当前位置: 仪器信息网 > 行业主题 > >

硒酸钠十水合物

仪器信息网硒酸钠十水合物专题为您提供2024年最新硒酸钠十水合物价格报价、厂家品牌的相关信息, 包括硒酸钠十水合物参数、型号等,不管是国产,还是进口品牌的硒酸钠十水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硒酸钠十水合物相关的耗材配件、试剂标物,还有硒酸钠十水合物相关的最新资讯、资料,以及硒酸钠十水合物相关的解决方案。

硒酸钠十水合物相关的论坛

  • 水合物中的水

    [color=#444444]质谱可以打出水合物中的水吗,[color=#444444]比如五水合物质谱上最大的峰是含水的还是不含水的呀,真心求问。[/color][/color]

  • 天然气水合物的研究、调查现状

    [font=黑体][color=black]天然气水合物的研究、调查现状[/color][/font][align=left][font=黑体][color=black]1.[/color][/font][font=黑体][color=black]天然气水合物的研究[/color][/font][/align][align=left][font=宋体][color=black]近年来,我国对管辖海域做大量的地震勘查资料分析得出,在冲绳海槽的边坡、南海的北部陆坡、西沙海槽和西沙群岛南坡等处发现了海底天然气水合物存在的似海底地震反射层(BSR)标志。[/color][/font][/align][align=left][font=宋体][color=black]自1999年始,广州海洋地质调查局在我国海域南海北部西沙海槽区开展海洋天然气水合物前期试验性调查。完成三条高分辩率地震测线共543.3km。2000年9-11月,广州海洋地质调查局"探宝号"和"海洋四号"调查船在西沙海槽继续开展天然气水含物的调查。共完成高分辩率多道地震1593.39km、多波束海底地形测量703.5km、地球化学采样20个、孔隙水样品18个、气态烃传感器现场快速测定样品33个。获得突破性进展。研究表明:地震剖面上具明显似海底反射界面(BSR)和振幅空白带。"BSR"界面一般位于海底以下300-700m,最浅处约180m。振幅空白带或弱振幅带厚度约80-600m,"BSR"分布面积约2400km'。根据ODP184航次1144钻井资料揭示,在南海海域东沙群岛东南地区,l百万年以来沉积速率在每百万年400-1200m之间,莺歌海盆地中中新世以来沉积速度很大。资料表明:南海北部和西部陆坡的沉积速率和已发现有丰富天然气水合物资源的美国东海岸外布莱克海台地区类似。南海海域水含物可能赋存的有利部位是:北部陆坡区、西部走滑剪切带、东部板块聚合边缘及南部台槽区。本区具有增生楔型双BSR、槽缘斜坡型BSR、台地型BSR及盆缘斜坡型BSR等四种类型的水合物地震标志BSR构型。从地球化学研究发现南海北部陆坡区和南沙海域,经常存在临震前的卫星热红外增温异常,其温度较周围海域升高5-6℃,特别是南海北部陆坡区,从琼东南开始,经东沙群岛,直到台湾西南一带,多次重复出现增温异常,它可能与海底的天然气水会物及油气有关。[/color][/font][/align][align=left][font=宋体][color=black]综合资料表明:南海陆坡和陆隆区应有丰富的天然气水合物矿藏,估算其总资源量达643.5-772.2亿吨油当量,大约相当于我国陆上和近海石油天然气总资源量的1/2。[/color][/font][/align][align=left][font=黑体][color=black]2 [/color][/font][font=黑体][color=black]有关天然气水合物的现状调查[/color][/font][/align][align=left][font=宋体][color=black]西沙海槽位于南海北部陆坡区的新生代被动大陆边缘型沉积盆地。新生代最大沉积厚度超过7000m,具断裂活跃。水深大于400m。基于应用国家863研究项目"深水多道高分辨率地震技术"而获得了可靠的天然气水合物存在地震标志:1)在西沙海槽盆北部斜坡和南部台地深度200-700m发现强BSR显示,在部分测线可见到明显的BSR与地层斜交现象。2)振幅异常,BSR上方出现弱振幅或振幅空白带,以层状和块状分布,[/color][/font][font=宋体]厚度80-450m。3)BSR波形与海底反射波相比,出现明显的反极性。4)BSR之上的振幅空白带具有明显的速度增大的变化趋势。资料表明:南海北部西沙海槽天然气水合物存在面积大,是一个有利的天然气水合物远景区。[/font][/align][align=left][font=宋体][color=black]2001[/color][/font][font=宋体][color=black]年,中国地质调查局在财政部的支持下,广州海洋地质调查局继续在南海北部海域进行天然气水合物资源的调查与研究,计划在东沙群岛附近海域开展高分辨率多道地震调查3500km,在西沙海槽区进行沉积物取样及配套的地球化学异常探测35个站位及其他多波束海底地形探测、海底电视摄像与浅层剖面测量等。另据我国台大海洋所及台湾中油公司资料,在台西南增生楔,水深500-2000m处广泛存在BSR,其面积2×104km[sup]2[/sup]。并在台东南海底发现大面积分布的白色天然气水合物赋存区。[/color][/font][/align][font=黑体][color=black]3.[/color][/font][font=黑体][color=black]天然气水合物的意见与建议[/color][/font][align=left][font=宋体][color=black]鉴于天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,其调查研究成果日新月异,故及时了解、收集、交流这方面的情况、勘探方法及成果尤为重要,为赶超国际天然气水合物调查、研究水平,促进我国天然气水会物的调查、勘探与开发事业,为我国经济的持续发展做出新贡献,建议每两年召开一次全国性的"天然气水合物调查动态、勘探方法和成果研讨会"。[/color][/font][/align][align=left][font=宋体][color=black]我国南海广阔的陆坡及东海部分陆坡具有形成天然气水含物的地质条件,建议尽快开展这两个海区的天然气水含物的调查研究工作,为我国国民经济可持续发展提供新能源。[/color][/font][/align][align=left][font=宋体][color=black]天然气水合物的开采方法目前主要在热激化法、减压法和注人剂法三种。开发的最大难点是保证井底稳定,使甲烷气不泄漏、不引发温室效应。针对这一问题,日本提出了"分子控制"开采方案。天然气水合物矿藏的最终确定必须通过钻探,其难度比常规海上油气钻探要大得多,一方面是水太深,另一方面由于天然气水合物遇减压会迅速分解,极易造成井喷。日益增多的成果表明,由自然或人为因素所引起温压变化,均可使水合物分解,造成海底滑坡、生物灭亡和气候变暖等环境灾害。因而研究天然气水合物的钻采方法已迫在眉捷,建议尽快开展室内外天然气水合物钻采方法的研究工作。[/color][/font][/align]

  • 部分水合物标准如何进行定量分析?

