当前位置: 仪器信息网 > 行业主题 > >

氧杂环丁烷甲胺

仪器信息网氧杂环丁烷甲胺专题为您提供2024年最新氧杂环丁烷甲胺价格报价、厂家品牌的相关信息, 包括氧杂环丁烷甲胺参数、型号等,不管是国产,还是进口品牌的氧杂环丁烷甲胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氧杂环丁烷甲胺相关的耗材配件、试剂标物,还有氧杂环丁烷甲胺相关的最新资讯、资料,以及氧杂环丁烷甲胺相关的解决方案。

氧杂环丁烷甲胺相关的资讯

  • HPLC级叔丁基甲醚促销
    货号:CAEQ-4-018397-4000 HPLC级叔丁基甲醚 规格:4L 报价:540元 促销价:整箱起订432元/瓶,4瓶/箱 促销时间:2011年5月3日至2011年5月31日 高效液相色谱法已经在产品检测、研发以及药物质量控制和环境分析领域成为首要的技术方法,因而对所使用的溶剂提出了更高的要求。 CNW液相色谱溶剂具有以下优点:1)低紫外吸收,确保最佳灵敏度;2)严格控制非挥发性物质、游离酸、游离碱和水分含量至最低;3)严格的梯度测试以检测干扰峰和基线漂移情况;4)可用于荧光检测。我们可以为您提供满足不同分析需求的溶剂,如UV-IR表示可满足紫外可见吸收光谱、红外光谱等分析;HPLC preparative表示可满足制备色谱分析;HPLC isocratic表示可满足等度洗脱分析;HPLC gradient表示可满足梯度洗脱分析;GPC表示可满足大分子化合物凝胶渗透色谱分析;另外我们还可以为您提供满足所有现代LC/MS精确检测分析用的溶剂。 订货信息: 产品货号 产品名称 品牌 规格 报价(元) 4.003302.4000# HPLC级甲醇 CNW 4L 180.00 4.003306.4000# HPLC级乙腈 CNW 4L 420.00 4.003513.2500# HPLC级水 CNW 2.5L 200.00 4.003513.4000 HPLC级水 CNW 4L 320.00 4.012256.0500# HPLC级苯CNW 500ml 400.00 4.012256.1000 HPLC级苯 CNW 1L 600.00 4.012256.4000# HPLC级苯 CNW 4L 1360.00 4.012783.0500# HPLC级吡啶 CNW 500ml520.00 4.012783.1000# HPLC级吡啶 CNW 1L 860.00 4.012783.4000 HPLC级吡啶 CNW 4L 2800.00 4.010734.0500 HPLC级二甲基亚砜 CNW 500ml 360.00 4.010734.4000# HPLC级二甲基亚砜 CNW 4L 1150.00 4.011410.0250# HPLC级1,4-二氧六环 CNW 250ml 480.00 4.010410.0500 HPLC级1,4-二氧六环 CNW 500ml 860.00 4.010410.1000# HPLC级1,4-二氧六环 CNW 1L 1360.00 4.014077.4000 HPLC级N,N-二甲基甲酰胺 CNW 4L 520.00 4.014080.0500# HPLC级N,N-二甲基乙酰胺 CNW 500ml 360.00 4.014080.1000# HPLC级N,N-二甲基乙酰胺 CNW 1L 480.00 4.014080.2500 HPLC级N,N-二甲基乙酰胺 CNW 2.5L 800.00 4.011556.4000# HPLC级环己烷 CNW 4L 520.00 4.011406.0500# HPLC级N-甲基吡咯烷酮 CNW 500ml 320.00 4.011406.4000 HPLC级N-甲基吡咯烷酮 CNW4L 980.00 4.012001.4000# HPLC级二氯甲烷 CNW 4L 600.00 4.011408.0500 HPLC级1-氯丁烷 CNW 500ml 450.00 4.011408.1000# HPLC级1-氯丁烷 CNW 1L 750.00 4.011412.0500# HPLC级氯苯 CNW 500ml 560.00 4.011412.1000 HPLC级氯苯 CNW 1L 960.00 4.011404.1000 HPLC级1,2-二氯苯 CNW 1L 750.00 4.011414.0500# HPLC级1,2,4-三氯苯 CNW 500ml 520.004.011414.1000 HPLC级1,2,4-三氯苯 CNW 1L 860.00 4.018397.4000# HPLC级叔丁基甲醚 CNW 4L 540.00 4.011321.4000# HPLC级四氢呋喃 CNW 4L 720.00 4.014048.4000# HPLC级乙酸乙酯 CNW 4L 450.00 4.016362.4000# HPLC级乙醇 CNW 4L 520.00 4.013493.4000# HPLC级异丙醇 CNW4L 420.00 4.010893.1000# HPLC级异丁醇 CNW 1L 560.00 4.010893.4000 HPLC级异丁醇CNW 4L 1800.00 4.010566.4000# HPLC级异辛烷 CNW 4L 860.00 4.019067.1000 HPLC级正丙醇 CNW 1L 300.00 4.019067.2500 HPLC级正丙醇 CNW 2.5L 640.004.014508.1000# HPLC级正丁醇 CNW 1L 360.00 4.014508.4000# HPLC级正丁醇 CNW 4L 860.00 4.019030.4000# HPLC级正庚烷 CNW 4L 800.00 4.011518.4000# HPLC级正己烷 CNW 4L 450.00 4.019028.4000# HPLC级正戊烷 CNW 4L 800.00 4.011402.1000 HPLC级叔丁醇 CNW 1L 640.00 4.011401.0500 HPLC级正辛醇 CNW 500ml 480.00 4.011405.0250 HPLC级1,2-二氯乙烷 CNW 250ml400.00 4.011405.1000 HPLC级1,2-二氯乙烷 CNW 1L 600.00 4.011403.1000 HPLC级4-甲基-2-戊酮 CNW 1L 560.00 4.000306.4000 LS-MS甲醇 CNW 4L 600.00 4.000308.4000 LS-MS乙腈CNW 4L 840.00 4.000302.4000 LS-MS水 CNW 4L 600.00 了解更多产品请进入安谱公司网站 http://www.anpel.com.cn/
  • HJ1076-2019环境空气中氨、甲胺、二甲胺、三甲胺的测定
    随着工业文明和城市发展,工业在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。我们的生存环境污染日趋严重,尤其是空气污染几乎危及到每个人。世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难。空气污染物中的许多物质对人有严重的损害,例如其中的氨、甲胺、二甲胺、三甲胺可对人体造成严重损伤。氨能引起喷嚏、流涎、咳嗽、恶心、头痛、出汗、脸面充血、胸部痛、呼吸急促、尿频、眩晕、窒息感、不安感、胃痛、闭尿等症状。刺激眼睛引起流泪、眼疼、视觉障碍。皮肤接触后引起皮肤刺激、皮肤发红、可致灼伤和糜烂。慢性中毒时出现头痛、恶梦、食欲不振、易激动、慢性结膜炎、慢性支气管炎、血痰、耳聋等。甲胺具有强烈刺激性和腐蚀性。吸入后,可引起咽喉炎、支气管炎、重者可因肺水肿、呼吸窘迫综合征而死亡;极高浓度吸入引起声门痉挛、喉水肿而很快窒息死亡,或致呼吸道灼伤。二甲胺对眼和呼吸道有强烈的刺激作用。液态二甲胺接触皮肤可引起坏死,眼睛接触可引起角膜损伤、混浊。三甲胺主要是刺激人的眼、鼻、咽喉和呼吸道。长期接触会感到眼、鼻、咽喉干燥不适。盛瀚解决方案为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护生态环境,保障人体健康,测定环境空气和固定污染源无组织排放监控点空气中氨、甲胺、二甲胺SH和三甲胺,盛瀚色谱推出了相关解决方案。采用盛瀚CIC-D120型离子色谱仪,使用盛瀚SH-CC-3(4.6×250)阳离子色谱柱和甲烷磺酸淋洗液对氨、甲胺、二甲胺、三甲胺检测,能够满足《HJ1076-2019环境空气氨、甲胺、二甲胺和三甲胺的测定离子色谱法》的检测要求。SH-CC-3 型色谱柱是青岛盛瀚色谱技术有限公司生产的一种弱酸型阳离子色谱柱。基质为交联度 55%的苯乙烯-二乙烯苯聚合物,表面接枝羧基。SH-CC-3 型色谱柱可用非抑制或抑制电导法完成常规阳离子分析,可同时分析 6 种常见阳离子:Li+、Na+、NH4+、K+、Mg2+、 Ca2+,在特定条件下,可直接电导分析部分过渡金属阳离子。盛瀚一直致力于研究开发高精度、高灵敏度和高智能的离子色谱仪,目前CIC系列产品已广泛应用于环保、疾控、自来水、质检、水文、地质、高校、科研院所、企业等众多领域,并出口到韩国、印度等34个国家和地区。“保障人类生存环境,促进生态良性发展”是盛瀚所属集团新光智源集团的企业宗旨,集团一直在为“成为环境生态文明安全管理的推动者”的伟大愿景不懈奋斗,期望我们共同缔造蓝天白云、绿水青山,让环境更美好!
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax® 柱,符合USP通则中色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX® 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气@ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX® 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX® 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv® GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 光催化N-杂螺环的多组分直接组装
    你能想象有*化学也能玩成“乐高积木”吗?2022年10月5日,2022年诺贝尔化学奖授予了三位科学家:Carolyn R. Bertozzi、K. Barry Sharpless和Morten Meldal,奖励他们在发展“点击化学”和“生物正交化学”中的贡献。 问:什么是点击化学?“点击化学(Click chemistry)”是指一类能够高效生成“碳原子-杂原子链”的化学反应。点击化学有以下优势:1.区域特异性和立体特异性;2.对溶剂参数不敏感;3.反应得率高、副反应少,且原料充分反应4.实验条件简单;5.大的热力学驱动力。与点击化学的优势类似,流动化学也具有高效混合、简便*的温度控制、收率高、减少副产物等优势。 图1:发表在JOC杂志上的文章“可见光驱动光催化促进的N-异质螺环的多组分直接组装”今天为大家介绍在2022年9月,Steven V.Ley教授在JOC上一篇题为《可见光驱动光催化促进n杂螺环的多组分直接组装》的文章,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。1、螺环化合物20世纪六十年代起,生物学家和药物学家逐渐发现,从自然界分离得到的具有生物活性的化合物中拥有螺环结构的化合物占有很大的比例。随着研究的深入,螺环化合物的性质使他在药物研发中占据非常重要的地位。螺环化合物是指两个单环共用一个碳原子的多环化合物;共用的碳原子称为螺原子。杂环螺环结构在一定程度上改变药物分子的水溶性、亲脂性、优势构象等,使优化后的药物分子更容易成药。不同的螺环具有丰富的三维立体结构,从而提供了改善药效的可能性和药物*的创新性;既可以突破现有药物的*,又能设计全新结构或者骨架的小分子化合物。 图2:螺旋内酯固醇 图3:灰黄霉素已上市药物中,也有很多含有螺环结构的小分子药物,比如利尿剂螺旋内酯固醇(Spironolactone)(如图2所示)和抗真菌药物灰黄霉素(Griseofulvin)(如图3所示)。N-异螺旋环是在天然产物和药物中发现的有趣的结构单元,但其合成的可靠方法相对较少。传统合成方式 图4:获取螺旋环吡咯烷的策略 图5:从N-烯丙磺酰胺和烯烃中构建β-螺旋吡咯啶现有的方法通常需要几个步骤,并使用昂贵的催化剂,如钌或铑,以获得所需的产品。在过去,靠传统的办法合成目标分子,往往需要绕很多弯路。步骤越多,意味着产率越低,浪费越大。2、更高效的合成方式使用Vapourtec UV-150光反应器放大合成N-异象螺旋循环 图6:使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物Steven V. Ley教授是世界*的有机化学家,剑桥化学系研究主任,皇家化学会RSC的前任会长,教授在有机合成方法学和全合成领域中的成就斐然。Ley教授在“可见光驱动光催化促进n杂螺环的多组分直接组装”一文中,演示了在温和条件下使用Vapourtec UV-150光化学反应器合成复杂的螺环化合物。在近年来发展的叠杂杂螺环的大多数制备方法中都需要多步步骤。然而,光催化的最新应用可以使合成步骤大大减少。作者利用光催化生成N-中心自由基,可构建多种β-螺环吡咯烷,包括药物衍生物。利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。光催化能够在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构。在开发的螺环吡咯烷的制备方法中,大多数都能够制备α-螺环吡咯烷,克服了制备α-三级胺的一些困难。简化合成路线的解决方案之一是采用无试剂化学方法。从光化学上讲,以氮为中心的自由基的产生相对简单,并被证明可以激活N-H和N-X键。通过在合成螺旋环化合物时使用这种方法,可以避免四元碳中心引起的立体问题,从而改善整体过程。使用VapourtecE系列进行流动反应和放大实验,该系列由三个蠕动泵和一个光反应器组成,BPR输出为8bar。使用的光源是Vapourtec 61W(辐射功率)365 nm(峰值强度)LED灯光,辐射带范围为350&minus 400nm。利用在线监测,大大的缩短了研究时间,提高研究效率。作者使用配有365nm高功率LED灯的E-photochem演示了一系列螺环吡啶的合成。在合成双叠氮杂螺环的过程中,该方法使用光化学反应器UV-150进行了放大,产量达到了100克/天。3、实验总结1、相比传统的的反应,该反应具有操作简便、条件温和、反应时间短等优势;2、利用在线监测,大大的缩短了研究时间,提高研究效率;3、在温和的条件下通过高度反应的中间体以模块化的方式构建复杂的分子结构;4、利用流动化学技术,还证明了产品的进一步衍生化具有可行的放大程序。4、关于Vapourtec Vapourtec是一家专业设计和制造流动化学设备的公司。Vapourtec公司的连续流动化学系统质量可靠、性能成熟、高效能模块系统可随您的流动化学生产能力的扩大而拓展。反应器可进行组合,实现多步合成。无需使用任何工具数秒内即可完成反应器更换。UV-150反应器UV-150反应器消除了传统批次光化学的问题,可以充分发挥光化学的潜力。在连续流动操作下,它提供了安全、精确、高效、一致和可扩展的光化学。 图7:vapourtec UV-150光化学反应器● UV-150光化学反应器与Vapourtec R系列和E系列流化学系统兼容,操作简便;● Vapourtec提供3种不同的光源,提供220纳米至650纳米之间的精确波长;● 可以在-20°C到80°C之间设置反应温度。参考文献[1] Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven PhotocatalysisOliver M. Griffiths and Steven V. LeyThe Journal of Organic Chemistry 2022 87 (19), 13204-13223 DOI:10.1021/acs.joc.2c01684[2] Total Synthesis of Phytotoxic Radulanin A Facilitated by the Photochemical Ring Expansion of a 2,2-Dimethylchromene in FlowBruce Lockett-Walters, Simon Thuillier, Emmanuel Baudouin, and Bastien NayOrganic Letters 2022 24 (22), 4029-4033 DOI: 10.1021/acs.orglett.2c01462
