当前位置: 仪器信息网 > 行业主题 > >

氨基甲基吡咯烷

仪器信息网氨基甲基吡咯烷专题为您提供2024年最新氨基甲基吡咯烷价格报价、厂家品牌的相关信息, 包括氨基甲基吡咯烷参数、型号等,不管是国产,还是进口品牌的氨基甲基吡咯烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨基甲基吡咯烷相关的耗材配件、试剂标物,还有氨基甲基吡咯烷相关的最新资讯、资料,以及氨基甲基吡咯烷相关的解决方案。

氨基甲基吡咯烷相关的资讯

  • 赫施曼助力胶鞋 、运动鞋N-甲基吡咯烷酮含量的测定
    胶鞋和运动鞋是我们日常生活中常见的鞋子类型,在生产过程中需要考虑到其材料成分及安全性。N-甲基吡咯烷酮是一种化学物质,对人体有一定的危害,因此需要进行检测和限制其含量。根据GB/T 38349-2019,测定胶鞋和运动鞋中N-甲基吡咯烷酮的方法是高效液相色谱法。实验涉及标准溶液的配置:N-甲基吡略烷酮标准储备溶液,20mg/L:用Miragen电动移液器移取0.5mL浓度为1000mg/L的N-甲基吡咯烷酮标准溶液至25mL容量瓶中,用甲醇(色谱纯)定容至刻度,得到20mg/L的标准储备溶液。N-甲基吡咯烷酮标准工作溶液:采用10mL规格的Miragen电动移液器,单吸多排模式设置5个体积分别为0.25、0.5、1.0、2.5和5mL,然后按分液键,将5个体积的N-甲基毗咯烷酮标准储备溶液(20mg/L)分别加入到10mL容量瓶中,然后用甲醇(色谱纯)定容至刻度,得到浓度分别为0.5、1、2、5和10mg/L标准工作溶液,与20mg/L的N-甲基吡咯烷酮标准储备液组成六个不同浓度的标准工作溶液。 实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。Miragen电动移液器可给电机多段信号,从而达到吸液和排液分多次且各体积独立可调。比如上面的标准溶液的移取,就可设置单吸多排,单次吸取9.25mL,分5次排液(0.25、0.5、1.0、2.5和5mL),程序可存储和调用,非常便捷。
  • 全自动乌氏粘度计在PVP(聚乙烯吡咯烷酮)材料中的应用
    聚乙烯吡咯烷酮(polyvinyl pyrrolidone),简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中独具特色的精细化学品。已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其独特的性能获得广泛应用。PVP(聚乙烯吡咯烷酮)材料作为一种合成水溶性高分子化合物,具有水溶性高分子化合物的一般性质,胶体保护作用、成膜性、粘结性、吸湿性、增溶或凝聚作用,其受到人们重视的独特性质是其优异的溶解性能及生理相容性。在合成高分子中像PVP(聚乙烯吡咯万通)材料这样既溶于水,又溶于大部分有机溶剂、毒性很低、生理相溶性好的并不多见,特别是在医药、食品、化妆品这些与人们健康密切相关的领域中,随着其原料丁内酯价格的降低,展示出发展的良好前景。PVP(聚乙烯吡咯烷酮)材料按其平均分子量大小分为四级,习惯上常以K值表示,不同的K值分别代表相应PVP(聚乙烯吡咯烷酮)材料的平均分子量范围。K值实际上是与PVP水溶液的相对粘度有关的特征值,而粘度又是与高聚物分子量有关的物理量,因此可以用K值来表征PVP的平均分子量。通常K值越大,其粘度越大,粘接性越强。在PVP(聚乙烯吡咯烷酮)材料的生产和研发中,K值通常使用乌氏毛细管法进行测量,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌式粘度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间的精度可到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 通过微波增强的多肽固相合成自动合成首尾相连的环肽
    摘要使用 Liberty Blue&trade 和 Liberty PRIME&trade 多肽合成仪可以快速、高纯度进行头尾环化肽的全自动合成。微波增强的多肽固相合成(SPPS)不仅有利于线性组装,而且有利于随后的环化步骤,在各种困难的生物学重要肽上实现了极高的纯度合成。Liberty PRIME 上使用的一锅法 Fmoc SPPS 循环进一步改善合成时间、减少浪费。表1 :全自动合成首尾相连的环化肽表2:Liberty Blue 和 Liberty PRIME 合成 Cyclorasin A1引言环肽能够桥接小分子和抗体之间的化学空间间隙,允许设计具有高结合亲和力、显着选择性、低毒性和进入细胞内靶点的能力的分子2。因此,大环肽作为靶向传统上无法成药的生物靶点的治疗剂具有相当大的前景3。截至 2017 年,超过 40 种环肽用于临床4。环肽作为候选药物开发的这一令人鼓舞的趋势,为发展更稳健的制备方法提供了动力。SPPS 可以通过使用 Fmoc-Glu-ODmab 作为 C 端氨基酸 (图 1) 制备首尾相连环化肽。在合成线性肽骨架后,可以使用稀肼溶液选择性地去保护 Dmab 基团。之后,可以使用微波增强偶联实现首尾环化。将微波能量应用于首尾环化肽的合成可以实现更有效的偶联,从而加快合成时间和提高纯度 (CarboMAX&trade )5。 图 1:Fmoc-Glu-ODmab ( 左 ) Fmoc-Glu(Wang resin LL)- ODmab (右)材料与方法试剂以下含有指定的侧链保护基团 Fmoc 氨基酸购自 CEM Corporation (Matthews, NC) 并:Ala、Arg (Pbf)、Gly、His (Boc)、Ile、Leu、Lys (Boc)、Thr (tBu) )、Trp (Boc)、Tyr (tBu) 和 Val。Rink Amide ProTideTM LL 树脂也购自 CEM Corporation。Fmoc-Glu-ODmab、Fmoc-Glu(Wang)-ODmab LL 树脂、FmocD-Ala- OH 和 Fmoc-4-氟-L-苯丙氨酸购自 EMD Millipore (Burlington, MA)。Fmoc-D-2-Nal-OH、FmocD-Nle-OH 和 Fmoc-N-甲基-L-苯丙 氨酸购自 Bachem (T orrance, CA)。Fmoc-N-甲基-异亮氨酸-OH 购自 Advanced ChemTech (Louisville, KY)。FmocN-甲基-亮氨酸-OH 购自 Alfa Aesar (Haverhill, MA)。水合肼、N,N-二异丙基乙胺(DIEA)、Fmoc-N-甲基-甘氨酸-OH、N,N' -二异丙基碳二亚胺 (DIC)、哌啶、吡咯烷、三氟乙酸 (TFA)、3,6-dioxa-1、 8 辛二硫醇(DODT) 和三异丙基硅烷 (TIS) 购自 Sigma-Aldrich (St. Louis, MO)。N,N-二甲基甲酰胺 (DMF)、无水乙醚 (Et2O) 和乙酸购自 VWR (Radnor, PA)。LC-MS 级水 (H2O) 和 LC-MS 级乙腈 (MeCN) 购自 Fisher Scientific (Hampton, NH) 。多肽合成:CEM 7-mer, cyclo-[GVYLHIE] 使用 CEM Liberty Blue 自动微波多肽合成仪,在 Fmoc- Glu(Wang)- ODmab 树脂(离子交换容量:0.025 meq/g)上,以 0.10 mmol 的规模合成(Dmab 脱保护以0.05 mmol 规模进行,首尾环化以 0.025 mmol的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍量的Fmoc氨基酸,DIC和Oxyma Pure(CarboMAX)5 中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后无水乙醚沉淀肽并过夜冻干。图2:CEM 7-mer多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q] (Liberty Blue)使 用 CEM Liberty Blue 自 动 微 波 多 肽 合 成 仪 , 在 Rink Amide ProTide LL 树脂 (离子交换容量:0.19 meq/g )上,以 0.05 mmol 的规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的哌啶进行脱保护。偶联反应在5倍Fmoc氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并过夜冻干。多肽合成:Cyclorasin A, cyclo-[WTaRRR-nal-R-Fpa-nle-Q](Liberty PRIME)使用 CEM Liberty PRIME 自动微波多肽合成仪,在 Rink Amide ProTide LL 树脂(离子交换容量:0.19 meq/g)上,以 0.05 mmol 规模合成(Dmab脱保护以 0.05 mmol 的规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。Fmoc-Glu-ODmab 用做第一个氨基酸(Q)。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/ DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图3:Cyclorasin A多肽合成:N-MethylCyclorasinAnalog, cyclo-[WTaR-NMeGly- NMePhe-nal-NMeGly-Fpa-nle-E]使用 CEM Liberty PRIME 自动微波肽合成仪在 Fmoc-Glu (Wang ) -ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.05 mmol 的 规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护。偶联反应在5倍 Fmoc 氨基酸、DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在CEM RazorTM高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽 并冻干过夜。图4:N-Methyl Cyclorain Analog多肽合成:Poly N-Methyl Peptide, cyclo-[KA-NMeIle-NMeGly-NMeLeu-A-NMeGly-NMeGly-E]使 用 CEM Liberty PRIME 自 动 微 波 肽 合 成 仪 在 Fmoc-Glu (Wang )-ODmab 树脂(离子交换容量:0.25 meq/g )上以 0.1 mmol 的规模合成(Dmab 脱保护以 0.05 mmol 规模进行,首尾环化以 0.025 mmol 的规模进行)。使用 DMF 中的吡咯烷进行脱保护 。偶 联 反 应 在 5 倍 Fmoc 氨 基 酸 、 DIC和Oxyma Pure(CarboMAX)5中进行。使用肼的 DMF 溶液进行 ODmab 基团的脱保护。首尾环化反应使用 DMF 中的 DIC/HOBt 进行。在 CEM RazorTM 高通量多肽切割系统中使用 TFA/H2O/TIS/DODT 进行切割。裂解后用无水乙醚沉淀肽并冻干过夜。图5: Poly N-Methyl Peptide多肽分析在配备有 PDA 检测器的 Waters Acquity UPLC 系统上分析肽, 该 检 测 器 配 备 Acquity UPLC BEH C8 柱 (1.7 mm 和 2.1 x 100 mm)。UPLC 系统连接到 Waters 3100 Single Quad MS 用于结构测定。在 Waters MassLynx 软件上进行峰分析。使用 (i) H2O 和 (ii) MeCN 中的 0.05% TFA 梯度洗脱进行分离。 结果在 Liberty Blue 自动微波肽合成仪上 CEM 7-mer 的微波增强固相合成产生了纯度为 78% 的目标肽(图 6)。图6:CEM 7-mer 的UPLC色谱图在 LibertyBlue 自动微波肽合成仪上的 Cyclorasin A的微波增强。图7:Cyclorasin A (Liberty Blue)的UPLC的色谱图Liberty PRIME 自动微波肽合成仪上的 Cyclorasin A 微波增强。图8:Cyclorasin A (Liberty PRIME)的UPLC色谱图Liberty PRIME 自动微波肽合成仪上的 Poly N-Methyl Peptide。图9:多聚N-甲基Peptide 的UPLC色谱图Liberty PRIME 自 动 微 波 肽 合 成 仪 上 的 N-Methyl Cyclorasin Analog 的微波增强固相合成产生了纯度为 66% 的目标肽(图10)。图10:N-甲基 CyclorasinAnalog的UPLC色谱图 结论使用自动微波增 SPPS 可以快速有效地合成首尾环肽。此外,易于使用的 Liberty Blue 和 Liberty PRIME 软件允许对肽序列进行快速直接的编程。使用 Liberty Blue 肽合成仪在 2 小时 13 分钟内合成了纯度为 78% 的 7 聚体环肽。在 Liberty Blue 上在 3 小时 1 分钟内以高纯度 (75%) 合成了 Cyclorasin A 环肽。在 Liberty PRIME 上仅用了 2 小时就合成了相同的肽,纯度很高 (75%),浪费大约 100 mL。在 Liberty PRIME 上,微波增强的 SPPS 可在 2 小时 5 分钟内以 66% 的纯度合成了具有综合挑战性的 N-methyl cyclorasin analog 环肽。最后,在 Liberty PRIME 上以 73% 的纯度在 2 小时 12 分钟内制备出多聚 N-甲 基化 11 聚体肽。 参考文献[1] Upadhyaya, P. Qian, Z. Selner, N. G. Clippinger, S. R. Wu, Z. Briesewitz, R. Pei, D. Angew. Chem. Int. Ed. Engl. 2015, 54 (26), 7602&ndash 7606. [2] White, A. M. Craik, D. J. Expert Opin. Drug Discov. 2016, 11 (12), 1151&ndash 1163.[3] Hurtley, S. M. Science. 2018, 361 (6407), 1084.4-1085. (4) Zorzi, A. Deyle, K. Heinis, C. Curr. Opin. Chem. Biol. 2017, 38, 24&ndash 29. (5) CEM Application Note (AP0124) - &ldquo CarboMAX - Enhanced Peptide Coupling at Elevated Temperature.&rdquo
