当前位置: 仪器信息网 > 行业主题 > >

文拉法辛二聚体

仪器信息网文拉法辛二聚体专题为您提供2024年最新文拉法辛二聚体价格报价、厂家品牌的相关信息, 包括文拉法辛二聚体参数、型号等,不管是国产,还是进口品牌的文拉法辛二聚体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合文拉法辛二聚体相关的耗材配件、试剂标物,还有文拉法辛二聚体相关的最新资讯、资料,以及文拉法辛二聚体相关的解决方案。

文拉法辛二聚体相关的资讯

  • 斯坦福医学院案例cell分享 | MST技术检测蛋白的二聚体亲和力
    Part 1研究背景在生物化学中,蛋白质二聚体是由两个蛋白质单体或单个蛋白质形成的大分子复合物,它们通常是非共价结合的。蛋白质二聚体是一种蛋白质四级结构。有些蛋白需形成同源或者异源二聚体才能发挥其特定的功能,且不同聚集体的亚型与不同靶蛋白特异性结合,如14-3-3蛋白。对聚集体的状态维持和解离研究能更加清楚的了解生物学过程,并且开发特异性的靶标药物,用于疾病的治疗。由于聚集体是蛋白的四级结构组成部分,因此,一般来检测聚集体的亲和力需要先形成蛋白单体,也就是极低的蛋白浓度,对于很多互作方法来说无法实现检测。下方这篇Cell文献介绍了MST成功检测蛋白的二聚体亲和力以及小分子对聚集过程的影响。Part 2研究内容美国斯坦福大学Paul A. Khavari小组使用葡萄糖解聚DDX21二聚体来调节mRNA剪接和组织分化。2023年1月出版的《Cell》杂志发表了这项成果。https://doi.org/10.1016/j.cell.2022.12.004IF: 64.5 Q1葡萄糖是一种普遍的生物能量来源,此外,研究发现,葡萄糖可能重塑分化所需蛋白质的功能,使分化过程得以实现。DDX21是一种DEAD-box RNA解旋酶,为同源二聚体状态,DDX21调节黑素细胞干细胞的分化。然而,DDX21在表皮分化中的功能尚未不清晰。在该研究中,作者发现,葡萄糖结合DDX21的ATP结合域,改变其构象,进而造成DDX21解离。在分化过程中,DDX21以葡萄糖依赖的方式定位于mRNA内含子中特定的模体,并促进关键的促分化基因的剪接。为了更清楚地了解葡萄糖对DDX21二聚化的影响,作者需检测(不)结合葡萄糖时DDX21二聚体亲和力。MST技术上机检测的浓度可以低至pM-nM,保证DDX21为单体状态,进而获得准确的二聚体亲和力结果。此外,MST对缓冲成分没有要求,并且是检测达到平衡状态时的亲和力。因此,可以将葡萄糖作为缓冲成分加入到体系中,并且使葡萄糖和DDX21达到平衡后再进行检测。MST亲和力结果表明,葡萄糖显著抑制DDX21二聚化(降低了近7倍)。图1:微量热泳动(MST)检测DDX21的二聚化(黑色)以及存在350uM葡萄糖(红色)或者半乳糖(蓝色)时亲和力。Part 3技术优势在这篇工作中,通过MST技术确定了DDX21形成二聚体的亲和力,以及葡萄糖与DDX21的作用。对于分子互作亲和力的检测,MST上机浓度极低,保证蛋白的单一状态,同时节省样本。当检测多个分子互作时,可以孵育达到平衡,获得准确的多元的亲和力。
  • 二维液相色谱-高分辨质谱检测平台SEC-RPLC-QTOF轻松鉴定抗生素中聚合物杂质
    目前,在抗生素新药申报日益严格的大背景下,聚合物杂质的研究常常是药品审评中心(Center for Drug Evaluation, CDE)发补及退审的理由。抗生素中聚合物杂质是引起临床不良反应的主要过敏原,严格控制其含量具有重要的意义。传统的聚合物杂质检测通常采用排阻色谱法,该方法检测时间长、分离度和专属性不足,对聚合物杂质进行笼统的总量控制,定量不准确,且无法鉴定聚合物杂质的结构。 为了解决这些难题,岛津公司与北京新领先医药科技发展有限公司合作搭建了SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台。基于该平台二维杂质动态上样、在线脱盐等技术,以及岛津高分辨质谱仪的高质量准确度和高质量稳定性等性能特点,目前双方的研发人员共同参与完成了十四种β-内酰胺类抗生素的聚合物杂质的全面解析,并建立质谱数据库。 二维液相色谱-高分辨质谱检测平台SEC-RPLC-QTOF 参考2020年版《中国药典》头孢米诺和头孢地嗪有关物质Ⅱ检测方法,一维采用岛津Shimpack Bio Diol-60高效凝胶色谱柱进行分离,将聚合物杂质指针性地导入样品环;然后采用中心切割在线除盐进行二维反相色谱分离目标杂质,并通过LCMS-9030四极杆飞行时间高分辨质谱采集,获得准确的一级和二级质谱数据来达到鉴定杂质的目的。 SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台流路图 抗生素杂质数字化标准品数据库 创新中心开发的《抗生素杂质数字化标准品数据库》已收录《欧洲药典》β-内酰胺类抗生素相关杂质标准品基于岛津液相色谱-高分辨质谱仪LCMS-9030采集的ESI正/负双模式,7个不同碰撞能量下的二级质谱图,同时数据库已登录化合物信息、可能的结构式、分析方法的色谱条件和《中国药典》流动相条件对应的保留时间等。此外,为方便使用者从高分辨质谱方法向低分辨质谱方法的转化,本数据库还登录了14种抗生素品种相关杂质的MRM方法文件,适用于液相色谱-三重四极杆质谱产品的检测。 目前数据库包含头孢甲肟、拉氧头孢、氟氧头孢钠、头孢呋辛、头孢曲松、头孢他碇、头孢吡肟、头孢唑啉钠、阿莫西林、头孢呋辛酯、头孢哌酮钠舒巴坦钠、头孢克肟、头孢泊肟酯和头孢地尼等14种β-内酰胺类抗生素品种,153种杂质和主成分对照品,以及50余种高分子聚合物杂质的共计1483张二级质谱图。 应用案例:阿莫西林聚合物杂质的鉴定 采用SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台共检出阿莫西林热降解溶液中14种杂质成分,成功分离出阿莫西林二聚体,三聚体,四聚体及其异构体。下图为阿莫西林二聚体在数据库中的检索结果。 阿莫西林二聚体鉴定结果 详细信息请参考:《阿莫西林胶囊热降解聚合物杂质的2D-HPLC分析及质谱裂解机理探讨》《药物分析杂志》中图分类号:R917 文献标识码:A 文章编号:0254-1793(2021)07doi: 10.16155/j.0254-1793.2021.07。 总结 创新中心搭载的专属性中心切割二维反相色质谱联用分析平台SEC-RPLC-QTOF,采用中心切割技术,在线除盐分离出目标杂质,利用LCMS-QTOF配合自主开发的质谱库进行鉴定。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。
  • 有望减缓温室气体增加,科学家用冷冻电镜全面解析微生物一氧化二氮还原酶组装过程
    无味无毒的气体一氧化二氮(N2O,nitrous oxide)可以通过生物和非生物两类过程形成,这导致大气中 N2O 浓度每年稳定增加 0.2-0.3 %。一氧化二氮是一种消耗臭氧的物质;它的全球变暖潜力超过了二氧化碳的 300 倍,因此已经被认为是 21 世纪最关键的人为排放物。微生物可以将 N2O 转化为 N2,这是反硝化过程的最后一步,这一反应完全由一氧化二氮还原酶(N2OR 酶)催化。大气中 N2O 释放和不断积累的一个主要因素是,在高流量氮的环境下,微生物还原 N2O 的能力有限。因此,利用 N2OR 酶的性能进行农业或生物修复应用是相当有意义的,这需要对该酶及其反应过程有一个详细的了解。除了 [ 4Cu:2S ] CuZ 簇,它还含有混合价的双铜电子转移中心 CuA,这使其成为目前已知最复杂的含铜酶。各种真核生物和原核生物酶在涉及氧运输、电子转移或氧化还原催化的过程中都会使用过渡金属铜,但其巨大的细胞毒性、对铁硫簇代谢的不利影响以及产生活性氧的倾向性,使得细胞内必须进行严格的平衡和调节。N2O 还原剂通过完全在细胞质外组装 CuA 和 CuZ 来规避与细胞内铜有关的风险,尽管 apo-N2OR 已经以折叠状态通过 Tat 途径被输出。然而,这种策略导致了新的复杂情况,特别是包括在周质中没有还原当量和高能化合物,如核苷三磷酸酯。I 族 N2O 还 原催化剂的共同结构包括两个核苷酸结合结构域(NosF)和两个跨膜结构域(NosY)。一些细菌输出体进一步与附属蛋白相互作用,以建立复杂的运输系统,NosD 蛋白被认为是与 NosFY 一起发挥这种作用。由于 NosDFY 的实际货物分子尚未被确定,不能排除 CuZ 成熟所需的周质硫源。为了了解 N2OR 成熟的分子基础,这项研究制作并表征了 NosDFY 复合物,并通过冷冻电子显微镜(cryo-EM)研究了它与 NosL 和 N2OR 的相互作用,揭示了由细胞质中 ATP 水解驱动的周质酶铜位点的顺序组装线。2022 年 7 月 27 日,德国弗莱堡大学生物物化学研究所所长奥利弗 艾因斯(Oliver Einsle)与美国范 安德尔(Van Andel)研究所首席研究员杜娟合作,在 Nature 发表其最新论文,题为《一氧化二氮还原酶的组装机制中的分子相互作用》(Molecular interplay of an assembly machinery for nitrous oxide reductase ) [ 1 ] 。该工作详细地解析了 N2OR 酶的三维结构和组装机理。▲图 | 相关论文(来源:Nature)p. stutzeri (施氏假单胞,一种革兰氏阴性细菌)在大肠杆菌中被生产为稳定的五亚基复合物 NosDF2Y2,并在膜部分溶解后通过色谱方法分离出来。NosF2Y2 异源四聚体形成了复合物的核心,45kDa 的 NosD 蛋白从其中突出到周质中,成为一个细长的 β 螺旋,与糖类结合的蛋白质以及糖水解酶家族具有结构相似性。NosD 的主轴从与 NosFY 对相关的双轴上倾斜,打破了分子的对称性。在 NosD-NosY 界面,NosD 的 C 端折叠成三个 α - 螺旋(hI-III),部分位于膜内,紧紧楔入 NosY 二聚体。▲图 | 无核苷酸状态下 P.stutzeri NosDFY 的三维结构(来源:Nature)为了描述 NosDFY 的 ATP 结合状态,研究者们产生了一个 NosF(E154Q)变体。在这一变体中,非活性谷氨酰胺取代了催化性谷氨酸残基 154,且该单点变体的 ATP 水解活性降低得十分明显。当在特定的背景下表达时,它会使得 N2OR 酶缺乏活性位点 CuZ 簇,从而导致功能失调。无效的 E154Q 变体使 NosF 处于 ATP 结合状态,正如其他 ABC 蛋白(ATP 结合盒式蛋白,ATP-binding cassette transporter)已经报道的那样。具体来说,ATP 的结合使得 NosF2 二聚体大幅度闭合,这一动作将直接传导到 NosY 二聚体,从而实现关闭跨膜间隙,最终诱导 NosD 在周质中发生复杂的构象变化。这一过程可以用三种主要的旋转模式来描述。▲图 | NosDFY 及铜与 NosD 的结合的构型动力学(来源:Nature)据悉,NosDFYL 在正十二烷基 β -D- 麦芽糖苷(DDM)中会被分离出来,并被重组到糖二醇胶束(GDN)和膜支架蛋白(MSP)纳米盘中,以 3.3- (纳米盘)或 3.04- (GDN 胶束)的分辨率进行冷冻电镜观察。NosL 在复合物中的位置立即变得清楚,其 N 端被解析到 NosL ( C24 ) 的脂质附着点,该位点正好位于膜界面,而脂质附着点本身并没有被解析。这种排列明晰了 NosL 实际上并不像以前提出的那样位于外膜中,而是位于细胞质膜的外叶中。▲图 | 无核苷酸的 NosDFY 接受来自 NosL 的 Cu+(来源:Nature)在三个组成部分的相互作用中,ATP 驱动的 NosD 的旋转运动控制着与其伙伴 NosL 和 N2OR 的相互作用,其具体相互作用模式见下图。负载铜的 NosL 只能在无核苷酸状态下与 NosDFY 结合,在这种状态下,NosD 上的铜结合点朝向膜,允许 Cu+ 从 NosL 转移到 NosD。随后 ATP 与 NosF 的结合引发了 NosD 的旋转,而与膜相连的 NosL 无法跟随,导致其释放。在这种构象中,NosD 现在可以通过相同的界面与 N2OR 相互作用,将其 " 含铜货物 " 转移到该酶的金属位点。然后 NosF 中的 ATP 水解使 NosDFY 回到其无核苷酸的开放构象,而 N2OR 二聚体向膜的移动最终将迫使其释放,并释放出 NosD 上 HMM 三联体的铜结合位点,以装载 NosL 的另一个金属阳离子。在任何一个方向,各自的相互作用伙伴的释放都是通过 NosD 的旋转运动机械地触发的,NosDFY 及其伙伴的复合物的结构十分详细地显示了 ATP 驱动的 NosD 的变形如何使单核伴侣 NosL 的单个铜离子逐步转移,最终组装成四核 CuZ 簇。因此,ABC 运体 NosDFY 作为一个跨膜能量转换器,动态地促进新生酶与 NosD 的铜供体的结合和分离,将一个主要的活性转运蛋白重新利用为 ATP 驱动的杠杆,跨越分隔两个非常不同的细胞区间的边界。▲图 | 铜从 NosL 经 NosDFY 到 N2OR 的运输模型(来源:Nature)总之,该研究以 NosDFY 与 NosL 和 N2OR 酶组成的复合结构为解析对象,这一结构中含有高度复杂的铜位点,利用冷冻电镜,复合结构的组装途径被完全展示。在这一途径中,NosDFY 作充当机械能量转换器的角色,而并不直接起到转运作用。这项工作是科学家首次解析如此复杂的 N2O 还原酶结构,将为微生物 N2O 降解提供完整的理论支撑,并有望推动 N2O 还原降解的技术研究。
  • 双特异性抗体解析新方法:离子迁移质谱结合碰撞诱导去折叠
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics1,文章的通讯作者是密歇根大学的Brandon副教授。  双特异性抗体(bispecific antibodies, bsAbs)是一类重要的新兴疗法,能够同时靶向两种不同的抗原,已被开发作为对某些单克隆抗体疗效有限疾病的治疗手段。尽管bsAbs具有独特的优势,但它的结构较为复杂,需要特殊的制备工艺,“knobs-into-holes”(KiH)是其中一种可以用于制备bsAbs的技术,这种技术通过将knob链CH3结构域表面的特定氨基酸突变为较大氨基酸,将hole链上的突变为较小氨基酸,从而实现“knobs-into-holes”的配对形式,提高不同轻重链在配对时的正确配对率,产生正确的bsAbs。然而,由于抗体治疗药物分子量较大,通常比传统的小分子药物表现出更大的结构复杂性和异质性,对KiH bsAb 高级结构的完整表征对定义bsAb的结构功能关系,以及确保最终治疗的稳定性、有效性和安全性都至关重要。目前已开发的分析方法有很多,但是普遍存在样品消耗量大、数据采集和解析时间较长等缺点。近年来,非变性离子迁移质谱(ion mobility-mass spectrometry, IM-MS)和碰撞诱导去折叠(collision-induced unfolding,CIU)逐渐被证实是用于分析单克隆抗体高级结构的有效方法,能够从存在结构异质性和杂质的几微克样品中表征单抗治疗药物的高级结构。IM可以根据气相蛋白离子的电荷和旋转平均碰撞截面(collision cross sections,CCSs)在毫秒时间尺度上对蛋白进行分离。当与质谱耦合时,可以很容易地将质荷比相同但CCS不同的离子区分开来,而CIU可以使IM-MS同步提供蛋白质结构和构象稳定性信息。CIU根据二硫键、糖基化水平、结构域交换特性等信息来区分差异。  在这篇文章中,作者描述了定量CIU在bsAbs中的首次应用,扩展了非变性IM-MS和CIU的能力,用于稳定表征KiH bsAb及其亲本knob和hole同型二聚体单抗的高级结构。  图1 Native、未修饰的knob(蓝色)和hole(橙色)同型二聚体,以及KiH bsAb异型二聚体(绿色)的CIU实验。(A)24+电荷态(左)及其相应重复RMSD基线(右)的平均CIU指纹图谱(n=3)。所有的指纹图谱都显示了白色虚线框所示的三个主要特征。在(B) 5 V、(C) 65 V、(D) 110 V时的标准化TWCCSN2分布。在较低的激活电位下,所有抗体均具有相似的CCS,在较高的加速电位下则存在显著差异。(E)两两的RMSD分析显示,与重复的RMSD基线(虚线)相比,抗体之间的整体高级结构差异。(F)CIU50分析说明了KiH bsAb模型的稳定性如何保持在knob和hole的同型二聚体之间。  如图1所示,bsAb的稳定性似乎与本文研究的KiH模型的两个亲本同型二聚体单克隆抗体相关。在电压为65V时,KiH bsAb的TWCCSN2分布与亲本knob同型二聚体单抗的分布相似 而在110V时,则与亲本hole同型二聚体单抗的分布相似。并且KiH bsAb的稳定性介于两种亲本同型二聚体单抗的稳定性之间。与指纹图谱中记录的第一次CIU转换相对应的是CIU50-1值,第二次的则是CIU50-2值,从3组样本的数据分析推测,CIU50-1和CIU50-2很可能代表了KiH bsAb和mAb结构中不同结构域的局部稳定性。  图2 knob和hole的半体CIU数据。(A)16+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,半体之间的高级结构存在显著差异。(C)CIU50分析显示,蛋白质稳定性存在显著差异。  为了更好地展示KiH bsAb不同结构域的CIU特征,作者记录了同型二聚体单抗IM-MS光谱中16+电荷态的knob和hole半体的CIU数据。从图2A的指纹图谱可以看出,每种结构都包含4种主要的CIU特征,但是图2B的RMSD分析显示两种半体的高级结构之间存在显著差异。CIU50分析进一步表明,在观察到的两次展开过渡中,knob半体明显比hole半体更稳定。作者推测造成这种CIU主要差距的原因可能是Fab结构域的差异。  图3 Fab和Fc片段的CIU数据。(A)13+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,knob和hole的Fab片段之间存在显著差异。(C)CIU50分析显示,不同片段之间稳定性存在显著差异。  为了进一步将CIU特征联系到KiH bsAb的结构域当中,作者对木瓜蛋白酶消化后产生的Fab和Fc片段进行了CIU分析。从图3A可以看出,knob和hole的Fab片段都具有3种CIU特征,但是嵌合的Fc片段则具有4种CIU特征。尽管knob和hole的Fab片段具有相似的CIU指纹图谱,但是RMSD分析显示它们之间的高级结构仍然存在较大差异,并且knob的Fab片段稳定性明显高于hole的。至于Fc片段的稳定性则远高于两种Fab片段,可能的原因是重链CH3结构域的强非共价作用以及knobs-into-holes配对的影响。  图4 去糖基化后的knob、hole同型二聚体和KiH bsAb异型二聚体24+离子(n=3)。(A)比较对照组和去糖基化抗体的RMSD分析显示,高级结构有显著差异。CIU50-1(B)和CIU50-2(C)分析显示抗体去糖基化后表现出显著的不稳定性。(D)对照组和去糖基化抗体之间的CIU50值差异图。  先前的研究已经证明,CIU对不同水平的单抗糖基化很敏感,其中去糖基化会导致单抗高级结构的不稳定。作者利用高分辨率非变性轨道阱质谱分辨添加PNGaseF前后同型二聚体mAb和KiH bsAb糖型的变化。实验结果显示,KiH bsAb表现出高度糖异质性,包含至少12种不同的糖型。这很可能归因于组装的KiH bsAb中每个独立的knob和hole重链上存在独特的糖基化,进一步增加了其复杂性。  总而言之,这篇文章展示了IM-MS结合CIU用于建立KiH bsAb及其亲本同型二聚体之间高级结构联系的能力。单独的CCS不足以解决此研究中抗体之间细微的高级结构差异。相比之下,CIU指纹图谱则可以分辨和区分每一个等截面的抗体。这一解释bsAb CIU细节的能力,加上对KiH bsAb稳定性的更深入理解,有可能提供支持KiH bsAb发现和发展的关键信息。  撰稿:梁梓欣  编辑:李惠琳  文章引用:Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Villafuerte-Vega, R. C., Li, H. W., Slaney, T. R., Chennamsetty, N., Chen, G., Tao, L., & Ruotolo, B. T. (2023). Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Analytical Chemistry.
