当前位置: 仪器信息网 > 行业主题 > >

四丁基硼氢化铵

仪器信息网四丁基硼氢化铵专题为您提供2024年最新四丁基硼氢化铵价格报价、厂家品牌的相关信息, 包括四丁基硼氢化铵参数、型号等,不管是国产,还是进口品牌的四丁基硼氢化铵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四丁基硼氢化铵相关的耗材配件、试剂标物,还有四丁基硼氢化铵相关的最新资讯、资料,以及四丁基硼氢化铵相关的解决方案。

四丁基硼氢化铵相关的方案

  • 抑制型电导-离子色谱法测定左乙拉西坦中的四丁基铵
    文中建立了一套测定左乙拉西坦原料药中四丁基胺的离子色谱方法,样品中基体不影响待测物质的准确分析。待测物四丁基胺在SCS1上的峰形很对称,方法分析速度快,操作简便,灵敏度等均可完全满足此类样品测定的要求。
  • 抑制型电导-离子色谱法测定左乙拉西坦中的四丁基铵
    左乙拉西坦的化学名称为(S)-α -乙基-2-氧代-1-吡咯烷乙酰胺,是一种新型吡咯烷酮衍生物型抗癫痫药物。左乙拉西坦是20世纪90年代经美国食品药品管理局(FDA)批准应用于临床的一种新型抗癫痫药物(antiepilepticdrugs,AEDs),其结构和作用机制均与已上市的其他抗癫痫药物不同,具有较强的抗癫痫作用。四丁基溴化铵是在左乙拉西坦的合成过程中作为相转移催化剂使用;原料药的合成工艺准则要求必须要严格控制其残留量。
  • 天津兰力科:硼氢化钠的电化学行为研究
    硼氢化钠直接燃料电池(DBFC)理论开路电压达到1.64V而引起人们的广泛关注,且其高能量密度可达到9.3Wh/g,高于甲醇燃料电池(6.1 Wh/g)。在硼氢化钠直接燃料电池的工作过程中,硼氢化钠在阳极进行直接氧化反应,但同时硼氢根的水解反应也在进行,而氢气的生成不仅会降低燃料的利用率,且会降低电池的性能。因此,在研究BH4-阳极氧化过程中,如何改善BH4-直接氧化反应,抑制BH4-水解反应具有重要的意义。论文首先采用循环伏安法研究了NaBH4碱性溶液在铂、微盘铂、金、铜、银、泡沫镍、玻碳等电极上的电化学行为。结果表明:在以金、铂电极作工作电极时,硼氢化钠直接氧化反应可以很好的发生;微盘铂电极不宜用于研究浓度较大的硼氢化钠溶液的电化学性能;银和铜电极活性高,但对硼氢化钠直接氧化的研究干扰较大;泡沫镍也显示了一定的活性,但稳定性不好;玻碳不宜作为研究硼氢化钠直接氧化的电极材料。论文进一步采用线性伏安法对铂电极和金电极上的氧化过程进行了详细研究。结果表明:当硼氢化钠浓度大于0.135mol/L且[NaOH]∕[NaBH4]比值在3~7内,铂电极能较好地抑制硼氢化钠水解反应;在金电极上,[NaOH]∕[NaBH4]比值在10~40内,增大氢氧化钠浓度能抑制水解反应,但同时直接氧化电流会随之下降。在硼氢化钠浓度相同,用金电极比用铂做工作电极时,氢氧化钠的需用量要大;铂电极上的硼氢化钠直接氧化过程为非氧化-还原催化,金电极上的硼氢化钠直接氧化过程为扩散控制。但硼氢化钠浓度一定而氢氧化钠量未到所需时,扫描速度增大,溶液对流对电极反应的响应影响减少,有利于电流峰的测定;在303K~353K范围,铂电极上的直接氧化反应电流随温度升高先增大后降低,而金电极上的直接氧化反应电流随温度的升高而升高;添加适量的硫酸钠和硝酸钠,都能使铂和金电极上的直接氧化反应电流增大,但硫酸钠的加入还能促进硼氢化钠的水解反应且过量时会导致氧化反应电流降低,硝酸钠能抑制硼氢化钠水解反应。
  • 饲料砷的测定方案氢化物原子荧光光度法(快速法)