  • 日本工业规定纺织和皮革产品自愿性偶氮染料标准
    据悉,《家居用品中有害物质管制法》(Act on Control of Household Products Containing Harmful Substances)(Act No. 112 of 1973)对日本某些纺织产品中的有害物质进行规范,如甲醛和狄氏剂等。然而,已在欧盟、中国、台湾和韩国市场被禁的致癌物芳香胺不受目前日本法规的规管。因此,制定偶氮染料的限制规定可消除日本纺织和皮革产品中有害偶氮着色剂的危害。  考虑到与国外法规的统一性以及保护消费者健康,日本的一些协会,包括纺织业联盟(Japan Textile Federation ,JTF)和皮革工业协会(Japan Leather Industry Association ,JLIA)已为纺织和皮革产品制定了偶氮染料标准,也鼓励成员采纳这些标准。  日本经济产业省(METI)近日敦促行业采纳自愿性标准以减少纺织和皮革产品中有害偶氮着色剂的使用。有害偶氮着色剂可释放致癌的芳香胺物质。  自愿性标准规定了纺织和/或皮革产品中致癌物芳香胺的测试方法和最大限量。自愿禁止使用的胺类列表、测试方法和限量都基于目前其他国家的禁令。愿意遵循自愿性偶氮染料标准的可通过提供(1)化验证明书或(2)自我声明来表明。信息应通过供应链进行分享。  日本纺织业联盟和日本皮革工业协会的偶氮染料自愿性标准重点如表格1所示:表格1:日本自愿性偶氮染料标准概要 自愿性偶氮染料标准 日本纺织业联盟(JTF)日本皮革工业协会(JLIA)范围纺织产品皮革产品芳香胺数量22种(见表2)22种(见表2)测试方法EN 14362-1:2003 EN 14362-2:2003ISO 17234-1/IUC 20-1 ISO/DIS 17234-2/IUC 20-2最大限量30毫克/千克30毫克/千克 表格2:22种致癌性芳香胺数量物质名称CAS 号.数量物质名称CAS 号.1联苯-4-基胺92-67-1123,3'-二甲基联苯胺119-93-72联苯胺92-87-5134,4'-亚甲邻甲苯胺838-88-034-氯邻甲苯胺95-69-214 6 - 甲氧基-M-苯胺120-71-842-萘胺91-59-8154,4 - 亚甲基双(2 - 氯苯胺)120-71-85邻氨基偶氨甲苯97-56-3164,4'-二氨基二苯醚101-80-465 - 硝基邻甲苯胺99-55-8174-4-二氨基二苯硫醚139-65-174-对氯苯胺106-47-818 邻甲苯胺95-53-484 - 甲氧基间苯二胺 615-05-4194-甲基-M-二苯胺95-80-794,4’-亚甲基联苯胺101-77-9202,4,5-三甲基苯胺137-17-7103,3'-二氯联苯胺91-94-121鄰-甲氧苯胺90-04-113,3'-二甲氧基联苯胺119-90-4224-氨基偶氮苯60-09-3
  • 首批皮革化学品检测方法团体标准发布
    记者日前从中国皮革协会获悉,经过大量的基础性研究、征求行业意见以及多次专家研讨审定,标准内容不断完善。8月2日,中国皮革协会正式批准发布《制革用聚(甲基)丙烯酸树脂复鞣剂测试方法》(T/CLIAS008-2023)、《制革用氨基树脂复鞣剂测试方法》(T/CLIAS009-2023)、《制革用中和剂测试方法》(T/CLIAS010-2023)、《制革用脱灰剂测试方法》(T/CLIAS011-2023)等4项团体标准,并将于今年9月1日正式实施。中国皮革协会表示,上述四项皮革化学品检测方法团体标准有效填补了国内外标准空白,为皮革化工生产企业和制革企业的生产管理、质量检验、推进制革行业高质量发展提供了必要的技术支撑,对规范皮革化学品市场具有重要意义。据介绍,皮革化学品是决定皮革质量与风格的核心要素之一,与皮革机械一起被形容为制革工业高质量发展的“双翼”。然而,市场上皮革化学品质量参差不齐、缺少统一的产品质量标准。近年来,兴业皮革科技股份有限公司等制革企业反映,在生产过程中经常出现皮革化学品消耗量明显超过工艺需求的情况,一方面严重影响了制革企业的正常生产,另一方面还加大了环境治理的难度,并且在供需双方遇到皮革化学品质量纠纷时无标可依,企业合法利益难以得到充分保障。为着手解决这些问题,兴业皮革科技股份有限公司于2018年开始重点研究皮革化学品品质管控标准的制定。中国皮革协会对此高度重视,并委托兴业皮革科技股份有限公司牵头,邀请皮革行业部分皮革化学品生产企业和制革企业,共同参与制定皮革化学品的产品质量标准。重点针对出现问题较多、用量较大、对皮革质量影响较突出的聚(甲基)丙烯酸树脂复鞣剂、氨基树脂复鞣剂、中和剂、脱灰剂等四类化学品检测方法进行分析研究,制定首批皮革化学品检测方法团体标准。
  • 纺织品有害物质检验有新规定
    近日,国际环保纺织协会在例行年会上发布了最新的100种纺织品有害物质检验的测试标准和限量值要求。为让企业有充足的时间调整、规范生产,新的规定特别允许生产企业有一段过渡调整期,其确切的生效日期为2013年4月1日。  据介绍,测试参数的重新评估是基于目前市场和产品的发展方向,新发现的有毒物质以及相关的新法规要求,集中考虑了REACH法规的要求。其中,包括在2011年已加入REACH高度关注物质列表的与纺织生产相关的N-甲基吡咯烷酮和二甲基乙酰胺有害物质。新的检验标准将这两种化学物质列入“溶剂残留物”的新项目下,限量值要求不超过重量比的0.1%。  对此,检验检疫部门提醒纺织品生产企业,一是积极关注相关部门对纺织品标准要求的变化,及时根据新要求改进生产工艺 二是要做好成品的检验工作,避免因N-甲基吡咯烷酮和二甲基乙酰胺等成分不符合标准而导致滞留、退运等情况 三是严把原料质量关,在选择染料、助剂的同时,必须注意相关有害物质的种类与限量,确保产品质量安全。
  • 重磅新闻:Nature发表CEM公司的免清洗多肽固相合成新方法,绿色化学的重大突破
    2023年12月9日,CEM公司的多肽研发团队在Nature杂志上发表了重要的技术突破——全程免清洗多肽固相合成法,不仅可保证多肽合成的纯度和产率,而且可降低95%甚至完荃放弃有毒试剂DMF的使用,彳切底改变了传统多肽合成的工艺、方案和思路,引起多肽行业的轰动和广泛关注。多肽治疗药物是目前新型药物研发的焦点,具有高效力和选择性的生物靶点。最近利拉鲁肽、司美格鲁肽等新药投入市场,其中诺和诺德单支药物司美格鲁肽年销售额达到212亿美金,引起了巨大的轰动。目前有超过80种多肽药物被FDA批准,数百种处于临床前研究和临床开发阶段。作为药物,多肽已在广泛的领域得到应用,包括癌症、代谢、呼吸系统、心血管、泌尿外科、自身免疫、疼痛和抗菌应用。但到目前为止,化学合成方法SPPS的一个主要缺点是它在每个脱保护和耦合步骤之间的连续洗涤,步骤中使用有毒试剂DMF并且产生大量废物。脱保护后洗涤是固相肽合成过程中不可缶夬少的,每个脱保护和偶联步骤之间需要大约10次DMF洗涤,消耗大量的溶剂。不仅DMF试剂是公讠人的慢性致癌物质,而且连续洗涤步骤导致产生了大量废物。并且,在2021年11月22日,欧盟在其官方公报上发布法规(EU) 2021/2030,增加第76项关于N,N-二甲基甲酰胺(简称DMF或DMFA)的限制条款,正式将DMF纳入REACH法规限制清单。规定从2023年12月12日起,该物质本身及含有该物质浓度≥0.3% 的物质或混合物不得投放市场。为了消除脱保护洗涤的需要,此Nature的文章中提出了全新的革命性工艺技术,利用蒸发去除脱保护碱的工艺,一锅法耦联-脱保护方法采取了pyrrolidine(吡咯烷)代替原有的哌啶,pyrrolidine五元环更小,沸点更低(87℃),能够加速脱保护,且pyrrolidine所用的浓度更低,容易在蒸发过程中去除。同时在反应器底部添加了氮气气流,吹扫挥发的pyrrolidine,在反应器顶部加入第二个氮气源, 通过专用管路进入反应容器上方的顶空,并通过排气口排出从而实现了脱保护过程中的免洗技术。另外,此方法还使用了基于传统碳二亚胺的 N,N'-二异丙基碳二亚胺 (DIC)和 2-氰基2-(羟基亚氨基)乙酸乙酯(Oxyma Pure) 的活化设计的专禾刂方法。研发团队采用这种方法去合成Jung-Redmann(JR)peptide这种众所周矢口的困难肽以及将这种无需洗涤的方法应用于各种具有挑战性的序列(长度最多 89个氨基酸),发现不仅对产品质量没有任何影响,而且实现了高纯度,高速度的合成。Liberty PRO新的免清洗工艺其根本性进步是为多肽合成提供了前斤戶未有的绿色途径,完镁实现固相多肽合成的速度、纯度和产量。它彳切底改变传统的SPPS合成方法大量使用有毒试剂的缺点,满足现代药物开发和生产对重复性、安全性和持续性发展的需求。这项创新的多肽免清洗合成技术不仅成功应用于CEM研发mmol级别的Liberty BLUE多肽合成系列,更重要的是在生产规模1000mmol级的Liberty PRO多肽合成器上得到了实际应用。该技术在整个合成过程中省略了超过10次的清洗步骤,使用的碱基量仅为传统方法的10-15%,同时减少了95%的DMF有毒试剂的使用和废液排放。此外,剩余的5% DMF溶剂也可以被无毒的TamiSolve NxG-PS试剂替代。这种免清洗技术大幅提升了反应效率,并显著降低了试剂成本。总的来说,这种合成工艺是极其高效、经济、环保、高纯度且可扩展的。它代表了从小规模到大规模多肽生产工艺效率的巨大飞跃,实现了以更低的成本、更快的速度和更安全的方法合成更优质的多肽。这一技术彳切底改革了传统的多肽合成生产管理方式和成本,推动多肽药的发展和进步,并激励和推动更多人士采用基于多肽的疗法。
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250g H109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mg F101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25g B101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 岛津GC在锂离子电池产业链中的典型应用(下篇)
    锂离子电池(LIBs)是一种充电电池,主要依靠锂离子在正极和负极之间的移动来完成充放电的工作。LIBs是公认的绿色环保化学电源,具有电压高、比能量大、放电电压平稳、循环性能好等优点,因而发展迅速,应用广泛。LIBs主要用于智能手机、平板电脑等3C领域,电动汽车、电动自行车等动力电池领域以及电网、5G基站等储能领域。电解液组成分析对LIBs的能量密度、循环寿命和安全性研究具有重要意义。在电解液原材料检测以及研发过程中,涉及主盐含量、有机溶剂组份、水分、阴离子、金属杂质等各项测试。在SJ/T 11568-2016《锂离子电池用电解液溶剂》等相关标准中,使用GC对电解液溶剂的纯度与总醇进行检测。1、锂离子电池电解液中碳酸酯类有机溶剂含量测定电解液中碳酸酯类溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)和碳酸亚乙烯酯(VC)等。岛津推荐采用GC-FID对已知电解质溶剂的常规定量检测,GCMS用于电解液中未知溶剂和不纯有机物中杂质的定性、定量检测。本例采用GC-FID对已知电解质溶剂进行常规定量检测。图1 标准溶液谱图取实际电解液样品,正己烷适当稀释后进样分析,得到分离谱图,通过多点校正外标法获得样品结果。图2 实际样品谱图表1 样品定量结果2、碳酸二甲酯(DMC)中水分含量测定碳酸二甲酯(DMC)是电池电解液中常用有机溶剂,利用岛津BID检测器进行DMC中水分含量的测定,方法操作简单、重复性好,适用于化工产品DMC中水分含量的快速分析,可以满足生产过程质量控制的要求。图3 标准色谱图(含水量0.1%)使用DMC配制标准溶液,含水量分别为 0.001、0.005、0.01、0.05、0.1%,进样分析制作标准曲线,以0.001%标准溶液响应值计算仪器检出限。图4 标准曲线表2 相关系数及仪器检出限使用含水量0.01%的DMC溶液,重复进样6次,峰面积重复性良好,RSD小于2%。图5 重叠谱图3、锂电池电极片中N-甲基吡咯烷酮(NMP)残留量测定NMP是生产锂电池非常重要的辅助材料,起到混合活性物质、导电剂和粘结剂的作用,但绝大部分的NMP在浆料涂布过程中被去除,这是因为NMP对于电池来说是杂质,根据工艺分析要求,采用顶空进样器结合气相色谱仪进行锂电池电极片中NMP残留量的测定。图6 Nexis GC-2030 + HS-20 NX本例采用岛津HS-20 NX顶空进样器结合Nexis GC-2030气相色谱仪,建立了电池电极片中NMP残留量的检测方法,标准曲线良好、灵敏度高。图7 N-甲基吡咯烷酮标准色谱图图8 标准曲线表3 相关系数及仪器检出限锂电池的整个生产过程需要配套完备的分析仪器,岛津气相色谱仪在锂离子电池产业链中拥有完善的解决方案,广泛应用于产品研发、生产、质控以及原料进厂检验等众多环节,助力锂离子电池产业健康发展。参考资料:1. 岛津应用No. GCMS-058 气相色谱测定锂电池电解液中碳酸酯类有机溶剂含量2. 岛津应用No. GC-194 GC-BID法测定碳酸二甲酯中水分含量3. 岛津应用No. GC-232 顶空-气相色谱法测定锂电池电极片中N-甲基吡咯烷酮残留量本文内容非商业广告,仅供专业人士参考。