    用户如果购买了氯唑青霉素钠水合物(氯唑西林钠,邻氯青霉素钠) 标准品,进行定性分析时没有问题,但是里面没有明确是一水化合物还是二水化合物等,只是 氯唑青霉素钠xH2O,如题,这个标准品配成溶液后如何进行定量分析?

  • 【原创】天然气水合物

    打开能源的“牢笼”在冰的天然气水合物矿床中,可以发现大量的天然气,但是将这些天然气开采出来却是一个严峻的挑战。一万亿立方英尺 (tcf) 有多大? 尽管我们知道这个体积非常大,但是要想像其具体的大小将会相当困难。这里有一种方法。假定我们站在足球场或橄榄球球场一端的球门附近。在另一端俯视球场,设想一条长度为 30 倍球场长度的直线。(这一距离大概为 3 公里(约 1.9 英里)或相当于 3500 步。)现在右转 90 度,然后按照该方向设想一条相同距离的直线。最后,直视前方,设想一条长度相同并且垂直于地面向天空方向延伸的直线。那么,这个立方体的三条边所包含的体积就大约为一万亿立方英尺!平均而言,地球上的每人每月大约消费七万亿立方英尺天然气! 燃烧的冰地球上的人使用天然气(甲烷,CH4)这种矿物燃料提供日常所用能源的 45%。目前,每年的天然气燃烧量约为 2.4 万亿立方米(85 万亿立方英尺)。不幸的是,按照这一速度,我们所发现的地球天然气储量只能使用 60 年。这意味着按照目前所知的情况,对于今天正在上高中的学生而言,他们的子孙就没有可用的天然气了。对于这一暗淡的前景也有一些好的消息。看起来还有另外一个天然气资源的世界,足以满足我们当前以及将来 2000 年的能源需求。这完全可以惠及我们子子孙孙!不幸的是,我们还没有找到开采这一天然气的经济方式。我们目前正在研究。 这些特殊的天然气储量称为天然气水合物,它们由其甲烷(天然气)分子中类似小鸟笼一样的冰结构构成。基本的水合单元是中空的水分子晶体,其中包含一个天然气单分子。这些晶体以紧密的网格结构相互联接在一起。如果这些天然气水合物的联接程度紧密上几倍,那么它们看起来将更象是冰。但是其属性和冰不同:它们在适当的条件下可以燃烧!这是 21 世纪一个相当热门的话题。全球天然气水合物的储量丰富,因此有些国家已经开始研究和探索计划,致力于理解水合物的行为、确定其精确储量并开发可行的开采方法。日本、印度、美国、加拿大、挪威和俄罗斯等国家都在进行天然气水合物的勘测。 天然气水合物是一个晶体结构。这一天然气水合物的每个单元小室都包含 46 个水分子,构成两个较小的十二面体和 6 个较大的十四面体。天然气水合物只能承载较小的气体分子,例如甲烷和乙烷。在常温常压(STP)下,一体积的饱和甲烷水合物将包含 189 体积的甲烷气体。天然气水合物这么大的气体储量意味着重要的天然气来源。

  • 【求助】气相出口居然还会形成水合物?

    HYSYS模拟低温分离器,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口居然还会形成水合物,怎么办啊?这是用HYSYS模拟现场集输的问题。流程为天然气和乙二醇混合,节流,进低温分离器,节流前后无水合物形成,但分离后,由于乙二醇被分走了,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口温度又低,水合物公用工具显示的水合物形成的温度和压力都在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]物流的温度和压力范围内,经换热器仍然是这个效果,人家总不能形成水合物还往外输吧?但是水露点和烃露点又都很低小于-10度。请高手给点思路,希望您不要惜字如金啊,有什么想法都可以说的!

  • 【讨论】请教关于水合物的结构

    [size=4][color=#00008B]最近做硝酸盐水合物的XRD,发现本应含两个结晶水,得到的谱图是含六个结晶水的,有没有这种可能,因为有其他非水小分子存在,将两个结晶水的物质重新结晶成六个结晶"水"的结构。麻烦遇到相似情况的给我辅导一下,万分感激![/color][/size]

