当前位置: 仪器信息网 > 行业主题 > >

水解聚马来酸酐

仪器信息网水解聚马来酸酐专题为您提供2024年最新水解聚马来酸酐价格报价、厂家品牌的相关信息, 包括水解聚马来酸酐参数、型号等,不管是国产,还是进口品牌的水解聚马来酸酐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水解聚马来酸酐相关的耗材配件、试剂标物,还有水解聚马来酸酐相关的最新资讯、资料,以及水解聚马来酸酐相关的解决方案。

水解聚马来酸酐相关的论坛

  • 苯乙烯-马来酸酐的红外光谱图跟文献好像差不多,怎么看是否水解?

    苯乙烯-马来酸酐的红外光谱图跟文献好像差不多,怎么看是否水解?

    [table=100%][tr][td]苯乙烯-马来酸酐的红外光谱图跟文献好像差不多,怎么看是否水解?光谱图见附件。GPC居然没有测出来,没有任何峰,GPC测试老师说可能是聚合物被吸附在了柱子的填料上了?? GPC图见附件。我是把反应后的聚合物用正己烷沉淀出来,然后放入60度烘箱中干燥,再取出溶于THF中,拿去测试中心测试。文献中也是溶于四氢呋喃啊,没有看到有什么特殊的处理啊。如果没有水解,酸酐也容易吸附在GPC柱子上吗??[/td][/tr][/table][img=,690,389]https://ng1.17img.cn/bbsfiles/images/2019/08/201908301048373430_6450_1801607_3.png!w690x389.jpg[/img][img=,690,304]https://ng1.17img.cn/bbsfiles/images/2019/08/201908301048386830_8910_1801607_3.png!w690x304.jpg[/img]