  • 瑞士万通参加2011年华东区药物分析学术交流会
    十月泉城,景色宜人。2011年10月18日~20日,山东省食品药品检验所与山东省药学会于泉城济南珍珠泉宾馆举办&ldquo 2011年药品标准提高研讨会暨华东区药物分析学术交流会&rdquo 。瑞士万通(中国)有限公司有幸参会,并做了&ldquo Metrohm仪器在药品分析的新技术及新应用&rdquo 的学术报告。 报告中,瑞士万通市场部的高级工程师胡清介绍公司最新的药片水分分析的全自动解决方案,并详细讲解了中药材及其饮片中二氧化硫的测定方法及瑞士万通离子色谱技术在药物分析中的应用。 会议现场气氛热烈,会后众多客户前来咨询。瑞士万通市场部工程师介绍公司的新技术与新应用 会议期间,瑞士万通工作人员将万通离子色谱在药物领域中的各种应用与现场参会人员进行了交流。而瑞士万通《离子色谱在药典中的应用》应用报告专辑也非常受药物检测人员的欢迎。该报告详细介绍了药物检测中的N-甲基吡咯烷、葡萄糖胺等热点物质的离子色谱检测方法。 获取应用专辑请发邮件至:info@metrohm.com.cn 关于瑞士万通:1950年,瑞士万通发明了第一支复合pH电极。1954年,瑞士万通设计出第一台用于痕量分析的实用自动极谱仪。1956年,瑞士万通开发出第一支活塞型滴定管。1968年,在瑞士万通诞生世界首台数字化滴定仪,第一台数字化电子滴定管。&hellip &hellip 2007年,瑞士万通研发出首台智能型离子色谱仪。2010年,瑞士万通研制出世界首台紫外离子色谱。Metrohm - 瑞士万通,是当今世界唯一全方位涵盖各类不同离子分析技术的国际化分析仪器公司。
  • 与DNA提取有关的那些事
    也许你很难想象一片叶子、一块肌肉、一管血液都经历了什么,最后以核酸的形式呈现。核酸的提取是所有分子生物学研究的基础,核酸提取的质量、浓度的多少对于下游分子生物学实验的成败起着关键的作用,今天我们就说一说关于DNA提取的那些事儿。一. DNA提取原则1、保证DNA分子的完整性2、排除有机溶剂与金属离子的干扰3、排除蛋白质、多糖、多酚、脂类的污染4、获得高纯度的核酸5、方法操作简便,稳定性强二. DNA有哪些染色体DNA、线粒体DNA、叶绿体DNA、质粒DNA、病毒/噬菌体DNA等。三. 样本的收集保存注:详细操作可参见《派森诺样品制备及质量要求》文件,可向当地销售或技术-支持索取。四. DNA提取原理及方法目前提取DNA的方法繁多,如CTAB法、SDS法、各种试剂盒等,但原理大致相同,主要是裂解和纯化两大步骤。首先对样品破壁裂解,采用机械力、化学试剂、酶等方法将DNA释放出来,随后去除蛋白质、糖、酚、金属离子等杂质,再用无水乙醇、异丙醇沉淀或载体吸附DNA,之后洗涤溶解即可得到核酸。虽然原理相似,但不同提取方法使用的试剂有很大差别,下面列举出在提取过程中,常用试剂的作用及原理:1、裂解相关试剂 (1)CTAB(十六烷基三甲基溴化铵):一种阳离子表面活性剂,在高盐溶液中,CTAB可与蛋白质和中性多糖形成复合物而沉淀,但不能沉淀核酸和酸性多糖,另外它还能保护DNA不受内源核酸酶的降解。(2)SDS(十二烷基硫酸钠):一种阴离子去污剂,可使细胞膜崩解,与膜蛋白疏水部分结合并使其与膜分离,使蛋白变性。(3)PVP(聚乙烯吡咯烷酮):是酚类化合物的螯合剂,可与多酚化合物形成复合体,使其不被氧化成醌类。(4)β-巯基乙醇:抗氧化剂,有效地防止酚氧化成醌,避免褐变,使酚容易去除。(5)蛋白酶K:用于生物样品中蛋白质的一般降解,将蛋白质降解成小分子肽或氨基酸,使DNA分子分离出来。2.纯化相关试剂耗材(1)苯酚:使蛋白质变性,同时抑制了DNase的降解作用。(2)氯-仿:克服酚的缺点,加速有机相与液相分层,去除核酸溶液中的迹量酚(酚易溶于氯-仿中)。(3)异戊醇:少许异戊醇可以减少蛋白质变性操作过程中产生的气泡,有助于分相,保持体系的稳定。(4)无水乙醇:沉淀DNA,不易沉淀盐类等物质;异丙醇也可沉淀DNA,体积小时间短,但易沉淀盐类物质。(5)核酸纯化柱:采用硅胶膜作为核酸的特异性吸附材料(高盐低pH值结合核酸),同时去除其他杂质,可以最-大程度地回收样品中的DNA(低盐高pH值洗脱),可以用于各物种的DNA提取。操作简单、用时短、纯度高。(6)DNA提取磁珠:是一种核心为四氧化三铁、表面修饰大量硅羟基的磁性微球,能在高盐、低pH条件下和溶液中的核酸通过疏水作用、氢键作用和静电作用等发生特异性结合,而不与其它杂质(如蛋白)结合,可迅速从生物样品中分离核酸,操作安全简单,非常有利于核酸的自动化和高通量提取。五. 核酸的保存短时间(24h内)可放置4℃保存,长期(24h以上)放置于-20℃进行保存,期间避免反复冻融。对于纯度不高、总量较少、完整度不好的非高质量核酸,还需尽早进行后续实验,以防保存时间过长,DNA质量更受影响,进而影响建库和测序质量。以上为大家列举了在提取过程中经常用到的试剂及原理,给出了核酸保存的建议。要强调的是相同的原理下,不是试剂的去污、裂解效果越好就用的越多,还是要在实际提取过程中,根据提取材料的不同、提取结果的差异,灵活调整实验方案。
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • HPLC级叔丁基甲醚促销
    货号:CAEQ-4-018397-4000HPLC级叔丁基甲醚规格:4L报价:540元促销价:整箱起订432元/瓶,4瓶/箱促销时间:2011年5月3日至2011年5月31日 高效液相色谱法已经在产品检测、研发以及药物质量控制和环境分析领域成为首要的技术方法,因而对所使用的溶剂提出了更高的要求。CNW液相色谱溶剂具有以下优点:1)低紫外吸收,确保最佳灵敏度;2)严格控制非挥发性物质、游离酸、游离碱和水分含量至最低;3)严格的梯度测试以检测干扰峰和基线漂移情况;4)可用于荧光检测。我们可以为您提供满足不同分析需求的溶剂,如UV-IR表示可满足紫外可见吸收光谱、红外光谱等分析;HPLC preparative表示可满足制备色谱分析;HPLC isocratic表示可满足等度洗脱分析;HPLC gradient表示可满足梯度洗脱分析;GPC表示可满足大分子化合物凝胶渗透色谱分析;另外我们还可以为您提供满足所有现代LC/MS精确检测分析用的溶剂。订货信息: 产品货号 产品名称 品牌 规格 报价(元) 4.003302.4000# HPLC级甲醇 CNW 4L 180.00 4.003306.4000# HPLC级乙腈 CNW 4L 420.00 4.003513.2500# HPLC级水 CNW 2.5L 200.00 4.003513.4000 HPLC级水 CNW 4L 320.00 4.012256.0500# HPLC级苯 CNW 500ml 400.00 4.012256.1000 HPLC级苯 CNW 1L 600.00 4.012256.4000# HPLC级苯 CNW 4L 1360.00 4.012783.0500# HPLC级吡啶 CNW 500ml 520.00 4.012783.1000# HPLC级吡啶 CNW 1L 860.00 4.012783.4000 HPLC级吡啶 CNW 4L 2800.00 4.010734.0500 HPLC级二甲基亚砜 CNW 500ml 360.00 4.010734.4000# HPLC级二甲基亚砜 CNW 4L 1150.00 4.011410.0250# HPLC级1,4-二氧六环 CNW 250ml 480.00 4.010410.0500 HPLC级1,4-二氧六环 CNW 500ml 860.00 4.010410.1000# HPLC级1,4-二氧六环 CNW 1L 1360.00 4.014077.4000 HPLC级N,N-二甲基甲酰胺 CNW 4L 520.00 4.014080.0500# HPLC级N,N-二甲基乙酰胺 CNW 500ml 360.00 4.014080.1000# HPLC级N,N-二甲基乙酰胺 CNW 1L 480.00 4.014080.2500 HPLC级N,N-二甲基乙酰胺 CNW 2.5L 800.00 4.011556.4000# HPLC级环己烷 CNW 4L 520.00 4.011406.0500# HPLC级N-甲基吡咯烷酮 CNW 500ml 320.00 4.011406.4000 HPLC级N-甲基吡咯烷酮 CNW 4L 980.00 4.012001.4000# HPLC级二氯甲烷 CNW 4L 600.00 4.011408.0500 HPLC级1-氯丁烷 CNW 500ml 450.00 4.011408.1000# HPLC级1-氯丁烷 CNW 1L 750.00 4.011412.0500# HPLC级氯苯 CNW 500ml 560.00 4.011412.1000 HPLC级氯苯 CNW 1L 960.00 4.011404.1000 HPLC级1,2-二氯苯 CNW 1L 750.00 4.011414.0500# HPLC级1,2,4-三氯苯 CNW 500ml 520.00 4.011414.1000 HPLC级1,2,4-三氯苯 CNW 1L 860.00 4.018397.4000# HPLC级叔丁基甲醚 CNW 4L 540.00 4.011321.4000# HPLC级四氢呋喃 CNW 4L 720.00 4.014048.4000# HPLC级乙酸乙酯 CNW 4L 450.00 4.016362.4000# HPLC级乙醇 CNW 4L 520.00 4.013493.4000# HPLC级异丙醇 CNW 4L 420.00 4.010893.1000# HPLC级异丁醇 CNW 1L 560.00 4.010893.4000 HPLC级异丁醇 CNW 4L 1800.00 4.010566.4000# HPLC级异辛烷 CNW 4L 860.00 4.019067.1000 HPLC级正丙醇 CNW 1L 300.00 4.019067.2500 HPLC级正丙醇 CNW 2.5L 640.00 4.014508.1000# HPLC级正丁醇 CNW 1L 360.00 4.014508.4000# HPLC级正丁醇 CNW 4L 860.00 4.019030.4000# HPLC级正庚烷 CNW 4L 800.00 4.011518.4000# HPLC级正己烷 CNW 4L 450.00 4.019028.4000# HPLC级正戊烷 CNW 4L 800.00 4.011402.1000 HPLC级叔丁醇 CNW 1L 640.00 4.011401.0500 HPLC级正辛醇 CNW 500ml 480.00 4.011405.0250 HPLC级1,2-二氯乙烷 CNW 250ml 400.00 4.011405.1000 HPLC级1,2-二氯乙烷 CNW 1L 600.00 4.011403.1000 HPLC级4-甲基-2-戊酮 CNW 1L 560.00 4.000306.4000 LS-MS甲醇 CNW 4L 600.00 4.000308.4000 LS-MS乙腈 CNW 4L 840.00 4.000302.4000 LS-MS水 CNW 4L 600.00 了解更多产品请进入安谱公司网站 http://www.anpel.com.cn/
  • 国际环保纺织协会发布百种纺织品有害物质检验标准
    国际环保纺织协会如往年一样,在例行年会上发布了最新的100种纺织品有害物质检验的测试标准和限量值要求,2012年开始生效。据了解,为了给企业充足的时间调整规范生产,允许生产企业有一段过渡调整期,确切的生效日期为2013年4月1日。  据介绍,测试参数的重新评估是基于目前市场和产品的发展,新发现的有毒物质和新法规的要求,同时也考虑了REACH法规的要求,包括在2011年已加入REACH高度关注物质列表的与纺织生产相关的有害物质。测试项目具体更新为:根据现行版本的候选物质清单和目前达成的共识,湿法纺丝纤维和涂层将检测N-甲基吡咯烷酮和二甲基乙酰胺项目。两种化学物质被列入"溶剂残留物"的新项目下,限量值要求不超过重量比的0.1%。另外,相关样品需检测四种新纳入的增塑剂:邻苯二甲酸二C6-8支链烷基酯、邻苯二甲酸二C7-11支链烷基酯、邻苯二甲酸二己酯、邻苯二甲酸二甲氧乙酯。这些将并入已有的邻苯二甲酸盐项目下。总的限量值要求将维持不变,为重量比的0.1%。
  • REACH高度关注物质(SVHC)最新候选清单
