当前位置: 仪器信息网 > 行业主题 > >

二溴氯硝基甲烷

仪器信息网二溴氯硝基甲烷专题为您提供2024年最新二溴氯硝基甲烷价格报价、厂家品牌的相关信息, 包括二溴氯硝基甲烷参数、型号等,不管是国产,还是进口品牌的二溴氯硝基甲烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二溴氯硝基甲烷相关的耗材配件、试剂标物,还有二溴氯硝基甲烷相关的最新资讯、资料,以及二溴氯硝基甲烷相关的解决方案。

二溴氯硝基甲烷相关的资讯

  • 大连化物所提出二氯甲烷真空紫外光电离中的竞争新机制
    近日,大连化物所质谱与快速检测研究中心(102组群)李海洋研究员团队利用自主研发的光电离飞行时间质谱,提出了二氯甲烷真空紫外光电离中的竞争新机制,对研究大气平流层臭氧消耗机制和有害卤代烃的光降解提供了参考。二氯甲烷(CH2Cl2)是一种用途广泛的有机溶剂,也常用作生产过程中的反应介质,但其沸点低、极易挥发,因此带来的环境危害和健康危害等问题也日益突出。在太阳发射光谱中,存在非常强的真空紫外光,可以使二氯甲烷光解产生对臭氧层破坏性非常强的氯原子,因此二氯甲烷的光化学过程对研究平流层臭氧消耗机制具有重要的意义。本工作中,李海洋团队根据不同气压和不同浓度下二氯甲烷光电离产物的差异,提出了二氯甲烷真空紫外光电离的机制:主要的两种光电离产物是CH2Cl+和CHCl2+,CH2Cl+由两个互相竞争的通道——离子对和光解辅助的光电离产生,离子对通道在高数密度下被有效淬灭;CHCl2+由光解和自由基反应产生的CHCl2•自由基通过光电离产生。本工作建立了定量描述二氯甲烷光电离产物的动力学模型,进一步加深了对二氯甲烷在真空紫外波段复杂光化学行为的理解,揭示了光解离在卤代烃真空紫外光电离过程中的重要性。相关研究以“Ionization of Dichloromethane by a Vacuum Ultraviolet Krypton Lamp: Competition Between Photoinduced Ion-Pair and Photodissociation-Assisted Photoionization”为题,于近日发表在《物理化学快报》(The Journal of Physical Chemistry Letters)上。该工作的第一作者是大连化物所博士研究生于艺。该工作得到了国家自然科学基金、中科院科研仪器设备研制项目、大连化物所创新基金等项目的支持。
  • 二硝化新案例:3,5-二硝基苯甲酸的连续合成!
    二硝化新案例:3,5-二硝基苯甲酸的连续合成!康宁用“心"做反应让阅读成为习惯,让灵魂拥有温度3,5-二硝基苯甲酸是重要的有机合成中间体,其主要用于生产诊断用药泛影酸, 泛影酸为x线诊断用阳性造影剂,主要用于泌尿系统造影;同时也可用作树脂衍生化和氨苄青霉素测定等用途的分析试剂,是替米沙坦等药物的主要中间体,属于新兴的高附加值精细化工产品。传统工艺:3,5-二硝基苯甲酸合成工艺主要有两种:采用浓硝酸作为硝化剂直接硝化苯甲酸生成3,5-二硝基苯甲酸间硝基苯甲酸经一步硝化生成3,5-二硝基苯甲酸目前工业上两种工艺均采用间歇釜式反应,存在反应时间长、物料易积蓄、过程控制不稳定及反应釜持液量大等问题;苯甲酸硝化合成3,5-二硝基苯甲酸是强放热反应,反应热约为278.96 kj/mol,反应温度不易控制,易产生“飞温"现象;温度是影响硝化反应的重要因素,该反应需要具有稳定且快速的传热效果的反应器来控制反应温度;微通道连续流工艺:与传统釜式反应器相比,微通道反应器:面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成的反应失控,提高反应的安全性;微通道反应器通过对物料充分混合及对时间精确把控,可极大地提升整个反应体系的传质,相比传统间歇反应器收率和选择性都有所提高;反应时间短,控制精准,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免副产物的产生。本文将向读者介绍今年10月《天然气化工—c1 化学与化工》上的一篇文章,“微通道反应器中3,5-二硝基苯甲酸的连续合成工艺"。该新工艺成果已申请技术保护,公开号:cn112679358a。研究者以苯甲酸和发烟硫酸为底物,应用了连续流微通道反应器系统,以探究不同工艺条件对苯甲酸硝化制备3,5-二硝基苯甲酸反应的影响,并获得3,5-二硝基苯甲酸连续合成的较优工艺条件,反应流程如下图所示。研究介绍一、反应机理浓硝酸硝化苯甲酸合成3,5-二硝基苯甲酸反应机理如图2所示。图2.苯甲酸硝化反应机理苯甲酸和混酸溶液在发生一硝化反应时,可以在苯环的邻、间、对位上进行亲电取代反应,一硝产物以间硝基苯甲酸为主;该反应在室温下即可快速进行,但在引入一个硝基后,由于no2+也是吸电子基团,会使苯环上电子云密度进一步下降, 使得二硝化速度大大降低,需要更为强化的反应条件。本文采用的发烟硫酸中的三氧化硫比硫酸的脱水能力更强,使浓硝酸在发烟硫酸中尽可能完全转化为no2+,加快反应进程,提高反应速率。二、实验步骤图3.连续流反应装置流程连续流反应装置如图3所示。将苯甲酸溶于发烟硫酸中,记为原料a;将发烟硫酸加入浓硝酸中组成混合溶液,记为原料b;此装置主要分为预热区和反应区, 温度通过恒温循环换热器装置设定和调节;待温度达到设定值,将原料a与原料b通过泵3和泵4同时流入反应模块,依次经过预热区、反应区,产物由出口处连续流出,然后利用冰水淬灭,冷却、结晶、过滤得到产物;产物进行hplc分析。三、反应条件研究研究者对3,5-二硝基苯甲酸的微通道连续合成工艺多个影响因素进行了考察,探究发烟硫酸用量、反应物料配比、反应温度、停留时间对合成3,5-二硝基苯甲酸收率和选择性的影响。图4. 发烟硫酸用量对反应的影响图6. 温度对反应的影响图5. 反应物料比对反应的影响图7. 停留时间对反应的影响图8. 体系各组分含量随时间变化关系最终研究者获得了该合成工艺的最佳条件:取用 n(苯甲酸):n(发烟硫酸) :n(浓硝酸) = 1 : 7:2.8,反应停留时间4min,反应体系温度为75℃,此时3,5-二硝基苯甲酸收率为91.0%,选择性达97.2%。结果讨论与小结:本文以苯甲酸为原料,浓硝酸为硝化剂,发烟硫酸为催化溶剂,应用微通道反应器探究了苯甲酸硝化合成3,5-二硝基苯甲酸反应的工艺条件;与传统间歇方法相比,该工艺具有反应时间短、效率高、混合效果佳等优点,提升了苯甲酸硝化过程的本质安全性;对于单因素实验,均选最优结果,得到的最终工艺条件非常接近理论上的较优工艺条件。在n(苯甲酸):n(浓硝酸):n(发烟硫酸)= 1:2.8:7,温度75 ℃,停留时间4 min的较优工艺条件下,3,5-二硝基苯甲酸收率为91.0%,选择性达97.2%。参考文献:《天然气化工—c1 化学与化工》:第46 卷第2 期
  • 水质硝基酚类标准正式实施,LC-MS/MS方法助您从容应对
    硝基酚类化合物(Nitrophenols)硝基酚类化合物是一类重要且常用的化工原料,作为原材料或中间体被广泛应用于炸药、医药、杀虫剂、染料、木材防腐剂和橡胶等生产中。伴随工业生产过程,含有该类化合物的废水随之排放至环境中。硝基酚类化合物容易在水体及土壤中残留累积,难以降解,污染环境,危害人类及动植物健康。今年4月24日起,中国环境保护标准《HJ1049-2019水质 硝基酚类化合物的测定 液相色谱-三重四极杆质谱法》正式实施,标志着对硝基酚类污染物更严格的监测与控制。下面,请看岛津为您带来水中硝基酚测定的解决方案。 岛津解决方案 参照标准进行前处理,地表水采用直接进样法,工业废水采用酸碱分配净化法。上机分析使用岛津超高效液相色谱仪LC-30A与三重四极杆质谱仪LCMS-8050联用系统,建立了水中硝基酚类化合物的分析方法,5 min内即可完成三种硝基酚类化合物的分析。 岛津三重四极杆质谱仪LCMS-8050 01 仪器条件表1. MRM参数*代表定量离子对。 02 标准溶液配制及样品前处理取三种硝基酚类化合物混合标准贮备液逐级稀释成系列标准溶液,并加入内标,混匀待测。对地表水样品,使用醋酸纤维滤膜(0.22 μm)过滤,取1.0 mL 滤液于棕色进样瓶中,加入10 μL内标使用液,涡旋混匀,上机分析。对工业废水,用氨水或甲酸调节样品pH值至7~9,取5 mL样品置于具塞离心管中,加入1 mL二氯甲烷-正己烷混合溶液,振荡5min,以4000 r/min的转速离心5 min。吸取3 mL上层水相溶液(有机相在下层),用醋酸纤维滤膜(0.22 μm)过滤,然后取1.0 mL滤液于棕色进样瓶中,加入10.0 μL内标使用液,混匀待测。 结果与讨论 线性与检出限 三种硝基酚在表2所示浓度范围内线性良好,方法检出限0.022-0.034 ng/mL,优于标准要求的0.4-0.6 ng/mL。 表2. 三种硝基酚线性范围、方法检出限和测定下限 精密度对低、中、高三个浓度的标准溶液连续进样6针,保留时间和峰面积的相对标准偏差分别在0.10~0.20%和0.85~3.30%之间,仪器精密度良好。 表3. 精密度结果 (n=6)实际水样测试与加标回收率 使用本方法分析了地表水和工业废水样品,结果见图1和表4。地表水样品三个不同浓度加标回收率在86.7%~94.5%之间,工业废水样品三个不同浓度加标回收率在87.0%~96.7%之间,满足标准要求,方法可靠。地表水加标回收样品色谱图见图2。地表水和工业废水加标回收结果见图3。 表4. 实际水样分析结果图1. 地表水样品insight色谱图图2. 地表水样品加标insight色谱图 (1.0 ng/ml) 图3. 地表水和工业废水三浓度水平加标回收率柱状图 结 论 使用岛津LCMS-8050建立了5 min内分析水中3种硝基酚类物质的方法,灵敏度比标准要求高一个数量级以上。无论是地表水还是基质复杂的工业废水,皆能轻松应对。客户的需求就是我们的使命,岛津的工程师们永远致力于为客户开发最新、最好的应用方法。 撰稿人:邝江濛 唐雪
  • 北京大学环境学院与多方合作揭示二氯甲烷排放对南极臭氧洞恢复的潜在影响
    国际社会通过履行1987年达成的《蒙特利尔议定书》,在全球范围内实现了氟氯化碳(CFCs)和哈龙等消耗臭氧层物质的淘汰,平流层中的臭氧浓度正在逐渐恢复。2018年WMO/UNEP编著的臭氧科学评估报告中指出,中纬度地区和南极的臭氧层将分别在2040年和2060年前后恢复到1980年水平。但是一类未受国际公约管控的短寿命卤代烃延迟臭氧层恢复的影响开始突显,二氯甲烷是其中最主要的物质之一。与CFCs等物质相比,短寿命卤代烃的大气化学反应活性更强,不容易扩散传输至平流层。但南亚和东亚地区存在向平流层快速传输的通路,该地区的短寿命卤代烃排放量及其对臭氧层恢复的影响一直受到广泛关注。 环境学院与多方合作使用自上而下的排放估算研究方法对全球和中国尺度的二氯甲烷排放进行定量,并预测了二氯甲烷持续排放对臭氧层恢复的影响。研究者们利用全球5个AGAGE(Advanced Global Atmospheric Gases Experiment)背景站点的长期观测数据和12个盒子模型,通过数学反演揭示全球二氯甲烷排放的显著增长;同时利用中国气象局气象探测中心9个站点的长期观测数据,采用拉格朗日粒子模式(NAME)的后向轨迹足印,结合贝叶斯推断和马尔可夫蒙特卡洛的数学手段对中国的同期排放进行定量分析,发现过去十年中国二氯甲烷排放增长迅速,其全球占比由约三分之一增长到三分之二。研究认为,如果全球二氯甲烷的排放量按照过去十年的变化趋势进一步增长,可能使南极臭氧洞恢复时间延迟约5-30年。全球和中国二氯甲烷排放量 二氯甲烷是广泛应用的化工产品,控制二氯甲烷排放能有效防范其环境与健康风险。2021年10月,生态环境部将二氯甲烷纳入了《新污染物治理行动方案(征求意见稿)》。研究成果以“Rapid increase in dichloromethane emissions from China inferred through atmospheric observations”为题于2021年12月14日在线发表于《自然通讯》(Nature Communications)。北京大学环境科学与工程学院博士生安民得为论文的第一作者,北京大学胡建信教授、中国气象局气象探测中心姚波研究员和英国布里斯托大学Matthew Rigby教授为文章的共同通讯作者。论文链接:https://doi.org/10.1038/s41467-021-27592-y研究背景:北京大学环境科学与工程学院长期致力于保护臭氧层研究和决策支持。1993年和1999年牵头编制的《中国逐步淘汰消耗臭氧层物质国家方案》及其修订版获得国务院批复并实施。团队还研究编写了中国十几个替代淘汰消耗臭氧层物质行业战略和计划,通过履行上述战略和计划淘汰了消耗臭氧层物质5万余吨/年;多名教师参与《蒙特利尔议定书》不同专家委员会工作;团队多次获得奖励,包括国家“保护臭氧层贡献奖”特别金奖、国外“Leadership in ODS Phaseout in Developing Countries”和UNEP多项奖励。
  • Nature Communications | 通过大气观测推断中国二氯甲烷排放的快速增长