  • 马来酸酐接枝聚乙烯的接枝率测定

    如题,想通过红外测定马来酸酐接枝聚乙烯的接枝率,只要大概可以比较下就可以,(现在只知道如何确定马来酸酐是否接上) 有没有做过类似的测试的来指点一二, 谢谢

  • 苯乙烯-马来酸酐共聚物作用及合成

    苯乙烯-马来酸酐共聚物作用及合成

    [align=left][font='times new roman'][size=20px]苯乙烯[/size][/font][font='times new roman'][size=20px]-[/size][/font][font='times new roman'][size=20px]马来酸酐共聚物[/size][/font][font='times new roman'][size=20px]作用及合成[/size][/font][/align][font='times new roman'][size=16px]苯乙烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]共聚物([/size][/font][font='times new roman'][size=16px]SMA[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]是一种[/size][/font][font='times new roman'][size=16px]两亲性[/size][/font][font='times new roman'][size=16px]交替共聚物,用途广泛,多用[/size][/font][font='times new roman'][size=16px]在[/size][/font][font='times new roman'][size=16px]化工材料领域作为辅助材料修饰在某种材料表面[/size][/font][font='times new roman'][size=16px]或与其它材料共混[/size][/font][font='times new roman'][size=16px]以改变其物理化学性质[/size][/font][font='times new roman'][size=16px]。例如,[/size][/font][font='times new roman'][size=16px]聚氯乙烯[/size][/font][font='times new roman'][size=16px]超滤膜与[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]共混后可以[/size][/font][font='times new roman'][size=16px]调整膜的微观结构[/size][/font][font='times new roman'][size=16px],并[/size][/font][font='times new roman'][size=16px]显著[/size][/font][font='times new roman'][size=16px]提高了[/size][/font][font='times new roman'][size=16px]膜的[/size][/font][font='times new roman'][size=16px]孔隙率[/size][/font][font='times new roman'][size=16px],并且[/size][/font][font='times new roman'][size=16px]复合膜表面存在完整的酸酐基团,[/size][/font][font='times new roman'][size=16px]增强了膜的[/size][/font][font='times new roman'][size=16px]渗透性[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]2009[/size][/font][font='times new roman'][size=16px]年,[/size][/font][font='times new roman'][size=16px]SMA[/size][/font][font='times new roman'][size=16px]首次[/size][/font][font='times new roman'][size=16px]被报道用于提取膜蛋白,[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]可以与细胞膜结合,将其溶解为“纳米圆盘”,也被称为[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]脂质粒([/size][/font][font='times new roman'][size=16px]SMALP[/size][/font][font='times new roman'][size=16px])。[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与[/size][/font][font='times new roman'][size=16px]磷脂双[/size][/font][font='times new roman'][size=16px]分子层相互作用围绕在圆盘外侧,膜蛋白则被包裹在“纳米圆盘”中央,如图[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]所示。[/size][/font][align=center] [img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012158447807_3006_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']1[/font][font='times new roman'] SMALP[/font][font='times new roman']示意图[/font][/align][font='times new roman'][size=16px]膜蛋白提取常用的洗涤剂在分离膜蛋白的同时往往会破坏膜蛋白周围的脂质环境,从而影响蛋白质的活性,而[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]可以插入膜蛋白质周围的[/size][/font][font='times new roman'][size=16px]磷脂双[/size][/font][font='times new roman'][size=16px]分子层中,与磷脂发生相互作用包裹住膜蛋白质(图[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px])。因此,其溶解膜蛋白质的同时不破坏其周围的脂质结构,使得膜蛋白质处于一个接近生理环境的状态下,从而使膜蛋白质最大程度地保持活性。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012158453285_8933_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']2[/font][font='times new roman'] SMA[/font][font='times new roman']增溶膜蛋白质[/font][font='times new roman'][sup][size=13px][49][/size][/sup][/font][/align][font='times new roman'][size=16px]近年来,为满足不同的需求,研究人员开发了一系列[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]衍生物。最简单的便是通过水解反应将[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]中的马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]基团水解为马来酸结构。目前最常见的修饰方式是采用不同的开环试剂对聚合物中的马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]基团进行开环修饰,该反应主要包含酰化和酯化反应,目前文献报道的开环试剂主是带有[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]NH[/size][/font][font='times new roman'][sub][size=16px]2[/size][/sub][/font][font='times new roman'][size=16px]或[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]OH[/size][/font][font='times new roman'][size=16px]基团[/size][/font][font='times new roman'][size=16px]。此外,[/size][/font][font='times new roman'][size=16px]将马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]基团[/size][/font][font='times new roman'][size=16px]换做马来酰亚胺[/size][/font][font='times new roman'][size=16px]基团或者[/size][/font][font='times new roman'][size=16px]将共聚物中的苯乙烯换做其[/size][/font][font='times new roman'][size=16px]它[/size][/font][font='times new roman'][size=16px]烯烃单体[/size][/font][font='times new roman'][size=16px]也可用于制备[/size][/font][font='times new roman'][size=16px]SMA[/size][/font][font='times new roman'][size=16px]衍生物,如[/size][/font][font='times new roman'][size=16px]二异丁烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]共聚物[/size][/font][font='times new roman'][size=16px]和乙烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]共聚物。最近的研究也报道了先对苯乙烯和马来酸[/size][/font][font='times new roman'][size=16px]酐[/size][/font][font='times new roman'][size=16px]两种单体进行改性再聚合的修饰方式。几种典型的[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]衍生物如图[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]所示。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012158457165_9035_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']3[/font][font='times new roman'] SMA[/font][font='times new roman']及其衍生物示意图[/font][/align][align=center][font='times new roman']Fig.[/font][font='times new roman']3[/font][font='times new roman'] Schematic diagram of SMA and its derivatives[/font][/align][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]的合成方法有很多种,近年来被报道使用最多的是可控自由基聚合反应,其中以可逆加成[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]断裂链转移聚合([/size][/font][font='times new roman'][size=16px]R[/size][/font][font='times new roman'][size=16px]AFT[/size][/font][font='times new roman'][size=16px])最为常见(图[/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px])。可控自由基聚合反应生成的[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]可以控制聚合物链的长度,分子设计能力强。但由于可控自由基聚合对反应条件要求较高且引发剂价格昂贵,因此并未得到广泛推广。传统自由基聚合反应流程简单,试剂廉价易得,[/size][/font][font='times new roman'][size=16px]通常以过氧化物[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]过氧化二苯甲酰[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]过氧化二异丙苯[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]和偶氮[/size][/font][font='times new roman'][size=16px]类化[/size][/font][font='times new roman'][size=16px]合物[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]偶氮二异丁腈[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]偶氮二异庚[/size][/font][font='times new roman'][size=16px]腈[/size][/font][font='times new roman'][size=16px])为[/size][/font][font='times new roman'][size=16px]引[/size][/font][font='times new roman'][size=16px]发剂[/size][/font][font='times new roman'][size=16px]进行反应[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]是目前制备[/size][/font][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]较为常见的方法(图[/size][/font][font='times new roman'][size=16px]1-11[/size][/font][font='times new roman'][size=16px])。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308012158459230_7118_5389809_3.png[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']4[/font][font='times new roman'] RATF[/font][font='times new roman']法合成[/font][font='times new roman']S[/font][font='times new roman']MA[/font][font='times new roman']然后水解成聚(苯乙烯[/font][font='times new roman']-[/font][font='times new roman']共马来酸)[/font][font='times new roman'][sup][size=13px][71][/size][/sup][/font][/align][align=center][img]" style="max-width: 100% max-height: 100% [/img][/align][align=center][font='times new roman']图[/font][font='times new roman']5[/font][font='times new roman'] [/font][font='times new roman']自由基聚合法合成[/font][font='times new roman']SMA[/font][font='times new roman']并对其进行氨解改性[/font][font='times new roman'][sup][size=13px][75][/size][/sup][/font][/align]

