当前位置: 仪器信息网 > 行业主题 > >

氢碘酸三乙醇胺

仪器信息网氢碘酸三乙醇胺专题为您提供2024年最新氢碘酸三乙醇胺价格报价、厂家品牌的相关信息, 包括氢碘酸三乙醇胺参数、型号等,不管是国产,还是进口品牌的氢碘酸三乙醇胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氢碘酸三乙醇胺相关的耗材配件、试剂标物,还有氢碘酸三乙醇胺相关的最新资讯、资料,以及氢碘酸三乙醇胺相关的解决方案。

氢碘酸三乙醇胺相关的资讯

  • 上海安谱科学仪器有限公司倾情推出苯乙醇胺A参考品
    瘦肉精事件自今年3月份的源头事件后就消息不断,农业部表态称违法瘦肉精现象仍未禁绝。近期又爆出了一种新型的瘦肉精:苯乙醇胺A。 苯乙醇胺A又称克伦巴胺,是一种人工合成的化学物质。 英文名:2-(4-(nitrophenyl)butan-2-ylamino)-1-(4-methoxyphenyl)ethanol, 化学命名:2-[4-(4-硝基苯基)丁基-2-基氨基]-1-(4-甲氧基苯基)乙醇, 分子式:C19H24N2O4 分子量:344.17 结构式: 苯乙醇胺A最早是在四川省检测出来的。2010年9月四川省广安市广安区枣山镇畜牧兽医站对某养猪场例行违禁药物监测中,用莱克多巴胺测试卡分别检测母猪、仔猪和育肥猪尿液,发现该场育肥猪尿检呈阳性,之后确认是新型添加物苯乙醇胺A。 苯乙醇胺A是福莫特罗的同分异构体,是美国礼来公司合成莱克多巴胺的副产物,具有同瘦肉精和莱克多巴胺相同的作用和效果,属于&beta -肾上腺素受体激动剂,具有营养再分配作用。2010年11月农业部发布第1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》,2010年12月农业部第1519号,禁止了苯乙醇胺A在饲料和动物饮水中的使用。 现为应广大客户的需求,上海安谱科学仪器有限公司推出苯乙醇胺A参考品 适用于农业部1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》 货号:CDBO-1100726 中文名:苯乙醇胺A(克伦巴胺)参考品 规格:10mg/L于甲醇,纯度99%,1mL 价格请询。 欲了解更多信息,请与我司业务员联系。电话:021-54890099。 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 《动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法》
    各相关单位: 根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了食品安全国家标准《动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法》。现公开征求意见,如有修改意见,请于2022年5月1日前反馈至全国兽药残留专家委员会办公室。 联系人:张玉洁 联系电话:010-62103930 E-mail:syclyny@163.com地址:北京中关村南大街8号科技楼206邮编:100081     附件: 1. 动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法(征求意见稿) 2. 食品安全国家标准征求意见表 全国兽药残留专家委员会办公室2022年4月1日
  • 独家新品| 5项食品补充检验方法标准物质新鲜出炉!
    近日,市场监管总局2022年第4号公告发布了5项食品补充检验方法,分别为《食品中爱德万甜的测定》《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》《饮料中香豆素类化合物的检测》《豆制品中碱性嫩黄等11种工业染料的测定》《甘蔗及甘蔗汁中3-硝基丙酸的测定》。《食品中爱德万甜的测定》规定了食品中爱德万甜的两种测定方法,第一法为高效液相色谱—串联质谱法,适用于饮料、酒类、焙烤食品、可可制品、巧克力和巧克力制品以及糖果、发酵乳和风味发酵乳、果冻、冷冻饮品、蛋制品、复合调味料中爱德万甜的测定。第二法为高效液相色谱—荧光检测法,适用于加工水果(水果干类、水果罐头、果酱、果泥、蜜 饯凉果等)中爱德万甜的测定。《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》规定使用液相色谱-串联质谱测定柑橘类水果、苹果中顺丁烯二酸松香酯、油酰一乙醇胺、油酰二乙醇胺、三乙醇胺油酸皂、癸氧喹酯。《饮料中香豆素类化合物的检测》规定饮料中香豆素、7-甲氧基香豆素、二氢香豆素、7-甲基香豆素、7-乙氧基-4-甲基香豆素、醋硝香豆素、环香豆素、3,3' -羰基双(7-二乙胺香豆素)等8种香豆素类化合物应采用高效液相色谱-串联法进行检测。《豆制品中碱性嫩黄等11种工业染料的测定》也同样规定豆腐、豆皮、腐竹、油豆皮、油豆腐等豆制品中的分散橙11、分散橙1、分散橙3、分散橙37、分散黄3、二甲基黄、二乙基黄、碱性橙22、碱性橙21、碱性嫩黄、苏丹橙G的测定方法为高效液相色谱—串联质谱法。《甘蔗及甘蔗汁中3-硝基丙酸的测定》规定了甘蔗及甘蔗汁中3-硝基丙酸高效液相色谱法的测定方法。并补充当样品中检出3-硝基丙酸时,可用高效液相色谱—串联质谱联用法进行确证。日常监管和案件查办中发现食品中出现非食品原料或在食品中添加其他风险物质时,食品补充检验方法可以作为食品安全标准的重要补充,可以用于对食品的抽样检验、食品安全案件调查处理和食品安全事故处置。阿尔塔科技有限公司与制标单位密切合作,成功研制出食品安全风险物质标准品,解决了标准制定过程中没有标准物质可用、无法准确定性定量的技术难题,协助制标单位构建准确可靠、技术先进的食品检验方法体系,为食品抽样检验、案件调查处理和食品安全事故处置等监管工作提供强有力的技术支撑。5项食品补充检验方法相关标准物质现货上架:标准号产品号产品名称包装规格BJS 2022011ST5115W爱德万甜一水合物10mgBJS 2022021ST159625油酰二乙醇胺10mg1ST159626三乙醇胺单油酸酯10mg1ST5710癸氧喹酯10mg1ST159624N-油酰乙醇胺10mg1ST160461松香酸马来酰酐10mgBJS 2022031ST45260-100A乙腈中8种香豆素混标溶液100μg/mL, 1mLBJS 2022041ST50977-100M甲醇中11种色素混标溶液100μg/mL, 1mLBJS 2022051ST9132-100W水中β-硝基丙酸溶液100μg/mL, 1mL
  • 有效光合成苯甲醛耦合光催化析氢
    1. 文章信息标题:Efficient benzaldehyde photosynthesis coupling photocatalytic hydrogen evolution 中文标题: 有效光合成苯甲醛耦合光催化析氢页码:52-60 DOI:10.1016/j.jechem.2021.07.0172. 期刊信息期刊名:Journal of Energy Chemistry ISSN:2095-4956 2021年影响因子9.676 (2022年影响因子:13.599) 分区信息:中科院一区TOP 涉及研究方向:综合性期刊 3. 作者信息:第一作者是 华东师范大学罗娟娟 。通讯作者为 中国科学院上海硅酸盐研究所施剑林院士、华东师范大学陈立松副教授。4. 光源型号:CEL-HXF300E7光功率计型号:CEL-NP2000文章简介:为应对严峻的能源和环境危机,各国不断加大开发清洁和可再生能源的力度。氢气(H2)作为一种能量密度高、最有发展前景的可再生绿色能源引起了广泛关注。然而,迄今为止,传统的蒸汽甲烷重整制氢仍是制氢的主要方式,这导致了巨大的能源消耗和严重的温室气体排放。自1972年Fujishima和Honda首次报道在TiO2电极上光电化学分解水以来,光催化水裂解制氢一直被认为是将太阳能转化为化学能的潜在方法之一。然而,析氧反应(OER)动力学迟缓是水裂解的另一种半反应,已成为光催化水裂解商业化应用的最大障碍之一。同时,O2价值较低,在光催化水裂解过程中不可避免地会混入H2,存在潜在的爆炸风险和分离困难问题。为了克服这些,牺牲试剂如乳酸、抗坏血酸、三乙醇胺、甲醇、甘油、乙醇和Na2SO3/Na2S被用来抑制OER,通过消耗光产生的空穴并加速H2的产生,在此过程中这些牺牲剂被氧化。遗憾的是,这样的策略会大大增加制氢的总成本,并不能充分利用光生空穴的氧化能力。综上所述,寻找促进析氢反应(HER)的新策略具有重要意义。光合成是一种传统的利用可再生太阳能作为能源的方法,具有光能直接转化为化学能、反应路径短、不受苛刻的反应条件和有机试剂的影响等优点。为在温和的反应条件下合成药物、精细化学品和高附加值产品提供了一条绿色、清洁的途径。选择性氧化是继聚合反应后的第二大工业工艺,占化学工业总产量的30%,近年来在光合成领域引起了广泛关注。在众多的选择性氧化反应中,芳香醇转化为相应的醛被认为是最重要的官能团转化过程之一。此外,醛是一种高价值的中间体,用于有机合成广泛的化学物质,如糖果香精、染料、香水和药物。传统的醛类合成需要化学计量氧化剂,如铬酸盐、高锰酸盐等,具有剧毒、强腐蚀性,造成严重的环境问题。并极大地阻止了它们的大规模应用。然而,大多数基于光催化材料的醛的光催化合成,尽管比传统的合成方法更加环保,但都是在有机溶剂中操作或在以氧气作为一种温和氧化剂存在的情况下进行的,因此仍然存在光生电子还原能力浪费,环境不友好和效率低下的问题。因此,采用无氧化剂(或无O2)光合成的方法在水介质中氧化芳香醇选择性合成芳香醛将是最理想的环保工艺,具有重要意义。在该策略中,芳香醇氧化制取有价值化学品的过程不是简单的牺牲剂消耗,而是以高效氧化制取有价值化学品为主,并与制氢结合,尽管有众多优点但这仍然是一个巨大的挑战一种高性能的光催化氧化芳香醇并促进产氢的光催化剂是上述策略的前提。本文采用两步水热法合成了一种高效的非贵金属双功能光催化剂,NiS纳米颗粒修饰CdS纳米棒复合材料(NiS/CdS)。该催化剂对在水溶液和无氧气氛围下光合成苯甲醛同时促进产氢具有高效的活性,这归因于NiS和CdS间的协同作用。最优的光催化30% NiS/CdS在可见光照射下有显著的光催化产氢速率和苯甲醛合成速率分别为207.8μmol h-1, 163.8μmol h-1,比单独硫化镉性能高139和950倍。该研究极大地利用光产生的空穴和电子用于生产高附加值精细化学物质和氢气,因此在绿色可再生能源技术的发展及光催化合成领域中具有重要的意义。
  • 质检总局:食品添加剂剔除33种产品
    国家质检总局日前发布公告,从即日起,禁止对羟基苯甲酸丙酯等33种产品作为食品添加剂生产、销售和使用,其中包括对羟基苯甲酸丙酯等食品防腐剂、二氧化氯等食品用消毒剂。已批准的生产许可证书,由监管部门撤回并注销,并于今年12月20日前完成。与此同时,所有食品添加剂生产企业禁止生产上述33种产品,已生产的禁止作为食品添加剂出厂销售。食品生产企业也一律不得使用。 国家质量监督检验检疫总局《关于食品添加剂对羟基苯甲酸丙酯等33种产品监管工作的公告》(2011年第156号公告)   根据卫生部办公厅《关于〈食品添加剂使用标准〉(GB2760-2011)有关问题的复函》(卫办监督函[2011]919号,见附件),现就监管工作有关事项公告如下:   一、自本公告发布之日起,各省级质量技术监督局不再受理对羟基苯甲酸丙酯、对羟基苯甲酸丙酯钠盐、噻苯咪唑、次氯酸钠、二氧化氯、过氧化氢、过氧乙酸、氯化磷酸三钠、十二烷基苯磺酸钠、十二烷基磺酸钠、1-丙醇、4-氯苯氧乙酸钠、6-苄基腺嘌呤、单乙醇胺、二氯异腈氰尿酸钠、凡士林、硅酸钙铝、琥珀酸酐、己二酸、己二酸酐、甲醛、焦磷酸四钾、尿素、三乙醇胺、十二烷基二甲基溴化胺(新洁尔灭)、铁粉、五碳双缩醛、亚硫酸铵、氧化铁、银、油酸、脂肪醇酰胺、脂肪醚硫酸钠等33种产品的食品添加剂生产许可申请。   二、自本公告发布之日起,食品添加剂生产企业禁止生产上述33种产品,企业已生产的上述33种产品禁止作为食品添加剂出厂销售,食品生产企业禁止使用。   三、国家质检总局和省级质量技术监督局应当撤回并注销已批准的上述食品添加剂生产企业的生产许可证书。国家质检总局发证的企业由总局注销,省级质量技术监督局发证的企业由省局注销。2011年12月20日前应完成证书注销工作。   四、各级质量技术监督部门要加大监督执法力度,加强相关生产企业的监督检查,依法查处违法违规生产行为。相关情况及时报告当地政府和国家质检总局。   特此公告。   附件:卫生部办公厅《关于〈食品添加剂使用标准〉(GB2760-2011)有关问题的复函》(卫办监督函[2011]919号) 二〇一一年十一月四日
  • 活动回顾|东西分析亮相第二十五届中国国际水泥技术及装备展览会