  • 天然气水合物勘查开发产业化面临的挑战和建议

    [align=center]天然气水合物勘查开发产业化面临的挑战和建议[/align][align=center][size=15px]吴能友 叶建良 许振强 谢文卫 梁金强 王宏斌 刘昌岭 [/size][/align][align=center][size=15px] 胡高伟 孙治雷 [/size][size=15px]李彦龙 黄丽 [/size][/align][size=14px]1.天然气水合物勘查开发工程国家工程研究中心,中国地质调查局广州海洋地质调查局;[/size][align=center][size=14px]2.自然资源部天然气水合物重点实验室,中国地质调查局青岛海洋地质研究所[/size][size=15px][/size][/align][size=15px]能源安全是关系到国家经济社会发展的全局性、战略性问题。发展清洁能源,是改善能源结构、保[/size][size=15px]障能源安全、推进生态文明建设的重要任务。天然气水合物(俗称“可燃冰”)是一种由水和气体分子(主要是甲烷)在低温高压下形成的似冰状的固态结晶物质,是21世纪最有潜力的清洁替代能源。自1961年苏联首次在西西伯利亚麦索亚哈油气田的冻土层中发现自然界产出的天然气水合物以来,全球累计发现超过230个天然气水合物赋存区,广泛分布在水深大于300m的深海沉积物和陆地永久冻土带中。据估计,天然气水合物中的甲烷资源量约为2.0×10[size=12px]16[/size]m3(Kvenvolden,1988),其含碳量约为当前已探明化石燃料(煤、石油和天然气)总量的两倍。因此,加快推进天然气水合物勘查开发产业化进程,对保障国家能源安全供应、改善能源生产和消费结构、推动绿色可持续发展具有极其重大的现实意义。[/size]01国内外研究现状和发展趋势[size=15px]目前,全球已有30余个国家和地区开展天然气水合物研究。中国、美国、日本、韩国和印度等国制[/size][size=15px]定了国家级天然气水合物研究开发计划,美国、日本等率先启动开发技术研究,并于2002年开始在陆域和海域进行多次试验性开采,取得了重要进展。[/size][size=15px]纵观世界各国天然气水合物勘查开发研究勘查历程(图1),大致可归纳为三个阶段。第一阶段[/size][size=15px](1961—1980年),主要目标是证实天然气水合物在自然界中存在,美国布莱克海台、加拿大麦肯齐三角洲的天然气水合物就是在这一时期发现的。第一阶段研究认为,全球天然气水合物蕴含的甲烷总量在10[size=12px]17[/size]~10[size=12px]18[/size]m3量级(表1)。这一惊人数据给全球天然气水合物作为潜在能源资源调查研究注入了一针强心剂。第二阶段(1980—2002年),开展了以圈定分布范围、评估资源潜力、确定有利区和预测资源量远景为主要目的的天然气水合物调查研究。该阶段,随着调查程度的逐渐深入和资源量评估技术的不断进步,全球天然气水合物所含的天然气资源量预测结果降低至10[size=12px]14[/size]~10[size=12px]16[/size]m3量级,但数据差异很大(表1)。第三阶段(2002年至今),天然气水合物高效开采方法研究成为热点,国际天然气水合物研发态势从勘查阶段转入勘查试采一体化阶段。2002年,加拿大主导在Mallik5L—38井进行储层降压和加热分解测试,证明水合物储层具有一定的可流动性,单纯依靠热激发很难实现天然气水合物的高效生产。目前,中国、美国、日本、印度、韩国是天然气水合物勘查与试采领域最活跃的国家。[/size][align=center][size=15px][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b1/db/eb1dbd7333b27ced746350e5fd63e438.png[/img][/size][/align][align=center][size=14px]图1 国内外天然气水合物资源勘查开发历程[/size][/align][align=center][size=14px]表1 全球陆地永久冻土带和海洋中的天然气水合物资源量[/size][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/f5/3d4f5d650651c92996cc9731f194eda2.png[/img][/align][size=15px]总的看来,天然气水合物资源量巨大,但其资源品位差、赋存沉积物聚集程度弱,现有技术条件下[/size][size=15px]的资源经济可采性差(吴能友等,2017)。近年来,国内外在天然气水合物开采方法与技术的室内实验模拟、数值模拟、现场试采等方面,都取得了重要的进展。基于对天然气水合物储层孔渗特征、技术可采难度的认识,国际学术界普遍认为,砂质天然气水合物储层应该是试采的优选目标,其处于天然气水合物资源金字塔的顶端(图2)。因此,日本在2013年和2017年的海域天然气水合物试采也都将试采站位锁定在海底砂质沉积物中。前期印度、韩国的天然气水合物钻探航次也将寻找砂层型水合物作为重点目标,以期为后续的试采提供可选站位。我国在早期天然气水合物钻探航次和室内研究中,也大多瞄准赋存于砂层沉积物中的天然气水合物。[/size][align=center][size=15px][img]https://img.antpedia.com/instrument-library/attachments/wxpic/59/76/4597680e28410e6a296005b34bde9882.png[/img][/size][/align][align=center][size=14px]图2 天然气水合物资源金字塔[/size][/align][size=15px]然而,全球天然气水合物总量的90%以上赋存于海底泥质粉砂或粉砂质泥沉积物中。2017年,我国[/size][size=15px]在南海北部陆坡开展的泥质粉砂型天然气水合物试采获得了成功(Lietal.,2018),证明赋存于海底黏土质粉砂中的沉积物也具备技术可采性,从而扭转了国际水合物研究界的常规认识。这是我国天然气水合物勘查开发研究从跟跑到领跑的重要标志。然而,无论是我国首次海域天然气水合物试采,还是国外历次水合物试采,均处于科学试验阶段,要真正实现产业化还有很多关键技术需要解决。2020年,我国采用水平井实现第二轮水合物试采,连续稳定产气30d,累计产气86.14×10[size=12px]4[/size]m3(叶建良等,2020)。一方面,进一步证实泥质粉砂水合物储层开采具可行性;另一方面,充分说明水平井等新技术应用对提高天然气水合物产能至关重要。