    样品经酸消解或干灰化破坏有机物,加入硫脲使五价砷预还原为三价砷,再加人硼氢化钠或硼氢化钾使还原生成砷化氢,由氢气载人石英原子化器中分解为原子态砷,在特制砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测液中的砷浓度成正比,与标准系列比较定量。
  • 北分瑞利:氢化物发生原子荧光法测定饲料中硒
    摘要 本文建立了氢化物发生原子荧光光谱法测定饲料中硒,对各种不同饲料中铜、铁干扰离子,采用铁氰化钾做掩蔽剂,以及选择最佳的酸度和硼氢化钾浓度等仪器参数。本法线性范围为0—400ng/mL,相关系数大于0.999,方法检出限为0.1ng/mL,加标平均回收96%。
  • 高效液相色谱-氢化物发生原子吸收光谱法测定塑料食品包装材料中有机锡
    本文建立了高效液相色谱-氢化物发生原子吸收光谱法同时测定塑料食品包装材料中二甲基锡(DMT)、三甲基锡(TMT)、二丁基锡(DBT)和二苯基锡(DPhT)4 种有机锡化合物含量的分析方法。选择甲醇为溶剂,微波辅助萃取样品有机锡化合物,方法采用Eclipse Plus C18 反相柱进行分析,流动相为甲醇:水:乙酸=(65:33:2 V/V),0.05%的三乙胺溶液,流速为0.6mL/min 时,4 种有机锡化合物可达到有效分离。在4%盐酸溶液和2.5%硼氢化钠溶液的氢化反应条件下, 4 种有机锡化合物在5~100 μ g/L 浓度范围内呈良好线性关系,其相关系数(r2)均大于0.999,方法的检出限在0.35~0.50μ g/L 之间。样品平均加标回收率为在86.4%~94.2%之间,相对标准偏差小于7.4%。
  • 氢化物发生-原子吸收光谱法 测定食品中铅、镉、汞
    :提出了一种顺序流动注射-氢化物发生-原子吸收光谱分析方法。食品样品经硝酸-高氯酸(4+1)混合酸消化,以硼氢化钾为还原剂,盐酸溶液为载流,用氢化物发生-原子吸收光谱法测定食品中铅、镉和汞含量的方法。在优化的试验条件下,铅、镉和汞的质量浓度分别在一定的范围内与其吸光度呈线性关系,检出限(3s/k)分别为0.20,0.04,0.22μgL-1。用此方法测定了食品中重金属铅、镉、汞的含量,测定值的相对标准偏差(n=6)均小于3.0%,加标回收率在94.8%~103.2%之间。
  • 北京瀚时:海水中砷的测定 氢化物发生原子吸收光谱法
    海水—砷的测定—氢化物发生原子吸收光谱法 1 范围 本方法适用于大洋、近岸、河口水中无机砷的测定。 检出限:0.06μg/L。 2 原理 在酸性介质中,以硼氢化钾将砷(Ⅲ)转化为砷化氢气体,由载气将其导入原子化器,分解生成原子态砷,在其特征吸收波长处测定砷的原子吸收。 3 试剂 除非另作说明,所用试剂均为分析纯,水为二次去离子水或等效纯水。 3.1 硫脲(CH4N2S)。 3.2 抗坏血酸(C6H8O6)。 3.3 硼氢化钾(KBH4)。 3.4 硫酸,5+95。 3.5 盐酸(ρ1.19g/mL)。 3.6 去砷盐酸溶液,约6mol/L:取600mL盐酸(ρ1.19g/mL)置于200mL聚乙烯广口瓶中,加400mL水,通过刻度吸管从溶液底部滴入100mL硼氢化钾溶液(15g/L),通氮气(1.5L/min)3min驱赶残余砷化氢。再重复去砷一次。 3.7 氢氧化钠溶液,10g/L:贮于聚乙烯瓶中。 3.8 混合还原剂:称取5.0g硫脲和3.0g抗坏血酸,以水溶解,加水稀释至100mL。当天配制。 3.9 硼氢化钾(钠)溶液,15g/L:称取15g硼氢化钾,加100mL,经双层定性滤纸抽滤后放入冰箱,可保持一周,(使用时要与室温一致)。 3.10 砷标准溶液 注意:三氧化二砷剧毒! 