    2024年6月26日-28日,第二十五届中国国际水泥技术及装备展览会在武汉国际博览中心举行。东西分析携AA-7050原子吸收分光光度计,AF-7550双道氢化物-原子荧光光度计及多种配套应用参加了此次活动。第二十五届中国国际水泥技术及装备展览会旨在深化行业创新,携手全球优质供应商,共同呈现行业内前沿技术与设备。本次展会通过一系列丰富多彩的会展活动,为参展企业及来自海内外的专业观众提供一个全面、便捷的一站式沟通交流平台。此举旨在为中国水泥企业拓展国际市场、引进海外知名品牌搭建双向贸易桥梁,打造一个更加多元化、专业化的水泥行业交流社交平台,以推动行业的持续繁荣与发展。此次展览,东西分析展出了AA-7050原子吸收分光光度计,AF-7550双道氢化物-原子荧光光度计,吸引了众多目光。东西分析团队以高度的专业性和热情,向每位前来咨询的参观者详尽阐述了其产品在水泥领域内的应用解决方案。无论是对水泥熟料中金属元素含量的精确测定,还是对生产过程中水泥助磨剂杂质的细致检测,东西分析的产品均能提供准确可靠的数据支持,有效助力水泥企业提升生产效率及产品质量。仪器推荐水泥熟料中重金属检测推荐仪器原子吸收检测项目:水泥熟料中重金属铅、镉、铬、铜、镍、锌、锰含量;水泥胶砂中可浸出重金属铅、铬、镉、铜、镍、钡、锌、锰、锶含量。原子荧光检测项目:水泥熟料中重金属砷含量;水泥胶砂中可浸出重金属砷、汞含量。电感耦合等离子体发射光谱检测项目:水泥熟料中重金属铅、镉、铬、铜、镍、锌、锰、砷含量;水泥胶沙中可浸出重金属铅、铬、镉、铜、镍、钡、锌、锰、锶、砷、汞含量。水泥助磨剂中水分和杂质检测推荐仪器气相色谱仪适用于检测水泥助磨剂中水分和杂质成分,比如三乙醇胺、改性异丙醇胺、三异丙醇胺等。水泥缓凝胶挥发性成分检测推荐仪器气相色谱质谱联用仪适用于检测水泥缓凝剂中挥发成分,比如乙醇,丙酮,乙醛,乙酸乙酯等。请点击下方链接,获取水泥行业的解决方案解决方案|气相色谱-质谱法检测水泥缓凝剂挥发性成分解决方案|ICP法测定水泥中的铁、镁、钛、铝、钙、钠含量解决方案|东西分析应对《水泥化学分析方法》国标
  • 深圳大学李秀婷团队在量子点电分析领域取得系列研究进展
    (一)电化学法测定量子点能级结构及缺陷位置近期,深圳大学高等研究院李秀婷研究员课题组受邀在国际期刊《Chemistry – A European Journal》的Young Chemists 2022一期上发表了题为“Electrochemically Determining Electronic Structure of ZnO Quantum Dots with Different Surface Ligands”的研究论文。量子点(Quantum dots),被广泛应用在在光电器件、太阳能电池等领域。而在这些应用中,量子点的电子结构对量子点所表现出的优越光电特性至关重要。近些年来,循环伏安法常常被用来检测量子点的能级位置。但是,目前大部分相关的研究主要集中在测量窄带隙的量子点上,宽带隙量子点能级的电化学测量受电化学窗口和能级结构等因素影响而非常困难。本研究选择被广泛应用于量子点发光二极管(QLEDs)中的宽带隙量子点—ZnO量子点进行电子结构的电化学检测。通过优化电极膜、电解质体系等条件实现了对带有不同配体(乙醇胺和三乙醇胺)的ZnO量子点的带边能级检测,还确定了它们的缺陷态位置,推测了可能的缺陷态类型。这项工作展示了循环伏安法能够作为一种有效的手段去检测量子点的电子结构,将有利于推动ZnO量子点相关器件的应用。图1. 采用循环伏安法测定了具有不同配体的ZnO量子点的能级结构。深圳大学高等研究院材料科学与工程专业的研究生冼龙斌是该论文的第一作者,深圳大学高等研究院为唯一完成单位。(二)可控电解揭示硫化铅量子点的微观组成近期,课题组在国际期刊《The Journal of Physical Chemistry C》上发表了题为“Controllable Electrolysis Reveals the Microscopic Composition of Lead Sulfide Quantum Dots”的研究论文。胶体硫化铅(PbS)量子点(QDs)的大小和组成与其光电性质密切相关,如能带结构、载流子输运、表面抗氧化性等,因此会极大地影响器件性能。目前对于单个量子点空间元素分布的表征十分困难。在这项工作中,团队开发了一种简单高效的电化学方法来探测被油酸(OA)覆盖的PbS量子点的微观组成。研究发现,亚单层量子点在较低的电位扫描速率下进行了完全电解,而在较高的电位扫描速率下只有富含Pb(II)的表层发生了电解。因此不仅通过可控电解揭示了PbS-OA量子点的表面组成,而且提出了其元素的空间分布模型。此外,还成功揭示了PbS-OA量子点尺寸依赖的元素比例,表明了电化学是定量量子点组成的有力工具。图1. PbS量子点的可控电解示意图。深圳大学高等研究院陈婕和朱远航是该论文的共同第一作者,深圳大学高等研究院为第一完成单位。(三)基于钙钛矿量子点相变检测乙醇中痕量水近期,团队与四川大学肖丹教授课题组合作在国际期刊《Analyst》上发表题为“A Handy Imaging Sensor Array Based on the Phase Transformation from CsPbBr3 to CsPb2Br5: Highly Sensitive and Rapid Detection of Water Content in Ethanol”的研究论文。乙醇中的痕量水对其参与的有机反应速率及最终产率产生影响;作为汽车燃料时,共存水会提高燃料消耗、损害汽车引擎等。然而目前成熟的痕量水检测方法通常需要复杂的策略和设备。本研究基于荧光开关机制构建了CsPbBr3@PVA成像阵列传感器,利用荧光的恢复效率对水含量进行定量分析。使用智能手机直接捕捉传感器阵列的图像,用Image J快速分析,以读取每个样本的灰度值。该传感器阵列具有响应速度快(5s)、选择性强以及在实际样品中的应用潜力等优点。同时,该方法不需要昂贵的光谱仪并且不需要专业人员操作,具有成本低、检测速度快、灵敏度高等优势。图1. (A)CsPbBr3@PVA的荧光开关机制示意图和(B)CsPbBr3@PVA阵列传感器的展示。深圳大学高等研究院李秀婷研究员为该文章的共同通讯作者。
  • 10月1日起化妆品包装须标明所有成分
    化妆品包装上必须标明所有成分,所标注的名称应该按照加入量降序排列,同时,所标明的成分名称将按照国际标准标注。   今年10月1日国家标准委将出台新规,要求化妆品包装上必须标明所有成分,所标注的名称应该按照加入量降序排列,同时,所标明的成分名称将按照国际标准标注。这意味着,类似“保湿因子”、“天然萃取物”这样的名称将不能出现。进口化妆品也必须在其加贴的中文标签上标明。   广东省化妆品标准检测中心主任郑伟东告诉记者,目前省内的化妆品企业都已经准备“换装”,具体到化妆品成分表的更换可延迟至明年6月17日执行。   然而,也有消费者担心,专业成分名称很难看得懂,更不知道具体的功效是什么。记者看到,一些化妆品成分,如氨甲基丙醇、三乙醇胺等,对普通消费者而言还真难弄懂有些什么作用。   部分专业术语解释:   水杨酸:能去除老化角质堆积,改善皮肤纹理 能渗透毛囊,有效地干燥面疱的化脓部位,对皮肤有抗痘美白的效果。有许多抗痘产品都含有水杨酸。相较于果酸,水杨酸对皮肤的刺激性较低。但用于敏感皮肤时仍可能会造成过敏 。   高岭土:有抑制皮脂及吸汗的性能,在化妆品中与滑石粉配合使用,有缓解消除滑石粉光泽的作用,主要用作粉条、眼影、爽身粉、香粉、粉饼、胭脂等各种粉类的化妆品的重要原料。
  • 漂白豆芽的检测与危害
    豆芽,也称芽苗菜,又名巧芽、豆芽菜、如意菜、掐菜、银芽、银针、银苗、芽心、大豆芽、清水豆芽,是各种谷类、豆类、树类的种子培育出可以食用的"芽菜",也称"活体蔬菜"。品种丰富,营养全面,是常见的蔬菜。由于二氧化硫的漂白作用,二氧化硫常被不法商贩用来作为豆芽等浅色食物的漂白剂,给消费者的食品安全带来潜在危害。由于豆芽生产过程中,伴随着豆芽培育时间的增长, 不断淋洗豆芽,使得有害物质残留量相应减少,没有达到急性中毒的有效剂量,目前尚无直接致毒病例发生。但是长期食用违规生产的豆芽,潜在的慢性健康损害不容忽视。二氧化硫是*常见的硫氧化物。二氧化硫被人体吸入呼吸道后,因易溶于水,大部分滞留在上呼吸道。在湿润的粘膜上生成具有腐蚀性的亚硫酸,一部分进而氧化为硫酸,使刺激作用增强。二氧化硫还可被人体吸收进入血液,对全身产生毒性作用,它能破坏酶的活力,影响人体新陈代谢,对肝脏造成一定的损害。对动物的慢性毒性试验显示,二氧化硫有全身性毒性作用,出现免疫反应受抑制的现象。故长期接触者可能会有呼吸道疾病发病率增加或感冒后不易痊愈,除由于二氧化硫的直接刺激作用外,尚可能与免疫反应受抑制有关。二氧化硫还具有促癌性:动物试验结果表明10mg/ m3 的二氧化硫可以加强苯并芘致癌作用,这种联合作用的结果,使癌症发病率高于单致癌因子的发病率。那么如何检测豆芽中的二氧化硫呢?以下是对应的几种检测方法:(1)分光光度法分光光度法测定二氧化硫是一种经典的方法,即盐酸副玫瑰苯胺比色法,由WEST提出。其主要原理如下:首先食品和药材等含有的二氧化硫经前处理把二氧化硫释放出来,然后用四氯汞钠吸收酸化,最后与盐酸副玫瑰苯胺反应形成紫红色的络合物,在一定的波长下进行分光光度测定。测定用的试剂较多,操作较繁琐,但灵敏度高,并且分析数据可靠,已经成为了食品安全国家标准中测定二氧化硫的标准方法。由于所用的四氯汞钠吸收剂是对环境污染严重,人们提出了许多非汞物质作吸收剂,如甲醛、乙醇胺、吗啉、三乙醇胺、瓜环等,都具有很高的灵敏度和可靠性。深芬仪器CSY-SE8二氧化硫快速测定仪能够快速检测竹笋、蜜饯凉果、饼干、粉丝、白糖、淀粉、陈粮、米粉、烤鱼片、鱿鱼丝、蟹肉、鱼糜、鱼干、黄花菜、果脯、巧克力、葡萄酒、啤酒及麦芽饮料等中的二氧化硫含量。(2)化学发光法某些物质经过特定化学反应后会产生激发态物质,然后跃迁至低能态时会出现发光现象,化学发光法正是基于这种现象的一种分析方法。二氧化硫就具有这种性质,其发光反应机理是从中间体二氧化硫产生三线态二氧化硫能够出现发光现象。(3)碘量法碘量法是最早分析二氧化硫的技术之一,它是利用吸收液固定二氧化硫后,用碘标准溶液来滴定二氧化硫的含量。(4)物理判定法毒豆芽的相应物理特征都有哪些?芽身粗壮:自然培育的豆芽芽身挺直、稍细,芽脚不软、脆嫩、光泽白;而用激素、抗生素催生的豆芽,则芽身粗壮发水,色泽灰白。无芽根:自然培育的豆芽根须发育良好,无烂根、烂尖;毒豆芽一般根短、少根或无根。豆粒发蓝:自然培育的豆芽豆粒正常;毒豆芽豆粒一般发蓝。断面出水:豆芽秆断面无水分冒出的是自然培育的豆芽;毒豆芽断面会有水分冒出。
  • ICP-5000测定土壤中8种有效态元素的含量
    土壤质量关系到人们的生活健康和饮食健康,由于工业废水、废渣、废气的任意排放、农业生产过程中大量施肥、喷农药、污水灌溉等行为,以及人们生活中产生的垃圾等因素造成土壤的严重污染。目前土壤污染问题已经得到高度的重视,2016年5月31日,国务院正式印发《土壤污染防治行动计划》(“土十条”),其中提到土壤污染的重点监控无机污染物包括镉、汞、砷、铅、铬、铜、锌、镍等重金属,环保部发布的土壤中重金属的检测方法包括原子吸收、原子荧光、电感耦合等离子体发射光谱法和电感耦合等离子质谱法等方法,环保部于2016年6月24日发布并于8月1日实施环境新标准《HJ804-2016 土壤 8种有效态元素的测定二乙烯三胺五乙酸浸取-电感耦合等离子体发射光谱法》。由于该方法采用的提取液既含有有机物又含有较高的盐,基体比较复杂,因此,对检测仪器的要求也相应提高。 针对HJ 804-2016聚光科技提出了相应的解决方案。 样品前处理按国标HJ804-2016,称取10g(精确至0.0001g)土壤样品于50mL离心管中,加入20mL提取液(二乙烯三胺五乙酸-氯化钙-三乙醇胺),震荡2h,离心,取上层清液过滤,待测。 标准溶液配制采用提取液将浓度为1000μg/mL的标准溶液稀释至如表1所示浓度梯度,用于建立标准曲线,测得线性相关系数大于0.999。表1 各元素的标准溶度配制梯度检出限将试剂空白连续11次测定,将3倍标准偏差作为该元素的检出限,各元素检出限见表2;表2 被测元素的检出限 测量结果及加标回收率表3 仲钨酸铵中杂质元素含量测量结果及加标回收率采用ICP-5000测定6个平行样品,考察方法精密度,并在前处理前加入一定浓度液体标样进行加标回收实验,以考察方法的准确度。结果如表3所示,6个平行样测量结果的相对标准偏差均小于3%,加标回收率为90%-110%。 结论按照环境标准HJ 804-2016提取土壤中Cd、Co、Cu、Fe、Mn、Ni、Pb、Zn等8种元素的有效态,并用ICP-5000测定8种有效态元素的含量,方法检出限低,精密度小于3%,加标回收率介于90%~110%之间,满足 HJ 804-2016的检测要求。ICP-5000 电感耦合等离子体发射光谱仪ICP-5000是集中阶梯光栅的二维分光系统、自激式全固态射频电源、科研级高速CCD为一体的全谱直读电感耦合等离子体发射光谱仪,最多可以同时分析72个元素,覆盖元素周期表绝大多数金属元素和非金属元素;检出能力达到ppb级别。小型、智能化ICP-5000告别了过去的单道扫描时代,带您体验快速、全谱分析技术!