  • 求教关于马来酸法测定二烯值的几个问题

    马来酸法测定二烯值实验中,当过量的马来酸酐水解后,为什么要用乙醚和水先后冲洗回流冷凝器,乙醚是用来冲洗什么的?可以用别的什么试剂来代替乙醚吗?希望有经验的前辈们赐教啊!1谢谢

  • 苯乙烯-马来酸共聚物及其应用

    [align=center][font='times new roman'][size=16px]苯乙烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸共聚物[/size][/font][font='times new roman'][size=16px]及其应用[/size][/font][/align] 苯乙烯与马来酸酐的[back=#ffffff]共聚物[/back][back=#ffffff]苯乙烯[/back][back=#ffffff]-[/back][back=#ffffff]马来酸([/back][back=#ffffff]SMA[/back][back=#ffffff])[/back][back=#ffffff]首先由[/back][back=#ffffff]Alfred[/back][back=#ffffff]和[/back][back=#ffffff]Lavin[/back][back=#ffffff]在[/back][back=#ffffff]1945[/back][back=#ffffff]年制[/back][back=#ffffff]备。[/back][back=#ffffff]之后[/back][back=#ffffff],[/back][back=#ffffff]Mayo[/back][back=#ffffff]等提出[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]共聚体系是典型的交替共聚模型[/back][back=#ffffff],[/back][back=#ffffff]具有强吸电子基团的马来酸酐与具有给电子基团[/back][back=#ffffff]的[/back][back=#ffffff]苯乙烯是一对电荷转移复合物,在自由基引发体系中具有很好的交替共聚特征,但是传统的自由基聚合会导致[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的聚合不可控且分子量分布较宽等问题,限制了[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]共聚物[/back][back=#ffffff]的应用,“活性”[/back][back=#ffffff]/[/back][back=#ffffff]可控自由基聚合法为[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的合成提供了解决方案,[/back][back=#ffffff]但是也有着显著区别。[/back][back=#ffffff]对于[/back][back=#ffffff]A[/back][back=#ffffff]TRP[/back][back=#ffffff]法,马来酸酐会与催化剂中金属离子发生反应,导致催化剂失效,因此只能采取光引发等无金属[/back][back=#ffffff]A[/back][back=#ffffff]TRP[/back][back=#ffffff]法合成。对于[/back][back=#ffffff]N[/back][back=#ffffff]MP[/back][back=#ffffff]法,由于聚合所需的温度较高,只能得到[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的无规[/back][back=#ffffff]则[/back][back=#ffffff]共聚物。利用[/back][back=#ffffff]R[/back][back=#ffffff]AFT[/back][back=#ffffff]法可以较好地进行共聚,并且可以得到交替共聚物。在实际的聚合反应体系中,苯乙烯与马来酸酐的交替共聚速率远大于苯乙烯的自聚速率,并且马来酸酐的自聚能力很低,因此在苯乙烯过量的情况下,会首先形成[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]交替共聚物,此后再是苯乙烯的自聚,最终可形成具有[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]交替和[/back][back=#ffffff]苯乙烯[/back][back=#ffffff]自聚的嵌段共聚物[/back][back=#ffffff]。[/back] [back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的一个重要优势在于马来酸酐中酸酐基团的高反应活性,可以在较温和的条件下发生酯化、酰胺化等反应,因此可以引入新的功能性基团,得到改性的[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]衍生物,这大大拓展了其应用范围[/back][back=#ffffff]。[/back][back=#ffffff]由于[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]及其衍生物具有独特的两亲性和生物相容性,已经被大量应用于膜蛋白增溶提取、药物递送和新材料合成等领域。