  • 环境监测业内专家带你认识VOCs
    p   挥发性有机化合物( VOCs)是大气中一类重要的气态污染物,广泛存在于空气、水和食物中。VOCs 不仅对人体健康和生态环境等有直接影响,还可通过参与大气光化学反应生成二次污染物如臭氧、过氧乙酰硝酸酯和有机气溶胶等,是导致空气污染的重要前体物之一。 /p p   1、VOCs种类 /p p   空气中的VOCs种类繁多且成分复杂,主要包括:苯系物、有机氯化物、氟里昂系列、有机酮、胺、醇、醚、酯、酸、石油烃化合物等,目前已鉴别出300多种挥发性有机物。在美国环保署(EPA)所列的优先控制污染物名单中就有50多种是挥发性有机物。 /p p   2、VOCs的来源 /p p   VOCs的来源主要有人为源和天然源,就全球尺度而言,天然源对VOCs的贡献超过了人为源。天然源包括植物释放、火山喷发、森林草原火灾等,其中最重要的排放源是森林和灌木林,最重要的排放物是异戊二烯和单萜烯。 /p p   人为源可分为固定源、流动源和无组织排放源三类,其中固定源包括化石燃料燃烧.、溶剂(涂料、油漆)的使用、废弃物燃烧、石油存储和转运以及石油化工、钢铁工业、金属冶炼的排放 流动源包括机动车、飞机和轮船等交通工具的排放,以及非道路排放源的排放 无组织源包括生物质燃烧以及汽油、油漆等溶剂挥发。交通运输是全球最大的VOCs人为排放源,溶剂使用是第二大排放源。目前国内外对VOCs的天然源和人为源研究比较广泛。 /p p   3、VOCs的特点及危害 /p p   VOCs大多不溶于水,可混溶于苯、醇、醚等多数有机溶剂,大多对皮肤、粘膜有刺激性,对中枢神经系统有麻醉作用。其所表现出的毒性、刺激性、致癌作用和具有的特殊气味能导致人体呈现种种不适反应。 /p p   VOCs具有相对强的活性,是一种性格比较活泼的气体,导致它们在大气中既可以以一次挥发物的气态存在,又可以在紫外线照射下,在PM10颗粒物中发生无穷无尽的变化,再次生成为固态、液态或二者并存的二次颗粒物存在,且参与反应的这些化合物寿命相对较长,可以随着风吹雨淋等天气变化,或者飘移扩散,或者进入水和土壤,污染环境。尽管目前科学界对VOCs在大气污染中的具体作为和反应机理还没有完全弄清楚,但它的危险性却已是昭然大白。空气中VOCs对环境的影响主要表现在以下几个方面: /p p   (1)大多数VOCs有毒、有恶臭,一部分VOCs有致癌性 /p p   (2)在阳光照射下,大气中的氮氧化物、碳氢化合物与氧化剂发生光化学反应,生成光化学烟雾,危害人体健康及作物生长 /p p   (3)卤烃类VOCs可破坏臭氧层。 /p p   世界卫生组织和美国环保局认为空气中0.3 μg· L-1的苯就可使每百万的接触者中4~8人面临患白血病的危险,而且这种危险与VOCs的浓度成正比,它们通过饮食和吸入可能对人类健康产生不利的影响。 /p p   4、我国环境空气中VOCs监测现状 /p p   我国环境空气中VOCs在线监测依托国家超级站开展,从观测方式上看,超级站长期一般性运行、长期业务化运行和研究性强化观测各占三分之一。长期业务化运行的超级站有23个,其中有20个属于环保局或环保厅 研究性强化观测的超级站有20个,其中有10个属于科研院所和大学,有10个属于环保局或环保厅。在超级站的监测项目上,有82%的超级站观测大气氧化性(包括VOC),主要观测的项目有挥发性有机物(VOCs)、非甲烷总烃和过氧乙酰硝酸酯(PAN)。完全具备这三项指标的超级站有:暨南大学、上海市环境监测中心、大连市环境监测中心、江苏省环境监测中心、长春市环境监测中心站、天津市环境监测中心、内蒙古环境监测中心站共7个。 /p p   2017年,按环保部统一部署,中国环境监测总站负责开展国家大气光化学网的建设运行工作。根据国家大气光化学网的设置和监测要求,围绕开展京津冀及周边、长三角及周边、珠三角和成渝地区光化学监测,开展手工及自动监测。监测项目:手工网为乙炔、苯、正丁烷、1-丁烯、顺式-2-丁烯、反式-2-丁烯、环己烷、环戊烷、正癸烷、间-二乙基苯、对-二乙基苯等57种VOCs,自动监测包括VOCs(57种)、臭氧、NOy、UV辐射、过氧酰基硝酸酯类(PANs)、光解速率、非甲烷总烃(NMHCs)、气象参数等。相关成果将为大气光化学污染成因分析和治理措施效果评估等提供技术支撑。 /p
  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。   首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。   一.早期使用的气相色谱固定液   气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。   马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。   后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。   1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。   为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。   在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。 表1 McReynolds 固定液表   说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶   McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。   McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。   后来Hawkes推荐的较常用的气液色谱固定液有下列一些:   (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)   (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 (含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。   他还推荐了最常用的 6 种气相色谱固定液如下表2。 表2 最常用的6种气相色谱固定液   自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。   有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。   二、硅氧烷是现时气相色谱固定液的主体   尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。   (一)热稳定性好的固定液   目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。   (1)耐高温聚二甲基硅氧烷   有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。   前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。   (2)使用交联的聚硅氧烷固定液提高其热稳定性   在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。   (a)引入乙烯基   早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。   (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合   1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。   (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性   在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1: 图1 硅氧烷/硅亚芳基共聚物结构   其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。 表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据   (4) 在聚硅氧烷链中引入硼烷提高热稳定性   在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。   Dexsil有三个品种及其结构和极性如下表4: 表4 三个品种Dexsil的结构及极性   HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2: 图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图   色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m   载气:氦,18 mL/min, 在 35下测定   拄温:30-430 ℃,程序升温,10℃/min   检测器温度:FID 450 ℃   三、极性固定液   小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。 图3 使用DB-17ms分析22种杀虫剂的色谱图   另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱) 图4 DB-1701 分离22种杀虫剂的色谱图   各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。 表5 五类典型气相色谱固定液的使用情况   四、选择性固定液   选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。   第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。 表6 ASTEK公司的9种环糊精衍生物毛细管商品柱   五、近年商品柱所使用的新固定液   近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。   室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。 表7 几种商品离子液体固定相的极性(Supelco公司)   *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性   小结:   气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)   (作者:北京理工大学傅若农教授)
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 毒品分析自动化|快速测定尿样中的氯胺酮和脱氢去甲氯胺酮
    导 语 氯胺酮(俗称“K粉”)属于最常见的毒品种类之一。它是苯环己哌啶的衍生物,属于分离性麻醉剂,吸食氯胺酮可能引发对吸食者肺部,心脏和大脑的永久损害,甚至导致死亡。氯胺酮的代谢产物包括去甲氯胺酮和脱氢去甲氯胺酮,大部分由肾脏排出,尿样等生物样本中的氯胺酮及其代谢物的检测可作为判定是否吸食氯胺酮的重要依据。下面小编带您了解面对大量样本,如何通过自动化前处理快速测定尿液中的毒品。 岛津公司开发的全自动在线前处理系统CLAM-2030与LC-MS/MS联用,可实现对全血、血浆、血清、尿液、唾液等生物样品自动进行蛋白质沉淀操作,然后将上清液自动传输至LC-MS/MS进行定量检测。 在系统中简单放置未加盖的血液采集试管(或样品杯)和预处理小瓶,之后只需发出分析请求,系统便可自动执行从预处理到LCMS分析的所有其他流程步骤。通过LCD触摸屏和无需使用说明的用户操作界面,该系统能够提供可靠、便捷的操作方式,并将由人工操作所导致的操作人员误差降低至最少。 CLAM-2030与LC-MS/MS联用检测尿样中的氯胺酮和脱氢去甲氯胺酮 前处理过程 岛津全自动在线前处理系统CLAM-2030自动前处理过程包括吸取样品、吸取沉淀剂、振摇和过滤,时间约为5 min. 在LC-MS/MS进行分析的同时,自动前处理程序也在同时进行,并且CLAM-2030会根据前处理流程同时处理2-3个样品,即对样品的处理进行到振摇这一步骤时,系统会自动开始序列中下一个样品的处理,如此可以进一步的提高样品分析的通量。 图2. CLAM-2030处理流程 样本分析结果 空白尿样加标0.5 ng/mL氯胺酮和脱氢去甲氯胺酮色谱图如图3所示。在0.2-100 ng/mL的加标浓度范围内,加标曲线线性相关系数均不低于0.9995,不同浓度加标样品重复进样6次,保留时间RSD均小于0.1%,峰面积RSD均小于4.5%,质控样本实测浓度在允许波动范围内。实验结果表明:该方法适合尿样中氯胺酮及其代谢物脱氢去甲氯胺酮的快速定量检测。 图3. 空白尿样加标0.5 ng/mL氯胺酮(左)和脱氢去甲氯胺酮(右)色谱图 使用岛津全自动在线前处理系统CLAM-2030与LC-MS/MS联用,对尿样进行自动前处理,并将得到的样品溶液自动进样后以质谱进行分析,大大降低了人工操作带来的误差以及潜在的生物危害风险。 该方法重复性和准确性均较好,适合尿样中氯胺酮及其代谢物脱氢去甲氯胺酮等毒品的快速定量检测,大大提高实验室运行效率。
  • 生态环境部发布《水质 17种杂环类农药的测定 高效液相色谱法(征求意见稿)》等7项国家生态环境标准
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 17种杂环类农药的测定 高效液相色谱法》等7项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2023年11月30日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.水质 17种杂环类农药的测定 高效液相色谱法(征求意见稿)     3.《水质 17种杂环类农药的测定 高效液相色谱法(征求意见稿)》编制说明     4.水质 二噁英类的测定 同位素稀释/高分辨气相色谱-高分辨质谱法(征求意见稿)     5.《水质 二噁英类的测定 同位素稀释/高分辨气相色谱-高分辨质谱法(征求意见稿)》编制说明     6.土壤和沉积物 二噁英类的测定 同位素稀释/高分辨气相色谱-高分辨质谱法(征求意见稿)     7.《土壤和沉积物 二噁英类的测定 同位素稀释/高分辨气相色谱-高分辨质谱法(征求意见稿)》编制说明     8.水质 全盐量的测定 重量法(征求意见稿)     9.《水质 全盐量的测定 重量法(征求意见稿)》编制说明     10.水质 18种磺胺类抗生素和甲氧苄氨嘧啶的测定 高效液相色谱-三重四极杆质谱法(征求意见稿)     11.《水质 18种磺胺类抗生素和甲氧苄氨嘧啶的测定 高效液相色谱-三重四极杆质谱法(征求意见稿)》编制说明     12.水质 17种氟喹诺酮类抗生素的测定 高效液相色谱-三重四极杆质谱法(征求意见稿)     13.《水质 17种氟喹诺酮类抗生素的测定 高效液相色谱-三重四极杆质谱法(征求意见稿)》编制说明     14.固体废物 甲基汞和乙基汞的测定 液相色谱-原子荧光法(征求意见稿)     15.《固体废物 甲基汞和乙基汞的测定 液相色谱-原子荧光法(征求意见稿)》编制说明  生态环境部办公厅  2023年10月26日  (此件社会公开)