  • 赫施曼助力萤石中氟化钙含量的测定
    萤石的主要成分是氟化钙,萤石中还含有二氧化硅、碳酸钙、碳酸镁、磷、硫等杂质,萤石作为一种重要的冶金熔剂在钢铁工业中大量使用。根据GB/T 5195.1-2017,测定萤石中氟化钙含量的方法有EDTA滴定法,其原理是:试料以含钙的稀乙酸浸取,过滤,通过下列两种方法之一进行分解:1.经含钙乙酸浸取试料分离碳酸钙后的不溶物灼烧后以碳酸钠-硼酸混合熔剂熔融,以盐酸-硼酸混合酸浸取分解,定容。2.经含钙乙酸浸取试料分离碳酸钙后的不溶物以盐酸-硼酸-硫酸混合酸加热分解,定容,过滤除去不溶物。 分取部分滤液于pH大于12.5的条件下,用EDTA标准滴定溶液滴定钙,计算氟化钙的质量分数。滴定内容如下:分取25.00mL试液于250mL锥形瓶中,用瓶口分液器加25mL水,用Miragen电动移液器加2滴硫酸镁溶液(5g/L),用瓶口分液器加5mL三乙醇胺(1+2),加0.1g盐酸羟胺,用瓶口分液器加20mL氢氧化钾溶液(5g/L),加0.1~0.2g混合指示剂,用EDTA标准滴定溶液(0.015moL/L)经过赫施曼光能滴定器或opus电子滴定器滴定至试液绿色荧光消失(在黑色背景的衬垫上观察)为终点。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的常规液体(酸、碱、有机试剂等)的移取,而实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,还有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转硅胶轮控制滴定速度和体积;opus电子滴定器可通过触屏来进行灌液、预滴定(先加入一定体积后再滴定)、快速滴定和半滴滴定等功能。两种滴定器均为屏幕直接读数,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。赫施曼助力萤石中氟化钙含量的测定
  • 天瑞杯青年论文奖获奖名单公示
    4个月的论文征集,1个月的紧张评选,长达5个月的时间,在社会各界朋友的关怀和关注中,随着最终获奖者的产生,天瑞仪器杯青年论文奖完美落幕。拼搏奋进,汗水的努力不仅仅在于获奖,更多的是充实自己,提高自己,在舞台上展现属于自己的那份光彩。天瑞仪器为您提供舞台,助您前行,与您同进步。   2010青年论文奖已然落幕,感谢各界人士的支持及关注,感谢所有的来稿者,因为有你们,天瑞才更加精彩 祝贺所有的获奖者,天瑞与你共同进步。   2011年“第二届天瑞仪器杯青年论文奖”,一如既往的等待您的热情来稿。   获奖人员名单及论文名称公示如下,论文详情请进入青年论文奖专题页面:http://www.skyray-instrument.com/cn/lunwen/lunwen.html   请获奖人员及时与本论文组取得联系,登记领奖等相关信息!   2010年获奖名单如下:   光谱   一等奖:   王颖(石墨烯的光谱化学及其在生物分析检测中的应用研究)   二等奖:   叶孙洁(Contribution of Charge-Transfer Effect to Surface-Enhanced IR for Ag@PPy nanoparticles)   汪正(Characterization of stability of ceramic suspension for slurry introduction in inductively coupled plasma optical emission spectrometry and application to aluminium nitride analysis)   三等奖:   方雪恩(Loop-Mediated Isothermal Amplification Integrated on Microfluidic Chips for Point-of-Care Pathogen Detection)   司汴京(烟嘧磺隆分子印迹聚合物识别特性的光谱研究)   孙莹莹(泡沫塑料富集原子吸收法测定矿石中金的含量)   郑建明(乙醇对ICP-AES测Hg增敏效应的研究)   色谱   一等奖:   齐沛沛(Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols)   二等奖:   江金凤(Determination of hexafluoropropylene in workplace by thermal desorption gas chromatography)   金静(Enrichment of polycyclic aromatic hydrocarbons in seawater with magnesium oxide microspheres as a solid-phase extraction sorbent)   三等奖:   宋志峰(柱前在线衍生-反相高效液相色谱内标法快速测定饲料中氨基酸)   杨晓燕(HPLC-UV测定电子电气产品中多溴联苯醚的含量)   刘文青(气相色谱法分析芳樟醇合成工艺中的样品)   张丹青(气相色谱测定水泥增稠剂中的三乙醇胺)   质谱:   一等奖:  吴庆浩(A combined single photon ionization and photoelectron ionization source for orthogonal acceleration time-of-flight mass spectrometer)   二等奖:   王萌(HPLC/ICP-MS结合同位素稀释法定量分析含硫蛋白)   钱昆(Macroporous Materials as Novel Catalysts for Efficient and Controllable Proteolysis)   三等奖:   陈平(角反射高分辨飞行时间质谱的研制)   崔华鹏(连续测量水中挥发性有机物的膜进样-单光子电离-质谱仪的研制及应用)   邹海洋(GC-MS在中药研究中的应用)   邓莉(自制吸附萃取搅拌棒结合气相色谱嗅觉计(GC/O)、气质联用仪(GC/MS)分析肉味香精呈香组分)   了解天瑞仪器:www.skyray-instrument.com
  • 石河子大学研究团队开发出用于格链孢酚检测的电化学和电化学发光双模式适配体传感器
    石河子大学洪成林研究团队开发了一种基于铁酚双功能信号探针的新型双模式电化学和电化学发光适配体传感器,用于敏感检测格链孢酚(Alternariol,AOH)毒素。这一研究不仅为AOH的检测提供了一种高效可靠的解决方案,也为食品安全检测领域开辟了新路径。研究成果在国际期刊《Analytica Chimica Acta》上发表(Analytica Chimica Acta. 2023, 1272, 341476.)背景介绍格链孢酚(AOH)是一种广泛存在于水果、蔬菜和谷物中的霉菌代谢物,具有一定的致癌性和细胞毒性,对人类和动物健康构成潜在威胁。当前,检测AOH的主要方法包括微生物检测法、色谱技术、光谱技术、酶联免疫技术和适配体传感器技术。然而,传统的适配体传感器通常面临检测准确性低、易出现假阳性等问题,同时,信号放大物质的使用往往难以实现最终检测信号的有效放大。主要研究内容本研究团队创新性地构建了一种基于二茂铁羧酸-DNA2(Fca-DNA2)作为猝灭电化学发光(ECL)和差分脉冲伏安法(DPV)信号响应探针,结合Ru-MOF/Cu@Au纳米粒子作为ECL基底平台的双模式适配体传感器。首先,研究人员通过电沉积方法将Ru-MOF快速合成并固定在电极表面,随后在其表面修饰Cu@Au纳米粒子,以协同催化三乙醇胺(TEOA)放大ECL信号,增强传感器的稳定性和导电性。最终,研究人员利用AOH和Fca-DNA2之间的竞争反应,通过ECL和DPV信号的变化对AOH进行敏感检测。实验结果表明,该双模式适配体传感器在0.1至100 ng/mL范围内表现出优异的检测性能,检测限分别为0.014和0.083 pg/mL,且在实际水果样品中具有良好的应用前景。图1. (A) 通过ECL测试探测基底材料的发光稳定性。 (B) ECL的重现性。 (C) Ru-MOF/Cu@Au纳米粒子的循环稳定性。 (D) CV测试扫描速率对ECL强度的影响。 (E) 和 (F) 研究Cu@Au NPs/Ru-MOF/GCE的有效工作面积。小结该研究开发的新型双模式适配体传感器有效克服了传统传感器所面临的挑战,并在AOH的检测中表现出卓越的性能。此项研究不仅为AOH在食品中的检测提供了更为敏感和可靠的方法,也为未来食品安全检测提供了新的思路和技术基础。**因学识有限,难免有所疏漏和谬误,恳请批评指正**原文出处:免责声明: 1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵删处理!