[/back] [align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与膜蛋白质[/size][/font][/align] 在多细胞生物中,膜蛋白约占总蛋白质的三分之一。它们在细胞间信号传导和跨细胞膜转运中发挥着重要作用。2009年Knowles等首次报道了SMA共聚物可以直接将生物膜溶解成脂质纳米圆盘(SMALPs),既保留了圆盘内的蛋白质,又确保了膜蛋白稳定的天然脂质环境。此后,使用SMA共聚物的无去污剂增溶方法被大量应用于从生物膜中直接提取蛋白质和脂质。 目前为止,研究人员发现对于苯乙烯与马来酸组成比为3:1或2:1的共聚物结构对于膜的溶解最有效。以3:1的SMA为例简要描述其增溶机制,首先在阶段1中,苯乙烯单元穿透到磷脂双分子层的疏水部分且马来酸酐与亲水性头基结合,此时SMA从一开始紧凑且聚集的构象转变为解聚、延伸的构象,SMA已经插入到磷脂双分子层中。在阶段2中,SMA在磷脂双层中达到饱和状态,此时SMALPs形成,并与SMA饱和的磷脂双层共存。在第3阶段,SMA饱和的磷脂双层完全转化为SMALPs,磷脂双层全部溶解,SMA分布在磷脂双层中,过量的SMA附着在双层周围,生物膜实现增溶。 [align=center] [/align][align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]衍生物[/size][/font][/align] 随着对SMA增溶机制的深入研究发现,SMA的分子量、化学组成与衍生基团的类型等会影响膜蛋白的提取效率与选择性。此外,由于SMA中马来酸的存在,酸的质子化或者与金属阳离子的络合会导致SMA变得过于疏水而无法维持纳米圆盘的结构,比如Mg[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]的浓度高于10 mM或pH低于6时通常会导致SMA沉淀,从而导致SMALPs分解。为了解决上述问题,研究人员开发了大量SMA衍生物,增加了对于pH与金属阳离子(Cu[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]、Mg[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]、Ca[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font])的耐受性,为膜蛋白与膜脂的研究提供了更多的选择。例如,Brady等发现2-丁氧基乙醇功能化的SMA衍生物可以促进膜蛋白从蓝藻类囊体膜的提取,而未功能化的SMA基本上是无效的,且较长的疏水性烷氧基乙氧基化物侧链可以提高增溶效率。Burridge等同时合成了SMA-Glu/AE/Neut/Pos四种衍生物,所有的SMA衍生物都能够与以棕榈酰油酰磷脂酰胆碱制备的脂质体反应,形成不同尺寸的SMALPs,都显示出稳定的物理特性,在较宽pH范围和高达100 mM Mg[font='times new roman'][sup][size=16px]2+[/size][/sup][/font]下也可以发挥作用。Lindhoud等通过2-氨基乙硫醇对SMA的部分衍生化,合成了SMA-SH,其可以溶解生物膜,同时SMA-SH中的巯基基团可以与其它活性基团进行衍生化得到新的功能化SMA衍生物,进而实现膜蛋白的选择性提取与纯化,为SMA的应用提供了新思路。 除了对SMA进行衍生化用于提高对膜蛋白的提取效率与选择性之外,部分研究人员也探索了SMA共聚物本身的性质,比如苯乙烯与马来酸酐的比例、链的长度与化学组成分布等,以提高形成SMALPs的能力与稳定性。例如,Cunningham等报道了一种迭代RAFT聚合法合成了具有窄分子量分布与化学组成分布的SMA共聚物。在深入研究之后发现分子量分布与化学组成是影响膜增溶的两个主要因素,宽分子量分布的SMA共聚物,往往具有较高的链长,影响SMA的活性。事实上,较短链长的SMA更有利于SMALPs的形成,因为长链SMA会导致聚合物自身的缠绕,此外长链会同时参与多个SMALPs的形成,进一步影响增溶效率。 [align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与膜脂[/size][/font][/align] SMA及其衍生物已经广泛应用于膜蛋白的提取与研究。事实上,SMALPs也是用于研究蛋白质周围局部脂质环境的优良体系,但是相关的报道较膜蛋白要少。 Juarez等[font='times new roman'][sup][size=16px][95][/size][/sup][/font]用SMA从两种菌株(野生型N2和细菌抗性菌株agmo-1)中提取脂质,然后通过薄层色谱法和质谱法进行表征,发现从细菌抗性菌株agmo-1中提取的脂质含有醚连接的(O-烷基链)脂质,与仅含有酯连接的(O-酰基)脂质的野生型N2菌株相反。这与细菌抗性菌株agmo-1中功能性烷基甘油单加氧酶(AGMO)的丧失保持一致。此外,与传统的脂质提取方法(需要有机溶剂的方法)相比,SMA可用于生物活体中脂质的提取而不影响其活性,证明了SMA在脂质组学的研究中具有良好潜力。 Rehan等采用电喷雾离子化质谱(ESI-MS)法分析了由SMA提取的人体平衡核苷转运蛋白-1(hENT1)中的脂质组成,因为hENT1是一种需要脂质膜来维持其结构和功能的蛋白质,其周围脂质双层的组成对其活性和稳定性至关重要。分析结果发现,每个hENT1-SMALPs中含有16个磷脂酰胆碱(PC)和2个磷脂酰乙醇胺(PE)脂质分子。除此之外,研究发现使用SMA比使用洗涤剂溶解的hENT1更加稳定。