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率
    Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率分子掺杂工艺: 研究人员引入了一种使用二甲基胺基掺杂剂的分子掺杂工艺,该工艺能够创建一个与p-钙钛矿/ITO接触良好且能够完全钝化晶界的结构。这种创新工艺提高了钙钛矿太阳能电池的功率转换效率(PCE),实现了经认证的25.39%的PCE,这是对钙钛矿太阳能电池现有标准的改进。分子挤压技术: 该工艺采用了一种独特的“分子挤压”方法,在甲苯淬灭结晶过程中将分子从前驱体溶液排出到晶界和薄膜底部。这种独特的技术导致了钙钛矿薄膜的p-掺杂,有助于提高器件的效率。长寿命和高效率: 器件在逆向扫描时实现了25.86%的效率,并表现出卓越的稳定性,即使经过1000小时的光老化,仍能保持96.6%的初始效率。这表明钙钛矿太阳能电池在性能和可靠性方面取得了显著的进步。在不断发展的光伏领域中,更有效、可持续地利用太阳能的追求是一项不懈的努力。科学家已经探索了许多途径来提高太阳能电池的效率,其中钙钛矿太阳能电池因其性能潜力和经济制造能力的结合而一直脱颖而出。今天,我们将聚焦于一支南方科技大学何祝兵团队率领杰出的研究团队所取得的重大突破,他们实现了钙钛矿太阳能电池效率的深度提高,这标志着我们共同追求更可持续和能效的未来的重要一步。这项开创性的研究提出了一种与传统方法有着根本不同的新型分子掺杂工艺,使用了一种二甲基氨基基团的掺杂剂。这种掺杂剂巧妙地用于形成和谐的p-钙钛矿/ITO接触,并精确地去除晶界缺陷,推动了钙钛矿太阳能电池功率转换效率(PCE)的大幅提升。研究团队创造出了一个惊人的世界纪录,即25.39%的认证PCE,为该行业设定了新的标准和潜力。为了达到这个非凡的成就,研究人员提出了一种被称为“分子挤压”的巧妙技术。这种创新策略迫使前体溶液中的分子在甲苯淬火晶化过程中重新分布到晶界和薄膜底部。因此,这导致了钙钛矿薄膜的p型掺杂,这是实现设备效率显著提高的关键。这种独特的工艺因此标志着一种基础性的突破,从根本上改变了可再生能源范式。然而,这项研究的胜利不仅仅局限于效率领域。该团队的冠军设备不仅在反向扫描中展示了25.86%的PCE,超越了以往的阈值,而且表现出了卓越的稳定性,在经过1000小时的光老化后仍保持了96.6%的初始效率。这项成就解决了钙钛矿太阳能电池技术中的一个主要挑战——效率和稳定性之间的平衡,并为未来旨在优化这两个重要方面的研究提供了有价值的基础。在这项开创性研究的核心是Enlitech的QE-R精密测量设备的精确利用。这种先进的设备为团队提供了准确的读数,使他们能够仔细评估他们的新方法的结果。选择Enlitech的QE-R设备,这种以精度和可靠性闻名的设备,强调了顶级资源在实现突破性成果中的重要性。此外,研究人员深入探究了p-钙钛矿/ITO界面的复杂能带对齐。通过应用紫外光电子能谱(UPS),他们阐明了促进空穴提取的带弯曲现象,这是实现高性能太阳能电池的关键过程。实验揭示了二甲基氨基基团掺杂剂以及与铅离子形成的分子复合物修改ITO基板的功函数,从而获得了有利于高效空穴提取的能带对齐。除了提高效率和稳定性外,研究团队还解决了钙钛矿太阳能电池中常见的滞后效应挑战。通过采用分子挤压技术和精确的掺杂工程,他们显著降低了滞后效应,从而使设备性能更加可靠和可重复。这一突破为实际应用和商业化钙钛矿太阳能电池提供了巨大的潜力,因为它解决了阻碍其广泛应用的主要障碍之一。此外,研究团队对电荷载流子动力学的详尽研究揭示了他们的钙钛矿太阳能电池性能异常出色的机制。通过各种分析技术,包括电荷密度差和Bader电荷分析,他们揭示了钙钛矿薄膜内电荷的重新分布,这归功于有效的分子掺杂策略。这种重新分布导致了提高空穴提取效率和提高整体设备性能的效果。总之,这项开创性的研究代表了钙钛矿太阳能电池领域的重大进展,实现了25.39%的创纪录效率和卓越的稳定性。分子掺杂工艺结合创新的分子挤压技术为实现对设备性能和稳定性的前所未有的控制铺平了道路。Enlitech的QE-R精密测量设备的利用对于准确评估制造的设备的光电性质起到了至关重要的作用。这一非凡成就将我们更接近实现钙钛矿太阳能电池的全部潜力,推动我们迈向由清洁、可再生能源驱动的未来。分离ITO表面的Pb 4f(a),I 3d (b)和P 2p (c)的XPS光谱来自ITO/DMAcPA/钙钛矿(蓝色)和ITO/钙钛矿(DMAcPA)(红色)样品两种钙钛矿薄膜埋底面XPS图 S26.Pb 4f(a)、I 3d (b)和调查(c)的XPS光谱,在底部检测到原始(红色)和DMAcPA掺杂(蓝色)钙钛矿薄膜的表面,与正文中报导了制造过程。 Pb结合能的红移在钙钛矿的埋藏底面检测到(图。S26a)也可以表示O–Pb与键削弱了主流Pb-I共价键的结合能和这里解释了Pb的红移。 S26b),它可以是归因于P-O-H–I的氢键,这已经得到了很好的讨论和通过上述H NMR信号的下场化学位移进行检查(图3A)。
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 大连化物所在碳氢键活化合成复杂多环体系研究中取得新进展
    p   从简单易得的分子尤其是几乎无处不在的烃类化合物出发,简便高效地合成复杂的多环化物是有机合成工作中的一大挑战。近十年来,由于茂基三价钴、铑催化剂对碳氢键活化有着独特的活性、选择性以及官能团兼容性而被广泛研究。近期,中科院大连化物所金属络合物与分子活化研究组(209组)在这一领域取得了一系列进展,相关工作在《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 15351)和(Angew. Chem. Int. Ed. DOI:10.1002/anie.201704036)上先后发表。 /p p   硝酮化合物通常作为经典的1,3-偶极子参与各类环加成反应。该团队在2013年首次实现了硝酮定位碳氢键的活化。但是将其作为芳烃底物实现碳氢键活化和偶极加成相结合之前尚无报道。最近,该团队利用硝酮作为偶极子定位基,首先经碳氢键活化和环丙烯酮实现酰基化,在原位条件下,活化的C=C双键和硝酮发生分子内的1,3-偶极加成,得到桥环化合物。反应对于邻位含有较大位阻的N-叔丁基以及N-芳基硝酮均可适用,对于N-叔丁基硝酮,碳氢活化发生在唯一的苯环邻位 而对于N-芳基硝酮,反应则发生在N-芳环上,因此得到的产物的结构有所不同。值得一提的是,对于N-叔丁基硝酮,反应呈现出硝酮底物位阻控制的选择性。当N-叔丁基硝酮的邻位取代基位阻较小时,反应虽然也经历C-H活化和对三元环的插入开环,但是产生的烯基铑碳键并没有被质子解,而是发生了对亲电的亚胺片段的插入,之后经历了β-碳原子消除和质子解,得到最终的1-萘酚产物。反应中硝酮起到了亲电性无痕导向基的作用。此部分工作发表在Angew. Chem. Int. Ed. 2016, 55, 15351上。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/471915f3-bd4d-4007-9bab-375252f8942e.jpg" title=" W020170525567525355764.jpg" / /p p   含炔烃片段的环己二烯酮由于同时具有活泼的末端炔烃和α,β-不饱和酮结构,所以有多种的反应可能性,一直以来是研究的热点之一,但是大部分研究都是围绕着底物的亲核性展开。将其与天然产物中广泛存在的吲哚结合,发生分子内的狄尔斯-阿尔德(Diels-Alder)反应尚属首次报道。该反应首先经过碳氢键活化形成金属碳键, 之后发生炔烃的插入原位形成二烯中间体,随后与亲二烯体(环己二烯酮)发生分子内的Diel-Alder反应,反应过程中金属始终参与。反应能得到结构截然不同的桥环和并环化合物。当利用铑作为催化剂时,铑碳键对炔烃发生常见的2,1-插入随后和第一类D-A环化串联得到并环,用半径更小的三价钴催化剂时发生罕见的1,2-插入并和第二类D-A环化串联得到结构罕见的桥环。这一工作近期发表在《德国应用化学》(Angew. Chem. Int. Ed. DOI:10.1002/anie.201704036)上。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/6e10e342-1381-4c91-9df1-b6b7ebb774f1.jpg" title=" W020170525567525358639.jpg" / /p p   该系列工作得到了国家杰出青年基金和中科院先导专项的支持。 /p
  • 辽阳惊现“三聚氰胺雪糕” 多企业被曝光
    2月8日,在辽宁省卫生厅的网站上,突然出现一条消息,辽阳市辽宁雅朝食品有限公司的一批次生产雪糕的原料奶粉中被省质监部门查出三聚氰胺含量严重超标。加上之前爆出的辽宁省铁岭五洲食品有限公司的“五洲”冰棒,漳州市南方食品有限公司的企业负责人称大部分“小白鼠”“毒奶糖”销往了东北三省。在前年第一波“三聚氰胺”猛攻中情况较好的辽宁省,似乎卷入了“三聚氰胺”第二波袭击中。   1、雅朝公司拒绝采访   卫生厅的通报称:2009年12月30日,我省质监部门在监督抽查中,发现辽阳市辽宁雅朝食品有限公司用于生产雪糕的批号为6月27日生产的原料奶粉中三聚氰胺含量严重超标。该批奶粉共7吨,已使用1.25吨,剩余5.75吨。国家加工食品及添加剂质量监督检验中心对库存雪糕进行了抽检,有些批次未检出三聚氰胺,有2个品种4个批次检出三聚氰胺,其中3个批次“开心果草莓口味脆筒冰淇淋”检出的三聚氰胺指标分别为4.38mg/kg、27.45mg/kg、4.62mg/kg,一个批次的“开心果蛋奶口味脆筒冰淇淋”检出的三聚氰胺指标为22.42 mg/kg,均超过国家规定的标准限值。案件发生后,省、市质监部门迅速对该公司做出处理:对剩余的5.75吨问题奶粉实施扣押封存,责令该企业立即将问题雪糕全部召回,责令该企业停止生产。据推算,该公司以1.25吨问题原料奶粉生产的雪糕约为14131箱(每箱20支),已召回6281箱,现库存6353箱。经查,未发现该企业存在人为添加三聚氰胺的行为,制作雪糕的问题奶粉系从省外购入。   随后,记者连续拨打了“雅朝”公司总机三次。第一次长时间无人接听。第二次一男子飞快的说完一句含混的话,然后立刻挂断了电话。第三次该男子承认是“雅朝”公司后,称“公司拒绝回答此事的采访,以后不要再打来”,挂断电话……   2、“二次三聚” 多路奔袭   最早将人们重新拉回到三聚氰胺痛苦回忆中的,是陕西金桥乳业的事件。   去年12月10日,陕西省公安厅宣布破获金桥乳业生产销售三聚氰胺超标奶粉案件,查出5.25吨问题奶粉,其中11袋275公斤奶粉三聚氰胺超标。   12月31日,上海市食品安全联席会议办公室的消息让“三聚氰胺”再次拨动了公众的神经:上海熊猫乳品因涉嫌生产、销售三聚氰胺超过国家标准的乳制品,被监管部门依法查处。   近日,据媒体报道,上海熊猫乳品公司董事长王岳超等三人已被批捕,下周将提起公诉。而更早前,位于陕西的金桥乳业有限公司三名高管被批准逮捕。   随后,贵州省卫生厅发布三聚氰胺超标食品“黑名单”,确定四个批次的食品存在三聚氰胺超标问题。这四个批次的问题食品包括:上海熊猫乳品有限公司生产的中老年高钙奶粉、炼奶酱 山东淄博绿赛尔乳品有限公司产品 辽宁省铁岭五洲食品有限公司的“五洲”冰棒 河北唐山市乐亭县凯达冷冻厂的“香蕉果园”冰棒。   三聚氰胺的队伍逐渐增加……   据卫生部最新公布的“黑名单”,又有两家企业“上榜”,分别是陕西渭南市乐康乳业有限公司和宁夏吴忠市天天乳业有限公司生产的三种奶粉产品。这三种奶粉,均为去年9月至11月期间生产。   3、连锁反应考验沈阳   “三聚氰胺”卷土重来的消息爆发后,立即引起中央有关部门高度重视,在查实全国多家食品企业使用2008年未被销毁的问题奶粉作原料,造成多起三聚氰胺超标案件之后,一场为期10天的全国乳制品检查整顿拉开序幕。   据悉,经查实的本轮事态的重灾区之一的陕西的问题奶粉主要流入了福建和广东。本轮事态另一重灾区的宁夏已紧急查处两家问题企业,问题乳粉主要销往了内蒙古、福建、广东等地。全国食品安全整顿工作办公室高调派出8个督查组。   “据我预测,在‘三鹿奶粉’事件之后,市场上仍有约10万吨的毒奶粉没有被销毁。”乳业专家王丁棉在接受媒体采访时估计。在“三聚氰胺”第二波攻势大面积覆盖全国的情况下,这个春节前的食品安全已经成为全国人议论的话题。坚守沈阳食品安全,已成为沈阳相关部门的当务之急。   “2008年整治乳品市场的时候,沈阳工作得到国家认可。”沈阳市工商局相关负责人表示。“在前年,沈阳受‘三聚氰胺’奶粉的影响并不大,一例因为问题奶粉的重症患者都没有。国家的赔付在沈阳只限于较轻的二级。”   然而,此番形势不容乐观,由于2008年未销毁的问题奶粉做奶源的变种产品做清查并不是件容易的事。记者了解到,工商等有关部门这次针对“二次三聚”的清查行动还主要是逐一排查奶粉批发企业、经销奶粉的超市、食杂店,尤其要清查2008年问题奶粉的返厂和销毁情况,做到底数清、情况明。在清查过程中,要逐户检查辖区内食品经销单位的奶粉经销情况,分兵把守,全方位做好检查记录。   4、三聚氰胺“变种”再攻?   “像辽阳市辽宁雅朝食品有限公司生产的‘开心果’冰激凌、辽宁省铁岭五洲食品有限公司的‘五洲’冰棒、漳州市南方食品有限公司生产的‘小白鼠’奶糖。我们只能等待上面的下架通报,哪一批次的产品,哪一品牌的产品都清楚才好做处理。在消息确定并下架之前进入流通环节的问题产品,就很可能会被消费者误食。”工商有关负责人说。   早在2008年,就有人猜想,毒奶粉会不会变成冷饮、糖果、面包、蛋糕等上下游产业链的产品“借尸还魂”?现在部分印证当时的一些猜想,除了没有蛋糕厂被有关部门查出之外,“毒糖”与“毒雪糕”都已变成为现实。更令人担忧的是,更下游的产业往往具有更大的自由竞争性质,品牌多,产品种类多。“防不胜防”,“二次三聚”对这些产业都可能造成致命打击……   记者了解到,饲料业曾是三聚氰胺的主要倾销市场。王丁棉向媒体透露,去年6月份,曾有一饲料商从奶粉经销商手中购买了六七吨三聚氰胺严重超标的奶粉。   而据专家分析,高含量三聚氰胺奶粉流向饲料产品的危害不容小视。家禽家畜吃了含三聚氰胺的饲料经过粪便等形式排出,还可能污染土壤和水源。
  • β-内酰胺类抗生素高分子杂质的检测