    近日,北京大学环境科学与工程学院胡建信课题组联合英国布里斯托大学(University of Bristol)、中国气象局气象探测中心等机构,在《Nature Communication》期刊上发表题目为《Rapid increase in dichloromethane emissions from China inferred through atmospheric observations》的论文。该论文通过大气观测数据发现中国二氯甲烷(CH2Cl2)排放量正在快速增加,这可能会导致南极臭氧层的恢复过程被推迟。该论文通讯作者为北京大学环境科学与工程学院胡建信教授、中国中国气象局气象探测中心姚波研究员和英国布里斯托大学Matthew Rigby教授。Rapid increase in dichloromethane emissions from China inferred through atmospheric observationsAbstractWith the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CH2Cl2). The emissions grew from 231 (213–245) Gg yr&minus 1 in 2011 to 628 (599–658) Gg yr&minus 1 in 2019, with an average annual increase of 13 (12–15) %, primarily from eastern China. The overall increase in CH2Cl2 emissions from China has the same magnitude as the global emission rise of 354 (281&minus 427) Gg yr&minus 1 over the same period. If global CH2Cl2 emissions remain at 2019 levels, they could lead to a delay in Antarctic ozone recovery of around 5 years compared to a scenario with no CH2Cl2 emissions.摘要 随着《关于消耗臭氧层物质的蒙特利尔议定书》的成功实施,臭氧消耗物质在大气中的丰度继续缓慢下降,南极臭氧空洞正在出现恢复的迹象。然而,不受管制的短寿命人为氯烃排放量的不断增加抵消了其中的一些收益。在此,我们报告了中国工业产生的二氯甲烷 (CH2Cl2) 排放量的增加。其排放量从2011年的231 (213-245) Gg yr-1增加到2019年的628 (599-658) Gg yr-1,年均增长为13 (12-15)%,而且主要来自中国东部。中国 CH2Cl2 排放总量的增加幅度与同期全球排放量增加幅度 354 (281-427) Gg yr&minus 1相同。如果全球 CH2Cl2 排放量保持在2019年的水平,与没有 CH2Cl2 排放的情景相比,它们可能导致南极臭氧恢复延迟约 5 年。ReferenceAn,M., Western, L.M., Say, D. et al. Rapid increase in dichloromethane emissions from China inferred through atmospheric observations. Nature Communnications 12, 7279 (2021). https://doi.org/10.1038/s41467-021-27592-y(Published)
  • 商务部公告对进口三氯甲烷进行反倾销期终复审
    新华网北京11月29日电 中国商务部29日发布第105号公告,决定自11月30日起对原产于欧盟、韩国和美国的进口三氯甲烷所适用的反倾销措施进行期终复审调查。   根据《中华人民共和国反倾销条例》的规定,在反倾销期终复审调查期间,对原产于上述国家和地区的进口三氯甲烷将继续采取原反倾销措施。由于没有利害关系方申请对原产于印度的进口三氯甲烷所适用的反倾销措施进行期终复审,商务部决定不主动发起调查,对印度产品的征税措施将于2009年11月30日终止实施。   此次期终复审产品归在《中华人民共和国进出口税则》税则号:29031300。商务部将调查终止原反倾销措施是否可能导致倾销和损害的继续或者再度发生,以决定维持或取消原反倾销措施。通常情况下,本次期终复审调查将于2010年11月30日前结束。   2004年11月30日中国商务部发布公告,对原产于欧盟、韩国、美国和印度的进口三氯甲烷采取为期5年的最终反倾销措施。 商务部发布第105号公告   商务部公告2009年第105号 对原产于欧盟、美国和韩国的进口三氯甲烷反倾销措施进行期终复审立案公告   中华人民共和国商务部于2004年11月30日发布第81号公告,决定对原产于欧盟、韩国、美国和印度的进口三氯甲烷征收反倾销税,实施期限为自2004年11月30日起5年。   中华人民共和国商务部于2009年5月30日发布第38号公告,告知对原产于欧盟、韩国、美国和印度的进口三氯甲烷适用的反倾销措施即将到期。根据《中华人民共和国反倾销条例》规定,经复审确定终止征收反倾销税有可能导致倾销和损害的继续或者再度发生的,反倾销税的征收期限可以适当延长。自该公告发布之日起,中国大陆三氯甲烷产业可在原反倾销措施终止日60天前,向商务部提出书面复审申请。   2009年9月27日,商务部收到浙江巨化股份有限公司和山东金岭化工股份有限公司等2家企业代表中国大陆三氯甲烷产业递交的反倾销期终复审申请书。申请人主张,如果终止反倾销措施,原产于欧盟、韩国和美国的进口三氯甲烷对中国大陆的倾销可能继续发生,倾销行为给中国大陆三氯甲烷产业造成的损害可能继续发生,请求商务部裁定继续对原产于欧盟、韩国和美国的进口三氯甲烷征收反倾销税,并取消德国LII欧洲有限公司、美国陶氏化学公司、美国Occidental Chemical Corporation、法国阿科玛股份有限公司和韩国三星精密化学株式会社的价格承诺。   依据《中华人民共和国反倾销条例》有关规定,商务部对申请人资格、被调查产品和国内同类产品有关情况、反倾销措施实施期间被调查产品进口情况、倾销继续发生的可能性、损害继续发生的可能性及相关证据等进行了审查。申请人提出的证据表明,申请企业和本次期终复审申请的支持企业的三氯甲烷产量之和占同期中国大陆总产量的50%以上,符合《中华人民共和国反倾销条例》第11条、第13条和第17条关于产业及产业代表性的规定,申请人有资格代表中国大陆产业提出申请。   根据《中华人民共和国反倾销条例》第48条,商务部决定自2009年11月30日起,对原产于欧盟、韩国和美国的进口三氯甲烷所适用的反倾销措施进行期终复审调查。现将有关事项公告如下:   一、继续实施反倾销措施   根据商务部建议,国务院关税税则委员会决定,在三氯甲烷反倾销期终复审期间,对原产于欧盟、韩国和美国的进口三氯甲烷,继续按照商务部2004年第81号公告实施反倾销措施。对于已签订价格承诺协议的出口商,其价格承诺协议在复审调查期间继续有效;价格承诺协议权利义务已发生转让或继承的,按照商务部2005年第53号公告和商务部2007年第53号公告执行。   二、终止实施对原产于印度的进口三氯甲烷的反倾销措施   由于商务部2009年第38号公告所规定的期限内,没有利害关系方申请对原产于印度的进口三氯甲烷所适用的反倾销措施进行期终复审,商务部也决定不主动发起期终复审,自2009年11月30日起,终止实施对原产于印度的进口三氯甲烷所适用的反倾销措施。   三、复审调查期   本次复审的倾销调查期为2008年7月1日至2009年6月30日,产业损害调查期为2005年1月1日至2009年6月30日。   四、复审调查产品范围   复审产品范围是原反倾销措施所适用的产品,与商务部2004年第81号公告中的产品范围一致,该产品归在《中华人民共和国进出口税则》税则号:29031300。   五、复审内容   本次复审调查的内容为,如果终止实施对原产于欧盟、韩国和美国的进口三氯甲烷的反倾销措施,是否可能导致倾销和损害的继续或再度发生。   六、复审程序   (一)登记应诉   就倾销调查,任何利害关系方可于本公告发布之日起20日内,向商务部进出口公平贸易局申请参加应诉,同时被调查国家和地区的有关出口商或生产商应提供调查期内对中国大陆及其他市场出口该产品的数量及金额。《倾销调查应诉登记参考格式》可在中华人民共和国商务部网站公平贸易局子网站(网址为gpj.mofcom.gov.cn)“公告”栏目下载。   就损害调查,任何利害关系方可自本公告发布之日起20天内向商务部产业损害调查局申请参加应诉,同时应提供产业损害调查期内的生产能力、产量、库存以及在建和扩建的计划。《参加产业损害调查活动申请表》可在“中国贸易救济信息网”(网址为:www.cacs.gov.cn)“公告”栏目下载。   (二)不登记应诉。   如果利害关系方未在本公告规定的时间内向商务部登记应诉,则商务部有权拒绝接受其提交的有关材料,并可以根据已经获得的事实和可获得的最佳信息作出裁定。   (三)利害关系方的权利   如利害关系方对本次调查的产品范围、申请人资格、被调查国家和地区及其他相关问题有异议,可以于本公告发布之日起20天内将意见书面提交商务部。   利害关系方可以到商务部反倾销公开信息查阅室查阅申请人提交的申请书等公开文本。   (四)问卷发放   为获得调查所需信息,商务部将根据需要向相关利害关系方发放调查问卷。利害关系方答卷应当按照调查问卷规定的时间和方式提交。   (五)听证会   利害关系方可以按照商务部《反倾销调查听证会暂行规则》和《产业损害调查听证规则》规定提出举行听证会的书面请求,商务部认为必要时也可主动举行听证会。   (六)实地核查   商务部在必要时将派出工作人员赴境内外进行实地核查;利害关系方提交的任何材料均应包括同意接受核查的声明;核查前,商务部将提前通知有关国家和企业。   (七)调查时限   本次调查自2009年11月30日起开始,通常应在2010年11月30日前结束。   七、不合作   依据《中华人民共和国反倾销条例》第21条规定,调查机关进行调查时,利害关系方应当如实反映情况,提供有关资料。利害关系方不如实反映情况、提供有关资料的,或者没有在合理时间内提供必要信息的,或者以其他方式严重妨碍调查的,调查机关可以根据已经获得的事实和可获得的最佳信息作出裁定。   八、商务部联系方式   商务部进出口公平贸易局   地 址:北京市东长安街2号   邮 编:100731   联系人:刘宁、吕瑞浩   电 话:(8610)65198196、65198752   传 真:(8610)65198164   商务部产业损害调查局   地 址:北京市东长安街2号   邮 编:100731   联系人:于伟毅、邢敏   电 话:(8610)65198083、65198062   传 真:(8610)65197578   附件:应诉登记表   中华人民共和国商务部   二〇〇九年十一月二十九日
  • 甲烷嗅探卫星 监测全球“漏点”
    谈及气候变化,二氧化碳通常是焦点,但未来几十年,削减甲烷排放可能对控制全球变暖产生更大的影响。据《自然》报道,在一颗即将从美国加利福尼亚州发射的卫星的帮助下,政府部门和企业终于有了一个工具,能帮助它们精确定位地球上的甲烷热点并堵住泄漏。MethaneSAT概念图。图片来源:BAE Systems这颗名为MethaneSAT的卫星耗资约8800万美元,旨在为观测全球油气田、农业设施和垃圾填埋场排放的甲烷提供全新视角。卫星运营方将与美国谷歌公司合作,利用一个大气模型处理来自卫星的数据。该模型可以追踪空气中的甲烷及其地面来源。谷歌还计划使用人工智能算法绘制全球油气田基础设施地图,并确定污染来源。美国环境保护基金会领导了MethaneSAT的开发。“这将是我们第一次获得温室气体的此类信息。”该组织首席科学家Steven Hamburg表示,MethaneSAT将通过“彻底的透明度”实现政府和企业的问责制。MethaneSAT起源于大约10年前帮助揭示美国油气田污染程度的航空器运动。环境保护基金会随后与学术界和工业界合作,进行一系列研究,记录了美国各地的甲烷排放量,最终表明石油和天然气部门的甲烷排放量比官方估计高60%。在这项工作的基础上,它们组织了一个团队设计这颗卫星。2018年,环境保护基金会及美国哈佛大学的主要科学合作伙伴通过“大胆计划”获得了启动资金,用于开发甲烷卫星。MethaneSAT与众不同之处在于高分辨率测量。如果成功,环境保护基金会将成为第一个开发出这种科学口径卫星的环保组织。“我们正在适应一个无人区。”哈佛大学大气科学家、MethaneSAT技术团队负责人Steve Wofsy说。MethaneSAT每天从大约30块面积为200平方公里的土地上向地球传输图像。这足以完成其监测全球油气田、农业设施的核心任务。对于运营方来说,最大的问题是卫星数据是否真的会推动相关部门采取行动,有所作为。环境保护基金会大气科学家Ilissa Ocko表示:“如果我们能够消除甲烷排放,那么在未来几十年里,基本上可以将全球变暖幅度减半。其中,石油和天然气行业可以在几乎没有额外成本的情况下,减少大部分甲烷排放。”
  • Detelogy饲料中兽残抗生素检测前处理解决方案——以硝基咪唑类、硝基呋喃类、硝基喹啉类为例
    据报道“全球每年消耗的抗生素总量90%用在食源动物身上,致使细菌耐药性和药物残留等问题日益突出。”本文以硝基咪唑类、硝基呋喃类、硝基喹啉类为例,针对饲料中兽残抗生素检测提供了高效智能前处理解决方案。本方案适用于饲料中异丙硝唑、甲硝唑、替硝唑、塞克硝唑、卡硝唑、奥硝唑、地美硝唑、罗硝唑8种硝基咪唑类药物,呋喃唑酮、呋喃它酮、呋喃妥因、呋喃西林4种硝基呋喃类药物和卡巴氧、喹乙醇、乙酰甲喹、喹烯酮4种喹啉类药物的前处理方案。本方案适用于畜禽配合饲料、浓缩饲料、添加剂预混合饲料和精料补充料中硝基咪唑类、硝基呋喃类和喹啉类药物的前处理方案。本标准的检出限为0.05 mg/kg,定量限为0.10 mg/kg。实验步骤:一、提取称取试样2 g(精确至.01 g)于50 mL离心管中,准确加入200 mL提取液(甲醇V:乙腈V:超纯水V,3:3:4)用MultiVortex多样品涡旋混合器混合后,水浴超声提取10 min,振荡15 min。8000 rpm离心5 min,取1.00 mL上清液于40℃下用FV64全自动智能氮吹仪吹至近干,残余物用0.1 mol/L磷酸二氢钠溶液5.0 mL溶解,超声10 min,备用。二、净化将HLB固相萃取柱固定于iSPE-864全自动智能固相萃取仪上,固相萃取条件如下:将洗脱液用FV64全自动智能氮吹仪吹干。准确加入60%乙腈溶液1.00 mL溶解残余物,使用MultiVortex多样品涡旋混合器混匀后,超声10 min,过0.22 μm微孔滤膜,供液相色谱串联质谱仪测定。注:操作过程中注意避光,试样上机前酌情稀释,避免造成仪器污染。所用Detelogy智能前处理设备建议选型● 高转速搭载3mm圆周振幅,保证每个样品充分混合● 外观灵巧轻便,主机低重心设计,运行噪声低,进阶实现稳健高转速● 5寸高清触屏,支持手动自动双模式,中英文界面自由切换● 64位高通量,氮吹针自动下降● 支持全自动延时氮吹和延时增压● 10.1寸高清触屏控制,可存方法● 8通道,批量处理64位样品● 自动完成活化、上样、淋洗、氮吹、洗脱等固相萃取全流程