  • 【分享】环保方面水处理标准---共39个,VIP免费下载

    水处理相关标准CJ 3025-1993 城市污水处理厂污水污泥排放标准CJ-T 3015.1-1993 污水处理用微孔曝气器CJ-T 3015.4-1996 污水处理用可张中、微孔曝气器CJ-T 3042-1995 污水处理用辐流沉淀池周边传动刮泥机CJ-T 3044-1995 污水处理用沉砂池行车式刮砂机CJ-T 3061-1996 水处理用溶药搅拌设CJ-T 3066-1997 内磁水处理器DL-T 582-1995 水处理用活性炭性能试验导则GB 10531-1989 水处理剂 硫酸亚铁GB 15892-1995 水处理剂 聚合氯化铝GB 15892-2003 水处理剂 聚氯化铝GB 17514-1998 水处理剂 聚丙烯酰胺GB-T 10533-2000 水处理剂 聚丙烯酸GB-T 10535-1997 水处理剂 水解聚马来酸酐GB-T 19249-2003 反渗透水处理设备HG 2227-1991 水处理剂 硫酸铝HG 2228-1991 水处理剂 多元醇磷酸酯HG 2229-1991 水处理剂 马来酸酐-丙烯酸共聚物HG 2230-1991 水处理剂 十二烷基二甲基苄基氯化铵HG-T 2153-1991 水处理剂 聚合硫酸铁HG-T 2429-1993 水处理剂 丙烯酸-丙烯酸酯类共聚物HG-T 2430-1993 水处理剂 阻垢缓蚀剂ⅡHG-T 2431-1993 水处理剂 阻垢缓蚀剂ⅢHG-T 2837-1997 水处理剂 聚偏磷酸钠HG-T 2838-1997 水处理剂 聚丙烯酸钠HG-T 2839-1997 水处理剂 羟基乙叉二膦酸二钠HG-T 2840-1997 水处理剂 氨基三甲叉膦酸(固体)YB-T 800.2-1992 水处理剂 液体聚合硫酸铁ZB G77 001-1990 水处理剂 结晶氯化铝YB-T 800.1-1992 水处理剂 固体聚合硫酸铁ZBG 77001-1990 水处理剂 结晶氯化铝http://www.instrument.com.cn/download/shtml/031189.shtml