[/size][size=15px]在我国天然气水合物试采成功后,美国加大资金投入开展墨西哥湾天然气水合物资源调查,并计划[/size][size=15px]在阿拉斯加北坡开展长周期试采。美国能源部甲烷水合物咨询委员会在致美国能源部部长的信中写道:“尽管美国在天然气水合物相关技术领域处于领先地位,但正面临着来自中国、日本、印度的挑战。”日本致力于实现天然气水合物的商业开采,但许多技术问题尚待解决,正积极寻求与其他国家合作,提出了在2023—2027年实现商业化开发的目标。印度联合美国、日本在印度洋开展资源调查工作,计划实施试采。美国康菲石油公司和雪佛龙公司、英国石油公司、日本石油天然气和金属公司、韩国国家石油公司和天然气公司以及印度石油和天然气公司等能源企业参与热情也空前高涨。由此可见,在天然气水合物勘查开发这一领域的国际竞争日趋激烈,产业化进程将进一步加快。[/size][size=15px]总体上,国际天然气水合物勘查开发呈现出以下趋势。一是纷纷制定天然气水合物开发计划。从国[/size][size=15px]家能源安全、国家经济安全、战略科技创新等角度出发,中国、美国、日本、印度、韩国等国家制定了国家级天然气水合物勘查开发计划,加大投入、加快推进。二是从主要国家天然气水合物产业化进程看,已从资源勘查发现向试采技术攻关、产业化开发转变。特别是,在我国海域两轮试采成功的引领下,进一步加强技术攻关和试采准备。[/size]02[font=微软雅黑, sans-serif]天然气水合物试采面临的产能困局[/font][size=15px]实现天然气水合物产业化,大致可分为理论研究与模拟试验、探索性试采、试验性试采、生产性试采、[/size][size=15px]商业开采五个阶段。在各国天然气水合物勘探开发国家计划的支持下,迄今已在加拿大北部麦肯齐三角洲外缘的Mallik(2002年,2007—2008年)、阿拉斯加北部陆坡的IgnikSikumi(2012年)、中国祁连山木里盆地(2011年,2016年)(王平康等,2019)三个陆地冻土区和日本东南沿海的Nankai海槽(2013年,2017年)、中国南海神狐(2017年,2020年)两个海域成功实施了多次试采(表1)。[/size][size=15px]2002年、2007年、2008年在加拿大Mallik冻土区采用了加热法和降压法进行开采试验,但是由于[/size][size=15px]效率低和出砂问题被迫中止。2012年,在美国阿拉斯加北坡运用降压法和CO[size=12px]2[/size]置换法进行开采试验,同样效率不高(Boswelletal.,2017)。2013年、2017年日本在南海海槽进行了开采试验。2013年,日本在南海海槽首次实施天然气水合物试采,维持了6d因出砂问题而被迫中止;2017年,实施第二次试采,第一口井再次因出砂问题而停产,第二口井产气24d,产气量约20×10[size=12px]4[/size]m[size=12px]3[/size],两口井的产量都未获有效提高(Yamamotoetal.,2019),表明生产技术仍有待改进。2017年、2020年我国在南海神狐海域进行了开采试验。2017年,针对开采难度最大的泥质粉砂储层,在主动关井的情况下,试采连续稳产60d,累计产气量30.90×10[size=12px]4[/size]m[size=12px]3[/size],创造了连续产气时长和产气总量两项世界纪录,试采取得了圆满成功(Lietal.,2018);2020年,攻克了深海浅软地层水平井钻采核心技术难题,连续稳定产气30d,累计产气86.14×10[size=12px]4[/size]m[size=12px]3[/size],创造了累计产气总量和日均产气量两项新的世界纪录(叶建良等,2020),提高了产气规模,实现了从“探索性试采”向“试验性试采”的重大跨越,向产业化迈出了极为关键的一步。[/size][size=15px]目前,我国已将天然气水合物产业化开采作为攻关目标。天然气水合物能否满足产业化标准,一方[/size][size=15px]面取决于天然气价格,另一方面取决于产能。这里,我们仅从技术层面考虑提高天然气水合物产能,采用固定产能作为天然气水合物产业化的门槛产能标准。天然气水合物产业化开采产能门槛值应该不是一个确定的数值,随着低成本开发技术的发展而能够逐渐降低。国内外研究文献普遍采用的冻土区天然气水合物产业化开采产能门槛值是3.0×10[size=12px]5[/size]m[size=12px]3[/size]/d,海域天然气水合物产业化开采产能门槛值为5.0×10[size=12px]5[/size]m[size=12px]3[/size]/d(Huangetal.,2015)。图3对比了当前已有天然气水合物试采日均产能结果与上述产能门槛值之间的关系(吴能友等,2020)。由图可见,当前陆域天然气水合物试采最高日均产能约为产业化开采产能门槛值的1/138,海域天然气水合物试采最高日均产能约为产业化开采产能门槛值的1/17。因此,目前天然气水合物开采产能距离产业化开采产能门槛值仍然有2~3个数量级的差距,海域天然气水合物试采日均产能普遍高于陆地永久冻土带试采日均产能1~2个数量级。[/size][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c0/61/0c0612ef00f7d45e957709c1ae9abdfa.png[/img][/align][align=center][size=14px]图3 已有天然气水合物试采日均产能与产业化门槛产能值之间关系[/size][/align]03我国天然气水合物产业化面临的工程科学与技术问题[size=15px]我国南海天然气水合物资源极为丰富。从勘查角度而言,南海天然气水合物赋存类型多样,成矿地[/size][size=15px]质条件复杂,勘查难度较大,现有的勘查技术水平无法满足高精度探测和及时、准确获取原位参数的需求,制约了资源高效勘探及精细评价。从开发角度来说,天然气水合物储层中甲烷存在固—液—气三相。在开采过程中将发生甲烷的复杂相态变化,决定了其开采方案将不同于常规油气田。研究分析不到位,天然气水合物产能提升的路径选择和开采效果将受到影响,严重时可导致工程地质灾害及环境安全问题。[/size][size=15px]当然,天然气水合物作为一个新兴矿种,勘查开发产业化很大程度上还涉及市场和政策制度保障因素。[/size][size=15px]但是,从工程科学与技术角度出发,我们亟须针对不同成因类型、不同储层类型的天然气水合物开展精细勘探及原位探测,深化储层认识,优化开采理论,加大开采工程化理论研究、工程技术和装备攻关力度,构建天然气水合物开采安全保障技术体系,建立智能化环境监测及评价体系,促进天然气水合物勘查开发产业化进程。