  • 品牌出海 | 甲烷排控,海尔欣在行动——海尔欣昕甬智测在AGU23会议的相关报告
    12月11-15日,AGU23秋季会议在旧金山顺利召开。会议涵盖了生物学和生命科学的各个领域,包括地球物理学和地质学。宁波海尔欣光电科技有限公司作为国内温室气体监测仪器优秀生产商受邀参加了此次会议,12月14日,由海尔欣公司与战略合作伙伴诺丁汉大学、中科院大气物理研究所联合团队的代表发表了主题报告《A laser-based open-path analyzer with minimal temperature density corrections for eddy covariance CH4 flux measurements》,主要介绍了自主品牌“昕甬智测”的HT8600大气甲烷激光开路分析仪。HT8600大气甲烷激光开路分析仪利用涡动协方差通量测量温室气体排放通量,具有高精度、高灵敏度、高稳定性和低维护成本等优点,专门用于实时监测大气中甲烷的浓度。通过量子级联激光技术和信号处理算法,它能够快速、准确地测量甲烷浓度,为环境监测和空气质量管理提供可靠数据支持。 HT8600受到了参会人员的广泛关注和认可,此次会议也为海尔欣光电科技有限公司提供了一个展示自身实力和产品的平台,进一步提升了公司在国际上的影响力。展望未来,海尔欣光电科技有限公司将继续坚守其使命——光谱技术助力零碳地球,致力于温室气体仪器的研发和创新。同时,公司也将积极参与国际交流与合作,推动相关领域的发展和进步,为保护地球生态环境贡献自己的一份力量。
  • 甲烷检测器可以“嗅出”地外生命分子
    甲烷分子是地球大气中的有机分子,被广泛公认为是生命潜在的迹象。   人类寻找外星生命的手段正在提高。日前,一支英国与澳大利亚联合研究小组新研制出一种甲烷探测模型,能够更广泛地发现外星球上的生命分子,其或将探测到神秘的地外生命。不过,由人类主动去发现地外智慧生物是否是一种明智的行为,目前尚未有定论。   地球的大气层中,至少90%的甲烷气体是由生物体产生的。甲烷因此被认为是生命潜在的迹象,这种地球上最简单的有机分子,出现在其他行星上,也会被视作是生命能否存在的一个指标。但在此前,科学家的甲烷模型的制作方法有失准确,导致甲烷模型并不完整。   据英国《每日邮报》在线版6月17日报道,英国伦敦大学学院和悉尼新南威尔士大学的研究人员,日前研制出了强大的甲烷检测模型。这是一种新型&ldquo 热&rdquo 甲烷光谱,可以检测高于地球环境温度的有机分子。研究人员预计,目前已可探测到高达1500K(约1220摄氏度)环境下的甲烷气体,这在以前是不可能实现的事情。   为了找出环绕其他恒星运行的遥远行星组成成分,天文学家分析了那些大气层吸收不同色彩星光的行星,并将其对照模型光谱,从而鉴别出了不同的分子。该研究论文联合作者乔纳森· 丁尼生教授表示,当前的甲烷模型是不完善的,其导致某些行星上的甲烷水平被严重低估。他预计,最新模型将对未来行星研究产生重大影响,帮助科学家们探测到外星球上的生命体的迹象。   相关论文近期发表在《美国国家科学院院刊》上,文章描述了研究人员使用英国最先进超级计算机提供的项目,计算了近100亿个光谱线。   由于甲烷能够吸收光线,而每个光谱线具有不同颜色,这就意味着模型将能提供大温度范围下甲烷的更准确信息&mdash &mdash 而新研究调查的光谱线,数量是之前研究的2000倍之多。   目前,该模型已经过测试和验证,其成功再现了褐矮星中甲烷吸收光线的细节。论文第一作者谢尔盖· 尤尔琴科补充道:&ldquo 我们建立的光谱模型,要与现代超级计算机的惊人力量结合才能完成。&rdquo 未来他们会对模型进行更多研究,以将温度阈值调至更高。   不过,随着近年有宜居潜力的系外行星的发现不断增多,与这种科学界寻找地外生命的热情高涨相反,也有声音一再提醒:此举并非明智。著名物理学家史蒂芬· 霍金几年前就曾警告,外星人存在但别主动去寻找,如果外星人想拜访我们,他认为结果可能与哥伦布当年踏足美洲大陆类似&mdash &mdash 对当地印第安人来说不是什么好事。
  • GCMS首次成为水中硝基酚类检测国标方法
    近日,环保部就《水质硝基酚类的测定 气相色谱-质谱法》(征求意见稿)、《水质 二氧化氯的测定 碘量法》(征求意见稿)两项国家环境保护标准发布征求意见的函。   其中,《水质硝基酚类的测定 气相色谱-质谱法》为首次发布,《水质 二氧化氯的测定 碘量法》则是对《水质二氧化氯的测定碘量法(暂行)》(HJ 551-2009)的修订。   硝基酚类是危害环境的有机污染物,可在水生生物和人体中残留和浓缩,具有高毒性和致癌性,4-硝基酚被我国列入环境优先监测污染物监测名单中,但目前我国尚没有关于水质硝基酚测定方面的标准分析方法。   气相色谱质谱法在有机污染物分析方面具有分辨率高、定性准确等优点,因此,该标准采用了液液萃取、固相萃取气相色谱质谱法测定水中硝基酚类方法,经验证,可以满足水质中硝基酚类化合物测定特性指标的要求。   今年8月份,环保部针对《水质 挥发性有机物的测定 顶空/气相色谱&mdash 质谱法》(征求意见稿)国家环境保护标准发布征求意见的函,该标准同样是首次规定了测定水和废水中挥发性有机物的顶空/气相色谱-质谱法。
  • 英国食品标准局对燃脂物质2,4-二硝基苯酚采取措施
    英国食品标准局(FSA)近日意识到,被称为DNP的2,4-二硝基苯酚(2,4-Dinitrophenol)物质,仍被健身领域的一些人和试图减肥的人使用。   DNP是一种工业化学品,对人类健康是及其危险的。根据其摄入量,急性中毒的迹象可能包括发热、脱水、恶心、呕吐、烦躁、皮肤发红、出汗、头晕、头痛、呼吸加速、心跳加速以及心跳不规则,可能导致昏迷甚至死亡。长时期摄入低含量的该物质也可能导致白内障和皮肤损伤,影响心脏、血液和神经系统。   FSA正在采取行动打击DNP非法销售,同时提高消费者对其使用危险性的意识。特别是:   • 该机构正与警察和地方当局合作,杜绝DNP非法出售给消费者,重点关注杜绝互联网销售。FSA将向地方当局提供相关支持,包括财政援助以完成这项工作。   • FSA提醒相关公司,包括网络贸易商,任何被发现向消费者供应DNP产品的个人或公司将交予法院进行刑事制裁。   FSA负责人Rod Ainsworth称,让消费者充分了解DNP的危险性是十分重要的。我们一直在努力提高人们对DNP的危险性的意识,鼓励民众在购买到含有DNP的产品时,应及时向FSA报告。若有人向你提供DNP,不应该接受,应立即联系FSA或地方当局。   任何人获悉非法销售DNP的信息应立即报给至:FoodIncidents@foodstandards.gsi.gov.uk。
  • 三氟一氯甲烷气相色谱检验等行标通过审定
    2009年6月12日,由检科院起草的《进出口单工质制冷剂三氟一氯甲烷(R-13)的检验方法 气相色谱法》(2006B445)等11项检验检疫行业标准在京通过审定,标准审定委员会认真听取了标准起草人的说明,对提交的标准文本、编制说明、征求意见汇总表等送审材料进行了审定,提出了修改意见,并建议尽快报批。
  • 气候变化绿皮书建议:尽快研究设定甲烷分阶段减排目标
    12月21日,中国社会科学院-中国气象局气候变化经济学模拟联合实验室及社会科学文献出版社发布了第14部气候变化绿皮书——《应对气候变化报告(2022):落实“双碳”目标的政策和实践》。绿皮书指出,甲烷控排的关键技术和管理政策体系有待健全。甲烷监测有待加强甲烷是全球增温贡献仅次于二氧化碳的第二大温室气体,其排放量占全球温室气体排放总量的16%。在全球变暖的背景下,甲烷控排对于各国达成气候目标意义重大。绿皮书指出,甲烷监测工作有待进一步加强。目前,中国已建立起了安全报警检测系统,但还需利用地面、飞机、观测塔或卫星等手段,将观测的甲烷浓度数据与大气传输模型相结合,开展反演估算甲烷区域排放量的研究。人为源排放机理研究和控排技术研发亟待加强。例如,目前低浓度通风瓦斯(甲烷浓度低于0.75%)利用技术和油气泄漏回收利用技术已有长足进展,但由于规模、成本和地理环境限制,经济效益较低,无法实现大规模商业化和推广利用。现有通风瓦斯利用项目大多还是采用的国外技术,建设成本和运行维护成本高,难以广泛应用。相对欧美发达国家而言,目前中国各重点领域还处于甲烷排放“摸家底”的阶段,国家层面的宏观甲烷控排政策和针对重点领域的调控措施较少,在财政补贴、市场机制、标准体系、管理措施等方面缺乏足够的政策以及法律法规的支持。目前,只有美国、加拿大、墨西哥、澳大利亚等少数几个国家明确将甲烷控排纳入其国家自主贡献(NDC)中。中国更新的NDC中,“2030年碳达峰目标”并没有涉及甲烷,现有碳核查体系中也没有包括甲烷等非二氧化碳类温室气体。因此,在未来总量目标核查过程及碳中和路径研究中,需将甲烷等非二氧化碳类温室气体排放纳入,并充分考虑其影响。建议加快甲烷减排关键技术攻关绿皮书建议,加强开展排放因子研究和基于监测基础的甲烷排放核算方法研究,完善甲烷排放核算统计制度,对国家、地方和企业等各个层级的甲烷清单数据进行整合和验证,形成统一、完整的国家级清单数据库和信息化平台,提高甲烷排放核算方法学的一致性和温室气体清单编制的透明度。从重点领域和行业开始,将甲烷的监测规范化,并提出甲烷排放的监测、核算、报告和核查体系(MRV)的具体要求。加快甲烷减排关键技术攻关,如关闭煤矿瓦斯资源抽采利用、低浓度煤矿瓦斯减排、油气开采泄漏检测与修复系统(LDAR)、农业反刍动物养殖和动物粪便管理、水稻种植甲烷减排、生物甲烷资源化利用、垃圾和废水处理甲烷回收利用等。通过产学研用等不同途径,推动形成围绕甲烷利用的咨询、技术、产品、装备等产业化发展。绿皮书还指出,虽然中国已明确2060年含甲烷在内的全口径温室气体的碳中和目标,但需尽快研究设定科学合理的甲烷分阶段减排目标、时间表和路线图,编制并出台甲烷减排行动计划,提出具体的减排量以及减排途径和措施。同时要推进各行业及部门甲烷排放现状与减排能力评估,研究建立不同领域甲烷减排成效评估考核和监管体系。
  • 秋冬季大气污染攻坚,帮您捋捋非甲烷总烃的检测方案
    “十四五”期间,为实现我国碳达峰、碳中和愿景以及美丽中国建设目标,会持续加强对大气环境的治理力度,积极构建新一代大气污染防治科学体系。生态环境部于2021年10月29日联合多部门及京津冀各省市政府印发了《2021-2022年秋冬季大气污染综合治理攻坚方案》的通知。通知明确指出需加强环境质量监测能力建设,各地要按照《“十四五”全国细颗粒物与臭氧协同控制监测网络能力建设方案》加强秋冬季颗粒物组分监测和VOCs(挥发性有机物)监测。众所周知,要完成VOCs监测离不开对NMHC(非甲烷总烃)的准确测试,今天,小编就来和大家一起捋捋。 图片来自生态环境部官网截图 VOCs和NMHCVOCs,是指参与大气光化学反应的有机化合物,或者根据有关规定确定的有机化合物。VOCs类物质成分复杂,有特殊气味且具有渗透、挥发及脂溶等特性,可导致人体出现诸多的不适症状。 在表征VOCs总体排放情况时,参考2019年之后发布的各行业大气排放标准《GB 37823-2019 制药工业大气污染物排放标准》、《GB 37824-2019 涂料、油墨及胶粘剂工业大气污染物排放标准》、《GB 39726-2020 铸造工业大气污染物排放标准》、《GB39727-2020 农药制造工业大气污染物排放标准》、以及《GB 37822-2019 挥发性有机物无组织排放控制标准》均采取非甲烷总烃(以NMHC表示)作为VOCs污染的控制项目。 现阶段非甲烷总烃结果用于VOCs总量控制是目前接受度较高的广谱性解决方案,有着以下的优势: NMHC(非甲烷总烃)主要测试标准离线测试《HJ 38-2017 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》《HJ 604-2017 环境空气 总烃甲烷和非甲烷总烃的测定 直接进样-气相色谱法》在线监测《HJ 1013-2018 固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》 离线检测方案参考HJ 38-2017、HJ 604-2017非甲烷总烃指在氢火焰离子化检测器(FID)有响应的除甲烷外的气态有机物的总和。所以非甲烷总烃的测试一般采取两根色谱柱配置两个FID检测器分别检测甲烷和总烃,再使用总烃的值减去甲烷的值即可得到非甲烷总烃数据。图1. 阀进样+GC-2010 Pro 利用岛津GC-2010 Pro系统气相建立了符合HJ 38-2017和HJ 604-2017标准要求的分析工业废气和环境空气中甲烷、总烃和非甲烷总烃的测定方法。采用十通进样阀,1mL定量环,在岛津GC-2010 Pro气相色谱仪上使用一根5A分子筛毛细管柱分析甲烷,另一根脱活石英毛细管空柱对总烃进行测定。图2和图3分别为标准气在甲烷分析柱及总烃分析柱上测试得到色谱图。 该方法一次进样可以完成甲烷和总烃的快速测定,方法灵敏度高,甲烷和总烃的检出限均小于0.03 mg/m3,定量限低于0.07 mg/m3,重复性RSD0.6%(n=6)。 在线检测方案参考HJ 1013-2018为应对日益增长的在线非甲烷总烃监测需求,岛津传承60多年气相色谱研发技术及50多年的烟气在线监测设计、生产及应用经验分别开发了应对污染源废气及环境空气的在线非甲烷总烃设备:污染源VOC-3000F及环境空气VOC-3000F(FB)。特点优势1、空气循环式色谱柱温控与APC自动流量控制技术相结合,重现性好2、更低检出限的FID检测器的应用, VOCs组分的定量更准、更灵敏3、触屏式色谱操作界面及智能检测功能,维护方便4、动态曲线跟踪补正功能(DCC)与多点校正技术的结合(专利号:202010352393.8)5、专业的空气样气采样预处理, VOCs吸附更小6、全高温防吸附、耐腐蚀预处理系统,专业应对各种复杂工况 结语岛津提供多种NMHC测试手段,为VOCs的总量测定提供强有力的技术支持,为VOCs的后续治理提供可靠数据支撑,为打好《2021-2022年秋冬季大气污染综合治理攻坚方案》贡献一份力量。助力打好蓝天保卫战,岛津在行动!