  • 丁二酸酐定量

    各位大神,我要测一个原料药里的丁二酸酐,但是丁二酸酐性质不稳,遇水会水解,即使是流动相里有水,也会水解,请问如何用LC-MSMS对丁二酸酐进行定性定量?

  • 七氟丁酸酐与胺的衍生条件?

    根据GBZ/T 160.67-2004 扩项工作场所MDI。原理:空气中MDI用冲击式吸收管采集,水解后成4.4’-二氨基二苯甲烷(MDA),在碱性条件下用甲苯萃取,经七氟丁酸酐衍生后,取甲苯溶液进样,经色谱柱分离,电子捕获检测器检测,以保留时间定性,峰面积定量。标准曲线的绘制:在5 只干燥的具塞离心管中,0.0、0.25、0.50、1.0和2.0ml MDA标准溶液,用甲苯稀释至2.0ml,配制成0.0、0.025、0.050、0.10和0.20mg/ml MDA标准系列,各管加30ul 七氟丁酸酐,振摇2min,放置5min,加1ml 缓冲液,振摇2min,以除去过剩的七氟丁酸酐,放置2min,将甲苯层转移入另一离心管中,供测定。色谱柱 DB-5 柱温230℃ 进样器270℃,检测器250℃,结果只出甲苯溶剂峰。参考了些文献七氟丁酸酐与胺反应有加热55℃70分钟的,也有反应30min的。标准里衍生反应很短时间怀疑衍生反应有问题!