[/size][size=15px]3.1 高精度勘探及储层原位探测技术亟待加强[/size][size=15px]目前,天然气水合物主要发现于陆域冻土区和海洋深水沉积物中,其中海洋集中了世界上99%的天[/size][size=15px]然气水合物资源。天然气水合物的稳定存在需要特殊的温压条件,其在海洋中具有水深大、埋藏浅、垂向多层分布、横向变化大等特点,造成高精度勘探和储层原位探测的难度大幅度增大。[/size][size=15px]当前,海域天然气水合物勘查技术的精度及水平,距产业化开发的需求仍有一定差距,关键技术难[/size][size=15px]题体现在三个方面。①矿体成像精度不够、精细刻画难。常规的地震勘探系统纵、横向分辨率有限,不能完全满足矿体精细刻画的需求,现有的近海底高精度探测装备技术体系有待完善,矿体高精度勘探技术水平有待提升。②储层原位探测存在瓶颈。现有的取样钻具难以实现高保真天然气水合物取样,地面测试设备尚不健全,无法准确获取原位温压条件下储层物性参数,严重影响了资源量计算精度。③保压取样钻具、随钻测井等关键核心技术和装备仍受制于人。因此,亟须大力推进高精度探测、储层原位探测、随钻测井、保温保压取样与带压测试等方向的关键技术自主研发,实现天然气水合物矿体精细刻画和原位探测取样及测试,为产业化提供资源保障。[/size][size=15px]3.2 储层渗流规律、产能调控关键技术研究亟待深化[/size][size=15px]摸清储层物性演化、多相流体运移规律、固液作用以及储层中天然气水合物相态变化等关键开发规律,[/size][size=15px]是提高天然气水合物开采产能的重要因素。以上关键地质规律的探索,离不开降压开采储层多孔介质中气—水两相渗流规律、天然气水合物相变机制及多相流运移等方面的储层实验模拟研究。[/size][size=15px]当前,天然气水合物实验与模拟的仪器和技术水平尚不能支撑高效、经济的开发,主要体现在四个[/size][size=15px]方面。①未固结特低渗透率储层产能评价存在技术瓶颈。泥质粉砂型天然气水合物属于特低渗透率储层,针对这类储层的模拟技术国外鲜有经验可循,且现有产能评价软件没有相关模型算法,无法开展准确的产能模拟。②天然气水合物储层渗流能力改善方法和手段有待探索。天然气水合物分解后,储层气、液、固存在运移不畅难题,泥质粉砂储层多相流运移机理不明,目前无法有效改善储层渗流能力,极大制约了天然气水合物的开采效率。③天然气水合物开发产能调控难,天然气水合物开采效率与生产机制匹配度有待提高。④天然气水合物开发井眼轨迹与产能关系有待深入研究。因此,亟须针对不同储层类型的天然气水合物,结合应力、温度、压力、饱和度等多场耦合机制研究,开展关键实验模拟技术探索,在厘清未固结泥质粉砂型复杂渗流特征、研究泥质粉砂储层多相流运移技术等基础上,更有针对性地研发适合我国天然气水合物储层特点的改造技术。[/size][size=15px]3.3 开发钻完井、储层改造、防砂技术亟待突破[/size][size=15px]天然气水合物储层埋藏浅、未固结、温度低,地质“甜点”横向展布和纵向分布非均质性强。首次[/size][size=15px]试采中采用的直井井型实现了探索性试采,第二轮试采采用单井水平井技术大幅度提高了产能,实现了试验性试采,但要进一步提高产气规模、实现经济高效开采,安全高效钻完井、储层增产改造、完井防砂、人工举升和流动保障等面临巨大挑战。[/size][size=15px]当前,亟须解决的关键技术问题包括四个方面。①需探索采用对接井、多分支井、群井等国际空白[/size][size=15px]工艺井型,增加井眼与储层的接触面积,进一步提高产气规模。井型结构对产能的影响研究表明,采用垂直井进行开采,选择恰当的降压方案、井眼类型或井壁厚度等都能一定程度上提升产能,但不足以有量级的突破。从短期现场试采和长期数值模拟结果来看,单一垂直井降压很难满足产业化开采需求。以水平井和多分支井为代表的复杂结构井在未来水合物产业化进程中将有不可替代的作用。水平井能扩大水合物分解面积,但受成本、技术难度限制,超长井段水平井仍然存在困难。以多分支井为代表的复杂结构井被认为是实现水合物产能提升的关键(图4)(吴能友等,2020)。为了充分发挥多井协同效应,并在短期内快速达到产业化开采产能的目标,日本天然气水合物联盟MH21提出了多井簇群井开采方案,其基本思路是:基于同一个钻井平台,利用井簇形式将整个储层进行分片区控制,每组井簇包含一定数量的垂直井井眼并控制一定的储层范围,多井同步降压。目前,特殊工艺井建井地层垂向造斜空间有限、承压能力低,管柱摩阻大,井眼极限延伸距离有限,仍需进一步深化定向井技术工艺和配套工具研究。[/size][size=15px]针对实际天然气水合物储层,应优化多井簇群井开采方法,发展多井型井网开发模式和大型“井工厂”作业模式,在增大网络化降压通道的同时,辅以适当的加热和储层改造,通过建立海底井工厂,实现天然气水合物资源的高效、安全开发利用。此外,针对存在深层天然气的水合物储层,可形成深层油气—浅层水合物一体化开发技术。但需注意的是,在大力发展海底井工厂等集成作业模式,提高生产效率的同时,必须要兼顾环境友好及经济性。②储层改造技术是增加产气通道、提高通道导流能力、提高低渗非均质地层产能的重要手段,但目前该技术面临地层未胶结成岩、泥质含量高、塑性强、储层改造机理不明确等问题,改造后难以维持通道导流的能力,亟须开展增产机理和储层改造工艺研究。③天然气水合物储层砂粒径小、地层未胶结易垮塌,实际开采面临出砂易堵塞气流通道、出砂机理不明确、防砂精度要求高等技术难点,需进一步开展砂粒径小、地层未胶结易垮塌的天然气水合物储层出砂机理研究,建立完井防砂技术体系,确保长周期、大产量稳定生产。④天然气水合物开采过程中三相运移规律复杂,容易发生井筒积液和沉砂;同时,伴随天然气水合物二次生成和冰的生成,需进一步开展开发过程中井筒和地层三相运移规律研究,形成大规模产气条件下的排水采气关键技术体系。因此,需进一步加大特殊井型工艺和配套设备研究,加强深水浅软未固结储层增产、防砂、流动保障等技术攻关。[/size][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/32/0b/a320bdcf5e03048b891d5da040acdaaa.png[/img][/align][align=center][size=14px]图4 多井簇群井开采天然气水合物概念图[/size][/align][size=15px]3.4 开采安全保障技术体系亟待构建[/size][size=15px]南海天然气水合物储层埋藏浅、固结弱、聚集程度差,天然气水合物开采过程中储层强度降低、地[/size][size=15px]层应力扰动加剧、地层物质持续亏空,可能会诱发泥砂产出、井壁失稳、海底沉降、井筒堵塞等一系列潜在风险,对天然气水合物安全开采带来了极大挑战(吴能友等,2021;Wuetal.,2021)。