酯标准品HPLC色谱图(样品浓度:25ppm)(邻苯二甲酸二甲酯DMP,邻苯二甲酸二乙酯DEP,邻苯二甲酸二正丁酯DBP,邻苯二甲酸二辛酯DNOP,邻苯二甲酸二苯酯,邻苯二甲酸丁苄酯BBP,邻苯二甲酸二(2-乙基己基)酯DEHP,邻苯二甲酸二(2-甲氧基)乙酯DMEP,邻苯二甲酸二丁氧基乙酯DBEP,邻苯二甲酸二戊酯DPP,邻苯二甲酸二(4-甲基-2-戊基)酯BMPP,邻苯二甲酸二乙氧基乙基酯DEEP,邻苯二甲酸二环己酯DCHP,邻苯二甲酸二异丁酯DIBP,邻苯二甲酸二己酯DNP,邻苯二甲酸二壬酯DINP)表5 16种邻苯二甲酸酯类化合物HPLC检测标准曲线表峰位置简称标准曲线方程R21DMPY=24.99X+5.2020.9992DEPY=17.84X+3.4240.9993DBPY=24.21X+3.9740.9994DNOPY=14.03X+3.6580.9985邻苯二甲酸二苯酯Y=24.21X+3.9740.9996BBPY=17.51X+4.9720.9977DEHPY=17.22X+4.0980.9998DMEPY=18.67X-0.3020.9979DBEPY=12.66X-1.8770.99810DPPY=14.38X+0.4450.99711BMPPY=15.35X+0.7980.99812DEEPY=11.46X+3.4750.99813DCHPY=13.52X+2.670.99814DIBPY=9.915X+26.590.99615DNPY=10.61X-0.0410.99916DINPY=9.404X+11.140.999结论:Agela Venusil XBP C18-L色谱柱能够较好的分离16种邻苯二甲酸酯类物质,分离度较好,完全满足LC检测16种邻苯二甲酸酯类物质的含量。由于条件所限,笔者手头上只有16种邻苯二甲酸酯物质,所做实验,供大家参考。
  • 迪马科技推出多种药品中17种邻苯二甲酸酯的检测方案
    药品安全关乎大众的身体健康,我们希望吃药能缓解痛苦,延长生命,但现在吃药似乎等于在吃毒!近日,葛兰素史克公司生产的阿莫西林克拉维酸钾干混悬剂(国内商品名为力百汀),因检出塑化剂类物质邻苯二甲酸二异癸酯(DIDP)被国家食药监局下令要求召回,该产品的销售和使用也被明令禁止。这则消息再次将塑化剂推向风口浪尖,也使得消费者对于药品的选择和使用无所适从。 从台湾多种食品中被查出含有塑化剂到药品中塑化剂的出现,这个普通人知之甚少的化学物质正在以一种令人恐惧的形象步步逼近。迪马科技再接再励,先后开发出多种生活常用药品(片剂-盐酸吡硫醇片;注射液-氢化可的松注射液;颗粒-板蓝根;糖浆-太极止咳糖浆;混悬剂-尼美舒利干混悬剂)中邻苯二甲酸酯的检测方法,希望本方法能为生活常用药品的安全把关尽一份力,让群众吃上放心药。该方法使用有机溶剂提取样品中的邻苯二甲酸酯,经ProElut PSA玻璃固相萃取小柱净化后,运用HPLC、GC-MS分析测定。 详细检测方法链接:http://www.instrument.com.cn/netshow/SH100707/down_172278.htm 应用方法中相关产品信息: 货号 名称 品牌 规格 63206G ProElut PSA玻璃SPE柱 Dikma ProElut 1000mg / 6ml,30/pkg 更多规格和填料,请来电咨询 65584 无水硫酸钠 Dikma ProElut 500g 8221 毛细管气相色谱柱DM-5MS Dikma 30mm*0.25mm*0.25um 99603 Diamonsil C18(2) Dikma 250× 4.6mm,5&mu m 244358 12管防交叉污染 真空SPE萃取装置 进口 12位 5323 样品瓶(棕色/螺纹) Dikma 2 mL, 100/pk 5325 样品瓶盖/含垫(已组装) Dikma 100/pk 37177 针头式过滤器 Nylon Dikma 13mm,0.22&mu m 100/pk 50123 甲基叔丁基醚 HPLC级 DikmaPure 4L 50115 正己烷 HPLC级 DikmaPure 4L 50106 丙酮 HPLC级 DikmaPure 4L 50101 乙腈 HPLC级 DikmaPure 4L 关于ProElut玻璃SPE柱 ProElut玻璃SPE柱是专用于高纯萃取的。惰性的玻璃管体完全消除了来自增塑剂,包括苯二甲酸盐的污染。玻璃萃取小柱作为标准系列的ProElut系列小柱,使用了高质量的ProElut吸附剂以及特别的净化处理的筛板,更加保证了稳定型和重复性。 