    2011 年6 月20 日,欧洲化学品管理局(ECHA)将七种致癌和/或对生殖系统有害的化学物质新增到高度关注物质(SVHC)候选清单中。经过四次修订,现有效SVHC 候选物质清单已达53 项。序号物质名称ECCAS可能用途1氯化钴231-589-47646-79-9干燥剂、例如硅胶2重铬酸钠二水合物234-190-37789-12-0金属表面精整、皮革制作、纺织品染色、木材防腐剂3五氧化砷215-116-91303-28-2杀菌剂、除草剂4三氧化二砷215-481-41327-53-3除草剂、杀虫剂5酸式砷酸铅232-064-27784-40-9杀虫剂6三乙基砷酸酯427-700-215606-95-8木材防腐剂7邻苯二甲酸二丁基酯(DBP)201-557-484-74-2增塑剂、粘合剂和印刷油墨的添加剂8邻苯二甲酸二(2-乙基己)204-211-0 117-81-7PVC 增塑剂、液压液体和电容器里的绝缘体酯(DEHP)9邻苯二甲酸丁苄酯(BBP)201-622-7 85-68-7乙烯基泡沫、橡胶、耐火砖和合成皮革的增塑剂10蒽(Anthracene)204-371-1120-12-7染料中间体、杀虫剂、木材防腐剂。高纯蒽用于制取单晶蒽,用在闪烁记数器上。11三丁基氧化锡(TBTO)200-268-056-35-9木材防腐剂12二甲苯麝香201-329-481-15-2香水、化妆品13六溴环十二烷(HBCDD)206-33-9294-62-2阻燃剂14C10-13氯代烃(短链氯化石蜡)(SCCP)287-476-585535-84-8金属加工过程的润滑剂、橡胶和皮革衣料、胶水154,4'-二氨基二苯甲烷(MDA)202-974-4101-77-9偶氮染料、橡胶的环氧树脂固化剂;有机合成的中间体16蒽油292-602-790640-80-5主要用于制造其他物质,如提炼蒽、碳黑,也用于炸药的还原促进剂,以及海洋捕捞、防腐。17蒽油、蒽糊、轻油295-278-591995-17-418蒽油、蒽糊、蒽馏分295-275-991995-15-219蒽油、少蒽292-604-890640-82-720蒽油、蒽糊292-603-290640-81-621高温煤沥青266-028-265996-93-2主要用于制作工业电极,少量用于重度防腐、铺路、黏土制作22硅酸铝耐火陶瓷纤维 工业绝缘隔热材料23氧化锆硅酸铝耐火陶瓷纤维 工业绝缘隔热材料242,4-二硝基甲苯204-450-0121-14-2用于制作甲苯二异氰酸盐(酯)(TDI),进而制造聚亚胺酯泡沫;也用于制造白明胶塑料。25邻苯二甲酸二异丁酯(DIBP)201-553-284-69-5增塑剂26铬酸铅231-846-07758-97-6色素,用于塑料、油漆着色27钼铬酸铅红(CI颜料红104)235-759-912656-85-828铬酸铅黄(CI颜料黄34)215-693-71344-37-229三(2-氯乙基)磷酸盐(TCEP)204-118-5115-96-8阻燃剂30丙烯酰胺201-173-71976-6-1丙烯酰胺主要用于生产聚丙烯酰胺;聚丙烯酰胺应用于各个领域,尤其是在废水处理和纸张加工。丙烯酰胺也有少部分用于包括研究目的制备聚丙烯酰胺凝胶及在土木工程中的灌浆剂。31三氯乙烯201-167-41979-1-6金属部件的清洗剂和去污剂;黏合剂中的溶剂;用于生产氯氟有机化合物的中间体32硼酸233-139-210043-35-3具有众多的用途,例如用于生物杀灭剂,防腐剂,个人护理用品,食品添加剂,玻璃,陶瓷,橡胶,化肥,阻燃剂,涂料,工业液体,刹车液,焊锡产品,胶片显影剂等。33四硼酸钠,无水215-540-41330-43-4具有多种用途,例如用于玻璃及玻璃纤维,陶瓷,洗涤剂剂及清洁剂,个人护理产品,工业液体,冶金,黏合剂,阻燃剂,生物杀灭剂,化肥等34四硼酸钠,水合物235-541-312267-73-135铬酸钠231-889-57775-11-3实验用分析试剂;生产其他含铬化合物36铬酸钾232-140-57789-00-6金属处理及镀层;生产化学品及试剂;生产纺织品;陶瓷着色剂;皮革鞣制剂敷料;生产颜料及油墨;实验室用试剂;烟花制造37重铬酸铵232-143-17789-9-5氧化剂;实验室用试剂;皮革鞣制;生产纺织品;生产感光荧屏;金属处理38重铬酸钾231-906-67778-50-9生产金属铬;金属处理基镀层;生产化学试剂;实验室用试剂;皮革鞣制;生产纺织品;照相平板;木材处理;制冷系统防腐剂39硫酸钴233-334-210124-43-3用于制陶瓷釉料、油漆催干剂和镀钴等。也可用作饲料添加剂,碱性蓄电池添加剂等。40硝酸钴233-402-110141-05-6用于表面处理、电池、陶瓷颜料、催化剂。41碳酸钴208-169-4513-79-1陶瓷、玻璃颜料,饲料微量元素添加剂,微量元素肥料42醋酸钴(乙酸钴)200-755-871-48-7用于表面处理、合金、颜料、染料和饲料添加剂。43乙二醇单甲醚2-203-713-7109-86-4用作涂料溶剂、渗透剂、匀染剂及有机合成中间体,也用作燃料的添加剂44乙二醇单乙醚2-203-804-1110-80-5常用作溶剂,皮革工业用于着色剂,涂料工业用于配制油漆稀释剂、脱漆剂,及制造喷漆的原料,纺织工业用于制造纤维的染色剂,有机化工中用于制造醋酸酯、乳液稳定剂等。45三氧化铬215-607-81333-82-0用于金属处理和木材防腐剂中的稳定剂。46三氧化铬衍生酸,如:铬酸、重铬酸、低聚铬酸等231-801-5236-881-57738-94-513530-68-2用于金属处理和木材防腐剂中的稳定剂。47乙二醇乙醚醋酸酯203-839-2111-15-9用于油漆、粘合剂、胶水、化妆品、皮革、木材染料、半导体、摄影和光刻过程48铬酸锶232-142-67789-6-2用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层49邻苯二甲酸二(C7-11支链与直链)烷基酯(DHNUP)271-084-668515-42-4用于聚氯乙烯(PVC)塑料、电缆的增塑剂及粘合剂50肼206-114-97803-57-8302-01-2防锈剂;用于制药,农药,油漆,油墨,有机染料等的合成原料,及高分子合成材料单体511-甲基-2-吡咯烷酮212-828-1872-50-4用于涂料溶剂、纺织品和树脂的表面处理和金属面塑料521,2,3-三氯丙烷202-486-196-18-4用于脱脂剂溶剂、清洁剂、油漆稀释剂、杀虫剂、树脂和胶水53邻苯二甲酸二(C6-8支链与直链)烷基酯,富C7链(DIHP)276-158-171888-89-6用于聚氯乙烯(PVC)塑料增塑剂、密封剂和印刷油墨
  • 英国豪迈子公司科尔康的气体检测仪及监测方案荣获两项工业大奖
    p2015年12月,由工业界的知名媒体“工业360”主办的2015年度最佳产品、最佳解决方案和年度最佳工厂评选活动最终揭晓。英国豪迈的a href="http://www.halma.cn/product/crowcon"气体检测品牌科尔康/a(a href="http://www.crowcon.com.cn"crowcon.com.cn/a)凭借其多功能显示型a href="http://www.crowcon.com.cn/index.php?m=content& c=index& a=show& catid=13& id=229"固定式气体检测仪Xgard Bright/a荣获了环境与安全类的最佳产品;由科尔康设计安装的a href="http://www.crowcon.com.cn/index.php?m=content& c=index& a=show& catid=23& id=235"中国首套电池行业的N-甲基吡咯烷酮的浓度监控系统/a则荣获了自动化/仪器仪表/系统集成类的最佳解决方案。/ppbr//pp style="TEXT-ALIGN: center"img alt="科尔康荣获工程师选择奖" src="http://www.halma.cn/sites/default/files/field/image/201601050101.jpg"/br/科尔康的固定式气体检测仪Xgard Bright荣获的环境与安全类最佳产品奖。/ppbr//pp style="TEXT-ALIGN: center"img alt="科尔康荣获最佳解决方案奖" src="http://www.halma.cn/sites/default/files/field/image/201601050102.jpg"/br/科尔康的N-甲基吡咯烷酮浓度监控系统荣获的自动化/仪器仪表/系统集成类最佳解决方案奖。/ppbr//pp“2015年度工厂360工程师选择奖”的评选活动采取了网上投票的方式,历时一个半月,吸引了包括西门子、艾默生、福禄克等知名国际品牌在内的近百家企业报名参赛。Plant360主动邮件推送更是覆盖百万级的制造业的工程师人群。最终,科尔康以绝对优势的投票结果荣获工程师选择大奖。您可以查看完整的“a href="http://plant360.cn/?p=6058"2015工厂360年度最佳榜单/a”。/ppbr//pp此次评选活动的主办媒体“工业360”是一家以整合式数据营销为核心的工业类大型门户网站,旗下拥有工控网、仪器仪表网、化工网、机械网、物流与包装网、制药网等12大行业门户网站和170多个产品应用及热点专题类子网站。/ppbr//pp“工业360”旗下品牌工厂360(Plant360)于2015年9月特举办2015年度最佳产品、最佳解决方案和年度最佳工厂评选活动,为构建智能工厂树立标杆,推广支撑工厂数字化智能化发展相关的先进产品和解决方案。/ppbr//ppstrong关于科尔康和英国豪迈:/strongbr/英国科尔康检测仪器有限公司是安全和环境监测产品领域的领导者,专门从事开发、制造和销售创新、可靠并具有成本效益的易燃和有毒气体检测仪器。公司成立于1970年,总部位于英国牛津的阿宾登,并在荷兰、美国、新加坡、印度、中东和中国设有分公司。科尔康的产品远销世界各地,服务于石油、天然气、石化、公用市政、水清洁与污水处理、消防、建筑等其他因气体或蒸汽意外泄漏有可能产生爆炸或毒气威胁的行业。/ppbr//pp科尔康是英国豪迈(Halma)的子公司,隶属于豪迈的医疗设备事业部。1894年创立的英国豪迈如今是安全、医疗、环保产业的投资集团,是伦敦证券交易所中唯一在过去30多年股息年增长 5%的上市公司。集团在全球拥有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有区域代表处,且在上海、北京、保定、深圳等地建立了多家工厂。/ppbr//ppstrong市场合作联系人:/strongbr/李凤凤(Kate Li)br/科尔康中国区市场经理br/电话:010-67870335 x 104br/邮箱:kate.li@crowcon.com/p
  • 赋能创“芯”| 把控化学品中超痕量金属元素污染,应对极致检测需求!
    随着半导体制程线宽已达纳米时代,细微的污染都可能改变半导体的性质,湿电子化学品是电子行业湿法制程的关键材料,需要直接与硅片接触,其金属离子的控制对于确保产品良率至关重要。赛默飞可提供从ICP-OES到ICPMS(单杆、三重四极杆到高分辨)的全产品线解决方案,适用于不同制程的痕量污染物检测需求,确保 QA/QC 一致性,助力提升良率!► ► 突破高纯有机溶剂行业壁垒高纯度有机溶剂被广泛使用在集成电路行业中,包括异丙醇、甲醇、丙酮、N-甲基吡咯烷酮(NMP)、丙二醇甲醚醋酸脂(PGMEA)、乳酸乙酯、二甲基乙酰胺等。如异丙醇因其低表面张力和易挥发性而用于晶片清洗和干燥,在封装测试、化学中间体以及油墨生产中异丙醇的需求量也很大;NMP和PGMEA作为高级溶剂可与水互溶,并且能溶解大部分的有机和无机化合物,具有良好稳定性,被广泛应用于光刻胶溶剂等。 赛默飞可为高纯有机溶剂提供QA/QC检测,遵循国际半导体设备和材料组织SEMI标准中规定用ICPMS法来测定超痕量金属离子杂质,此外,还可以提供创新R&D检测方案,准确地对杂质进行鉴定和监测,可以有利于工艺方案的优化及产品质量的控制,以及不同批次产品间的组分差异,助力突破研发壁垒。 ► ► 高纯有机溶剂ICPMS测试的挑战有机溶剂直接进样对于ICPMS测定有较大的挑战,高挥发性增加了等离子体负载,导致炬焰收缩而熄火,炬管和接口的积碳导致检测强度下降影响长期稳定性,甚至于堵塞锥孔。因此传统测试上采用挥发蒸干用酸提取,对于水溶性溶剂也使用稀释法进样。固态聚合物更多地使用高温灰化或微波消解的前处理方法。但随着试剂纯度的提高,对于其中要求的杂质限量值越来越低,样品前处理步骤往往会有引入污染的风险,尤其是前处理条件不能满足洁净度要求的情况下。 iCAP TQs最新变频阻抗匹配设计的RF发生器,对于有机溶剂直接进样具有及其快速的匹配,并结合高效Peltier雾化室制冷模块,在雾化室连接管上接入高纯度氧气,与样品气溶胶混合后导入离子体,加氧消除积碳保持进样稳定性,即便在600w冷等离子体条件下也能获得稳定的测定结果。串联四极杆技术结合碰撞与反应模式可进一步去除碳、氮、氩等基体产生的多原子离子干扰,可获得低背景值并更为准确的结果。分析操作流程也更为简单、快速,可有效控制外来污染并提高分析工作效率。► ► 应用案例:电子级N-甲基吡咯烷酮(NMP)电子级NMP在半导体产业用途广泛,可作为光刻胶溶剂、除胶剂、清洗剂等。NMP密度为1.028g/cm3与水的密度相当,沸点202℃其在室温下挥发性低,粘度较低并可以与水互溶。结构中存在N-甲基使NMP直接进样ICPMS分析时,其基体效应相对于异丙醇要强,将抑制待测元素的信号强度。通过等离子体条件优化,结合标准加入法定量测定可消除基体效应。在NMP的检测中,采用赛默飞三重四极杆iCAP TQs半导体专用ICPMS,将ICPMS雾化室制冷至-5℃,减少有机溶剂进样量,50ml/min等离子体加氧避免锥口积碳。有机溶剂直接进样测定时,碳、氮、氩基体离子将对待测离子产生严重的干扰,如¹ ² C₂ +对² ⁴ Mg+,¹ ³ C¹ ⁴ N+对² ⁷ Al+,¹ ⁴ N¹ ⁶ O¹ H+和¹ ² C¹ ⁸ O¹ H+对³ ¹ P+,以及¹ ² C+的峰拖尾对M-1的¹ ¹ B+的干扰等等,方法中采用冷等离子体模式,可有效降低C、 N、Ar等电离,同时在Qcell中加纯氨反应以获得低背景值。¹ ¹ B的测定采用Q1和Q3的高分辨模式,提高丰度灵敏度消除¹ ² C+的影响。³ ¹ P采用热等离子体氧反应模式,Q3选择³ ¹ P¹ ⁶ O+消除CNHO的多原子离子的干扰。分析结果 iCAP TQs ICPMS稳定可靠的RF发生器在等离子体加氧下,可适合于直接进样测定有机溶剂,冷等离子体可有效抑制碳基多原子离子的干扰,结合TQ氨气和氧气反应模式,在一次测定中可稳定切换各种测定模式,提高易用性和分析效率,可满足半导体行业超痕量ppt级的痕量金属杂质检测要求。 一键获取赛默飞半导体材料检测文集 赛默飞为半导体材料开发了全面的痕量无机阴离子、阳离子和金属离子的检测方案,在晶圆表面清洗化学品、晶圆制程化学品、晶圆基材和靶材等各方面,全方位满足半导体生产对相关材料的质量要求,并开发了通过高分辨质谱Orbitrap技术对于材料未知物研发检测的需求,从完整制程出发提供全面可靠的分析技术,助力半导体材料国产化乘风破浪! 长按识别下方二维码即可下载《赛默飞半导体材料检测应用文集》,或点击阅读原文进入半导体解决方案专题页面获取更多解决方案!