3.10.1 称取0.6602g光谱纯三氧化二砷(As2O3,预先经105℃烘2h,置于干燥器中冷却),置于50mL烧杯中,加入20mL氢氧化钠溶液(10g/L)溶解,移入100mL容量瓶中。以20mL硫酸溶液(5+95)分三次洗涤烧杯,洗涤液并入容量瓶中,用水稀释至刻度,摇匀。此溶液1.00mL含500μg砷。 3.10.2 移取1.00mL砷标准溶液(500μg/mL),置于50mL容量瓶中,加5mL硫酸溶液(5+95),用水稀释至刻度,摇匀。此溶液1.00mL含10.0μg砷。 3.10.3 移取1.00mL砷标准溶液(10.0μg/mL),置于100mL容量瓶中,加10mL硫酸溶液(5+95),用水稀释到刻度,摇匀。此溶液1.00mL含0.100μg砷。 3.11 去砷盐酸海水:将100mL盐酸(ρ1.19g/mL)及900mL海水加入2000mL广口聚乙烯瓶中,通过刻度吸管从溶液底部滴入100mL硼氢化钾溶液(15g/L),通氮气(1.5L/min)3min驱除残余的砷化氢。再重复去砷一次。临用前每1000mL此种溶液中加入3.0g抗坏血酸及5.0g硫脲,溶后混匀。 4 仪器设备 4.1 原子吸收光谱仪带氢化物原子化装置。
  • 氢化物测砷
    砷的测试1.准备好干净的100mL容量瓶6个以上、500mL容量瓶2个、200mL塑料瓶2个、2mL和5mL、10mL移液管若干个,烧杯、电炉。2.准备盐酸、硼氢化钾、氢氧化钠、蒸馏水或去离子水。3.准备砷标液、碘化钾、抗坏血酸。4.价态还原:将10mL 100μg/mL的As标液放入100mL的容量瓶中,加入0.8g碘化钾,用10%的盐酸溶液,定溶至100mL,倒入烧杯中,放置电炉上加热至微沸,放凉,加入0.5g抗坏血酸。此标液浓度(含量)为1μg/mL As3+ 的母液。放置在茶色瓶中密封避光保存,可用半年。再用时不用做价态还原。5.1%载液的配置:用500mL容量瓶,加入5mL盐酸,用蒸馏水定容至500mL。6.空白的配置:用500mL容量瓶,加入50mL盐酸,用蒸馏水定容至500mL备用,此为10%的盐酸。7.砷标准系列的配置:准备好4个100mL的容量瓶,分别加入0.2mL、0.4mL、0.6mL、0.8mL的标准母液,用已配置好的10%的盐酸定溶至100mL。此为分别是2、4、6、8ng/mL的系列标液。注:原子吸收型号不同,性能也不相同,灵敏度也有区别,所以在做系列标准时要根据具体情况来配置标准系列,总之最大读数最好不要超过0.8A,否则浓度过高容易造成曲线弯曲,最小读数要大于0.02A(扣除空白后的读数)8.硼氢化钾的配置:称取3g硼氢化钾放入塑料瓶中,再加入0.6g氢氧化钠,加蒸馏水定溶至200mL。(保存使用期为1周)9.空白用已配置好的,用剩余的10%盐酸溶液。10.样品的价态处理、稀释配置 ,将已溶解的样品调整酸度至10%,加入0.8%碘化钾,倒入烧杯中,放置电炉上加热至微沸,加入0.5%抗坏血酸。此为样品母液,测定时需稀释至曲线范围之内。 11.样品空白:样品空白与标液空白相同。12.注意:因本发生器是氢化物原子吸收法测定微量元素,因是低含量或微量的,所以要特别注意移液的准确度和所有器皿的洁净,哪怕是很小的误差失误都会给测定数据造成很大的影响。所以在样品和标准的配制过程中一定要严格按照有关操作归程对所有使用器皿认真清洗,配制过程认真仔细。13.使用过程中有问题请再与我们联系。14.我们给您提供的方法,不能说是最好,但按照此法就可以做出砷标样。
  • 微波消解—氢化物原子吸收光谱法测定皮革中的铅