邻苯二甲酸酯标准品 邻苯二甲酸酯混标 货号 名称 品牌 规格 12-SP-DC04Z 邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice 1ml,1,000ug/mL在正己烷中 12-SP-DC05Z 邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice 1ml, 1,000ug/mL在乙腈中 12-PT8061-1JM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 1ml, 1,000ug/mL在异辛烷中 12-PT8061-1M 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5ml, 1,000ug/mL在异辛烷中 12-PT8061-1RPM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5x1mL, 1,000ug/mL在异辛烷中 GB/T 21911-2008邻苯二甲酸酯16种组份单标 货号 名称 品牌 规格 12-F71 /46595 1.邻苯二甲酸二甲酯(DMP), CAS:131-11-3 Chemservice /xStandard 1g /500mg 12-F70 /46594 2.邻苯二甲酸二乙酯(DEP), CAS:84-66-2 Chemservice /xStandard 1g /500mg 12-F2264 /46588 3.邻苯二甲酸二异丁酯(DIBP), CAS:84-69-5 Chemservice /xStandard 5g/500mg 12-F68 /46597 4.邻苯二甲酸二丁酯(DBP), CAS:84-74-2 Chemservice /xStandard 1g /500mg 12-F2268 /46589 5.邻苯二甲酸二(2-甲氧基乙基)酯(DMEP), CAS:117-82-8 Chemservice /xStandard 500mg /500mg 12-F2309 /46600 6.邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP), CAS:146-50-9 Chemservice /xStandard 5g /500mg 12-F2312 /46601 7.邻苯二甲酸二(2-乙氧基)乙酯(DEEP), CAS:605-54-9 Chemservice /xStandard 500mg /500mg 12-F2263 /46593 8.邻苯二甲酸二戊酯(DPP), CAS:131-18-0 Chemservice /xStandard 500mg /500mg 12-F2314 /46596 9.邻苯二甲酸二己酯(DHXP), CAS:84-75-3 Chemservice /xStandard 5g /500mg 12-F67 /46598 10.邻苯二甲酸丁基苄基酯(BBP), CAS:85-68-7 Chemservice /xStandard 1g /500mg 12-F2315 /46590 11.邻苯二甲酸二(2-丁氧基)乙酯(DBEP), CAS:117-83-9 Chemservice /xStandard 1g /500mg 12-F2262 /46602 12.邻苯二甲酸二环己酯(DCHP), CAS:84-61-7Chemservice /xStandard 5g /500mg 12-F66 /46592 13.邻苯二甲酸二(2-乙基己)酯(DEHP), CAS:117-81-7 Chemservice /xStandard 1g /500mg 12-F1091 /46591 14.邻苯二甲酸二苯酯, CAS:84-62-8 Chemservice /xStandard 5g /500mg 12-F69 /46603 15.邻苯二甲酸正二辛酯(DNOP), CAS:117-84-0 Chemservice /xStandard 1g /500mg 12-F2317 /46599 16.邻苯二甲酸二壬酯(DNP), CAS:84-76-4 Chemservice /xStandard 5g /500mg 更多邻苯二甲酸酯单标,请来电咨询 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • “新冠”空气传播再添重磅证据 Nature作者首现上海环监站骨干
    p   新冠肺炎在全球的暴发和流行对公众健康构成了巨大威胁,切断病毒的传播途径是关键的防控措施之一。飞沫和接触传播被证实是新冠病毒的主要传播途径,而目前对其气溶胶传播途径还所知甚少。在新冠疫情防控中,一线医护人员进行吸痰、插管等临床救治操作时常暴露于患者产生的大量气溶胶中;而公众因普遍缺乏对气溶胶科学知识的了解,不少人将它视作“防不胜防的空气传播”,感到焦虑和茫然。 /p p   就在前不久,意大利多家科研机构合作,在预印本平台medRxiv上发表了题为“SARS-Cov-2 RNA Found on Particulate Matter of Bergamo in Northern Italy: First Preliminary Evidence” 的论文。