    &beta -内酰胺类抗生素中的高分子杂质是引发速发型过敏反应的过敏原,是药物质量控制过程中的重点检测项目。目前药典中关于&beta -内酰胺类抗生素中高分子杂质的测定多采用葡聚糖凝胶Sephadex G-10自填装玻璃管柱,存在柱效低、分离时间长、分离度差、批间重现性差、操作不便等缺点,为了解决这些问题,采用小粒径、高分辨率的体积排阻色谱成品柱已成为&beta -内酰胺类抗生素中高分子杂质检测的必然趋势。 赛分科技体积排阻色谱柱 SRT® (5 &mu m)、 Zenix&trade (3 &mu m)&mdash &mdash 水溶性体积排阻色谱柱 SRT和Zenix色谱柱固定相采用专利的表面修饰技术(专利US 7,247,387B1和US 7,303,821B1),通过在高纯度具有良好机械稳定性的硅胶基质上,键合一层均匀的纳米厚度中性亲水薄膜而制备得到。 ● 采用可控的化学修饰技术,能确保柱与柱之间有着可靠的重现性; ● 精心设计的大孔体积可保证高的分离容量以及优异的分辨率; ● 表面亲水涂层覆盖完全,使之具有优异的色谱柱稳定性,延长色谱柱寿命; ● 低盐浓度洗脱,适合LC-MS分析; ● 专利的表面修饰层,确保对样品的最大回收率; ● 广泛适用于生物分子及水溶性聚合物的分离和检测。 SRT和Zenix色谱柱对于水溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。 Mono GPC &mdash &mdash 油溶性体积排阻色谱柱 Mono GPC以具有极窄粒径和孔径分布的高交联度聚苯乙烯/二乙烯苯(PS/DVB)颗粒为基质,孔径分布均一,使分析中保留时间与分子量具有准确的线性关系。高交联度的多孔颗粒具有优异的化学和物理稳定性,因此在更换有机溶剂时可以使分子量校正曲线的形状及色谱柱的柱效几乎保持不变。Mono GPC填料具有大的孔体积,可确保对聚合物分离有着高的分辨率。 Mono GPC对于脂溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。 Zenix-150对头孢地嗪钠高分子杂质的检测注:分离度按照2010版《中国药典》附录VH计算。 &mdash &mdash 样品来源于某制药公司 良好的批间重现性 &mdash &mdash 色谱条件同上 Zenix SEC-150 材料 表面键合亲水薄膜的硅胶颗粒大小 3 &mu m 孔径 (Å ) ~ 150 蛋白分子量范围 500 - 150,000 水溶性聚合物 分子量范围 500 - 25,000 pH 稳定性 2 &ndash 8.5,短时可耐pH 8.5-9.5 反压 (7.8x300 mm) ~ 1,500 psi 最大耐受压力 (psi) ~ 4,500 盐浓度范围 20 mM - 2.0 M 最高使用温度 (oC) ~ 80 流动相的兼容性 常规水相及有机相溶剂应用实例 头孢地嗪钠 头孢西丁 头孢米诺钠 头孢拉定 头孢呋辛酯头孢地尼 头孢泊肟酯 美洛西林钠 磺苄西林钠 头孢尼西 头孢噻肟钠 头孢噻吩钠 比阿培南 阿莫西林 头孢噻利 头孢丙烯 泰比培南酯 磺苄西林钠破坏物 盐酸头孢替安 头孢硫脒 头孢特仑新戊酯 头孢哌酮钠 注:点击链接可见图谱。 优质服务 ● 提供免费的产品试用 ● 提供实际样品的色谱柱筛选和方法确认 促销公告 即日起至8月30日,凡购买一支体积排阻色谱柱,第二支体积排阻色谱柱享受五折优惠或赠送一支高端C18柱。 注:第二支体积排阻色谱柱市场价不得高于第一支。 订货信息 产品名称 粒度 孔径 规格 订货号 SRT SEC-100 5 &mu m 100 Å 7.8x300 mm 215100-7830 SRT SEC-1505 &mu m 150 Å 7.8x300 mm 215150-7830 Zenix SEC-100 3 &mu m 100 Å 7.8x300 mm 213100-7830 Zenix SEC-150 3 &mu m 150 Å 7.8x300 mm 213150-7830 Mono GPC-100 5 &mu m 100 Å 7.8x300 mm 230100-7830 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站: www.sepax-tech.com.cn www.sepax-tech.com
  • 国家同步辐射实验室在碳氢化合物低温氧化研究中取得突破性进展
    国家同步辐射实验室齐飞教授研究小组与法国Nancy大学Battin-Leclerc教授研究小组合作,将同步辐射真空紫外光电离质谱技术与射流搅拌反应器(Jet Stirred Reactor)结合,模拟发动机的点火过程,在丁烷低温氧化过程中探测到了多种过氧化物(烷基过氧化物和羰基过氧化物),如过氧化甲烷、过氧化乙烷、过氧化丁烷、C4羰基过氧化物等,首次在实验上验证了碳氢化合物低温氧化机理中广泛应用20余年的重要假定。该研究成果已于近期发表在国际著名期刊《德国应用化学》上(Angew. Chem. Int. Ed. 2010, 49, 3169-3172)。      汽车发动机与生活中随处可见的塑料和化纤制品之间似乎风马牛不相及,但它们却都与一种奇妙的化学现象──碳氢化合物的自燃(autoignition)密切相关。自燃是指可燃物质在没有外部火花、火焰等火源的作用下,因受热或自身发热并蓄热所产生的自行燃烧,是一种受低温氧化机理控制的过程。它是内燃机的主要点火方式之一,也是威胁石油化工中氧化过程安全的罪魁祸首。因此对碳氢化合物低温氧化机理的认识可以帮助我们扬长避短地利用自燃现象,对于内燃机设计和石油化工安全等实用领域意义重大。在低于自燃温度时,碳氢化合物低温氧化还会出现“冷火焰(cool flame)”(550 K左右出现的温度跳动,量级在数十K,伴随由甲醛发出的蓝光,形似火焰)和“负温度系数区”(650 K左右出现的反应活性随温度上升而下降的区域)等奇妙特性。射流搅拌反应器可以模拟自燃温度前后的工况,是研究碳氢化合物低温氧化的最佳实验平台之一。同步辐射真空紫外光电离质谱技术在射流搅拌反应器中的成功应用是揭示过氧化物存在及其浓度随温度变化趋势的关键,将从根本上推动碳氢化合物低温氧化机理的研究,揭开“星星之火,可以燎原”的秘密,为实用领域提供更加详细、精确的理论指导。   该工作得到国家杰出青年基金、中国科学院和科技部的支持。
  • 岛津中国率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案
    2019年3月1日,美国食品和药物管理局(FDA)在官网发布血管紧张素II受体阻滞剂(ARBs)药物氯沙坦的自愿召回公告,涉及到印度Hetero Labs Ltd.生产的87批氯沙坦钾片,而导致该召回的主要原因是发现其中含有N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质。由于NMBA是已知动物和潜在人类的致癌化学物质,是继N?亚硝基二甲胺(NDMA)和N?亚硝基二乙胺(NDEA)之后上市ARBs药物中检测到的第三种亚硝胺类遗传毒性杂质。此后,FDA相继公布了Teva Pharmaceuticals和Vivimed Life Sciences Pvt Ltd等制药公司自愿召回涉及氯沙坦钾的63批药品,其原因为检出含有NMBA。同时,加拿大卫生部(HC)及英国卫生部(DHSC)也在官网上发布了氯沙坦类药物的召回公告。直至2019年6月12日,Teva Pharmaceuticals仍在扩大自愿召回7批检出NMBA氯沙坦钾片,可见药物中的遗传毒性杂质仍受到公众及药品监管机构的高度关注。  在FDA已公布的ARBs药物亚硝胺杂质限度表中,NMBA的日允许摄入量最大值为0.96ppm。 FDA评估了暴露于9.82ppm水平NMBA相比于终生暴露于0.96ppm NMBA的服药水平,表明6个月的暴露量不会存在患癌风险。N-亚硝基-N-甲基-4-氨基丁酸(NMBA)N-Nitroso-N-methyl-4-aminobutyricacid(NMBA)CAS. 61445-55-4  因此,为了确保患者在缓冲期可获得氯沙坦类药物,FDA不反对含NMBA低于9.82ppm的氯沙坦保持销售。该过渡缓冲期FDA设为6个月,直至生产企业提供亚硝胺杂质符合要求的氯沙坦药物来填补市场。目前,关于氯沙坦钾中NMBA的检测方法尚未见公开报道,为及时应对市场检测需求,岛津中国率先推出了基于LC-MS/MS技术的检测方法,该方法操作简单,灵敏度高,适用性强,可有效用于氯沙坦钾中NMBA的分析检测。 1、 实验部分 1.1 仪器: LCMS-8050三重四极杆质谱仪联用仪,含有:LC-30AD×2输液泵,DGU-20A5R在线脱气机,SIL-30AC自动进样器,CTO-30A柱温箱,CBM-20A系统控制器,LCMS-8050三重四极杆质谱仪,LabSolutions(Version 5.82 SP1)色谱工作站。 1.2 分析条件: 液相色谱条件质谱条件 1.3 标准品溶液:取NMBA标准贮备液,以纯甲醇逐级稀释为0.5、1、2、5、10、20、50、100 ng/mL的八个不同浓度的混合标准工作溶液。 1.4 样品溶液:取氯沙坦钾三批原料药(符合EP9.0)0.1 g于10 mL容量瓶中,加甲醇适量,超声1 min至全部溶解,放冷至室温,用甲醇定容待测。 2、 结果 2.1标准品色谱图图1. NMBA标准品色谱图(100 ng/mL)(黑色-总离子流;粉色-MRM147.15/117.10;蓝色-MRM147.15/87.10;棕色-MRM147.15/44.10) 2.2 线性关系及检出定量限图2. NMBA标准曲线检出限(LOD)0.5 ng/mL(MRM147.15/117.10),定量限(LOQ)1.0 ng/mL (MRM147.15/117.10) 2.3 精密度实验:10 ng/mL标准溶液为样本连续进样,日内及日间保留时间相对标准偏差低于0.1%,峰面积低于1.10%。 2.4 加标回收实验 取0.1 g氯沙坦钾样品于10 mL容量瓶中,加入NMBA标准品溶液(相当于50、100、200 ng NMBA标准品),按照1.4中的方法进行处理,上机分析。加标的氯沙坦钾溶液色谱图(以200 ng加标量为例)见图3。三个平行样品的低中高平均回收率分别为98.04%,94.40%,95.61%。 图3 NMBA加标量为200 ng时氯沙坦钾溶液色谱图 2.5 检测结果:三批样品中NMBA均低于最小检出限(LOD)。 3、 结论   本工作建立了使用LCMS-8050三重四极杆质谱联用仪测定氯沙坦钾原料药中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质的方法,在0.5~100 ng/mL浓度范围内线性关系良好,检出限和定量限分别为0.5 ng/mL和1.0 ng/mL。使用此方法对三批次氯沙坦钾原料药进行了测定,结果为NMBA未检出。本方法简单、快速、灵敏、准确,可有效用于氯沙坦钾原料药中NMBA的分析检测。
  • 听说抄袭我们的都火了?今天带来原创的杂质分离方法开发过程
    zui近月旭科技除了产品以外,我们发布的内容也越来越受到大家的喜爱,遭到了多家公众号的自主发布,热度也颇高,我们十分“欣慰”。我们的内容能够得到大家的喜欢,真的是我们zui高兴的事情。但是其发表的内容因为水印等问题,谱图截取并不完整,影响大家的观看体验。所以小编就来以正视听,将完整的谱图,以及zui完整的杂质分离方法开发过程分享给大家,我们一起变得更强!首先来看看需要分离的三个物质的结构式:01 分析目的要求开发一种合适的分析方法,使上述3种化合物在浓度1.0mg/mL的情况下分离度大于1.50。开始方法开发之前,di一件该做的事是什么呢?当然是去了解这几个物质的性质,尽可能的得到有关这些物质的信息,这样可以为后面工作节省zui多的时间。而对这三个物质得到的信息大致如下:三种物质极性比较强,水溶性比较好,在常规C18色谱柱保留太弱,基本上与溶剂峰重叠。结构式上主要是官能团的差异,分别为-NH2,-Br,-COOH,差异性很大。综合考虑,有两种方案:一是加离子对试剂,用反相C18色谱柱增强保留,进行分离;二是使用离子交换色谱柱进行分离。首先由于个人的习惯,离子交换色谱被我直接排除(离子色谱平衡比较慢,而且离子交换色谱柱非常容易出现重现性问题)。所以本实验采用C18添加离子对试剂的方法。考虑的实验过程中需要使用离子对试剂,且流动相pH需要大范围调整(可能用到碱性流动相),所以色谱柱选择月旭Xtimate ® C18(4.6×250mm,5μm)色谱柱,流速:1.0mL/min,柱温30℃,检测波长220nm。02 流动相优化及测试结果图谱2.1 初步尝试流动相:0.05mol/L庚烷磺酸钠+0.05mol/L磷酸二氢钾,PH=4.60。结果:化合物3保留时间2.6min,化合物1不出峰。估计是化合物1保留太强未洗脱下来。接下来,调整pH并增加有机相的比例,来加大洗脱能力。2.2流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):甲醇=60:40。混合对照图谱如下:实验中将庚烷磺酸钠改为辛烷磺酸钠,增加有机相(甲醇)比例,结果三个物质分离良好,但是化合物1(19.9分钟)峰型太差,下一步优化化合物1的峰型。2.3 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):乙腈=80:20。化合物1图谱:基于上一次实验,将有机相甲醇变为乙腈,通过改变选择性看是否峰型会有改善。结果发现并没有任何改善,而且发现这个方法中有机相只提供洗脱能力,不提供选择性改变作用。2.4 流动相:缓冲液(缓冲液:1.00g十二烷基磺酸钠,50mM氯化铵至500mL水,用磷酸调pH=1.80):甲醇=60:40。混合对照图谱:当时换成这个流动相的主要思路是,加十二烷基磺酸钠使保留更强,加氯化铵提高离子浓度,调pH至1.80强酸性使化合物1中-NH2官能团作用更弱,达到优化峰型的目的,但是效果很差。回头总结发现我们所有的目光都聚焦在三种物质的不同官能团上,导致越走越偏离分离的轨迹,这里,三个物质共同含有的官能团可能也是影响分离的主要因素,换了个角度后,豁然开朗了。推翻了之前的方案,将离子对试剂换为四丁基氢氧化铵,从头开始。2.5 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=9.30):乙腈=80:20。混合对照图谱:流动相中添加三乙胺和并将pH调成9.3目的是抑制化合物1的拖尾,但是结果发现三种物质没有分开。继续优化条件将pH值降低。2.6 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=7.00):乙腈=80:20。混合对照图谱:看到这结果是不是项目就OK了。但是既然是方法开发,方法重现性实验实验是必不可少的,需要用一根新色谱柱重现该色谱条件。结果问题就来了.....化合物1图谱:化合物1峰型一直分叉,zui终发现应该是色谱柱使用多种离子对试剂,造成色谱柱改性,新色谱柱不能重现结果。好吧,再开始。然后又是继续摸索。不得不说有时候运气也是成功的一部分,在一次流动相配置过程中,看到四丁基氢氧化铵试剂旁边还有一瓶四丁基溴化铵,突然我就冒出想法,用四丁基溴化铵试试,不知道结果会怎么样,说做就做。2.7 流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20。混合对照图谱:03 结果
  • 台湾地区拟修订四环霉素等动物用药残留标准
    2013年8月27日,台湾地区“卫生福利部”发布部授食字第1021350307号公告,预告“动物用药残留标准”第3条修正草案,预告终止日为10月28日。其修正重点如下:   一、增修订「氯四环霉素(Chlortetracycline) 、羟四环霉素(Oxytetracycline)及四环霉素(Tetracycline)」在家畜类的肌肉、肝、肾、脂及乳 家禽类脂等十八项残留容许量。   二、增修订「双氢链霉素(Dihydrostreptomycin)/链霉素(Streptomycin)」在家畜类及家禽类的肌肉、肝、肾、脂及家畜类乳等十八项残留容许量。   三、增修订「红霉素(Erythromycin)」在家畜类及家禽类的肌肉、肝、肾、脂 家畜类乳及家禽类蛋等十项残留容许量。   四、增修订「健他霉素(Gentamicin)」在家畜类及家禽类的肌肉、肝、肾、脂及家畜类乳等九项残留容许量。   五、增订「人绒毛膜性腺激素(Human Chorionic Gonadotrophin)」在家畜类的肌肉、肝、肾、脂、乳等五项残留容许量。   六、增修订「左美素(Levamisole)及 Tetramisole」在家畜类的肌肉、肝、肾、脂等四项残留容许量。   七、增修订「林可霉素(Lincomycin)」在家畜类及家禽类的肌肉、肝、肾、脂及家畜类乳等九项残留容许量。   八、增订「那宁素(Narasin)」 在牛、鸡的肌肉、肝、肾、脂等八项残留容许量。   九、增修订「新霉素(Neomycin)」在家畜类及家禽类的肌肉、肝、肾、脂、家畜类乳及家禽类蛋等十项残留容许量。   十、增订「孕马血清性腺激素(Pregnant Mare Serum Gonadotrophin)」在家畜类的肌肉、肝、肾、脂、乳等五项残留容许量。   十一、增订「黄体酮(Progesterone)」在家畜类的肌肉、肝、肾、脂等四项残留容许量。   十二、增修订「磺胺剂(Sulfa drugs)」 在家畜类的肌肉、肝、肾、脂、乳等五项残留容许量。   十三、增订「Thiabendazole」 在马的肌肉、肝、肾、脂及山羊乳等五项残留容许量。   十四、增订「托芬那酸(Tolfenamic acid)」 在牛及猪的肌肉、肝、肾、脂及牛乳等九项残留容许量。   十五、增订「泰拉霉素(Tulathromycin)」 在牛及猪的肌肉、肝、肾、脂等八项残留容许量。
  • VOC、VOCS和TVOC傻傻分不清楚?