  • 秋冬季大气污染攻坚,帮您捋捋非甲烷总烃的检测方案
    “十四五”期间,为实现我国碳达峰、碳中和愿景以及美丽中国建设目标,会持续加强对大气环境的治理力度,积极构建新一代大气污染防治科学体系。生态环境部于2021年10月29日联合多部门及京津冀各省市政府印发了《2021-2022年秋冬季大气污染综合治理攻坚方案》的通知。通知明确指出需加强环境质量监测能力建设,各地要按照《“十四五”全国细颗粒物与臭氧协同控制监测网络能力建设方案》加强秋冬季颗粒物组分监测和VOCs(挥发性有机物)监测。众所周知,要完成VOCs监测离不开对NMHC(非甲烷总烃)的准确测试,今天,小编就来和大家一起捋捋。 VOCs和NMHCVOCs,是指参与大气光化学反应的有机化合物,或者根据有关规定确定的有机化合物。VOCs类物质成分复杂,有特殊气味且具有渗透、挥发及脂溶等特性,可导致人体出现诸多的不适症状。 在表征VOCs总体排放情况时,参考2019年之后发布的各行业大气排放标准《GB 37823-2019 制药工业大气污染物排放标准》、《GB 37824-2019 涂料、油墨及胶粘剂工业大气污染物排放标准》、《GB 39726-2020 铸造工业大气污染物排放标准》、《GB39727-2020 农药制造工业大气污染物排放标准》、以及《GB 37822-2019 挥发性有机物无组织排放控制标准》均采取非甲烷总烃(以NMHC表示)作为VOCs污染的控制项目。 现阶段非甲烷总烃结果用于VOCs总量控制是目前接受度较高的广谱性解决方案,有着以下的优势: NMHC(非甲烷总烃)主要测试标准 离线检测方案参考HJ 38-2017、HJ 604-2017非甲烷总烃指在氢火焰离子化检测器(FID)有响应的除甲烷外的气态有机物的总和。所以非甲烷总烃的测试一般采取两根色谱柱配置两个FID检测器分别检测甲烷和总烃,再使用总烃的值减去甲烷的值即可得到非甲烷总烃数据。 图1. 阀进样+GC-2010 Pro 利用岛津GC-2010 Pro系统气相建立了符合HJ 38-2017和HJ 604-2017标准要求的分析工业废气和环境空气中甲烷、总烃和非甲烷总烃的测定方法。采用十通进样阀,1mL定量环,在岛津GC-2010 Pro气相色谱仪上使用一根5A分子筛毛细管柱分析甲烷,另一根脱活石英毛细管空柱对总烃进行测定。图2和图3分别为标准气在甲烷分析柱及总烃分析柱上测试得到色谱图。 该方法一次进样可以完成甲烷和总烃的快速测定,方法灵敏度高,甲烷和总烃的检出限均小于0.03 mg/m3,定量限低于0.07 mg/m3,重复性RSD为应对日益增长的在线非甲烷总烃监测需求,岛津传承60多年气相色谱研发技术及50多年的烟气在线监测设计、生产及应用经验分别开发了应对污染源废气及环境空气的在线非甲烷总烃设备:污染源VOC-3000F及环境空气VOC-3000F(FB)。 特点优势1空气循环式色谱柱温控与APC自动流量控制技术相结合,重现性好2更低检出限的FID检测器的应用, VOCs组分的定量更准、更灵敏3 触屏式色谱操作界面及智能检测功能,维护方便4 动态曲线跟踪补正功能(DCC)与多点校正技术的结合(专利号:202010352393.8)5 专业的空气样气采样预处理, VOCs吸附更小6 全高温防吸附、耐腐蚀预处理系统,专业应对各种复杂工况 结语岛津提供多种NMHC测试手段,为VOCs的总量测定提供强有力的技术支持,为VOCs的后续治理提供可靠数据支撑,为打好《2021-2022年秋冬季大气污染综合治理攻坚方案》贡献一份力量。助力打好蓝天保卫战,岛津在行动! 撰稿人:姚天明 *本文内容非商业广告,仅供专业人士参考。
  • 迪马科技全新推出15种硝基苯混标
    为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,规范水中硝基苯类化合物的测定方法,环境保护部特制订最新标准《水质硝基苯类化合物的测定 液液萃取/固相萃取-气相色谱法》(HJ 648-2013),2013年9月1日起正式实施,原标准《水质硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯的测定 气相色谱法》(GB13194-91)自新标准正式实施日起废止。 针对最新标准,迪马科技现提供完全符合标准及客户使用需求的15种硝基苯混标,为环境监测类客户提供便捷的产品。 产品信息如下: Cat. No:12-SP-DC10Z DESCRIPTION: Custom Mixed Nitrobenzene (15 Analytes) Varied in n-Hexane 1ml 详细组分信息如下: 序号 中文名称 英文名称 CAS 浓度(ppm) 1 硝基苯 Nitrobenzene 98-95-3 10.0mg/mL 2 邻硝基甲苯 2-Nitrotoluene 88-72-2 10.0mg/mL 3 间硝基甲苯 3-Nitrotoluene 99-08-1 10.0mg/mL 4 对硝基甲苯 4-Nitrotoluene 99-99-0 10.0mg/mL 5 邻硝基氯苯 1-Chloro-2-nitrobenzene 88-73-3 1.0mg/mL 6 间硝基氯苯 1-Chloro-3-nitrobenzene 121-73-3 1.0mg/mL 7 对硝基氯苯 1-Chloro-4-nitrobenzene 100-00-5 1.0mg/mL 8 邻二硝基苯 1,2-Dinitrobenzene 528-29-0 1.0mg/mL 9 间二硝基苯 1,3-Dinitrobenzene 99-65-0 1.0mg/mL 10 对二硝基苯 1,4-Dinitrobenzene 100-25-4 1.0mg/mL 11 2,4-二硝基甲苯 2,4-Dinitrotoluene 121-14-2 1.0mg/mL 12 2,6-二硝基甲苯 2,6-Dinitrotoluene 606-20-2 1.0mg/mL 13 3,4-二硝基甲苯 3,4-Dinitrotoluene 610-39-9 1.0mg/mL 14 2,4-二硝基氯苯 2,4-Dinitrochlorobenzene 97-00-7 1.0mg/mL 15 2,4,6三硝基甲苯 2.4.6-Trinitrotoluene- min 30wt% water 118-96-7 1.0mg/mL
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之五:硝基呋喃及其代谢物类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技陆续推出了四期稳定同位素标记物产业化基地建设成果系列报道,本期向您推荐稳定同位素标记的硝基呋喃及其代谢物类化合物,继续展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。部分硝基呋喃及其代谢物类化合物:了解更多产品或需要定制服务,请联系我们
  • 应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析
    应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析方法“交钥匙”啦关注我们,更多干货和惊喜好礼水质监测珍惜水资源,保护水环境。水质监测是保护水资源的基本手段之一,是水资源保护科学研究的基础,对水污染控制和维护水环境健康十分重要。苯胺类和硝基酚类化合物是水体中优先控制污染物,生态环境部发布的国家环境标准《水质 苯胺类化合物测定》(HJ1048-2019)和《水质 4种硝基酚类化合物测定》(HJ1049-2019)于2020年4月24日正式实施。标准监测范围包括地表水,地下水,生活污水及各种各样的工业废水。 苯胺和硝基酚类化合物都是重要且常用的化工原料,作为原材料或中间体被广泛应用。在生产和使用过程中,会随工业废水的排放对环境造成污染,使地表水等受到污染。苯胺类物质具特殊的气味,一般难溶于水,而易溶于有机试剂,易挥发,结构稳定,对人体的危害高,少量苯胺就能引起急性中毒,其中一些苯胺类化合物可以快速透过皮肤或呼吸道系统进入体内,造成溶血性贫血,损害肝脏引起中毒性肝炎,对肾功能造成损害等。硝基酚类化合物为淡黄色或黄色晶体,微溶于水,可溶于乙醇,乙醚,氯仿等有机溶剂。硝基酚对人和哺乳动物都有毒性,在生物体内易被酶转化为亚硝基和羟胺基衍生物,这些衍生物可生成正铁血红蛋白或亚硝基胺,前者能与氧结合,后者是致癌物。因此,2019年10月,生态环境部发布了水质17种苯胺类化合物和水质4种硝基酚类化合物测定液相色谱-三重四极杆质谱法的两个检测标准。 赛默飞全新一代三重四极杆液质联用仪Thermo Scientific™ TSQ系列应对国家环境保护标准水质监测,建立的方法灵敏度高、专属性强、稳定性好,为水质中苯胺类和硝基酚类化合物风险监控提供有效的支持。赛默飞针对苯胺类和硝基酚类化合物的水质检测解决方案01 建立了基于Thermo Scientific™ TSQ Quantis™ 三重四极杆串联质谱仪分析17种苯胺类物质的检测方法 表1 17种苯胺类化合物信息(点击查看大图) 方法选用C8柱(Thermo Scientific™ Hypersil GOLD™ 150x3mm, 3μm),以0.02%甲酸水溶液为流动相水相,以0.02%甲酸甲醇为流动相有机相,流速为0.4 mL/min,柱温为35℃。采用ESI源正离子模式进行 SRM扫描。 1、邻苯二胺;2、苯胺;3、对甲苯胺;4、联苯胺;5、邻甲氧基苯胺;6、邻甲苯胺;7、2,4-二甲基苯胺;8、4-氯苯胺;9、4-硝基苯胺;10、2,6-二甲基苯胺;11、2-萘胺;12、3-氯苯胺;13、2-硝基苯胺;14、2-甲基-6乙基苯胺;15、2,6-二乙基苯胺;16、3,3-二氯联苯胺;17、3-硝基苯胺。图1 17种苯胺类物质提取离子流图(点击查看大图) 实验进行了详细的方法学验证,基于Thermo Scientific™ TSQ Quantis™ 建立的水质中苯胺类化合物检测方法不仅具有优异的灵敏度和线性范围,同时专属性高,具备良好的重现性。 02 建立了基于Thermo Scientific™ TSQ Fortis™ 三重四极杆串联质谱仪分析4种硝基酚类物质的检测方法 表2 4种硝基酚化合物信息(点击查看大图) 方法选用C18柱(Thermo Scientific™ Hypersil GOLD™ 100x2.1mm, 1.9μ),0.01%乙酸水溶液和甲醇为流动相梯度洗脱,流速0.3 mL/min,柱温35℃。采用ESI源负离子模式SRM扫描方式检测。 图2 4种硝基酚类化合物和内标色谱图(点击查看大图) 实验进行了详细的方法学验证,四种硝基酚化合物定量限优于标准的检测要求,重现性和线性关系优异。并且本方法专属性强,适用于水质中硝基酚类污染物的检测。 结语预防水污染,保护水资源,赛默飞全新一代三重四极杆液质联用仪以其优异的性能有效应对环境检测相关法规。更多环境解决方案,请继续关注赛默飞官方微信平台。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台+网址https://www.instrument.com.cn/netshow/sh100244/
  • 某品牌指甲油被曝三氯甲烷含量达限值的1400多倍 检测人亮出武器来!
    p style=" text-indent: 2em text-align: justify line-height: 1.75em " strong 仪器信息网讯 /strong & nbsp 近日,上海市药监局近日披露的抽检结果显示, 名创优品(广州)有限责任公司代理的一款名为“一步可剥指甲油”的化妆品,检出三氯甲烷含量高达589.449μg/g,是国家标准限值0.40μg/g的1400多倍。上海药监局披露的信息显示,该企业申请复检,经深圳市药品检验研究院复检,结果仍不合格。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/4984f68c-ec2b-45f2-bb8c-eafaddda9a49.jpg" title=" 111.jpg" alt=" 111.jpg" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 据了解,三氯甲烷主要作用于中枢神经系统,具有麻醉作用,对心、肝、肾有损害,有致癌可能性。而普通指甲油的成分一般由两类组成,一类是固态成分,主要是色素、闪光物质等 一类是液体的溶剂成分,主要使用的有丙酮、乙酸乙酯、邻苯二甲酸酯、甲醛等。指甲油的沉降往往是这些固态成分如颜料,色素,闪光颗粒等的沉降。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 作为检测人来说,每每看到这种新闻爆出,第一时间想到的是这一套操作我需要啥设备。话不多说,奉上指甲油成分检测仪器指南: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1、甲醛检测:作为防腐剂和树脂产品的原材料,甲醛是一种有用的成分,另一方面,它也是导致病态建筑综合征的致病物质,因此,其含量受到了广泛关注。 日常使用的洗发水、化妆水、粉底一般被称为香料与化妆品,用于人的身体,因此,上述香料与化妆品的添加成分受到了严格的管制。在日本的化妆品标准(厚生省告示第331号)中,甲醛被列为化妆品中的禁止添加成分之一。另外,欧盟根据化妆品规则No.1223/2009AnnexⅢ,规定在指甲油等的美甲用品中的含量应为5%以下。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 2、色素检测: /span span style=" text-indent: 2em " 规范性检测方法,适用于唇膏,唇彩、粉、粉块,指甲油、彩妆类化妆品中苏丹红1、Ⅱ、III,Ⅳ的测定,检出限均为50 μg/kg,定量限均为150μg/kg。 /span br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 3、指甲油中稳定性检测:传统的指甲油使用溶剂型的连续相,往往有难闻气味甚至“有毒”风险,目前很多厂家开始研发和生产更环保和健康的水性指甲油,因此保证指甲油的稳定性正是研发和生产厂家面临的首当其冲的问题。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 4、 /span span style=" text-indent: 2em " 化妆品中邻苯二甲酸酯检测:邻苯二甲酸酯是环境内分泌干扰物,是一类具有干扰人类和其他动物内分泌的有毒有机污染物。化妆品中邻苯二甲酸酯广泛应用于香水、指甲油、洗涤用品等,还作为一些产品的溶剂和芳香的固定液。过多使用含邻苯二甲酸酯的化妆品,会增加女性患乳腺癌的概率,而且容易引起孕妇流产及胎儿畸形。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 点击了解微波消解仪专场: a href=" https://www.instrument.com.cn/zc/398.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/zc/398.html /span /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 点击了解液相色谱仪专场: a href=" https://www.instrument.com.cn/zc/23.html" _src=" https://www.instrument.com.cn/zc/23.html" https://www.instrument.com.cn/zc/23.html /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 点击了解固相萃取仪专场: a href=" https://www.instrument.com.cn/zc/399.html" _src=" https://www.instrument.com.cn/zc/399.html" https://www.instrument.com.cn/zc/399.html /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 点击了解超声波清洗器专场: span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/zc/394.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " https://www.instrument.com.cn/zc/394.html /a /span /p
  • 硝基呋喃及其代谢物检测三大利器!