  • 基于小球藻细胞的磁性复合多聚体微机器人用于高效靶向给药
    微纳机器人在低雷诺数流体中可将能量转化为有效运动,因此在生物医学领域具有巨大的应用前景。近年来,磁性微纳机器人作为一种有发展前景的靶向给药平台而受到了特别的关注。科研工作者设计了不同的磁性微纳机器人用于高效递送抗癌药物至靶向肿瘤部位并取得了较好的效果。研究发现,作为体内给药的平台或载体,一方面,微纳机器人的生物相容性是至关重要;另一方面,微纳机器人的重构对于其在复杂变化环境中高度灵活地完成给药具有重要意义。然而,目前来说,微纳机器人的研究在同时满足这两方面的要求上仍具有一定的挑战性。 天然生物模板具有良好的生物相容性和精致结构的固有优势,有望为磁性微纳机器人的制备提供新的机遇。小球藻是一种具有良好的生物相容性和生物降解性的单细胞微藻。它们具有均匀的球状结构,直径约为3-5μm。这些特性使它们具有作为理想天然生物材料用于生物医学领域的优越性。然而,由于扇贝定理的限制,在低雷诺数流体中采用动态磁场有效地驱动具有简单对称球体形状的单一微球是不可行的,这限制了微藻细胞在微机器人领域的应用潜力。近日,北京航空航天大学蔡军课题组制备了一种基于小球藻细胞的磁性复合多聚体微机器人,实现了高效的靶向给药。研究者将小球藻(Chlorella,Ch.)细胞作为一种生物模板,依次进行Fe3O4沉积、抗癌药物阿霉素(DOX)装载,实现磁性复合微机器人单元的制备。利用磁偶极作用,微机器人单元通过诱导自组装作用重构成链状的复合多聚体微机器人(BMMs),如微小的二聚体、三聚体等。基于面投影微立体光刻(PμSL)技术设计了哑铃形的微流控通道,用于进行BMMs的体外靶向给药试验(图1)。图1,BMMs的制备和靶向给药示意图。图2,自组装BMMs的驱动性能。图3,BMMs的生物相容性和化疗性能。图4,BMMs的体外靶向给药试验。BMMs具有两种不同的运动模式,包括动态磁场下的旋转和垂直旋转磁场下的翻滚;运动速度的测量以及精确定位的实现表明BMMs具有优异的驱动能力(图2)。BMMs还表现出良好的生物相容性、高效的DOX装载能力、pH触发释药能力以及显著的化疗效果(图3)。另外,采用PμSL(nanoArch S140, 摩方精密)技术结合PDMS倒模技术制备了哑铃形微流控通道,在该通道内,利用磁场驱动实现了BMMs对HeLa癌细胞的靶向给药。结果表明BMMs可以实现精准靶向给药,并对抗肿瘤治疗具有良好的疗效。此研究在靶向抗癌治疗方面具有巨大的应用潜力。该研究成果,以“Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery”为题发表在ACS Applied Materials & Interfaces上。
  • 揭秘中国人群肾癌关键致病基因:复旦交大团队发文《自然· 通讯》
    如多数肿瘤一样,肾癌的分子分型是提高肾癌疗效及肾癌精准治疗的关键。美国临床肿瘤蛋白质组学会(Clinical Proteomic Tumor Analysis Consortium, CPTAC)曾公布了103例透明细胞肾癌患者的蛋白质基因组学特征,为欧美国家的肾癌精准治疗提供了依据。但该数据来源于西方肾癌患者,同国内的患者存在差距,该研究并不能满足国内肾癌临床和基础研究中的迫切需求。复旦大学丁琛教授团队、叶定伟教授团队和上海交通大学赵健元教授团队联合对232例本土肾癌患者人群的肾透明细胞癌(Clear cell renal cell carcinoma,ccRCC)进行了分析 ,综合蛋白组、基因组并结合患者临床病理特征和生存数据,描绘了中国透明细胞肾癌的蛋白质基因表达图谱,揭示了中国人群肾癌关键致病基因变异。为更优的诊疗提供了依据。该工作发表于《自然通讯》1。下图描述了该研究的整体思路和方法。Fig. 1a: Schematic representation of the multiomics analyses of ccRCC, including sample preparation, protein identification, WES, and function verification. 其中WES(全外显子组测序)是关键数据之一。作者在文中特别提到,该工作分别使用了IDT埃德特公司的DNA建库试剂盒(原Swift Biosciences*)、接头、外显子WES panel以及定制探针,并使用到了贝克曼库尔特的SPRIselect (Beckman, B23319)进行了文库的纯化。* 2021年3月,IDT埃德特完成对于Swift Biosciences公司的收购。IDT埃德特公司的相关产品:1. IDT xGen cfDNA & FFPE DNA 建库试剂盒(卓越版)使用该试剂盒可对cfDNA样本或FFPE组织提取的 DNA 样本进行灵敏、准确的变异检测。使用该试剂盒的专用连接法,可使转化率达到最高并抑制接头二聚体形成。在单链连接期间引入特异性分子标签 (UMI) 序列,便于采用多种去重和纠错法。2. 原Swift Accel-NGS 2S Hyb DNA 建库试剂盒(现IDT 2S Hyb DNA 建库试剂盒)利用独特的专利技术,保证样品高效的文库转化率,使得降解样品和低起始量等困难样品(例如FFPE、cfDNA等样品)产出高质量的测序数据。只需≥10 ng cfDNA 或≥ 100 ng gDNA即可进行PCR-free建库流程。独特的5’ 和3’ 修复步骤,针对损伤样品(如物理打断后产生损失)进行修复;对于富含AT/GC的基因组区域覆盖度均一,适用于多种样品类型;优异、高效的文库转化效率使得更多分子进行转化,保持更高的文库复杂度;无需接头稀释,不同起始量也可保持稳定的文库转化效率。3. IDT全外显子捕获试剂盒(xGen Exome Research Panel)IDT全外显子捕获试剂盒(xGen Exome Research Panel)v2由 415,115 条单独合成且经过质控检验的 xGen Lockdown 探针组成。探针组跨越人基因组的 34 Mb 目标区域(19,433 个基因),并且覆盖 39 Mb 的探针空间(即由探针覆盖的基因组区域)。探针组中的所有探针均严格按照 ISO 13485 标准进行生产。探针使用全新的“捕获感知”(capture-aware) 算法进行设计,并进行了专有的脱靶分析,确保实现最完整的设计覆盖度。每条探针均经过质谱法和双定量测量检验,确保探针的质量及在探针库中具有适当的代表性。通过始终如一的深度覆盖,致力于推动临床科学研究。关于贝克曼库尔特的SPRselect:SPRI纯化技术采用顺磁性磁珠、选择性的结合特定大小的核酸,已广泛应用于NGS的纯化及片段筛选等领域,被超200多主流NGS试剂盒推荐,超15,000篇论文引用。相比于传统纯化磁珠,SPRIselect更具备如下优势:1,室温储存。即拿即用、省钱省时:节省昂贵的冰箱空间,更省去大量温度平衡的时间;2,精准的片段筛选,且保证不同批次间稳定性。不论今年或明年,可靠的SPRIselect将始终如一的产出可重复的片筛结果,无需重复测试磁珠比例。如下图所示,不同批次间片筛均值差异不超过2 bp。官方提供片段筛选浓度指引。3,专家首选。已有超40个知名建库试剂盒推荐SPRIselect;超1,000篇论文选用SPRIselect。订购信息参考文献:1,Qu, Y., Feng, J., Wu, X, et. al. A proteogenomic analysis of clear cell renal cell carcinoma in a Chinese population. Nature Communications. (2022). DOI: 10.1038/s41467-022-29577-x
  • 我国科学家利用聚集体调控探针实现多种细胞器动态超分辨成像
    近日,中科院大连化学物理研究所研究员徐兆超团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。相关研究成果已发表于《聚集体》。  纳米尺度下细胞器与亚细胞器动态行为的监测与解析对于生命进程的解密至关重要。徐兆超团队前期针对溶酶体内酸性微环境设计合成了溶酶体自闪染料,并借助单分子定位显微镜(SMLM)实时监测了溶酶体运动并发现4种溶酶体间相互作用模式,针对脂滴内部高度疏水环境设计了缓冲脂滴探针,实现了脂滴的稳定超分辨成像并发现脂滴融合的新模式。该团队构建的SNAP蛋白标签探针还克服了传统线粒体探针易受电位波动而脱靶的问题,实现了对线粒体的稳定标记和动态超分辨成像。  然而,蛋白标签荧光探针依然面临细胞渗透性差的问题,特别是探针在细胞内局域分布使得单一探针难以具有对多种细胞器广谱性标记的性能。对此,该团队发展了具有“单体—二聚体—聚集体”多体系动态调控的SNAP蛋白标签探针BGAN-Aze,该探针在细胞外形成荧光淬灭的纳米聚集体而具有快速穿透细胞膜和在细胞内广泛分布的能力,在细胞内以单体的形式与目标蛋白共价连接,并伴随荧光的恢复,最终实现细胞内多种细胞器选择性荧光识别与细胞器亚结构的动态超分辨成像。  此外,研究发现BGAN-Aze为不带电荷的中性分子,可保持高度的细胞渗透性与生物相容性,能够实现纳米尺度下对细胞膜、线粒体、细胞核等多种细胞器亚结构的长时间追踪。  该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未见报道的细胞器结构动态变化,为进一步研究不同细胞器的功能提供工具。
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1.Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2.Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3.Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 突破!西湖大学冷冻电镜成功解析新冠病毒细胞受体空间结构
    p style="text-indent: 2em text-align: left "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2月19日凌晨,西湖大学浙江省结构生物学研究重点实验室(施一公任主任)研究团队的鄢仁鸿(一作)、周强(通讯作者)等在预印版平台bioRxiv上线最新研究成果:利用冷冻电镜技术,成功解析新冠病毒受体血管紧张素转换酶2(ACE2)的全长结构。span style="text-indent: 2em color: rgb(0, 112, 192) "成果对抗疫特效药研发具有重大指导意义,这也是全球首次成功解析ACE2的全长结构。/span/span/pp style="text-indent: 2em "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 600px height: 342px " src="https://img1.17img.cn/17img/images/202002/uepic/4b257d5c-8236-478c-93f3-907498318ef9.jpg" title="00.png" alt="00.png" width="600" height="342" border="0" vspace="0"//span/pp style="text-indent: 2em "span style="text-indent: 2em color: rgb(127, 127, 127) "(注:预印本网站bioRxiv的所有论文未经同行评议)/span/pp style="text-indent: 2em "span style="text-indent: 2em color: rgb(127, 127, 127) "几天前,2月15日/spanspan style="text-indent: 2em color: rgb(0, 0, 0) ",/spana href="https://www.instrument.com.cn/news/20200217/522050.shtml" target="_blank" style="color: rgb(84, 141, 212) text-decoration: underline "span style="color: rgb(84, 141, 212) "美国卫生总署(NIH)与美国得克萨斯大学奥斯汀分校Jason S. McLellan研究组合作在预印本平台bioRxiv上发表论文,报道了新冠病毒(2019-nCoV)S蛋白的首个冷冻电镜结构。/span/a/pp style="text-indent: 2em "血管紧张素转换酶2(ACE2)是SARS冠状病毒(SARS-CoV)的表面受体,与刺突糖蛋白(S蛋白)直接相互作用。 ACE2也被认为是新冠状病毒(2019-nCoV)的受体,表现为严重的呼吸综合征。 B0AT1(SLC6A19)是中性氨基酸转运蛋白,其在肠道细胞中的表面表达需要ACE2。 发表成果中,西湖大学研究团队成功解析了与B0AT1结合的全长人ACE2的2.9埃分辨率冷冻电镜结构。 该复合物组装成ACE2-B0AT1异二聚体的二聚体,由于ACE2的肽酶结构域(PDs)转移,显示出开放和封闭的构象。 ACE2上新解析的类集合域(CLD)介导了同源二聚化。 结构建模表明ACE2-B0AT1复合物可以同时结合两个S蛋白,为冠状病毒识别和感染的分子基础提供了重要线索。/pp style="text-indent: 2em "strongACE2/strong主要生理作用是促进血管紧张素的成熟,在肺、心脏、肾脏和肠道广泛存在。但当病毒入侵时,ACE2就被病毒“绑架”了。ACE2是SARS冠状病毒和人类冠状病毒NL63的受体,可以说是多数冠状病毒侵入人体的关键。/pp style="text-indent: 2em "strong西湖大学研究团队称/strong:“在SARS病毒和‘新冠病毒’侵入人体的过程中,ACE2就像是‘门把手’,病毒抓住它,从而打开了进入细胞的大门。”/pp style="text-indent: 2em "ACE2全长结构的解析,对于后续疫苗和抗病毒药物的研发,无疑提供了重要的结构生物学数据支撑。/pp style="text-indent: 2em "根据西湖大学公布的资料,ACE2的全貌如下:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/noimg/8d748624-c69c-46dc-8357-e206d6d1b33a.gif" title="bf26资料图.gif" alt="bf26资料图.gif"//pp style="text-indent: 2em "上面的蓝色和灰白色部分,是ACE2的两个结构PD(肽酶结构域)和CLD(样域),但ACE2很难在体外稳定获得,常常是与肠道内的一个氨基酸转运蛋白B0AT1打包一同出现。/pp style="text-indent: 2em "strong西湖大学研究团队给出假设/strong:这个复合物极有可能稳定住ACE2,并通过共表达的方法,能够获得优质稳定的复合物,就构成了上面这种X形状。/pp style="text-indent: 2em "在确定了ACE2的这种特殊存在形态后,就在冷冻电镜下解析了它的三维结构:/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 538px " src="https://img1.17img.cn/17img/images/202002/uepic/892b1c38-aa26-4f48-a8a5-9009ef1ddfad.jpg" title="1.png" alt="1.png" width="450" height="538" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "分辨率为2.9埃的ACE2三维结构图/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 315px " src="https://img1.17img.cn/17img/images/202002/uepic/6193d14b-1fc4-455a-8b2e-28927a0b1189.jpg" title="2.png" alt="2.png" width="450" height="315" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-indent: 2em "整/spanspan style="color: rgb(0, 176, 240) text-indent: 2em "个ACE2的结构图/span/pp style="text-indent: 2em "研究团队称,这一研究揭示了二聚体组装中全长ACE2的高分辨率结构。 建模分析表明,冠状病毒的两个S蛋白三聚体同时与ACE2二聚体结合。本研究的结构为阐明2019-nCoV感染的机制提供了一个重要的框架,并可能促进潜在疗法的发展。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202002/uepic/5098d370-0dd0-44d9-a878-7b7120e1e300.jpg" title="3.jpg" alt="3.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "第一作者鄢仁鸿(左)与通讯作者周强(右)/span/pp style="text-indent: 2em "这项研究中,西湖大学的冷冻电镜和超级计算机中心分别提供了冷冻电镜和计算支持。并获得国家自然科学基金(项目31971123,81920108015,span style="text-indent: 2em "31930059)和浙江省重点研发计划(2020C04001)的资助。/span/pp style="text-indent: 2em margin-top: 10px "span style="color: rgb(0, 112, 192) font-size: 18px "strong▊关于浙江省结构生物学研究重点实验室/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 333px " src="https://img1.17img.cn/17img/images/202002/uepic/c1dc0fa7-335f-48e8-9d1a-4addcb741fec.jpg" title="4.jpg" alt="4.jpg" width="450" height="333" border="0" vspace="0"//pp style="text-indent: 2em "浙江省结构生物学研究重点实验室是西湖大学第一批获准成立的浙江省重点实验室之一。/pp style="text-indent: 2em "strong研究内容和方向/strong:旨在建设一个能够引领世界结构生物学研究方法和技术发展的重点实验室。实验室将围绕重要的生物学问题和技术需求,以冷冻电子显微学为核心(包括单颗粒冷冻电子显微镜三维重构、冷冻电子显微镜断层成像、冷冻电子显微镜交叉学科发展三个研究方向),以X-射线晶体学、化学生物学、蛋白质设计、分子动力模拟等相关学科为助力,充分发挥各前沿学科的优势,探索出一套高效的多学科人才合作研究新机制,开发出若干具有我国自主知识产权的革新技术与软件算法,取得一系列具有里程碑意义的结构生物学原创成果,促进浙江省乃至我国在相关领域内基础研究力量和创新能力的提升,以及相关研究成果的转化。/pp style="text-indent: 2em "strong人员构成/strong:国际著名结构生物学家、中国科学院院士、西湖大学校长施一公教授任实验室主任。中科院上海生科院植物生理生态研究所研究员张鹏教授任学术委员会主任。全球范围内遴选的多名优秀青年科学家担任重点实验室骨干。/pp style="text-indent: 2em "strong发展方向/strong:实验室将整合多学科优势,积极推进基础科研应用和后期成果转化,在未来5-10年开发一系列具有深远影响的结构生物学新成果新技术,促进浙江省生物技术、生物制药等相关产业的发展。/pp style="text-indent: 2em " /pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "论文链接/span:a href="https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1" target="_blank" style="color: rgb(127, 127, 127) text-decoration: underline "span style="color: rgb(127, 127, 127) "https://www.biorxiv.org/content/10.1101/2020.02.17.951848v1/span/a/p
  • 拉曼光谱在生物医学领域将“大展拳脚”——第十九届全国光散射学术会议之分会场