    相信从事环境监测的各位对于voc、vocs、tvoc都很熟悉,对于概念还是略知一二,但遇到更多理论概念的时候,就会傻傻分不清,只可意会不可言传了...... 下面坛墨质检就带大家一起来深入了解下voc、vocs、tvoc 。voc:voc通常指在常温下容易挥发的有机化物。较常见的有苯、甲苯、二甲苯、乙苯、苯乙烯、甲醛、tvoc(6-16个碳的烷烃)、 酮类等。这些化合物具有易挥发和亲油等特点,被广泛应用于鞋类、玩具、油漆和油墨、粘合剂、化妆品、室内和汽车装饰材料等工业领域。对于挥发性有机物(voc)这一概念,不同的国家不同标准有不同的定义:①世界卫生组织(who)对voc的定义为熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称;②美国astm d3960-98标准将voc定义为任何能参加大气光化学反应的有机化合物;③美国联邦环保署(epa)将voc定义除co、co2、h2co3、金属碳化物、金属碳酸盐和碳酸铵外任何参加大气光化学反应的碳化合物;④欧盟2002/231/ce指令定义挥发性有机化合物是一种在常温常压下,具有高蒸气压和易蒸发性能的有机化学物质;⑤欧盟2004/42/ce指令定义挥发性有机物(voc)是指在101.3kpa标准压力下,任何初沸点低于或等于250℃的有机化合物;⑥gb50325-2001民用建筑工程室内环境污染控制规范定义挥发性有机化合物指可参加气相光化学反应的有机化合物。⑦澳大利亚国家污染物清单中定义在 25℃条件下蒸气压大于 0.27 kpa 的所有有机物。vocs:vocs是挥发性有机化合物(volatile organic compounds)的英文缩写,是指在室温下饱和蒸气压大于70.91pa,常压下沸点小于260℃的有机化合物。voc和vocs其实是同一类物质,即挥发性有机化合物(volatile organic compounds)的英文缩写,由于挥发性有机化合物一般成分不止一种,因此vocs更精准。再者,在日常交流过程中,人们习惯性将s省去,就造成了部分朋友搞不清voc和vocs呢?从环境监测的角度来讲,指以氢火焰离子检测器检出的非甲烷总烃类检出物的总称,主要包括烷烃类、芳烃类、烯烃类、卤烃类、酯类、醛类、酮类和其他有机化合物。tvoc:tvoc是total volatile organic compounds的缩写,即总挥发性有机物。世界卫生组织(who,1989)对tvoc的定义是:熔点低于室温,沸点范围在50~260℃之间的挥发性有机化合物的总称。vocs的三大来源:煤、石油、天然气:vocs的污染源分为固定源和移动源。煤、石油和天然气或以煤、石油和天然气为燃料或原料的工业与它们有关的化学工业是挥发性有机物产生的三大重要来源。分类vocs成分烷烃类乙烷、丙烷、丁烷、戊烷、己烷、环己烷烯烃类乙烯、丙烯、丁烯、丁二烯、异戊二烯、环戊烯芳香烃及其衍生物苯、甲苯、二甲苯、乙苯、异丙苯、苯乙烯、苯酚醛和酮类甲醛、乙醛、丙醛、丁酮、甲基丙酮、乙基丙酮脂肪烃丙烯酸甲酯、邻苯二甲酸二丁酯、醋酸乙烯醇甲醇、乙醇、异戊二醇、丁醇、戊醇乙二醇衍生物甲基溶纤剂、乙基溶纤剂、丁基溶纤剂、甲氧基丙醇酸和酸酐乙酸、丙酸、丁酸、乙二酸、邻苯二甲酸酐胺和酰胺苯胺、二甲基甲酰胺工业生产中排放vocs的种类挥发性有机物的毒害作用:大多数vocs有毒,部分vocs有致癌性。如大气中的某些苯、多环芳烃、芳香胺、树脂化合物、醛和亚硝胺等有害物质对机体有致癌或产生真性瘤作用;某些芳香胺、醛、卤代烷烃及衍生物、氯乙烯等有诱变作用。有机污染物症状影响苯、甲苯、乙苯、环己酮失眠、烦躁、痴呆、没精神神经障碍丙酮运动障碍、四肢末端感觉异常末梢神经障碍甲醛、200#溶剂、甲苯、二甲苯腹泻、便秘、恶心消化器官障碍丁醇、丙酮、烃类出汗异常、手足发冷、易疲劳自律神经障碍氯苯、200#溶剂皮炎、哮喘、自身免疫病变免疫系统障碍200#溶剂、醋酸丁酯、醋酸乙酯、甲醛、丙酮结膜发炎视觉障碍醋酸丁酯、200#溶剂喉痛、口干、咳嗽呼吸道障碍挥发性有机物的毒害作用苯系物苯甲苯邻二甲苯对二甲苯间二甲苯乙基苯刺激度1.05.32.32.52.94.3几种苯系物对眼睛的刺激度了解到了voc对人类有这么多伤害,而它又在咱们生活中频频出现顿感不安。环境监测单位为了人民的健康生活致力于voc监测,坛墨质检助力各地环境监测单位提供voc混合标物。以上为坛墨质检部分voc混合标物,更多产品可详查坛墨质检官网,也可热线咨询:4008-099-669. 整理来源自网络
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 大连化物所提出二氧化碳大规模资源化耦合利用新途径
    当今世界,绿色低碳发展是大势所趋,全世界都在向碳中和目标不断努力。实现“双碳”目标离不开二氧化碳(CO2)的减排,而CO2作为碳资源的规模化高附加值利用是极具挑战性的的重要战略方向。近日,中国科学院大连化学物理研究所刘中民院士团队提出了CO2与烷烃耦合制备芳烃大宗化学品的新途径。团队发现使用酸性分子筛作为催化剂,可催化CO2与轻质烷烃发生耦合反应,同时促进了芳烃的生成,产物中芳烃选择性高达80%。在特定条件下,约3/4的CO2转化为可用作化工原料的一氧化碳产物,进一步研究证实约1/4已转化的CO2的碳原子直接进入了芳烃产物。相关成果发表在中国催化专业刊物——《催化学报》上。大连化物所供图CO2是最稳定的化学分子,将CO2作为原料高效转化为大宗化学品一直是巨大挑战。芳烃是有机化工中重要的基础原料,可以广泛用于合成树脂、纤维、染料、医药、香料等,目前主要通过石脑油催化重整等石化路线进行生产,存在原料和目标产品之间碳氢不平衡的问题。引入CO2与富氢的烷烃耦合调控其反应的碳氢平衡,提高目标产物选择性,同时将CO2转化为有用的化工原料或产品,以实现CO2资源化利用,对传统芳烃生产技术具有变革性意义。此前很多研究人员尝试采用CO2与烷烃反应,将CO2转化为CO并减少氢气的生成,但均认为CO2的碳原子没有进入烃类产物中。以HZSM-5分子筛为催化剂,催化CO2与轻质烷烃发生耦合反应生成芳烃示意图本工作中,团队以HZSM-5分子筛为催化剂,对比研究了正丁烷、正戊烷和正己烷在氦气和CO2气氛中的转化反应,并详细研究了分子筛酸性,反应温度、压力、CO2加入量等条件对耦合反应的影响。结果表明,CO2的引入可大幅促进芳烃的生成,同时甲烷和乙烷等小分子烷烃的生成受到抑制。对反应后的催化剂进行分析,发现了大量甲基取代的内酯和甲基取代的环烯酮等含氧物种。通过同位素标记实验和一系列验证实验,证实这些含氧中间体由CO2与烃类耦合转化生成,提出并证明了耦合反应发生的途径,即CO2与碳正离子反应得到环内酯,环内酯进一步转化为甲基环烯酮,甲基环烯酮转化为芳烃产物。进一步采用密度泛函理论计算了耦合反应机理各步骤的能垒,验证了耦合反应机理的可行性。“这项成果最大的亮点是证实了CO2与烷烃耦合反应不仅可以将其转化为一氧化碳,更重要的是部分CO2的碳原子可以直接进入芳烃产物,促进芳烃的生成并提高产物中芳烃的选择性,为CO2大规模资源化利用提供了一条有效的途径,具有广阔的应用前景。”刘中民介绍。该研究成果发表在我国唯一被SCI收录的催化英文刊——《催化学报》上。将优秀的成果发表在国产期刊上,刘中民院士深有感悟。“将CO2作为碳资源进行高附加值利用,对实现双碳目标的技术路径设计具有重大意义。将我们的最新研究进展发表在国产期刊上,我是经过了慎重的考虑。我国加强科技创新,也需要与科技创新地位相适应的国际期刊。近些年,很多国产期刊对高水平研究工作都开辟了绿色通道,文章接收后会快速发表并推介宣传,在国内外显示度逐步提升。”刘中民告诉《中国科学报》,“以《催化学报》为代表的国产期刊近年来专业性和世界影响力都在快速提升,让中国的最新成果在中国的期刊上发表,这也体现了我们的科技自信在不断增强。同时,一流期刊的发展也离不开一流的科研成果,积极地向国产期刊投稿高水平科研成果,需要大家积极支持,首先是从自己做起,我们和国产期刊是‘双赢’。”
  • 药监局发布《Q3C(R9):杂质:残留溶剂的指导原则》征求意见稿