    摘要:采用微波消解—氢化物原子吸收光谱法测定皮革制品中重金属铅的含量。优化了微波消解条件,并对硼氢化钠浓度、溶液酸度、铁氰化钾以及共存离子的干扰等条件进行了研究和选择。方法的检出限为0.036ug/L,应用此法对皮革制品进行分析,回收率在96.8%-105.6%之间。该方法具有快速、准确、干扰少等优点。关键词:微波消解;氢化物;原子吸收光谱法;皮革;铅
  • 水质—砷的测定—氢化物发生-原子吸收分光光度法
    本方法对砷的测定选择性好,灵敏度高。但反应过程中能产生液相和气相两大类干扰。液相干扰是指共存金属离子被硼氢化钾先还原成金属粉末吸附了砷化氢并与之沉淀。气相干扰主要是碲、铋和硒的氧化物对砷化氢的干扰。
  • 流动注射氢化物发生原子吸收光谱法测定蒙药中硒
    摘要: [目的] 研究测定蒙药中硒的新方法。[方法]蒙药消化液用盐酸还原处理将六价硒转化为四价硒,以硼氢化钾为还原剂,稀盐酸为载液,用流动注射氢化物发生原子吸收光谱法测定硒。[结果] 方法的检出限为0.12ng/ml,线性范围为0.60—35ng/ml,相对标准偏差为4.7%-6.4%,样品加标回收率为96.6%-102.1%,对人发标准物质进行测定,结果与标准值符合。[结论] 本法具有灵敏度高、选择性好、试剂及样品用量少、操作方便、分析快速(60个样品/h)等优点,有推广应用价值。
  • 罐头食品中锡的微波消解-氢化物原子荧光测定法
    摘 要 目的 建立罐头食品中锡的微波消解-氢化物原子荧光测定方法。方法样品经HNO3+H2O2微波消解体系消解后,以硫脲和抗坏血酸作预还原剂,用氢化物原子荧光光谱法测定罐头食品中锡。同时研究了酸度、硼氢化钾浓度、载气及屏蔽气流速等因素对测定的影响。结果 锡含量在0.00~200.0μg/L范围内呈线性关系,线性相关系数大于0.9990,该法检出限为0.079μg/L。对锡加标含量为50μg/L的样液,测得方法RSD为0.86%~1.85%,标准加入回收率在89.4%~103.5%之间。结论。该方法各项指标均达到的要求,进一步实现罐头食品中锡测定的快速化、简单化、准确化,有效地预防锡及其化合物的食物中毒。
  • 氢化物发生-冷蒸气原子吸收光谱法测定水中的砷、硒和汞
    由于砷,硒和汞的限值水平很低,所以在低噪音水平下对这些元素进行精密而准确的测定是非常重要的。本文概述了使用FIAS-AAS准确和可靠的对水中的砷,硒和汞进行预处理并分析测定的程序。氢化物发生已被广泛用于测定低含量并且容易与硼氢化钠形成氢化物的元素。氢化物的优势是它在进入原子化器进行原子化之前进行了一个浓缩的步骤,这使得它的分析比溶液雾化系统更加高效。由于使用了加热石英管雾化器,样品传输效率增强,与火焰原子吸收(以及石墨炉原子吸收)相比大大提高了灵敏度,有能力进行含量极低的测定。本次实验的结果表明,PinAAcle 900T结合FIAS 400流动注射系统可以为水中砷、硒和汞的分析提供准确和精确的数据。设计独特的PinAAcle 900T系统其石英管加热罩的安装和优化是非常简单的。这允许用户可以在火焰、石墨炉以及汞/氢化物发生技术之间轻松切换。这一应用程序可以用在所有的PinAAcle光谱仪与适当的适配器套件模式中。
  • 四甲基氢氧化铵(TMAH)的测定 应用资料
    四甲基氢氧化铵(TMAH)的测定 应用资料SJ/T 11636-2016 电子工业用显影液中四甲基氢氧化铵的测定 自动电位滴定法。按 GB/T 9725 规定,将规定的指示电极和参比电极浸入同一被测溶液中,在滴定过程中,参比电极的电位保持恒定,指示电极的电位随被测物质的浓度的变化而变化。在化学计量点前后,溶液中被测物质浓度的变化,会引起指示电极电位的急剧变化,指示电极的突跃点即滴定终点。
  • 磷酸肌酸钠含量的测定