如果开采过程中控制不当,甲烷释放到海水甚至至大气中,将引起海洋酸化、全球变化等环境问题。随着未来天然气水合物开采周期的延长、规模的扩大,上述环境风险的发生概率进一步增大,将威胁生产安全和环境安全。[/size][size=15px]目前,天然气水合物开采安全风险演化模式研究极为零散,没有形成系统性的认识,未来水合物资[/size][size=15px]源的规模化开发面临极大的不确定性,亟须构建针对突出地质、工程和环境风险的安全保障技术体系。主要技术难点体现在三个方面。[/size][size=15px](1)与常规成岩储层相比,南海天然气水合物储层开采过程中,安全风险最大的独特性体现在水合[/size][size=15px]物分解过程中储层存在蠕变,储层的微观孔隙结构、宏观应变位移都具有极强的时变性,而微观结构、宏观位移则直接影响了地层泥砂迁移、井壁垮塌和海底沉降的发生和发展(吴能友等,2021)。因此,无论是构建海洋天然气水合物开采的泥砂迁移规律预测模型,还是构建井筒失稳和海底沉降规律预测模型,都必须以厘清海洋天然气水合物储层的蠕变特性为前提。因此,构建泥砂产出调控、井壁垮塌控制和海底非均匀沉降控制方法的难点,是必须时刻考虑天然气水合物地层的蠕变效应,随时修正调控/控制方法,做到对安全风险的动态闭环调控。[/size][size=15px](2)泥砂产出、井壁垮塌都会导致固相颗粒大规模侵入生产井筒,给井底工作设备造成巨大的压力。[/size][size=15px]砂沉导致井筒被埋,使试采安全受到直接威胁。然而,对于海洋天然气水合物开采而言,不仅面临上述泥砂磨损、堵塞的挑战,还面临二次水合物生成导致的“冰堵”风险,且泥堵和冰堵之间存在显著的耦合效应。从地层流入井筒的泥砂原本就是赋存天然气水合物的介质,一旦井底温度压力条件满足二次形成水合物的条件,这些产出的泥砂将为水合物的二次聚集提供附着点,极大地增加了水合物开采引起井底堵塞的风险(Wuetal.,2021)。因此,厘清泥砂与二次水合物堵塞之间的耦合关系,对于制定合理的水合物开采井底防堵、解堵方法至关重要。[/size][size=15px](3)环境保护技术体系有待完善,监测技术难以实现对天然气水合物开发前、中、后期储层—海底—[/size][size=15px]海水—大气全方位、长周期、大范围、实时立体的监测。现有的无缆绳通讯数据传输技术受海况影响大,监测精度及长期稳定运行难以保证。海底监测组网技术不成熟,难以实现开采区域范围内的阶梯分布和有效覆盖,监测数据无法实时传输。因此,研发监测技术装备,建立“井下、海底、水体、大气”四位一体的智能化环境监测体系,确保开发过程中环境安全极为重要。[/size]04结论和建议[size=15px]国际天然气水合物研发态势从勘查阶段转入勘查试采一体化阶段。我国经过20年的不懈努力,已经[/size][size=15px]比较系统地建立了天然气水合物勘查开发理论、技术和装备体系,积累了深厚的技术储备、创新平台、软硬件条件、人才队伍等基础,为推进天然气水合物资源勘查开发产业化进程提供了重要保障。但从勘查评价、实验模拟、工程开发、安全保障工程技术与装备角度分析,仍有不少问题。实现天然气水合物安全高效开发是一项极为复杂的系统性工程,涉及理论、技术、装备等众多方面,制约天然气水合物高效开发之根本,是关键技术尚未突破,尤其是高精度勘查、储层产能模拟、开发工程技术、安全保障和环境防护等技术亟待攻关。为此,提出以下建议。[/size][size=15px](1)瞄准天然气水合物产业化推进中的重大技术难题,突破关键核心技术和重大装备等瓶颈制约。[/size][size=15px]①要加大南海天然气水合物资源调查力度,开展南海区域性资源调查评价,查明资源家底;开展重点海域普查,落实资源量;开展重点目标区详查,明确地质储量,为推进产业化奠定坚实的资源基础。②要开展不同类型天然气水合物试采,研发适应不同类型特点的试采工艺和技术装备;开展重点靶区试采,建立适合我国资源特点的开发技术体系。③要把加强安全保障和环境保护放在突出位置,围绕安全和环境保护进一步完善理论技术方法体系,为安全可控的资源开发创造条件;持续开展环境调查与监测,获取海洋环境参数,评价天然气水合物环境效应;加强环境保护与安全生产技术研发,实现天然气水合物绿色开发。④将南海神狐先导试验区打造成高质量发展样板,加快建设天然气水合物勘查开采先导试验区。[/size][size=15px](2)围绕天然气水合物产业化目标,加强多科学交叉、多尺度融合,充分利用天然气水合物勘查开[/size][size=15px]发工程国家工程研究中心和自然资源部天然气水合物重点实验室等科技创新平台,着眼加快重大科技成果的工程化和产业化,为各类创新主体开展技术成熟化、工程化放大和可靠性验证等提供基础条件,促进提高科技成果转化能力和转化效益。①海洋天然气水合物开采增产理论和技术的实验模拟、数值模拟和研究要向“更宏观”和“更微观”的两极发展,揭示目前中尺度模拟无法发现的新机理;研究手段要从“多尺度”向“跨尺度”联动,带动基础理论的发展和开发技术的进步。②要加强天然气水合物开发学科体系建设。学科体系建设是培养后备人才,保证海洋天然气水合物开发研究“后继有人”的必然要求。天然气水合物开发学科体系包括天然气水合物开发地质学(储层基础物性与精细刻画、开采目标优选与产能潜力评价、开发地球物理学、开发工程地质风险理论)、天然气水合物开发工程学(开发工程地质风险调控技术、储层多相渗流理论基础、增产理论与技术、海工装备开发)和下游学科(集输、储运、利用等)。③要特别重视现场开采调控技术对地质—工程—环境一体化的需求升级。在开采过程中,地质条件和环境因素共同制约了水合物开采效率的“天花板”。我们既要实现多快好省开采水合物及其伴生气的工程目标,又要注意可能承受不了工程折腾太“凶”的地质条件限制,更要关注悬在公众心中的一把“利剑”的环境风险。长期开采条件下的工程地质风险预测技术、安全保障技术与环境监测技术装备的研发势在必行,要从室内模拟→多尺度预测→原位监测→开采风险预警→一体化调控方案,建立完整的研究链条。[/size][size=15px](3)提升产学研用协同创新的效能,深化体制机制改革和创新。①探索建立以知识、技术、数据为[/size][size=15px]生产要素,由市场评价贡献、按贡献决定报酬的机制,激发科技人员推动技术创新和科技成果转化的积极性、主动性和创造性。②以建立国家战略科技力量为目标,坚持合作开放,充分发挥国内外优势力量,联合高校、科研院所、企业,组建多学科交叉的协同创新团队,构建协同创新体系,共同推进天然气水合物勘查开发产业化。③要推进天然气水合物勘查开发科技成果快速、有效转化,实现核心技术与装备的国产化、工程化。[/size]