  • 《CNW液相色谱柱使用征文大赛之三》:CNW Athena C18-WP液相色谱柱测定淀粉及淀粉制品中顺丁烯二酸和顺丁烯二酸酐的含量

    《CNW液相色谱柱使用征文大赛之三》:CNW Athena C18-WP液相色谱柱测定淀粉及淀粉制品中顺丁烯二酸和顺丁烯二酸酐的含量

    固相萃取-高效液相色谱测定淀粉及淀粉制品中顺丁烯二酸和顺丁烯二酸酐的含量顺丁烯二酸也叫马来酸,顺丁烯二酸酐通过水解可以直接转化为顺丁烯二酸。作为一种人工合成的有机酸,顺丁烯二酸是重要的有机化工原料,顺丁烯二酸和顺丁烯二酸酐的用途非常广泛,主要用于制造混凝土高效减水剂、不饱和聚酯树脂、醇酸树脂漆、农药、润滑油添加剂等, 经深加工可生产1、4-丁二醇、酒石酸、富马、酸苹果酸等化工产品。作为淀粉处理剂,主要的作用是改善食品的弹性和黏性,以及改善食品外观光泽度,同时这种物质还可以增加淀粉的保质期。但是顺丁烯二酸这种物质并不在食品添加剂卫生标准(GB2760-2011)允许添加的食品添加剂目录中,也就是说马来酸这种物质并不是合法食品添加剂,如果用其来生产淀粉,这种行为也是违法。有研究发现顺丁烯二酸能损害眼部及肾脏。市场上,有部分企业为了提高淀粉的弹性、粘度和稳定性,在食用淀粉中加入大量顺丁烯二酸淀粉酯,但由于技术等条件的限制,作为原料的顺丁烯二酸酐存在着大量的残留,从而使食用淀粉存在着巨大的食品安全隐患,因此,建立一种检测食用淀粉中的顺丁烯二酸及顺丁烯二酸酐的方法是非常必要的。顺丁烯二酸和顺丁烯二酸酐的检测方法化学滴定法,气相色谱法,离子色谱法,毛细管电泳法和高效液相色谱法等。由于技术条件的限制化学滴定法无法对样品中较低含量的顺丁烯二酸准确定量;毛细管电泳法由于技术条件的限制仍无法大规模应用;而气相色谱法和离子色谱法在应用方法条件上对检测的样品的限制使其很难应用在淀粉和淀粉制品上。目前,检测顺丁烯二酸和顺丁烯二酸酐比较准确有效的方法是高效液相色谱法,样品中残留的顺丁烯二酸酐通过水解也转化为顺丁烯二酸进行检测。然而由于淀粉及淀粉产品种类较多,成分复杂,而顺丁烯二酸的检测波长较低,在检测过程中存在很多的干扰,对结果的判断和准确定量有较大的影响,本实验利用LC-SAX 强阴离子交换固相萃取柱对样品进行净化,以去除复杂样品中的基质干扰,提高样品纯度和检测灵敏度。方法操作简单,可靠,适用于对淀粉及淀粉制品中顺丁烯二酸和顺丁烯二酸酐进行准确的定性及定量。1材料与方法1.1材料与试剂顺丁烯二酸标准品(99% ,Sigma 公司) 。实验样品: 小麦粉,马铃薯淀粉,玉米淀粉,地瓜粉,变性淀粉,珍珠粉圆,复合淀粉均购于市场。甲醇( 色谱级) ,三氟乙酸( 色谱纯) ,无水乙醇( 分析纯) ,氨水(分析纯),硫酸(分析纯),氢氧化钠(分析纯);强阴离子交换固相萃取柱 CNWBOND SAX 固相萃取小柱 500mg,6ml(购于上海安谱公司)。1.2仪器与设备Agilent1200 高效液相色谱仪-配二极管阵列DAD检测器( 美国Agilent 公司) ,; KQ5200超声波清洗器昆山市超声仪器有限公司;3k-3000 型高速离心机(最高转速15000r/min) 德国 Sigma 公司;Mili-Q 纯水系统美国Milipore 公司。1.3方法1.3.1标准溶液的制备标准储备溶液(1.0mg/mL)的配制:称取顺丁烯二酸0.1000g于100mL 容量瓶中,用水溶解并定容至刻度线,充分摇匀备用。此溶液于4 ℃冰箱中可储存3 个月。将标准储备溶液用水配制成 0.5、5.0、50.0、100.0、200.0μg/mL 混合系列标准溶液,使用前配制。1.3.2试样处理准确称取2.5g样品于50mL 塑料离心管中,加乙醇水(1:1)定容至刻度,充分摇匀,超声波提取10min,以3000r/min离心3min;取5.0mL 上清液加入一滴酚酞指示剂,取液用体积分数5% 氨水调至溶液变为浅红色,将液转移至已经过活化平衡的SAX 固相萃取柱中以自然流速过柱,待样品全部吸附后用3 mL水淋洗,流速约3 mL/min,抽至近干后,用2ml 0.1%硫酸以不超过1 mL/min 流速洗脱。洗脱液过滤后,供HPLC 分析。1.3.3液相色谱操作条件色谱柱:CNW®Athena C18-WP色谱柱(4.6mm × 250mm,5μm);流动相:0.1mol/LCF3COOH;流速1.0mL/min;检测波长:215nm;进样体积:20μL;柱温:25℃。1.3.4测定步骤将标准工作溶液按照质量浓度由低到高的顺序进样测定,在215nm 波长处,以色谱图中的峰面积对其质量浓度绘制标准曲线。试样溶液进样后,以色谱图中的保留时间及相应的光谱图定性,峰面

  • 【求购】关于吡啶二羧酸酐的分析

    吡啶二羧酸酐结构看似简单,可因其在水中水解成酸,影响样品游离酸含量分析,化学滴定不好作;做GC时热分解,与相应的二酸峰重合;液相用水溶液作流动相不行,用非水有机相作流动相如用醇又会醇解,估计可用正相做,但该样在许多有机溶剂中溶解性差,所以一直没找到好的分析方法。请问哪位老师作过吡啶二羧酸酐的HPLC分析,能否帮帮我。谢放!

  • 【求助】如何解聚三聚甲醛?