    硝基呋喃类抗菌药物是一种广谱抗生素,包括了硝基呋喃唑酮、呋喃它酮、呋喃妥因、呋喃西林,曾广泛应用于水产养殖业,用来治疗由大肠杆菌或沙门氏菌所引起的肠炎、疥疮、赤鳍病、溃疡病等。这类化合物对光敏感,衰减快,其母体化合物在动物体内及其产品中代谢很快,但其代谢物以蛋白结合物的形式存在可残留较长时间,目前各国均将硝基呋喃代谢物作为指示硝基呋喃类药物残留的标示物。因硝基呋喃类药物及其代谢物具有相当大的毒副作用,世界上绝大部分国家规定在食用动物组织中不允许有硝基呋喃药物残留;美国21CFR530.41规定食源性动物禁止食用呋喃唑酮和呋喃妥因;欧盟EEC2377/90将硝基呋喃类药物及其代谢物列为A类禁用药物;我国也于2002年颁布了禁用硝基呋喃类抗生素的禁令。2017年3月9日,农业部办公厅发布关于开展2017年水产品质检机构检测能力验证工作的通知,提到硝基呋喃类代谢物的检测方法依据为《水产品中硝基呋喃类代谢物残留量的测定-液相色谱-串联质谱法》(农业部783号公告-1-2006),使用内标法定量。First Standard® 推出硝基呋喃及其代谢物检测三大利器,确保您的实验全程无忧!它们是:4种硝基呋喃混标帮助您节省实验前的准备时间,浓度100ppm,可配制多组工作液Cat.No中文名称规格/CAS#1ST9262-100M4种硝基呋喃混标100ppm1ST4207呋喃唑酮67-45-81ST4208呋喃它酮139-91-31ST4209呋喃妥因67-20-91ST4210呋喃西林59-87-04种硝基呋喃类内标溶液许多客户反馈内标难找,我们这里4种内标齐全,1支混标搞定!Cat.No中文名称规格/CAS#1ST9230-100M4种硝基呋喃类内标混标100ppm1ST4226氨基脲-13C,15N2盐酸盐1173020-16-01ST4203D53-氨基-5-吗啉甲基-2-噁唑烷酮-d51017793-94-01ST4201D43-氨基-2-噁唑烷酮-d41188331-23-81ST4204C31-氨基-2-乙内酰脲-13C3957509-31-84种硝基呋喃代谢物衍生化混标不用担心标品衍生不成功或衍生不完全影响实验,我们提供衍生好的混标!Cat.No中文名称规格/CAS#1ST9283-100ppm4种硝基呋喃代谢物衍生化混标(以代谢物计)100ppm1ST42152-NP-呋喃妥因代谢物623145-57-31ST42172-NP-呋喃它酮代谢物183193-59-11ST42192-NP-呋喃唑酮代谢物19687-73-11ST42212-NP-呋喃西林代谢物16004-43-6如需订购请联系天津阿尔塔科技有限公司或各地经销商。
  • 动物源食品中硝基咪唑残留量测定的前处理方法
    硝基咪唑类药物(nitroimidazole,NMZs)是一类具有抗原虫感染和抗厌氧菌的硝基杂环类抗菌药物,其具有抗菌和抗原虫作用。近年来作为饲料添加剂广泛应用于畜牧业生产中,同时也是一种生长促进剂,以促进畜禽的生长及改善饲料的转换率。由于这类化合物含有的硝基杂环类物质具有潜在致癌、致畸和致突变作用,因此欧美等发达国家已禁止在食源性动物中使用硝基咪唑类药物。我国也对硝基咪唑类药物进行了严格的限制,2020年生效实施的GB 31650-2019《食品安全国家标准 食品中兽药最大残留限量》中仅规定了甲硝唑和地美硝唑两种物质允许作治疗使用,但不得在动物性食品中检出;同年农业农村部公告第250号,将洛硝达唑、替硝唑列入《食品动物中禁止使用的药品及其他化合物清单》中。本文阐述了如何将硝基咪唑类化合物从样品基质中分离提取出来,并经过净化后,转化成液质联用仪可以检测的形式。以提取、净化为重点,依据国标GB/T 21318-2007,为检测人员和相关领域研究人员提供一定的参考。应用范围猪肉/鸡肉/牛肉/猪肝/鸡肝/牛肝/猪肾/牛肾/鱼肉/奶粉/蜂蜜方法原理样品中残留的8种硝基咪唑、2种代谢物用甲醇-丙酮均质或超声波提取,经乙酸乙酯液液分配,以凝胶色谱(GPC)净化,再经固相萃取(SPE)净化,采用液相色谱/串联质谱确证,外标法定量测定。前处理仪器凝胶色谱仪(配有馏份收集浓缩器);组织捣碎机;均质器;超声波发生器;旋转蒸发器;高速离心机;氮吹仪;固相萃取装置;具塞锥形瓶(250 mL);分液漏斗(250 mL);浓缩瓶(50 mL、250 mL)。检测仪器:LC-MS/MS+ESI源01提取肌肉组织、脏器组织样品及水产品准确称取约20 g样品(精确至0.1 g)于250 mL具塞锥形瓶中,加入10 g硅藻土(80目~120目)与样品充分混匀,再依次加入5 mL饱和氯化钠水溶液和70 mL甲醇-丙酮(3+1),高速均质提取3 min。将提取液移入离心管中,于10000 r/min离心2 min,将上层提取液移入250 mL浓缩瓶中。残渣每次再用50 mL甲醇-丙酮(3+1)重复提取两次,合并提取液。 蜂蜜、乳及乳制品样品准确称取约20 g样品(精确至0.1 g)于250 mL具塞锥形瓶中,加入10 mL饱和氯化钠水溶液和70 mL甲醇-丙酮(3+1),超声波提取30 min。移入离心管中,于10000r/min离心2 min,将上层提取液移入250 mL浓缩瓶中。残渣每次再用50 mL甲醇-丙酮(3+1)重复提取两次,合并提取液。02液液分配将提取液于40 ℃水浴中旋转浓缩至只剩水相,并转移至250 mL分液漏斗中,加入50 mL饱和氯化钠水溶液和25 mL乙酸乙酯,振摇3 min,静置分层,收集乙酸乙酯相。水相再用20 mL乙酸乙酯重复提取两次,合并乙酸乙酯相。经无水硫酸钠柱脱水,收集于250 mL浓缩瓶中,于40 ℃水浴中旋转浓缩至近干,加入5 mL乙酸乙酯-环己烷(1+1)溶解残渣,并用0.45 μm滤膜过滤,待净化。03净化凝胶色谱(GPC)净化凝胶色谱净化条件如下:净化柱:700 mm×25 mm,Bio Bcads S X3,或相当者;流动相:乙酸乙酯-环己烷(1+1);流速:4.7 mL/min;样品定量环:5.0 mL;预淋洗体积:50 mL;洗脱总体积:210 mL;开始弃去体积:90 mL;收集体积:90 mL;最后弃去体积:30 mL。04凝胶色谱净化步骤如下将5 mL待净化液按照凝胶色谱净化条件进行净化,合并馏份收集器中的收集液于250mL浓缩瓶中,于40 ℃水浴中旋转浓缩至近干,加入5 mL甲醇以溶解残渣,待净化。05固相萃取(SPE)净化使用前用5 mL甲醇预淋洗C18固相萃取柱(1 g,6 mL),将5 mL溶解液倾入C18固相萃取柱中,以1 mL/min的速度收集流出液,再用10 mL甲醇进行洗脱。收集全部洗脱液于50 mL浓缩瓶中,于40 ℃水浴中旋转浓缩至干。用甲醇溶解并定容至1.0 mL,经0.45 μm滤膜过滤后,供液质测定和确证。国标解读及注意事项1.硝基咪唑标准物质用甲醇配成1000 μg/mL的标准储备液,在0 ~4 ℃条件下避光保存,可使用12个月。2.如果有条件,建议凝胶色谱净化系统中配合使用紫外检测器,准确监测目标化合物及杂质的流出情况。3.固相萃取净化过程中,C18柱作为净化柱使用,注意上样过程中就需要收集流出液,再和洗脱液进行合并。4.国标方法中使用基质添加标准曲线,外标法进行回收率的校正。注意做肉类样品的基质添加标准曲线前,先进行洗涤,然后加标,再进行后续提取净化等流程。5.建议使用硝基咪唑标准物质相对应的同位素内标,进行回收率的校正。参考文献:GB/T 21318-2007 动物源食品中硝基咪唑残留量检验方法图1 肌肉组织、脏器组织样品及水产品中硝基咪唑残留量测定的前处理流程图图2 蜂蜜、乳及乳制品样品中硝基咪唑残留量测定的前处理流程图坛墨相关产品推荐点击图片即可购买
  • 明确甲烷监测体系建设实施要点,8部门印发《广东省甲烷排放控制工作方案》
    8月26日,为积极应对气候变化,加强甲烷排放控制,根据生态环境部等11部门印发的《甲烷排放控制行动方案》(环气候〔2023〕67号),结合本省实际,广东省生态环境厅等8部门印发《广东省甲烷排放控制工作方案》,加快形成甲烷排放监管体系,推进减污降碳协同增效,有力有序有效控制甲烷排放。《方案》提出,到2025年,甲烷排放控制政策、技术和标准体系逐步建立,甲烷排放统计核算、监测监管等基础能力有效提升,甲烷资源化利用和排放控制工作取得积极进展。城市生活垃圾资源化利用率和城市污泥无害化处置率持续提升,污水处理甲烷回收利用水平持续提升。种植业、养殖业单位农产品甲烷排放强度稳中有降。到2030年,甲烷排放控制政策、技术和标准体系进一步完善,甲烷排放统计核算、监测监管等基础能力明显提升,甲烷排放控制能力和管理水平有效提高,甲烷排放持续稳步下降。全省废弃物处理往资源化、减量化方向持续推进。种植业、养殖业单位农产品甲烷排放强度进一步降低。能源领域甲烷排放得到有效控制。其中,重点任务“监测体系建设行动”指出:探索开展甲烷排放监测试点,在重点领域推广甲烷排放源监测,建设农田甲烷排放试验监测站。在现有的生态环境监测体系下,逐步建立地面监测、无人机和卫星遥感等天空地一体化的甲烷监测体系。结合省级温室气体清单编制工作,推动温室气体排放数据综合管理系统建设,建立重点行业企业甲烷排放核算和报告制度,推进甲烷排放因子本地化,逐步实现甲烷排放常态化核算,促进跨部门数据共享。探索开展大气甲烷浓度反演排放量模式等研究,加强反演数据对核算数据的校核。文件具体内容如下:广东省生态环境厅等8部门关于印发《广东省甲烷排放控制工作方案》的通知粤环〔2024〕6号各地级以上市人民政府,省有关单位:  经省人民政府同意,现将《广东省甲烷排放控制工作方案》印发给你们,请认真组织实施。广东省生态环境厅 广东省发展和改革委员会广东省科学技术厅 广东省工业和信息化厅广东省财政厅 广东省住房和城乡建设厅广东省农业农村厅 广东省能源局2024年8月22日广东省甲烷排放控制工作方案为积极应对气候变化,加强甲烷排放控制,根据生态环境部等11部门印发的《甲烷排放控制行动方案》(环气候〔2023〕67号),结合我省实际,制定本工作方案。一、总体要求坚持以习近平生态文明思想为指导,全面贯彻党的二十大和二十届二中、三中全会精神,深入贯彻习近平总书记对广东重要讲话、重要指示精神,坚持降碳、减污、扩绿、增长协同推进,处理好减排和发展、安全的关系,以经济社会发展全面绿色转型为引领,以夯实基础能力为关键,以高效利用、技术创新、协同控制为手段,加快形成甲烷排放监管体系,推进减污降碳协同增效,有力有序有效控制甲烷排放。到2025年,甲烷排放控制政策、技术和标准体系逐步建立,甲烷排放统计核算、监测监管等基础能力有效提升,甲烷资源化利用和排放控制工作取得积极进展。城市生活垃圾资源化利用率和城市污泥无害化处置率持续提升,污水处理甲烷回收利用水平持续提升。种植业、养殖业单位农产品甲烷排放强度稳中有降。到2030年,甲烷排放控制政策、技术和标准体系进一步完善,甲烷排放统计核算、监测监管等基础能力明显提升,甲烷排放控制能力和管理水平有效提高,甲烷排放持续稳步下降。全省废弃物处理往资源化、减量化方向持续推进。种植业、养殖业单位农产品甲烷排放强度进一步降低。能源领域甲烷排放得到有效控制。二、重点任务(一)固废填埋甲烷减排行动。建立生活垃圾分类处理体系,推进生活垃圾再生资源回收利用。生活垃圾填埋场设置导气收集设施,对填埋气体进行无害化处理。鼓励采取库容腾退、生态修复等措施有序推动填埋场封场整治。到2025年,珠三角地区实现垃圾“零填埋”,粤东西北地区垃圾焚烧占比达65%以上,全省城市生活垃圾资源化利用率不低于60%。(省发展改革委、生态环境厅、住房城乡建设厅等按职责分工负责)(二)废水处理甲烷减排行动。全面提升城镇生活污水收集处理能力,推进污水资源化利用和污泥无害化资源化处理。开展高甲烷排放行业企业甲烷回收利用试点示范,推广应用先进适用技术和成果。鼓励有条件的污水处理项目采用污泥厌氧消化等方式,并加强沼气回收利用。到2025年,全省地级及以上城市污泥无害化处置率达到95%以上,其他城市达到90%以上。(省发展改革委、科技厅、工业和信息化厅、生态环境厅、住房城乡建设厅等按职责分工负责)(三)种植业甲烷减排行动。强化稻田水分管理,推广稻田节水灌溉技术。鼓励试点改进稻田施肥管理,推广缓控释肥、有机肥替代化肥、秸秆炭化还田、秸秆基质还田、秸秆腐熟还田等技术。选育推广高产、优质、低碳水稻品种,示范好氧耕作等关键技术,创建示范项目和工程。推广绿色高效种养模式,开展水旱轮作试验示范,集成示范全过程绿色高质高效技术模式。(省发展改革委、工业和信息化厅、农业农村厅等按职责分工负责)(四)畜禽养殖减排行动。以畜禽规模养殖场为重点,推广工业化生产的集约化养殖模式,推广低蛋白日粮、全株青贮等技术和高产低排放畜禽品种,降低单位畜禽产品肠道甲烷排放强度。改进畜禽粪污处理设施装备,推广粪污密闭处理、气体收集利用或处理等技术,建立粪污资源化利用台账,实施畜禽粪污养分平衡管理,提高畜禽粪污处理水平,减少畜禽粪污排放甲烷等温室气体。到2025年,全省畜禽粪污综合利用率达到80%以上,2030年达到85%以上。(省发展改革委、工业和信息化厅、农业农村厅、生态环境厅等按职责分工负责)(五)农业碳汇提升行动。推广有机肥施用、秸秆科学还田、绿肥种植、粮豆轮作、有机无机肥配施等技术,构建用地养地结合的培肥固碳模式。将农田整治提升作为重点事项,推进退化耕地治理,提高土壤肥力,提升固碳潜力。持续推进秸秆肥料化、饲料化、能源化、原料化和基料化利用,发挥好秸秆直接还田耕地保育固碳和种养结合功能。推广秸秆还田后的水分、氮肥优化管理等科学技术措施,提高土壤固碳能力。到2025年,全省秸秆综合利用率稳定在86%以上。(省发展改革委、工业和信息化厅、农业农村厅、能源局等按职责分工负责)(六)可再生能源替代行动。发展农村沼气,鼓励有条件地区建设规模化沼气工程,推进沼气集中供气供热、发电上网,开展生物天然气车用或并入燃气管网等替代化石能源的试点示范。推广生物质成型燃料、打捆直燃、热解炭气联产等技术,配套清洁炉具和生物质锅炉,推广太阳能热水器、太阳能灯、太阳房,利用农业设施棚顶、鱼塘等发展光伏农业,助力农村地区清洁用能。(省发展改革委、农业农村厅、能源局等按职责分工负责)(七)油气系统甲烷减排行动。促进油气田放空甲烷排放管控,鼓励企业因地制宜开展伴生气与放空气回收利用,不能回收或难以回收的,应经燃烧后放空。完善油气领域泄漏检测与修复技术规范体系,推动全产业链泄漏检测与修复常态化应用。加强管线先进维检修技术、设备的研究与应用,有效提升甲烷泄漏控制能力。全面强化无组织排放控制,减少施工和使用过程中甲烷逸散排放。科学规划设计新建油气作业项目,在确保生产安全的基础上,努力逐步减少常规火炬燃放。到2025年,油气行业单位油气当量甲烷排放强度下降40%以上,油气放空气回收利用率达到50%以上。(省发展改革委、住房和城乡建设厅、生态环境厅、应急管理厅、市场监管局、能源局等按职责分工负责)(八)污染物与甲烷协同控制行动。制定重点领域污染物与甲烷协同控制技术指南,构建污染物减排与甲烷排放控制一体推进的治理体系。加强挥发性有机物与甲烷协同控制,妥善处置工业生产产生的含甲烷可燃性气体。推进垃圾填埋场恶臭污染物与甲烷协同控制。鼓励对废水有机物含量高、可生化性较好的行业依法依规与城镇污水处理厂协商水污染物纳管浓度。推动机动车船动力系统技术提升,实现污染物与甲烷协同控制。到2025年,污染治理与甲烷排放协同控制能力明显提升。(省发展改革委、工业和信息化厅、生态环境厅、住房城乡建设厅、农业农村厅等按职责分工负责)(九)监测体系建设行动。探索开展甲烷排放监测试点,在重点领域推广甲烷排放源监测,建设农田甲烷排放试验监测站。