    p  strong仪器信息网讯/strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。据中山大学陈建教授介绍,本次会议共收到来自英国、德国、韩国、新加坡、港澳地区、国内90余家高校和科研院所的论文投稿300余篇,注册参会人数450余人,大会特邀报告6篇、分会邀请报告43篇、分会口头报告63篇、墙报160多篇。/pp  为了更好地交流,在大会报告环节之外,CNCLS19分为物理材料、表面增强拉曼、食品安全/生物医学/刑侦及其它等3个分会场进行邀请报告和口头报告,同时还专门设置了厂商技术交流报告分会场。就像李灿院士在闭幕式上的致词时提到的,除了基础理论研究之外,光散射各项“落地”的研究工作也渐渐丰富起来,此次会议上所展示的将光散射技术用于食品安全、生物医药、刑侦等领域的研究工作所占比例非常之大。之前编辑已经简单介绍了“表面增强拉曼”这一“热火”的分会场,现在让我们再来看看“食品安全/生物医学/刑侦及其它”分会场有哪些特色。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/fc6a45fd-173c-467c-8339-d8ba61017a84.jpg" title="现场.jpg"//pp style="text-align: center "“食品安全/生物医学/刑侦及其它”分会场/pp  “食品安全/生物医学/刑侦及其它”分会场共安排了15个邀请报告、21个口头报告;从分会场的报告内容和数量来看,目前生物医学已经成为拉曼光谱的热点研究领域,相关技术研究获得了日新月异的发展。/pp  在医学上,通过探测有疾病所引起的组织、体液或细胞的分子组成变化,拉曼光谱可以在分子和细胞水平上诊断疾病。相对于其他方法,拉曼光谱应用于医学诊断具有非破坏性、非侵入性、不用试剂和高度自动化等优点,因此,拉曼光谱技术在生物医学和临床诊断上的应用研究是目前的一个重要方向,拉曼光谱或将成为未来生物医学的主要检测手段。/pp  下面,部分精彩报告如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/c26c1d0c-4709-4603-9392-c2998ca654ea.jpg" title="黄岩谊.jpg"//pp style="text-align: center "北京大学 黄岩谊研究员/pp style="text-align: center "报告题目:利用受激拉曼散射显微成像和测序技术实现复杂异质生物体系的精确定量分析/pp  对于一个复杂的、充满异质性的生物体系,如何实现单个细胞水平上的精确定量分析,即是技术挑战,也是回答许多科学问题的关键。黄岩谊研究员利用实验室搭建的可以同微流控芯结合使用的受激拉曼散射显微(SRS)成像系统,对单个细胞进行脂滴生成过程中的SRS成像和定量描述,并对每个细胞进行芯片上的裂解和全转录组扩增及测序,研究了单个细胞水平上脂滴生成过程的调控以及细胞间异质性发生的机理。并利用SRS成像和测序技术对肿瘤组织切片进行分析,达到对形态和遗传信息的关联测量,可以建立表型和基因型的关联性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d1eb515d-7dd3-495d-82a9-d8ec9143613d.jpg" title="沈爱国.jpg"//pp style="text-align: center "武汉大学 沈爱国副教授/pp style="text-align: center "报告题目:“点击”SERS光谱与生物医学分析/pp  沈爱国副教授研究组在研究中发现,三键编码的单个纳米粒子可通过物理学、化学或生物学方法发生类似于“点击化学”(通过小单元的拼接来快速可靠地完成形形色色分子的化学合成)中的可控拼接,从而实现窄带单峰的三键SERS信号的动态输出。这一全新的信号输出模式形象的被称为“点击”SERS光谱。沈爱国副教授报告中介绍了“点击”SERS光谱方法的建立、应用特点以及在生物医学分析中的应用情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/f9c2fbe0-a795-4f58-81a5-20e24d237be9.jpg" title="刘定斌.jpg"//pp style="text-align: center "南开大学 刘定斌研究员/pp style="text-align: center "报告题目:拉曼热点构建及其在生物医学中的应用/pp  刘定斌研究员团队发展了一种靶标介导纳米颗粒组装形成二聚体的方法,通过构建电磁增强热点检测活细胞中miRNAs。不对称功能化的金纳米颗粒探针通过靶标诱导产生均一的二聚体,实现复杂体系中分析物依赖的拉曼信号增强。相比传统的拉曼报告分子,选择细胞沉默区非重叠的染料作为拉曼报告分子可以有效消除细胞内源性物质的背景干扰。此方法能够延伸到细胞水平特异性病理相关生物标志物的检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/38d5860d-0afd-4bd3-8663-79d310f20763.jpg" title="杨海峰.jpg"//pp style="text-align: center "上海师范大学 杨海峰教授/pp style="text-align: center "报告题目:磁/金纳米优化SERS检测生物标志物/pp  杨海峰教授团队以植酸钠为稳定剂和桥连剂,以共沉淀法制备Fe3O4磁网结构,并原位合成Au/Ag纳米粒子,制备磁网SERS基底。该基底通过外磁场诱导聚集可产生更多的“hot spot”,提高拉曼检测灵敏度。杨海峰教授将该技术用于唾液毒品标志物、肺泡灌洗液中H7N9病毒、胰腺癌生物标志物CA19-9等的快速检测,有望实现早期诊断。/ppbr//p
  • 中国科学家发现新冠病毒mRNA合成、基因组复制矫正等分子机制
    新冠病毒肺炎疫情至今已造成全球1.4亿人感染和300余万人死亡。随着疫情进展,突变病毒株不断出现,对中和抗体和疫苗的防护效果提出了严重挑战,迫切需要针对各型突变株中高度保守的转录复制过程开展深入研究,阐明关键药物靶点的工作机制,发现能够有效应对各种突变株的抗病毒药物。 新冠病毒是目前已知RNA病毒中基因组最大的一种病毒(约30 kb),其基因组编码了一系列非结构蛋白,并按照一定的空间和时间顺序,形成复杂的超分子蛋白质机器“转录复制复合体”(RTC),负责病毒转录复制的核心过程,包含了众多保守的抗病毒药物设计的关键靶点。由于基因组极大,同时聚合酶复制保守性较差,新冠病毒进化出一种独特的“复制矫正”(proofreading)机制,利用转录复制复合体中关键的nsp14蛋白对复制过程进行矫正,一旦发现聚合酶合成了错误配对的碱基,立刻通过nsp14具有的外切核酸酶(ExoN)将错误碱基处理掉,保证复制的准确进行,这也是病毒逃逸核苷类抗病毒药物的关键途径。同时,nsp14是一个独特的双功能蛋白,除负责复制矫正的外切核酸酶外,还拥有一个N7甲基化酶(N7-MTase),负责mRNA加帽过程关键的第三步催化反应。复制矫正和加帽过程如何进行,特别是两个截然不同的生化过程如何在一个nsp14蛋白中协同作用,是20多年来冠状病毒研究领域中最关键的几个“未解之谜”之一。 2021年5月24日,清华大学饶子和院士、娄智勇教授团队与上科大高岩博士合作在Cell发表研究论文Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis,解析了新冠病毒超分子蛋白质机器“转录复制复合体”关键状态的三维结构,揭示了病毒mRNA加帽、基因组复制矫正、逃逸核苷类抗病毒药物的分子机制。这是该团队在新冠病毒转录复制复合体研究中,继在Science、Cell等期刊上连续发表4项成果后的又一重要工作。 新冠疫情爆发后,清华大学饶子和院士、娄智勇教授团队针对新冠病毒转录复制机制开展的深入研究,先后阐明了“核心转录复制复合体”(C-RTC)[1]、“延伸转录复制复合体”(E-RTC)[2]和“加帽中间态转录复制复合体”[Cap(-1)’-RTC][3]的工作机制。在此基础上,研究团队成功解析了Cap(-1)’-RTC与nsp10/nsp14形成的超级复合体Cap(0)-RTC的三维结构(图1)。 图1 新冠病毒Cap(0)-RTC的工作机制 在该复合体中,nsp9蛋白发挥了“适配器”(adaptor)的作用,通过与nsp14蛋白相互作用,将nsp10/nsp14复合体招募到Cap(-1)’-RTC中,从而利用nsp14的N7甲基化酶结构域完成mRNA加帽过程的第三步关键反应。尤为重要的是,研究团队发现Cap(0)-RTC在溶液状态下会形成稳定的同源二聚体。在二聚体中,解旋酶nsp13通过其1B结构域的重大构象变化,引导模板核酸链反向移动,引发产物链backtracking机制,从而将产物链3’末端传输至另一Cap(0)-RTC的nsp14外切核酸酶结构域的反应中心,完成错配碱基的矫正过程(图2)。 图2新冠病毒复制矫正的in trans backtracking机制 这一发现所提出的in trans backtracking的复制矫正机制,与真核/原核细胞RNA聚合酶Pol II的复制矫正机制具有一定的类似性,表明作为基因组最复杂的RNA病毒,新冠病毒的转录复制过程已与高等生物具有一定的类似性,阐明了冠状病毒研究领域20多年来悬而未决的关键科学问题。同时,复制矫正机制是新冠病毒逃逸核苷类抗病毒药物(如瑞德西韦)的关键机制,一旦核苷类药物被加入RNA产物链中,即会被病毒的复制矫正过程去除,从而丧失抑制活性,目前仅有NHC及其衍生物可以逃逸该过程。该成果也将对未来进一步优化和发展新型核苷类抗病毒药物提供关键的结构基础。 该成果的获得得益于研究团队在冠状病毒转录复制领域中17年多的长期积累。自新冠疫情发生后,研究团队系统研究了新冠病毒转录复制过程,阐明了关键药物靶点蛋白主蛋白酶Mpro和转录复制复合体多个状态三维结构,为认识病毒的生命过程、发展高效抗病毒药物提供了关键信息,先后在Nature[4]、Science[1]、Cell上[3,5]和Nature Communications[2]上发表系列研究论文,是国际上抗新冠药物靶点研究中最为系统、引用最多的工作之一。 清华大学饶子和院士、娄智勇教授/ChangJiang学者特聘教授和上海科技大学的高岩博士为共同通讯作者,清华大学医学院和生命学院的闫利明博士、杨云翔博士,以及博士生李明宇、张盈、郑礼涛、葛基、黄雨岑、刘震宇为共同第一作者。 专家点评(一) 钟南山(中国工程院院士) 从“非典”到“新冠”,科学依靠坚守 基础研究是科技创新的源头,是人类认识自然、适应和改造自然的知识源泉,需要科学家长期的坚守和耕耘。 自2003年“非典”开始,在不到20年的时间里,全球已经出现了3次由冠状病毒导致的传染病。尤其是此次新冠疫情,在全球已经造成超过1亿多人感染,而且随着疫情发展,突变病毒不断出现,一些已有的中和抗体不能很好的中和突变病毒,部分疫苗针对突变病毒的保护效果也有一定程度下降。深入认识病毒的生命周期,开发能够有效应对各种突变病毒的广谱抗病毒药物,将成为今后一段时间抗疫工作的重点内容之一。 目前针对新冠病毒的抗病毒药物研究,主要针对的是病毒转录复制过程的关键靶点蛋白,如蛋白酶和聚合酶等。针对这两个靶点的抑制剂已有相当数量的进入临床实验,例如瑞德西韦(Remdesivir)等。以瑞德西韦为代表的核苷类抗病毒药物主要作用于病毒的聚合酶,在被掺入产物核酸链后,阻断病毒核酸的合成,进而抑制病毒的转录复制过程。然而,在此类抑制剂进入临床研究后,其抗病毒效果与预期有一定差距。除药物代谢等问题外,冠状病毒通过特有的“复制矫正”(proofreading)机制逃逸核苷类抗病毒药物的抑制,可能是此类抗病毒药物抑制效果不佳的一个重要原因,目前仅有NHC及其衍生物能够躲避病毒复制矫正机制的干扰。对这个机制开展深入研究,将为今后发展广谱、高效的抗冠状病毒药物提供关键的科学信息。 子和教授及其团队在新冠疫情爆发后,针对新冠病毒转录复制机制开展了系统研究,先后阐明了“核心转录复制复合体”(C-RTC)[1]、“延伸转录复制复合体”(E-RTC)[2]和“加帽中间态转录复制复合体”[Cap(-1)’-RTC][3]的工作机制。在这些工作的基础上,他们又在世界上第一次成功组装成含有形式复制矫正功能的nsp14蛋白的超分子机器Cap(0)-RTC。通过结构分析,他们发现在Cap(0)-RTC形成的同源二聚体中,解旋酶通过自身构象改变,引导模板核酸链反向移动,引发产物链“回溯”(backtracking)机制,进而将产物链3’末端传输至另一Cap(0)-RTC的nsp14外切核酸酶结构域的反应中心。复制矫正机制是新冠病毒逃逸核苷类抗病毒药物的关键机制,一旦核苷类药物被加入RNA产物链中,在其被聚合酶感知为“错配碱基”后,立刻会被病毒的复制矫正过程去除,从而丧失抑制活性。他们的研究工作,为我们生动展现了这一过程的可能机制。复制矫正的回溯机制,是从低等到高等生物细胞保证基因复制准确性的重要机制,但在病毒中以往还没有发现此类机制。这一研究成果不但发现病毒中的类似机制,是认识生命进化的重要成果,而且为进一步优化和发展新型核苷类抗病毒药物提供了关键的结构基础。 子和教授自2003年SARS爆发后,就一直在冠状病毒转录复制机制研究领域开展工作,至今已坚持了18年。2003年SARS疫情爆发期间,我当时即已了解子和教授在SARS病毒的一系列成果,智勇教授那时才刚刚开始博士阶段的学习。子和教授的研究组在国际上率先解析了SARS-CoV主蛋白酶的三维结构[6],并研发了一系列高效抑制剂[7],他们当时在转录复制复合体上的研究[8]至今仍被国际同行认为是冠状病毒转录复制复合体机制研究的“开篇之作”。这些积累,为新冠疫情爆发后他们在新冠病毒基础研究中取得的一系列重要成果奠定了坚实的基础,通过阐明新冠病毒主蛋白酶和转录复制复合体多个状态的三维结构,为认识该病毒的生命过程、发展高效抗病毒药物提供了关键信息,先后在Nature[4]、Science[1]、Cell[3,5]和Nature Communications[2]上发表系列研究论文,是国际上抗新冠药物靶点研究中最为系统、引用最多的工作之一。 2020年9月11日,习近平总书记在科学家座谈会上总结了新时代科学家精神,强调要有勇攀高峰、敢为人先的创新精神,追求真理、严谨治学的求实精神,淡泊名利、潜心研究的奉献精神,集智攻关、团结协作的协同精神,甘为人梯、奖掖后学的育人精神。18年来,子和教授的团队中有100多人先后参与冠状病毒研究,累计发表50余篇研究论文,引用超过6000余次,均篇引用超过100次,一批早期参与的俊彦陆续成长为国家科研骨干。科学依靠坚守,子和教授团队在冠状病毒的奋斗历程,对科学家精神做了一个很好的诠释。 专家点评(二) 康乐(中国科学院院士) 从结构生物学角度认识新冠病毒的转录复制机制 新冠病毒造成的疫情,是近一个世纪以来人类面对的最大的一次公共卫生事件,深入研究病毒生命周期的分子机制,是认识病毒特征、研发抗病毒手段的关键所在。新冠病毒非常特殊,它的基因组是目前已知RNA病毒中基因组最大的一种,其生命过程所涉及的分子机制也非常复杂。新冠病毒通过两个机制保证蛋白质翻译和相对准确的转录复制过程,一是要在病毒mRNA前端加上一个帽结构(cap),用于维持mRNA的稳定性和蛋白翻译的有效进行;二是通过一个独特的“复制矫正”(proofreading)机制,对病毒基因组的复制实施控制,一旦发现核酸中的错配碱基,随时进行修正。病毒转录复制复合体上的nsp14蛋白参与了这两个关键过程,可通过其C端的N7甲基化酶完成mRNA加帽过程的第三步催化反应,同时还可通过其N端的外切核酸酶完成复制矫正过程。这一现象在“非典”病毒(SARS-CoV)即已发现,但20年来一直无法回答两个截然不同的过程如何由一个蛋白来协同执行,是冠状病毒研究领域中多年来关注的核心基础生物学问题之一。 清华大学饶子和教授、娄智勇教授团队与上海科技大学合作在Cell发表的这一工作,解析了两种不同状态的“Cap(0)转录复制复合体”Cap(0)-RTC的三维结构,发现在转录复制复合体中,病毒编码的nsp9蛋白发挥了“适配器”(adaptor)的作用,将nsp10/nsp14形成的复合体招募到聚合酶上,与聚合酶上的NiRAN结构域共同形成一个“共转录加帽复合体”(Co-transcriptional Capping Complex, CCC),展示了mRNA加帽过程中,mRNA 5’端在多个关键酶分子之间的传输路径,第一次明确揭示了基因组超大的RNA病毒是如何将以聚合酶为中心的“延伸复合体”(Elongation Complex, EC)与“加帽复合体”连接起来。更加重要的是,他们在研究中发现Cap(0)转录复制复合体在溶液状态下会形成稳定的同源二聚体,通过深入研究该二聚体的结构,提出了冠状病毒复制矫正中称之为反式回溯(in trans backtracking)的机制。进一步的研究发现,在二聚体中,一个Cap(0)转录复制复合体的聚合酶催化中心与另一个Cap(0)转录复制复合体的nsp14外切核酸酶结构域催化中心相对,使合成的产物RNA 3’末端能够通过回溯的方式传输到nsp14外切核酸酶结构域进行加工。同时,他们还发现解旋酶nsp13的1B结构域发生了重大构象变化,并通过与模板核酸链的作用,引导模板核酸链反向移动,引发产物链回溯机制。值得指出的是,通过回溯的方式进行复制矫正,在真核/原核细胞中广泛存在,但是在病毒中还是第一次观察到此类机制。虽然该过程与真核/原核细胞Pol II转录过程的复制矫正机制具有一定类似性,但在Pol II的研究中,并未观测到蛋白具有巨大的构象变化,因而Pol II中回溯的驱动力也不是十分明确,而该工作表明解旋酶通过构象变化提供了回溯的驱动力,为深入理解这一基础生物学过程提供了重要的范例。
  • 西安交通大学第二附属医院576.00万元采购基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提...
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:基因测序仪,流式细胞仪,核酸蛋白分析,细胞计数器,核酸提取仪,液相色谱仪,PCR开标时间:2022-08-2409:30预算金额:576.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:陕西西北民航招标咨询有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告陕西省-西安市状态:公告更新时间:2022-07-29招标文件:附件1西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告发布时间:2022072915:11:08西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目公开招标公告项目概况西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目招标项目的潜在投标人应在线上获取招标文件,并于2022年08月24日09时30分(北京时间)前递交投标文件。一、项目基本情况项目编号:XBMH2022152项目名称:西安交通大学第二附属医院分子组及大明宫院区医用试剂采购项目预算金额:576万元/年采购需求:西安交通大学第二附属医院采购分子组及大明宫院区医用试剂一批。本项目共分24个标段,各标标段具体采购的标的物及预算如下:标段号序号采购标的物名称检测方法采购预算(万元/年)中标家数参数要求招标最小单位第1标段(180万)1乙型肝炎病毒核酸定量检测PCR荧光探针法180万1家每测试2沙眼衣原体核酸检测每测试3淋球菌核酸测定每测试4解脲脲原体核酸检测每测试5单纯疱疹病毒II型核酸测定每测试7人巨细胞病毒核酸定量检测每测试8结核分枝杆菌核酸检测每测试9肺炎支原体核酸检测试剂盒每测试10EB病毒核酸检测每测试11幽门螺旋杆菌核酸检测每测试12肠道病毒71型核酸检测每测试13肠道病毒通用型核酸检测每测试14乙型肝炎病毒基因分型检测每测试15丙型肝炎病毒基因分型检测试剂盒每测试16人感染H7N9禽流感病毒RNA检测每测试17甲型H1N1流感病毒RNA检测每测试18季节性流感病毒H3亚型核酸检测每测试19季节性流感病毒H1亚型核酸检测每测试20Ⅰ群肠道沙门氏菌核酸检测每测试21发热伴血小板减少综合征布尼亚病毒核酸检测每测试22柯萨奇病毒A16型核酸检测每测试23柯萨奇病毒A6型核酸检测每测试24柯萨奇病毒A10型核酸检测每测试25呼吸道合胞病毒核酸检测试剂盒每测试26登革病毒核酸检测每测试27HIV1核酸测定试剂盒每测试28中东呼吸综合征冠状病毒核酸检测每测试29寨卡病毒核酸检测每测试30B族链球菌核酸检测每测试31人博卡病毒核酸检测每测试32腺病毒核酸检测每测试33人鼻病毒核酸检测每测试34乙型肝炎病毒前C区/BCP区突变检测PCR反向点杂交法每测试35乙型肝炎病毒YMDD基因突变检测每测试36人乳头瘤病毒核酸检测及基因分型(至少标段含20种)PCR反向点杂交法每测试372019nCoV核酸快速检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等耗材)荧光PCR法(快速扩增)1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限小于等于500copy/L5快速核酸释放技术6扩增时间小于50分钟每测试382019nCoV核酸检测试剂(标段含采样管及保存液、提取试剂、扩增试剂、八连管等)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4检测最低下限≤500copy/mL每测试39诺如病毒RNA荧光PCR法每测试40多瘤病毒(BKV、JCV)每测试41人偏肺病毒(HMPV)每测试42副流感病毒PIV每测试43甲型流感病毒每测试44乙型流感病毒每测试45呼吸道病毒核酸六重联检(甲、乙型流感病毒、腺病毒、呼吸道合胞病毒、副流感病毒1型、副流感病毒2型)每测试46白血病融合基因每测试47细小病毒(B19)胶体金法每测试第2标段(145万)1核酸提取或纯化试剂磁珠法145万1家每测试2丙型肝炎病毒核酸定量检测PCR荧光探针法每测试3丙型肝炎病毒基因分型检测每测试4HBVDNA/HCVRNA/HIVRNA(1+2)型三联检测每测试5乙型肝炎病毒核酸定量检测(高敏)检测下限≤10copies/mL每测试6乙型肝炎病毒基因分型检测每测试7丙型肝炎病毒核酸定量检测(高敏)检测下限≤25copies/mL每测试8丙型肝炎病毒核酸定量检测(超敏)检测下限≤15copies/mL每测试9EB病毒核酸定量检测检测下限≤400copies/mL每测试10人巨细胞病毒核酸定量检测检测下限≤400copies/mL每测试11沙眼衣原体核酸检测、解脲脲原体核酸检测、淋球菌核酸检测检测下限≤400copies/mL每测试12新型冠状病毒2019nCoV核酸检测,最低检测下限≤200copy/L(标段含采样管及保存液、提取试剂、扩增试剂、八连管)荧光PCR法1具备内源性内标;2.防污染系统。3.目的基因不少于双靶标;4最低检测下限≤200copy/mL每测试13高危型人乳头状瘤病毒DNA检测(15种)荧光PCR法(无需杂交)每测试132019nCoV、甲型流感病毒、乙型流感病毒核酸三联检荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL14腺病毒核酸检测荧光PCR法每测试第3标段(30万)新冠核酸快检试剂2019nCoV核酸快速检测试剂(标段含采样管及保存液、保存管、提取试剂、扩增试剂、吸头、八连管等)快速核酸检测30万1家1磁珠法提取;2.全检测流程≤80分钟3检测模式:核酸提取、扩增检测均在同一封闭;4独立模块,随来随测,独立检测。5.