  • OEKO-TEX(国际环保纺织协会)2012新标准公布
    OEKO-TEX国际环保纺织协会如往年一样,在年会上发布了最新的OEKO-TEXStandard 100纺织品有害物质检验的测试标准和限量值要求,2012年1月1日开始生效,4月1日新要求开始执行。测试参数的重新评估是基于目前市场和产品的发展,新发现的有毒物质和新法规的要求,同时也考虑了REACH法规的要求,包括在2011年已加入REACH高度关注物质列表的与纺织生产相关的有害物质。  OEKO-TEX测试项目更新如下:  根据现行版本的REACH候选物质清单和目前达成的共识,湿法纺丝纤维和涂层将检测N-甲基吡咯烷酮和二甲基乙酰胺项目。两种化学物质被列入“溶剂残留物”的新项目下,限量值要求不超过重量比的0.1%。  另外,相关样品需检测四种新纳入的增塑剂:邻苯二甲酸二C6-8支链烷基酯,邻苯二甲酸二C7-11支链烷基酯,邻苯二甲酸二己酯,邻苯二甲酸二甲氧乙酯。这些将并入已有的邻苯二甲酸盐项目下。总的限量值要求将维持不变,为重量比的0.1%。  类似于OEKO-TEXStandard 1000环境友好生产实地认证框架内对APEO的禁用要求,NP, NPEOs(1-9), OP, OPEOs(1-2)也将纳入OEKO-TEXStandard 100的认证要求。  以下限量值适用于所有四个产品级别:  NP: 100 ppm  OP: 100 ppm  NPEO(1-9) s: 1000 ppm  OPEO(1-2) s: 1000 ppm  测试从新标准发布起即开始实施。为了给企业充足的时间调整规范生产,允许生产企业有一段过渡调整期,确切的生效日期为2013年4月1日。此项不适用于OEKO-TEXStandard 1000认证企业,因其已符合所需标准。  针对产品级别为IV的皮革制品,可萃取的铬限量值要求为10 mg/kg。不同于根据目前市场上可获得的最佳技术取得的纺织品通常的铬限量值要求。此类皮革产品按要求使用不会对人体产生毒害。  Oeko-TexStandard 100的新要求及最新的申请表格可在网上下载获得。  除了新的测试参数,全球范围开展的OEKO-TEX获证产品的品质监控比例将扩大至全年获证产品的20%,目前最少的监控比例为15%。近年来,平均18%比例的获证产品从商店购回进行测试监控,费用全部由OEKO-TEX国际环保纺织协会承担。OEKO-TEXStandard 100现接受特殊产品的认证,如帐篷、婴儿车、办公椅或背包。
  • ATAGO在线折光仪应用解决方案
    由光源发出的入射光线经过棱镜到达棱镜与待测液体的接触界面处,由于整束光内不同光线入射到界面的角度不同,因而产生折射,反射和全反射现象。以临界角为界,一部分光线折射进入待测液体,另一部分光线反射经过棱镜,到达CCD检测器。在高分辨率CCD形成暗区和亮区,当溶液的浓度发生变化时引起CCD上暗区和亮区的组成比率变化,CCD将检测到的光信号转变为电信号,通过线性化,实现对液体浓度变化的检测。 ATAGO(爱拓)在线折光仪实现过程检测监控,安装在生产线上可24小时连续实现监测,可测量液体或者半液体的糖度,浓度,可溶性固形物含量,大幅降低工人劳动强度,生产安全保证。在线折光仪应用解决方案,实时检测浓度变化,检测生产的每一个环节就能够立即发现次品而避免流入下一个生产环节,并且全自动检测消除人为误差的情况发生。 ATAGO(爱拓)在线折光仪主要应用行业:化工行业中尿素,清洁剂,乙二醇,双氧水,异丙醇浓度,表面活性剂,N-甲基吡咯烷酮 NMP;机械行业中润滑液,切削油,电瓶液,防冻液,清洗液;环保行业中废水处理,自动化处理系统,依据固形物含量定义废水或再循环用水,作为浓度变化提醒。在排水处理过程中,废液浓度管理不可或缺,在机械加工行业中,会产生废液排放,金属加工行业中通过测量废液的浓度,来防止高浓度的废液排放到自然环境之中。ATAGO(爱拓) 在线折光仪,废水在线折光仪采用实时自动化监测浓度变化; 在线折光仪一次安装后,可实时监测废液浓度变化,通过检测数据可以查明原因,及时避免废液流入下一个程序,为金属加工行业提供可靠的浓度管理。 欲构建在线折光仪浓度检测系统并且确定项目实施计划,请与ATAGO(爱拓)中国分公司联系。
  • 先进的分析检测手段,助力锂离子电池等新能源行业中NMP的质量控制
    目前新能源汽车发展大势不变,锂电池产业投资热度不减,N-甲基吡咯烷酮(NMP)产品,目前主要生产市场集中于制造锂离子电池、电动汽车动力电池及对位芳纶等领域,是锂电生产过程中不可或缺的有机溶剂其充足稳定的供应保障是中国锂电行业能够得以持续快速发展的重要条件之一。 NMP,属于氮杂环化合物,中文名称N-甲基吡咯烷酮,英文名称为N-methyl-2-pyrrolidone,化学式为C5H9NO,为稍有氨味的无色透明油状液体,与水以任何比例互溶,是一种性能优良的高沸点溶剂,几乎与所有溶剂(乙醇、乙醛、酮、芳香烃等)完全混合。NMP是锂电生产过程中不可或缺的有机溶剂,其质量直接影响锂离子电池拉浆涂布质量和对环境保护的要求。目前锂电池对有机溶剂的纯度,特别是水的含量要求非常高,其水的含量需要小于0.02%,甚至更低。目前国产NMP中水的含量普遍大于300ppm。而进口的NMP提纯后,其指标要求:色度要求小于10,纯度要求大于99.8%,水分含量要求不超过200ppm。对于NMP来料检验,NMP的质量控制就成为了锂电池产业的一项重要指标,先进的分析检测手段将助力NMP的质量控制。 一:化验室检验内容参考如下:(本标准适用于γ-丁内酯(以下简称GBL)和甲胺化合而制备的NMP的检验。)序号检验项目检 验 标 准检 验 方 法检测设备1包装a. 标识清楚,内容正确可识别;b. 外包装无破损、受潮、未有严重撞击痕迹;c. 外包装上需有环境有害物质方面的标识。目检/2外观溶剂无色透明、无杂质、沉淀。取适量实验室样品于比色管中,在自然光下目视观察比色管3溶解性粘结剂与溶剂混合搅拌后能完全溶解,无杂质、不溶物出现,颜色为无色或微黄透明。根据抽样水平每批随机抽取100g溶剂分别与10g PVDF粉末混合,于洁净、干燥的烧杯中搅拌,做溶解性实验 100-1500rpm磁力搅拌器EYELARCH-1000 4水分▲优等品≤200ppm合格品≤300ppmGB/T6283 (醛酮试剂)METTLERC30S/C10S/C20S库伦卡尔菲休水分仪5纯度▲优等品≥99.90% 合格品≥99.50%随机取样10ml溶剂用气质联用仪检测 GB/T 9722  化学试剂 气相色谱法通则 GC-MS7890B-5977B (7820A-5977B)DB-1701色谱柱HP-5MS 色谱柱或者GC7820A DB-225色谱柱6丁内酯≤0.03%7甲基NMPC-Me.NMP(wt%)≤0.058色度合格品≤20Hazen优等品≤10APHA随机取样10gNMP溶剂用色度仪检测(GB/T3143)LOVIBOND Pt-Co色度仪AF-327 目视EC-2000 pt-Co电子式9密度1.029-1.033g/mLGB/T 4472METTLER DA-100M/30PX台式/便携式密度计10折光率(N020)1.4680-1.4700GB/T6488 ATAGO DR-1T 阿贝折射计(20度)配外循环恒温水浴11PH值7.0-9.0使用纯水作为溶剂将NMP配成10%的溶液,测试溶液的PHMETTLER FE28/S210PH计12游离胺▲(wt%)优等品≤20ppm合格品≤30ppm使用微量滴定管,用HCl进行滴定(参考附件氨含量测试方法)GB/T9725MEYYLER G10S/ET18滴定仪10ml 滴定管 (备注:打▲的为重要指标。) 测量说明:A.对于水分测定,锂电池生产中涉及到的水份检测可以分为 2 类:1.) 正极材料,负极材料等固体样品的水分检测2.) 电解液、NMP溶剂等液体样品水份检测 第一类样品一般是固体样品,需要通过加热的方式将样品中的水份蒸发出来,通过载气(高纯氮气或干燥空气)将蒸发出的水份带至滴定杯内滴定 第二类样品一般是液体样品,比如电解液、NMP等可以直接将样品添加至KF 滴定杯内进行测定.C10S/C20S 对于NMP含量的测定,方法1: GB/T9722,可以采用GC方法进行测量;预算充足,定性定量分析方便,精度要求更高,采用GC-MS 进行分析测量。GC方法提要仪器AGILENT 7820A,整机灵敏度和稳定性优于GB/T9722中有关规定。在选定的色谱操作条件下,使样品气化后经色谱柱分离,用氢火焰离子化检测器(FID)检测,校正面积归一化法定量。 Agilent 7820A 推荐的色谱柱和色谱操作条件 毛细管色谱柱30m×0.32mm×0.5μm,(柱长×柱内径×液膜厚度)固定相25%氰乙基-25%苯基-50%甲基硅氧烷(DB-225)柱温初始100oC,保持1min;升温速度10oC/min,升温到160oC,保持10min气化室温度/ oC250检测器温度/ oC300载气(N2或He)流量/(mL/min)1.0 mL/min(N2)氢气流量/(mL/min)30空气流量/(mL/min)300尾吹气(N2)流量/(mL/min)35进样量/μL0.2分流比25:1 分析步骤 1.1校正因子的测定1.1.1标准溶液的配制 用称量法配制NMP加欲测杂质的标准溶液,各组分的称量精确至0.0001g,组分含量的质量分数计算精确至0.001%。所配制的标准溶液中杂质含量应与待测试样相近。1.1。.2 相对校正因子的测定根据仪器说明书,调节仪器至表2所示的操作条件,将未加欲测杂质的NMP和配制的标准溶液依次注入气相色谱仪,各平行测定4次,取4次测定的峰面积的算术平均值为测定结果。依据所得的峰面积及杂质组分含量,计算各组分的相对校正因子fi。试样中未知组分或得不到标准物质的组分的相对校正因子取值为1。1.1.3 相对校正因子的计算组分i相对N-甲基-2-吡咯烷酮的相对校正因子fi ,按公式(1)计算: ̷̷̷̷̷̷̷̷̷̷̷̷̷̷(1)式中:AB ——标准溶液中NMP的峰面积;Ai ——NMP未加入欲测杂质时组分i的峰面积;A‘i——标准溶液中组分i的峰面积;cB ——标准溶液中NMP的质量分数的数值;ci ——标准溶液中组分i的质量分数的数值。1.2 试样的测定 根据表2所示的仪器操作条件测定样品,采用校正面积归一化法定量。1.3 结果计算NMP的质量分数X1,数值以%表示,按公式(2)计算: X1 =(100 — X水) ̷̷̷̷̷̷̷̷̷(2)式中: X水——4.5测得NMP中水的质量分数的数值;——试样中NMP的色谱峰面积;fi ——组分i的相对校正因子;——组分i的色谱峰面积。 取两次平行测定结果的算术平均值为报告结果。两次平行测定结果的绝对差值不大于0.03%。 方法2:NMP 含量的测定,由于GC中FID 检测器的定性能力低于GC-MS, 为了定性定量分析方便,精度要求更高,采用GC-MS 进行分析测量。 锂电池行业业内的主流配置为目前最新的配置Agilent 7890B-5977B,配7693A 自动进样器(或者其同系列的型号),当然也可以选择中端的型号7820A-5977B. 仪器条件参考如下:色谱柱:HP-5MS(30m×0.32mm×0.25mm,Agilent);升温程序为:在60℃温度下保持5min,再以6℃/min的速率升至230℃,保持10min;进样口温度为210℃;流速为1mL/min;进样量为1μL;载气为氦气,纯度≥99.999%;质量扫描范围为35~350amu;离化方式为EI;离化电压为70eV。(备注: NMP 在12.135min 左右就出峰,为了保证较好的响应时间,面积及好的峰型,升温速率降低,同时缩短停留时间)。游离胺的测定1.1试剂异丙醇:分析纯。盐酸标准滴定溶液C(HCl)=0.02moL/L:应于临用前将[C(HCl)=0.1moL/L]的标准滴定溶液用煮沸并冷却的蒸馏水稀释,必要时应重新标定。 1.2 仪器METTLER G10S 电位滴定仪,DG-113 非水PH电极 1.3 测定方法称量NMP样品65g(精确至0.0001g)到250ml烧杯中。加入100ml异丙醇且混合均匀后,按照GB/T 9725《化学试剂 电位滴定法通则》中6 测定进行样品的测试。 1.4 结果计算:在电位滴定仪G10S上输入公式,一键滴定得到游离胺的含量。 样品中游离胺的质量分数X2,数值以%表示,按公式(3)计算: ×100̷̷̷̷̷̷̷̷̷̷̷(3)式中:V —— 滴定终点时,消耗盐酸(HCl)标准溶液体积,ml;C —— 盐酸(HCl)标准溶液的浓度,单位为升每摩尔(mol/l);0.0311—— 与1.00mL盐酸标准溶液[c(HCL)=1.000moL/L]相当的以克表示一甲胺的质量的数值,单位为克(g);m —— 称量试样的质量数,g。 METTLER G10S 其他的折光率,密度计,比色计,PH的测量相对比较简单,仪器附表上有推荐仪器的型号,相信广大用户及技术人员都不陌生。对于NMP的质量控制,目前有相关的标准及先进的检测手段,助力于锂电池行业的蓬勃发展。
  • 81项国家标准批准发布