  • 食品药监局就化妆品用乙醇等9种原料征求意见
    关于征求有关化妆品用乙醇等9种原料要求意见的函   食药监许函[2011]21号 有关单位:   为规范化妆品原料技术要求,我司组织编制了化妆品用乙醇等9种原料要求(征求意见稿)。现向社会公开征求意见,请将修改意见于2011年2月10日前反馈我司。   联 系 人:陈志蓉   电子邮件:chenzr@sfda.gov.cn   传  真:010-88373268   附件:   1.《化妆品用乙醇原料要求》(征求意见稿)和编制说明   2.《化妆品用滑石粉原料要求》(征求意见稿)和编制说明   3.《化妆品用甘油原料要求》(征求意见稿)和编制说明   4.《化妆品用DMDM乙内酰脲原料要求》(征求意见稿)和编制说明   5.《化妆品用月桂醇聚醚硫酸酯钠原料要求》(征求意见稿)和编制说明   6.《化妆品用合成熊果苷原料要求》(征求意见稿)和编制说明   7.《化妆品用聚丙烯酰胺原料要求》(征求意见稿)和编制说明   8.《化妆品用乙醇胺原料要求》(征求意见稿)和编制说明   9.《化妆品用椰油酰胺丙基甜菜碱原料要求》(征求意见稿)和编制说明   10.反馈意见表   国家食品药品监督管理局食品许可司   二〇一一年一月二十日
  • 不同极性色谱柱检测三乙胺的差异
    三乙胺作为常规溶剂应用于不同领域,对其残留的检测也有相关规定,药典规定如下:胺类物质在检测时比较容易出现拖尾的现象,今天就给大家看一下不同极性的色谱柱中相同浓度的三乙胺的测试情况:色谱条件谱图和数据结论月旭科技胺改性柱WM 5-Amine 30m*0.32mm*1.0μm 检测三乙胺有很好的峰形和柱效。由于这一类物质在系统中也可能有残留,故仪器各部件也进行对应的清洗更换。
  • 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能
    1. 文章信息标题:Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation中文标题: 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能 页码:958-968 DOI: 10.1016/j.renene.2021.11.030 2. 期刊信息期刊名:Renewable EnergyISSN: 0960-1481 2022年影响因子: 8.634 分区信息: 中科院一区;JCR分区(Q1) 涉及研究方向: 工程技术,能源与燃料,绿色可持续发展技术 3. 作者信息:第一作者是 施伟龙(江苏科技大学)、孙苇(北华大学)(共同一作)。通讯作者为 林雪(北华大学),郭峰(江苏科技大学),洪远志(北华大学)。4. 光催化活性评价系统型号:北京中教金源(CEL-PAEM-D8,Beijing ChinaEducation Au-Light Co., Ltd.);气相色谱型号:北京中教金源(GC7920,Beijing China Education Au-Light Co., Ltd.)。本工作利用SiO2微米球为硬模板和三聚氰胺为前驱体,通过空气化学气相沉积 (CVD)方法合成洋葱圈状结构的g-C3N4(OR-CN),且基于溶剂热法与0D Bi3TaO7量子点(BTO QDs)复合,形成0D BTO QDs/3D OR-CN S型异质结复合物光催化剂,在λ 420 nm的可见光驱动下,讨论了不同质量比的BTO/OR-CN化合物催化剂在2小时内的析氢性能。其中,0.3wt% BTO/OR-CN样品赋予了最佳的光催化析氢速率为4891 μmol g-1,且在420 nm处的表观量子产率(AQY)为4.1%,约是相同条件下的OR-CN的3倍。其增强的光催化活性归因于0D BTO量子点与OR-CN之间形成了S型异质结,有助于促进光生电荷载流子的分散,且增强了可见光吸收强度,此外,通过4次循环实验,发现0D BTO QDs/3D OR-CN S型异质结复合物光催化剂具有优异的稳定性,有应用前景。图1. 制备BTO/OR-CN化合物的实验过程如图1所示,BTO/OR-CN的制备是通过加入0.2 g的OR-CN在BTO的合成过程中,合成的样品命名为xBTO/OR-CN,其中x代表BTO在化合物中的质量比,分别为0.1%,0.3%,0.5%,1.0%。此外,为了比较,合成了块体g-C3N4(B-CN)和0.3%BTO/B-CN复合物,B-CN的合成是通过一步煅烧3 g三聚氰胺,550 °C加热4小时,升温速率为2.3 °C/min,从而得到黄色的产物。0.3% BTO/B-CN复合物的合成类似于0.3% BTO/OR-CN复合物的合成过程,仅仅用B-CN代替OR-CN。图2. BTO、OR-CN和不同复合物的XRD图如图2示,OR-CN、BTO以及不同质量比的BTO/OR-CN化合物(0.1%、0.3%、0.5%和1.0%)的XRD图表征晶体结构和结晶度。对于BTO样品,2θ在28.2°、32.7°、46.9°和58.4°属于Bi3TaO7的(111)、(200)、(220)和(222)面(JCPDS:44-0202)。OR-CN拥有两个衍射峰在13.1°(100)和27.4°(002),分别归因于芳香单元的层内结构堆积基序和层间堆积基序。至于BTO/OR-CN化合物,引入BTO没有影响OR-CN的相结构,当负载0.1%、0.3%、0.5%和1.0%的BTO在OR-CN上,很难发现额外的BTO特征峰,这很可能是因为少量的BTO QDs。图3. OR-CN的SEM图(a)0.3% BTO/OR-CN复合材料的SEM图(b)TEM图(c)HRTEM图(d)和EDX图(e)如图3所示,通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析制备的样品的结构和形貌。OR-CN样品呈现了洋葱圈形状,尺寸大约在150-200 nm。负载BTO QDs在OR-CN的表面上形成BTO/OR-CN复合物之后,OR-CN的洋葱圈结构没有改变,但表面变得更粗糙。为了进一步清晰地观察BTO/OR-CN化合物,0.3%BTO/OR-CN的TEM图展现了BTO QDs均匀地分布在OR-CN表面上且与OR-CN底物亲密的接触,这有助于电荷的分散和转移。同时,化合物的高分辨透射图(HRTEM)反映了BTO和OR-CN之间有好的界面接触,其中,晶格间距为0.27 nm与Bi3TaO7晶格面(200)相匹配。展现了成功地构造了0D/3D BTO/OR-CN异质结催化剂。0.3%BTO/OR-CN的EDX图揭示了C,N,Bi,Ta,O元素的存在,进一步证实BTO QDs锚定在OR-CN的表面上。图4. 光催化产氢(a)析氢速率(b)B-CN、OR-CN、及其0.3%化合物光催化产氢(c)析氢速率(d)循环实验(e)循环实验前后的XRD图(f)如图4所示,以300 W的氙灯作为光源(λ 420 nm),研究了制备的样品的光催化析氢活性。结果表明制备的BTO样品几乎不产氢,而OR-CN在2小时辐照过程中产生了相对较低的氢气,约为1736 μmol g-1,这是由于BTO对可见光的吸收较低和电子-空穴的快速重组所致。当耦合OR-CN和BTO之后,光催化析氢活性显著的增强,其中,最佳的0.3% BTO/OR-CN复合材料展现了析氢量大约是4891 μmol g-1,是单组分OR-CN样品的3倍左右。同时,0.3% BTO/OR-CN异质结光催化剂在420 nm波长表现出较高的表观量子产率(AQY)为4.11%。当BTO QDs的加入量从0.1%增加到1.0%时,光催化析氢性能呈现出先增后减的趋势,其中,最优的0.3% BTO/OR-CN样品的光催化性能优于其他复合样品,这是因为构建了S型异质结,加速了光生电荷的传输和分布。此外,在OR-CN上引入BTO QDs可以增加比表面积、提供更多的活性位点、增强光响应强度和延长光诱导电荷寿命。随着进一步增加BTO QDs的量,光催化产氢速率减小,这是因为过量的BTO QDs负载在OR-CN表面可能会影响BTO QDs的分散,且由于屏蔽效应阻碍OR-CN的光吸收效率。因此,负载合适量的BTO QDs有利于光催化产氢。此外,最优样0.3% BTO/OR-CN的产氢速率为2445.5 μmol g-1。为了比较,还合成了0.3%BTO/OR-CN复合物,制备的样品的析氢量和析氢速率的排序:0.3%BTO/OR-CNOR-CN0.3%BTO/B-CNB-CN,这表明CN的洋葱圈结构和化合物的异质结界面有利于提高光催化活性。经过四次循环实验,可以清晰地发现光催化析氢有轻微的降低。同时,XRD图也用于评价样品的稳定性,循环前后的XRD图没有发生改变。这些结果展现了制备的 BTO/OR-CN样品拥有优异的稳定性和光催化析氢活性。图5. MS图(a和b)S型异质结机理(c)BTO/OR-CN复合物光催化析氢中光生电荷分离转移机理(d)利用Mott-Schottky(MS)图确定OR-CN和BTO的能带结构。OR-CN和BTO样品的质谱图在1000、2000和3000 Hz处呈现正斜率,说明OR-CN和BTO具有典型的n型半导体特征。OR-CN和BTO在接触前的带位置存在偏差,OR-CN是一种费米能级较高的还原型光催化剂,而BTO是一种费米能级较低的氧化型光催化剂。此外,通过紫外光电子能谱(UPS)计算了OR-CN 和BTO的功函数,分析了界面电荷转移过程。确定OR-CN和BTO样品的二次电子截止边的结合能(Ecut-off)分别为16.921 eV和16.054 eV。然后,BTO和OR-CN在黑暗中密切接触后,OR-CN的CB上的电子自发地流向BTO,直到二者的费米能级达到相同水平。因此,OR-CN组分失去电子并携带正电荷,导致OR-CN的CB边缘向上弯曲,同时,BTO组分得到电子,电子在其CB上积聚,BTO带负电荷,导致CB边缘向下弯曲,从而,OR-CN和BTO界面形成内部电场。在可见光的照射下,电子在内部电场和库伦相互作用的驱动下由BTO的CB转移到OR-CN的VB上与空穴复合,此外,保留在OR-CN的CB上的电子和BTO的VB上的空穴将分别参与光催化氧化还原反应。基于以上的分析,提出了BTO/OR-CN光催化反应的可能的S型机理,在可见光的照射下,BTO和OR-CN中价带(VB)上的电子跃迁到导带(CB)上,价带上形成空穴,BTO导带上的电子可以转移到OR-CN的价带上并与空穴结合。由于OR-CN导带的电势比H+/H2(0 eV vs. NHE)更负,所以,H2O分子可以与电子反应生成H2。用三乙醇胺(TEOA)猝灭BTO价带上积累的空穴。
  • 饲料中苯乙醇胺A的测定——色谱耗材选购指南
    上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis
  • 【315曝光:饲料中的喹乙醇】看睿科检测解决方案!