目的基因不少于双靶标(ORFlab基因、N基因);6检测最低下限小于500copy/mL;7检测通量≥8;每测试第4标段(6万)(MTHFRC677T基因检测+高血压个体化治疗基因检测+HLAB27核酸检测等)MTHFRC677T基因检测(3个位点)PCR熔解曲线法6万1家每测试人类CYP2C19基因分型检测每测试CYP2D6*10、CYP2C9*3、ADRB1(1165GC)、AGTR1(116AC)、ACE(I/D)检测每测试人运动神经元存活基因1(SMN1)检测每测试测序反应通用试剂盒(高血压个体化治疗基因检测)聚合酶链杂交法每测试测序反应通用试剂盒(叶酸)每测试测序反应通用试剂盒(他汀类)每测试测序反应通用试剂盒(氯比格雷)每测试测序反应通用试剂盒(华法林)每测试测序反应通用试剂盒(硝酸甘油)每测试人类HLAB27核酸检测荧光PCR法每测试高血压个体化治疗基因检测试剂(5个位点)每测试人类HLAB*5801基因每测试B族链球菌核酸检测每测试结核分枝杆菌复合群核酸检测恒温扩增荧光法每测试MTHERC677基因检测PCR金磁微粒层析法每测试第5标段(20万)(免费按需提供检测的质控品、校准品、辅助试剂及一次性耗材)恒温扩增相关试剂(20万)结核TBRNA检测恒温扩增法20万1家每测试乙肝HBVRNA检测每测试泌尿生殖道病原体RNA检测(沙眼衣原体、解脲脲原体、淋病奈瑟菌、生殖支原体)每测试第6标段(5万)细菌耐药基因检测耐甲氧西林金黄色葡萄球菌耐药基因检测荧光PCR法5万1家每测试碳青霉烯耐药基因KPC检测每测试鲍曼不动杆菌耐碳青霉烯类抗生素基因(OXA23)检测每测试耐万古霉素肠球菌基因(vanA,vanB)检测每测试第7标段(20万)呼吸道病原菌核酸检测呼吸道病原菌核酸检测(标段括常见细菌、特殊病原体如嗜肺军团菌、结核分枝杆菌、肺炎支原体、肺炎衣原体、流感嗜血杆菌等)恒温扩增芯片法20万1家每测试第8标段(30万)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱30万1家每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试类固醇激素类类固醇激素18项(二氢睾酮、脱氢表雄酮硫酸酯、脱氢表雄酮、皮质醇(氢化可的松)、雌酮、17α羟孕酮、孕烯醇酮、皮质酮、11去氧皮质醇、脱氧皮质酮、雄烯二酮、17α羟孕烯醇酮、睾酮、醛固酮、雌二醇、雌三醇、可的松(皮质素)、孕酮)1.82.5ng串联质谱每测试原醛激素5项(醛固酮、血管紧张素I,皮质醇,脱氧皮质酮、可的松)每测试四种激素萃取液(醛固酮、皮质醇,脱氧皮质酮、可的松)每测试血儿茶酚胺代谢检测(肾上腺素、去甲肾上腺素、多巴胺、变肾上腺素、去甲变肾上腺素)每测试尿儿茶8项(DA,E,NE,MN,NMN,3MT,HVA,VMA)每测试高香草酸和香草扁桃酸萃取液每测试人体代谢物浓度胆汁酸谱15项(胆酸、牛磺胆酸、甘氨脱氧胆酸、石胆酸、甘氨胆酸、牛磺熊脱氧胆酸、脱氧胆酸、牛磺石胆酸、甘氨熊脱氧胆酸、熊脱氧胆酸、甘氨石胆酸、牛磺鹅脱氧胆酸、鹅脱氧胆酸、牛磺脱氧胆酸、甘氨鹅脱氧胆酸)串联质谱每测试药物浓度检测免疫抑制剂(他克莫司、环孢霉素A、西罗莫司)药物浓度检测串联质谱每测试抗癫痫药(卡马西平、卡马西平10,11环氧化物、奥卡西平、10羟基卡马西平、丙戊酸/苯巴比妥、苯妥英钠、拉莫三嗪、托吡酯、左乙拉西坦)药物浓度检测每测试抗菌药(万古霉素、伏立康唑、替考拉宁、利奈唑胺、美洛培南、替加环素、莫西沙星、氟康唑)药物浓度检测每测试抗肿瘤药(甲氨蝶呤、氟尿嘧啶、多西他赛、多柔比星)每测试镇静催眠药(阿普唑仑、氯硝西泮、咪达唑仑、劳拉西泮、奥沙西泮、唑吡坦、艾司唑仑、替马西泮、溴西泮)药物浓度检测每测试抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰、艾司西酞普兰、文拉法辛、O–去甲文拉法辛、曲唑酮、氟西汀+去甲氟西汀、氟伏沙明、度洛西汀、安非他酮、羟安非他酮)药物浓度检测每测试抗精神病药(氯氮平及去甲氯氮平、氯丙嗪、利培酮+9–羟基利培酮、喹硫平、阿立哌唑、脱氢阿立哌唑、奥氮平、齐拉西酮、氨磺必利、丙戊酸、舒必利、氟哌啶醇、奋乃静、氟奋乃静)药物浓度检测每测试第9标段(8万)阿司匹林耐药基因检测LTC4S一代测序技术8万1家为临床服用阿司匹林是否存在抵抗提供帮助每测试PTGS1每测试GP1BA高血糖个体化用药基因检测外周血液基因组中的CYP2C9、OCT2、SLCO1B1、PPARy基因多态性性为临床鉴别患者对降糖药物敏感性提供帮助每测试SLCO1B1ApoE检测SLCO1B1检测*1b和*5两个位点;ApoE检测E2和E4两个位点每测试个体化用药指导AGTR1/ACE/ADRB1CY2D6/CYP2C9/CYP3A5/NPPA检测高血压合理用药;总共检测7个基因,10位点每测试CYP2C19氯吡格雷用药每测试CYP2C9VKORC1华法林初始剂量每测试MTHFR检测评判叶酸代谢能力,指导合理补充叶酸每测试ALDH2检测判断硝酸甘油用药无效风险,评估酒精代谢能力每测试细胞因子联合检测试剂细胞因子六联检(IL2\IL4\IL6\IL10\IFNγ\TNFα);流式细胞术(2类注册证)每测试细胞因子七联检(IL2\IL4\IL6\IL10\IL17A\IFNγ\TNFα) 每测试细胞因子八联检(IL2\IL4\IL6\IL10\IL12P70\IL17A\IFNγ、TNFα) 每测试PD1(程序性死亡蛋白1)每测试十二联检(IL1β\IL2\IL4\IL6\IL8\IL10\IL12P70\IL17A\IFNγ\TNFα\IFNα)维生素类检测脂溶维生素(VA,D2,D3,E,K)串联质谱每测试水溶维生素(维生素B1、维生素B2、维生素B3、维生素B5、维生素B6、维生素B7、维生素B9、维生素B12)每测试串联质谱检测3多种氨基酸检测试剂盒串联质谱每测试抗生素药物浓度检测试剂盒(阿米卡星、亚胺培南西司他丁、头孢哌酮舒巴坦、哌拉西林他唑巴坦、美罗培南、替加环素、利奈唑胺、万古霉素、去甲万古霉素、替考拉宁、氟康唑、伏立康唑、醋酸卡泊芬净)每测试第10标段(5万)1白色念珠菌核酸检测荧光PCR法5万1家每测试2光滑假丝酵母菌核酸检测每测试3热带假丝酵母菌菌核酸检测每测试4金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌核酸检测每测试5沙门氏菌和志贺氏菌核酸检测每测试6单纯疱疹病毒1型(HSV1)核酸检测每测试7单纯疱疹病毒2型(HSV2)核酸检测每测试8人感染H7N9禽流感病毒RNA检测每测试9麻疹病毒和风疹病毒核酸检测每测试10人乳头瘤病毒核酸检测及基因分型(至少标段含20种)荧光PCR定量法(无需杂交)每测试第11标段(大明宫)(60万)肝炎系列+新冠抗体+胃蛋白酶原乙型肝炎病毒表面抗体测定试剂盒磁微粒化学发光法60万1家每测试乙型肝炎病毒表面抗原测定试剂盒每测试乙型肝炎病毒e抗原测定试剂盒每测试乙型肝炎病毒e抗体测定试剂盒每测试乙型肝炎病毒核心抗体测定试剂盒每测试乙型肝炎病毒前S1抗原测定试剂盒每测试戊型肝炎病毒IgM测定试剂盒每测试丙型肝炎病毒抗体测定试剂盒每测试胃蛋白酶原Ⅰ测定试剂盒每测试胃蛋白酶原Ⅱ测定试剂盒每测试新型冠状病毒(2019nCoV)抗体检测试剂盒(磁微粒化学发光法)每测试抗HCV质控品每毫升HBcAb质控品每毫升HBeAb质控品每毫升HBeAg质控品每毫升HBsAb质控品每毫升HBsAg质控品每毫升抗HAVIgM质控每毫升抗HEVIgM质控品每毫升白介素6测定试剂盒(CMIA)每测试降钙素原测定每测试超敏C反应蛋白测定每测试肌酸激酶同工酶测定每测试心肌肌钙蛋白I测定每测试心肌肌钙蛋白T测定每测试肌红蛋白测定每测试心型脂肪酸结合蛋白测定每测试N端脑钠肽前体测定每测试白介素6质控品IL6免费提供胃蛋白酶原I质控品PGI免费提供胃蛋白酶原II质控品PGII免费提供人类免疫缺陷病毒抗原抗体测定试剂盒每测试梅毒螺旋体抗体测定试剂盒每测试甲型肝炎病毒IgM抗体测定试剂盒每测试激发液免费提供预激发液免费提供清洗液免费提供整装反应杯免费提供整装吸头免费提供样本稀释液免费提供FDP+DD纤维蛋白/原降解复合物胶乳免疫比浊法/颗粒增强免疫比浊法每测试D二聚体检测每测试FDP、D二聚体控制品每毫升D二聚体校准品每毫升FDP校准品每毫升生化类超敏C反应蛋白免疫比浊法每测试尿微量白蛋白测定每测试糖化白蛋白每测试糖化血红蛋白高压液相色谱法每测试第12标段(6万)多种心脑血管药物基因核酸样本预处理试剂心血管个性化用药指导11基因检测+核酸质谱法6万1家每测试心血管个性化用药指导21基因检测每测试高血压个性化用药指导9基因检测每测试冠心病个性化用药指导4基因检测每测试氯吡格雷+阿司匹林个性化用药基因检测每测试抗栓个性化用药9基因检测每测试儿童安全用药基因检测(核心板)每测试叶酸及营养每测试精神类药物基因核酸样本预处理试剂抑郁症个性化用药指导10基因检测每测试精神分裂症个性化用药10基因检测每测试癫痫个性化用药12基因检测每测试焦虑个性化用药9基因检测每测试肿瘤基因检测核酸样本预处理试剂化疗用药每测试男性18项高发肿瘤风险基因筛查(含BRCA基因)每测试女性21项高发肿瘤风险基因筛查(含BRCA基因)每测试核酸样本预处理试剂遗传性耳聋基因检测(20位点)每测试第13标段(5万)肝癌检测高尔基体蛋白73磁微粒化学发光免疫分析法5万1家每测试甲胎蛋白异质体比率(AFPL3%)每测试异常凝血酶原每测试感染三项1.全程C反应蛋白(CRP)上转发光免疫分析每测试2.血清淀粉样蛋白(SAA)每测试3.降钙素原(PCT)每测试第14标段(8万)ApoE基因型载脂蛋白EApoE基因型检测基因芯片法8万1家每测试第15标段(4万)SDC2基因甲基化检测人类SDC2基因甲基化检测荧光PCR法4万1家每测试第16标段(3万)S9甲基化Septin9基因甲基化检测荧光探针法3万1家每测试第17标段(25万)一次性加样枪头一次性加样枪头200微升迪肯酶免一体机专用25万1家每个一次性加样枪头1000微升每个核酸检测耗材盒装灭菌无酶吸头10微升核酸检测专用每个盒装灭菌无酶吸头100微升每个盒装灭菌无酶吸头200微升每个盒装灭菌无酶吸头1000微升每个加长型滤芯枪头(200ul)每个加长型滤芯枪头(10ul)每个HPV细胞保存液HPV细胞保存液(标段含采样器和保存管)5mlHPV分型专用每管采样管及保存管鼻拭子采样管、咽拭子采样管RNA检测标本采集每个第18标段(2万)六项呼吸道病毒核酸联合检测六项呼吸道核酸联合检测(甲、乙型流感病毒,呼吸道合胞病毒,腺病毒,肺炎支原体,人鼻病毒)荧光PCR法2万1家1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试六项呼吸道病原菌核酸检测六项呼吸道病原菌核酸检测(肺炎链球菌、肺炎克雷伯杆菌、流感嗜血杆菌、铜绿假单胞菌、嗜肺军团菌、金黄色葡萄糖菌)荧光PCR法1具备内源性内标;2.防污染系统。3检测最低下限小于等于500copy/mL每测试第19标段(1万)传染病三项血液筛查核酸检测HBV+HCV+HIV血液筛查核酸检测荧光PCR法1万1家每测试第20标段(3万)心脑血管疾病风险预测MTHFRC677T基因检测(3个位点)PCR金磁微粒层析法2万1家每测试ALDH2(Glu504Lys)基因检测每测试氧化型低密度脂蛋白金磁微粒免疫层析法每测试S100β蛋白检测每测试早产早破预测胰岛素样生长因子结合蛋白1(IGFBP1)——胶体金与酶免方法1万胎膜早破诊断每测试胎儿纤维连接蛋白(fFN)——早产风险预测每测试第21标段(3万)颗粒酶B及穿孔素联合检测GranzymeB抗体试剂流式细胞计数法2万1家每测试穿孔素(Perforin)抗体试剂每测试CD45检测试剂(APCCy7)每测试CD3检测试剂(PerCP)每测试CD8检测试剂(APC)每测试CD16检测试剂(CD16PECy7)每测试CD56检测试剂(CD16PECy7)每测试HLAB27基因分型HLAB27基因分型检测荧光PCR法1万每测试百日咳杆菌核酸检测百日咳杆菌核酸检测荧光PCR法每测试第22标段(3万)耳聋基因检测遗传性耳聋易感基因检测(至少20种基因位点)PCR反向点杂交2万1家每测试艰难梭菌抗原及毒素快检艰难梭菌谷氨酸脱氢酶抗原GDH及毒素A/B酶联免疫层析法1万每测试第23标段(2万)SDC2和TFPI2基因甲基化联合检测SDC2和TFPI2基因甲基化联合检测试剂盒荧光PCR法2万1家每测试第24标段(2万)呼吸道病毒6项呼吸道合胞病毒、呼吸道腺病毒、人偏肺病毒、副流感病毒Ⅰ型、副流感病毒Ⅱ型、副流感病毒Ⅲ型荧光PCR法1万最低检测限:1000copies/mL每测试诺如病毒核酸检测诺如病毒RNA检测(粪标本)荧光PCR法0.5万每测试肠道病毒核酸检测试剂可检测肠道病毒,如柯萨奇病毒A组2型、4型、5型、6型、7型、9型、10型、12型、16型;柯萨奇病毒B组1型、2型、3型、4型、5型;肠道病毒C组;肠道病毒71型和埃可病毒。荧光PCR法0.5万(咽拭子)每测试合计共24个标段,总计576万元各供应商可选择参投一个或多个标段,可兼投兼中,但必须对所投标段内全部标的进行投标报价,不得缺项、漏项。本项目(不接受)联合体投标。二、申请人的资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2021年度任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前任意一个月的财务报表(至少标段括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。本项目(不接受)联合体投标。三、获取招标文件1、时间:2022年08月01日至2022年08月05日,法定工作日每天上午09:0012:00,法定工作日每天下午14:0017:00(北京时间,法定节假日除外)地点:线上发售方式:(1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信(介绍信中必须注明项目名称、项目编号、标段号)、经办人身份证、联系电话及电子邮箱等资料,加盖投标单位公章的彩色扫描件发送至邮箱714884417@qq.com,并及时关注邮箱回复消息。(2)招标文件售价人民币¥7200.00元(本招标项目各标段招标文件之和,每单个标段300元),售后不退。(标书费交纳信息:账户名称:陕西西北民航招标咨询有限公司;开户银行:建行西安高新科技支行;账号:61001925700052502533;转帐事由:项目名称简称、编号、标段号,如以个人名义转入,须备注单位名称。财务电话:029883479258013),采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月24日09时30分(北京时间)开标时间:2022年08月24日09时30分(北京时间)地点:西安市唐延路3号唐延国际中心AB区8楼开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜:(1)招标文件售价为每标段300元。(2)本项目接受进口产品投标。(3)采购项目需要落实的政府采购政策:1、《财政部国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号);2、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);3、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);4、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);5、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);6、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);7、《关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);8、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);9、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市西五路157号联系方式:冯老师029876798612.采购代理机构信息名称:陕西西北民航招标咨询有限公司地址:西安市唐延路3号唐延国际中心AB区8楼联系方式:佘冰霞029883479878046/139912653493.项目联系方式项目联系人:佘冰霞电话:029883479878046/13991265349(2022.07.27)重新招标公告分子组及大明宫耗材项目.pdf
  • 化学所有机连续波激光研究取得进展
    激光在光子芯片、激光显示、车载雷达等领域具有重要作用。有机材料具有分子多样性、能级丰富性、异质相容性、易加工性等优点,在高性能、多功能激光器构筑方面具有显著优势,有望进一步革新激光技术与应用。目前,有机激光器依赖大尺寸脉冲泵浦源,不利于功能器件集成,限制了有机激光的应用范围。因此,发展有机连续波激光器具有重要的科学意义和应用价值,而有机连续波激光材料是这一领域的关键。 近年来,中国科学院化学研究所光化学院重点实验室赵永生课题组致力于有机激光材料方面的研究,在低阈值激光材料设计、高品质微腔合成、准连续波激光器件构筑等方面开展了系统性的研究工作。近日,化学所赵永生课题组和董海云课题组开发出金属键连有机二聚体提高有机分子的拉曼增益的策略,基于有机微晶受激拉曼散射,实现了连续波激光出射。 目前,鲜有关于有机材料在连续波拉曼激光方面的研究。有机分子的可设计性为增强拉曼增益系数进而实现连续波拉曼激光提供了机遇。该研究开发出金属-有机配位合成有机二聚体的策略,诱导有机官能团的寡聚效应和刚性效应,可超线性地提高有机分子在金属连接体附近振动模式的拉曼增益系数,为实现有机连续波拉曼激光提供了可能。科研人员选择具有拉曼活性和孤对电子配位位点的三苯基氧化膦(TPPO)作为模型有机化合物,以二价金属卤化物——氯化锌(ZnCl2)作为金属连接体,通过金属-有机配位反应合成有机二聚体(ZnCl2(TPPO)2)。科研人员发展了一种热饱和溶液分子自组装的方法,制备了高质量有机单体和二聚体微晶。相比于有机单体微晶,金属键连有机二聚体微晶展现出显著增强的自发拉曼散射,对应于大幅提高的拉曼增益系数。不同于有机单体微晶,金属键连有机二聚体微晶支持低阈值连续波拉曼激光。同时,相比于有机单体微晶,金属键连有机二聚体微晶具有更高的稳定性,可确保连续波拉曼激光器长时间稳定运行。受激拉曼散射作为一种三阶非线性效应本身支持激光波长调谐。且有机二聚体微晶具有大的光学带隙,展现出非常宽的透明窗口(360~1580nm)。因此,科研人员通过调控激发光波长,在有机二聚体微晶中实现了可见-近红外范围内多个波长的激光出射(422、465、562、678、852、1190nm)。金属键连有机二聚体策略可显著提升有机分子拉曼增益系数和有机微晶材料稳定性,为探索有机连续波微纳激光器提供了新平台。 相关研究成果发表在《德国应用化学》上。研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。化学所有机连续波激光研究取得进展
  • naica® 微滴芯片数字PCR系统三色多重分析设计性能优化指南
    多重分析,即在单个反应中检测多个靶标,可以帮助用户节省宝贵的样品,并节省时间、试剂和成本。此外,和做多次单重实验相比,由于多重反应所有靶标都在同一个反应中进行扩增和检测,使得样品和试剂的移液操作误差减少,因此多重检测可以提高定量精度。naica微滴芯片数字PCR系统的多重检测与单重检测一样灵敏和精准。专业的分析设计和优化可以实现更复杂的多重检测,从而在单个PCR反应中用多对引物和探针扩增多个DNA目标。Crystal Miner软件是一个开放的数据分析软件,可以通过其提供的强大工具来帮助优化和完成多重分析。评估引物和探针性能的实验指南1.Stilla建议使用naica multiplex PCR mix,该试剂设计的初衷是为了得到更好的多重naica微滴芯片数字PCR系统的实验数据。2.单重反应测试。在进行多重反应之前,每个引物/探针/模板均需要进行单重性能验证。例如,对于三重分析,在多重反应混合进行之前,首先应对核酸靶标进行三个单重反应。当进行单重反应时,预期结果只出现单一阳性。3.为了优化多重分析性能,样品性质也是十分重要的因素(例如,游离DNA和基因组DNA需要设计不同的DNA片段,分析游离DNA需要设计成短片段DNA,分析基因组DNA需要设计更完整的DNA片段)。4.使用的DNA模板应该没有污染物和可能的抑制剂。如果样品材料稀少或不容易获得,可以合成寡核苷酸作为模板分析优化。5. 评估每个单重反应的退火温度范围,在最佳反应温度下,阳性和阴性微滴分离良好且没有非特异性扩增(图1)。由Crystal Miner软件(图2)提供的Stilla可分离评价可以作为一种度量标准,用于确定所有探针的最佳退火温度。如果单重反应没有被很好地优化,可能会出现明显的非特异性扩增。此外,非特异性扩增可能由几个非优化参数造成。包括引物/探针二聚体或引物/探针非特异性。在这种情况下,可以采用多种方法限制非特异性序列的扩增,如提高退火温度、进行touch down PCR或重新设计引物序列等。实验前可使用相关软件评估引物探针的特异性。▲图1 :Crystal Miner软件展示单重反应一维点状图,在60°C到65°C退火温度内, 蓝色、绿色和红色荧光通道检测到的荧光强度。黑框部分表示单重反应的最佳退火温度。可分性评分(e)可用于确定3个靶标扩增的最佳退火温度。(带*数字为可分性评分)▲图2 :可分性评分是基于阳性和阴性微滴群体的距离。可分性评分是由Crystal Miner软件自动计算,并可以在高级QC标签栏下找到。6.在选定的退火温度下,使用所有引物和探针进行多重naica微滴芯片数字PCR系统,并以区分度为指导,评估反应性能。如果有需要,可从以下几点优化:★ 调整PCR的循环数——建议从45个循环开始,并增加循环数,以进一步优化阳性和阴性微滴群体之间的分离度。★ 调整引物和探针浓度——naica微滴芯片数字PCR系统推荐的引物和探针浓度范围可从0.125到1μM (图3)。对于多重分析的设计建议从较低的浓度范围开始,以减少反应的复杂性,减少引物和探针所占据的体积。▲图3。Crystal Miner软件的一维点状图显示了一系列引物(左图)和探针(右图)浓度不断增加时蓝色检测通道中的荧光强度。黑框部分表示良好的可分性评分,及在低引物探针浓度的选择标准下确定的用于多重分析的引物探针浓度。(带*数字为可分性评分)★ 使用修饰的碱基,如锁核苷酸(LNA)碱基或小沟结合基团(MGB),以提高探针的Tm值,同时保持较短的长度(可能20nt)。然而,在多重检测中建议探针添加的MGB不超过2个,以避免扩增减少。7.评价引物和探针的相互作用:在同一个多重实验中引物和/或探针之间形成同源/异源二聚体的概率应保持在最低。二聚体是可以评估的,相互作用的分数可以用多种工具来确定(例如,IDT Oligo Analyzer Tool, Primer 3, Primer express, Beacon designer) (图4)。高浓度的引物和探针会增加非特异性相互作用的概率。因此,多重分析时,建议所有检测都从低浓度的引物开始(例如,0.25 uM),如果需要,逐步增加浓度至1 uM(例如,提高扩增效率)。▲图4:引物和探针之间的相互作用示例。a)target 1的探针与target 2的反向引物相互作用(R2 target 2,红框)。当使用反向引物RI target 2时,没有检测到这种相互作用。在本例中,应选择RI target 2进行多重检测。b) target 1的探针与target 2的正向引物的相互作用(F2 target 2. 蓝框)。当使用正向引物F1 target 2时,没有检测到这种相互作用。在本例中,FI target 2应被选择用于多重检测。8.对于多重分析,荧光溢出补偿是十分重要的。使用多个单色参照,Crystal Miner软件可以创建一个补偿模型用于特定的多重反应。有关荧光溢出的更详细描述,请访问https://www.gene-pi.com/item/spill-over-2/。执行荧光溢出补偿的操作说明请参考Crysta Miner软件用户手册。naica微滴芯片数字PCR系统naica微滴芯片数字PCR系统,以Sapphire芯片(全自动)或Opal(高通量)芯片为耗材,形成25,000-30,000个微滴的2D阵列,以单层平铺方式进行PCR扩增实验。反应完成后对微滴进行三色通道或六色通道检测,从而对起始核酸浓度进行绝对定量。2.5小时内,可快速获得结果。