    关于批准发布《工业用甲醇》等81项国家标准和12项国家标准样品的公告  国家质量监督检验检疫总局、国家标准化管理委员会批准《工业用甲醇》等81项国家标准和12项国家标准样品,现予以公布(见附件)。  二〇一一年十二月五日序号国家标准编号国家标准名称代替标准号实施日期1GB 338-2011工业用甲醇GB 338-20042012-08-012GB 1918-2011工业硝酸钾GB/T 1918-19982012-08-013GB 2536-2011电工流体 变压器和开关用的未使用过的矿物绝缘油GB 2536-19902012-06-014GB/T 3374.2-2011齿轮术语和定义 第2部分:蜗轮几何学定义部分代替:GB/T 10086-19882012-06-015GB 3778-2011橡胶用炭黑GB 3778-20032012-08-016GB 5091-2011压力机用安全防护装置技术要求GB 5091-19852012-10-017GB 5903-2011工业闭式齿轮油GB 5903-19952012-06-018GB/T 5981-2011挤奶设备 词汇GB/T 5981-20052012-05-019GB/T 8166-2011缓冲包装设计GB/T 8166-19872012-05-0110GB/T 8186-2011挤奶设备 结构与性能GB/T 8186-20052012-05-0111GB/T 8187-2011挤奶设备 试验方法GB/T 8187-20052012-05-0112GB/T 9578-2011工业参比炭黑4#GB/T 9578-20022012-05-0113GB/T 11060.6-2011天然气 含硫化合物的测定 第6部分:用电位法测硫化氢、硫醇硫和硫氧化碳含量 2012-05-0114GB/T 11060.9-2011天然气 含硫化合物的测定 第9部分:用碘量法测定硫醇型硫含量 2012-05-0115GB 11118.1-2011液压油(L-HL、L-HM、L-HV、L-HS、L-HG)GB 11118.1-19942012-06-0116GB 11120-2011涡轮机油GB 11120-19892012-06-0117GB/T 13207-2011菠萝罐头GB/T 13207-19912012-06-0118GB/T 13484-2011接触食物搪瓷制品GB/T 13484-19922012-06-0119GB/T 14833-2011合成材料跑道面层GB/T 14833-19932012-05-0120GB/T 17582-2011工业炸药分类和命名规则GB/T 17582-19982012-05-0121GB/T 17747.1-2011天然气压缩因子的计算 第1部分:导论和指南GB/T 17747.1-19992012-05-0122GB/T 17747.3-2011天然气压缩因子的计算 第3部分:用物性值进行计算GB/T 17747.3-19992012-05-0123GB/T 19277.1-2011受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第1部分:通用方法GB/T 19277-20032012-05-0124GB/T 19630.1-2011有机产品 第1部分:生产GB/T 19630.1-20052012-03-0125GB/T 19630.2-2011有机产品 第2部分:加工GB/T 19630.2-20052012-03-0126GB/T 19630.3-2011有机产品 第3部分:标识与销售GB/T 19630.3-20052012-03-0127GB/T 19630.4-2011有机产品 第4部分:管理体系GB/T 19630.4-20052012-03-0128GB/T 24795.2-2011商用车车桥旋转轴唇形密封圈 第2部分:性能试验方法 2012-03-0129GB/T 26519.1-2011工业过硫酸盐 第1部分:工业过硫酸钠 2012-05-0130GB/T 27561-2011苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)胶粘剂 2012-05-0131GB/T 27562-2011工业氯化亚铜 2012-05-0132GB/T 27563-2011工业用N-甲基-2-吡咯烷酮 2012-05-0133GB/T 27564-2011工业用三异丙醇胺 2012-05-0134GB/T 27565-2011工业用烷基烯酮二聚体 2012-05-0135GB/T 27566-2011工业用一异丙醇胺 2012-05-0136GB/T 27567-2011工业用吡啶 2012-05-0137GB/T 27568-2011轨道交通车辆门窗橡胶密封条 2012-05-0138GB/T 27569-2011氢氟酸生产技术规范 2012-05-0139GB/T 27570-2011室温硫化甲基硅橡胶 2012-05-0140GB/T 27571-2011输送混凝土用橡胶软管及软管组合件 2012-05-0141GB/T 27572-2011橡胶密封件 110℃热水供应管道的管接口密封圈 材料规范 2012-05-0142GB/T 27573-2011乙酸乙烯酯-乙烯共聚乳液 2012-05-0143GB/T 27574-2011睫毛膏 2012-03-0144GB/T 27575-2011化妆笔、化妆笔芯 2012-03-0145GB/T 27576-2011唇彩、唇油 2012-03-0146GB/T 27577-2011化妆品中维生素B5(泛酸)及维生素原B5(D-泛醇)的测定 高效液相色谱紫外检测法和高效液相色谱串联质谱法 2012-03-0147GB/T 27578-2011化妆品名词术语 2012-05-0148GB/T 27579-2011精油 高效液相色谱分析 通用法 2012-03-0149GB/T 27580-2011精油和芳香萃取物 残留苯含量的测定 2012-03-0150GB/T 27581-2011电磁屏蔽膜 化学镀铜溶液 镍离子和铜离子含量测定方法 2012-03-0151GB/T 27582-2011光学功能薄膜 等离子电视用电磁波屏蔽膜 屏蔽效能测定方法 2012-03-0152GB/T 27583-2011光学功能薄膜 反射眩光性能测试方法 2012-03-0153GB/T 27584-2011光学功能薄膜 聚对苯二甲酸乙二醇酯(PET)薄膜 受热后尺寸变化测定方法 2012-03-0154GB 27585-2011工业氰化钾 2012-08-0155GB/T 27586-2011山葡萄酒 2012-06-0156GB/T 27587-2011日用陶瓷耐微波加热测试方法 2012-06-0157GB/T 27588-2011露酒 2012-06-0158GB/T 27589-2011纸餐盒 2012-06-0159GB/T 27590-2011纸杯 2012-06-0160GB/T 27591-2011纸碗 2012-06-0161GB/T 27592-2011反应染料 轧染固色率的测定 2012-03-0162GB/T 27593-2011纺织染整助剂 氨基树脂整理剂中游离甲醛含量的测定 2012-03-0163GB/T 27594-2011分散染料 原染料相对强度的测定 分光光度法 2012-03-0164GB/T 27595-2011胶粘剂 结构胶粘剂拉伸剪切疲劳性能的试验方法 2012-03-0165GB/T 27596-2011染料 颗粒细度的测定 显微镜法 2012-03-0166GB/T 27597-2011染料 扩散性能的测定 2012-03-0167GB/T 27598-2011照相化学品 无机物中微量元素的分析 电感耦合等离子体原子发射光谱(ICP-AES)法 2012-03-0168GB 27599-2011化妆品用二氧化钛 2012-08-0169GB/T 27600-2011纸箱成型机 2012-05-0170GB/T 27601-2011工业电雷管抗杂散电流试验方法 2012-05-0171GB/T 27602-2011工业电雷管射频感度测定 2012-05-0172GB/T 27603-2011工业电雷管射频阻抗测定 2012-05-0173GB/T 27604-2011移动应急位置服务规则 2012-07-0174GB/T 27605-2011卫星导航动态交通信息交换格式 2012-07-0175GB/T 27606-2011GNSS兼容接收机数据自主交换格式 2012-07-0176GB 27607-2011机械压力机 安全技术要求 2012-10-0177GB 27608-2011联合冲剪机 安全要求 2012-10-0178GB/T 27609-2011农业节水灌溉设备 评价方法 2012-05-0179GB/T 27610-2011废弃产品分类与代码 2012-05-0180GB/T 27611-2011再生利用品和再制造品通用要求及标识 2012-05-0181GB/T 27612.3-2011农业灌溉设备 喷头 第3部分:水量分布特性和试验方法GB/T 19795.2-20052012-05-01
  • 岛津中国率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案
    2019年3月1日,美国食品和药物管理局(FDA)在官网发布血管紧张素II受体阻滞剂(ARBs)药物氯沙坦的自愿召回公告,涉及到印度Hetero Labs Ltd.生产的87批氯沙坦钾片,而导致该召回的主要原因是发现其中含有N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质。由于NMBA是已知动物和潜在人类的致癌化学物质,是继N?亚硝基二甲胺(NDMA)和N?亚硝基二乙胺(NDEA)之后上市ARBs药物中检测到的第三种亚硝胺类遗传毒性杂质。此后,FDA相继公布了Teva Pharmaceuticals和Vivimed Life Sciences Pvt Ltd等制药公司自愿召回涉及氯沙坦钾的63批药品,其原因为检出含有NMBA。同时,加拿大卫生部(HC)及英国卫生部(DHSC)也在官网上发布了氯沙坦类药物的召回公告。直至2019年6月12日,Teva Pharmaceuticals仍在扩大自愿召回7批检出NMBA氯沙坦钾片,可见药物中的遗传毒性杂质仍受到公众及药品监管机构的高度关注。  在FDA已公布的ARBs药物亚硝胺杂质限度表中,NMBA的日允许摄入量最大值为0.96ppm。 FDA评估了暴露于9.82ppm水平NMBA相比于终生暴露于0.96ppm NMBA的服药水平,表明6个月的暴露量不会存在患癌风险。N-亚硝基-N-甲基-4-氨基丁酸(NMBA)N-Nitroso-N-methyl-4-aminobutyricacid(NMBA)CAS. 61445-55-4  因此,为了确保患者在缓冲期可获得氯沙坦类药物,FDA不反对含NMBA低于9.82ppm的氯沙坦保持销售。该过渡缓冲期FDA设为6个月,直至生产企业提供亚硝胺杂质符合要求的氯沙坦药物来填补市场。目前,关于氯沙坦钾中NMBA的检测方法尚未见公开报道,为及时应对市场检测需求,岛津中国率先推出了基于LC-MS/MS技术的检测方法,该方法操作简单,灵敏度高,适用性强,可有效用于氯沙坦钾中NMBA的分析检测。 1、 实验部分 1.1 仪器: LCMS-8050三重四极杆质谱仪联用仪,含有:LC-30AD×2输液泵,DGU-20A5R在线脱气机,SIL-30AC自动进样器,CTO-30A柱温箱,CBM-20A系统控制器,LCMS-8050三重四极杆质谱仪,LabSolutions(Version 5.82 SP1)色谱工作站。 1.2 分析条件: 液相色谱条件质谱条件 1.3 标准品溶液:取NMBA标准贮备液,以纯甲醇逐级稀释为0.5、1、2、5、10、20、50、100 ng/mL的八个不同浓度的混合标准工作溶液。 1.4 样品溶液:取氯沙坦钾三批原料药(符合EP9.0)0.1 g于10 mL容量瓶中,加甲醇适量,超声1 min至全部溶解,放冷至室温,用甲醇定容待测。 2、 结果 2.1标准品色谱图图1. NMBA标准品色谱图(100 ng/mL)(黑色-总离子流;粉色-MRM147.15/117.10;蓝色-MRM147.15/87.10;棕色-MRM147.15/44.10) 2.2 线性关系及检出定量限图2. NMBA标准曲线检出限(LOD)0.5 ng/mL(MRM147.15/117.10),定量限(LOQ)1.0 ng/mL (MRM147.15/117.10) 2.3 精密度实验:10 ng/mL标准溶液为样本连续进样,日内及日间保留时间相对标准偏差低于0.1%,峰面积低于1.10%。 2.4 加标回收实验 取0.1 g氯沙坦钾样品于10 mL容量瓶中,加入NMBA标准品溶液(相当于50、100、200 ng NMBA标准品),按照1.4中的方法进行处理,上机分析。加标的氯沙坦钾溶液色谱图(以200 ng加标量为例)见图3。三个平行样品的低中高平均回收率分别为98.04%,94.40%,95.61%。 图3 NMBA加标量为200 ng时氯沙坦钾溶液色谱图 2.5 检测结果:三批样品中NMBA均低于最小检出限(LOD)。 3、 结论   本工作建立了使用LCMS-8050三重四极杆质谱联用仪测定氯沙坦钾原料药中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质的方法,在0.5~100 ng/mL浓度范围内线性关系良好,检出限和定量限分别为0.5 ng/mL和1.0 ng/mL。使用此方法对三批次氯沙坦钾原料药进行了测定,结果为NMBA未检出。本方法简单、快速、灵敏、准确,可有效用于氯沙坦钾原料药中NMBA的分析检测。
  • 出口欧盟食品接触塑料材料及制品需高度关注新法规
    2011年12月10日,欧盟官方公报公布了(EU) No 1282/2011号法规,修订了关于食品接触塑料材料及制品的(EU)No 10/2011号法规。新法规指出,对于2012年1月之前符合现有法规获准上市销售的塑料材料及制品而言,如果不符合该项最新法规规定,仍可在2013年1月1日之前上市销售,相关库存产品可以售完为止。该法规自其在欧盟官方公报公布20天后生效。2012年1月25日,欧盟食品安全局(EFSA)又发表了食品接触塑料制品的新法规的细节说明,即塑料实施措施,对法规进行了进一步的补充说明。  须引起高度关注的是在新法规中,三聚氰胺的特定迁移限量(Specific migration limit, SML)由原来的30mg/kg减少到2.5mg/kg。此外,根据EFSA的意见,2,4-双(2,4-二甲基苯基)- 6-(2-羟基-4-正辛氧基苯基)- 1,3,5-三嗪的SML由0.05mg/kg修订为5mg/kg N-甲基吡咯烷酮的SML设定为60 mg/kg。此外,法规还修改了部分欧盟清单中已授权物质的限制和规范。  食品接触类塑料制品是宁波地区重要的出口消费产品。据统计,2011年宁波地区检验检疫出口食品用包装容器、食品用具已突破2.2万批,货值突破3.96亿美元,其中塑料制品占有相当大的比重,欧盟地区为重要的出口市场。近年来,欧盟相继出台了一系列法规条例,不断提高进口食品接触材料的门槛,面对日趋严厉的贸易壁垒和管控要求,国内相关产品生产企业应当引起高度关注,在产品检测和原辅材料把关上投入更多的精力和成本。  鉴于此,检验检疫部门提醒相关食品接触塑料制品生产企业:一是要及时了解和掌握新法规的相关条款要求,对欧盟法规的限定项目和限量保持高度敏感,提高风险意识,避免由此带来的损失 二是要规范管理,建立可靠的原辅料供应渠道,尤其是以三聚氰胺-甲醛树脂(密胺塑料)为原辅料的生产企业,应高度重视新法规中对三聚氰胺可迁移限量从严要求的限制,警惕由此带来的质量安全问题 三是要加强与检验检疫部门的联系,密切关注政府部门发布的预警信息,提早防范,不断提高自身产品的品质,提升“中国制造”的品牌形象。
  • 2022年4月份将要实施的那些标准