该论文在意大利北部疫情爆发区的室外空气颗粒物中检测到新冠病毒RNA的存在,表明新冠病毒RNA可以存在于室外空气中的颗粒物上,新冠病毒可以与室外PM成簇,并且通过降低它们的扩散系数,增强病毒在大气中的持久性。(注:SARS-Cov-2为国际病毒分类学委员会对新冠病毒的命名) /p p   4月27日,权威期刊Nature(《自然》)在线发表武汉大学病毒学国家重点实验室主任蓝柯教授领衔的抗疫科技攻关团队的最新研究成果,首次揭示了新冠肺炎疫情期间环境气溶胶病毒载量及动力学特征,为疫情防控提供了参考依据。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c9975cb6-7ba4-4674-944a-8d65ca3674d8.jpg" title=" 文章截图.jpg" alt=" 文章截图.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " 文章截图 /span /strong /p p   最新发表的论文题为 a href=" https://www.instrument.com.cn/download/shtml/949048.shtml" target=" _self" style=" color: rgb(192, 0, 0) text-decoration: underline " strong span style=" color: rgb(192, 0, 0) " “Aerodynamic Analysis of SARS-CoV-2 in two Wuhan Hospitals” /span /strong /a (《武汉两所医院的新冠病毒气溶胶动力学分析》),武汉大学为第一署名单位,蓝柯教授、上海市环境监测中心伏晴艳高工(教授级)、复旦大学阚海东教授和香港中文大学何建辉教授为该论文的共同通讯作者,武汉大学病毒学国家重点实验室刘元、陈宇、郭铭和香港科技大学宁治为共同第一作者。该研究工作得到武汉大学新冠肺炎研究专项基金、泰康集团和北京泰康溢彩公益基金会的资助,以及武汉大学人民医院东院和武昌方舱医院的大力支持。 /p p   在武汉地区疫情的高峰时期,蓝柯带领团队骨干深入武汉大学人民医院东院重症及普通病房、武昌方舱医院病区及厕所、居民小区和超市等具有代表性的医院及公共环境等采样点,进行气溶胶样品的采集,并利用团队前期研发的新冠病毒数字PCR检测等技术,定量分析了各采样点样品的新冠病毒气溶胶载量及其空气动力学特征。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/ee7230c7-4ceb-4aef-bcdf-f7e616e195d0.jpg" title=" 图片.jpg" alt=" 图片.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " 医院和公共环境各采样点的新冠病毒载量(拷贝数/立方米空气) /span /strong /p p   研究结果表明,在当时严格防控的条件下,两所医院和公共环境总体是安全的。但在患者使用的厕所中气溶胶病毒载量较高,提示患者大小便冲水过程可能是病毒气溶胶的一个重要来源 在人流聚集的超市附近和医院楼栋通道等可检出一定的气溶胶病毒载量,说明人员聚集时病毒携带者与周围人群存在潜在的气溶胶传播风险。此外,团队通过分析病房落尘样品和医护人员脱防护服区域的病毒气溶胶载量和粒径分布,首次揭示了新冠病毒气溶胶的空气动力学特征,提出了病毒气溶胶“沉降(衣物/地面)—人员携带—空中扬起”的传播模型。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/d37989d7-91f8-4e68-a1ae-54e92ee44128.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: center "    strong span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " 新冠病毒气溶胶的粒径分布 /span /strong /p p   经过对上述武汉疫情高峰时期第一手环境气溶胶病毒载量数据进行分析总结,团队于2020年2月28日及时撰写研究报告并提交湖北省疫情防控指挥部科技攻关组和相关医院,作为政府的决策参考和医院制定防控消杀策略的科学依据。该研究成果也于2020年3月10日在国际主要预印本网站bioRxiv在线发布。 /p p   由于该成果是在疫情真实环境中监测的新冠病毒气溶胶载量和空气动力学结果,论文预印本发布一个多月来被阅读下载5万余次,引起了国内外140多家包括Nature、Science等知名学术期刊和The Scientist、Cosmos等著名科普网站,以及NPR、Yahoo、央视网、中国新闻网等主流媒体的关注和报道。 /p p   并且据外媒报道,在美国疫情爆发后,美国科学院、工程院和医学院三院联合于2020年4月1日给其总统提交的紧急咨询报告整段引用了该研究成果。不久之后,美国总统开始号召其民众实施戴口罩等个人防护措施。 /p p   总之,该研究不仅首次揭示了新冠肺炎疫情期间环境气溶胶病毒载量及动力学特征,同时也为疫情防控提供了参考依据,具有较大的科学价值和社会意义。 /p p   我们注意到,来自上海市环境监测中心的伏晴艳高工(教授级)为该论文的通讯作者之一。据了解,伏晴艳高工长期从事上海市大气环境监测和科研工作,在大气监测领域有着丰富的经验,其主持或实施了上海市PM2.5来源快速解析及大气环境承载力、上海市空气质量达标规划研究、长三角大气环境质量改善与综合管理关键技术研究、等国内项目50余项,主持中美合作AIRNOW-I等国际合作项目近20项& #8230 & #8230 伏晴艳高工在2011年-2012年雾霾爆发的较短时间内,作为大气监测科研领军人,主动承担起了国家PM2.5相关标准、规范的制定工作,创新研发监测技术方法体系,为国家PM2.5监测方法的确定提供了确实可靠的数据支持,推动上海成为全国第一批城市向社会实时发布PM2.5监测数据。 /p p   在新冠肺炎疫情这场危机中,来自医疗行业的工作者们为了战胜疫情做出了巨大的努力和牺牲。实际上,在新冠肺炎抗疫战中,环境监测部门也承担了大量的工作,不少像伏晴艳高工一样来自环境监测领域的人士投入水质监测、大气监测一线,为阻断新冠病毒传播途径而努力。经过我们国家几个月来的努力,我们更加明白抗疫从来都不是一个人、一个国家的事情,只有携起手来,共克时艰,全球才能真正赢得战“疫”的胜利! /p
  • Nature今日重磅,全球第二例艾滋缓解病例出现
    p   北京时间3月6日,国际顶级学术期刊《自然》在线发表了伦敦大学学院(UCL)病毒学家Ravindra Gupta 等研究人员的最新成果:一名HIV-1患者在CCR5Δ32/Δ32造血干细胞移植后病情处于长期缓解。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/72aafbb1-57d6-4003-9f9d-ebdd397efb45.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 250" border=" 0" vspace=" 0" style=" width: 600px height: 250px " / /p p   值得注意的是,该篇论文从投稿到在线发表不到1个月的时间,而且《自然》杂志特别标明是“加快评审文章”(Accelerated Article Preview)。 /p p   领导该项研究的伦敦大学学院病毒学家Ravindra Gupta表示,一名患有霍奇金淋巴瘤的36岁“伦敦病人”,2003年被诊断出感染艾滋病病毒,2012年开始接受抗逆转录病毒治疗。 /p p   后来,他又被诊断为晚期霍奇金淋巴瘤。接受化疗后,他于2016年接受了干细胞移植,又接受了16个月的抗逆转录病毒治疗。 /p p   为了检测“伦敦病人”体内的艾滋病病毒是否真正得到控制,科研人员在2017年9月中断了他常用的抗逆转录病毒治疗。 /p p   目前,他的病情已经持续18个月得到缓解,HIV抗体仍在,但随着时间流逝,抗体水平不断下降,血液中也并没有检测到hiv病毒。 strong 而在正常情况下,HIV病毒几个星期之内就会反弹 /strong 。 /p p style=" text-indent: 2em " 这项由逾20名研究人员共同完成的研究的重大意义在于,或重新点燃了人们曾经在“柏林病人”身上看到的希望。论文中提到, strong “这项研究证明了‘柏林病人’并非异类。” /strong 研究小组也将于当地时间3月5日(北京时间3月6日)在西雅图举行的逆转录病毒和机会性感染(CROI)年度会议上公布这一发现。 /p p style=" text-indent: 2em " 之所以被认为是一大突破,是因为上一个,也是唯一一个,被全世界公认治愈的艾滋病人,还是在12年前。他是代号“柏林病人”的蒂莫西· 布朗,布朗同时患有艾滋病和白血病,2007年生命绝望之际,在柏林接受了放射疗法和干细胞移植,这是他人生的重大改变,也是人类攻克艾滋病的一个里程碑,他被治愈了。但是,随后的类似治疗,都没取得成功。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/35a7fc47-c617-41bb-8f2b-3294c3d6324c.jpg" title=" 柏林病人.png" alt=" 柏林病人.png" / /p p style=" text-align: center " “柏林病人” 蒂莫西· 布朗 /p p   美国总统特朗普也忍不住发推特:“看了@纽约时报 的最新新闻,第二例被治愈的HIV感染病人出现了!这真的是个极大的好消息!(医学上)的重大进展!” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/978d9576-c2b6-45d8-b0ef-c48492ee2323.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " 虽然现在就确定这第二位患者已经治愈艾滋病还为时过早,但此次突破无疑坚定了人类抗艾的信心,离治愈艾滋病的最终目标也更近了一步。 /p