    手头一批甲醛聚合了,想要解聚。搜百度上 ——“可由含2%~5%硫酸的60%甲醛水溶液经连续蒸馏后,将残液用苯萃取再蒸馏制得三聚甲醛。” ——“三聚甲醛和四聚甲醛在酸的作用下,皆可重新分解成甲醛”二者操作有何区别呢?谢谢!

  • 【分享】马来西亚发布聚碳酸酯婴儿奶瓶BPA禁令

    近日,马来西亚卫生部宣布,将对聚碳酸酯婴儿奶瓶中的双酚A(BPA)颁布禁令。马来西亚于3月2日举行了内阁会议,并在会议上达成了该项协议。马来西亚卫生部发现,当聚碳酸酯婴儿奶瓶的温度从25°上升到80°时,其瓶身中迁移出来的BPA含量会增加7倍。该禁令将于2012年3月1日生效。公告内容如下表格所示: 物质 范围 要求 生效日期 双酚A(BPA) 聚碳酸酯 婴儿奶瓶 禁止 2012年3月1日 据悉,加拿大和美国(包括芝加哥、康涅狄格州、缅因州、马里兰州、马萨诸塞州、明尼苏达州、纽约、佛蒙特州、华盛顿DC、华盛顿和威斯康星洲)的一些辖区都已禁止使用BPA。欧盟也于近日表示禁止在聚碳酸酯婴儿奶瓶中使用BPA(Directive 2011/8/EU),同时对食品接触塑料中的BPA迁移限量做了规定,为0.6 mg/kg。

  • 【分享】马来西亚宣布在聚碳酸酯婴儿奶瓶中禁用双酚A

    2011年3月14日,马来西亚卫生部(the Health Ministry of Malaysia)宣布在聚碳酸酯(PC)婴儿奶瓶中禁用双酚A。该禁令是马来西亚在2011年3月2日的内阁会议上得出的一致决定。该禁令将于2012年3月1日起生效。而在此之前,欧盟已颁布指令2011/8/EU禁止在婴儿奶瓶中使用双酚A。 美国芝加哥市、华盛顿特区、康涅狄格州、缅因州、马里兰州等11个州市也相继颁布了双酚A禁令。

  • 迪马“毒淀粉”中顺丁烯二酸(酐)检测解决方案

    近日,台湾“毒淀粉”事件愈演愈烈,广大民众陷入“毒食”恐慌。所谓“毒淀粉”,主要是指在淀粉中添加了顺丁烯二酸酐。顺丁烯二酸酐(Maleic anhydride)简称马来酸酐或失水苹果酸酐,遇水即水解成顺丁烯二酸(又称马来酸)。加入淀粉后可增加食物的弹性、黏性及外观光亮度,但会对人体肾脏造成极大损伤。目前,我国国家标准GB 2760-2011未将顺丁烯二酸酐列为食品添加剂。方法优势 我国现有的国家标准GB/T 23296.21-2009采用高效液相色谱及内标法对食品模拟物中顺丁烯二酸及顺丁烯二酸酐进行分离与测定,但关于淀粉及淀粉制品中顺丁烯二酸酐的检测尚未见报道。 2012年,浙江省质量技术监督检测研究院采用迪马科技Platisil ODS C18液相色谱柱开发了基于高效液相色谱(HPLC)测定淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的批量检测。样品前处理 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL体积分数5%的乙醇水溶液,涡旋2 min,超声提取10 min后用提取液定容至50 mL,摇匀,12000 r/min离心5 min后,过膜上机测定。色谱条件色谱柱:Platisil ODS C18,250 mm × 4.6 mm,5 μm (Cat.#:99503)流动相:甲醇-1‰磷酸溶液(2∶98)流速:1.0 mL/min柱温:30 ℃进样量:15 μL检测器:UV 214 nm 色谱柱的选择参考标准GB 25544-2010及有关马来酸的文献报道,为减少目标物出峰时间附近物质的干扰,延长其色谱保留时间,本方法采用[fo

  • 【分享】QB/T 2461-1999 包装用降解聚乙烯薄膜

    QB/T 2461-1999 包装用降解聚乙烯薄膜2000-03-01实施,现有效。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=104134]QB/T 2461-1999 包装用降解聚乙烯薄膜[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制