    2022年4月份将要实施的标准2022年4月份将要实施的科学仪器及检测相关的国家标准仅有8条。但将要实施的行业标准较多,一共有99条,其中主要包括轻工、气象、环境、机械、化工、卫生医药等。另外还有20条与仪器及检测相关的团体标准也将实施。需要相关标准的,点击链接即可下载收藏↓国家标准GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南 GB/T 10782-2021 蜜饯质量通则 GB/T 19702-2021 体外诊断医疗器械 生物源性样品中量的测量 参考测量程序的表述和内容的要求 GB/T 10781.1-2021 白酒质量要求 第1部分:浓香型白酒 GB/T 39849-2021 无损检测仪器 超声衍射声时检测仪 性能测试方法 GB/T 39948-2021 食品热力杀菌设备热分布测试规程 GB/T 10781.11-2021 白酒质量要求 第11部分:馥郁香型白酒 GB/T 39945-2021 罐藏食品热穿透测试规程 行业标准交通标准JT/T 1386.10-2022 海事电子证照 第10部分:危险化学品水路运输从业资格证书 JT/T 316-2022 货运挂车产品质量检验评定方法 JT/T 1411-2022 天然气营运货车燃料消耗量限值及测量方法 气象标准QX/T 636—2022 气候资源评价 气候生态环境 QX/T 637—2022 气候预测检验 热带气旋 QX/T 638—2022 气候预测检验 热带大气季节内振荡 QX/T 639—2022 中国雨季监测指标 东北雨季 QX/T 640—2022 气象业务综合监视数据要求 QX/T 641—2022 称重式电线横向积冰自动观测仪 QX/T 642—2022 自动标准气压发生器技术要求 QX/T 643—2022 气象用水电解制氢设备操作规范 QX/T 644—2022 气象涉氢业务设施建设要求 QX/T 645—2022 风电机组测风资料质量审核与订正 QX/T 646—2022 雷电防护装置检测资质认定现场操作考核规范 QX/T 41—2022 空气质量预报 食品 轻工标准JJF 1070.3-2021 定量包装商品净含量计量检验规则 大米 QB/T 5636-2021 品牌培育管理体系实施指南 食品行业 QB/T 2968-2021 口腔清洁护理用品 牙膏中锶含量测定的方法 QB/T 2623.10-2021 肥皂试验方法 肥皂中甘油含量的测定 QB/T 5638-2021 口腔清洁护理用品 牙膏中叶绿素铜钠盐含量的测定高效液相色谱法 QB/T 1915-2021 阳离子表面活性剂 脂肪烷基三甲基卤化铵及脂肪烷基二甲基苄基卤化 铵 QB/T 5656-2021 油墨中苯类溶剂含量测定方法 QB/T 5637-2021 口腔清洁护理用品羟基磷灰石 牙膏用 QBT 5636-2021品牌培育管理体系实施指南 食品行业(报批征求意见稿) 有色金属YS/T 3042-2021 氰化液化学分析方法 金量的测定 YS/T 3041.1-2021 火试金法测定金属矿石、精 矿及相应物料中银量的 校正方法 第 1 部分:全流程回收率法 YS/T 3041.2-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 2 部分:熔渣和灰 皿回收法 YS/T 3041.3-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 3 部分:熔渣回收 和灰吹校准法 环境标准HJ 1230—2021 工业企业挥发性有机物泄漏检测与修复 技术指南 HJ 1189-2021 水质 28种有机磷农药的测定 气相色谱-质谱法 HJ 1190-2021 水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法 HJ 1191-2021 水质 叠氮化物的测定 分光光度法 HJ 1192-2021 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 化工标准HG/T 5912-2021 导电胶粘剂 HG/T 5911-2021 LED 照明器件用加成型有机硅密封胶 HG/T 5913-2021 高分子防水卷材用热熔压敏胶粘剂 HG/T 5914-2021 无衬纸铝箔压敏胶粘带 HG/T 5915-2021 热成像银盐打印胶片 HG/T 5916-2021 照相化学品 防灰雾剂2,5-二羟基-5-甲基-3-(4-吗啉基)-2-环戊烯-1-酮 HG/T 5918-2021 电池用硫酸钴 HG/T 5919-2021 电池用硫酸镍 HG/T 5920-2021 粗碳酸锰 HG/T 5931-2021 肥料增效剂 腐植酸 HG/T 5932-2021 肥料增效剂 海藻酸 HG/T 5933-2021 腐植酸有机无机复混肥料 HG/T 5934-2021 黄腐酸中量元素肥料 HG/T 5935-2021 黄腐酸微量元素肥料 HG/T 5936-2021 腐植酸碳系数测定方法 HG/T 5937-2021 腐植酸与黄腐酸含量的快速 测定方法 HG-T 5938-2021 腐植酸肥料中氯离子含量的 测定自动电位滴定法 HG/T 5917-2021 黑白感光材料涂层溶解测定方法 HG/T 5921-2021 碳化法工业重铬酸钠 HG/T 2427-2021 肥料级氰氨化钙 HG/T 5939-2021 肥料级聚磷酸铵 HG/T 5941-2021 稳定同位素13C标记的辛酸 HG/T 5942-2021 稳定同位素15N标记的氨基 酸 HG/T 5943-2021 C.I.分散红152 HG/T 5944-2021 液体C.I.直接红254 HG/T 5945-2021 液体C.I.直接蓝290 HG/T 5909-2021 美罗培南合成催化剂化学成分分析方法 HG/T 5910-2021 双金属负载型聚醚多元醇合成催化剂化学成分分析方法 HG/T 4701-2021 电池用磷酸铁 HG/T 4133-2021 工业磷酸二氢铵 HG/T 4132-2021 工业磷酸氢二铵 HG/T 2568-2021 工业偏硅酸钠 HG/T 5922-2021 工业氰氨化钙 HG/T 5923-2021 化纤用二氧化钛 HG/T 5924-2021 废(污)水处理用生物膜载体 HG/T 3926-2021 水处理剂 2-羟基膦酰基乙酸(HPAA) HG/T 5925-2021 水处理用生物药剂 硝化菌剂 HG/T 5926-2021 水处理用生物药剂 反硝化菌剂 HG/T5927-2021 生物化学试剂 L-白氨酸(L-亮氨酸) HG/T 5928-2021 生物化学试剂 L-胱氨酸 HG/T 5929-2021 化学试剂 色谱用一水合庚 烷磺酸钠 HG/T 5930-2021 化学试剂 色谱用一水合辛烷磺酸钠 HG/T 5946-2021 1-(3-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5947-2021 1-(4-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5948-2021 1-(4-甲基苯基)-3-甲基-5-吡唑啉酮 HG/T 5949-2021 红色基KD(3-氨基-4-甲氧基-苯甲酰替苯胺) HG/T 5950-2021 色酚AS-IRG(4-氯-2,5-二甲氧基乙酰乙酰苯胺) HG/T 5951-2021 邻甲氧基乙酰乙酰苯胺 HG/T 5952-2021 邻氯乙酰乙酰苯胺 HG/T 5953-2021 纺织染整助剂 涤棉一浴皂洗剂 净洗效果的测定 HG/T 5954-2021 纺织染整助剂产品中异噻唑啉酮类化合物的测定 机械交通标准JB/T 14223-2021 无损检测仪器充电式交流磁轭探伤仪 JB/T 14155-2021 偏轴菲涅尔透镜 JB/T 14156-2021 投影光学非球面超短焦物镜 JB/T 14140-2021 食品机械 化糖设备 JB/T 14141-2021 食品机械 调配设备 JB/T 14142-2021 淀粉降解母粒生产线 JB/T 14144-2021 夹心软糖生产线 JB/T 14145-2021 全自动花色硬糖生产线 JB/T 4297-2021 泵产品涂漆 技术条件 JT/T 1393—2021 船舶压载水指示性分析取样与检测要求 卫生医药标准WS/T 787-2021 国家卫生信息资源分类与编码管理规范 WS/T 788—2021 国家卫生信息资源使用管理规范 WS/T 789—2021 血液产品标签与标识代码标准 YY/T 1416.5—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第5部分:甘氨酸 YY/T 1416.6—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第6部分:咪唑烷基脲 YY/T 1465.7—2021 医疗器械免疫原性评价方法 第7部分:流式液相多重蛋白定量技术 YY/T 1735-2021 丙型肝炎病毒抗体检测试剂(盒)(化学发光免疫分析法) YY/T 1771-2021 弯曲-自由恢复法测试镍钛形状记忆合金相变温度 YY/T 1772-2021 外科植入物 电解液中电偶腐蚀试验方法 YY/T 1775.1-2021 可吸收医疗器械生物学评价 第1部分:可吸收植入物指南 YY/T 1776-2021 外科植入物聚乳酸材料中丙交酯单体含量的测定 团体标准DB12/T 3027-2022 液氨贮存使用单位环境风险防控技术规范 T/CSTM 00470-2022 生物炭膨润土复合污水处理剂 T/CSTM 00469-2022 生物炭凹凸棒石土壤重金属钝化剂 T/CPCIF 0168-2021 水中亚硝酸盐、硝酸盐、氨氮的快速检测试剂盒 T/GZSXH 02-2022 饮用天然泉水 T/CIESC 0033-2022 工业用四氢糠醇 T/CIESC 0032-2022 工业用丙二酸二乙酯 T/CIESC 0031-2022 工业用氰乙酸乙酯 T/CIESC 0030-2022 工业用N-乙基吡咯烷酮 T/CIESC 0029-2022 工业用原甲酸三乙酯 T/CIESC 0028-2022 工业用羟乙基甲基纤维素 T/CIESC 0027-2022 工业用乙基纤维素 T/JATEA 001-2022 农田地膜残留量调查与监测DB11/T 374-2021 水生动物疫病检测实验室管理规范 DB11/T 455-2021 动物疫病紧急流行病学调查技术规范 DB11/T 456-2021 动物防疫员防护技术规范 DB11/T 1000.2-2021 企业产品标准编写导则 第2部分:主要技术内容 DB51/T 2874-2022 检验检测机构保护客户秘密实施指南 DBS33/ 3013-2022 食品安全地方标准 酥饼生产卫生规范 DB31 2026-2021 食品安全地方标准 预包装冷藏膳食生产经营卫生规范 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 毛细管电泳(CE)真的“没落”了吗?
    毛细管电泳技术(Capillary Electrophoresis, CE)又称高效毛细管电泳(HPCE)或毛细管分离法(CESM),是一类以毛细管为分离通道、以高压直流电场为驱动力的新型液相分离技术。是80年代初发展起来的一种新型分离分析技术,它是电泳技术与层析技术相结合的产物,现在所说的毛细管电泳技术(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离;1984年Terabe等发展了毛细管胶束电动色谱(MECC);1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行,建立了毛细管等电聚焦(CIEF);同年,Cohen发表了毛细管凝胶电泳(CGF)的工作;1988&mdash 1989年出现了第一批CE商品仪器。  但是目前很多人认为,在众多的仪器中,CE好像不是那么的热门,甚至一些从事过CE研究的人员也认为该方法前途暗淡。  行内流行说法之一:CE近年越来越难发文章,人们的研究热情正在走下坡路。  行内流行说法之二:由于企业和检测机构用的少,学这个就业困难。不如HPLC、GC等有前途。  日前一名网友在仪器信息网论坛发帖称,鉴于以上的这些消极情绪,导致一些刚入门的新手们,无论他们起初是怀着多大的热情,随着时间的推移他们总会或多或少难以避免的被这些消极情绪所影响,人云亦云,失去钻研的热情。  毛细管电泳(CE)真的&ldquo 没落&rdquo 了吗?  以一个科研工作者的身份该,网友谈到,&ldquo CE方法已经被各种标准(包括中国药典、国标,甚至是欧洲标准)所收录,说明一直有企业或检测机构在应用该方法。而事实也正是如此,我自己所知道的就有好几家检测机构和企业配备有CE仪器。&rdquo   据小编了解,2010年版中国药典对盐酸头孢吡肟中N-甲基吡咯烷的检查,USP对盐酸罗哌卡因的对映体纯度检查,均采用毛细管电泳法测定。  另外,该网友谈到,任何仪器都只不过是一种方法媒介,如果你&ldquo 矢志不渝&rdquo 的认为CE没前途,那么你有没有对你的课题有一个整体的认识呢?又或者,你有没可能通过这个课题对这个领域有一个系统的认识?举个例子,比如你的课题是有关CE在某种中药检测中的应用。那么你在毕业前应该要掌握以下几点:该药物的使用历史、功效、研究现状、特征组份等;涉及该药物的检测方法;该药物的功效和对应功效的活性成分;如何进行质量控制等。该网友说,如果你具备了这些知识,面试的时候就不会只是一脸无辜的说,&ldquo 我做CE出身的&rdquo 。  十八般兵器样样精通那是不可能的。其实退一步说,就算相对于LC、GC来说CE有点偏门,但学校学的是&ldquo 渔&rdquo 的手段,也就是分析问题,解决问题的能力,一法通万法通。所以,困心横虑中的从事CE研究的同学们,是不是不那么煎熬啦?  其实,每一种好的仪器,研究和应用都需要大家的推动,如果我们放弃了,这种仪器的未来也就被放弃了。所以,从事CE研究的人们,或许你们今天的研究就能够推动CE的发展,加油!  对于&ldquo 行内流行说法之一&rdquo ,该网友会在7月份开新帖,以数据说话,大家敬请期待!  原帖:写给从事CE研究的研究生们--我们为何不屈不挠的浸泡在哀伤里?
  • 方案分享 | 不只是DMSO,高沸点溶剂你还能这么去除?