  • 【赛纳斯】表面增强拉曼/红外光谱技术的进展与突破
    01导读拉曼光谱和红外光谱是 最 重 要 的分析化学方法之一,可提供待测体系的化学键等关键结构信息。然而,它们应用于材料和生物体系的表面化学分析时,常面临着灵敏度偏低的瓶颈。四十余年来,人们持续致力于突破该瓶颈,推动相关技术的应用和产业化。近日,厦门大学田中群教授课题组回顾了拉曼和红外光谱技术的发展历程,系统性论述了表面增强拉曼散射光谱和表面增强红外吸收光谱的三种物理机制:等离激元效应、避雷针效应和耦合效应。从拉曼和红外光谱的基本原理和实际案例出发,提出了进一步提高拉曼和红外光谱的表面检测灵敏度的策略,即宏观光学系统与微纳光学衬底之间多尺度耦合,最 后讨论了将宏观光学-微纳衬底间的高效耦合拓展到亚纳米分子尺度的可能性,展望了更多种形式的多尺度光耦合策略。图1 SERS和SEIRA光谱灵敏度提高的策略与实践:从微纳结构衬底设计到光学设计。02研究背景拉曼光谱和红外光谱技术的里程碑式进展如图2所示,时间轴上、下分别为拉曼光谱和红外光谱技术。从发展历程可见:(1)1800-1974年主要集中在基本测试仪器和方法,从无到有地建立拉曼和红外及其衍生光谱技术;(2)1974-2010年则在已有测量仪器基础上,从无到有建立起表面增强拉曼和表面增强红外光谱方法;(3)1997年至今的表面增强拉曼和表面增强红外光谱逐渐提升为单分子水平。由此可见拉曼和红外光谱技术的灵敏度在不断提升,而其蕴含的发展驱动力是由痕量甚至是单分子水平待测样品的实际需求所诱发的。如何提升拉曼和红外光谱的检测灵敏度,是具有 重 大 挑战性的科学问题和技术难题。图2 拉曼光谱、红外光谱、及其衍生技术的的里程碑式进展节点,时间轴上、下部分别为拉曼和红外光谱技术。2.1 SERS和SEIRA的增强机理表面增强拉曼光谱(SERS)和表面增强红外吸收光谱(SEIRA)主要基于电磁场增强机制。SERS和SEIRA电磁场理论的核心在于借助光和金、银等纳米结构的相互作用,增强纳米结构表面狭小区域内的光电场(也称近场)。该狭小区域也称为“热点”。处于热点中的待测分子的光散射和光吸收截面都被增强,如图3所示。图3 SERS和SEIRA的电磁场增强原理。a是分子的Raman散射及拉曼光谱。b是吸附于金属纳米球表面分子的SERS的两步增强机理。c是SERS光谱的数据处理。d是分子的红外吸收及红外光谱。e是吸附于金属纳米棒表面分子的SEIRA的一步增强机理。f是SEIRA谱的数据处理。热点内的局域电场的强度与分子的光吸收/散射效率直接相关。提高SERS和SEIRA增强衬底表面热点内局域电场强度是SERS和SEIRA技术发展的关键难题。SERS和SEIRA增强衬底可划分为非耦合型增强衬底和耦合型增强衬底两大类。非耦合型增强衬底,如单个纳米粒子、金属膜以及非金属表面的金属探针等,通常只支持局域表面等离激元、传播表面等离激元和避雷针效应中的一种机制。非耦合增强衬底的局域场增强因子较小,通常小于5个数量级,是研究局域场耦合的模型结构。耦合型增强衬底,特别是具有纳米间隙或者纳米尖端结构的增强衬底,分子拉曼散射和红外吸收信号会得到显著增强,检测灵敏度可达单分子水平。典型的耦合型增强衬底结构有纳米颗粒-纳米颗粒二聚体(dimer)、寡聚体结构(oligomer)、阵列结构(array)、蝴蝶结(bow-tie)结构,和金(或银)扫描探针-金(或银)衬底耦合结构等,如图4所示。图4 SERS和SEIRA典型结构。a-f为SERS衬底结构,g-i为SEIRA衬底结构。其中a和g为局域表面等离激元纳米结构,c和i为传播型表面等离激元纳米结构,e为支持避雷针效应的针尖纳米结构。b、d、f、h和i为不同形式的等离激元耦合纳米结构衬底。除了提高衬底的局域电场强度,SERS衬底在应用中还存在衬底普适性低和信号重现性不足的难题。壳层隔绝纳米颗粒增强拉曼光谱(SHINERS)是克服这一难题的强有力的创新方法,在材料表面化学分析中已发挥出独特的技术优势和巨大的实际应用效能。SHINERS技术的关键是制备超薄介质壳层包覆的金(或银)核的核壳结构纳米颗粒,其中壳层材质如SiO2、Al2O3等具有绝缘性和化学惰性,既避免了分子吸附于金(或银)核表面产生干扰信号,又减小了纳米颗粒和待测衬底发生烧融的概率,提升了体系稳定性。借助SHINERS中金(或银)核与待测金属材料衬底的耦合作用,金属衬底上吸附分子的拉曼信号得到显著放大,例如,实现了对不同晶面Au、Pt等金属单晶上痕量电催化中间产物的识别,为揭示相关电催化反应的路径和机制提供了关键证据(图5)。图5 用于表面分析的SHINERS技术。a 衬底表面的SHINERS粒子示意图。b 吸附在Au(111)、Au(100)和Au(110)表面的吡啶分子的SHINERS光谱。c SHINERS实验示意图。电磁场强度由颜色代表,红色(强)和蓝色(弱)。d SHINERS粒子的TEM成像和Pt衬底表面的3D-FDTD模拟。e 在氧气饱和的0.1 M HClO4中的ORR过程三个旋转环盘Pt单晶电极上的极化曲线。转速为1600转/分,扫描速率50 mV/s。坐标轴j和E分别代表电流密度和电极势。f 变电位条件下Pt(111)电极表面的ORR测试的EC-SHINERS光谱。类似壳层隔绝技术的核-壳结构构筑策略也适用于SEIRA技术。由金壳层和介质内核构筑的阵列SEIRA增强衬底不仅在近红外区有等离激元响应,在中红外区也显示出宽光谱共振响应。如图6所示,位于近红外区域的等离激元响应源自于单个纳米壳结构的多极等离激元共振,而位于中红外区域的宽谱响应带则源自多粒子结构的偶极共振耦合。耦合纳米结构是提高SERS和SEIRA衬底表面增强性能的有效方式,通过耦合效应可将衬底拓展为SERS和SEIRA同时响应的衬底。图6 多个纳米粒子耦合同时用于SERS和SEIRA虽然基于上述耦合纳米结构的SERS和SEIRA增强衬底可有效提高拉曼和红外光谱的检测灵敏度,要实现超高灵敏的SERS和SEIRA测量尚有一定难度。成功的研究报道往往集中于拉曼散射或红外吸收截面较大的少数分子体系,其增强衬底结构在实际应用中尚面临一些困难。特别是如何使应用面最广的SERS或SEIRA衬底,如单个SHINERS粒子、TERS探针、单根SEIRA棒和nanoIR探针,也具备超高检测灵敏度,即使面对散射或吸收截面较小的分子仍可获得有效的检测信号。这一问题仍充满挑战。因此,进一步针对特定的微纳衬底而优化设计的宏观光学系统的研究成为迈上更高灵敏度这一新台阶的关键。2.2 基于维纳结构衬底的宏观光学设计SERS信号与多重因素有关,其强度具体可用下式表示:我们可以参考SERS的强度公式将SEIRA的强度表示如下:GSERS和GSEIRA分别表示衬底通过等离激元和避雷针效应造成的局域场增强。上述公式清楚表明,SERS和SEIRA的强度不仅与微纳衬底的增强因子有关,也与仪器的参数,如光耦合效率Ω、检测器效率Q、色散系统的通量Tm和光学系统的透过率T0直接相关。虽然在Raman和IR发展的历程中,针对光学系统的研究从未停止,但聚焦在光学系统和微纳衬底之间的耦合效率的研究还很少。耦合效率Ω可进一步展开为其中Ωe表示激发光的空间角集中程度、Sexci表示微纳衬底的定向激发性质、Me-e则表示激发光和衬底之间的匹配程度。Ωc表示收集系统的定向收集能力、Sscat表示微纳衬底的定向辐射属性、Mc-s则表示Ωc和Sscat之间的匹配程度。上述三个公式清晰地描述了宏观光学系统和微纳衬底之间匹配程度对获得超灵敏SERS和SEIRA光谱的重要意义。图7为SERS和SEIRA中传统的耦合光学设计,和考虑衬底与光学系统匹配后的耦合光学设计。与传统方式相比,后者可在微纳衬底表面激发出更强的热点,获得更灵敏的SERS和SEIRA检测效果。图7 SERS和SEIRA中的光学设计。a 传统的激发和收集光锥。b 抛物面反射式聚焦镜。c 折射式物镜。d 反射式物镜。e SERS和SEIRA中精细设计的激发和收集空心光锥。f 基于棱镜和波导结构的激发光学。g 基于棱镜的折射式空心光锥透镜。h 基于棱镜的反射式空心光锥物镜。角度激发。通过ATR棱镜定向激发SERS和SEIRA衬底获得更高检测灵敏度是最常见的设计宏观光学增强微纳光学衬底的例子。如图8中所示,在二氧化硅半球柱面镜上蒸镀一层Ag膜,扫描激发光角度,在很窄的角度范围内可观察到表面等离激元效应。在该角度下收集纳米粒子构成的SERS衬底的拉曼散射信号,其光谱增强性能与金属膜表面相比可提高2-3个数量级。而在SEIRA中, ZnSe半球柱面镜表面的金岛状膜衬底的SEIRA增强性能也强烈依赖激发光的入射角度。70°下激发获得的SEIRA强度比20°时高6倍。更多的基于波导结构激发SERS和SEIRA的研究也证明了将激发光能量集中在某一窄角度范围内,可进一步提高衬底的SERS和SEIRA性能。图8 基于ATR棱镜结构定向激发SERS和SEIRA。a-c 在SERS中通过半球柱面镜激发金属膜表面SPR,进而激发单粒子SERS。d-f 在SEIRA中通过半球柱面镜激发金岛膜SEIRA。定向辐射收集。定向辐射收集主要体现在SERS衬底表面。SERS衬底作为天线,它接收远场光并在近场区域产生电磁场“热点”,从而激发“热点”内的分子。分子辐射的拉曼信号再次激发SERS衬底并辐射至远场。研究表明远场辐射的SERS信号表现出强烈的定向辐射属性。如图9所示,二聚体和三聚体的SERS远场辐射信号集中在很窄的空间角度范围内,而该空间角度甚至超过了显微物镜的收集角度范围,导致大量信号无法被测量。该实验结果证明宏观光学系统设计在提高SERS信号收集效率方面是非常必要的。图9 二聚体和三聚体表面SERS信号的远场辐射特征兼顾角度激发和定向辐射收集的光学设计。角度激发可提高SERS与SEIRA的激发效率,定向辐射收集可提高SERS的收集效率。2017年报道的一种消色差的固体浸没透镜结构做到了两者兼顾。如图10所示,通过该物镜结构,激发光能量可集中在很窄的角度范围内,有效提高激发光与SPR效应之间的能量耦合效率,因此在SPR角度附近SERS信号才最强。同时该物镜的数值孔径高达1.65,可有效收集远场辐射的SERS信号。该物镜不仅支持Kretschmann结构,也支持Otto结构,数值分析结果表明在不同衬底材料表面散射的SERS信号均具有定向辐射特征,与一般的线性偏振相比,热点的局域场增强更高。图10 基于消色差固体浸没透镜光学设计兼顾角度激发和定向辐射。a-d KR-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。e-j Otto-SPR-SERS结构光学设计及其角度激发和定向辐射性能的表征。光纤高效激发和收集耦合TERS。另一种兼顾激发和收集效率的设计是光纤耦合结构的TERS装置。在该装置结构中,银纳米线TERS探针组装在锥状光纤表面。线偏振激发光在光纤中传播的波导模式会在不同的空间位置与银纳米线探针的两个SPP模式TM0和HE1耦合。通过光纤角度和长度的优化设计,提高远场光与TM0模式的能量耦合效率,优化后的远、近场的耦合效率可达70%。考虑到TERS的两步耦合过程,总体的远、近场光耦合效率可达50%,即使在最简单的TERS装置上也可实现碳纳米管表面1 nm空间分辨率的化学光谱采集。图11 a 波导模式LP01和银纳米线探针的TM0和HE1模式之间的耦合示意图。b 通过TM0模式的近场和远场耦合。c TERS探针和光纤的SEM图。d 碳纳米管样品的形貌。e 沿着d中白色虚线的TERS强度分布。f d中虚线上A、B和C位置处的TERS光谱。光学设计拓展nanoIR和TERS的适用环境。近几年先后报道的液体环境纳米红外光谱技术均通过底部ATR光学结构激发实现。电化学TERS技术的一大难题是TERS的激发和收集光路路径上光传播介质发生了变化,造成常规TERS测量技术的不直接适用。如何在有限的空间内实现TERS光路与电化学池的有效光学耦合是一个关键的技术问题。如图12所示,在该设计中,电化学池被改造成由透明窗片、倾斜样品区以及电化学功能模块构成的结构。这一结构有效抑制了光路畸变对TERS测量的影响,由此成功获得了电化学反应前后的少量反应物和产物的TERS光谱。图12 电化学TERS技术。a 在电化学池中增加光学窗片,并减小与激发和收集物镜的距离实现的电化学TERS装置结构。b-c 溶液中TERS探针的局域电场分布。d 电化学反应过程中不同位置的TERS光谱。e 反应物和产物的空间分布。f 不同样品偏压下的产物。03总结与展望SERS和SEIRA分别显著提升了拉曼光谱和红外光谱的检测灵敏度,近二十年来,随着微纳光学技术的逐步发展,高性能的增强衬底不断问世。尽管目前对宏观光学系统与微纳衬底之间多尺度耦合效率的研究还较少,在可预见的将来,该问题终将被解决,这将使得应用面最广的球形纳米颗粒的光谱增强性能也有机会进一步实现数量级的提升。除了兼顾宏观和微纳光学的耦合设计,近年来基于原子尺度的避雷针效应与等离激元结合也实现了一系列的突破,如利用TERS技术实现了单分子、甚至单个化学键的成像。然而,可检测的分子体系仍限制于少量的分子种类。这就要求在提高宏观光学到微纳光学的耦合效率的同时,也要提高从微纳光学到原子尺度光学的能量耦合效率。这一问题的解决将不仅对TERS,对Nano IR的发展也不至关重要。在实际应用中,SERS和SEIRA的环境普适性也是一个重要的指标。特别是在TERS和NanoIR技术中,发展适配如能源化学中的多相界面体系或生命科学中的液相环境体系等具体应用场景的光学结构设计将具有重大应用意义。文章信息:该研究成果以"Advances of surface-enhanced Raman and IR spectroscopies: from nano/micro-structures to macro-optical design"为题在线发表在Light: Science & Applications。本文 第 一 作者为厦门大学的王海龙博士,共同通讯作者为田中群教授和王海龙博士。合作者包括尤恩铭博士、丁松园教授和印度SRM University- AP的Rajapandiyan Panneerselvam博士。
  • 新国家疾控局等四部门联合发文:加强公卫体系、卫生监督体系建设(附全文)
    7月1日,国家发展改革委、卫生健康委、中医药管理局和国家疾病预防控制局共同编制《“十四五”优质高效医疗卫生服务体系建设实施方案》,提出:  中央预算内投资重点支持疾病预防控制体系、国家重大传染病防治基地和国家紧急医学救援基地建设,推动地方加强本地疾病预防控制机构能力、医疗机构公共卫生能力、基层公共卫生体系和卫生监督体系建设,健全以疾控机构和各类专科疾病防治机构为骨干、综合性医疗机构为依托、基层医疗卫生机构为网底、防治结合的强大公共卫生体系。  要落实疾病预防控制体系改革任务,加强疾控人才队伍建设,提高专业技术人员占比,健全公共卫生(含卫生监督)及卫生工程人员培养、准入、使用、待遇保障、考核评价和激励机制,创新医防协同,实现人员通、信息通、资源通。  详见方案全文:“十四五”优质高效医疗卫生服务体系建设实施方案  “十三五”以来,按照实施健康中国战略要求,中央和地方不断加大投入力度,着力强基层、补短板、优布局,医疗卫生服务体系不断健全,基本医疗卫生服务公平性可及性不断提升,经受住了新冠肺炎疫情考验,人民健康水平持续提高,为全面建成小康社会提供了坚实保障。“十四五”时期,从需求侧看,我国公共卫生安全形势仍然复杂严峻,突发急性传染病传播速度快、波及范围广、影响和危害大,慢性病负担日益沉重且发病呈现年轻化趋势,职业健康、心理健康问题不容忽视。随着人民生活水平不断提高和人口老龄化加速,人民群众健康需求和品质要求持续快速增长。从供给侧看,医疗卫生服务体系结构性问题依然突出。一是公共卫生体系亟待完善,重大疫情防控救治能力不强,医防协同不充分,平急结合不紧密 二是优质医疗资源总量不足,区域配置不均衡,医疗卫生机构设施设备现代化、信息化水平不高,基层能力有待进一步加强 三是“一老一小”等重点人群医疗卫生服务供给不足,妇女儿童健康服务、康复护理、心理健康和精神卫生服务、职业病防治等短板明显 四是中医药发展基础还比较薄弱,特色优势发挥还不充分,中西医互补协作格局尚未形成。  为落实《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《“健康中国2030”规划纲要》《中共中央、国务院关于促进中医药传承创新发展的意见》《国务院办公厅印发关于加快中医药特色发展若干政策措施的通知》等的要求,加快构建强大公共卫生体系,推动优质医疗资源扩容和区域均衡布局,提高全方位全周期健康服务与保障能力,促进中医药传承创新,制定本方案。  一、总体思路  (一)指导思想  以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大和十九届二中、三中、四中、五中全会精神,坚持新时代卫生与健康工作方针,以人民健康为中心,加快提高卫生健康供给质量和服务水平,更加注重早期预防和医防协同,更加注重优质扩容和深度下沉,更加注重质量提升和均衡布局,更加注重中西医并重和优势互补,集中力量解决一批全国性、跨区域的大事、急事和难事,为全面推进健康中国建设提供强有力的支撑。  (二)基本原则  ——统筹规划分级负责。围绕“十四五”时期健康中国建设总体目标,加强全国医疗卫生资源的统筹配置,合理划分中央和地方事权,中央重点保障公共卫生、全国性跨区域医疗服务能力建设需求。地方统筹加强其它卫生项目建设。  ——关口前移医防协同。立足更精准更有效的防,优先保障公共卫生投入,创新医防协同机制,提高早期监测预警、快速检测、应急处置和综合救治能力。坚持急慢并重,聚焦影响人民健康的主要问题,补齐全方位全周期健康服务短板弱项。  ——提高质量促进均衡。坚持政府主导,加强公立医疗卫生机构建设,提高标准、适度超前,加大向国家重大战略区域、中心城市和脱贫地区倾斜力度,促进优质医疗资源扩容和区域均衡布局。  ——改革创新揭榜挂帅。加强重大基础设施建设与重大战略、重大改革协同,创新配套措施,确保发挥投资效益。以揭榜挂帅方式推动国家医学中心、区域医疗中心等重大项目建设,集中力量开展医学关键技术攻关,引领服务体系模式转变。  ——中西并重特色发展。坚持中西医建设任务同规划、同部署、同落实,遵循中医药发展规律,认真总结中医药防治新冠肺炎经验做法,建立符合中医药特点的服务体系,更好发挥中医药特色和比较优势,推动中医药和西医药相互补充、协调发展。  (三)建设目标  到2025年,在中央和地方共同努力下,基本建成体系完整、布局合理、分工明确、功能互补、密切协作、运行高效、富有韧性的优质高效整合型医疗卫生服务体系,重大疫情防控救治和突发公共卫生事件应对水平显著提升,国家医学中心、区域医疗中心等重大基地建设取得明显进展,全方位全周期健康服务与保障能力显著增强,中医药服务体系更加健全,努力让广大人民群众就近享有公平可及、系统连续的高质量医疗卫生服务。  二、公共卫生防控救治能力提升工程  中央预算内投资重点支持疾病预防控制体系、国家重大传染病防治基地和国家紧急医学救援基地建设,推动地方加强本地疾病预防控制机构能力、医疗机构公共卫生能力、基层公共卫生体系和卫生监督体系建设,健全以疾控机构和各类专科疾病防治机构为骨干、综合性医疗机构为依托、基层医疗卫生机构为网底、防治结合的强大公共卫生体系。  (一)现代化疾病预防控制体系建设  1.建设目标  加快推进疾病预防控制机构基础设施达标建设,与区域内各级各类医疗机构互联互通,满足新形势下突发公共卫生事件应对和重大疾病防控需要。国家和重点区域疾病预防控制机构具备新发传染病病原体、健康危害因素“一锤定音”检测能力和重特大公共卫生事件处置能力。省级疾控机构原则上要有达到生物安全三级水平的实验室,具备省域内常见多发传染病病原体、健康危害因素“一锤定音”检测能力和应急处置能力。地市级疾控机构有达到生物安全二级水平的实验室,具备辖区常见传染病病原体、健康危害因素和国家卫生标准实施所需的检验检测能力。县级疾控机构达到相关建设标准。  2.建设任务  一是加强中国疾病预防控制中心建设,升级改造国家菌毒种保藏中心和高级别生物安全实验室。二是依托高水平省级疾控中心建设若干国家区域公共卫生中心,加强业务用房、病原微生物资源保藏平台、重大疫情确证实验室、食品安全风险评估重点实验室、剧毒化学品和易制毒易制爆化学品库及其检测实验室、人才培训基地等建设,配备移动生物安全三级实验室,建设针对已消除或即将消除疾病的国家级防控技术储备中心。三是按照填平补齐原则,补齐各级疾病预防控制机构基础设施和实验室设备配置缺口。  3.配套措施  各地要建立稳定的公共卫生事业投入机制,优化调整财政支出结构,统筹各类资金渠道,切实加强本地区疾病预防控制机构能力建设。要落实疾病预防控制体系改革任务,加强疾控人才队伍建设,提高专业技术人员占比,健全公共卫生(含卫生监督)及卫生工程人员培养、准入、使用、待遇保障、考核评价和激励机制,创新医防协同,实现人员通、信息通、资源通。深入开展爱国卫生运动,创新疾病预防控制机构和城乡社区联动工作机制。  (二)国家重大传染病防治基地建设  1.建设目标  针对呼吸系统等重大传染病,在超大城市、国家中心城市等重点地区,依托高水平综合性医疗机构,布局建设国家重大传染病防治基地,具备聚集性疫情暴发时大规模危重症患者集中收治能力,能够按照国家要求第一时间驰援其他疫情严重地区,承担本区域内重大疫情救治培训任务,托管或指导当地传染病医院提高综合救治能力,把我国重大传染病防治能力提升到新的水平。  