  • Sigma-Aldrich提供塑化剂邻苯二甲酸酯(DEHP等)检测的解决方案
    最近台湾出现的塑化剂污染饮料事件备受关注,一些不法商贩为了节约成本,用塑化剂替代棕榈油添加到&ldquo 起云剂&rdquo 中。塑化剂学名叫邻苯二甲酸酯,过多使用的话将影响生殖功能甚至导致癌症。对于塑化剂(邻苯二甲酸酯)的检测,Sigma-aldrich可以提供固相萃取的方法解决这一问题,采用Supelco玻璃管(无邻苯二甲酸酯类杂质干扰)SPE小柱对饮料中的邻苯二甲酸酯进行固相萃取富集,然后进行液相色谱或者GC/MS分析。此外,我们还可提供SPME(固相微萃取)快速检测邻苯二甲酸酯的检测方法。标准品、色谱溶剂、色谱柱等相关产品清单如下: 标准品 英文名 货号 包装 单价 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 280.8 邻苯二甲酸二乙酯DEP Diethyl phthalate36737-1G 1g 267.93 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 533.52 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 267.93 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 341.64 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 1932.84 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 238.68 邻苯二甲酸二环己酯 DCHP Dicyclohexyl phthalate 36908-250MG 250mg 310.05 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 401.31 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 48557 1g 527.67 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 267.93 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 299.52 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 849.42 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 417.69 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 506.61 邻苯二甲酸二异丙酯DIPrP Diisopropyl phthalate 80137-50ML 50ML 2190.24 邻苯二甲酸二烯丙酯DAP Diallyl phthalate 36925-250MG 250MG 341.64 邻苯二甲酸二丙酯DPrP Dipropyl phthalate 45624-250MG 250MG 267.93 邻苯二甲酸二庚酯DHP Diheptyl phthalate 454818-10G 10G 865.80 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml 453.96 BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml 424.71 BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml424.71 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml 464.49 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml 475.02 DEHP BBP DBP DNOPDEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml 475.02 DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 咨询 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 110 17种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 邻苯二甲酸二异壬酯 68515-48-0 DINP 色谱溶剂         正已烷 农残级 34484-2.5L 2.5L 418.86 乙酸乙酯 农残级 31063-2.5L 2.5L 418.86 环己烷 农残级 34496-2.5L 2.5L 528.84 石油醚,40-60 ° C 农残级 34491-2.5L 2.5L 645.84 乙醇 色谱级 34964-2.5L 2.5L 1744.47 乙酸 LC-MS级 49199-50ML-F 50ML 603.72 异辛烷 农残级 34499-2.5L 2.5L 1690.65 甲醇 农残级 34485-2.5L 2.5L 279.63 试剂         无水硫酸钠 农残级 35896-500G 500G 308.88 气相柱         SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.25&mu m 28471-U 1根 4699.89 SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.10&mu m 28467-U 1根 4699.89 液相柱         Ascentis® C18液相柱 5&mu m,25cm× 4.6mm 581325-U 1根 3239.73 Ascentis® C18保护柱 5&mu m,2cm× 4.0mm 581373-U 1kit 1077.57 固相萃取产品         防交叉污染固相萃取装置 12位 57044 1套 5717.79Supelclean&trade LC-Si 500mg/6ml 505374 30支/盒 741.78 Supelclean&trade LC-Si 1g/6ml(玻璃管,PTFE筛板 54335-U 30支/盒 3127.41 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-18 500mg/6ml(玻璃管,PTFE筛板 54331-U 30支/盒 2190.24 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-Florisil® 500mg/3ml(PTFE筛板) 57058 54支/盒 1736.28 装置         Supelco索氏抽提器 200mL 64826 1套 4186.26 产品适用的国家标准: GB/T 21911-2008 食品中邻苯二甲酸酯的测定 GB/T 21928-2008 食品塑料包装材料中邻苯二甲酸酯的测定 GB/T 22048-2008 玩具及儿童用品 聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定 GB/T 20388-2006 纺织品 邻苯二甲酸酯的测定 SN/T 2037-2007 与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定 气相色谱质谱联用法 SN/T 2249-2009 塑料及其制品中邻苯二甲酸酯类增塑剂的测定 气相色谱-质谱法 SN/T 1779-2006 塑料血袋中邻苯二甲酸酯类增塑剂的测定 气相色谱串联质谱法 WS/T 149-1999 作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法
  • 邻苯二甲酸二异壬酯成功注册REACH
    REACH邻苯二甲酸二异壬酯(DINP)协会宣布二异壬酯成功注册REACH。该组织表示,2003年的欧盟风险评估报告已表示支持该物质的注册,全面的毒理学和环境数据已齐备。同时,该物质的注册成功也表明二异壬酯并无持久性、生物蓄积性和毒性(PBT)及非常持久性、非常强的生物蓄积性(vPvB)的有害特征。   DINP在欧洲有两种不同的EINECS(欧洲现有化学物质总量)号码和两个独立的指挥注册公司。双低分子量的邻苯二甲酸盐、邻苯二甲酸二丁酯和邻苯二甲酸二异丁酯也包含在REACH29种候选授权物质的名单中。   对于美国环保署的化学行动计划,化工部门已公布化学品名单。有关人员表示仍需时间来证明相对高分子质量的邻苯二甲酸盐,如DINP等的生物毒性与安全使用之间的关系。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制