    今年央视315爆出一些饲料企业瞒天过海地往饲料中非法添加各种“禁药”--喹乙醇,饲料原料表隐瞒喹乙醇等非法添加剂的问题,而且这种现象并非个例。什么是“喹乙醇”喹乙醇是1965年由德国人以邻硝基苯胺为原料合成的一种抗菌促生长剂。研究发现,大剂量的喹乙醇可能引起动物出现急性中毒、蓄积毒性以及亚慢性中毒等,进而影响人类健康。喹乙醇又称喹酰胺醇,商品名为倍育诺、快育灵,由于喹乙醇有中度至明显的蓄积毒性,对大多数动物有明显的致畸作用,对人也有潜在的三致性,即致畸形,致突变,致癌。因此喹乙醇在美国和欧盟都被禁止用作饲料添加剂。《中国兽药典》(2005版)也有明确规定,喹乙醇被禁止用于家禽及水产养殖。fig.1 喹乙醇结构式本文参考《农业部2086号公告-5-2014饲料中卡巴氧、乙酰甲喹、喹烯酮和喹乙醇的测定液相色谱-串联质谱法》,建立了利用高通量全自动固相萃取仪(Reeko Fotector Plus)结合液相色谱/质谱检测饲料中喹乙醇的方法。检测方法仪器、耗材Reeko Fotector Plus 高通量全自动固相萃取系统;液相色谱-质谱联用仪(Agilent LC 1260-MS 6410);Reeko AutoEVA-60全自动平行浓缩仪;Reeko AH-30全自动均质器;HLB固相萃取柱(200 mg, 6 mL, Oasis)或相当甲醇,乙腈(TEDIA色谱纯);无水硫酸钠(优级纯),盐酸(优级纯)样品制备准确称取饲料(1 g-2 g,市售),以及相同质量的基质空白,分别放置于50 mL聚丙烯离心管中。加入0.1 甲酸-乙腈溶液10 mL,采用Reeko AH-30全自动均质器均质30 s,另取一离心管放置清洗刀头液 3800 r/min离心5 min,收集上清液。残渣加入清洗刀头液进行再一次提取(10 mL),3800 r/min离心5 min,合并两次提取液。取上清液5 mL放置于Reeko AutoEVA-60全自动平行浓缩仪进行富集,40℃条件下氮吹浓缩至2 mL,加入0.1 mol/L磷酸二氢钾溶液4 mL,涡旋振荡溶解残留物。将上述样品液放置于Reeko Fotector Plus高通量全自动固相萃取仪样品架上,通过WIFI连接,软件控制仪器进行固相萃取。依次以5 mL甲醇和5 mL水活化HLB固相萃取柱(200 mg, 6 mL, Oasis),以2 mL/min 的速度进行上样,然后以5 mL盐酸(0.02 mol/L)和 5 mL 5%甲醇淋洗。用5 mL甲醇洗脱,收集洗脱液,在AutoEVA-60全自动平行浓缩仪上氮吹浓缩至近干,加入10 %乙腈溶液定容至1 mL,涡旋振荡后过0.22 μm有机滤膜过滤,液相色谱-质谱/质谱联用仪(LC/MS/MS)上机测试。 固相萃取净化条件 Reeko Fotector Plus 高通量全自动固相萃取仪Reeko Fotector Plus 运行程序Reeko AutoEVA-60 全自动平行浓缩仪Reeko AutoEVA-60 运行程序液相色谱/质谱联用仪条件MRM参数 结果与讨论为了验证该方法的回收率,本实验向空白饲料(2 g)中加入上述喹乙醇标品进行加标回收验证(n=4)。测试结果如下表所示,喹乙醇的回收率在82.1%-95%之间,说明该方法能够很好地运用于饲料中喹乙醇检测。表. 空白饲料中喹乙醇标品加标回收率及RSD值(40 μg/kg)总结1、Reeko AH-30均质器能够自动对样品进行均质,清洗刀头等操作,解放实验人员的双手,节省实验人员的宝贵时间; 2、Reeko AutoEVA-60全自动平行浓缩仪能够自动浓缩,针的液面追随系统能够让你的浓缩过程省时、省气;3、Reeko Fotector Plus高通量全自动固相萃取仪能够自动的完成整个固相萃取流程,从活化到上样,清洗样品瓶,洗脱一步到位,省时省事;4、Reeko Fotector Plus高通量全自动固相萃取仪采用全自动操作,固相萃取过程中可以排除操作带来的误差,能够获得手动固相萃取无法达到的RSD水平; 5、Reeko Fotector Plus高通量全自动固相萃取仪能够实现高通量处理,最多一天能够处理180个样品,真正为批量检测提供帮助。
  • 446项行业标准及72行业标准样品报批公示,涉及光谱、质谱、电镜等检测方法
    根据行业标准制修订计划,相关标准化技术组织已完成《电池用二氧化钛》等73项化工行业标准、《氧化石墨烯粉体定性分析 傅里叶变换红外光谱法》等118项冶金行业标准、《动力锂电池用铝壳》等137项有色金属行业标准、《黄金行业数字化车间 通用要求》1项黄金行业标准、《耐碱玻璃纤维网布》等54项建材行业标准、《烧结2:17型钐钴永磁材料》1项稀土行业标准、《船舶行业企业工作场所照明管理规定》等3项船舶行业标准、《风味食用盐》等48项轻工行业标准、《一次性蒸汽眼罩》等10项纺织行业标准、《热收缩标签》1项包装行业标准的制修订工作及《钢中碳硫标准样品4#》等72项冶金行业标准样品的研制工作。在以上标准及标准样品发布之前,为进一步听取社会各界意见,现予以公示,截止日期2024年7月24日。以上标准报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2024年6月25日—2024年7月24日工业和信息化部科技司 2024年6月25日446项行业标准名称及主要内容等一览表序号标准编号标准名称标准主要内容代替标准化工行业1 HG/T 6294-2024电池用二氧化钛本文件规定了电池用二氧化钛的要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于电池用二氧化钛2 HG/T 6314-2024抗氧剂 1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯(1330)本文件规定了抗氧剂1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以2,6-二叔丁基苯酚、均三甲苯为原料合成抗氧剂1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯的质量控制3 HG/T 6315-2024抗氧剂 三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯(245)本文件规定了抗氧剂三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以2-叔丁基-6-甲基苯酚、二缩三乙二醇为原料合成抗氧剂 三乙二醇醚-二(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯的质量控制4 HG/T 6316-2024电池用氢氧化钾本文件规定了电池用氢氧化钾的分类、要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于精制氯化钾经离子膜法电解所得的电池用氢氧化钾5 HG/T 6317-2024硅铝基蜂窝支撑填料本文件规定了硅铝基蜂窝支撑填料的产品分类、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于硅铝基蜂窝支撑填料6 HG/T 6318-2024碱式硫酸镁晶须本文件规定了碱式硫酸镁晶须的要求、试验方法、检验规则、标志及随行文件、包装、运输和贮存本文件适用于碱式硫酸镁晶须7 HG/T 6319-2024工业氢碘酸本文件规定了工业氢碘酸的要求、试验方法、检验规则、标志、标签和随行文件以及包装、运输和贮存本文件适用于工业氢碘酸8 HG/T 6320-2024硝酸羟胺水溶液本文件规定了硝酸羟胺水溶液的要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于硝酸羟胺水溶液9 HG/T 6322-2024超薄压敏胶粘带本文件规定了超薄压敏胶粘带的产品分类、技术要求、检验规则及标志、包装、运输和贮存,描述了相应试验方法本文件适用于以聚对苯二甲酸乙二醇酯为基材的超薄压敏胶粘带10 HG/T 2902-2024模塑用聚四氟乙烯树脂本文件规定了模塑用聚四氟乙烯树脂的技术要求,描述了相应的取样、试样制备、试验方法,规定了标志、包装、运输和贮存等,给出了术语、定义和便于技术规定的产品分类本文件适用于悬浮聚合法生产的模塑用聚四氟乙烯树脂HG/T 2902-199711 HG/T 3028-2024糊状挤出用聚四氟乙烯树脂本文件规定了糊状挤出用聚四氟乙烯树脂的术语和定义、要求、试验方法、检验规则、标志、包装、贮存和运输本文件适用于分散法聚合生产的糊状挤出用聚四氟乙烯树脂本文件不适用于含有着色剂、填充剂的聚四氟乙烯树脂HG/T 3028-199912 HG/T 2903-2024模塑用细颗粒聚四氟乙烯树脂本文件规定了模塑用细颗粒聚四氟乙烯树脂的术语和定义、要求、试验方法、检验规则、标志、包装、贮存和运输本文件适用于悬浮聚合法生产并经粉碎制得的白色粉状聚四氟乙烯树脂HG/T 2903-199713 HG/T 2904-2024聚全氟乙丙烯树脂本文件规定了聚全氟乙丙烯树脂的分类、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于由四氟乙烯和六氟丙烯为主要原料制得的聚全氟乙丙烯树脂HG/T 2904-199714 HG/T 2017-2024普通运动鞋本文件规定了普通运动鞋的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于热硫化工艺生产的,供一般体育锻炼穿用的胶鞋HG/T 2017-201115 HG/T 3085-2024橡塑冷粘鞋本文件规定了橡塑冷粘鞋的术语和定义、要求、试验方法、检验规则以及标志、包装、运输和贮存本文件适用于鞋底以橡塑并用或热塑性弹性体、聚氨酯等为主要材料,鞋面以合成或天然材料为主要材料,以冷粘工艺生产的一般穿用的鞋HG/T 3085-201116 HG/T 3086-2024橡塑凉、拖鞋本文件规定了橡塑凉、拖鞋的术语和定义、分类、要求、试验方法、检验规则及标志、包装、运输、贮存本文件适用于以合成或天然材料为帮带材料,橡塑并用体、热塑性弹性体和浇注型聚氨酯等为鞋底材料,以冷粘、组装、注射成型等工艺生产的一般穿用的橡塑凉、拖鞋HG/T 3086-201117 HG/T 6296-2024N-氰基乙亚胺酸乙酯本文件规定了N-氰基乙亚胺酸乙酯的要求、试验方法、检验规则及标志、包装、运输和贮存本文件适用于以乙醇、乙腈、干燥氯化氢和单氰胺为主要原料生产的N-氰基乙亚胺酸乙酯18 HG/T 6297-2024氯甲酸甲酯本文件规定了氯甲酸甲酯的要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以光气(三光气)、甲醇为原料生产的氯甲酸甲酯19 HG/T 6298-2024β-丙氨酸本文件规定了β-丙氨酸的技术要求、试验方法、检验规则、标识、包装、运输和贮存本文件适用于以丙烯酸或L-天门冬氨酸为原料,经酶法生产的β-丙氨酸20 HG/T 6299-2024三氟化硼四氢呋喃络合物本文件规定了三氟化硼四氢呋喃络合物的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以硼酸、氟化氢、四氢呋喃为主要原料制得的三氟化硼四氢呋喃络合物21HG/T 3752-20246-硝基-1,2-重氮氧基萘-4-磺酸本文件规定了6-硝基-1,2-重氮氧基萘-4-磺酸的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于6-硝基-1,2-重氮氧基萘-4-磺酸产品的质量控制HG/T 3752-201422 HG/T 2667-2024C.I.分散红60(分散红FB 200%)本文件规定了C.I.分散红60(分散红FB 200%)产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散红60(分散红FB 200%)的产品质量控制HG/T 2667-201423 HG/T 4023-2024C.I.分散蓝60(分散翠蓝S-GL)本文件规定了C.I.分散蓝60(分散翠蓝S-GL)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存本文件适用于C.I.分散蓝60(分散翠蓝S-GL)的产品质量控制HG/T 4023-201424 HG/T 3901-2024分散蓝EX-SF 300%本文件规定了分散蓝EX-SF 300%产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于分散蓝EX-SF 300%的产品质量控制HG/T 3901-201425 HG/T 3405-2024C.I.酸性黄17(酸性嫩黄2G)本文件规定了C.I.