    为推动人用药品技术要求国际协调理事会(ICH)指导原则在国内的平稳落地实施,国家药品监督管理局药品审评中心拟定了《Q3C(R9)指导原则实施建议》,同时组织翻译了Q3C(R9)指导原则的中文版。现对该实施建议和中文版公开征求意见,征求意见时间自2024年3月22日至2024年4月22日止。药物中的残留溶剂在此定义为在原料药或辅料的生产中以及制剂制备过程中使用或产生的有机挥发性化合物。这些溶剂在现有生产技术条件下不能完全除去。选择适当的溶剂来合成原料药可提高收率或决定药物的性质,如晶型、纯度和溶解度。因此,溶剂有时可能是合成工艺的关键要素。 由于残留溶剂并不能助益治疗,故应尽可能除去所有残留溶剂,以符合制剂质量标准、生产质量管理规范(GMP)或其他质量要求。制剂的残留溶剂量不应高于安全性数据可支持的水平。除非在风险-收益评估中强有力地论证了使用这些溶剂的合理性,否则在生产原料药、辅料或制剂时,应规避一些已知会引起不可接受的毒性的溶剂(1类,表1)。对于一些毒性不那么严重的溶剂(2 类,表 2),应进行限制,以防止患者出现潜在的不良反应。如切合实际,应尽可能使用低毒溶剂(3 类,表 3)。本指导原则的适用范围包括原料药、辅料和制剂中所含的残留溶剂。因此,当已知生产或纯化工艺中会出现这些溶剂时,应进行残留溶剂检查,且仅有必要对原料药、辅料或制剂的生产或纯化中使用或产生的溶剂进行检查。生产商可选择检验制剂,也可根据制剂生产所用的各成分的残留溶剂水平,累积计算出制剂中残留溶剂整体水平。如果算出的结果等于或低于本指导原则建议的水平,则不需考虑对制剂进行该残留溶剂检查。但如果计算结果高于建议水平,则应对制剂进行检验,以确定制剂工艺是否将有关溶剂的量降至可接受水平。如果制剂生产中用到某种溶剂,也应对制剂进行检验。分析方法残留溶剂通常用色谱技术(如气相色谱法)测定。如可行,应采用药典规定的统一的残留溶剂测定方法。生产商也可针对特定申请自行选择经验证的适宜分析方法。当仅有3类溶剂存在时,如果验证得当,可使用非专属性的方法(如,干燥失重)进行控制。验证时应考虑溶剂的挥发性对分析方法的影响。表 1:制剂中的 1 类溶剂(应避免的溶剂)溶剂浓度限度(ppm)关注点苯2致癌物四氯化碳4有毒和危害环境1,2-二氯乙烷5有毒1,1-二氯乙烯8有毒1,1,1-三氯乙烷1500危害环境表 2:制剂中的 2 类溶剂(应限制的溶剂)溶剂PDE(mg/天)浓度限度(ppm)乙腈4.1410氯苯3.6360氯仿0.660异丙基苯0.770环己烷38.83880环戊基甲基醚15.015001,2-二氯乙烯18.71870二氯甲烷6.06001,2-二甲氧基乙烷1.0100N,N-二甲基乙酰胺10.91090N,N-二甲基甲酰胺8.88801,4-二噁烷3.83802-乙氧基乙醇1.6160乙二醇6.2620甲酰胺2.2220己烷2.9290甲醇30.030002-甲氧基乙醇0.550甲基丁基酮0.550甲基环己烷11.81180甲基异丁基酮454500N-甲基吡咯烷酮5.3530硝基甲烷0.550吡啶2.0200环丁砜1.6160叔丁醇353500四氢呋喃7.2720四氢萘1.0100甲苯8.98901,1,2-三氯乙烯0.880二甲苯*21.72170表 3:应受 GMP 或其他质量要求限制的 3 类溶剂(低潜在毒性的溶剂)乙酸庚烷丙酮乙酸异丁酯苯甲醚乙酸异丙酯1-丁醇乙酸甲酯2-丁醇3-甲基-1-丁醇乙酸丁酯甲基乙基酮叔丁基甲基醚2-甲基-1-丙醇二甲基亚砜2-甲基四氢呋喃乙醇戊烷乙酸乙酯1-戊醇乙醚1-丙醇甲酸甲酯2-丙醇甲酸乙酸丙酯三乙胺表 4:无足够毒理学数据的溶剂1.1-二乙氧基丙烷甲基异丙基酮1.1-二甲氧基甲烷石油醚2.2-二甲氧基丙烷三氯乙酸异辛烷三氟乙酸异丙醚附件:Q3C(R9)指导原则实施建议.docxQ3C(R9):杂质:残留溶剂的指导原则(中文版).docxQ3C(R9):杂质:残留溶剂的指导原则(英文版).pdf
  • 63项国家标准样品研复制计划项目公示
    各相关单位:  根据国家标准样品管理程序要求,经审查合格,国家标准委拟对《钕铁硼合金标准样品》等63项国家标准样品研复制计划项目进行立项。现将63项研复制计划项目(见附件)进行公示,公示期间,如有异议,请将意见回复至电子邮箱:zengxl@sac.gov.cn。公示时间为2017年1月6日至1月22日。  附件:《钕铁硼合金标准样品》等63项国家标准样品研复制计划项目汇总表序号 项目名称 研/复制 完成时间(年) 研制单位 1钕铁硼合金标准样品研制2018包头稀土研究院 瑞科稀土冶金及功能材料国家工程研究中心有限公司2稀土镁合金(WE43)标准样品研制2018包头稀土研究院 瑞科稀土冶金及功能材料国家工程研究中心有限公司3稀土抛光粉标准样品研制2017包头稀土研究院、瑞科稀土冶金及功能材料国家工程研究中心有限公司4难熔金属铌粉氧系列标准样品研制2017株洲硬质合金集团有限公司分测中心5甲醇中1,3,5-三氯苯分析校准用标准样品研制2017环境保护部标准样品研究所6甲醇中1,2,3,5-四氯苯分析校准用标准样品研制2017环境保护部标准样品研究所7水质 钡分析校准用标准样品研制2017环境保护部标准样品研究所8水质 钛分析校准用标准样品研制2017环境保护部标准样品研究所9水质 银分析校准用标准样品研制2017环境保护部标准样品研究所10正己烷中3,3&rsquo ,4,4&rsquo ,5-五氯联苯分析校准用标准样品(PCB126)研制2017环境保护部标准样品研究所11正己烷中3,3&rsquo ,4,4&rsquo ,5,5&rsquo -六氯联苯分析校准用标准样品(PCB169)研制2017环境保护部标准样品研究所12甲醇中毒死蜱分析校准用标准样品研制2017环境保护部标准样品研究所13甲醇中灭草松分析校准用标准样品研制2017环境保护部标准样品研究所14水质 锂分析校准用标准样品研制2017环境保护部标准样品研究所15水质 铝分析校准用标准样品研制2017环境保护部标准样品研究所16甲醇中1,2,4,5-四氯苯分析校准用标准样品研制2017环境保护部标准样品研究所17甲醇中1,4-二氯苯-D4分析校准用标准样品研制2017环境保护部标准样品研究所18甲醇中甲苯-D8分析校准用标准样品研制2017环境保护部标准样品研究所19氮气中丁烯气体标准样品研制2017环境保护部标准样品研究所20氮气中正丁烷气体标准样品研制2017环境保护部标准样品研究所21油井水泥稠化时间检验标准样品研制2017中国建材检验认证集团股份有限公司 国家水泥质量监督检验中心22RoHS检测X荧光分析用PP塑料中铅、镉﹑铬﹑汞和溴标准样品研制2017东莞出入境检验检疫局检验检疫综合技术中心,东莞中思检测电子科技有限公司23塑料简支梁冲击性能测定用标准样品 C40研制2018北京华塑晨光科技有限责任公司、中国石化北京燕山分公司树脂应用研究所24塑料拉伸性能测定用标准样品 E13研制2018北京华塑晨光科技有限责任公司、中国石化北京燕山分公司树脂应用研究所25D-木糖标准样品研制2019山东省分析测试中心26L-阿拉伯糖标准样品研制2019山东省分析测试中心27槲皮素标准样品研制2019山东省分析测试中心28麦芽糖醇标准样品研制2019山东省分析测试中心29没食子酸标准样品研制2019山东省分析测试中心30木糖醇标准样品研制2019山东省分析测试中心31人参皂苷Rd标准样品研制2019山东省分析测试中心32人参皂苷Re标准样品研制2019山东省分析测试中心33山柰酚标准样品研制2019山东省分析测试中心34辣木米辛标准样品研制2018中国科学院过程工程研究所35辣木宁A标准样品研制2018中国科学院过程工程研究所36丹酚酸B标准样品研制2018河北海山生物制药有限公司37酱油中氨基酸态氮、氯化钠、三氯蔗糖分析标准样品研制2018中国检验检疫科学研究院38酱油中山梨酸、苯甲酸分析标准样品研制2018中国检验检疫科学研究院39饲料中钙、镁、铜、铁、锌、钾、钠、锰分析标准样品研制2018中国检验检疫科学研究院40茶叶中联苯菊酯、毒死蜱分析标准样品研制2018中国检验检疫科学研究院41化妆品乳液中氯霉素、甲硝唑分析标准样品研制2018中国检验检疫科学研究院42化妆品乳液中铅、砷、镉、汞分析标准样品研制2018中国检验检疫科学研究院43化妆品乳液中二恶烷分析标准样品研制2018中国检验检疫科学研究院44食用油酸价、过氧化值分析标准样品研制2018中国检验检疫科学研究院45植物油中苯并芘分析标准样品研制2018中国检验检疫科学研究院46植物油中丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)、叔丁基对苯二酚(TBHQ)分析标准样品研制2018中国检验检疫科学研究院47大豆油中饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸分析标准样品研制2018中国检验检疫科学研究院48食用油中邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二丁酯(DBP)定量分析标准样品研制2018中国检验检疫科学研究院49乳粉中硝酸盐、亚硝酸盐分析标准样品研制2018中国检验检疫科学研究院50乳粉中总砷、铬、铅分析标准样品研制2018中国检验检疫科学研究院51乳粉中黄曲霉毒素M1、黄曲霉毒素B1分析标准样品研制2018中国检验检疫科学研究院52鱼肉中总孔雀石绿、结晶紫、氯霉素、氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星分析标准样品研制2018中国检验检疫科学研究院53虾中氯霉素、四环素分析标准样品研制2018中国检验检疫科学研究院54啤酒酒精度、原麦芽汁浓度、总酸分析标准样品研制2018中国检验检疫科学研究院55葡萄酒中酒精度、甲醇、总酸、挥发酸分析标准样品研制2018中国检验检疫科学研究院56葡萄酒中山梨酸、苯甲酸、柠檬酸分析标准样品研制2018中国检验检疫科学研究院57葡萄酒中铁、铅分析标准样品研制2018中国检验检疫科学研究院58染料染色机织产品标准深度色卡标准样品研制2018上海市纺织工业技术监督所59豆浆机测试标准干大豆标准样品研制2018中标能效科技(北京)有限公司,九阳股份有限公司60宣纸标准样品研制2018安徽省质量和标准化研究院、中国宣纸股份有限公司、宣城市产品质量监督检验所61建筑涂料涂层耐沾污性试验用灰标准样品复制2018上海市建筑科学研究院(集团)有限公司62鳗鲡中恩诺沙星、环丙沙星和磺胺二甲嘧啶标准样品复制2018福建出入境检验检疫局检验检疫技术中心63鸡蛋中苏丹红Ⅰ、苏丹红Ⅱ、苏丹红Ⅲ和苏丹红Ⅳ标准样品复制2018福建出入境检验检疫局检验检疫技术中心
  • 千亿合成赛道,该如何运用“流动监测核磁联用”成为黑马?