    色谱柱:月旭XtimateTM C18(4.6*250mm,5μm)流动相:0.2%磷酸二氢钾和0.1%四丁基氢氧化铵的溶液(用磷酸调PH=6.60)检测波长:210nm柱温:30℃流速:1ml/min进样量:20μl
  • 奶粉中胞嘧啶核苷酸在ChromCore120C18上的分离
    选用ChromCore 120 C18反相色谱柱,结合四丁基硫酸氢铵/磷酸二氢钾系统在酸性甲醇溶液中进行分离,在该色谱条件下,各主要组分与其他未知组分间有较好的分离度和峰型。Column:ChromCore 120 C18, 5 μ mDimension:4.6 × 250 mmMobile phase:96/4 v/v 1.4mmol/L四丁基硫酸氢铵& 10mmol/L磷酸二氢钾,pH2.5/甲醇Flow rate:1.0 mL/minTemperature:25 ℃Injection:10 μ LDetection:UV 254 nm
  • 烟酰胺单核苷酸在ChromCoreC18上的分离
    Column:ChromCore C18, 5 μ mDimension:4.6× 250 mmMobile Phase:25/75 v/v 甲醇/40 mM磷酸二氢钾溶液 (含5 mM四丁基硫酸氢铵), pH6.2
  • PerkinElmer:氢化物发生-冷蒸气原子吸收光谱法测定水中的汞
    由于砷,硒和汞的限值水平很低,所以在低噪音水平下对这些元素进行精密而准确的测定是非常重要的。本文概述了使用FIAS-AAS准确和可靠的对水中的砷,硒和汞进行预处理并分析测定的程序。氢化物发生已被广泛用于测定低含量并且容易与硼氢化钠形成氢化物的元素。氢化物的优势是它在进入原子化器进行原子化之前进行了一个浓缩的步骤,这使得它的分析比溶液雾化系统更加高效。由于使用了加热石英管雾化器,样品传输效率增强,与火焰原子吸收(以及石墨炉原子吸收)相比大大提高了灵敏度,有能力进行含量极低的测定。本次实验的结果表明,PinAAcle 900T结合FIAS 400流动注射系统可以为水中砷、硒和汞的分析提供准确和精确的数据。设计独特的PinAAcle 900T系统其石英管加热罩的安装和优化是非常简单的。这允许用户可以在火焰、石墨炉以及汞/氢化物发生技术之间轻松切换。这一应用程序可以用在所有的PinAAcle光谱仪与适当的适配器套件模式中。
  • PerkinElmer:氢化物发生-冷蒸气原子吸收光谱法测定水中的砷
    由于砷,硒和汞的限值水平很低,所以在低噪音水平下对这些元素进行精密而准确的测定是非常重要的。本文概述了使用FIAS-AAS准确和可靠的对水中的砷,硒和汞进行预处理并分析测定的程序。氢化物发生已被广泛用于测定低含量并且容易与硼氢化钠形成氢化物的元素。氢化物的优势是它在进入原子化器进行原子化之前进行了一个浓缩的步骤,这使得它的分析比溶液雾化系统更加高效。由于使用了加热石英管雾化器,样品传输效率增强,与火焰原子吸收(以及石墨炉原子吸收)相比大大提高了灵敏度,有能力进行含量极低的测定。本次实验的结果表明,PinAAcle 900T结合FIAS 400流动注射系统可以为水中砷、硒和汞的分析提供准确和精确的数据。设计独特的PinAAcle 900T系统其石英管加热罩的安装和优化是非常简单的。这允许用户可以在火焰、石墨炉以及汞/氢化物发生技术之间轻松切换。这一应用程序可以用在所有的PinAAcle光谱仪与适当的适配器套件模式中。
  • PerkinElmer:氢化物发生-冷蒸气原子吸收光谱法测定水中的硒