2.建设任务  遴选呼吸、感染等专科能力突出,“医、教、研、防”水平领先的综合性医疗机构,按照平急结合原则,进一步改造提升传染病防控救治设施,建设足量的负压病房、可转换重症监护病区、可转换院(病)区,加强传染病解剖室、临床教学用房、应急物资储备空间等设施建设,配备呼吸机、体外膜肺氧合(ECMO)、移动CT、传染病隔离转移装置等医学设备,有条件的可以配备移动生物安全三级水平实验室、移动核酸检测实验室。加强中西医协作能力建设。  3.配套措施  相关地方要将国家重大传染病防治基地作为城市重要基础设施和重大民生工程,在项目选址、建设投入、设备准入、科研平台、人才队伍等方面给予积极支持。要积极引导医疗机构、疾控机构、传染病专科医院、高等院校、科研机构加强合作,探索创新医教研防协同机制。要统筹加强医疗机构发热门诊和二级以上综合医院感染性疾病科建设,提高基层传染病防治能力。  (三)国家紧急医学救援基地建设  1.建设目标  针对自然灾害、事故灾害等重大突发事件,依托有较好工作基础的医疗机构进行升级改造,在全国范围内以省为单位开展国家紧急医学救援基地建设,完善紧急医学救援培训、演练、教育、科研等综合功能,具备大批量伤员立体化转运、集中救治、救援物资保障、信息指挥联通等能力,全面提高我国突发事件紧急医学救援水平。  2.建设任务  强化创伤病房、重症监护病房、创伤复苏单元等设施建设,以及接受伤员通道、二次检伤分类区等院内场所改造提升。针对海(水)上、陆地、航空、雪域等场景需求,加强救援物资储备配送能力和专业设施设备建设,结合实际配置信息联通和指挥设备、移动手术室、移动CT、直升机停机坪等。加强人员培训、模拟演练、科技研发、信息管理等平台建设。  3.配套措施  各地要加强国家紧急医学救援基地的建设投入、运行维护和现场处置经费等保障。要成立基地建设管理领导小组,制定并组织实施基地设施设备管理方案、人员队伍建设和管理方案、人员培训和演练方案、基地建设考核方案、不同灾难场景应急应对预案等规章制度,服从国家统一调配安排。要同步加强紧急医学救援和急救体系建设,优化院前急救网络布局,提高采供血能力。  三、公立医院高质量发展工程  中央预算内投资重点支持国家医学中心、区域医疗中心建设,推动省域优质医疗资源扩容下沉,支持脱贫地区、三区三州、中央苏区、易地扶贫搬迁安置地区县级医院提标扩能,加快数字健康基础设施建设,推进健康医疗大数据体系建设,扩大优质医疗资源辐射覆盖范围,进一步缩小区域、城乡差距,更好满足群众就近享有高水平医疗服务需求。将中医医院统筹纳入国家医学中心、区域医疗中心等重大建设项目。地方政府要切实履行公立医疗机构建设主体责任,加快未能纳入中央预算内投资支持范围的市、县级医院建设,全面推进社区医院和基层医疗卫生机构建设,力争实现每个地市都有三甲医院,服务人口超过100万的县有达到城市三级医院硬件设施和服务能力的县级医院。  (一)国家医学中心建设  1.建设目标  按照“揭榜挂帅、择优选拔”的工作思路,依托医学水平突出、影响力强、积极性高的医院,围绕关系人民健康的全局性、长期性问题,建设若干国家医学中心,形成一批医学研究高峰、成果转化高地、人才培养基地、数据汇集平台,集中力量开展核心技术攻关,推动临床科研成果转化,加快解决一批药品、医疗设备、疫苗、医学数据等领域“卡脖子”问题。  2.建设任务  提升国家重点实验室等重大医学科研平台设施和装备水平。建设高水准、国际化、开放性的药物、医疗器械装备、疫苗等临床科研转化平台和创新技术孵化基地。强化教学培训应用,打造国际一流的骨干人才培养基地。改善临床诊疗基础设施条件,适当超前配置大型医用设备。深度运用5G、人工智能等技术,打造国际先进水平的智慧医院,建设重大疾病数据中心。推进跨地区、跨机构信息系统的互联互通、互认共享、术语规范以及数据的整合管理,建设主要疾病数据库和大数据分析系统。  3.配套措施  优化国家医学中心科技成果创新和转移转化环境,鼓励国家医学中心、科研院所、高等院校和知名企业等各类创新主体加强合作,共同开展临床研究开发、成果运用推广等。放宽国家医学中心创新应用政策,鼓励治疗危急重症新药优先在国家医学中心开展临床试验。支持国家医学中心在医疗服务价格、医保支付、人事薪酬制度、利益分配、新药(医疗器械)研发上市等方面先行先试。  (二)区域医疗中心建设  1.建设目标  在执行好《区域医疗中心建设试点工作方案》的基础上,深入分析我国重大疾病发病率和地区、人群分布等情况,进一步扩大区域医疗中心建设地区、输出医院和专科范围,同步将承担输出任务的高水平医院纳入区域医疗中心建设,到2023年覆盖所有省份,完成全国范围的规划布局,到2025年基本完成区域医疗中心建设,推动优质医疗资源扩容和区域均衡布局,群众危急重症、疑难病症基本在省域内得到解决。  2.建设任务  在优质医疗资源薄弱地区,坚持“按重点病种选医院、按需求选地区,院地合作、省部共建”的思路,通过建设高水平医院分中心、分支机构、“一院多区”等方式,定向放大国家顶级优质医疗资源。对纳入设置规划的国家区域医疗中心,重点加强业务用房建设、医学装备购置、信息化和科研平台建设,建立远程医疗和教育平台,加快诊疗装备智能化改造升级,使其具备作为输出医院所要求的技术水平、人才储备、临床教学和科研能力,发挥区域医疗卫生服务体系“头雁”作用。  3.配套措施  各地要切实履行建设主体责任,落实土地、规划等建设条件并减免相关费用,确保建设资金不留缺口、不增加新的债务风险。要统筹加大政策支持力度,推进管理体制改革,支持其建立健全现代医院管理制度。深化人事薪酬制度改革,建立编制动态调整机制,合理核定岗位数量,落实“两个允许”要求,探索建立多渠道经费保障和薪酬激励机制。完善医院补偿机制,加大对重点学科发展和人才培养投入力度,合理制定和动态调整医疗服务价格。鼓励创新药物和技术使用,支持开展科技创新和成果转化。鼓励引入商业健康保险,开发针对特需医疗、创新疗法、先进检查检验服务等的保险产品。  (三)省域优质医疗资源扩容下沉建设  1.建设目标  以省为单位统筹规划,聚焦重点病种和专科,按照“省市共建、网格布局、均衡配置”的工作思路,通过引导省会城市和超(特)大城市中心城区医院向资源薄弱地区疏解、加强地市现有医院建设等方式,推动省域内优质医疗资源扩容和向群众身边延伸,遴选建设120个左右省级区域医疗中心,形成省域内具有较强引领和辐射带动作用的优质医疗服务、医学科研和人才培养高地,重点疾病诊疗水平与省会城市明显缩小。加强脱贫地区、三区三州、中央苏区、易地扶贫搬迁安置地区县级医院建设,引入省级优质医疗资源,提高传染病、儿童等综合医疗服务能力。  2.建设任务  支持省级区域医疗中心开展必要的业务用房改扩建,改善诊疗环境和服务设施条件,增加预防保健、科研、全科医生培养培训等设备设施,使其与承担的医疗、教学、科研、公共卫生等任务相匹配,合理提高建设标准,为必要时扩大突发事件应对和综合救治能力预留空间和条件。提升大型设备配备水平,加强智慧医院建设,保障远程医疗需要,优化服务流程,改善就医体验。支持脱贫地区、三区三州、中央苏区、易地扶贫搬迁安置地区县级医院提标扩能,改善发热门诊、急诊部、住院部、医技科室等业务用房条件,完善医疗、信息化、医用车辆等设备配置和停车、医疗废弃物和污水处理等后勤保障设施,提升医院诊疗环境。加强胸痛、卒中、创伤、呼吸等专病中心和肿瘤综合治疗中心、慢性病管理中心建设。  3.配套措施  各地要切实落实对乡镇卫生院(社区卫生服务中心)、村卫生室等基层医疗卫生机构的建设投入责任,全面提高基层公共卫生、全科、中医等能力。要统筹考虑当地中医药发展基础和建设条件,因地制宜开展建设,基本实现县办中医医疗机构全覆盖。加强县域医共体建设,鼓励依托县级医院建设开放共享的影像、心电、病理诊断、医学检验等中心,加强远程医疗和信息化设备配备,与高水平省市级医院对接,与基层医疗卫生机构联通。要依托县级医院建设县级急救中心,依托有条件的乡镇卫生院建立完善县域120急救网络。加强各级血站建设,提升血液应急联动保障能力。统筹加强地市级医院建设,布局建设全科医生临床系,争取实现省会城市、常住人口较多的地级市和县都有精神专科医院或综合医院精神专科,常住人口超过30万的县至少有1所设置有病房的县级公立医院精神科,常住人口30万以下的县至少有1所设置精神心理门诊的县级公立医院,社区卫生服务中心、乡镇卫生院都具备精神(心理)卫生服务能力。  四、重点人群健康服务补短板工程  中央预算内投资重点支持改善妇女儿童健康服务基础设施条件,提高出生缺陷防治、心理健康和精神卫生服务能力,增加康复、护理资源。地方政府要聚焦重点人群健康需求,加快完善妇幼健康、职业健康、老年健康、心理健康和精神卫生服务体系,补齐健康教育、康复医疗、老年长期照护和安宁疗护等领域短板,加快完善支持政策包并加快建设普惠托育服务体系,全面提高全方位全生命周期健康服务能力。  (一)妇女儿童健康服务能力建设  1.建设目标  围绕促进人口长期均衡发展,适应实现适度生育水平,提高出生人口质量需要,增加妇产、儿科优质医疗资源供给,改善优生优育全程服务,加强孕前孕产期健康服务能力,提升产科住院环境,增强出生缺陷综合防治能力,缓解儿童常见病看病难、重大疾病和传染病诊治资源不足等问题。  2.建设任务  每省份支持1个省级妇产项目建设(可为省级妇幼保健机构、省级妇产专科医院或省级综合性医院妇产中心),每省份支持1个儿科项目建设(可为省级妇幼保健机构、省级儿童医院或省级综合性医院儿科病区),支持分娩量较大、人口较多的地市级妇幼保健机构项目建设。妇产科项目重点强化产前筛查诊断和出生缺陷防治、危重孕产妇、儿童和新生儿救治能力,全面改善病(产)房、新生儿室等诊疗环境和设施设备条件,升级改造停车场等院内保障设施,提升妇幼健康服务品质。儿科项目重点加强呼吸、神经、血液、肿瘤等重大疾病救治设施建设,配置相关紧缺医疗设备,适当增加儿科病床数量,设置一定量的儿科隔离病房,满足传染病救治需要。  3.配套措施  各地要统筹其他资金渠道,加大对县级妇产科、儿科建设支持力度,实现省、市、县均有1个标准化的妇幼保健机构,切实提高危重孕产妇救治、危重儿童和新生儿救治以及产前筛查和诊断能力。指导省级机构通过牵头组建医疗集团、对口支援等方式,促进优质妇产科、儿科资源向基层下沉。开通妇产科、儿科急危重症绿色通道,实现院前急救、院内急诊、重症监护无缝有效衔接。加大妇产科、儿科医务人员培养培训力度,积极探索改革完善妇产、儿科医疗服务价格政策和运行补偿机制,体现妇产科、儿科医护人员劳务价值,调动积极性。落实母婴安全五项制度,加强质量控制,提高均质化水平。  (二)心理健康和精神卫生服务能力建设  支持每省建好1所省级精神专科医院或综合医院精神病区,重点改善老年和儿童精神疾病、睡眠障碍、抑郁焦虑、精神疾病康复等相关设施条件,优化患者诊疗就医流程。各地要加快完善省、市、县各级心理健康和精神卫生防治体系,争取实现省会城市、常住人口较多的地级市和县都有精神专科医院或综合医院精神专科,常住人口超过30万的县至少有1所设置有病房的县级公立医院精神科,常住人口30万以下的县至少有1所设置精神心理门诊的县级公立医院,社区卫生服务中心、乡镇卫生院都具备精神(心理)卫生服务能力。  (三)康复医疗“城医联动”项目建设  以地级市为单位,实施“城医联动”项目,通过中央预算内投资引导,带动地方、社会力量投入,支持医疗资源丰富地区盘活资源,将部分有一定规模、床位利用率不高的二级医院转型改建为康复医疗机构和护理院、护理中心,同步完善土地、财税、价格、医保支付、人才等政策工具包,重点为急性期后的神经、创伤等大病患者,老年等失能失智人群,临终关怀患者提供普惠性医疗康复和医疗护理服务,为建立适应人民群众需求的康复、护理体系探索有效路径。  五、促进中医药传承创新工程  中央预算内投资重点支持国家中医医学中心、区域中医医疗中心、国家中医药传承创新中心、国家中医疫病防治基地、中西医协同“旗舰”医院、中医特色重点医院和名医堂建设,积极谋划国家中医药博物馆建设,发挥中医药整体医学优势,推动建成融预防保健、疾病治疗和康复于一体的中医药服务体系,促进中医药传承创新发展。  (一)国家中医药传承创新中心建设  1.建设目标  建设30个左右国家中医药传承创新中心,重点提升中医药基础研究、优势病种诊疗、高层次人才培养、中医药装备和中药新药研发、科技成果转化等能力,打造“医产学研用”紧密结合的中医药传承创新高地。  2.建设任务  依托省级及以上中医医疗机构、中医药科研院所,揭榜挂帅、择优选拔。加强中医药研究型门诊和病房、基础医学研究中心、生物信息资源库、循证研究中心、古籍挖掘应用信息库、中药特色制剂研发与中药研究中心、产业创新协作平台、人才培养基地等业务用房建设,加强研究和信息化设备等配备,达到行业先进水平,攻克一批优势病种防治关键技术,转化一批中药新药和中医药特色装备,形成一批高级别专家共识、诊疗方案以及标准指南。  3.配套措施  各地要加大国家中医药传承创新中心建设用地、建设投入及运行经费、设备准入、人员队伍等方面保障力度,在运行管理、岗位编制、人才聘用、经费使用、薪酬及绩效分配、职称晋升等方面建立新机制,允许国家中医药传承创新中心对科研岗位人员有独立的职称评审权。在省级科研项目中加大对国家中医药传承创新中心支持力度。  (二)国家中医疫病防治基地建设  1.建设目标  根据“平急结合、高效准备,专兼结合、合理布局,协调联动、快速反应”的原则,建设35个左右、覆盖所有省份的国家中医疫病防治基地,提高中医药在新发突发传染病等重大公共卫生事件发生时的第一时间快速反应参与救治能力和危急重症患者集中收治能力,带动提升区域内中医疫病防治能力。  2.建设任务  加强具有中医特色的肺病科、急诊科、感染性疾病科、重症医学科等科室及疫病防治队伍能力建设,搭建中医药疫病防治科研支持平台。建设可转换传染病区、可转换ICU、生物安全二级及以上实验室、医疗废弃物处置设施等,配备呼吸机、体外膜肺氧合(ECMO)、移动CT、心肺复苏等重症急救抢救设备,做好必要的负压救护车、移动中药房等移动设备配置,做好医用防护物资和药品储备。  3.配套措施  各地要加大国家中医疫病防治基地建设用地、建设投入及运行经费、设备准入、物资储备、人才队伍、科研平台等方面保障力度,在运行管理、队伍演练、经费使用等方面建立新机制。要建立协调联动机制,充分发挥基地在派出专家、技术方案制定等方面的作用,确保第一时间参与传染病防治和突发事件卫生应急工作,深度介入预防、治疗和康复全过程。  (三)中西医协同“旗舰”医院建设  1.建设目标  建设50个左右中西医协同“旗舰”医院,大力推广“有机制、有团队、有措施、有成效”的中西医结合医疗模式。强化临床科室中医能力建设,建立科室间、院间和医联体内部中西医协作机制,打造中西医结合团队,推动建立中西医多学科诊疗体系,成为全国重大疑难疾病中西医结合诊疗、人才队伍培养和医疗模式推广的中心,在区域内乃至全国发挥中西医协同发展“旗舰”引领作用。  2.建设任务  依托综合医院、专科医院、传染病医院、妇幼保健院和中西医结合医院开展遴选建设,改善业务用房,优化功能布局,加强中医病房、中药房、中药制剂室、中医综合治疗区、中医康复治疗区、中医经验传承工作室、中西医结合临床研究中心等建设,强化中医特色诊疗设备配置。  3.配套措施  各地要在医疗服务价格、医保支付、人事薪酬、中药制剂和中医技术应用等方面制定相关鼓励政策,支持组建区域中西医协同医联体,将中西医协同医疗实践和效果纳入医院等级评审和绩效考核工作。要把建立中西医协同机制和多学科诊疗体系纳入医院章程,将中西医联合查房、会诊纳入医院管理制度,在各主要临床科室配备中医医师,打造中西医协同团队。  (四)中医特色重点医院建设  1.建设目标  遴选130个左右中医特色突出、临床疗效显著、示范带动作用明显的地市级重点中医医院,围绕心脑血管、肿瘤、骨伤、妇科、儿科、康复等优势病种,打造名科、名医、名药,做优做强一批中医优势专科,培养一批学科带头人和骨干人才,推动一批中药制剂开发应用,加快省域内优质中医医疗资源扩容和均衡布局。  2.建设任务  加强中医优势专科建设,改善业务用房条件,优化功能布局,强化设施设备配置,加强中医综合治疗区(室)、治未病和康复服务区建设,提供融预防、治疗、康复于一体、全链条的中医药服务,提升中医诊疗能力和临床疗效。建设名老中医传承工作室和临床示教、模拟实训等用房,强化中医药师承教育,加快中医学科带头人和技术骨干培养。改善中药房基础条件,加强中药制剂室和区域中药制剂中心建设,推广医疗机构中药制剂应用。  3.配套措施  各地要加大中医特色重点医院基本建设、设备购置、重点学科发展、人才培养等方面保障力度。充分发挥中央预算内投资带动作用和地方政府引导作用,落实中医药服务价格、医保支付倾斜等政策,鼓励在人才、中药制剂和中医技术应用等方面制定更加灵活的政策。支持开展“互联网+医疗健康”服务,提高中医特色医疗资源可及性和整体效率。  (五)名医堂工程  以中国中医科学院等优势中医机构和团队为依托,创新政策措施,发挥示范带动作用,分层级规划布局建设一批名医堂,推动名医团队入驻,服务广大基层群众。打造可推广、可复制、可持续的示范性名医堂运营模式,按照品牌化、优质化、规范化、标准化的建设要求,统一服务标准,规范技术操作,保证药品质量。建立健全名医堂信息系统,加强互联互通。推动实现人民群众“方便看中医、放心用中药、看上好中医”。  六、资金安排  (一)资金来源建设所需资金,由中央预算内投资、地方财政资金、地方政府专项债券等渠道筹措安排。国家发展改革委、国家卫生健康委、国家中医药管理局、国家疾病预防控制局会同有关部门积极支持各地加强优质高效医疗卫生服务体系建设。各地要进一步健全政策措施,积极调整自身财政支出和投资结构,确保建设资金足额到位。  (二)中央预算内投资安排标准中央预算内投资综合考虑事权划分原则、区域经济社会发展水平等情况,对地方项目实行差别化补助政策,原则上按照东、中、西部地区分别不超过总投资的30%、60%和80%的比例进行补助,享受特殊区域发展政策地区按照具体政策要求执行。中央本级项目按照有关标准执行。对部分投资需求较大的项目实行中央补助投资最高限额控制,额度如下:  1.省、市、县级疾病预防控制机构单个项目中央预算内投资补助额度最高分别不超过2亿元、5000万元和1000万元。承担区域公共卫生中心的省级疾控中心,单个项目补助额度最高不超过3亿元。  2.国家医学中心中央预算内投资安排额度按照单个项目批复情况确定。区域医疗中心、国家重大传染病防治基地、国家紧急医学救援基地中央预算内投资补助额度最高分别不超过5亿元、3亿元、3亿元。其中,区域医疗中心项目中央预算内投资分发展起步和能力提升2个阶段进行安排。  3.省级区域医疗中心项目、县级医院提标扩能项目单个项目中央预算内投资补助额度最高分别不超过2亿元和5000万元。4.省级妇产科、儿科建设项目单个项目中央预算内投资补助额度最高不超过2亿元,地市级妇幼保健机构不超过5000万元。5.促进中医药传承创新工程中的国家中医药传承创新中心单个项目中央预算内投资补助额度最高不超过1.5亿元,国家中医疫病防治基地、中西医协同“旗舰”医院、中医特色重点医院单个项目不超过1亿元。名医堂工程另行制定工作方案明确中央预算内投资安排标准。  七、保障措施  (一)落实主体责任  对于地方项目,中央预算内投资属于补助性质,各地对相关项目建设负主体责任,负责开展项目前期工作,保障项目建设用地,减免相关建设配套费用,筹集项目建设资金等,合理申报投资计划,组织项目实施。要切实履行公立医疗卫生机构投入和保障主体责任,多渠道落实建设资金,全额承担建设投入,实行“交钥匙”工程,坚决杜绝负债建设,减轻医疗卫生机构经济运营压力。  (二)强化组织实施  各地要加强对区域卫生健康服务需求、投资建设现状与基础条件、经济社会发展趋势等的系统摸底与分析研判,做好本地医疗卫生服务体系建设实施方案与国民经济和社会发展、新型城镇化、卫生健康改革与发展、公共卫生防控救治能力建设等规划和政策的衔接,尽力而为、量力而行,实事求是、科学合理确定建设项目和建设标准。  (三)严格项目管理  各地要切实履行基本建设程序,落实项目法人责任制、招标投标制、工程监理制、合同管理制,把好规划设计、招标采购、工程施工、竣工验收等各个环节质量关。严格执行相关建筑技术规范,充分考虑节地、节能、节水、环保,坚持规模适宜、功能适用、装备适度、运行经济和可持续发展。要加强资金使用管理,保障中央资金专款专用,杜绝挤占、挪用和截留现象发生。省级发展改革、卫生健康和中医药等管理部门按照本实施方案明确的相关要求,结合本地实际,建立项目储备库,并根据项目前期工作进展、工程建设进度、工期等情况,及时将项目储备库中符合条件的项目纳入投资项目在线审批监管平台(重大建设项目库模块)和三年滚动投资计划,实行动态管理。未列入项目储备库和三年滚动投资计划的项目不得申请年度中央预算内投资。  (四)加强全过程监管  国家发展改革委、国家卫生健康委、国家中医药管理局、国家疾病预防控制局建立健全纵横联动协同监管机制,采取专项检查、在线监管、定期监测评估等多种方式,开展事前规范审核、事中强化监督、事后严格考核的全过程监管,并将监督检查和年度评估结果作为后续中央预算内投资安排的重要参考。省级发展改革、卫生健康和中医药等管理部门按照分工履行监管职责,定期组织对方案实施情况进行专项督导,发现问题及时整改。对已完工项目,要督促项目单位及时委托第三方按照相关建设标准和规范进行验收,并定期汇总上报完工项目验收情况。  (五)开展方案评估  国家发展改革委、国家卫生健康委牵头组织成立专家组,制定评估方案,适时对实施方案内容进行评估,及时发现问题、总结经验、优化提升。充分发挥第三方评估作用,增强评估分析的客观性、准确性和科学性。  抄送:财政部(经建司)国家发展改革委办公厅2021年6月21日印发
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!参考文献1、Hastings JW. Cell Physiology Source book 2012.2、Nguyen V H et al. Cancer Research, 2010, 70(1):18-23.3、 Nguyen V H et al. Nuclear Medicine & Molecular Imaging, 2016.4、 Dunlap P . ADVANCES IN BIOCHEMICAL ENGINEERING BIOTECHNOLOGY, 2014.5、Keyaerts Marleen et al. Trends in molecular medicine,2012,18(3).6、 Nathan K. Archer et al. Springer International Publishing, 2017.7、Doyle T C et al. Cellular Microbiology, 2004, 6(4):303-317.8、Avci P et al. Virulence.