  • 【谱图】水合物DSC图谱鉴别

    【谱图】水合物DSC图谱鉴别

    [img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007061023_228948_1165844_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007061024_228949_1165844_3.jpg[/img]根据以上图谱可以得出什么结论?据称第一个图是八水合物,第二个是九水物,八水物含水量为22%,九水物含水量为24%。如果含水量有区别可不可以根据DSC得出这是两种不同的晶型?

  • 请问测甲醛用的酚试剂到底是3-甲基-2-苯并噻唑酮腙盐酸盐还是其水合物

    98.0%(HPLC)(T) 分子式(M.F.) / 分子量(M.W.) C8H9N3S·HCl / 215.70 CAS编码 4338-98-1 相关CAS编码 149022-15-1,38894-11-0 第一个是别名 (英文)MBTH Hydrochloride Hydrate 别名 (英文)Sawicki's Reagent Hydrate 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐水合物 中文别名3-甲基-2-苯并噻唑啉腙盐酸盐水合物 第二个是别名 (英文)MBTH Hydrochloride 别名 (英文)Sawicki's Reagent 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐 中文别名MBTH盐酸盐 中文别名Sawicki's试剂

  • 脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    巯基乙酸钙盐三水合物 CAS号:5793-98-6 分子式:C2H8CaO5S 分子量 184 结构式http://ng1.17img.cn/bbsfiles/images/2017/10/2016042817011772_01_1490617_3.png 《化妆品安全技术规范》(2015年版)当中,3.9巯基乙酸第三法——化学滴定法的反应方程如下:https://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_670059_1490617_3.png 原理是https://ng1.17img.cn/bbsfiles/images/2016/04/201604281715_591808_1490617_3.png 该方法的适用范围中这样描述:本方法适用于脱毛类、烫发类和其他发用类化妆品中巯基乙酸及其盐类和酯类含量的测定。客户委托了一款产品,要求按照巯基乙酸钙含量出报告,含量计算公式中有一个系数0.184,描述是1mmol碘溶液相当于巯基乙酸钙的克数,这样显然其指的巯基乙酸钙不是CAS:814-71-1 分子式C4H6CaO4S2(分子量222.3),不知道巯基乙酸钙盐三水合物是否依然按照上述原理与碘反应。 求高手指教,前辈指点!谢谢

  • 求助五水合柠檬酸钠与二水合柠檬酸钠

    取3.48g[color=#333333]五水合柠檬酸钠,实验室无此试剂,改用[color=#333333]二水合柠檬酸钠,应该取多少克?[/color][/color][color=#333333][color=#333333]谢谢大家![/color][/color][color=#333333][/color]

  • 【原创大赛】火焰原子吸收光谱法测定埃索美拉唑镁二水合物样中Mg的含量

    埃索美拉唑镁(esomeprazole magnesium),化学名(S)-(-)5-甲氧基-2--1H-苯并咪唑镁盐,由瑞典AstraZeneca公司研发,2004年在我国上市。临床主要用于治疗胃酸分泌过多引起的胃溃疡、十二指肠溃疡及反流性食管炎等消化系统疾病。 本文拟采用湿法敞开消解法进行样品前处理,利用火焰原子吸收光谱法测定埃索美拉唑镁二水合物的Mg含量。1 仪器与试剂1.1 仪器与条件美国Perkin Elmer原子吸收光谱仪(型号:AAnalyst 800);镁空心阴极灯(北京有色金属研究总院);石墨炉原子吸收光谱仪测试条件见表1;MS105DU型Mettler Toledo电子天平;Advantage A10 Milli-Q纯水器。表1 原子吸收光谱仪主要测试条件 测定参数 设定值 测定波长 285.2 nm 狭缝宽度 0.7 nm 工作灯电流 6 mA 空气流量 17 L×min-1 乙炔流量 2 L×min-1 1.2 试剂盐酸(MOS级,天津市风船化学试剂科技有限公司);GSB G 62005-90镁标准储备溶液(1000 mg×mL-1,国家钢铁材料测试中心钢铁研究总院,中国);Milli Q超纯水(18.2 MW×cm);50 mg×mL-1的La溶液由光谱纯La2O3(99.99 %,上海试剂厂,上海)配制而成。2 方法与结果2.1 标准工作溶液的配制及测定从镁标准储备溶液(1000 mg×mL-1)移取一定的量,利用2 %盐酸溶液逐级稀释分别配制成浓度为0、0.1、0.3和0.5 mg×mL-1的标准工作溶液(都含有2 mL的La溶液)。按照浓度从稀到浓的顺序,利用火焰原子吸收光谱仪分别测定其吸光度值。仪器自动绘制工作曲线,获得的标准曲线的线性方程为:Y=0.00618+0.01563*X,R=0.99901上式中:Y:代表吸光度; X:代表待测溶液的浓度; R:代表工作曲线的线性系数。2.2 消解法称取0.0500 g左右的样品到玻璃烧杯中,加入3 mL的MOS级HCl,加盖置于电热板上加热消解。样品很快溶解完全,取下、冷却,定容到100 mL容量瓶中,再50倍稀释,同时加入2 mL的La溶液(50mg×mL-1),定容到50 mL容量瓶中待测,同时做样品空白。2.3 测试结果样品前处理完成之后,仪器先预热稳定半小时,再按照仪器的操作规程进行样品的分析。样品分析结果见表4。表4 样品中镁的分析结果及样品加标回收率 样 品 样品中镁的含量(%) 回收率(%) 1 3.44 102.5 2 3.42 101.0 3 3.43 98.9 结论:通过上面的实验结果可以看出:采用直接敞开湿法消解法和火焰原子吸收光谱法测定埃索美拉唑镁中镁的含量,方法简单、准确、灵敏,可用于埃索美拉唑镁原料药有关物质及含量的测定以及质量控制。

  • 【求助】带结晶水的药物,干品与湿品含量如何转换?

    本人遇到一个产品,阿莫西林为三水合物(C16H19N3O5S?3H2O)。目前原料实际含量是按无水物(C16H19N3O5S)计算(干品)的,为99.2%。干燥失重为13.0%。我现在想知道原料湿品也即阿莫西林为三水合物(C16H19N3O5S.3H2O)的含量,请问该如何折算?计算公式的含义是什么?我要以湿品即带3个结晶水的阿莫西林为三水合物(C16H19N3O5S?3H2O)来投料,配成10%的粉剂。标准规定制剂含量以带结晶水的阿莫西林来计算。谢谢!

  • 【求助】应助 求稻瘟灵和杀虫双的结构式及英文化学名称

    需要做蔬菜中多种农药的多残留,其中这两种药的结构式和英文化学名称没有找到中文化学名称分别是 1,3-二硫戊环-2-亚基丙二酸二异丙酯 1,3双硫代磺酸钠基-2-二甲胺基丙烷(二水合物)不知道确切的英文化学名称表示万分感谢!!!!!!!!!!!!

  • 【求助】救助关于化合物的红外图谱问题

    大家好,本人想问问同一药物的不同盐或水合物,其红外图谱是否一致?比如,埃索美拉唑镁,埃索美拉唑镁盐二水合物,埃索美拉唑镁盐三水合物,该三者化合物的红外图谱是否一致?还有埃索美拉唑镁和埃索美拉唑纳的的红外图谱是否一致?谢谢!

  • 【求购】有关带结晶水的药物投料问题

    最近遇到一个带结晶水的药物。不知道如何处理。阿莫西林为三水合物(C16H19N3O5S• 3H2O)。药典上原料是按无水物(C16H19N3O5S)计算的,含量为99.2%。干燥失重为12.8%(药典范围为12-15%)我现在要制成10%的阿莫西林为三水合物(C16H19N3O5S• 3H2O)粉剂,也即含量按带3个结晶水的阿莫西林为三水合物(C16H19N3O5S• 3H2O)计算。投料量如何计算?(100g中需要多少克阿莫西林为三水合物(C16H19N3O5S• 3H2O))这里按无水物计算的含量能否直接折算成含3结晶水的阿莫西林含量?C16H19N3O5S• 3H2O/C16H19N3O5S=1.1499.2%x1.14=C16H19N3O5S• 3H2O是这样么?但感觉这样不对啊。很困惑!请大家帮忙分析下,这种湿品投料该如何折算。谢谢了!