酸性黄17(酸性嫩黄2G)产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.酸性黄17(酸性嫩黄2G)的产品质量控制HG/T 3405-201026 HG/T 3415-2024红色基B(2-甲氧基-4-硝基苯胺)本文件规定了红色基B(2-甲氧基-4-硝基苯胺)产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于红色基B(2-甲氧基-4-硝基苯胺)的产品质量控制HG/T 3415-201027 HG/T 6300-2024工业用亚麻油酸本文件规定了工业用亚麻油酸的分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以亚麻籽油为原料,采用水解、蒸馏脱色工艺制得的工业用亚麻油酸28 HG/T 6301-20244,4'-二氨基二苯醚本文件规定了4,4'-二氨基二苯醚的分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于由4,4'-二硝基二苯醚加氢还原,经直接升华或升华后重结晶制得的4,4'-二氨基二苯醚29 HG/T 6302-20244-溴-4'-苯基-二苯胺本文件规定了4-溴-4'-苯基-二苯胺的技术要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以苯胺、4-溴联苯、N-溴代丁二酰亚胺为主要原料制得的4-溴-4'-苯基-二苯胺30 HG/T 6303-2024C.I.分散黄246本文件规定了C.I.分散黄246产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散黄246的产品质量控制31 HG/T 6304-2024C.I.分散蓝366本文件规定了C.I.分散蓝366产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散蓝366的产品质量控制32 HG/T 6305-2024C.I.分散蓝367本文件规定了C.I.分散蓝367产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于C.I.分散蓝367的产品质量控制33 HG/T 6306-2024邻硝基苯甲醚本文件规定了邻硝基苯甲醚的要求、安全信息、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于邻硝基苯甲醚产品的质量控制34 HG/T 6307-2024分散宝蓝ADD-2 200%本文件规定了分散宝蓝ADD-2 200%产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于分散宝蓝ADD-2 200%的产品质量控制35 HG/T 6308-2024数码喷墨色浆 C.I.酸性黄79本文件规定了数码喷墨色浆 C.I.酸性黄79产品的要求、采样、试验方法、检验规则、标志、标签、包装、运输和贮存本文件适用于数码喷墨色浆 C.I.酸性黄79的产品质量控制36 HG/T 3704-2024氟塑料衬里阀门通用技术条件本文件规定了化工用氟塑料衬里阀门的材料、设计、标记、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以聚四氟乙烯(PTFE)、聚全氟乙丙烯(FEP)、可熔性聚四氟乙烯(PFA)、乙烯-四氟乙烯共聚物(ETFE)热塑性塑料为衬里层的衬里阀门HG/T 3704-200337 HG/T 2437-2024塑料衬里复合钢管和管件通用技术条件本文件规定了化工流体输送用塑料衬里复合钢管和管件的原材料、设计、标记、要求、试验方法、检验规则及标志、包装、运输和贮存本文件适用于以聚四氟乙烯(PTFE)、可熔性聚四氟乙烯(PFA)、乙烯-四氟乙烯共聚物(ETFE)、聚全氟乙丙烯(FEP)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE)热塑性塑料为内衬层的化工流体输送用塑料衬里复合钢管和管件HG/T 2437-200638 HG/T 4088-2024塑料衬里设备 通用技术条件本文件规定了化工用塑料衬里设备的术语和定义、原材料、设计、制造、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于以聚四氟乙烯(PTFE)、可熔性聚四氟乙烯(PFA)、乙烯-四氟乙烯共聚物(ETFE)、聚全氟乙丙烯(FEP)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE)、聚烯烃(PO)为内衬层的化工用热塑性塑料衬里设备HG/T 4088-200939 HG/T 6323-2024两片罐上色胶辊本文件规定了两片罐上色胶辊的标记、产品结构、要求、试验方法、检验规则、标志、包装、运输和贮存本文件适用于两片罐曲面印刷系统中两片罐上色胶辊的生产、检验与使用40 HG/T 6324-2024高纯工业品 无水氟化氢本文件规定了高纯工业品无水氟化氢的要求、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于高纯工业品无水氟化氢41 HG/T 6325-2024高纯工业品 碘本文件规定了高纯工业品碘的要求、试验方法、检验规则、标志、标签和随性文件、包装、运输和贮存本文件适用于磷矿伴生碘经提纯生产或高温焚烧熔融精制法生产的高纯工业品碘42 HG/T 4131-2024工业硅酸钾本文件规定了工业硅酸钾的分类和编码、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业硅酸钾HG/T 4131-201043 HG/T 2963-2024工业六氰合铁酸四钾(黄血盐钾)本文件规定了工业六氰合铁酸四钾(黄血盐钾)的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业六氰合铁酸四钾(黄血盐钾)HG/T 2963-200944 HG/T 4120-2024工业氢氧化钙本文件规定了工业氢氧化钙的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业氢氧化钙HG/T 4120-200945 HG/T 2828-2024工业碳酸氢钾本文件规定了工业碳酸氢钾的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于离子交换法生产的工业碳酸氢钾HG/T 2828-201046 HG/T 4205-2024工业氧化钙本文件规定了工业氧化钙的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业氧化钙HG/T 4205-201147 HG/T 6326-2024化妆品用硫酸锌本文件规定了化妆品用硫酸锌的要求、试验方法、检验规则、标志和随行文件以及包装、运输和贮存本文件适用于以硫酸和氧化锌(或氢氧化锌)为原料,或由闪锌矿经焙烧后硫酸浸取、精制而得的化妆品用硫酸锌48 HG/T 6327-2024化妆品用碳酸钠本文件规定了化妆品用碳酸钠的要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于以工业盐、天然碱或工业碳酸钠为原料,由氨碱法、联碱法或其他方法制得的化妆品用碳酸钠49 HG/T 4201.1-2024稳定二氧化锆 第1部分:钇稳定二氧化锆本文件规定了钇稳定二氧化锆的要求、分型、试验方法、检验规则、标志、标签和随行文件、包装、运输和贮存本文件适用于钇稳定二氧化锆HG/T 4201.1-201150 HG/T 4513-2024工业硅酸镁本文件规定了工业硅酸镁的分型、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于可溶性镁盐与碱土金属硅酸盐合成的工业硅酸镁HG/T 4513-201351 HG/T 3607-2024工业氢氧化镁本文件规定了工业氢氧化镁的分类、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存本文件适用于工业氢氧化镁HG/T 3607-2007序号标准号标准名称有效期研 制 单 位冶金行业
  • 血液中乙醇分析/血液中乙醇检测气相色谱仪大促销
    随着新《交通法》的实施,驾车者血醇含量的检测日趋普遍,气相色谱法定性及定量检测血醇含量是唯一司法认定的检测手段。 南京科捷公司血液中乙醇含量检测解决方案是参考国外同类检测方法,并基于《中华人民共和国公共安全行业标准》(GA/ 105-1995)而开发的用带自动顶空进样器并配有双柱双检测器的气相色谱法进行的血液中的乙醇含量的定性及定量检测分析。本方案检测方法先进,仪器配置合理,操作简单,适合各级公安部门及司法鉴定中心配备。 血液中乙醇分析/血液中乙醇检测仪器配置方案: 仪器设备 仪器名称 规格及说明 产地 分析仪器 GC5890F 气相色谱仪 双FID、毛细管进样系统、填充柱进样系统、三阶程序升温、智能后开门 南京科捷 DK300A自动 顶空进样器 定量管及六通阀进样,平衡温度、充压力均可设定变化。 南京科捷 色谱工作站 南京科捷 样品制备专用配件及消耗品 顶空瓶、垫、盖 10ml或20ml 进口 顶空瓶封口钳 上海 专用色谱柱 填充柱 Parapak S 2mm*2m 玻璃管柱 南京科捷 毛细管柱 PEG20M 30m*0.53mm 毛细管柱 进口 血液中乙醇分析/血液中乙醇检测气相色谱仪主要特点: 大屏幕中英文两种显示,画面切换简单明了,外观时尚美观。 完善的自动化,智能化,多功能化,多维色谱系统(ARM9-32位芯片和国外原版软件)宽幅的升温速率,快速的降温系统,高稳定性的温控技术,非常好的性能价格比。 完善的自诊断功能,能使用户方便的检查故障部位和故障类型。 完善的温度过热保护及铂丝电阻开,短路报警功能,保证温度不失控。 可选配内置AD转换电路,可直接数字输出信号,实现在PC上完成控制与分析的全部工作。 柱箱通过干冰或液氮可实现负温度操作。 在180℃以内,柱箱控制精度高达± 0.01℃。 可同时安装三个填充柱或两付毛细管柱,双放大器可同时工作。可同时安装三个检测器及甲烷转化炉。 手动进样、自动启动进样装置、自动点火等功能任选,陶瓷或石英喷嘴任选。 仪器具有断气自动停电保护功能。 六路控温,七阶程序升温,毛细管和填充柱汽化室独立控温,智能双后开门。 血液中乙醇分析/血液中乙醇检测气相色谱仪技术指标: 柱箱控温范围:室温5℃-400℃(以0.1℃为增量任设)。 温度精度:不大于± 0.1℃。 温度梯度:± 1℃(100℃-360℃程序升温)。 升温速率:0.1℃-40℃/min(以0.1℃为增量任设)。 进样口、检测器控温范围:室温+10℃-400℃。 电压220V± 10%,最大功率2200W。 外型尺寸:长570× 宽480× 高500(mm) 柱箱尺寸:长270× 宽248× 高260(mm) 仪器重量:46kg 欢迎来电咨询血液中乙醇分析/血液中乙醇检测气相色谱仪详情!联系方式如下: 姓 名 手机(南京) 座 机 负 责 区 域 郑基斌 13951984142 021-54081115 浙江、江苏 卞啊峰 15895820021 025-83312752 上海、安徽、山东 李 双 18925461793 0769-23361019 广东、福建、湖南、江西 尹俊荣 13951792301 010-61702619 天津、内蒙古 尹艳艳 15150695512 028-87522753 云南 李金 15250968853 028-87522753 四川、重庆、贵州 刘楚涵 13605177611 0769-23361019 广西、海南 彭红媛 18611025238 010-61702619 北京、新疆 郑基萍 13951691728 025-84372482 辽宁、吉林、黑龙江、宁夏、青海、陕西、甘肃、山西、河南、河北、湖北
  • iCAN9傅立叶红外光谱仪让饲料中的 “禁药”喹乙醇无处可藏