  • 【Nature】赛多生物分析三剑客助力甲病毒受体快速发现
    甲病毒(Alphavirus)是包膜RNA病毒,可引发皮疹、关节痛、急性发热疾病,甚至致命的脑炎。该病毒属包括东方马脑炎病毒(EEEV)、塞姆利基森林病毒(SFV)、辛德毕斯(SINV)病毒和基孔肯亚病毒(CHIKV)等。病毒包膜蛋白以正二十面体对称排列,E2和E1糖蛋白形成异质二聚体,聚成80个三聚体,介导病毒和细胞膜的受体结合与融合。甲病毒结构示意图研究分享近期发表在Nature期刊的一项研究中[1],哈佛医学院的科学家们发现极低密度脂蛋白受体(VLDLR)是典型的甲病毒SFV的受体,而EEEV和SINV病毒的E2/E1糖蛋白也与VLDLR的配体结合域(LBD)相互作用介导病毒进入细胞,受体是与VLDLR密切相关的载脂蛋白E受体2(ApoER2)。赛多利斯生物分析三剑客——Octet分子互作分析系统,Incucyte实时活细胞分析系统以及iQue高通量流式细胞仪在这篇文章中大放异彩。1. 细胞水平筛选甲病毒受体利用CRISPR和模拟甲病毒的假病毒系统在细胞水平进行甲病毒受体筛选。将甲病毒复制子系统转化为基于DNA的报告病毒颗粒(SFV RVP)系统(或称之为假病毒),GFP为报告基因。当细胞被假病毒感染后,报告基因被整合到细胞基因组中,表达GFP产生绿色荧光。构建针对人类基因组中膜相关蛋白的向导RNA(sgRNAs)文库。使用该文库对感染SFV RVPs的HEK293T细胞进行CRISPR/Cas9筛选。发现使VLDLR(极低密度脂蛋白受体)基因沉默可以抑制SFV RVP的干扰,说明VLDLR是SFV的受体。这篇文章有大量数据检测SFV RVP对细胞的相对感染率,iQue高通量流式细胞仪当仁不让地成了这个测试的主力。左、中、右分别为活细胞群,单细胞群和GFP阳性细胞群。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%左:VLDLR敲除后,SFV的感染能力大大降低右:加入VLDLR的抗体,可以阻断SFV对细胞的感染iQue高通量流式细胞仪的优势在于:- 高通量速度快:5分钟即可完成一块96孔板检测;- 操作简便:“混匀-测定”,免洗流程,确保抗体靶点空间构象免遭破坏;- 节约样品:最少仅需几微升样品,节约靶标抗原和珍贵细胞。iQue 高通量流式细胞仪2. 分子水平研究甲型病毒E2/E1蛋白与受体的结合为了搞清楚甲病毒E2/E1蛋白是否直接与VLDLR和ApoER2的LBD(ligand binding domain)结构域结合,作者生成并纯化了甲病毒的病毒样颗粒(VLP)。使用基于生物层干涉(BLI)的Octet分子互作分析系统进行分析,发现VLDLRLBD-Fc可以直接结合SFV、SINV和EEEV VLP。而RAP(一种VLDLR阻断剂)可以阻断甲病毒和VLDLR的结合。进一步从分子水平验证了VLDLR的LBD结构域是甲病毒的结合位点。Octet Red 96e测试:用AHC(anti-human Fc)传感器固化受体,然后加入100 μg/mL阻断蛋白RAP或者Tf,然后与甲病毒VLP (20 nM) 结合5分钟Octet分子互作分析系统的优势在于:- 非标记Direct binding是趋势,结果更准确;- 快速测定亲和力,更加定量化地表征分子互作;- 无洗涤步骤,可测弱亲和力(解离快);- 写入了美国药典,文章多,认可度广;- 万金油技术,可以用于检测DNA,小分子,蛋白质等各种生物分子,比如这篇文章检测的就是病毒颗粒样品;- 操作简便,耗材及维护成本低。3. 细胞成像研究病毒对细胞的感染皮质神经元是甲病毒感染的细胞种类之一,并引起脑炎。用Incucyte实时活细胞分析仪检测了甲病毒对神经元的感染率。加入VLDLR的LBD结构域或者RAP,可以阻断甲病毒的感染。用Incucyte S3检测iPSC分化的神经元对SFV RVP的感染。GCU阈值5,用Top-hat算法进行背景扣除。经过22小时培养后,计算GFP荧光面积。相对感染率Relative infection (%) = (加入抗体or阻断蛋白or受体的GFP阳性细胞/未加入抗体or阻断蛋白or受体的GFP阳性细胞) × 100%Incucyte实时活细胞分析系统优势在于:1) 贴壁生长的神经细胞相对其他细胞比较脆弱,Incucyte S3放入培养箱中,不需要移动培养板,对拍照的人为干扰最小。而流式等技术需要对细胞消化处理,可能会大大影响其活性和检测的准确性;2) 配备无毒害免干扰的活细胞分析试剂,智能的神经细胞分析软件,以及趋化、迁移、3D肿瘤球和类器官模块;3) 通量高,一次可同时进行多达6块多孔板的实验,灵活选择不同的物镜和荧光通道。天下武功,唯快不破。赛多利斯生物分析三剑客——Octet,iQue和Incucyte相比同类检测工具都具备更高的通量及功能,可以帮助药物研发和科研工作者快速拿到准确的数据,在内卷的环境中迅速占领一席之地!-参考文献-1. Clark, L.E., Clark, S.A., Lin, C. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 2021. DOI:10.1038/s41586-021-04326-0
  • “聚智光华 吉文天采”第二届征文活动结果公示
    亲爱的吉天仪器的广大新老朋友们!“聚智光华 吉文天采”第二届征文活动已圆满结束! 落水荷塘满眼枯,西风渐作北风呼。“聚智光华 吉文天采”第二届征文活动降临在炎夏,收官于初冬。本次征文活动尽显实验室中的别样情怀,参与者热情空前、文思泉涌。或是直抒胸臆,抒发使用吉天仪器产品的感受和心得;或是经验分享,撰写在和吉天仪器工作交集中的交流收获;或是建言献策真情,表达对吉天仪器提出了诚挚的建议和意见...... 感谢每一篇文章中的真情流露,这是大家留给吉天仪器难能可贵的财富。经过我们专业的评委审读评选,现将获奖情况公布如下: 北京吉天仪器有限公司2016年11月
  • 生物产业发展规划催熟体外诊断产业
    业内人士指出,受益于医疗支付体系改革带来的药占比下降,未来几年体外诊断行业的市场规模将会实现加速提升。  据中国证券网报道,尽管体外诊断的概念有些陌生,不过在如今的诊疗过程中,通过血液、体液、组织等样本进行检测获取临床诊断信息的流程早已普及。实际上,临床诊断信息的80%左右来自体外诊断,而其费用占医疗费用不到20%。  多年来,我们习惯把体外诊断简单地认为就是诊断试剂。其实,体外诊断产业是生物产业的重要组成部分,涉及到生化、免疫、分子生物学、基因工程等多个方面。  在刚刚发布的《生物产业发展规划》中,明确提出建设体外诊断试剂研发和产业化平台,加强原料酶、诊断性抗体等试剂原料基地建设,构建量值溯源体系及其参考实验室网络,推动我国体外诊断产业的发展。  在庞大的生物医药产业链中,体外诊断行业规模占比并不大,但是市场空间和发展潜力却是巨大的。2010年我国体外诊断市场规模为122亿元,其中体外诊断仪器市场规模约为23亿元,体外诊断试剂市场规模约为99亿元。目前中国是第二大体外诊断自动化仪器需求国,近几年每年需求4000套生化分析系统、9000套血液分析系统、3000套免疫分析系统。由于医保覆盖度增加效果体现,未来几年行业仍将快速增长,预计将保持22%-25%增速。  高毛利水平也是体外诊断产业的魅力之一。在公立医院逐步取消药品加成后,医疗机构无疑会更加重视检验业务对盈利的贡献。而相对于药品及医疗器械的政府价格管控,体外诊断行业的限制相对宽松,部分省份医院试剂自行采购。一般来说,药品的加成率在15%左右,而体外诊断检验的毛利率在50%左右。  以主营体外生化试剂的利德曼为例,体外诊断业务在2008-2011年间发展迅速,营业收入由2008年的1.02亿元增长到2011年的2.21亿元,同时毛利率从60%稳步提升至68%左右。  体外诊断试剂按检测原理或方法划分,主要有生化诊断试剂、免疫诊断试剂、分子诊断试剂、微生物诊断试剂、尿液诊断试剂、凝血类诊断试剂、血液学和流式细胞诊断试剂等,其中生化、免疫、分子诊断试剂是我国诊断试剂主要的三大类品种。  日信证券研究员认为,受益于基层慢性疾病的防御和诊断,县级医院全自动生化分析仪和基层医院半自动生化分析仪的普及率将逐步提升,未来几年我国生化试剂市场将会呈现超过行业平均增长速度的高速增长。同时,考虑行业的竞争状况,生化检验领先企业将持续受益于生化试剂行业集中度提高。  “花费低、速度快是临床生化试剂的优势,在医疗检测中一直保持较大份额,这在相当长一段时间内很难被取代。” 北京大学人民医院检验科副主任杨铁生表示,“随着国内企业研发、生产技术水平不断地提高,部分企业的产品质量已经达到国际先进水平。目前,中生北控、科华生物、利德曼、上海复兴是生化试剂领域的佼佼者,无论是产品种类,抑或产品质量,都已经可以和外资品牌掰掰手腕。”  从市场竞争格局来看,经过多年发展,我国在生化诊断试剂领域的自主创新能力已显著提升,整体技术水平已基本达到国际同期水平,并涌现出了一些具备与国际巨头竞争的企业。  港股上市的中生北控在技术上拥有一定的先发优势,是中国最早推出生化双试剂的本土企业。科华生物目前已经成为中国生化试剂的龙头企业之一,其生化试剂销售早已过亿元,成为其稳定和主要的收入来源。利德曼是目前国内生化试剂产品种类最全的生产企业之一,其生产的胱抑素试剂盒、D-3羟丁酸、D-二聚体等产品成为了国内生化试剂的代表。  业内人士认为,随着国内企业试剂产品技术质量的进一步提高,以及生化分析仪自主开发能力的提升,未来我国生化诊断试剂市场的国产化替代趋势将进一步增强。
  • 体积分辨率提高10倍!吴一聪等《自然》发文报道共聚焦显微镜新突破
    北京时间2021年11月27日,在《自然》杂志上线的一篇新研究中,美国国家生物医学成像与生物工程研究所(NIBIB)的研究人员通过硬件创新和深度学习方法,成功地将共聚焦显微镜的体积分辨率提高了10 倍以上,并降低了光毒性,从而能够以更高的分辨率对活体样本的精细结构进行三维成像。这篇论文标题为 “Multiview Confocal Super-Resolution Microscopy”。NIBIB的吴一聪和清华大学博士生韩晓霏为共同第一作者,吴一聪为通讯作者,NIBIB的Hari Shroff为项目总负责人。该团队构建了一台多视角线扫描共聚焦显微镜,提升传统共聚焦显微镜的轴向性能。三个物镜从不同方向对样本进行成像,多个视角的信息被快速捕获、配准和融合,以产生比传统共聚焦显微镜分辨率更高的三维图像,并提升厚样本成像的穿透能力。该团队进一步将线扫描共聚焦显微技术与结构化照明超分辨显微技术有机结合,能够对线虫等散射较强的样本进行三维超分辨成像。结合深度学习网络的三维超分辨率显微镜。Credit: NIH Medical Arts.共聚焦显微镜的另一个缺陷是光毒性较大,虽然降低光照水平可以减少聚焦激光照射对样品的损坏,从而允许更长的成像时间,但较低的光照水平在解析精细特征时效果较差。该团队用低信噪比和高信噪比图像对训练深度学习模型,实现低光照水平下的信号提升,从而获得各种生物过程的高分辨率三维图像,包括线虫胚胎从“抽动”到孵出的长时间观察。此外,该团队还训练了共聚焦图像到共聚焦超分辨图像的深度学习模型,对动态过程进行超分辨三维成像。研究人员还发现,单视角线扫描结构光成像只能在一个方向上提升成像分辨率,但如果有足够的训练数据,深度学习模型可以将单一方向的分辨率提升推广到高维图像,扩展超分辨显微的潜力。该团队展示了该技术在20多个不同的固定样本和活体样本上成像的能力,包括单细胞中的蛋白质分布,线虫胚胎、幼虫和成虫中的细胞核和神经元,果蝇翅成虫盘和小鼠肾脏、食道、心脏和脑组织中的成肌细胞,并探讨了该技术在组织学和病理学实验室中对人体组织进行成像的前景。本文主要完成人之一韩晓霏认为这项显微成像技术为生物学研究提供了一种全新的方法,将帮助科学家解决更深入的生物问题。本文另一位作者苏怡骏认为该系统能够和膨胀显微镜进行有机的结合,有望在一个完整的生物样本中,观察小于50纳米的细胞超微结构。目前,该研究团队和其他合作者已经利用这套系统完成了一些生物领域的应用,将会陆续发表,相信这个新型显微成像系统将带来更多惊喜。相关论文信息:DOI:10.1038/s41586-021-04110-0
  • 你的拉曼如何实现变温测量?
    拉曼测量在科研上的“江湖”地位不用多说,“江湖”上到处都是他的传说。随着仪器技术的发展,拉曼技术已经广泛应用于科研的各个领域,如今拉曼已经由普通拉曼发展到显微拉曼,已经由室温拉曼发展到低温拉曼。低温显微拉曼测量能够清楚展示材料随温度的相变、峰位移动、峰位半高宽的变化,通过低温测量还可以大地增强弱信号样品的信号强度。因此变温拉曼可以通过无损测量获得样品特性随温度的变化。那么如何实现低温显微拉曼呢?今天我们就为您介绍两种途径。 一、不甘平凡,普通拉曼也能实现地覆天翻几乎所有室温拉曼都可以通过升达到上面提到的这些功能。具体来说,在已有的室温拉曼系统基础上配置一台低温的恒温器就可以实现变温测量了。但是需要注意的是,低温拉曼的恒温器与普通电学测量的恒温器有诸多不同点:1、光学窗口。光学窗口的设计是光学恒温器的重中之重,通光范围、窗口位置、工作距离等技术指标都对实验有影响。而工作距离是光学窗口重要的指标,通常工作距离越近就越容易获得更大的NA值,这对于样品信号的收集和信噪比都是很重要的。因此我们要求恒温器的光学窗口要具有近工作距离等特点。2、样品震动。低温拉曼要求样品位置的超低震动,传统制冷机恒温器由于震动较大使得样品始终处于一个振动状态,很难对某一个位置进行低温显微测量。灌液氮和液氦的湿式恒温器虽然没有制冷机,但是由于气流很难控制导致温度有时会出现轻微波动,并且随着液氮或液氦的消耗,实验时间受到限制。因此低温拉曼需要超低震动的恒温器。3、位置漂移。在变温测量过程中样品台等机械结构会随着温度的变化热胀冷缩,从而导致样品和物镜的相对位置发生变化,甚至在达到目标温度后样品台温度的缓慢驰豫也会导致位置漂移,这使得变温显微拉曼对同一位置的测量变得很困难。因此低温拉曼需要样品台位置漂移小的恒温器。4、变温速率。变温测量通常都要测一系列不同温度的光谱来分析样品特性随温度的变化,而传统恒温器温度由一个温度点到下一个温度点时需要很长时间才能稳定。这是因为样品台等内部结构热容较大,每到一个温度点需要一定的稳定时间。这就导致整个实验时间非常长,可达几天之久,此中的“酸爽”在博士阶段应该是有体会。因此低温拉曼需要一款能够快速变温并稳定的恒温器。综合以上四点,要将一台室温拉曼升成低温拉曼需要的恒温器必须是低温技术与光学技术的集大成者。 二、巧夺天工,全新系统让你与众不同话说,不破不立!如果说将室温拉曼升成低温拉曼是地覆天翻,那么全新的低温拉曼系统可以说是再造乾坤。因为通过集成硬件和软件系统,全新的低温显微拉曼已经超越了机械的硬件拼接。除了上述普通升低温拉曼系统所有的功能之外,该系统还具有以下神技:1、集成式软件控制样品聚焦、定位2、集成式软件控制样品温度,无需额外控温仪3、自动控制系统抽真空、降温、升温4、自动二维扫描成像与数据收集5、快速变温样品台实现大温区快速变温测量(4K-600K)6、低位置漂移样品台设计7、集成式高数值孔径镜头(NA0.75或0.85可选)8、兼容变温拉曼和电输运同时测量什么?拉曼还能自动二维扫描成像?是的,可以轻松得到一张二维的拉曼扫描图像,听到这心里有没有一点小“雀跃”?通过扫描拉曼功能和新的算法,此新系统甚至还可以测量样品的热导率二维分布,此外全新系统软件控制聚焦也给用户带来了很多便利。这些功能对于普通变温拉曼来说简直就是“降维打击”。我们来看全新系统的一个简单案例。图1和图2分别是MoS2-WS2多层膜异质结(非外延式异质结)在5K(图1)和150K(图2)下的二维拉曼扫描成像。扫描范围200μm*200μm,每一个像素点1μm*1μm。每一幅图片就是40000次的拉曼测量,这是手动测量所不敢想象的。两幅图的右侧图片是通过k-means clustering方法进行分析后得到的结果,可以清楚地看到不同温度下边界态的相对强度明显不同。这对样品区域特性的研究具有重要意义。 图1,MoS2-WS2多层膜异质结(非外延式异质结)5K温度下的拉曼二维扫描图像(左)与k-means clustering分析结果(右)扫描范围200μm*200μm,每一个像素点1μm*1μm。 图2,MoS2-WS2多层膜异质结(非外延式异质结)150K温度下的拉曼二维扫描图像(左)与k-means clustering分析结果(右)扫描范围200μm*200μm,每一个像素点1μm*1μm。 综上所述,什么恒温器能够满足普通拉曼的低温升呢?下面为您揭开庐山真面目。纵观目前商业化的恒温器,Montana Instruments生产的超精细无液氦低温光学恒温器是实现普通拉曼做低温升的佳恒温器。近工作距离、超低震动、低位置温漂、超快变温和高稳定性已经成为Montana恒温器帮助用户“笑傲科研”的看家本领。目前国内外已经有很多科研工作者体会到了Montana恒温器带来的便利,国内已有近百台设备在各大实验室工作。 图3,Montana Instruments生产的低温恒温器主机部分。 而全新的低温显微拉曼系统就是Montana Instruments与 Princeton Instruments经过长时间的探索研究联合推出的全新的集成式低温显微拉曼系统——CryoRAMAN。 图4,CryoRAMNA集成式低温拉曼系统主机部分。Quantum Design中国正在引进一套设备作为样机,我们将在7月份举行大型Workshop进行低温拉曼的应用和技术讲解。欢迎大家到时来参加,有机会可以进行免费测试,体验CryoRAMAN带来的便利。拉曼向低温拉曼的发展已经成为大势所趋。无论是升还是整套购买,赶紧行动起来吧!