    ——要节省能源、要绿色发展还要反应速率快??——不是合成研发要太多,只是光化学更有优势!以在药物发现和天然产物合成中受到极大关注的高度官能化环丁烷为例,就采用了[2+2] 光环加成的合成方法。合成方法限制有利自然有弊。这种方法常受到设备、耗时耗力以及非常低的批量处理能力的限制。当采用人工方式进行化合物库合成时,大量繁琐且重复的工作很可能导致人为错误或失误,更可怕的是,实验人员中途可能不知道自己做错了,导致实验结果不可信赖,中途停下实验的一步步验证也耗时耗力。 随着时代发展,越来越多的合成设备开始出现,以前沿技术优化传统合成流程。今天这篇文章介绍的“自动化流动化学合成+在线流动核磁监测”连用:● 采用流动合成仪实现高可复现率,代表了实验的稳定性,连接自动进样器方便进行条件筛选;● UV/Vis光谱用于保障产品收集的准确性,有效保证了实验记录的及时性、完整性和可追溯性;● 实验过程中通过NMR实时在线监测,优化反应条件,及时消除副产物,有效保证新药筛选过程的高效率!案例介绍:[2+2]光环加成库合成实验 在50mg量级下,迅速合成12个[2+2]光环加成产物的化合物库快速筛选一系列光敏剂对两种产物进行优化和规模化生产01、实验装置Vapourtec R系列流动合成仪配备一个5ml盘管反应器和一个容积为10ml的UV-150光化学反应器进行。 图1:连续流反应器示意图,用于[2+2]光环加成库的合成系统连接了一个自动进样器,由Flow Commander&trade 控制。试剂由自动进样器加载到盘管反应器中,与乙烯混合,进入UV-150光化学反应器。内联UV分析用于监测反应进展,而处于压力调节模式的SF-10(独立的V-3泵)用于维持反应压力。02、合成产物在线监测 图2:使用Vapourtec UV-150连续光化学反应器合成代表性小型药用分子库该库的合成花费了350min(约6h),并在工作日结束时设置为在Flow Commander&trade 的控制下在实现无人值守情况下夜间运行。 图3:[2+2]光环加成库的结果a由1H NMR测定,b由于存在大量脂肪聚合物而无法分辨。c起始物质完全消耗,但水解产物获得率 99%,没有任何[2+2]环丁基加合物。d高度不溶的产物,无法获取核磁共振数据。 图4 a) 由内联UV/Vis光谱测量的从反应器中产物的洗脱; b) 反应过程中输送试剂和收集产物的位置。紫色表示试剂正在输送,试剂瓶上显示了编号。橙色条表示收集,并指示收集到哪个瓶中。从核磁共振分析中明显可见存在大量脂肪烃聚合物材料。考虑到使用了乙烯气体,猜测这是聚乙烯!已知在氧气存在且足够高能量的波长下,聚乙烯可以光化学反应生成。于是在后续实验阶段进行脱气处理,脱气处理后,再也没有检测到聚乙烯的形成。通过NMR的及时检测,使得实验很快调整优化,加快库合成进程!03、反应优化在成功合成库后,选择了两种化合物进行优化和扩大规模生产,即马来酰亚胺和尿嘧啶的环丁烷加合物。光敏剂的筛选也由Flow Commander&trade 自动控制,历时4h完成,同时也通过流动合成仪主机控制温度,研究了温度和乙烯过量对尿嘧啶转化的影响,最终选定45°C为最佳库合成反应温度。04、规模化和纯化在进一步研究了几个反应参数的影响后,进行马来酰亚胺和尿嘧啶环加成物的合成扩大规模生产。仅用了2.5h,转化率分别为80%和85%,扩大规模近35倍!05、总结在本文中描述了使用 UV-150光化学反应器和配备自动进样器的Vapourtec R系列流动合成仪主机合成了一系列小型、具有药用价值的分子。Flow Commander&trade 的自动控制能力可以实现在无人值守时进行安全操作,如有需要还可以进行远程监控。通过NMR的及时监测,优化反应条件,及时消除副产物;内联UV/Vis光谱用于保障产品收集的准确性,并成功地将两种产品放大到几克的数量,并且获得了较高的转化率。产品联用方案:流动化学和流动核磁 – 自我优化和控制 --更高的安全性;--更低的能耗;--更好的收益 ;--更好的反应选择性;--体积小,安装紧凑;--最小化放大→缩短产品上市时间;Vapourtec R系列流动合成仪— 微通道光热电连续合成 — ● 特别的灵活性能根据需要增加更多试剂馈送通道的反应器组合,轻松满足实验室需求;● 高精度自动化泵监测系统可维持正确流速。温度控制更精确,反应重现性好;● 高生产率可排队自动执行无数次无人监控的反应,能迅速达到反应温度,实现反应高效率!Bruker Fourier RxnLab— 在反应器旁边的反应监测 — Bruker Fourier80是一款经济高效、性能强悍的紧凑型台式核磁共振波谱仪,为科研工作人员提供多方位的核磁共振分析能力。Fourier 80现可通过Fourier RxnLab实现先进的反应监测功能。用于Fourier 80的RxnLab可在高达10 bar的压力和可调节的温度控制下运行。温控传输线和可调节的样品温度确保了混合物整个反应路径上的温度控制,以尽可能大的限度减少温度损失,并精确地优化反应结果,实时监测化学反应和生物过程:● 过程控制● 结构信息● 即时定量信息如果您对上述产品感兴趣,欢迎随时联系德祥科技德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等奖项。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!Vapourtec英国Vapourtec是德祥集团旗下代理品牌之一。英国Vapourtec公司成立于2003年,专业致力于研发和生产流动合成仪。并在世界上诸多制药公司中被广泛使用。其生产的R系列产品质量可靠、性能成熟,高效能模块系统可随您的生产需要无缝扩大,能满足您的业务发展需求。新型的E系列操作界面清晰、简单、触摸屏操控,开机即用式、无需培训或少量培训即可上手使用。同时针对性的反应器如光化学反应器、离子电化学反应器等提高对应反应的效率。Bruker德国Bruker是德祥集团旗下代理品牌之一。Bruker的使命在于通过突破性的技术和创新来支持科学界,从而推动科学研究向前发展。从高性能磁体、高效配件到新颖且精简的软件,Bruker致力于投资新的解决方案来实现这些科学发现。Bruker的产品帮助科学家不断取得突破性进展,并开发出能够提高人类生活质量的全新应用。其高性能科学仪器以及极具价值的分析诊断解决方案,使科学家能够在分子、细胞和微观层面上对生命和物质进行探索。通过与客户的密切合作,Bruker致力于帮助实现创新、生产力提升以及客户成功,领域涉及生命科学分子研究、应用材料与制药行业应用、显微技术、纳米级分析、工业应用,以及细胞生物学、临床前成像、临床表型组学与蛋白质组学研究、微生物学和分子诊断。
  • 三鹿事件:三聚氰胺检测方法汇总
    三鹿奶粉事件沸沸扬扬,各地致病患儿的致命成分——三聚氰胺检测方法汇总   检测方法   GC-MS法测定动物食品中的三聚氰胺   Spectra-Quad实现三聚氰胺含量在线检测   超高效液相色谱_电喷雾串联质谱法测定饲料中残留的三聚氰胺   反相高效液相色谱法测定饲料中三聚氰胺的含量   高效液相色谱-二极管阵列法测定高蛋白食品中的三聚氰胺   高效液相色谱法(HPLC)测定饲料中三聚氰胺的含量   高效液相色谱-四极杆质谱联用测定饲料中三聚氰胺含量   固相萃取与高效液相色谱联用测定宠物食品中三聚氰胺   液相色谱串联质谱法(LC-MSMS)分析宠物食品中三聚氰胺   液相色谱-串联质谱法测定饲料中三聚氰胺残留   GC-MS法测定动物食品中的三聚氰胺   附:三聚氰胺检测方法示例   仪器与条件   高效液相色谱仪;二极管阵列检测器(DAD),检测波长240nm,柱温:40℃。   (1)AgelaVenusilTMASBC18(4.6×250mm) 缓冲液:10mM柠檬酸,10mM庚烷磺酸钠 流动相:缓冲溶液:乙腈=85:15 流速:1.0mL/min。   (2)AgelaVenusilTMASBC8(4.6×250mm) 流动相:缓冲液:乙腈=85:15 缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0 流速:1.0mL/min   离子交换固相萃取柱AgelaClearnertTMPCX   试剂与样品   宠物饲料样品(农业部饲料供应中心提供) 甲醇、乙腈为北京艾杰尔科技有限公司提供 氨水、乙酸铅、三氯乙酸、均购于北京化学试剂公司 三聚氰胺标准品、柠檬酸、辛烷磺酸钠(Sigma公司) 甲醇为色谱纯,其他均为化学纯。   实验方法   1、样品前处理方法   (1)标准样品配制:   取50mg三聚氰胺标准品,以20%甲醇溶解定容至50mL得到1000ppm的标准溶液,使用时,以提取液(0.1%三氯乙酸)稀释至所要的浓度。   (2)提取:   称取饲料样品5g,加入50ml0.1%三氯乙酸提取液,充分混匀,加入2mL2%乙酸铅溶液,超声20min。   然后取部分溶液转移至10mL离心管中,8000rpm/min离心10min,取上清液3mL过混合型阳离子交换小柱(PCX)。   (3)净化(PCX小柱,60mg/3mL):   a)活化及平衡:3mL甲醇,3mL水   b)上样:加入提取液3mL   c)淋洗:3mL水 3mL甲醇 弃去淋洗液并将小柱抽干。   d)洗脱:5mL5%氨化甲醇(v/v)洗脱。(5%氨化甲醇的配制:5mL氨水+95mL甲醇)。   e)浓缩:50℃,氮气吹干,20%甲醇/水定容至2mL,HPLC分析或衍生后GC/MS分析。   2、三聚氰胺被立案   2.1三聚氰胺HPLC-UV检测方法   三聚氰胺是强极性化合物,在传统的反相C18柱上保留很差,需要用离子对试剂色谱方法才能有良好的保留与分离,按照美国食品药品监督管理局(FDA)的三聚氰胺检测方法和中国农业部公布的三聚氰胺检测方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,可以得到良好的分离效果:   (a)色谱柱:VenusilASBC84.6×250mm 标准:FDA方法 流动相:缓冲液:乙腈=85:15 缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0 流速:1.0mL/min 柱温:40oC 波长:240nm   (b)色谱柱:VenusilASB-C184.6×250mm 标准:中国农业部颁标准方法 缓冲液:10mM柠檬酸,10mM庚烷磺酸钠 流动相:缓冲溶液:乙腈=85:15 流速:1.0mL/min 柱温:40℃ 波长:240nm   空白加水平(mg/L)回收率0.01116%0.1108%0.592%296%   2.2三聚氰胺LC-MS检测方法   由于FDA公布的HPLC-UV方法中,流动相添加了离子对试剂,因此限制了液质联用方法的使用 但不用离子对试剂色谱方法,三聚氰胺在传统的C18柱上保留很差,不能得到较好的分离定量〔3〕。   基于此问题,艾杰尔科技公司自主开发了新的方法,采用艾杰尔(Agela)ASB系列亲水色谱柱,不用离子对试剂也能得到有效的保留与分离。因此方法中流动相不含离子对试剂,可以用于质谱检测。   与FDA2007年4月公布的《UpdatedFCCDevelopmentalMelamineQuantitation(HPLC-UV)》相比较,该方法大大降低了最低检测限(MSD:0.5ppm UV:2ppm),提高了检测灵敏度。   以该方法分别在ASB-C84.6×250mmASB-C184.6×250mm得到很好的谱图。   缓冲液:10mM的NH4AC 流动相:Buffer::ACN=95:5 流速:1.0mL/min 进样量:样品先用70%ACN溶解成约1mg/mL,用ACN稀释成0.1mg/mL,进10uL 柱温:40℃ 波长:240nm   结果与讨论   1、阳离子交换柱(PCX)   三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般应选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子交换和反相吸附两种机理,并具有以下优点:   a)可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。   b)批次重复性好。   c)回收率高,重现性好,即使小柱跑干也可以得到较高回收率。   2、LC-MS方法优点:   (1)检测过程简便:无须添加离子对试剂,三聚氰胺就可得到良好的保留与分离,避免了配制离子对流动相的复杂过程。   (2)提高了检测的灵敏度:无离子对试剂,可以用于质谱检测器,大大降低了最低检测限(MSD:0.5ppm UV:2ppm)。   (3)降低了检测成本:不用离子对试剂,就不再需要买价格较贵的离子对试剂了,从而降低了检测成本。   (4)延长了色谱柱的使用寿命:避免了使用离子对试剂减少色谱柱寿命的影响。   (5)该方法所使用的色谱柱具有通用性:无论是用FDA方法、中国农业部部颁标准方法和本公司开发的LC-MS方法,使用艾杰尔(Agela)ASB系列亲水色谱柱均能得到一个很好的检测结果,从而给客户提供了多种选择空间。   国家食品质量监督检测中心有关人士说,在现有的国家标准奶粉检测中,主要进行蛋白质、脂肪、细菌等检测。三聚氰胺属于化工原料,是不允许添加到食品中的,所以现有标准不会包含相应内容。也就是说,三聚氰胺不属于常规检测项目,正常情况下,很少有人会想到去检测它。
  • 体检市场鱼龙混杂 专家建议制定行业标准