在现有的生态环境监测体系下,逐步建立地面监测、无人机和卫星遥感等天空地一体化的甲烷监测体系。结合省级温室气体清单编制工作,推动温室气体排放数据综合管理系统建设,建立重点行业企业甲烷排放核算和报告制度,推进甲烷排放因子本地化,逐步实现甲烷排放常态化核算,促进跨部门数据共享。探索开展大气甲烷浓度反演排放量模式等研究,加强反演数据对核算数据的校核。(省发展改革委、生态环境厅、农业农村厅等按职责分工负责)(十)科技创新支撑行动。加大科技研发支持力度,持续开展资源化利用、高产低排放育种、监测等关键技术的研发创新,发布各领域甲烷减排技术目录,形成一批综合性技术解决方案。加快推进重点领域甲烷排放控制装备和技术集成化和产业化,部署建设一批国家重点研发创新项目和重大工程。全面落实生活垃圾填埋场污染控制、城镇污水处理厂污染物排放等标准,鼓励大型企业开展甲烷减排,推动相关产业发展。(省发展改革委、科技厅、生态环境厅等按职责分工负责)(十一)标准体系建设行动。开展甲烷排放相关标准制修订工作,适时提升油气甲烷泄漏排放标准,制订水稻、畜禽养殖及废物资源化利用甲烷排放控制技术规范,制修订甲烷排放监测、核算、报告、核查等技术规范,完善甲烷利用项目温室气体减排量核算方法,及时更新缺省排放因子。开发固体废弃物资源化利用等减少甲烷排放的方法学。(省发展改革委、工业和信息化厅、生态环境厅、农业农村厅、市场监管局等按职责分工负责)(十二)经济激励政策创新行动。推进具有甲烷减排效益的项目纳入EOD项目库。探索研究水稻种植和畜禽养殖甲烷减排奖补政策。探索将甲烷纳入广东碳市场或碳普惠等市场机制,支持符合条件的甲烷利用和减排项目开展温室气体自愿减排交易。鼓励甲烷排放控制工程项目开展气候投融资。(省发展改革委、财政厅、生态环境厅、住房城乡建设厅、农业农村厅等按职责分工负责)三、保障措施(一)加强组织领导。省生态环境厅会同有关部门,制定具体落实措施,加强统筹协调和调度指导,推动信息互联互通,形成工作合力。充分发挥行业协会等社会团体作用,督促企业自觉履行社会责任。(省发展改革委、科技厅、工业和信息化厅、财政厅、生态环境厅、住房城乡建设厅、农业农村厅、能源局等按职责分工负责)(二)强化责任落实。健全甲烷减排工作协调机制,加强省与市县政策的纵向协同和财政政策与相关体系的横向协同,形成政策与资金的工作合力,确保各项重点举措落地见效。生态环境部门会同有关部门加强行动方案实施情况的跟踪调度分析,定期调度落实甲烷排放控制目标任务。(省发展改革委、科技厅、工业和信息化厅、财政厅、生态环境厅、住房城乡建设厅、农业农村厅、能源局等按职责分工负责)(三)加强国际合作。通过气候变化南南合作、“一带一路”绿色发展国际联盟等平台,在甲烷控制政策、技术、标准体系、甲烷监测、核算、报告和核查体系以及减排技术创新等方面加强交流合作。(省发展改革委、科技厅、工业和信息化厅、生态环境厅、住房城乡建设厅、农业农村厅等按职责分工负责)(四)强化宣传引导。开展对甲烷排放监测、核算、报告和核查体系建立以及污染物与甲烷控制的相关培训。充分利用各类传统媒体和新媒体,拓宽宣传渠道,加强对甲烷排放控制的气候、经济、环境和安全效益的宣传,开展甲烷减排优秀做法和典型经验做法宣传。(省发展改革委、生态环境厅、住房城乡建设厅、农业农村厅等按职责分工负责)附件:广东省甲烷重大项目专栏广东省甲烷重点项目专栏专栏1固废填埋甲烷减排行动实施要点1.珠三角地区的江门市和粤东粤西粤北地区的阳江、河源、清远、云浮市等焚烧能力占比较低的地市,要加快谋划和推进焚烧发电项目建设,提升焚烧处理能力。2.对于有富余焚烧能力的地区,鼓励开展生活垃圾填埋场存量垃圾筛分治理工作,腾退填埋场库容。3.鼓励通过联合重整方式实现垃圾填埋气柔性制备绿色氢气/甲醇,实现资源高效利用,减少甲烷排放。支持广州市垃圾填埋气联合重整柔性制备绿色氢气/甲醇关键技术示范项目。专栏2 废水处理甲烷减排行动实施要点1.推进污泥源头减量和末端无害化处置,推行“深度脱水+焚烧掺烧”技术路线,按“集中+分散”模式建设污泥处理处置设施。鼓励引导污泥干化减量,鼓励与燃煤电厂协同处理、与城市固废协同资源化利用。支持推进佛山市生活垃圾资源化(掺烧)项目、东莞市污泥焚烧处置设施等项目建设。2.鼓励食品饮料、造纸等行业和园区开展工业废水厌氧处理甲烷回收利用试点示范项目。专栏3 种植业甲烷减排行动实施要点1.开展华南双季稻节水减排与绿色高产关键技术研发与集成示范。根据粤、东、西、北和珠三角稻作区的气候生态环境和耕作模式(直播、抛秧、机插秧等)特点以及各地稻米产业的品种需求,筛选适用于直播和机插秧等耕作模式的低甲烷排放、节水耐旱和优质高产品种4-6个。通过节水灌溉、水肥耦合高效运筹技术和秸秆好氧还田耕作等关键技术的创新集成低碳高产综合技术模式2-3套,建立低碳高产综合技术示范基地2000亩,技术示范推广50000亩次,培训农技人员600人次以上。2.开展农业水旱轮作碳减排及耕地固碳增汇试验示范项目。从土壤灌溉优化管理、低碳减排栽培技术模式构建、耕地固碳增汇等技术研究形成不同水旱轮作模式下的协同控制甲烷和氧化亚氮排放的肥料运筹和栽培管理技术,开展技术集成与应用示范。3.推广集成示范全过程绿色高质高效技术模式。采用无人拖拉机耕田,无人平地机整地,无人插秧机和无人直播机播种,无人收割机收获,机械烘干的现代化种田模式,进行耕、种、管、收及加工,实现了全程机械化、信息化、智能化融合发展。专栏4 畜禽养殖减排行动实施要点1.鼓励畜禽粪污还田利用,指导规模养殖场制定畜禽粪肥还田利用计划,推动建立畜禽粪污处理和粪肥利用台账。加快畜禽粪污资源化利用先进技术和装备研发,支持养殖场户建设畜禽粪污处理和利用设施。积极推广全量收集利用畜禽粪污、全量机械化施用等经济高效的粪污资源化利用技术模式。支持畜禽养殖粪污处理气体收集利用工程及协同控制示范项目建设。2.开展畜禽养殖甲烷排放控制技术研究与示范推广。开发微量高效的甲烷减排高效饲料添加剂,研究制定畜禽生产过程中甲烷排放核算标准,开展畜禽甲烷减排评估工作,建立科学有效的畜禽养殖全过程甲烷排放控制方案,开展试点示范工作,进行新技术示范推广。专栏5 秸秆综合利用行动实施要点1.开展基于秸秆低碳高值利用的稻田固碳减排产业链技术集成与示范,创建基于植物成型的生物炭碳足迹计量方法,制定秸秆低碳利用技术标准/规程1-2个,建立相应的试验示范区1-2个,合计面积500亩-1000亩。2.开展水稻秸秆低碳利用技术示范项目,基于还田方式、水分管理和养分管理集成并构建水稻秸秆低碳利用综合技术。建设典型示范区3个,示范面积500亩以上,评估示范技术对甲烷排放、有机碳、产量等的影响,形成可推广的技术模式。3.开展零甲烷排放的固碳型秸秆基快递包装材料及应用示范,建成可消纳1万亩农田秸秆的示范基地,建成千吨级秸秆基复合材料及易回收循环利用快递箱加工生产示范线。专栏6 监测体系建设行动实施要点1.开展甲烷监测技术试点项目,以深圳市为试点,构建环境条件的垃圾填埋场甲烷浓度监测和排放反演方法,建立全面、高准确度的城市垃圾填埋场甲烷排放清单,全面了解城市的垃圾填埋场排放规模和分布,并进一步推广至其他重点行业和区域(如工业园区、港口码头等)的甲烷浓度监测及排放反演,以提升对不同行业和区域的甲烷排放源的认知水平。通过这种“自上而下”的方法系统梳理整个城市的甲烷排放情况,为甲烷控排行动提供数据支撑。2.开展省稻田甲烷监测技术试点示范项目,围绕我省主要稻田种植区域,采用原位监测耦合大尺度气象数据,建设1个广东省稻田甲烷原位监测体系,全面系统监测稻田生态系统甲烷碳排放,结合实地监测数据和模型预测,评估广东省典型稻田甲烷减排固碳潜力。
  • 25种VOC混标,24种SVOC,7种有机磷/地表水GB3838-2002定制
    国家环保总局和国家质量监督检验检疫总局制定的地表水环境质量标准GB3838-2002 于2002 年4 月28 日通过,2002 年6月1 日正式实施。 其中表三特定80项一直没有针对性强的定制混标,我公司根据实际情况,分别和国外专业标样生产商定制三种有机物混标,分别是挥发性有机物前35项,半挥发性有机物前35项以及有机磷7项定制混标,由于针对性强,非常适合我国现有地表水有机项目检测。并且我们根据实际情况提供这些混标的内标和配套耗材解决方案。 上海澜锐公司根据实际情况和国外订制一批大量的内标及替代物,在保证质量的前提下,把价格降到最低,希望对我们的环境工作者有所帮助,所有产品均为进口有证标液,通过ISO:17025和ISO:9001认证,保证有效性和可溯源性。 序号 名称 规格 促销价格 备注 LR-VOC-001 25种VOC混标 100ppm甲醇 850 地表水前35项VOC混标 LR-SVOC-002 24种SVOC混标 500ppm甲苯 950 地表水前35项SVOC混标 LR-OP-003 7种有机磷农药 100ppm甲醇 620 地表水80项有机磷混标 LR-S-001 氟代苯 2000ppm甲醇 165 挥发性有机物内标 LR-S-002 1,2-二氯苯-d4 2000ppm甲醇 165 挥发性有机物替代物 LR-S-003 4-溴氟苯 2000ppm甲醇 165 挥发性有机物替代物 SVOC-内标 十氯联苯 200ppm正己烷 245 SVOC-内标混标 菲-d10、萘-d8、苊-10、菲-10、屈-d12 、氘代对二氯苯 1000-2000ppm二氯甲烷溶剂 450 SVOC-替代物混标 苯酚-d6、2-氟苯酚,2,4,6-三溴苯、硝基苯-d5、2-氟联苯、三联苯-d14 2000ppm二氯甲烷溶剂 680 多环芳烃内标 十氟联苯 2000ppm二氯甲烷溶剂 245 混标内容 LR-VOC-001 三氯甲烷;四氯化碳;三溴甲烷;二氯甲烷;1.2&mdash 二氯乙烷;环氧氯丙烷500ppm;氯乙烯;1,1&mdash 二氯乙烯;1,2&mdash 二氯乙烯;三氯乙烯;四氯乙烯;氯丁二烯;六氯丁二烯;苯乙烯;苯;甲苯;乙苯;二甲苯①;异丙苯;氯苯;1,2&mdash 二氯苯;1,4&mdash 二氯苯 LR-SVOC-002 三氯苯②;四氯苯③;六氯苯;硝基苯;二硝基苯④;2,4&mdash 二硝基甲苯;2,4,6&mdash 三硝基甲苯;硝基氯苯⑤;2,4&mdash 二硝基氯苯;2,4&mdash 一氯苯酚;2,4,6&mdash 三氯苯酚;五氯酚;苯胺;邻苯二甲酸二丁酯;邻苯二甲酸二辛酯;苯并(a)芘 LR-OP-003 甲基对硫磷 对硫磷 马拉硫磷 乐果 敌敌畏 敌百虫 内吸磷 我公司可以提供GB3838-2002其它所有标样,有任何疑问请随时与我们公司联系。 24小时技术服务电话:13370063777 QQ:443824598 上海澜锐仪器科技有限公司 地址:上海莘凌路285号 电话:0086 21 25902666,25902777,29415777
  • GB5749-2006生活饮用水16种voc订制混标
    1985年发布的《生活饮用水卫生标准》(GB5749-85)已不能满足保障人民群众健康的需要。为此,卫生部和国家标准化管理委员会对原有标准进行了修订,联合发布新的强制性国家《生活饮用水卫生标准》 (GB5749-2006)。2007年7月1日,正式实施。 饮用水16种VOC挥发性混标订制/甲醇溶剂 溶剂:甲醇 100ppm*1ml 编号 CAS 英文名称 中文名称 浓度(ppm) 1 67-66-3 Trichloromethane 三氯甲烷 100 2 56-23-5 Carbon tetrachloride 四氯化碳 100 3 75-25-2 Bromoform 溴仿 100 4 197-59-2 Dichloromethane 二氯甲烷 1005 156-60-5 trans-1,2-Dichloroethene 反式-1,2-二氯乙烯 100 6 156-59-2 cis-1,2-Dichloroethene 顺式-1,2-二氯乙烯 100 7 106-89-8 3-Chloro-1,2-epoxypropane 环氧氯丙烷 500 8 75-01-4 Chloroethylene 氯乙烯 100 9 75-35-4 1,1-Dichloroethylene 1,1- 二氯乙烯 100 10 107-06-2 1,2-Dichloroethane 1,2- 二氯乙烷 100 11 79-01-6 Trichloro ethylene 三氯乙烯 100 12 127-18-4 Tetrachloroethylene 四氯乙烯 100 13 87-68-3 Hexachloro-1,3-butadiene 六氯丁二烯 100 14 124-48-1 Dibromochloromethane 一氯二溴甲烷 100 15 75-27-4 Bromodichloromethane 二氯一溴甲烷 100 16 71-55-6 1,1,1-Trichloroethane 1,1,1-三氯乙烷 100 其它相关订制混标 混标 组分 规格 12种氯苯类订制混标 1,2- 二氯苯;1,4- 二氯苯;1,3- 二氯苯;氯苯;1,2,3- 三氯苯;1,2,4- 三氯苯;1,3,5- 三氯苯;1,2,3,4- 四氯苯;1,2,3,5- 四氯苯;1,2,4,5- 四氯苯;五氯苯;六氯苯(100ppm) 200ppm甲醇溶剂*1ml 10种硝基苯类混标 2,4-二硝基氯苯;2,4,6-三硝基甲苯;2,4-二硝基甲苯;邻硝基氯苯;间硝基氯苯;对硝基氯苯;邻二硝基苯;间二硝基苯;对二硝基苯;硝基苯; 2000ppm甲醇溶剂*1ml 6种有机磷订制混标 甲基对硫磷 对硫磷 马拉硫磷 乐果 敌敌畏 内吸磷 100ppm甲醇溶剂*1ml 8种有机氯订制混标 4,4' -DDD、4,4' -DDE、4,4' -DDT、2,4' -DDT、&alpha -HCH、&beta -HCH、&gamma -HCH、&delta -HCH 50ppm甲苯甲醇溶剂*1ml 8种苯系物混合标液 苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、苯乙烯、异丙苯 100ppm甲醇
  • “伏虎”女杰张桂梅:仪器维修准确度和完好率均达100%
    p   一个女孩子,却酷爱仪器维修,承担的是煤矿瓦斯仪器的检修,肩负的是矿井安全生产的重任 她没进过大学校门,全凭自学成才,创造的先进工作法在全省全国推广,产生了巨大的经济和社会效益 她言辞甚少,独喜欢琢磨钻研,创新了多项维修技术 她有“三晋技术能手”的称号,有以自己名字命名的技能大师工作室 24年,她和她的班组对瓦斯仪器的维修准确度和完好率均达100% 今年“三八”节,她又荣登山西省十大杰出女职工榜。她就是被工友们誉为有“降龙伏虎”本领的女技能大师——华晋焦煤有限责任公司沙曲矿瓦斯仪器维修工张桂梅。 /p p   1988年高中毕业后,酷爱仪器维修的张桂梅开始系统学习煤矿瓦斯检测仪器工作原理,特别是光干涉甲烷测定器修理技术。经过数年的钻研努力,1992年,她拿到了国家技术监督局颁发的修理资格证书,后被吕梁市煤管局特聘为光干涉甲烷测定器修理工,负责全市13个县的煤矿光干涉甲烷测定器维修,为吕梁煤矿安全生产出了大力,并培养出了十几名专业技术修理人员,多次受到表彰奖励。 /p p   1999年10月,张桂梅被聘为华晋焦煤沙曲矿仪器维修工,一人独挑沙曲矿所有瓦斯仪器修理的重担。沙曲矿属于高瓦斯矿井,要降服瓦斯这只猛虎,必须从源头做起,那就是确保瓦斯检测的准确、及时。完成这项工作,瓦斯检测仪器是根本保障,不能有丝毫差错和闪失。这就要求张桂梅每天对全矿瓦斯仪器一台台进行检修,确保每台仪器“健康上岗”。 /p p   一丝不苟地检修瓦斯仪器并不是张桂梅追求的全部,她的个性和执著,让她对瓦斯仪器技术的钻研和技术改进从未停止过。 /p p   张桂梅成功改造了单节电池光干涉甲烷测定器。改造后的仪器,能及时准确判断干燥剂是否失效,检查更换简化,不仅杜绝了不安全隐患,而且省时省力,大大提高了工作效率。此项成果在全省煤炭系统推广。 /p p   张桂梅还对气室镜片的干燥剂进行改革,由变色硅胶替代白色无水氯化钙,从根本上确保了气室镜片的清洁,提高了通光水平,保证了性能可靠 对平面镜组的维修进行创新,总结出快速寻找干涉条纹的三个要点……张桂梅说,技术创新没有止境。 /p p   2011年,张桂梅在华晋焦煤第二届技能比武中获得了安全仪器监测工光干涉甲烷测定器修理工种第一名 在第四届全国煤炭行业竞赛中,获“优秀选手”称号 2014年,她的《光干涉甲烷测定器“望、闻、问、切”操作法》被山西焦煤评为先进操作法,在全省同行业中推广 2015年,她被省政府授予“三晋技术能手”称号,并牵头成立技能大师工作室,以专题讲座、立项攻关、导师带徒来发挥高技能人才的带头作用,先后培养出十几名专业修理技术人员,还多次辅导瓦斯员和通风技术员参加各种技能比武和职工技能运动会。 br/ /p