    由于砷,硒和汞的限值水平很低,所以在低噪音水平下对这些元素进行精密而准确的测定是非常重要的。本文概述了使用FIAS-AAS准确和可靠的对水中的砷,硒和汞进行预处理并分析测定的程序。氢化物发生已被广泛用于测定低含量并且容易与硼氢化钠形成氢化物的元素。氢化物的优势是它在进入原子化器进行原子化之前进行了一个浓缩的步骤,这使得它的分析比溶液雾化系统更加高效。由于使用了加热石英管雾化器,样品传输效率增强,与火焰原子吸收(以及石墨炉原子吸收)相比大大提高了灵敏度,有能力进行含量极低的测定。本次实验的结果表明,PinAAcle 900T结合FIAS 400流动注射系统可以为水中砷、硒和汞的分析提供准确和精确的数据。设计独特的PinAAcle 900T系统其石英管加热罩的安装和优化是非常简单的。这允许用户可以在火焰、石墨炉以及汞/氢化物发生技术之间轻松切换。这一应用程序可以用在所有的PinAAcle光谱仪与适当的适配器套件模式中。
  • 伊曲康唑的测定
    【有关物质】流动相:乙腈-0.02 mol/L硫酸氢四丁基铵溶液(40:60)洗脱方式:梯度,见下表流速:1.5 ml/min检测器:UV 225 nm柱温:40 ℃样品浓度:2.0 mg/ml进样量:10 ul【含量测定】流动相:乙腈-0.02 mol/L硫酸氢四丁基铵溶液(40:60)流速:1.0 ml/min检测器:UV 225 nm柱温:30 ℃样品浓度:0.2 mg/ml进样量:10 ul
  • 人氢化可的松(HYD)检测试剂盒
    人氢化可的松(HYD)检测试剂盒人氢化可的松(HYD)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人氢化可的松(HYD)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人氢化可的松(HYD)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人氢化可的松(HYD)抗原、生物素化的人氢化可的松(HYD)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人氢化可的松(HYD)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 三聚氰酸的测定
    流动相:缓冲溶液:甲醇=92:8;缓冲溶液:0.005 mol/L四丁基溴化铵+0.005 mol/L磷酸氢二钠水溶液 流速:1.0 mL/min 检测器:UV 226 nm 柱温:30 ℃ 进样体积:20 μ L
  • THAM四甲基氢氧化铵液体浓度检测方法
    检测THAM四甲基氢氧化铵浓度就成为必要手段。KRK笠原理化LQ-5Z-Multi,可以现场检测四甲基氢氧化铵。
  • 气相色谱法同时测定饲料中的丁基羟基茴香醚、二丁基羟基甲苯、乙氧喹
    抗氧化剂即为防止或延缓饲料中某些活性成分发生氧化变质而添加于饲料中的制剂。主要用于含有高脂肪的饲料,以防止脂肪氧化酸败变质,也常用于含维生素的预混料中,它可防止维生素的氧化失效。我国《食品添加剂使用卫生标准》(GB2760—1996)中规定:丁基羟基茴香醚可用于食用油脂、油炸食品、干鱼制品、饼干、方便面、速煮米、果仁罐头、腌腊肉制品、早餐谷类食品,其最大使用量为0.2g/kg。丁基羟基茴香醚与二丁基羟基甲苯、没食子酸丙酯混合使用时,其中丁基羟基茴香醚与二丁基羟基甲苯总量不得超过0.1g/kg,没食子酸丙酯不得超过0.05 g/kg(使用量均以脂肪计)。此外也可用于胶姆糖配料。
  • 人氢化可的松(HYD)ELISA试剂盒