    当前,体检成为很多市民每年必修的“健康课”,嗅觉敏锐的商人早已盯上这块“肥肉”。体检是为了提前防治疾病,普通体检查不出病,可高档体检价格却高得吓人。近日,记者走访调查西安的体检市场了解到,各体检机构价格确实高低不一,豪华体检套餐动辄上万元,整个市场鱼龙混杂。  临近年末,不少单位组织员工体检,西安体检市场迎来小高峰。记者近日采访发现,体检这个原本被医院视为“附属品”的医疗项目,因市场空间巨大而成为许多专业机构争夺的对象,并且已经衍生出各种纷繁复杂的细分体检项目。  现象 例行体检有些是“走过场”,癌症耽误四个月  “我在一家小私营企业工作,每年单位都组织体检,上一次体检是在二月份,去的是个私立的体检中心,记得那天人特别多,医生检查也很快。当时查乳腺的时候,一两分钟就结束了,根本没有做彩超,我当时还问了一句,这么快能检查出来问题吗?医生回了一句‘能’,就接着给下一个检查了。”正在医院住院治疗的王女士说,当时体检的结果是一切正常,自己也就没再纠结。但让她没想到的是,今年六月份,仅间隔了四个月,自己洗澡时摸到胸部有肿块,到大医院一检查竟是乳腺癌晚期。“说实话,我真的很生气,那个体检中心根本不负责任,4个月前如果给好好查查肯定就能发现了。”  便宜的没啥用,贵的却又检不起。10月19日,记者在西安市第九医院健康中心随机采访了多位市民,虽然人们对于自身健康越来越重视,但是对于体检却有着不少的抱怨。“现在的体检机构很多,套餐更多,可咱选便宜的更多是图个心安,有病也查不出。贵的一项检查几百上千块,一般人还真不舍得花这个钱。”  记者采访了解到,上至公立三甲医院下至社区卫生服务中心,以及一些民营私人医疗机构,纷纷投身体检市场。越来越多的体检中心开始出现在我们身边,他们不仅推出各种低价位套餐,打着价格战跟公立医院竞争,一些体检中心甚至搞起免费体检、体检大篷车进社区等活动吸引市民。  专家表示,一个简单的生化检验都需要较长时间,普通的B超如果做得仔细也需半小时。而当下“快餐式”体检,其体检质量和权威性很难得到保障。“体检游击队”的出现,更加重了专家的担心——为了缩减成本,“游击队”会让健康的体检者和患者同用一台设备,还有的体检队为了节约成本,将医疗应急用的手提式床旁X光机给体检者做透视,体检使用过的棉签等医疗垃圾乱丢乱扔。有的体检中心所用的血压表、体重计等仪器设备也不按期检测调试,体检的检查结果往往不准确,体检质量难以保证。更为严重的是,因互相竞争, “游击队”之间想出了竞相压价、给回扣等歪点子,使体检服务的声誉大打折扣。  如今,庞大的市场需求已经催生了一个不甚成熟的体检市场,并引发了体检质量等问题,让人们开始对体检市场提出质疑,感到担忧。  调查 奢华体检过万,但有价值项目并不多  10月18日,记者采访了西安市第一医院、西安市第九医院、武警医院等众多医院的体检中心,了解了一下价格行情。有的医院体检中心主推普惠型的套餐,如武警医院等,体检套餐的价格从两三百元到一两千元不等。“我们一年要为近3万人体检,多数体检只需要三四百元就可以。”西安市第九医院健康中心护士长王丽玲说,也可以根据市民需求提供一些特需检查,套餐一般也就一千到两千元钱。  当然,有只需三四百元的经济型套餐,同时还有几千上万元甚至更贵的豪华套餐。武警医院有个PEC-CT检查项目,该院体检中心的人说,仅这一个项目的检查费用就接近万元,配其他项目,价格不止一万元。 “豪华套餐主要是为了满足企业老总、企业高管等高端人士的体检需求。”西安欧美达海外健康中心负责人说。  民营体检机构的套餐费用则走两个极端,为了吸引客源便宜的最低只需100多元,而贵的则可私人定制套餐。进行“一对一”私密咨询服务,独家提供中华预防医学会疾病预测,私人奢华体检套餐价格需要万元甚至更高。  体检的费用有高有低,市民可根据需求自由选择。听上去似乎没什么可争议的,但是在实际的体检过程中却发现了问题。贵的检查不起,而选择便宜的却又查不出病,而且同样的检查有的就能查出问题有的就不能发现,价格和体检质量并不成正比。  对此,记者采访了各医院体检中心的负责人。九院的刘主任解释说,“首先跟检查的设备有一定关系,几十万甚至上百万的检测设备跟便宜的设备检查的结果有差距,以彩超为例,清晰度不一样,肯定会影响检测人员的判断。”刘主任说,再有就是跟检查人员的专业素质和责任心有关系,还拿彩超为例,同样的检查有的认真检查,有的一扫而过,再加上对于器官可能存在病变的情况不掌握的话,那结果存在误差的概率就大。  体检市场这两年发展比较快,因为监管没有及时跟上,某医院体检中心的工作人员更是跟记者爆料说,个别民营体检机构甚至故意犯错,为了销售药品故意说体检者身体有问题。“这种现象肯定有,所以我们要加强监管。”  出路 制定体检行业标准,建立退出机制  几年前,北京市卫生管理部门曾出台首个体检质量控制标准。为体检市场作“体检”,就是为了让人们享受高质量的健康体检。该标准对体检机构的专业、设置和人员提出多项要求,对规范体检市场大有裨益。  专家表示,从事体检的医疗机构应当有相对独立的体检场所及候检场所,体检使用总面积不得低于400平方米。在专业设置方面,体检机构应当设有比较全面的检验专业。每个专业至少配有一名从事本专业在5年以上的执业医师。体检机构应该配备基本仪器设备,如开展特殊体检项目还需要配置其他相应设备等。此外,体检后10天内应当出结果 体检结论书写规范,体检报告上出具正常参考值,检验项目要有中英文对照 体检使用的医疗器械必须拿得出质量保证书等。  那么,该由谁为这些体检机构实施“体检”呢?专家建议应当成立专门的体检专业委员会。据了解,委员会成员都是精选出的体检、检验、影像、管理等方面的专家,他们可以负责指导监督体检质量和规范管理。该委员会每年至少组织两次全市体检质量抽查,并向社会公示检查结果,一批“误人健康”不合格体检机构将被逐出市场。
  • 科晓推荐三聚氰胺检测方法包
    由于&ldquo 三鹿奶粉事件&rdquo 导致三聚氰胺这个词一夜间成为了街头巷尾相传的流行。而对于它的检测手段在分析仪器色谱行业内的诸多厂商与科研人员也随之推出了一系列的检测方法,科晓在关注这一事件的同时通过对各种方法的比较验证,推荐来自爱杰尔的方法,为三聚氰胺检测提供一定的参考价值。 三聚氰胺分析方法包组件清单 包括: 1 VenusilASB-C8色谱柱(4.6*250mm,5&mu m,150Å )1支 2混合型的阳离子交换柱(Cleanert PCX 60mg/3mL)50支 3三聚氰胺标准品1瓶(500mg,&ge 99.5%) (可选) 4三聚氰胺分析方法手册1份 5庚烷磺酸钠(25g/瓶) (可选) 6 固相萃取装置(12位)一套 (可选) 理化性质 三聚氰胺:英文名&ldquo melamine&rdquo ,简称三胺, 学名三氨三嗪, 别名蜜胺、氰尿酰胺、三聚酰胺。分 子 式:C3N6H6、 C3N3(NH2)3 ;分 子 量:126.12 物理性能:白色结晶粉末,无毒,无味;相对密度:1570kg/m³ ;熔点:在常压下,354℃分解;升华温度:300℃;溶 解 性:能溶于甲醇、甲醛、乙酸、热乙二醇、甘油、吡啶;微溶于水、乙醇;不溶于乙醚、苯和四氯化碳,水溶液呈弱碱性 化学性能:三聚氰胺是一种重要的氮杂环有机化工原料,显弱碱性,能够与各种酸反应生成三聚氰胺盐;在强酸或强碱液中,三聚氰胺发生水解,胺基逐步被羟基取代,生成三聚氰酸二酰胺、三聚氰酸一酰胺和三聚氰酸;三聚氰胺与醛类反应生成加成化合物;三聚氰胺与甲醛反应制成树脂,三聚氰胺树脂是一种多种用途的材料,防火耐热且有很高的稳定性,用于生产塑料、地板砖,厨房用具,防火纤维,商业滤膜,胶水和阻燃剂。 固相萃取(SPE)方法 1 固相萃取(SPE)柱的选择: 三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子和反相两种吸附机理,并具有以下优点: 1) 可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。 2) 批次重复性好。 3) 回收率高,重现性好,即使小柱跑干也可以得到较高回收率。 图1 PCX结构式 2 样品前处理步骤: 2.1标准样品配制: 取50mg三聚氰胺标准品,以20%甲醇溶解定容至50mL得到1000ppm的标准溶液,使用时,以提取液(1%三氯乙酸)稀释至所要的浓度。 2.2提取: 称取饲料/奶粉样品5g (或牛奶10ml),加入50ml 1%三氯乙酸提取液,充分混匀,加入2mL 2%乙酸铅溶液,超声20min。然后取部分溶液转移至10mL离心管中,8000rpm/min离心10min,取上清液3mL过混合型阳离子交换小柱(PCX)。 2.3净化(PCX小柱,60mg/3mL) : 1) 活化及平衡:3mL甲醇,3mL水 2) 上样:加入提取液3mL 3) 淋洗:3mL水;3mL 甲醇;弃去淋洗液并将小柱抽干。 4) 洗脱:5mL 5%氨化甲醇(v/v)洗脱。(5%氨化甲醇的配制:5mL氨水+95mL甲醇)。 5) 浓缩:50℃,氮气吹干,20%甲醇/水定容至2mL。 2.4检测: 用HPLC-UV中国农业部颁标准检测方法分析,测得PCX柱的回收率结果如下: 添加水平 回收率 空白 0.01 116% 0.1 108% 0.5 92% 2 96% 由上表可以看出:用PCX柱净化样品,可以得到满意的回收率。 HPLC-UV检测方法 三聚氰胺在传统的C18柱上保留很差,需要用离子对试剂色谱方法才能有良好的保留与分离,按照美国食品药品监督管理局(FDA)的三聚氰胺检测方法和中国农业部颁部的三聚氰胺检测方法,采用艾杰尔(Agela) Venusil ASB系列亲水色谱柱,均能得到良好的结果,分析色谱图如下: 1、 三聚氰胺的FDA检测方法 色谱柱:Venusil ASB C8 4.6× 250mm 缓冲液:10mM柠檬酸,10mM辛烷磺酸钠,调pH为3.0。 流动相:缓冲液:乙腈=85:15 进样量:样品用缓冲液溶解成约0.1mg/mL,进10uL 流 速:1.0mL/min 柱 温:40 oC 波 长:240nm 2、三聚氰胺的中国农业部颁标准检测方法 色谱柱:Venusil ASB-C18 4.6× 250mm 缓冲液:10mM柠檬酸, 10mM庚烷磺酸钠 流动相:缓冲溶液:乙腈=85:15 进样量:样品用缓冲液溶解成约0.1mg/mL,进10uL 流 速:1.0mL/min 柱 温:40℃ 波 长:240nm LC-MS参考方法 由于HPLC-UV方法中,流动相添加了离子对试剂,限制了液质联用方法的使用;但不用离子对试剂色谱方法,三聚氰胺在传统的C18柱上保留很差,没有良好的保留与分离。 源于此问题,艾杰尔科技公司自主开发了新的方法,采用艾杰尔(Agela) Venusil ASB系列亲水色谱柱,不用离子对试剂也能得到有效的保留与分离,参考方法如下: 缓冲液:10mM NH4AC 流动相:缓冲液:ACN=95:5 流 速:1.0mL/min 进样量:先用70%ACN溶解成约1mg/mL,用ACN稀释成0.1mg/mL,进10uL 柱 温:40℃ 波 长:240nm ASB-C8 4.6× 250mm (Rt=3.839min TF(5%)=1.00 ASB-C18 4.6× 250mm (Rt=3.651min TF(5%)=1.05 备注:色谱柱可选择我公司经营的C8(250*4.6/5um) 作为色谱仪器的专家,科晓将始终为顾客提供最优质的产品与最全面的服务
  • 智能型卡尔费休库仑微量水分测定仪KF106隆重上市
    高精度智能化库仑法微量测定仪由于技术上问题,一直由国外产品掌控国内微量水分测定仪的市场,由于其价格相对于其它常用的水分测定仪,价格一直居高不下,从而限制其产品广泛使用。 针对国内产品对微量水分测定仪的测试精度和智能化程度越来越高,经过多年水分测定仪的销售和生产的经验,通过我公司技术人员共同努力,研发出最新智能型卡尔费休库仑微量水分测定仪KF106,其精度和相对误差均与国外同类产品相媲美,其销售价格则为同类进口产品的一半。同时根据国内的用户的操作习惯,研发最新的操模式,其操作的便利性和智能性完全满足日常的微量水分测定的要求,受到广大用户的欢迎。 KF106型微量水分测定仪采用经典理论&mdash &mdash 卡尔&bull 菲休微库仑电量法;依据电解定律反应的水分子数同电荷数成正比,仪器检测参加反应电荷数(库仑)自动换算成对应的水分子数,因此此方法测试精度极高,测试成本极低,具有其他测试方法不可替代的优势;能可靠的对液体、气体、固体样品进行微量水分的测定。该仪器以棒图形式显示测量电极信号,直观指示电解液的含水量,实时描绘电解速度对时间的变化曲线。具有高灵敏度、高精度、高再现性,低功耗节能设计等特点,可内置蓄电池用于便携测量,广泛适用于石油、化工、电力、制药、商检、科研、环保等领域。 可检测物质种类包括: 1.汽油,水压油、绝缘油、变压器油、透平油、抗燃油。 2. 戊烷、己烷、二甲基丁烷、辛烷、十二烷、二十碳烷、二十八烷、环十二烷、癸基环己烷、甲基丁二烯、苯、甲苯、二甲苯、乙基甲苯、二甲基苯乙烯、十四烯、石油醚、环己胺、甲基环己胺、环庚 烷、乙烯环己胺、二环戊二烯、二甲基萘、三甲基苯乙烯、苯、二氢苊、芴、亚甲基菲、异甲基异丙基苯等。 3.酚类 苯酚、甲酚、氟苯酚、氯酚、二氯苯酚、硝基酚等。 4.醚类 二乙醚、二甘醇单甲醚、二甘醇二乙醚、聚乙二醚、苯甲醚、氟苯甲醚、碘苯甲醚、二癸醚、二庚醚。 5.全部醇类、全部卤代烃类、全部脂类等。 仪器特点 320× 240点阵图形液晶显示屏,触摸屏操作; 实时描绘电解速度对时间的变化曲线; 以棒图形式显示测量电极信号,直观指示电解液的含水量; 使用空白电流补偿、平衡点漂移补偿来修正测量结果; 独创开关恒流电解技术,降低整机功耗; 带时间标记的历史记录,最多存储255个; 具有电极开路、短路自检报警功能; 内置高速热敏式微型打印机,打印美观、快捷,具有脱机打印功能; 内置蓄电池(选配),充满电后,可连续使用6小时以上; 配有标准RC232接口,可与计算机连接,便于处理试验数据; 具有屏幕保护功能,延长液晶使用寿命; 技术参数 测量范围:1ug~100mg 精 度:测试水量在3ug~1000ug之间误差小于± 2ug 测试水量大于1000ug误差小于± 0.2% 分 辨 率:0.1ug 电解电流:0~400mA 待机功耗:6W 最大功耗:35W 电源电压:AC220V± 20% 50HZ± 10% 适用环境温度: 5℃~40℃ 适用环境湿度: &le 85% RH 外形尺寸:350× 260× 180(mm)
  • 数据推动创新,全国首款体外检测人血浆氧化三甲胺测定试剂盒获批
    体外检测人血浆TMAO浓度、方便准确地为肾脏疾病诊断提供参考标准……近日,记者从长沙都正生物科技股份有限公司了解到,其自主研发的氧化三甲胺(TMAO)测定试剂盒获批医疗器械注册证,意味着这款国内首度获批的体外检测人血浆TMAO浓度的IVD试剂盒可以正式生产并投放市场了。氧化三甲胺(TMAO)是一种小分子物质,主要由饮食中肉类、鱼类和奶制品等中的胆碱、肉碱经肠道微生物代谢后产生,经肾脏进行排泄。国内外研究表明血浆中TMAO的水平增高与人体多种慢性疾病的发生发展密切相关。“多中心临床研究表明,TMAO的血浆浓度反映肾小球滤过率的功能,可作为肾功能早期损伤的新型预警生物标志物,在评价肾脏功能、监测肾脏相关疾病等方面有临床应用价值。”都正生物董事长欧阳冬生告诉记者。这是企业产学研一体化的又一成果。2016年,《关于开展仿制药质量和疗效一致性评价的意见》出台,其对提升我国制药行业发展质量,保障药品安全性和有效性,促进医药产业升级和结构调整,具有重要意义。“所谓一致性评价,就是要求仿制药在质量、疗效上与原研药一致。”欧阳冬生介绍,落地湖南湘江新区麓谷科技产业园的都正生物,彼时一头扎进仿制药质量和疗效一致性评价研究领域,“我们当时做的,就是打造高水平、专业化的临床研究平台。”通过实现医学服务、受试者招募、临床试验、SMO服务、生物样本分析、数据管理与统计分析等临床研究全流程管理,成功提升了临床研究效率。“比如一个普通的生物等效性研究项目,同行业一般需要4至6个月,而我们最快可以60天完成,整体效率至少提升30%。”公司自主研发的智慧实验室平台(ILP),通过数字化手段,所有操作过程都能留下痕迹,所有数据都不可篡改,保证数据合规、真实、准确、完整、可溯源。在“一站式”与“数字化”加持下,截至今年6月,都正生物已为500多家药企提供1200余项临床研究服务,助力150余个产品获批。紧盯数据这一数字时代的新型生产要素,企业建立了都正数据库(DDB),建立了完善的数据采集、管理系统和分析平台,为数据深度挖掘与智能应用创造了条件。氧化三甲胺(TMAO)测定试剂盒正是数据驱动的创新成果之一。“我们通过开展多中心临床研究,检测了上万例科研样本,得到健康人群TMAO基线值。在此基础上才研制出氧化三甲胺(TMAO)测定试剂盒,可准确在体外定量检测人血浆中TMAO的浓度。”用数字引领未来。欧阳冬生表示,都正生物正以临床研究数据、专病数据和生物标本为基础,基于“共谋共建共享共赢”理念,建设“生物银行”,开展创新研发与成果转化,推动“数字产业化”。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制