  • 饮用水新国标GB/T 5749-2006相关色谱消耗品
    2012年7月1日起,我国将强制实施新版的《生活饮用水卫生标准》GB/T 5749-2006,修订后的新标准,其中一项最大的变化就是检测指标从35项增加到了106项。 迪马科技作为全球领先的色谱消耗品制造和供应商,其产品覆盖了色谱分析实验室所用的绝大部分色谱消耗品:化学标准品、GC毛细柱、HPLC色谱柱、各品牌GC/HPLC仪器配件、SPE样品前处理、化学高纯溶剂等。 针对新国标GB/T 5749-2006中53项目有机物的检测,迪马科技提出了相应的色谱消耗品解决方案。 1. 标准中相关的化学标准品 1.1 有机物标准品(单标) 中文名称 CAS 浓度 溶液 包装 货号 四氯化碳 56-23-5 100ug/mL Methanol 1mL 12-F6JS 苯并[a]芘 50-32-8 500ug/mL Toluene 1mL 12-Sp-9161-F73SZ 甲醛 50-00-0 Water 1g 12-PS-2031 二氯甲烷 75-09-2 100ug/mL Methanol 1mL 12-F44JS 1, 2-二氯乙烷 107-06-2 100ug/mL Methanol 1mL 12-F10JS 1,1,1-三氯乙烷 71-55-6 100ug/mL Methanol 1mL 12-F11JS 三溴甲烷 75-25-2 100ug/mL Methanol 1mL 12-F47JS 一氯二溴甲烷 124-48-1 100ug/mL Methanol 1mL 12-F51JS 二氯一溴甲烷 75-27-4 100ug/mL Methanol 1mL 12-F48JS 环氧氯丙烷 106-89-8 2000ug/mL Acetonitrile 1mL 12-F2016JS 氯乙烯 75-01-4 100ug/mL Methanol 1mL 12-F88JS 1, 1-二氯乙烯 75-35-4 100ug/mL Methanol 1mL 12-F29JS 顺式1,2-二氯乙烯 156-59-2 100ug/mL Methanol 1mL 12-F821JS 反式1,2-二氯乙烯 156-60-5 100ug/mL Methanol 1mL 12-F30JS 三氯乙烯 79-01-6 100ug/mL Methanol 1mL 12-F87JS 四氯乙烯 127-18-4 100ug/mL Methanol 1mL 12-F85JS 六氯丁二烯 87-68-3 100ug/mL Methanol 1mL 12-F52JS 二氯乙酸 79-43-6 100ug/mL MTBE 1mL 12-F2083JS 三氯乙酸 76-03-9 100ug/mL MTBE 1mL 12-F2084JS 三氯乙醛 75-87-6 1000ug/mL Methanol 1mL 12-F804S 苯 71-43-2 100ug/mL Methanol 1mL 12-F4JS 对二甲苯 106-42-3 100ug/mL Methanol 1mL 12-F830JS 间二甲苯 108-38-3 100ug/mL Methanol 1mL 12-F829JS邻二甲苯 95-47-6 100ug/mL Methanol 1mL 12-F719JS 乙苯 100-41-4 100ug/mL Methanol 1mL 12-F38JS 苯乙烯 100-42-5 100ug/mL Methanol 1mL 12-F716JS 2,4,6-三氯酚 88-06-2 100ug/mL Methanol 1mL 12-F21JS 氯苯 108-90-7 100ug/mL Methanol 1mL 12-F7JS 1,2-二氯苯 95-50-1 100ug/mL Methanol 1mL 12-F25JS 1,4-二氯苯 106-46-7 100ug/mL Methanol 1mL 12-F27JS 1,2,3-三氯苯 87-61-6 100ug/mL Methanol 1mL 12-F831JS 1,2,4-三氯苯 120-82-1 100ug/mL Methanol 1mL 12-F8JS 1,3,5-三氯苯 108-70-3 100ug/mL Hexane 1mL 12-F2050JS 邻苯二甲酸二(2一乙基己基)酯 117-81-7 500ug/mL Toluene 1mL 12-Sp-9161-F66SZ 丙烯酰胺 79-06-1 100ug/mL Methanol 1mL 12-Sp-9161-F2193SZ 微囊藻毒素-RR溶液 111755-37-4 10ug/mL Methanol 1mL 56-33577-1ML (-20℃保存) 微囊藻毒素-YR溶液 101064-48-6 10ug/mL Methanol 1mL 55-33576-1ML 微囊藻毒素-LR溶液 101043-37-2 10ug/mL Methanol 1mL 56-33893-1ML (-20℃保存) 灭草松 25057-89-0 100mg 46001 100ug/mL Acetone 1mL 12-F2038JS 百菌清 1897-45-6 100mg 46005 100ug/mL Acetonitrile 1mL 12-Sp-9161-F2220SZ 草甘膦 1071-83-6 100mg 46010 100ug/mL De-ionized water 1mL 12-F1104JS 乐果 60-51-5 100mg 46025 100ug/mL Methanol 1mL 46621 滴滴涕 50-29-3 100mg 46031 100ug/mL Methanol 1mL 46625 2,4-滴 94-75-7 100mg 46171 100ug/mL Acetone1mL 12-F954JS 六氯苯 118-74-1 100mg 46199 500ug/mL Toluene 1mL 12-Sp-9161-F9SZ 林丹 58-89-9 100mg 46201 100ug/mL Methanol 1mL 46626 六六六(异构体混合) 608-73-1 100mg 46551 莠去津1912-24-9 100mg 46161 100ug/mL Acetonitrile 1mL 12-PS-380AJS 毒死蜱 2921-88-2 100mg 46026 100ug/mL Isooctane 1mL 12-F2057JS 注:53项有机化合物中三氯甲烷,甲苯,七氯,马拉硫磷,对硫磷,甲基对硫磷,五氯酚,呋喃丹,敌敌畏,溴氰菊酯为管制产品。 1.2 有机物标准品(混标) 25种VOC(挥发性有机物)混标 化合物 化合物 化合物 苯 苯乙烯 对二甲苯 1.2-二氯苯 1.4-二氯苯 二氯甲烷 1.2-二氯乙烷 1.1-二氯乙烯 反式-1.2-二氯乙烯 环氧氯丙烷* 甲苯 间二甲苯 邻二甲苯 六氯丁二烯 氯苯 2-氯-1.3-丁二烯 氯乙烯 三氯甲烷 三氯乙烯 三溴甲烷 顺式-1.2-二氯乙烯 四氯化碳 四氯乙烯 乙苯 异丙苯 *500 &mu g/mL在甲醇中 100 &mu g/mL在甲醇中,1mL/安瓿,Cat.No.: 12-SP-DC02Z 24种SVOC(半挥发性有机物)混标 化合物 化合物 化合物 苯胺 苯并(a)芘 对二硝基苯 对硝基氯苯 2.4-二氯苯酚 2.4-二硝基甲苯 2.4-二硝基氯苯 间二硝基苯 间硝基氯苯 邻苯二甲酸二(2- 乙基己基)酯 邻苯二甲酸二丁酯 邻二硝基苯 邻硝基氯苯 六氯苯 1.2.3-三氯苯 1.2.4-三氯苯 1.3.5-三氯苯 2.4.6-三氯苯酚 2.4.6-三硝基甲苯 1.2.3.4-四氯苯 1.2.3.5-四氯苯 1.2.4.5-四氯苯 五氯苯酚 硝基苯 500 &mu g/mL在甲苯中,1mL/安瓿,Cat.No.: 12-SP-DC01Z 氯苯类化合物混标(12个化合物)New! 包括HJ621-2011中的12个化合物化合物 &mu g/mL 化合物 &mu g/mL 氯苯 100,000 1,3,5-三氯苯 200 1,2-二氯苯 1,000 1,2,3,4-四氯苯 50.0 1,3-二氯苯 1,000 1,2,3,5-四氯苯 50.0 1,4-二氯苯 1,000 1,2,4,5-四氯苯 50.0 1,2,3-三氯苯 200 五氯苯 20.0 1,2,4-三氯苯 200 六氯苯 20.0 在甲醇中,1mL/安瓿,Cat.No.: 12-SP-9161-125YAWZ 常见有机氯农药混标(8个化合物) 化合物 化合物 化合物 化合物 a-六六六 b-六六六 d-六六六 g-六六六(林丹) 4,4&rsquo -滴滴滴 4,4&rsquo -滴滴涕 2,4&rsquo -滴滴涕 4,4&rsquo -滴滴伊 100 &mu g/mL在丙酮中,1 mL/安瓿,Cat.No.: 12-SP-DC03Z 地表水检测硝基苯混标(10个化合物) 包括GB3838 2002中10种化合物 化合物 化合物 化合物 化合物 2,4-二硝基氯苯 2,4,6-三硝基甲苯 2,4-二硝基甲苯 邻硝基氯苯 间硝基氯苯 对硝基氯苯 邻二硝基苯 间二硝基苯 对二硝基苯 硝基苯 1000ug/ml在甲苯中,1 mL/安瓿,Cat.No.: 12-SP-DC07Z 挥发性卤代烃混标(13个化合物)包括HJ 620-2011中的13个化合物 化合物 mg/mL 化合物 mg/mL 1,1-二氯乙烯 500 三氯甲烷 20 二氯甲烷 2000 四氯化碳 20 反式-1,2-二氯乙烯 2000 三氯乙烯 20 顺式-1,2-二氯乙烯 2000 四氯乙烯 20 1,2-二氯乙烷 2000 一溴二氯甲烷 20 二溴一氯甲烷 100 六氯丁二烯 20 三溴甲烷 100 在甲醇中,1mL/安瓿,Cat.No.: 12-SP-9161-1216YWZ 三氯苯混标 化合物 化合物 化合物 1,2,3-三氯苯 1,2,4-三氯苯 1,3,5-三氯苯 500 /mL在甲苯中,1 mL/安瓿,Cat.No.: 12-Sp-9161127-6WZ 以上为部分水质检测用混标,若无法满足您检测需求,迪马科技还可根据您的具体需求进行定制服务,欢迎来电咨询! 2. 标准中相关的GC/HPLC色谱柱 检测项目 方法 产品 货号 84种挥发性有机化合物 GB/T 5750.8-2006 附录A 吹脱捕集/GC-MS法测定挥发性有机化物 DM-624 30 m x 0.53 mm x 3.00 &mu m 7751 DM-624 30 m x 0.25 mm x 1.40 &mu m7721 DM-5 30 m x 0.32 mm x 1.00 &mu m 7235 118种半挥发性有机化合物 GB/T 5750.8-2006 附录B 固相萃取/GC-MS法测定半挥发性有机化合物 DM-5MS 30 m x 0.25 mm x 0.25 &mu m 8221 四氯化碳、三氯甲烷 GB/T 5750.8-2006中1.2 DM-5 30 m x 0.32 mm x 0.25 &mu m 7231 氯乙烯 GB/T 5750.8-2006中4.2 DM-5 30 m x 0.53 mm x 1.00 &mu m 7249 微囊藻毒素-RR,微囊藻毒素-LR GB/T 5750.8-2006中13.1 Diamonsil C18(2) 5u 250 x 4.6mm 99603 苯、甲苯、二甲苯、乙苯、苯乙烯 GB/T 5750.8-2006中18.2 DM-FFAP 30 m x 0.25 mm x 0.25 &mu m 7621 滴滴涕和六六六的各种异构体 GB/T 5750.9-2006中1.2 DM-1701 30 m x 0.32 mm x 0.25 &mu m 7331 敌敌畏、甲拌磷、内吸磷、乐果、甲基对硫磷、马拉硫磷、对硫磷 GB/T 5750.9-2006中4.2 DM-1701 30 m x 0.32 mm x 0.25 &mu m 7331 灭草松、2,4-滴 GB/T 5750.9-2006中12.1 DM-1701 30 m x 0.25 mm x 0.25 &mu m 7321 呋喃丹、甲萘威 GB/T 5750.9-2006中15.1 Diamonsil C18(2) 5u 150 x 4.6mm 99601 毒死蜱 GB/T 5750.9-2006中16.1 DM-1701 30 m x 0.32 mm x 0.25 &mu m 7331 莠去津 GB/T 5750.9-2006中17.1 Diamonsil C18(2) 5u 250 x 4.6mm 99603 七氯 GB/T 5750.9-2006中19.1 DM-1701 30 m x 0.53 mm x 1.00 &mu m 7351 一氯乙酸、二氯乙酸、三氯乙酸 GB/T 5750.10-2006中9.1 DM-5 30 m x 0.25 mm x 0.25 &mu m 7221 2,4,6-三氯酚,五氯酚 GB/T 5750.10-2006中12.2 DM-5 30 m x 0.32 mm x 0.25 &mu m 7231 另外,我们可以为您提供各种规格和型号的填充柱产品 3. 标准中相关SPE固相萃取柱产品 检测项目 方法 产品 货号 微蓝藻毒素 GB/T 5750.8-2006中13.1 C18固相萃取小柱,ProElut C18 5 g / 20 mL 20/pk 63108 118种半挥发性有机化合物 GB/T 5750.8-2006 附录B 固相萃取/GC-MS法测定半挥发性有机化合物 C18固相萃取小柱,ProElut C18 来电详询 莠去津 GB/T 5750.9-2006中17.1 硅酸镁吸附剂,ProElut Florisil 填料100g 65082 更多SPE产品,欢迎来电咨询! 4. 