  • 【实战宝典】在液-液萃取过程完成后,怎样去除有机相中少量的水?

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/1016355问题描述:[font=宋体]用正己烷萃取后,用无水硫酸钠过滤除水,结果漏斗口总是堵住,导致液体无法流下去,请问这是什么原因?有机相的水分不是很多,可总是堵住,这个问题困扰了很久,做了很多改善,可是结果就是不理想,请大家指教![/font]解答:用正己烷萃取后的有机相,用无水硫酸钠过滤除水,原理是无水硫酸钠可以与有机相中的少量水分形成结晶水合物,从而起到除水的作用。但如果在分液漏斗中直接加无水硫酸钠除水的话,这样形成的水合硫酸钠晶体就会沉积在下部漏斗口处,将会堵住漏斗口,使液体无法流出。可通过将有机相转移到平底烧瓶中,在烧瓶中进行除水。除水完毕后,再将有机相转移至干净的容器中进行有机相的浓缩,这样可以避免晶体堵住漏斗口。但在转移的过程中须尽量做到无损转移,防止造成待测物的损失。以上内容来自仪器信息网《样品前处理实战宝典》

  • 【资料】硫代硫酸钠

    硫代硫酸钠 开放分类: 医学、药理学、解毒药、氰化物中毒解毒药 产品名称: 硫代硫酸钠 CA登记号: 10102-17-7 英文名: Sodium thiosulfate pentahydrate 别名: 大苏打 海波 分子式: Na2S2O35H2O 用途: 用作纸浆和棉织品漂白后的除氯剂,食品工业用作螯合剂、抗氧化剂,医药工业用作洗涤剂、消毒剂 硫酸钠的化学式为Na2SO4,硫代硫酸钠是硫取代了其中的一个氧而形成,故名硫代硫酸钠,其分子式为Na2S2O3(分子量为158),常以五水合物存在,Na2S2O35H2O(分子量为248)它是无色晶体,易溶于水。化学性质不稳定,受热易分解,跟酸能反应。 Na 2 S 2 O 3 + H 2 SO 4 =Na 2 SO 4 +H 2 O + SO 2 ↑ + S ↓ 有较强的还原性,常用于除去织物漂白后残留的氯气,也常作卤素的解毒剂: Na 2 S 2 O 3 +4Cl 2 + 5H 2 O=2NaCl + 2H 2 SO 4 +6HCl 在照相技术上常用作定影剂。 制取方法:称取2g硫粉,研碎后置于100mL烧杯中,用1mL乙醇润湿,再加入6g Na2SO3,30mL水,放入磁子,置于磁搅拌器上,调好转速,加热至沸腾,保持微沸40分钟以上,直至少量硫粉漂浮在液面上(注意,若体积小于20mL应加水至20ml以上),趁热过滤(应将长颈漏斗先用热水预热后过滤),滤液用蒸发皿蒸至溶液微黄色浑浊为止。冷却,即有大量晶体析出(若放置一段时间仍没有晶体析出,是形成过饱和溶液,可采用磨擦器壁或加一粒硫代硫酸钠晶体引种,破坏过饱和状态)。减压抽滤,并用少量乙醇(5~10mL)洗涤晶体,抽干,放入40℃烘箱烘40min。 一开始就用乙醇润湿,所以考虑到减少其他杂质的混入,乙醇是有机溶剂,可以用来洗涤。使得到的晶体更纯它是一种硫代硫酸盐,制备方法是:将Na2S和Na2CO3以2:1的物质的量之比配成溶液,然后通入SO2,反应大致可分三步进行:1)、Na2CO3和SO2中和生成Na2SO3: Na2CO3+SO2=Na2SO3+CO22)、Na2S与SO2作用生成Na2SO3和H2S:Na2S+SO2+H2O=Na2SO3+H2S H2S是一个强还原剂,遇到SO2时析出硫3)、Na2SO3与S作用生成Na2S2O3: 2Na2S+Na2CO3+4SO2=2Na2S2O3+CO2溶液蒸浓后,冷却至293-303K时即析出Na2S2O3晶体,利用上述方法制得的硫代硫酸钠中常含一些硫酸钠和亚硫酸钠等杂质。制备硫代硫酸钠的另一种方法是:在沸腾的温度下使亚硫酸钠溶液与硫粉反应:Na2SO3+S=Na2S2O3硫代硫酸钠别名:大苏打、海波 一、用途:感光工业用作照相定影剂。造纸工业用作纸浆漂白后的除氯剂。印染工业用作棉织品漂白后的脱氯剂。分析化学用作色层分析、容量分析用试剂。医药上用作洗涤剂、消毒剂。食品工业用作螯合剂,抗氧化剂等。 二、化工行业标准 H9/J 2328-92 指标名称 指标(工业级) 优等品 一等品 外观 无色成略带淡黄色 透明单斜晶系结晶 硫代硫酸钠(Na2S2O3.5H2O),%≥ 99.0 98.0 水不容物,%≤ 0.01 0.03 硫化物(以Na2S计),%≤ 0.001 0.003 铁(Fe),%≤ 0.002 0.003 PH值(200g/l溶液) 6.5-9.5 6.5-9.5 三、注意事项 用内衬聚乙烯塑料袋的编织袋或木桶包装。每袋(桶)净重25或50kg,容器必须密封。储存于阴凉,干燥的房中,运输中防曝晒,防雨淋。不可与酸类、氧化剂共储混运。防止受潮溶化。如包装潮湿,说明内装物已潮解作用,必须与干燥包装分开堆放。不可储存于露天,对受潮包装要抓紧处理。失火时,可用水、砂土扑救。【药理作用】主要用于氰化物中毒,本品能与体内游离或已与高铁血红蛋白结合的CNˉ结合,转化为无毒的硫氰酸盐从尿液中排出。静脉注射,一次量1~3g。

  • 如何研究药物的多晶型和溶剂化物?

    对于固体药物,其理化性质通常包括:性状(如外观,颜色,物理状态);熔点或沸点;比旋度,溶解性,吸湿性,溶液pH, 分配系数,解离常数,除此之外,对于将用于制剂生产的药物,还需要了解其物理形态,如多晶型、溶剂化物或水合物等,那么对于多晶型和溶剂化物应该如何进行研究?或者说关于这一部分信息应该如何进行叙述?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制