    人氢化可的松(HYD)ELISA试剂盒中文名称 人氢化可的松(HYD)ELISA试剂盒英文名称 Human hydrocortisone (HYD) ELISA Kit 规格 96T/48T 生 产 商 进口原装/分装 产品介绍 实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人氢化可的松(HYD)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人氢化可的松(HYD)抗原、生物素化的人氢化可的松(HYD)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人氢化可的松(HYD)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • 使用配备 MSIS 附件的 Agilent 5110 SVDV ICP-OES 同时测定鱼样品中的氢化物和非氢化物元素
    食品中各种元素(包括营养元素、微量元素和有毒元素)的检测是一类应用广泛的分析,对于确保这些产品的质量控制非常重要。配备氢化物发生附件的 ICP-OES 通常用于测定食品中可形成氢化物的元素,与传统雾化技术相比,其性能更高,检测限更低。但是,同时测定氢化物 和非氢化物元素的分析更耗时,也更复杂。本研究使用传统进样系统在一 次分析中同时测定 Cd、Cr、Cu、Ni、Fe、Pb 和 Zn 等元素。然后,在安装氢 化物发生附件的情况下测定 As、Se、Hg 和 Sn 等可形成氢化物的元素。对于日常需要同时分析样品中可形成氢化物的元素和不可形成氢化物的元素 的实验室而言,在两种进样系统之间切换造成了大量的时间损失。安捷伦多模式进样系统 (MSIS) 是一套灵活的进样系统,可安装在 ICP-OES 上,用于氢化物和非氢化物元素的检测。该系统可在三种模式下运行:传统雾化模式、氢化物发生模式和双重模式。在双重模式下运行时,可同时测定氢化物和非氢化物元素,省去了复杂、耗时的进样系统更换过程,且不影响灵敏度,缩短了仪器停机时间。
  • 奶粉中腺嘌呤核苷酸在ChromCore120C18上的分离
    选用ChromCore 120 C18反相色谱柱,结合四丁基硫酸氢铵/磷酸二氢钾系统在酸性甲醇溶液中进行分离,在该色谱条件下,各主要组分与其他未知组分间有较好的分离度和峰型。Column:ChromCore 120 C18, 5 μ mDimension:4.6 × 250 mmMobile phase:96/4 v/v 1.4mmol/L四丁基硫酸氢铵& 10mmol/L磷酸二氢钾,pH2.5/甲醇Flow rate:1.0 mL/minTemperature:25 ℃Injection:10 μ LDetection:UV 254 nm
  • 奶粉中尿嘧啶核苷酸在ChromCore120C18上的分离
    选用ChromCore 120 C18反相色谱柱,结合四丁基硫酸氢铵/磷酸二氢钾系统在酸性甲醇溶液中进行分离,在该色谱条件下,各主要组分与其他未知组分间有较好的分离度和峰型。Column:ChromCore 120 C18, 5 μ mDimension:4.6 × 250 mmMobile phase:96/4 v/v 1.4mmol/L四丁基硫酸氢铵& 10mmol/L磷酸二氢钾,pH2.5/甲醇Flow rate:1.0 mL/minTemperature:25 ℃Injection:10 μ LDetection:UV 254 nm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制