标准中相关的通用色谱消耗品 产品 规格 货号 12管防交叉污染真空SPE萃取装置 12位 244358 考克(控制流量) 15/pk 4806 真空/正压两用泵,无油 1/pk 99011 抽滤瓶套装 (包括硅橡胶管2米,2L抽滤瓶及橡胶塞) 1/pk 99013 针头式过滤器 Nylon 13 mm,0.22 &mu m 100/pk 37177 针头式过滤器 Nylon 13 mm,0.45 &mu m 100/pk 37180 瓶架/蓝色(现货) 50孔 52401B 瓶架/白色(现货) 50孔 52401A 2 mL样品瓶(棕色/螺纹) 100/pk 5323 2 mL样品瓶盖/含垫(已经组装) 100/pk 5325 EPA 样品瓶 两种瓶盖可选:实心盖(内衬Teflon 垫)和带孔盖(Teflon/ 硅橡胶垫) 20 mL, 带孔盖, 棕色 72/pk 55257 20 mL, 实心盖, 棕色 72/pk 55419 40 mL, 带孔盖, 棕色 72/pk 55258 40 mL, 实心盖, 棕色 72/pk 55423 60 mL, 带孔盖, 棕色 72/pk 55259 60 mL, 实心盖, 棕色 72/pk 55428 EPA 样品瓶替换垫,Teflon/ 硅橡胶垫 22 mm, 100/pk 54945 各种规格储样瓶/顶空瓶 N/A 来电详询 压盖器和起盖器 压盖器,20 mm 1/pk 54975 起盖器,20 mm 1/pk 54980 起盖器,20 mm,钳式经济型1/pk 52350 GC进样针 (其他更多规格欢迎来电咨询) 5 &mu L 26s 1/pk H87900 10 &mu L 26s 1/pk H80300 25 &mu L 22s 1/pk H80400 50 &mu L 22s 1/pk H80500 HPLC进样针 (其他更多规格欢迎来电咨询) 10 &mu L 22s 1/pk H80365 25 &mu L 22s 1/pk H80465 50 &mu L 22s 1/pk H80565 5.高纯化学试剂 产品 描述 货号 DikmaPure® 高纯溶剂 乙腈 Acetonitrile HPLC, 4L 50101 Acetonitrile P.R., 4L 50139 甲醇 Methanol HPLC, 4L 50102 Methanol P.R., 4L 50140 乙酸乙酯 Ethyl acetate HPLC, 4L 50104 Ethyl acetate P.R., 4L 50105 正己烷 n-Hexane HPLC, 4L 50115 n-Hexane P.R., 4L 50116 环己烷 Cyclohexane HPLC, 4L 50103 Cyclohexane P.R., 4L 50143 二氯甲烷 Dichloromethane HPLC, 4L 50117 Dichloromethane P.R., 4L 50118 异辛烷 Isooctane HPLC, 4L 50109 DikmaPure® HPLC 缓冲盐和酸碱 三乙胺 50 mL 50131 冰醋酸/ 乙酸 50 mL 50132 磷酸 50 mL 50133 三氟乙酸 50 mL 50134 甲酸 50 mL 50144 醋酸铵 100 g 50138 磷酸二氢钠,无水 100 g 50157 磷酸氢二钠,无水 100 g 50158 磷酸二氢钾,无水 100 g 50159 磷酸氢二钾,无水 100 g 50160
  • 猪肉中四种硝基呋喃类代谢物残留量的测定 液相色谱串联质谱法
    一.实验目的 本文使用天津博纳艾杰尔科技有限公司的Cleanert PEP-2固相萃取柱、Venusil MP C18色谱柱和AB SCIEX公司的API 4000+质谱仪,遵照中华人民共和国国家标准《猪肉、牛肉、鸡肉、猪肝和水产品中硝基呋喃类代谢物残留量的测定(GB/T 20752-2006)》提供的方法,检测猪肉中的4种硝基呋喃类代谢物残留。 二.实验方法 2.1.样品信息 2.2.样品提取 称取猪肉样品2g(精确到0.01g),置于50m棕色离心管中,加入15ml甲醇-水混合溶液(v:v=2:1),均质1min,8000r/min离心5min 吸取上清液倒掉,残渣中加入2ppb的硝基呋喃类代谢物混合标准品各1ml,混合均匀。 2.3.水解和衍生(注意避光) 向棕色离心管中加入20ml 0.2mol/l的盐酸溶液,涡旋1min使之混合均匀,之后加入0.3ml浓度为0.05mol/L的2-硝基苯甲醛,混匀,于37℃温水中避光衍生16小时。 2.4.净化处理 将衍生后的样品冷却至室温,加入5ml 0.1mol/l的磷酸氢二钾,并用1 mol/l的氢氧化钠溶液调PH约为7.4,混合均匀。之后用8000r/min离心10min,以小于2ml/min的流速过PEP-2小柱(规格为60mg/3ml,用5ml甲醇、5ml水活化),并用10ml的水洗涤固相萃取小柱,然后负压抽干柱子15min。用5ml乙酸乙酯洗脱于20ml棕色瓶中,并在40℃下氮气吹干。 用样品定容溶液(10ml乙腈,0.3ml的乙酸用水稀释至100ml)定容至1ml,充分溶解,并用0.2um滤膜过滤。 2.5.检测方法 色谱柱:Vesusil® MP-C18(2.1× 150mm,5um,100Å ) 质谱仪:API 4000+ 流动相:A:0.1%甲酸的水溶液 B:0.1%甲酸的乙腈溶液 流速:0.2mL/min 表1 梯度洗脱条件 时间(min) A(%) B(%) 0 80 201 80 20 3 50 50 7 25 75 7.1 5 95 10 5 95 10.1 80 20 16 80 20 进样体积:5&mu L 离子源:电喷雾(ESI),正离子模式 扫描方式:多反应监测(MRM) 表2 质谱仪离子源参数 Source/Gas Collision Gas(CAD) 6 Curtain Gas(CUR) 15 Ion Source Gas 1(GS 1) 50 Ion Source Gas 2(GS 2) 50 Ion Spray Voltage(IS) 5500 Temperature(TEM) 600 Interface Heater(ihe) On表3 4种硝基呋喃待测物母离子和子离子参数表 物质名称 保留时间(min) 监测离子对 DP EP CE CXP SEM 8.10 209.1/166.1 51 10 17 10 209.1/192.1 51 10 17 10 AHD 8.30 249.2/134.1 61 10 20 10 249.2/104.1 66 10 31 10 AOZ 8.89 236.2/134.1 61 10 20 10 236.2/104.1 56 10 31 10 AMOZ 3.12 335.3/291.2 46 1019 10 335.5/128.1 46 10 19 10 图1 4种硝基呋喃代谢物总离子 图2 SEM(209/166)质谱图 图3 AOZ(236/134)质谱图 图4 AHD(249/134)质谱图 图5 AMOZ(335/291)质谱图 三.实验结果 0.5ppb猪肉基质加标回收实验结果: 表4 猪肉中0.5ppb加标回收实验结果 名称 1# 2# 3# 平均回收率 RSD AMOZ 109.43% 97.84% 109.75% 105.67% 6.42% SEM 91.81% 88.91% 88.22% 89.65% 2.12% AHD 80.68% 82.11% 77.25% 80.01% 3.12% AOZ 83.94% 80.70% 80.85% 81.83 0.02% 四.实验结论 Agela Cleanert PEP-2、Agela Venusil MP C18和AB SCIEX公司的API 4000+质谱仪用于猪肉中4种硝基呋喃代谢物的检测,性能良好,符合国标文件的要求。 订货信息 产品名称 规格/包装 订货号 定价(元) Cleanert® PEP-2 60mg/3mL,50支/包 PE0603-2 1035.00 Venusil® MP C18 2.1× 150mm,5um,100Å ;1支 VA951502-0 3200.00
  • 昕甬智测甲烷分析仪:助力大气甲烷监测
    引言 在全球气候变化的大背景下,油气甲烷减排的重要性与紧迫性日益凸显。甲烷作为全球气候变暖的第二大温室气体,全面控制其排放具有重大意义。研究显示,至2030年,全球甲烷排放量可通过现有技术削减57%,近四分之一的排放量可在不产生净成本的情况下消除,甲烷减排因此受到国际社会广泛关注。油气甲烷监测技术的重要性 油气甲烷是一种重要的温室气体,其排放量逐年上升,对全球气候变化产生显著影响。在我国,油气甲烷作为能源体系的重要组成部分,其开发与利用对国家能源安全具有战略意义。然而,在油气开采、输送和利用过程中,甲烷泄漏问题突出,既造成资源浪费,又可能引发火灾、爆炸等安全隐患。因此,研究油气甲烷监测技术对于减少温室气体排放、提高能源利用效率和保障安全生产具有重要意义。 在COP28会议上,解振华表示,最新发布的《行动方案》首次明确了中国重点领域甲烷排放的控制目标,这是我国第一份全面专门的甲烷排放控制政策性文件,对未来一段时间甲烷排放控制工作具有顶层设计和系统部署的作用。这份文件不仅对进一步控制甲烷排放具有重要的指导意义,还将对经济社会高质量发展产生重要影响。《行动方案》提出了加强甲烷监测核算报告和核查体系建设,加快推进能源、农业、废物处理领域排放控制等八项重点任务。我国将在保障能源安全与粮食安全的基础上,采取更有力的政策和措施,推动甲烷排放控制取得更大成效。昕甬智测助力大气环境监测 在当前环境保护和气体监测的背景下,大气中甲烷的排放和浓度成为关注焦点。甲烷作为农业、工业和交通等领域的重要气体,其排放与环境质量和空气污染密切相关。为准确监测大气中甲烷浓度,以及更好地监测大气中温室气体的组分和浓度,宁波海尔欣光电科技有限公司推出了昕甬智测 HT8600大气甲烷激光开路分析仪与HT8840便携式多组分高精度温室气体分析仪。HT8600大气甲烷激光开路分析仪 采用量子级联激光吸收光谱技术(QCLAS),应用两面暴露在大气中的高反射率镜面对中红外激光进行多次反射,有效光程达数十米,测量目标气体对特征吸收峰处中红外激光能量的微弱吸收,通过对吸收峰光谱曲线的实时积分进行痕量气体的浓度反演。 HT8600大气甲烷激光开路分析仪的高频浓度分析特性,使之非常适合于微气象涡动相关(Eddy Covariance)测量技术,结合通量观测系统可准确定量不同生态系统和大气间甲烷的净交换通量。HT8840便携式多组分高精度温室气体分析仪 HT8840便携式多组分高精度温室气体(二氧化碳/CO2、甲烷/CH4、水/H2O)分析仪基于量子级联激光技术设计,利用气体分子在中远红外的“指纹”吸收谱,使用半导体量子级联激光器(QCL)作为光源,使激光通过中红外增强型光腔,被中红外光电探测器接收透射光并提取和分析透射光谱,准确反演获得目标温室气体成分的浓度,实现对目标温室气体分子的更精确、更及时、更科学的测量。 HT8840便携式多组分高精度温室气体在仪器箱内实现快速响应的温室气体测量,采用独立强吸收谱线,使其不受其他气体分子光谱的交叉干扰。该系列便携式温室气体分析仪能够可由太阳能或锂电池供电,实现温室气体浓度的定点或移动连续观测。总结 油气甲烷减排对于全球气候变化的控制具有重要意义。通过采用先进的激光光谱技术,可以实现大气中甲烷浓度的精准监测。这将有助于政府、企业和社会各界更好地了解甲烷排放状况,制定科学合理的减排措施,推动我国实现绿色低碳发展。在今后的工作中,海尔欣昕甬智测会继续加大对油气甲烷监测技术的研发和推广力度,为全球气候治理和绿色低碳发展贡献力量。
  • 猪肉中四种硝基呋喃类代谢物残留量测定(SPE-LC/MS/MS)-依国标
    一.实验目的 本文使用天津博纳艾杰尔科技有限公司的Cleanert® PEP-2固相萃取柱、Venusil® MP C18色谱柱和Qdaura卓睿TM全自动固相萃取仪,遵照中华人民共和国国家标准《猪肉、牛肉、鸡肉、猪肝和水产品中硝基呋喃类代谢物残留量的测定(GB/T 20752-2006)》提供的方法,检测猪肉中的4种硝基呋喃类代谢物残留。 二.实验方法 2.1.样品信息 2.2.样品称取和脱脂 称取猪肉样品2g(精确到0.01g),置于50m棕色离心管中,加入15ml甲醇-水混合溶液(v:v=2:1),均质1min,再用5ml甲醇-水混合溶液洗涤刀头,二者合并8000r/min离心5min,吸取上清液倒掉。 注:为更好的消除基质效应对检测结果造成的影响,可加入同位素内标,采用内标法定量检测。 2.3.水解和衍生(注意避光) 向棕色离心管中加入20ml 0.2mol/l的盐酸溶液,涡旋1min使之混合均匀,之后加入0.3ml浓度为0.05mol/L的2-硝基苯甲醛,混匀,于37℃温水中避光衍生16小时。 2.4.净化处理 将衍生后的样品冷却至室温,加入5ml 0.1mol/l的磷酸氢二钾,并用1 mol/l的氢氧化钠溶液调PH约为7.4,混合均匀。之后用8000r/min离心10min,以小于2ml/min的流速过Cleanert® PEP-2小柱(规格为60mg/3ml,用5ml甲醇、5ml水活化),并用10ml的水洗涤固相萃取小柱,然后负压抽干柱子15min。用5ml乙酸乙酯洗脱于20ml棕色瓶中(此过程可在Qdaura卓睿TM全自动固相萃取仪上完成,仪器方法见附录B)。洗脱液于40℃下氮气吹干。 用样品定容溶液(10ml乙腈,0.3ml的乙酸用水稀释至100ml)定容至1ml,充分溶解,并用0.22µ m滤膜过滤。 2.5.检测方法 色谱柱:Venusil® MP C18(2.1× 150mm,5µ m,100Å ) 质谱仪:API 4000+ 流动相:A:0.1%甲酸的水溶液 B:0.1%甲酸的乙腈溶液 表1 梯度洗脱条件 时间(min) A(%) B(%) 0 80 20 1 80 20 3 50 50 7 25 75 7.1 5 95 10 5 95 10.1 80 20 16 80 20 流速:0.2mL/min 进样体积:5&mu L 离子源:电喷雾(ESI),正离子模式 扫描方式:多反应监测(MRM) 表2 质谱仪离子源参数 Source/Gas Collision Gas(CAD) 6 Curtain Gas(CUR) 15 Ion Source Gas 1(GS 1) 50 Ion Source Gas 2(GS 2) 50 Ion Spray Voltage(IS) 5500 Temperature(TEM) 600 Interface Heater(ihe) On 表3 4种硝基呋喃待测物母离子和子离子参数表 物质名称 保留时间(min) 监测离子对 DP EP CE CXP SEM 8.10 209.1/166.1 51 10 17 10 209.1/192.1 51 10 17 10 AHD 8.30 249.2/134.1 61 10 20 10 249.2/104.1 66 10 31 10 AOZ 8.89 236.2/134.1 61 10 20 10 236.2/104.1 56 10 31 10 AMOZ 3.12 335.3/291.2 46 10 19 10 335.5/128.1 46 10 19 10 三.实验结果 0.5ppb猪肉基质加标回收实验结果: 表4 猪肉中0.5ppb加标回收实验结果 名称 1(%) 2(%) 3(%) 平均回收率(%) RSD(%) AMOZ 109.43 97.84 109.75 105.67 6.42 SEM 91.81 88.91 88.22 89.65 2.12 AHD 80.68 82.11 77.2580.01 3.12 AOZ 83.94 80.70 80.85 81.83 0.02 四、实验结论 规格 订货信息 Qdaura 卓睿&trade 全自动固相萃取 4通道24位
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制