    由于喹乙醇有中度至明显的蓄积毒性,对众多数动物有明显的致畸作用,对人类也有潜在的三致性,即致畸形,致突变,致癌变。因此喹乙醇在美国及欧盟都被严禁用作饲料添加剂。代表药品名为倍育诺、快育灵。《中国兽药典》(2005版)也有明文规定,喹乙醇被禁止用于家禽及水产养殖领域。喹乙醇称喹酰胺醇,奥喹多司,为浅黄色结晶性粉末,无臭,味苦。溶于热水,微溶于冷水,在乙醇中几乎不溶。化学名为2--氨基甲酰-3-甲基-喹恶啉-1,4-二氧化物。 国家315晚会上报报导了一些饲料企业为了一己私利瞒天过海地在往饲料中非法添加 “禁药”——喹乙醇。 饲料违规添加此类禁药,能使饲养的动物傻吃酣睡猛长,但是抗生素在肉里边有残留,人吃了带抗生素的肉以后,或产生“耐药性”。长远地来说,它可能会让某种病菌、病毒产生耐药性,这样就会导致整个人类都无法再有效抵御疾病。 天津市能谱科技有限公司红外光谱仪应用分析工程师本着专业的态度和认真负责任的精神,立即行动起来,利用能谱科技自主研发的ican9傅里叶变换红外光谱仪设计制作出来完整的检测解决方案,供相关单位使用。检测设备: 主机:ican9傅立叶变换红外光谱仪 1台 附件:常规固体测试包(溴化钾kbr压片法) 1套检测步骤:(1)样品片制备:取供试品喹乙醇约1.0mg (预先在红外灯下烘1小时或在恒温105℃下干燥3小时,特殊供试品需用其它方法进行干燥),置玛瑙研钵中,加入干燥的溴化钾(溴化钾与供试品的比例应按照具体要求进行混合),充分研磨混匀(向同一方向研磨),移置于压模中,使分布均匀,把压模水平放置于压片机座上,加压至10t/cm2,保持3分钟,(压力大小与保持时间应根据实际需要进行调整),取出供试片,用目视检查应均匀,表面平滑,透光好。(2)溴化钾准备:每次做样取适量的kbr于称量瓶中,在红外灯下烘1小时或在恒温105℃下烘3小时,取出后置干燥器中待用。(3)在红外光谱仪软件工作站中设置扫描参数为分辨率4cm-1,扫描次数32次,依次将溴化钾空白片和喹乙醇样品片放入红外光谱仪主机样品仓中,得到样品的红外光谱图。
  • 中石化汽油再曝质量门 或因甲醇代乙醇
    中石化再一次陷入汽油“质量门”,不过,这次“受害者”由香港车主变为河南车主。   昨日,中石化办公厅有关负责人接受《每日经济新闻》采访时表示,中石化总部正在等待河南安阳当地工商局和技术监督局对油品进行抽样检验的报告。而中石化安阳公司有关人士也称,目前已停止出售这批疑因导致部分车辆故障的93#汽油。   各方等待抽样检验报告   据报道,2010年3月中下旬开始,河南省安阳市内许多4S店突然接到大批送修车辆。这些故障车辆都有着同样的“病症”:轻则会出现加油不顺、冒黑烟、尾气刺鼻的情况,重则排气管不断喷出红或黑色液体、无法启动,最严重的会出现一些零件损坏的情况。   对此,《每日经济新闻》向中石化方面进行了求证。   中石化办公厅有关负责人士说:”此事件还没有上升到中石化北京总部这个层面解决,具体情况要问中石化河南安阳分公司,由他们具体负责处理,中石化总部也在等待检测报告的出来。估计就这几天会出来,到时会对外公布。”   “对不起,我只是一个负责加油的员工,关于车辆故障的问题我不太清楚。”中石化河南安阳分公司旗下加油站的一位员工在电话中说道。   安阳分公司负责油品零售业务有关人士也对《每日经济新闻》表示,4月1日起,当地加油站已经全部更换了一批新的93#汽油,上批油已经停止销售了。4月初,中石化河南安阳分公司在安阳市电视台也发表了公开声明,表示将对车主损失的油费和清洗费进行理赔。   中石化河南石油分公司目前也声明表示,已组成调查组,在前期组织有关专家赴现场进行调查的基础上,责成安阳石油分公司主动邀请当地工商局和技术监督局对油品进行抽样检验,同时将邀请车友代表和关注此事的网友、媒体记者对抽检过程进行监督,最终调查结果待专家及权威机构拿出意见后及时公布。如果调查证实下属企业确实存在内部管理问题,其将对有关责任人问责。   甲醇代替乙醇所导致?   一位不愿署名的汽车业内专家称在最终抽样检验没有出来之前,无法确定事故的最终原因。不过,他担心或许是汽油中加入甲醇代替乙醇导致。   国家发改委和财政部之前曾联合下发紧急通知,要求各地暂停核准玉米加工乙醇项目。乙醇汽油最大的问题就是会占用耕地和粮食,而且发酵乙醇价格高。上述专家说,国内乙醇限产,没那么多已乙醇添加,一些加油站为了追求利润,甲醇代替乙醇。而全国每年有几十万吨甲醇不知去向,特别是在山西、河南地区。   与乙醇汽油相比,甲醇汽油的生产成本具有绝对优势。甲醇生产成本在每吨1000元左右,而每吨乙醇的生产成本在4500元左右。   据专业人士介绍,甲醇汽油M15标准,是汽油里面加入15%左右的甲醇,以及一定量的添加剂,以此类推M30和M50则是分别加入30%和50%的甲醇。目前,只有山西省在全面推广甲醇汽油。
  • Sigma-Aldrich提供奶制品中三聚氰胺解决方案
    因为三鹿乳粉三聚氰胺污染事件,使得&ldquo 三聚氰胺&rdquo 这个化学名词,一夜之间让人如此揪心。西格玛奥德里奇(Sigma-Aldrich),作为世界领先的实验室化学品和色谱耗材的供应商,愿意为广大分析检测工作者,提供以下产品。希望对尽快准确检测三聚氰胺,有所帮助。如有任何问题,请随时联系我们。 三聚氰胺(纯度,99.0%); 衍生化试剂 BSTFA+TMCS(99:1) 吡啶; HPLC 甲醇、乙腈; LC-MS 三乙胺; LC-MS 水; 三氯乙酸; 柠檬酸; 离子对试剂 辛烷磺酸钠; 色谱柱; SPE 小柱(DSC-MACX, Envi-Carb); ... ... 关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌 Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。 Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的得奖网站:http://www.sigma-aldrich.com, 或直接联系我们: 地址:上海市淮海中路398号世纪巴士大厦22楼A-B座 邮编:200020 电话:+86-21-61415566 传真:+86-21-61415568 热线电话:800-819-3336 email:ordercn@sial.com
  • 科晓推荐三聚氰胺检测方法包
    由于&ldquo 三鹿奶粉事件&rdquo 导致三聚氰胺这个词一夜间成为了街头巷尾相传的流行。而对于它的检测手段在分析仪器色谱行业内的诸多厂商与科研人员也随之推出了一系列的检测方法,科晓在关注这一事件的同时通过对各种方法的比较验证,推荐来自爱杰尔的方法,为三聚氰胺检测提供一定的参考价值。 三聚氰胺分析方法包组件清单 包括: 1 VenusilASB-C8色谱柱(4.6*250mm,5&mu m,150Å )1支 2混合型的阳离子交换柱(Cleanert PCX 60mg/3mL)50支 3三聚氰胺标准品1瓶(500mg,&ge 99.5%) (可选) 4三聚氰胺分析方法手册1份 5庚烷磺酸钠(25g/瓶) (可选) 6 固相萃取装置(12位)一套 (可选) 理化性质 三聚氰胺:英文名&ldquo melamine&rdquo ,简称三胺, 学名三氨三嗪, 别名蜜胺、氰尿酰胺、三聚酰胺。分 子 式:C3N6H6、 C3N3(NH2)3 ;分 子 量:126.12 物理性能:白色结晶粉末,无毒,无味;相对密度:1570kg/m³ ;熔点:在常压下,354℃分解;升华温度:300℃;溶 解 性:能溶于甲醇、甲醛、乙酸、热乙二醇、甘油、吡啶;微溶于水、乙醇;不溶于乙醚、苯和四氯化碳,水溶液呈弱碱性 化学性能:三聚氰胺是一种重要的氮杂环有机化工原料,显弱碱性,能够与各种酸反应生成三聚氰胺盐;在强酸或强碱液中,三聚氰胺发生水解,胺基逐步被羟基取代,生成三聚氰酸二酰胺、三聚氰酸一酰胺和三聚氰酸;三聚氰胺与醛类反应生成加成化合物;三聚氰胺与甲醛反应制成树脂,三聚氰胺树脂是一种多种用途的材料,防火耐热且有很高的稳定性,用于生产塑料、地板砖,厨房用具,防火纤维,商业滤膜,胶水和阻燃剂。 固相萃取(SPE)方法 1 固相萃取(SPE)柱的选择: 三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子和反相两种吸附机理,并具有以下优点: 1) 可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。 2) 批次重复性好。 3) 回收率高,重现性好,即使小柱跑干也可以得到较高回收率。 图1 PCX结构式 2 样品前处理步骤: 2.1标准样品配制: 取50mg三聚氰胺标准品,以20%甲醇溶解定容至50mL得到1000ppm的标准溶液,使用时,以提取液(1%三氯乙酸)稀释至所要的浓度。 2.2提取: 称取饲料/奶粉样品5g (或牛奶10ml),加入50ml 1%三氯乙酸提取液,充分混匀,加入2mL 2%乙酸铅溶液,超声20min。然后取部分溶液转移至10mL离心管中,8000rpm/min离心10min,取上清液3mL过混合型阳离子交换小柱(PCX)。 2.3净化(PCX小柱,60mg/3mL) : 1) 活化及平衡:3mL甲醇,3mL水 2) 上样:加入提取液3mL 3) 淋洗:3mL水;3mL 甲醇;弃去淋洗液并将小柱抽干。 4) 洗脱:5mL 5%氨化甲醇(v/v)洗脱。(5%氨化甲醇的配制:5mL氨水+95mL甲醇)。 5) 浓缩:50℃,氮气吹干,20%甲醇/水定容至2mL。 2.4检测: 用HPLC-UV中国农业部颁标准检测方法分析,测得PCX柱的回收率结果如下: 添加水平 回收率 空白 0.01 116% 0.1 108% 0.5 92% 2 96% 由上表可以看出:用PCX柱净化样品,可以得到满意的回收率。 HPLC-UV检测方法 三聚氰胺在传统的C18柱上保留很差,需要用离子对试剂色谱方法才能有良好的保留与分离,按照美国食品药品监督管理局(FDA)的三聚氰胺检测方法和中国农业部颁部的三聚氰胺检测方法,采用艾杰尔(Agela) Venusil ASB系列亲水色谱柱,均能得到良好的结果,分析色谱图如下: 1、 三聚氰胺的FDA检测方法 色谱柱:Venusil ASB C8 4.6× 250mm 缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0。 流动相:缓冲液:乙腈=85:15 进样量:样品用缓冲液溶解成约0.1mg/mL,进10uL 流 速:1.0mL/min 柱 温:40 oC 波 长:240nm 2、三聚氰胺的中国农业部颁标准检测方法 色谱柱:Venusil ASB-C18 4.6× 250mm 缓冲液:10mM柠檬酸, 10mM庚烷磺酸钠 流动相:缓冲溶液:乙腈=85:15 进样量:样品用缓冲液溶解成约0.1mg/mL,进10uL 流 速:1.0mL/min 柱 温:40℃ 波 长:240nm LC-MS参考方法 由于HPLC-UV方法中,流动相添加了离子对试剂,限制了液质联用方法的使用;但不用离子对试剂色谱方法,三聚氰胺在传统的C18柱上保留很差,没有良好的保留与分离。 源于此问题,艾杰尔科技公司自主开发了新的方法,采用艾杰尔(Agela) Venusil ASB系列亲水色谱柱,不用离子对试剂也能得到有效的保留与分离,参考方法如下: 缓冲液:10mM NH4AC 流动相:缓冲液:ACN=95:5 流 速:1.0mL/min 进样量:先用70%ACN溶解成约1mg/mL,用ACN稀释成0.1mg/mL,进10uL 柱 温:40℃ 波 长:240nm ASB-C8 4.6× 250mm (Rt=3.839min TF(5%)=1.00 ASB-C18 4.6× 250mm (Rt=3.651min TF(5%)=1.05 备注:色谱柱可选择我公司经营的C8(250*4.6/5um) 作为色谱仪器的专家,科晓将始终为顾客提供最优质的产品与最全面的服务
  • 国际首次!二氧化碳一步转化为乙醇
    记者16日从江南大学获悉,该校化学与材料工程学院刘小浩教授团队创新性地采用结构封装法,构筑了纳米“蓄水”膜反应器,在国际上首次实现了二氧化碳在温和条件下一步近100%转化为乙醇。相关研究成果发表于《美国化学会催化》。江南大学供图近年来,科学家已经开发了多种途径将二氧化碳转化为乙醇,比如光催化、电催化以及间歇釜热催化。相较于上述技术途径,在连续流固定床反应器中,由于便捷的物质流和能量流管理,更容易实现工业应用。但目前的技术无法实现可控精准增碳定向生成乙醇,易产生大量低价值的副产物。江南大学供图该科研团队构筑的纳米“蓄水”膜反应器,合成的催化剂结构类似于一个胶囊,内部封装了二氧化铈载体分散的双钯催化剂。刘小浩介绍,胶囊的壳层具有高选择性,疏水修饰后,保证内部生成的水富集而产物乙醇可以溢出。其中的水环境可以稳定双钯活性位点,该催化剂能够实现温和条件下(3MPa,240℃)二氧化碳近100%选择性高效稳定转化为乙醇。值得一提的是,这项研究构筑的双钯活性位点具有独特的几何和电子结构,可实现二氧化碳加氢定向生成单一高价值产物乙醇。“催化剂合成工艺和催化反应路线简单,有大规模工业化应用前景。”刘小浩表示。
  • 中国石油燃料乙醇研发中心成立