  • PerkinElmer推出DSC-拉曼光谱法联用系统
    差示扫描量热法与拉曼光谱法结合使用促进制药和聚合物研发 康涅狄格州舍尔顿,2009 年 9 月 28 日(美国商业新闻)- 专注于提高人类健康及其生存环境安全的全球领先公司 PerkinElmer, Inc.,推出其独有的差示扫描量热法 (DSC)-拉曼光谱法联用系统后,成为联用科学仪器领域的领导者。 DSC-拉曼系统集热分析和拉曼光谱法的优点于一身。通过将这两种互补技术结合使用,科研人员能够更好地了解分子水平上的材料改变情况。 在领先仪器制造商中,“PerkinElmer 是唯一具有热分析和拉曼光谱法开发领域科学专业知识的公司。我们运用这些专业知识独家开发出联用技术,能够使研究人员在材料发生改变时直接观察样品,而其它技术只能通过逸出气体进行观察,”PerkinElmer 光谱业务副总裁 Martin Long 解释说。这项功能提供了众多的分析优势。“因此,该仪器将在制药和聚合物等几个关键技术领域产生重大影响。” DSC-拉曼系统配备了双炉 DSC 8500 和 RamanStation(TM) 400 光谱仪。该方法首先使用拉曼光谱仪同步分析化学和结构信息,然后将这些信息与 DSC 生成的量热数据相关联。几家大型制药公司和大学对联用技术进行了测试,发现这些技术能够更加深入地分析聚合体结晶、药物载体的相互作用、硫化和多晶改变。这些创新能够减少客户的研发时间,将性能和疗效更佳的新材料和药物更快速地推向市场。 有关 DSC-拉曼联用技术的海报和论文,请访问 www.perkinelmer.com.cn/hyphenation。DSC-拉曼系统通过 PerkinElmer 销售团队在全球销售。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有约 8,500 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com 或致电 1-877-PKI-NYSE。 单击此链接可访问图片/多媒体画廊。来源:PerkinElmer, Inc. 媒体联络PerkinElmer, Inc. Lori Benedetto联络电话: 203-402-6893或 Mario Fante联络电话: 781-663-5602 版权所有 美国商业新闻 2009
  • 爱丁堡仪器显微拉曼新品在京全球首发
    p  strong仪器信息网讯/strong 2019年7月23日,天美(中国)科学仪器有限公司及爱丁堡仪器公司在北京举办爱丁堡仪器2019年稳态瞬态光谱最新技术及应用研讨会暨新品发布会,150余位行业领导、专家、用户等出席本次会议。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/50b966f5-dc9c-438d-96c0-4758fad8e566.jpg" title="IMG_8841.JPG" alt="IMG_8841.JPG"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/b1a7d9f4-fc8b-44b9-a4d8-af26bcddf2b5.jpg" title="IMG_8824.JPG" alt="IMG_8824.JPG"//pp style="text-align: center "strong会议现场/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/2d4d4a41-7287-4e76-b660-ce6f17bc3bb4.jpg" title="IMG_8845.JPG" alt="IMG_8845.JPG"//pp style="text-align: center "strong天美(中国)科学仪器有限公司副总裁张海蓉主持会议/strong/pp  会议期间,爱丁堡仪器重磅发布了一体化全自动显微拉曼光谱仪新品RM5。据悉,此次发布会也是RM5全球发布的第一站。新品发布会由天美(中国)科学仪器有限公司副总裁张海蓉主持。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/ed57d85d-2a2a-4eae-b8d4-6ed6550346c6.jpg" title="微信图片_20190723200916.jpg" alt="微信图片_20190723200916.jpg"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/a3affda3-acf7-48fe-8d82-50f9742d8ab7.jpg" title="IMG_8895.JPG" alt="IMG_8895.JPG"//pp style="text-align: center "strong新品揭幕仪式/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/1b83b7f8-155a-4792-b4c1-cc37507c6494.jpg" title="IMG_8906.JPG" alt="IMG_8906.JPG"//pp style="text-align: center "strong天美(中国)科学仪器有限公司总裁付世江致辞/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/4fbd91a6-1cd4-40d0-8600-9cb94613705b.jpg" title="IMG_8937.JPG" alt="IMG_8937.JPG"//pp style="text-align: center "strong爱丁堡仪器CEO Dr. Roger Fenske致辞/strong/pp  30多年来,天美经历了从代理、代工到自主研发的发展历程。近年来,更是在国际化的道路上“走”出了自己的风采,从法国Froilabo、瑞士Precisa、美国IXRF、英国爱丁堡仪器,到布鲁克GC和SQ两条产品线,天美将一个个国际知名品牌或产品线纳入麾下,特别是英国爱丁堡仪器公司的成功收购和运营更是为行业所乐道。/pp  2013年,爱丁堡仪器公司被天美控股全资收购,正式成为中国仪器公司旗下的品牌,天美对其的研发投入也呈逐年增长趋势。自被收购以来爱丁堡仪器不断推出新品,2014年初推出一体化瞬态稳态荧光光谱仪FS5,2015年推出升级款瞬态吸收光谱仪LP980,2017年推出瞬态稳态荧光新品FLS1000。/pp  此次重磅推出的RM5也是爱丁堡仪器酝酿多年的成果。据悉,天美为了这次显微拉曼的推出,前期投入了多年的精力,做了很多准备与投入,包括用户及市场需求的调研,人员准备,机械设计和软件设计等。而此次新品选择在北京进行全球首发,也体现了对中国市场的重视。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/35b88b03-b839-43a0-9f0b-05348415f086.jpg" title="IMG_8947.JPG" alt="IMG_8947.JPG"//pp style="text-align: center "strong中国仪器仪表行业协会常务副理事长李跃光致辞/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/ec3c4790-aeac-4ed6-b195-64cdc452b4ce.jpg" title="IMG_8990.JPG" alt="IMG_8990.JPG"//pp style="text-align: center "strong中国仪器仪表学会分析仪器分会常务副理事长刘长宽致辞/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/2e30a51b-96c3-4186-8b5e-001506d1a15a.jpg" title="IMG_9017.JPG" alt="IMG_9017.JPG"//pp style="text-align: center "strong仪器信息网副总经理赵鑫致辞/strong/pp  中国仪器仪表行业协会常务副理事长李跃光、中国仪器仪表学会分析仪器分会常务副理事长刘长宽、仪器信息网副总经理赵鑫分别致辞,各位在肯定天美多年来成绩的同时,也对爱丁堡仪器的拉曼新品充满了期待。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/2f5a09a5-59fe-412a-a473-d2c14fc6b87a.jpg" title="IMG_9025.JPG" alt="IMG_9025.JPG"//pp style="text-align: center "strong爱丁堡仪器研发总负责人 Dr. Dirk Naether/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/9559bdf9-570a-471b-8d87-8f936292e0a5.jpg" title="IMG_9060.JPG" alt="IMG_9060.JPG"//pp style="text-align: center "strong爱丁堡仪器拉曼产品研发负责人 Dr. Graeme McNay/strong/pp  爱丁堡仪器研发总负责人 Dirk Naether博士幽默风趣地介绍了爱丁堡仪器从荧光到拉曼仪器的设计理念,他形象的称呼它们为“荧光小姐”和“拉曼先生”。爱丁堡仪器拉曼产品研发负责人Graeme McNay博士详细介绍了RM5显微拉曼的特点。/pp  与高端荧光一样,RM5秉承了爱丁堡仪器一贯的设计风格和理念,虽然是一款紧凑型的台式拉曼,但最大限度的提供和保留了灵活性,可以针对不同的客户和应用需求做相应的定制化服务。据相关负责人介绍,对于太大规模的公司来说,很难支持定制,规模很小的公司研发力量又不足以支持定制,而爱丁堡仪器的规模刚刚好,有足够的研发力量来支持定制化。爱丁堡仪器希望自己的产品可以紧随时代的步伐,适应日益变化的科研需求。因此,在拉曼的研发上也继承了可定制化这一特点。/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/sh100322/c332599.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/8fecfa77-bb2d-4548-a1d3-9b96db11765d.jpg" title="IMG_9069.JPG" alt="IMG_9069.JPG"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/sh100322/c332599.htm" target="_blank" style="text-decoration: underline "strong一体化全自动共聚焦拉曼光谱仪RM5/strongstrong/strong/a/pp  发布会中,RM5的“2,3,4,5”吸引了很多与会者的关注:可同时配置2个探测器 多至3个可由软件自动控制的激光器 4位拉曼滤光片塔轮 可配置多达5块不同光谱色散的光栅。/pp  据介绍,RM5采用独特的真共聚焦设计,可调狭缝结合多位置可调的共焦针孔,使系统具有更高的图像清晰度,更好的荧光背景抑制,且可根据应用进行灵活优化 光谱分辨率1.4cmsup-1/sup,光谱覆盖范围高达4000cmsup-1/sup,可分辨低至 1μm 的微区 仪器配有高质量光学元件和滤光片,通过选择合适的激光波长,可探测低于 50cmsup-1/sup 的拉曼信号 此外,该仪器还支持包括 Mapping功能 、全自动样品台、偏振拉曼以及外置相机等多种附件和功能的实现,并且均可通过Rmancle软件直接控制(包括设置,测试及数据分析等)。a href="https://www.instrument.com.cn/netshow/sh100322/c332599.htm" target="_blank" style="text-decoration: underline "更多仪器详情,请点击仪器图片查看。/a/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/5678a7da-499e-42a7-a94f-f0ddc99893a1.jpg" title="微信图片_20190723211416.jpg" alt="微信图片_20190723211416.jpg"//pp style="text-align: center "strong新品演示/strong/pp  发布会之后,主办方还安排了4位拉曼光谱专家进行了相关的报告。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/6343b1be-62ca-4888-aad2-0dd9187cf91f.jpg" title="IMG_9087.JPG" alt="IMG_9087.JPG"//pp style="text-align: center "strong报告题目:拉曼光谱仪器的现状和未来/strong/pp style="text-align: center "strong报告人:厦门大学任斌教授/strong/pp  厦门大学任斌教授分享了科研级别、便携、手持拉曼光谱仪,及拉曼光谱联用系统的仪器现状,并指出未来拉曼光谱仪的重点发展方向,包括高的灵敏度和分辨率、超低波数、超高成像速度等。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/7e4ce2ad-31d7-45a1-a629-7a4fe8b0fd29.jpg" title="IMG_9104.JPG" alt="IMG_9104.JPG"//pp style="text-align: center "strong报告题目:表面增强拉曼散射技术及其在分析检测领域的应用探索/strong/pp style="text-align: center "strong报告人:吉林大学赵冰教授/strong/pp  吉林大学赵冰教授从表面增强拉曼散射(SERS)现象、意义和优势讲起,分享了SERS在肝癌早期检测、非标记生物检测、衍生技术结合SERS以及细胞活性分析方面的应用探索。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/8b4de31e-8cef-4d20-ae16-3fe37912f8ec.jpg" title="IMG_9133.JPG" alt="IMG_9133.JPG"//pp style="text-align: center "strong报告题目:表面增强拉曼光谱的进展与应用/strong/pp style="text-align: center "strong报告人:中山大学陈建研究员/strong/pp  中山大学陈建研究员介绍了表面增强拉曼光谱的进展与应用,并给出了多个案例分享,比如基于金-银核壳纳米棒的SERS基底制备及其在血糖检测中的应用 表面等离子体共振在光-电-热协同催化的应用及机理研究等。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/38a55b2b-bcd7-4924-b082-f338eea1362d.jpg" title="IMG_9146.JPG" alt="IMG_9146.JPG"//pp style="text-align: center "strong报告题目:表面增强拉曼光谱: 从基底调控到高灵敏度传感/strong/pp style="text-align: center "strong报告人:苏州大学姚建林教授/strong/pp  苏州大学姚建林教授在报告中详细介绍了其课题组在基底调控制备方面开展的研究工作,包括二聚体的制备及研究 二维热点集合体制备及研究等,并分享了热点集合体SERS基底在高灵敏检测中的应用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/1e3c6a33-2182-456a-8031-cf5ab8d60f63.jpg" title="IMG_9077.JPG" alt="IMG_9077.JPG"//pp style="text-align: center "strong参会代表合影/strong/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai " strong 后记:/strong/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  多份市场研究报告明确指出,拉曼光谱已然成为分子光谱领域发展最快的一类仪器。在种种利好因素的驱使下,众多仪器公司纷纷布局。有自主研发拉曼新产品的,也有通过收购手段“新”迈入拉曼领域的,而爱丁堡仪器公司属于前者。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  不过,面对既有的市场格局,作为一个后来者,如何快速拓展市场值得大家关注。据介绍,RM5可满足高端科研及分析工作的需求,主要面向研究者用户,其中不乏与爱丁堡荧光有重叠的用户,这是其既有的优势。再加上吸引客户的一体化全自动设计,以及可定制化的灵活性,对于其未来市场的拓展我们拭目以待。/span/p
  • 二维液相色谱丨含碘造影剂,你的微量手性杂质我来查
    导读最近看到一则新闻,某患者因为肺部感染、哮喘,到医院放射科做了CT平扫,发现有一肺部肿块,医生建议再做个增强CT来进一步确定疾病的性质。那么,新闻中所说的增强CT究竟是什么呢?其实,增强CT就是指在CT平扫基础上,对发现的可疑部位,在经静脉注入含碘造影剂后,进行有重点的检查。也许您有疑问,为什么要注入含碘造影剂呢?它的安全性又如何控制呢? 为什么要注入含碘造影剂呢?含碘造影剂具有密度大的特点,经静脉注射进入体内后,因为病变组织内或血管丰富或血流缓慢而在病理组织中停滞、积蓄,使病变组织与邻近正常组织间的密度对比增加(即影像上黑白对比增加),CT图像能够更加清楚地显示组织血流和病变情况,以帮助鉴别疾病的良、恶性,提高病灶的定性能力,从而提高诊断准确率。 含碘造影剂小科普l 含碘造影剂的变迁自20世纪50年代被发现后,含碘造影剂经历了第一代的离子型造影剂飞跃到非离子型单体造影剂,再次飞跃到非离子型二聚体造影剂的过程。 图1 4种碘化CT造影剂的化学结构:离子单体、离子二聚体、非离子单体和非离子二聚体 目前被广泛用于临床的非离子型造影剂,如碘帕醇、碘海醇、碘普罗胺、碘曲轮、碘克沙醇等,具有毒性低、性能稳定、低渗等渗、耐受性好等优点。 l 碘帕醇的手性构型碘帕醇是一种非离子型水溶性碘造影剂,具有良好的显影作用,对血管壁及神经组织毒性低,化学性质稳定,不良反应较少,适应范围广。 碘帕醇(CAS号:66166-93-0)有1个手性中心,两个异构体(S-构型、R-构型),结构式见图2。碘帕醇中的R-碘帕醇含量增加会使碘帕醇注射液黏度升高,进而导致碘帕醇注射液的不良反应增加。因此控制不良构型的含量是碘帕醇及其他含碘造影剂质量控制的关键步骤。 图2 碘帕醇的S构型(左)和R构型(右) l 碘帕醇的一维手性分离探索利用色谱柱中手性固定相对异构体的吸附速度不同实现的色谱分离是常用手段。以Chiralpak MA(+)色谱柱和硫酸铜溶液为流动相建立碘帕醇的分离,R/S-碘帕醇分离结果如图3所示。 图3 250 mg/L浓度的R-碘帕醇样品溶液 (1)和S-碘帕醇样品溶液(2) 的1stD LC色谱图 通过分离结果可以看到,该手性分离体系能在20 min内实现碘帕醇两种构型的手性分离,但和多数液相手性分离的色谱行为相似,存在柱效较低的问题,因此在定量分析中对于含量较低的待测物的检出存在不足。 岛津解决方案对于类似碘帕醇这样的分子结构提示其可在反相色谱上有良好保留,因此考虑构建手性色谱体系和反相色谱体系的二维液相色谱系统,对已获分离的异构体杂质再次进行反相色谱分离以提高检测的灵敏度。 l 手性构型的二维分离 l 分离结果解析R-碘帕醇溶液(0.5 mg/L)2D LC 分析色谱图 5-10min间为R碘帕醇在1维液相上的保留,可以看到该浓度下无明显色谱峰,无法进行定量分析。经过阀切换将R碘帕醇在1维液相上的组分切入二维后,通过反相色谱作用,可以在16.5min左右发现明显的色谱峰同手性分离的 1 stD LC 结果相比,经过二维液相色谱分离的 R-碘帕醇灵敏度较之有 10 倍的提升。 结语药物杂质的高灵敏检查是控制药物纯度,提高药品质量的一个非常重要的环节。为了让含碘造影剂更加安全的为患者服务,岛津的二维液相色谱系统可发挥作用,弥补手性色谱柱效不足的缺点,既获得两种异构体的有效分离,又在经过反相色谱分离中获得良好响应。 撰稿人:李月琪 本文内容非商业广告,仅供专业人士参考。
  • 【网络研讨会】基于naica® 六色微滴芯片数字PCR系统高度多重实验设计和优化
    法国Stilla Technologies公司邀请美国IDT公司共同开展的网络研讨会将于2021年2月4日(周四)北京时间00:00AM进行,来自美国IDT公司资深应用工程师Erik Wendlandt博士和来自法国Stilla Technologies公司高级应用科学家Kimberley Gutierrez博士将与我们在线分享“基于naica六色微滴芯片数字PCR系统高度多重实验设计和优化”的相关内容。主题:基于naica六色微滴芯片数字PCR系统高度多重实验设计和优化日期:2021年2月4日(周四)时间:北京时间00:00AM内容简介:本次研讨会探讨qPCR和dPCR实验中多重靶点同时检测,以最大限度地从有限生物样本中获得更多基因信息的潜力。我们将讨论荧光染料的选择,如何避免解决二聚体,并比较单重和多重数据,以达到实验的确证。对于更具挑战性的多重等位基因突变检测,我们还将介绍IDT Affinity Plus™ 的核酸探针的技术优势。研讨会将重点介绍使用法国Stilla 公司最新产品naica六色微滴芯片式数字PCR系统进行多重数字PCR(dPCR,digital PCR)分析。naica六色微滴芯片式数字PCR系统可以提供完整的数字PCR解决方案,具有灵活的样本通量以及高灵敏度的靶标核酸检测和绝对定量。naica六色微滴芯片式数字PCR系统可在多达6色荧光通道中进行至少六重靶标基因定量检测,将多重数字PCR(dPC,digital PCR)检测提高到更高维度。我们还将展示更多基于naica六色微滴芯片式数字PCR系统的液体活检检测数据。主讲人介绍:Viviane Sternkopf博士(Stilla Technologies公司应用科学家)Viviane在格赖夫斯瓦尔德大学获得分子生物学博士学位。在超过10年的时间里,她作为分子生物学领域的主题专家和客户培训师,支持不同的分子诊断产品。Erik Wendlandt博士(美国IDT公司应用工程师)Erik Wendlandt博士是美国IDT资深现场应用工程师,致力于帮助科学家设计和解决qPCR和dPCR实验的问题。注册页面:注册方式:1)关注:“深蓝云生物科技”公众号,找到对应的研讨会新闻进行注册。 2)访问:“北京深蓝云生物科技” 网站----“新闻动态”栏目,找对应研讨会新闻注册。
  • 华人科学家文小刚获理论物理最高奖“狄拉克奖”
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/ec537f0a-6d60-44fc-af3a-91b42c3597fd.jpg" title="uf0z-hhnunsp7785733.png"/ /pp style="text-align: justify " 近日,国际理论物理中心(ICTP)将2018年狄拉克奖章(Dirac Medal)颁发给了三位杰出的物理学家,分别是来自哈佛大学的Subir Sachdev、芝加哥大学的Dam Thanh Son,以及麻省理工学院(MIT)的华人科学家文小刚,以嘉奖他们在积极推动多体系统上的贡献,包括独创性的跨学科技术。/pp style="text-align: justify " 今年狄拉克奖章的三位获得者都研究了量子力学是如何影响所谓的多体系统(many-body system)的。研究人员现在都认识到量子力学定律会影响一小部分粒子的行为,但是日常物品都是由大量粒子构成的,数量接近10的23次方。所有粒子都在以不同的方式进行相互作用。这些作用突显了量子纠缠的重要性,因此在这些系统中应用量子力学就变得非常复杂。/pp style="text-align: justify " 量子纠缠的复杂模式对于理解物质宏观特性来说非常重要,特别是当多体系统呈现出惊人的新行为时。 其中一些新行为会导致新的物质态。研究多体系统的方法之一便是观察物质态。我们所熟知的物质态包括固态、气态、液态,但当量子力学引入后,许多新的物质态逐渐被科学家发现。今年三位获奖者便是在理解这点——即所谓的相变(phase transition)上,作出了突出贡献。“相变”指的是从一种物质态过渡到另外一种物质态时,物质的特性会发生惊人的改变。三位得奖者对于电子纠缠特点是如何导致性质变化进行了阐释。/pp style="text-align: justify " 理解多体系统的动态原理可以让科学家们研究物质不同性质的出现,当然这也有助于设计新型物质。这些物质可能在将来会被应用于新量子计算机或超导体设备上。三位狄拉克奖章获得者利用自己在材料科学、黑洞以及冷原子领域内丰富的知识,推动了大家对于多体系统的了解,证实了跨学科研究的价值。 “今年狄拉克奖章获得者是利用跨学科方法整合理论物理问题的领军人物。”ICTP主任Fernando Quevedo说。Quevedo认为,“曾有数以千计的来自发展中国家的科学家访问过ICTP,而这三位获奖者便是他们的榜样。尽管今年的获奖者均定居在美国,我很高兴他们都来自发展中国家,并十分接近ICTP及它的使命。”/pp style="text-align: justify " 出生于印度新德里的Subir Sachdev在理论性凝聚态物理学的许多领域作出了开创性的贡献。其中最为重要的几个理论便是绝缘体、超导体以及金属中的量子临界现象、量子磁性的自旋液体态、量子分数态、新退禁闭相变、无准粒子量子物质理论。此外,他还将这些理论应用到了黑洞物理学中,包括非费米液体模型。 出生于越南河内的Dam Thanh Son是第一个发现规范/重力对偶可以用来解决多体系统相互作用中基础问题的人,包括冷却俘获原子以及计算输运系数,例如这些系统中的粘度和传导性,而强耦合通常会限制这些系数。近来,他还提出了半填充能级狄拉克费米子的存在,这项工作进一步加深了我们对于三维构面理论的理解。/pp style="text-align: justify " 出生于中国北京的文小刚率先提出了拓扑序(topological order)这一理解量子系统的新概念。他发现了拓扑序蕴含不同寻常的边界态,建立了描述边界态的手征自旋液体理论,发现了朗道范式在描述量子霍尔效应时的局限性。他揭示出拓扑序与量子纠缠之间的深层联系。最近,他还开创了对称保护拓扑相 (symmetry protected topological phases)等概念。这些都与量子理论领域中的反常现象有很紧密的联系。 狄拉克奖章是在1985年为纪念量子力学奠基人之一、英国理论物理学家保罗· 狄拉克(Paul Dirac)而设置的年度性奖项。8月8日是狄拉克的生日,每年狄拉克奖章的获奖名单都定在这一天宣布。颁奖典礼将会在之后举行,三位获奖者都将在典礼上介绍他们的研究工作。/ppbr//p
  • 中国科大发展固体核磁共振方法揭示氟离子通道渗透机制
    核磁共振方法除可获得分子结构信息外,还可观测分子的动态特性,这些可为阐明蛋白质等生物大分子的功能机制提供重要信息。随着高速魔角旋转技术的发展,固体核磁谱分辨率大幅提高,从理论上突破了液体核磁观测的分子量的限制,逐渐被运用于研究磷脂膜环境中的膜蛋白等超大生物分子复合物体系的动态构象。但低信号强度和低分辨率限制了生物分子固体核磁研究的广泛开展。自然界中氢原子和氟原子的旋磁比大、NMR信号强,是比较理想的NMR观测对象。氟原子在生物分子结构中极少存在,无观测背景信号,是理想的NMR观测探针。因此,氢检测和氟检测方法的发展可能显著扩展固体核磁在复杂生物体系中的运用。   2023年8月23日,中国科学技术大学微尺度物质科学国家研究中心史朝为课题组在国际著名学术期刊ScienceAdvances上在线发表了题为“Fluoride permeation mechanism of the Fluc channel in liposomes revealed by solid-state NMR”的研究论文,研究团队以氟离子通道蛋白Fluc-Ec1作为研究对象,结合氘代和19F定点标记方法,发展并优化膜蛋白固体核磁氢检测及氟检测研究方案,为膜蛋白核磁研究提供新思路。环境中的氟离子可通过弱酸积累效应在细菌细胞内积累,产生毒害作用。微生物通过F-膜转运蛋白将F-运输至体外进而抑制其毒性作用。来自Fluc(fluoridechannel)家族的Fluc-Ec1蛋白是由130个左右的氨基酸组成的离子通道,具有独特的双重拓扑二聚体的结构,且对氟离子具有高度选择性。静态的F-通道蛋白的晶体结构难以描述F-渗透的具体机制,F-通道蛋白被抗体类似物固定在一种构象上。氟原子和氧原子相似的电子云密度以及分子动力学模拟数据使得晶体结构中极性轨道(polartrack)上的氟离子结合位点(F1and F2sites)引发争议,另外突变体功能保留或丧失的机制目前仍不清楚。   研究团队通过观测磷脂膜环境中的Fluc-Ec1在不同氟离子浓度中的构象,结合基因密码子扩展方法,在蛋白质前庭位置引入非天然氨基酸三氟甲基苯丙氨酸(tfmF),设计19F-19F自旋扩散实验,验证了Fluc-Ec1存在新的氟离子结合位点(F0site)。研究团队利用1H-1H自旋扩散实验直接检测水和蛋白质的相互作用,通过氘代来减少氢原子的非相干背景,结合water-hNH谱图以及自旋扩散传递和衰减规律,得到了主链酰胺质子和水分子的距离信息,证明了F1位点结合的是水,而不是氟。   此外,晶体学研究无法从结构的角度解释F80M突变体具有功能活性而F83M突变体丧失功能活性的现象,研究团队通过分别对比F80M、F83M和野生型蛋白脂质体样品的碳检测谱图,结合液体核磁共振技术验证loop 1突变体功能,发现loop 1是F83M突变体丧失通道活性的重要因素,进一步揭示了loop 1在F-渗透过程中的重要性。综上,研究团队更正了先前推测的氟离子通道离子配位位点,提出氟-水交替“water-mediated knock-on”的渗透模型,为全面理解Fluc通道中的渗透和门控机制提供科学依据。中国科学技术大学张瑾、宋丹、李娟以及德国亚琛工业大学的Florian Karl Schackert为该论文的共同第一作者,中国科学技术大学微尺度物质科学国家研究中心史朝为特任研究员为该文章的通讯作者。中国科学技术大学的龚为民教授、田长麟教授、项晟祺教授以及德国Jülich研究中心的Paolo Carloni和Mercedes Alfonso-Prieto教授团队也参与了该研究工作并给予了大力帮助。该研究得到了科技部、国家自然科学基金、中国科学院、中国科学技术大学以及德国科学基金会的经费资助。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • NanoTemper邀您盘点2023
    新 品 汇 总1.PR Panta+机械臂 (点击查看)*全自动化操作提升运行通量*无需手动完成≥1536个样品检测*可装载多达4个384微孔板*用于检测所有蛋白质候选分子2.生物素化靶点标记试剂盒*专为光谱位移技术研发的试剂盒*仅需15分钟完成标记*无需去除多余染料,提升效率3.人Fc标记试剂盒 (点击查看)*专为使用光谱位移技术进行亲和力检测而优化的荧光染料*仅需30分钟实现高效的抗体标记15周年,砥砺前行,精彩不停!7月,上海办公室乔迁新址8月-11月,成功开启NanoTemper十五周年活动,三重超值福利和惊喜吸引上千粉丝参与。您与NanoTemper的精彩故事还将继续!敬请期待后续报道。官网新模块-支持中心全新的支持中心模块,可协助客户获取更多实用的信息,提供强大的技术支持。点击图片 查看详情丰富的市场活动与专家面对面交流👇 公众号-菜单栏-企业资讯-市场活动实验指南系列电子书-速速收藏【点击图片 下载查看】1.PROTAC电子书2.DLS动态光散射技术指南3.nanoDSF技术应用指南4.一图看懂生物制品的稳定性评估5.抗体药物开发实验指南6.勃林格殷格研发单克隆抗体应用案例精选CNS文献&权威验证(点击对应标题 查看更多)盘点使用PR蛋白稳定性分析仪发布的国内外文献PR系列蛋白稳定性分析仪-文献汇总北大瞿礼嘉团队又一Cell力作!MST再次助力植物有性生殖机制研究获得突破!斯坦福医学院案例分享MST技术检测蛋白的二聚体亲和力Nature案例分享Monolith助力靶向RNA降解剂研究权威验证系列(一) 看nanoDSF技术如何在生物制品热稳定性分析上替代金标准DSC权威验证系列(二) 湖北省药检院使用Panta对人纤维蛋白原质品进行快速质量控制 应用专题汇总PROTAC专题汇总(点击查看)结构生物学应用汇总 (点击查看)2024,NanoTemper已整装待发!迎接新的热爱与新的挑战!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制