    在药物合成过程中,由于合成反应有多种路径和多步反应,会用到各种各样的有机溶剂。药物研发中使用高沸点溶剂是在所难免的,其中包括DMF,DMSO,NMP等偶极非质子溶剂,由于其*性、热稳定性好、低毒,与水互溶等特点,不但可以作为反应溶剂,而且也可以作为溶剂溶解药物,有的被称作有机合成反应中常用的“*溶剂”。N,N-二甲基甲酰胺,可以溶解大多数的有机物和很多种无机物,不但广泛用作反应的溶剂,也是合成药物中间体,有*溶剂之称。由于二甲基亚砜良好的溶解性,不仅作为反应溶剂,也可以作为氧化剂参与氧化反应,同样有*溶剂之称。由于N-甲基吡咯烷酮显著的极性和溶解性,在有机合成和药物研究中得到了广泛的应用。那么问题来了 Q1:为得到目标产物,如何实现快速并有效的去除高沸点溶剂?但是由于其沸点高,导致去除时十分困难,这是个令有机合成同学头疼的问题。以DMSO为例,常规做法选择水洗法和蒸馏法来去除,但是这两种方法有利有弊,在去除高沸点溶剂时又带来新的难题。水洗法 VS 蒸馏法水洗法:利用DMSO可溶于水的特点,多次加入水洗涤样品,然后用有机溶剂萃取,回收有机溶剂,*干燥得到样品。但是,水洗往往会导致很多产物在水中析出,导致步骤繁琐、耗时过长,而且多次水洗过程还会影响样品的回收率。蒸馏法:对于耐热的化合物,通过普通的蒸馏方式在较高的温度下除去DMF或DMSO。此法时间长、去除不彻底、不适用热敏感的样品,并不能满足后续的成品要求。 Q2:那有没有一种方法可以高效去除这类高沸点有机溶剂的同时又可以解决以上问题呢?我们知道溶剂的沸点随着压力降低而降低,当压力降到一定程度时,在较低的温度条件下,溶剂便沸腾蒸发。既能使高沸点溶剂得已去除,又可在保证较低的温度对样品进行保护。如DMSO在1mbar的真空度条件下溶剂的沸点降至25℃。 图1:压力与沸点关系图 Genevac HT-12 溶剂蒸发工作站 在药物合成后对各类溶剂的处理,英国Genevac为您提供一种全新的溶剂蒸发解决方案——‍‍‍‍‍‍‍‍HT-12‍‍‍‍‍‍‍‍溶剂蒸发工作站‍‍。‍‍‍‍‍‍‍‍‍‍ 1、 解决高沸点溶剂难蒸发问题,搭载高真空的分子涡轮泵,降低溶剂沸点和样品温度,可以直接去除沸点高达220℃的高沸点溶剂,包括DMF、DMSO、NMP等溶剂。既可以避免水洗带来回收率低下、繁琐耗时的问题,又能适用于热敏性样品;2、采用红外灯间接加热样品,使样品始终处于低温条件。结合*的温度控制技术,通过设定温度阈值进行控制,高于该温度阈值灯将自动关闭,能杜绝任何的过热导致样品的损坏,对热不稳定样品更友好;图2:SampleGuard™ 控温技术3、为满足药物高通量筛选要求,HT-12高端智能的蒸发系统提供高通量处理量,同时处理上百个到上千个样品,缩短研发周期。上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等;转子类型HT-12样品通量深孔板24浅孔板4850ml烧瓶484ml小瓶28816×100mm试管28813×100mm试管4801.5ml EP管384表1:HT-12不同转子的样品通量4、智能、自动化程度高:采用全触屏控制面板,实时显示蒸发曲线,整个过程都是智能化的,自动识别蒸发终点,自动停机,无需人员干预; 图3:全触摸屏控制软件一台好的溶剂蒸发工作站可以帮助您加速新药发现,保证保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,具有更多功能助力新药研发:# Sample Genie定量浓缩套装:直接浓缩至2mLGC小瓶,不需要样品转移,提高回收率;# 针对药物合成中各类溶剂,均有不同的解决方案,包括难处理的易暴沸溶剂,HCL,TFA等;# Lyospeed™ 快速冻干法实现对HPLC馏分的直接冻干;图4:Lyospeed™ 快速冻干法# 晶型筛选:Exalt结晶技术 ,可以实现多种溶剂同时同速率蒸发结晶; 图5:Exalt结晶工具包
  • 食品安全国家标准审评委员会发布《食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准(征求意见稿)
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准食品营养强化剂(6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年6月30日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。 附件:征求意见的食品安全国家标准目录 食品安全国家标准审评委员会秘书处2023年5月6日相关标准如下:序号标准名称制定/修订营养与特殊膳食食品1项1.食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐制定食品添加剂2项2.食品安全国家标准 食品添加剂 聚乙烯醇修订3.食品安全国家标准 食品添加剂 氧化亚氮(GB 1886.350-2021)第1号修改单修改单理化检验方法与规程 1项4.食品安全国家标准 食品中蛋白质的测定修订食品产品1项5.食品安全国家标准 乳粉和调制乳粉修订
  • “2011年科学仪器创新奖、贡献奖”颁布
    仪器信息网讯 为了促进我国的科学仪器技术发展及分析测试技术水平提高,进一步推动科学仪器应用技术推广应用和产业化发展,实现我国科学仪器的自主创新,2011年6月2日,相宜本草杯 “2011年科学仪器创新奖与贡献奖”、E7杯“2011年化学试剂创新奖与贡献奖”、“2011科学仪器应用技术进步奖” 颁奖活动在上海世博主题馆举行。  此次颁奖活动是由上海科学仪器自主研制协作服务联盟、上海试剂资源共享服务协作联盟和2011年中国(上海)科学仪器、实验室装备及化学试剂展览会共同主办并评选的。评奖宗旨是对先进的具有创新性的科学仪器和化学试剂开展评奖,以表彰在科学仪器和化学试剂自主创新方面做出突出贡献的企业和个人。评奖活动得到了上海市科委、上海科学院、上海市分析测试协会和上海发明家协会等有关领导的大力支持,并得到了上海相宜本草化妆品有限公司和上海市计算技术研究所平台管理中心的赞助。  上海科学仪器行业“十一五”新增产值130980万元,出口创汇5000余万美元以上  上海科学仪器自主研制协作服务联盟马兰风秘书长致辞中指出,科学仪器是信息产业和装备制造业的重要组成部分,对促进国民经济、科学技术、公共安全、国防建设的发展具有巨大的推动作用,是社会经济发展的重要支柱,是国家发展的战略性产业。可以说掌握最先进的科学仪器就掌握了科技发展的优先权。上海科学仪器自主研制协作服务联盟马兰风秘书长致颁奖词  上海科学仪器行业为科学仪器的创新与发展做出了卓越的贡献,“十一五”期间,上海科学仪器行业共同承担国家级科技攻关项目21项,上海市科委项目59项,填补国内外空白科学仪器研发项目46项,获得专利123项,获各类科技成果奖16项,新建生产线29条。已实现产业化项目31项,产业化仪器种类27种,新增产值130980万元,出口创汇5000余万美元以上,部分产品达到国际先进技术水平。  在上海市科委科学仪器和“十一五”科技攻关项目的开展过程中,通过科学仪器制造企业和相关科研工作者的共同努力,目前上海科学仪器的研究和发展已取得了长足的进步并获得了一批创新成果,同时也锻炼和铸就了上海的科学仪器创新人才。  可以预计,随着生命科学、材料科学、能源科学、环境科学和公共安全科学的发展,以及新技术的不断涌现,在“十二五”期间,上海的科学仪器一定会在多功能化、小型化、微型化、自动化、智能化等方面不断的创新,同时,在科学仪器自主创新方面不断的涌现做出突出贡献的单位和个人。  通过科学仪器企业和科研人员的共同努力,进一步推进上海本土科学仪器的发展,使上海的仪器装备制造业为上海的扩内需、促增长、调结构、提水平、惠民生再做贡献。庄松林院士荣获“科学仪器育人奖”  相宜本草杯“2011年科学仪器创新奖”公布上海相宜本草化妆品有限公司的封帅总经理致辞  获得相宜本草杯“2011年科学仪器创新奖”的仪器是申报单位在近期研制的国内领先的科学仪器,具有技术先进、性能优良、完全自主知识产权的科学仪器。上海科学仪器自主研制协作服务联盟理事长王珏明先生宣布获奖名单颁奖嘉宾与获奖代表合影  获奖名单:  IPAD1000离子色谱电化学安培检测分析仪 上海天美科学仪器有限公司  SKY2102-I 汽油辛烷值测定机 上海神开石油仪器有限公司  SP-600QSE全自动快速溶剂萃取仪 上海光谱仪器有限公司  DSC30差示扫描量热仪 上海精科天美科学仪器有限公司  TBE-300B多盘多分离柱高速逆流色谱仪 上海同田生物技术有限公司  农药残留检测联用仪器(系统) 上海舜宇恒平科学仪器有限公司  SP-3981药物代谢元素价态分析仪 上海光谱仪器有限公司  DZ-709光谱电化学分析仪 上海精密科学仪器有限公司  MicroMR-CL核磁共振交联密度仪 上海纽迈电子科技有限公司  YLS16B烘干法水分测定仪 上海精科天美科学仪器有限公司  GC-9760变压器油专用微型色谱仪 上海华爱色谱分析技术有限公司  相宜本草杯“2011年科学仪器贡献奖”公布  获得相宜本草杯“2011年科学仪器贡献奖”的是长期从事科学仪器自主创新与研制并做出杰出贡献的个人。颁奖嘉宾与获奖代表合影  获奖名单:  上海天美科学仪器有限公司 俞霆  上海光谱仪器有限公司 杨啸涛  上海舜宇恒平科学仪器有限公司 许生蛟  上海纽迈电子科技有限公司 杨培强  华东师范大学 何品刚  上海光谱仪器有限公司刘瑶函  上海精密科学仪器有限公司 何国琛  上海舜宇恒平科学仪器有限公司 黄晓晶  上海上计群力分析仪器有限公司 王勇军  E7杯“2011年化学试剂创新奖” 公布上海试剂资源共享服务联盟副理事长顾小炎先生致颁奖词并宣布获奖名单  获得E7杯“2011年化学试剂创新奖”的化学试剂是申报单位在近期研制的化学试剂,具有新颖性、性能优良、完全自主知识产权。 颁奖嘉宾与获奖代表合影  获奖名单:  国药集团化学试剂有限公司系列高效液相色谱淋洗剂的研究开发与产业化  上海化学试剂研究所 微电子工业用超净高纯N-甲基吡咯烷酮  上海师范大学 TVOC测定用色谱试剂  上海市计量测试技术研究院 贸易绿色壁垒中有毒有害物质检测用系列标准物质的研制  上海相宜本草化妆品股份有限公司 新型化妆品用天然透皮试剂的研制及应用  E7杯“2011年化学试剂贡献奖” 公布  获得E7杯“2011年化学试剂贡献奖”的是长期从事化学试剂自主创新与研制并做出杰出贡献的个人。颁奖嘉宾与获奖代表合影  获奖名单:  国药集团化学试剂有限公司 张明  上海化学试剂研究所 詹家荣  上海师范大学 胡岗  上海市计量测试技术研究院 王虎  上海相宜本草化妆品股份有限公司 胡国胜  “2011科学仪器应用技术进步奖”公布上海市科委研发基地建设与管理处张露璐先生宣布获奖名单  “2011科学仪器应用技术进步奖”奖励对国产科学仪器应用方法有积极推动的科研工作者。颁奖嘉宾与获奖代表合影  获奖名单:  蔡贵民编写的“应用酶荧光毛细分析法对血清中葡萄糖含量的检测方法”  黄晓晶、张祥星编写的“室内空气主要污染物的便携式气质联用测定方法”  汪正、方冬梅等编写的“胺基改性介孔材料对废水中Cr(Ⅵ)在线分离吸附与火焰原子吸收的测定方法”  张建明编写的“肉类中多种兽药残留的薄层色谱扫描分析”  张祥民等编写的“高效液相色谱法测定乳制品中抗生素残留量”  王维娜等编写的“高速逆流色谱法分离制备芦荟中同分异构体-芦荟甙”  李玲辉、赵永强等编写的“食品中重金属污染元素铅、镉、汞的检测顺序注射-氢化物发生原子吸收法”  张英力等编写的“低场核磁共振技术在高分子材料领域中的应用”  范京伟等编写的“滴定仪在药品检测中的应用”  姜振喜等编写的“高效液相色谱柱前衍生法测定‘皮革奶’中L-羟脯氨酸”
  • 展会现场速递 | 科尔康2023 IE Expo上海环博会精彩现场
    2023年4月19-21日第24届中国环博会在上海新国际博览中心隆重召开。科尔康作为在环境领域深耕且不断创新的气体检测公司,提供气体检测多项创新解决方案,专业从事研发、生产和制造气体检测仪器和系统,专注于气体安全,气体质量和气体过程控制领域。 开展首日,科尔康携AMG-2100、AMG-PRO、Micro FTIR、VOC Gard等明星产品及行业气体检测解决方案惊艳亮相,前来观展的人员络绎不绝,科尔康智慧园区解决方案展品前更是人潮所知,焦点所在。科尔康安全设备制造有限公司成立于1970 年,隶属于英国上市公司Halma 集团,专业从事研发、生产和制造气体检测仪器和系统,专注于气体安全,空气质量和气体过程控制领域。公司总部位于英国牛津,并在荷兰、美国、新加坡、印度、中东和中国设有分公司。2002 年科尔康在北京成立了集研发、生产、销售为一体的全资子公司,并在上海、沈阳、成都、广州、西安、乌鲁木齐、杭州、南京、武汉等地设有办事处,提供完备的技术支持和售后服务。科尔康本着“科技、质量、创新、发展″的理念, 坚持以技术为核心, 以创新为动力,以满足客户需求为导向,致力于向行业用户提供完善的气体检测解决方案。公司产品主要包括可燃气体、有毒有害气体、恶臭异味和挥发性气体(VOCs)等的气体检测设备和系统,广泛服务于环境保护、石油、石化、矿山、冶金、天然气、火电、船舶、航天、航空、医药、食品、制冷等行业。2016 年,科尔康集团公司入选“2016 年度英国最受尊敬的公司”榜单。科尔康的定制化VOCs 气体采样及监测系统荣获"2016 中国VOCs 监测行业—年度好仪器"。同时,科尔康多功能显示型固定式气体检测仪荣获环境与安全类最佳产品;由科尔康设计安装的中国电池行业的N- 甲基吡咯烷酮的浓度监控系统荣获自动化/ 仪器仪表/ 系统集成类最佳解决方案。2017 年,科尔康VOCs 监测产品凭借在石油化工、印染、汽车、机械等行业的良好业绩斩获“中国VOCs 监测与治理企业V 榜单评选——最佳监测技术装备奖”。目前,科尔康已取得ISO9001 质量管理体系认证、ISO14001 环境管理体系认证、OHSAS18001 职业健康安全管理体系认证。生产的相关产品取得了ATEX、IECEx、EMC、SIL、UL、INMETRO、MED、CSA 等国际组织的产品认证,同时也取得了CCEP、CCCF、CPA、PCEC 等国内相关机构的认证。
  • 给“锂”一瓶魔法药水-ICP-OES助力NMP中杂质元素检测
    给“锂”一瓶魔法药水-ICP-OES助力NMP中杂质元素检测贺静芳 刘莉 引言宇宙很有趣,将我们的物质世界分成有机和无机两大类。NMP(氮甲基吡咯烷酮)作为有机物中最特别的存在,可以与大多数有机物以及水互溶,因其毒性低、沸点高、极性强、粘度低、溶解能力强、化学稳定性好等“魔法”特点,在半导体行业和锂电池行业成为不可或缺的溶剂。电池级NMP的纯度要求极高,除含水率要求之外,由于金属离子对锂电池的性能和安全性产生较大的影响,为了保证锂离子电池的性能和安全性,电池级NMP中杂质元素的含量要求非常严格,通常需要小于10-20μg/L。检测难点:限量低,要求设备灵敏度高,检出限低;有机物含量高,容易在进样系统积碳,碳分子光谱带对杂质元素造成干扰;如果采用前处理消解的方法,程序繁琐,容易引入环境元素如钠、钙、铝、铁等的污染。赛默飞iCAP&trade PRO系列电感耦合等离子体发射光谱仪针对NMP中多种杂质元素的检测可实现简单快速测定。方案亮点:iCAP PRO高效变频的RF发生器和防腐蚀进样系统设计,在测试NMP样品时,无需对样品进行稀释和复杂的前处理,直接进样,避免沾污;远紫外区优异的灵敏度,NMP中铝元素167.079nm可达μg/L级 其使用精密的质量流量计优化氧气流量从而减少进样系统积碳和碳分子光谱带的干扰,杂质元素的检出限达μg/L级;所有元素浓度范围内线性关系良好(r² 0.999),方法测试精密度RSD2%,样品加标回收率在85%-110%之间。方案细节展示氧气流量优化在等离子体中通入氧气不但可以减少有机溶剂对炬管的积碳效应,同时可以降低C2背景对Na589.592 nm的干扰。但加氧流量过大又容易导致等离子体熄灭,加氧流量过少则干扰去除不彻底。本实验选择通入50ml/min的氧气来测试,试验证明既可有效减少积碳和降低C2对Na589.592 nm的干扰,又保证了等离子体的稳定性,下图为加氧50ml/min Na 元素(NMP中加标0, 0.02, 0.0.5, 0.1, 0.5mg/L)subarry图。(点击查看大图)仪器参数(点击查看大图)方法检出限和样品检测结果实验采用半导体级别NMP溶液作为空白,进行连续11次的测量,以11次空白的3倍标准偏差做为该实验条件下的方法检出限。(点击查看大图)准确性实验实验选择2个半导体级NMP样品进行了加标回收率实验:加标浓度为0.05mg/L和0.1mg/L,回收率均在85~110%之间。(点击查看大图)重复性实验实验选用NMP样品,加标量为0.1mg/L,重复进样测定7次,计算相对标准偏差均在2%以内。(点击查看大图)总结赛默飞iCAP PRO系列电感耦合等离子体发射光谱仪,测试单个样品可在一分钟之内完成进样和数据采集。NMP等有机样品可以直接进样,等离子体依然保持稳定,样品测试重复性好。直接进样法相对消解法或稀释法具有较高的分析效率和分析灵敏度,且获得极低的检出限和超高的准确度。赛默飞iCAP PRO系列ICP-OES保障NMP溶剂成为锂离子电池合格的“魔法”药水。如需合作转载本文,请文末留言。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制