    12月1日,从吉林石化研究院获悉,中国石油燃料乙醇研发中心在吉林石化研究院成立。此举为适应燃料乙醇生产基地建设需要,形成科研、生产一体化发展大格局奠定了基础。   近年来,随着我国乙醇汽油的推广和应用,国内市场对燃料乙醇的需求大幅提升。然而,为避免消耗过多粮食,国家限制以粮食或糖作原料生产燃料乙醇的措施陆续出台,非粮物质生产燃料乙醇技术成为国内各企业发展的重点。有关资料显示,我国仅农林废弃物每年就有15亿吨左右,具有生产乙醇近4亿吨的潜力。   吉林石化研究院院长王勋章介绍,为在非粮生产燃料乙醇技术上取得大的突破,新成立的研发中心正在对国内外非粮乙醇生产技术开展调研,选择主攻方向。   目前,吉林石化乙醇燃料有限公司以陈化粮为原料,拥有年60万吨燃料乙醇的生产能力。吉林石化将在此基础上,加快非粮乙醇基地建设速度,在先进性、可行性、经济性三者统一的基础上,做大非粮乙醇产业。   中国石油十分重视非粮乙醇技术的开发,要求吉林石化在“十二五”期间以现有生产装置为依托,在非粮乙醇生产上形成规模。   燃料乙醇研究院研发中心负责人刘海军博士介绍说,吉林石化研究院从1974年就开始从事环保与生物工程方面的研究工作,有一定的技术积累。此次燃料乙醇研发中心的组建,将综合国内外非粮乙醇技术特点,在引进、消化、吸收中形成自己的技术优势。
  • 【知识分享】有关有机胺类化合物的HPLC方法开发
    有机胺类化合物1.有机胺类化合物氮元素最外层有5个电子,3个成单电子和一对孤电子对。不同于碳的最外层就4个成单电子,成键后就没有多余的了,就只能老老实实的呆着。比如甲烷CH4已经圆满,不会有再给出电子和获得电子的动力。氮元素的3个成单电子成键后,多出了一对孤电子对,如果NH3其中的一个或者以上的氢换成有机基团变成了有机胺类化合物。氮元素中多出的孤电子对,也造就了我们HPLC方法开发最常见的碱性有机化合物。2.有机胺分类有机胺类化合物分为3类:碱性化合物、中性化合物和酸性化合物。酸性化合物:如果N连接的是吸电子基团,比如羰基,化合物对电子的约束增强,它们就会安分很多,即碱性减弱,如果连接的吸电子基团继续增多或者增强,N上的电子被被这些强盗抢走了,那么它甚至不但不会有多余的电子出去浪,它还要抢别人的电子,即华丽变身为路易斯酸。比如邻苯二甲酰亚胺,它N上的氢有很强的电离倾向,化合物显酸性。常见吸电子基团有:硝基(-NO2)、三卤甲基(-CX3)X=F、Cl、氰基(-CN)、磺酸基(-SO3H)、甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)。在有机胺类化合物中不饱和建可以和N的孤电子对形成p-π共轭效应,也表现出吸电子基团的现象,如苯胺的碱性弱于氨水,就是因为N上的孤电子对跑到苯的大π键上去浪了,整个化合物给电子的倾向减弱。中性化合物:有机胺类化合物呈中性的状态,可以理解为N上连着吸电子基团,强度刚好满足约束N上的多余的想要出去浪的电子,于是N即没有给电子的倾向,也没有获得电子的倾向。当然需要说明的是这是一个区间,在这个区间内有机胺类化合物电离倾向非常弱,我们可以认为是中性化合物,例如苯并嘧啶。3. 胺类的合成:(1)硝基还原:最干净和简便的方法是采用Pd/C或Raney Ni加氢还原硝基。当分子内存在对加氢敏感的官能团时,如卤素,双键,三键等,催化加氢不适用。其它化学还原方法,包括Fe,SnCl2, Na2S2O4等。一般而言,硝基化合物不用LiAlH4还原,因其无法将硝基彻底还原,从而得到混合物。(2)酰胺还原:一般将酰胺还原到胺最常见的方法就是通 过LiAlH4在加热回流下进行。但当分子内有对LiAlH4还原敏感的官能团存在时,如芳环上有卤原子存在时,容易造成脱卤。一些温和的还原条件:BH3原,NaBH4-Lewis酸体系还原,DIBAL-H还原等。(3)腈基还原: 一般腈基还是较为容易还原为相应的伯胺, 催化加氢或化学试剂还原都可以用于这类还原。催化加氢的方法最为常用的催化剂为RaneyNi, 在使用RaneyNi 做催化剂加氢成胺时,若用乙醇作溶剂,一般需要加入氨水,主要由于在此条件下,有时有微量的乙醇会氧化为乙醛,其与产品发 生还原胺化得乙基化的产物,加入氨水或液氨可抑制该副反应。其它方法则以LiAlH4和硼烷较为多用。(4)叠氮还原:催化加氢和化学还原法均可用于叠氮的还原。催化加氢常用的催化剂为Pd/C,Raney Ni, 当分子内有对氢化敏感的卤素时,可用PtO2作催化剂。化学还原最温和的条件是使用三苯基膦在湿的四氢呋喃中还原,当然LiAlH4也可用于该还原。(5)还原胺化:由醛或酮与胺反应形成亚胺,再通过硼氢化钠或三乙酰氧基硼氢化钠还原,得到烷基取代的胺类结构。HPLC方法开发有机胺类化合物并不是都显碱性,有可能是中性也可能显酸性,需要根据结构式进行综合判断其性质并拟定适合的色谱条件。1. 中性有机胺类化合物该类化合物的HPLC方法开发和普通中性有机物并无区别,因其电离倾向很弱,所以无需使用缓冲盐,流动相用水-有机相系统即可,色谱柱可以根据保留情况使用纳谱分析ChromCore C18或者ChromCore C8液相色谱柱。2. 酸性有机胺类化合物该类化合物因具有较强的电离倾向,需要使用缓冲盐,一般来说酸性化合物对缓冲盐的缓冲能力要求都不是太高,所以缓冲盐的浓度可以略低,如0.01-0.02mol/L,在特定情况下,缓冲盐的pH值也可以偏离pka±1的范围,如0.02mol/L磷酸二氢钾溶液(不调节pH,约为4.6)。缓冲盐的pH值需要偏离待测化合物pka±2的范围外,以获得较好的pH值耐用性,因此如果酸性有机胺类化合物酸性较弱,即pka较大(5以上)推荐使用较低pH值缓冲盐抑制其解离,如果使用高pH值缓冲盐,pH值需要在7以上,不利于色谱柱寿命。如果酸性有机胺类化合物酸性较强,即pka较小(4以下)可能难以使用低pH值缓冲盐抑制其解离,如果极性较小可以尝试高pH值缓冲盐;但是一般这种情况该化合物极性都非常强,保留非常弱,使用高pH值很可能无法获得适当的保留时间,在这种情况可能需要用到离子对试剂如四丁基铵盐或者采用HILIC、离子交换柱等方法。如纳谱分析ChromCore HILIC-Amide色谱柱。3. 碱性有机胺类化合物碱性有机胺类化合物是反相HPLC方法开发中最常见又最让人痛苦的一类化合物,有相关经历的读者应该立刻心领神会心有戚戚。最常见的是这类化合物的峰拖尾、很宽,然后和相邻峰分离非常差。所以该类化合物的HPLC方法开发是本文中重点阐述的内容。首先要说明的是开发该类化合物反相HPLC方法所使用的色谱柱强烈建议使用封尾处理过的色谱柱,尽量选择封尾处理比较好的品牌与型号。一般来说,说明书上说明了采用二次封尾或者三次封尾的色谱柱,在碱性化合物峰拖尾上表现较好,如纳谱分析ChromCore 120 C18色谱柱。同上文的酸性有机胺类化合物,碱性有机胺类化合物因具有较强的电离倾向,需要使用缓冲盐。碱性化合物对缓冲盐的缓冲能力要求较高,一般来说缓冲盐浓度建议0.02mol/L以上。缓冲盐的pH值需要偏离待测化合物pka±2的范围外,以获得较好的pH值耐用性,因此如果碱性有机胺类化合物碱性较弱,即pka较小(4以下)推荐使用较高pH值缓冲盐抑制其解离,如果使用低pH值缓冲盐,pH值需要在2以下,不利于色谱柱寿命。如果碱性有机胺类化合物碱性较强,即pka较大(5以上)可能难以使用高pH值缓冲盐抑制其解离;一般这种情况该化合物极性都非常强,保留非常弱,使用低pH值很可能无法获得适当的保留时间,在这种情况可能需要用到离子对试剂如烷基磺酸钠或者采用HILIC、离子交换柱等方法,如纳谱分析ChromCore HILIC-Amide色谱柱。分享一个可以查询化合物pKa:https://www2.chem.wisc.edu/areas/reich/pkatable/index.htm
  • 北京绿绵巨贸推出应对三聚氰胺的高通量前处理仪器
    食品安全是受到全社会普遍关注的问题,特别是随着工业、商业的发展以及人类对环境日益突出地影响,食品安全控制领域不断地面对新的课题和挑战,对食品检测的快速性、高效性和精确性也不断提出新的要求,需要检测的食品样品也越来越多样和复杂。为此,食品检测样品的前处理工作已显得尤其关键。北京绿绵巨贸公司是一家提供专业的样品前处理设备的公司,拥有GPC净化系统、样品精确定量浓缩系统、SPE及吹扫捕集仪等全部的样品前处理仪器。 绿绵巨贸公司所推出的J2固相萃取仪是具有高通量的样品前处理装置,可一次处理多达48个样品,是传统SPE及全自动SPE所不能实现的,其方便灵巧的操作模式,大批量的处理能力,为实验室样品前处理工作提供了无法取代的支持和帮助,尤其提高了用户应对大批量工作和突发事件的能力,特别是在近来应对&ldquo 三聚腈胺&rdquo 的检测中,其便捷高效的半自动SPE装置又发挥了极其突出的作用,以下是厦门疾控中心对&ldquo 三聚腈胺&rdquo 的检测方法,其中应用了北京绿绵巨贸公司代理的美国J2公司的半自动SPE装置,收到了良好的效果。 北京绿绵巨贸科贸有限公司 地址:北京市朝阳区北辰西路69号峻峰华亭D-1209 邮编:100029 电话:010-58772760/1/2/3 传真:010-58772765 正压固相萃取仪在检测食品中三聚氰胺的应用 厦门疾病预防控制中心 骆和东 食品中三聚氰胺的污染事件是近来社会关注的热点。从去年出口美国的宠物饲料中被检测出三聚氰胺到现在发现我国几十种品牌的奶制品均受三聚氰胺的污染。无不引起人们对食品安全的担扰,也引发了一股开发研究三聚氰胺检测方法的热潮。 三聚氰胺是一种重要的氮杂环有机化工原料,水溶液显弱碱性,能溶于甲醇、乙酸等,微溶于水和乙醇,不溶于乙醚、苯等,而且在传统C18柱上保留很差。利用此特性,人们普遍采用离子对试剂液相色谱法和液质联用方法进行检测。但由于食品基质复杂,使得样品的前处理甚为关键。我们采用三氯乙酸提取,MCX固相萃取小柱净化,辅以J2加压固相萃取仪操作,建立一套快速、准确、重现性良好的样品外理方法。 材料与方法 1.1主要仪器与试剂:Agilent HP1100高效液相色谱仪、配四元梯度泵、在线真空脱气机、自动进样器、柱温箱、二极管阵列检测器、J2 SCIENTIFIC 加压固相萃取仪、超声波清洗器、离心机、固相萃取小柱:OASIS MCX,6mL,500mg。三聚氰胺标准品,纯度99%。 1.2样品处理 1.2.1提取 准确称取经粉碎混匀后样品5.0g,加入50mL 1%三氯乙酸溶液及2 mL 2%乙酸铅溶液,混匀后超声提取30min,高速离心后取上清液待净化。 1.2.2净化 将MCX固相萃取小柱(6mL,500mg)置于J2固相萃取仪样品架上,分别加入5mL甲醇、5mL水活化,再准确移取5.0mL离心液上柱。活化及上样时,将样品架升至顶部通过调节面板旋钮来调节N2气流大小,控制流速不超过1mL/min。然后再用5mL水、5mL甲醇洗涤SPE 柱,弃去洗脱液,将小柱升至顶部调节气阀旋钮自动加压吹干小柱,用5%氨水甲醇溶液5mL洗脱,收集洗脱液用氮吹仪吹干,用甲醇-水(2:8,V/V)定容至1.0mL,过0.45&mu m滤膜,上机测定。 1.3液相色谱测定:略 2.结果与讨论 2.1样品提取与净化 三氯乙酸具有沉淀乳及其制品中蛋白质的作用,而且有助于三聚氰胺的溶解.由于三聚氰胺呈弱碱性。(弱阳离子化合物),采用阳离子交换柱进行净化可达到去除杂质,提高检测灵敏度、重现性和回收率的效果。图1为奶粉样品直接提取后进样测定所得的色谱图,存在许多杂质峰,而图2为提取并经固相萃取小柱净化后的色谱图,杂质峰的干扰基本去除。 图1:奶粉样品直接提取测定的色谱图 图2:奶粉样品提取并经固相萃取柱净化的色谱图 2.2 J2加压固相萃取仪的应用 J2加压固相萃取仪具有高效、简便的特点。它可通过该装置中的气流调节阀来控制小柱流速的大小,并可直接吹干小柱,保证每个小柱在活化洗脱过程中具有良好的重现性。并且可配套不同规格的固相萃取小柱(如1mL,3mL,6mL等)使用,一次操作可同时处理48个样品。我们在奶粉中添加(2.0~50.0) ug/mL等不同浓度的三聚氰胺,进行加标回收和重现性实验,回收率在95~99%之间。相对标准偏差均小于3%。 3.结论: J2固相萃取仪的加压操作是通过在固相萃取小柱的上方施加一定压力空气或N2来实现。这样可加快过滤速度,控制柱子活化、淋洗、洗脱全过程的流速,使溶液易于进入固定相孔隙,有利于样液与固定相更紧密接触,从而提高萃取效果。它克服常规的手动固相萃取操作费时、不能确保稳定的流速、不同人员操作结果偏差较大的问题,通过简单的控制消除人为操作的误差,保证在短时间内同时处理几十个样品并具有良好的重现性。
  • 中国纤维素乙醇技术标准正在制定
    全球最大的工业酶制剂生产商诺维信全球执行副总裁托马斯那奇昨日透露,中国国家标准委已经通过行业协会推进纤维素乙醇技术标准的制定。这无疑是加速中国纤维素乙醇商业化运营的一大利好消息。   那奇昨日在京面对媒体时介绍说,目前中国每年有7亿吨农业废弃物,其中2亿吨将用于纤维素乙醇的制造,若以1/5-1/4的转化比率来讲,中国将具备4000万-5000万吨的产能,但目前中国生物质能源却还处在“襁褓”阶段。专家则指出,2011年第三季度诺维信与中粮和中石化两大央企巨头在华合作运营的乙醇示范工厂能否展示足够商业化可行性才是关键,而标准的建立对大规模的投产更有推动作用和行业意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制