当前位置: 仪器信息网 > 行业主题 > >

辛基环己烷羧酸

仪器信息网辛基环己烷羧酸专题为您提供2024年最新辛基环己烷羧酸价格报价、厂家品牌的相关信息, 包括辛基环己烷羧酸参数、型号等,不管是国产,还是进口品牌的辛基环己烷羧酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合辛基环己烷羧酸相关的耗材配件、试剂标物,还有辛基环己烷羧酸相关的最新资讯、资料,以及辛基环己烷羧酸相关的解决方案。

辛基环己烷羧酸相关的方案

  • LC-MS/MS检测土壤及沉积物中的全氟辛基磺酸和全氟辛基羧酸
    本文参照生态环境标准HJ 1334—2023《 土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》,建立了一种使用岛津液相色谱质谱联用仪内标法测定土壤和沉积物中的全氟辛基磺酸和全氟辛基羧酸含量的方法。样品经甲醇水溶液提取,固相萃取柱净化,浓缩、定容后上机测定。采用内标法定量,全氟辛基羧酸与全氟辛基磺酸在其相关线性范围内,相关系数均大于0.998;分别进行空白基质低、高浓度加标测试,每个浓度重复6次,验证方法的精密度,全氟辛基羧酸与全氟辛基磺酸其测定样品量的相对标准偏差(RSD)分别在7.6~9.2%和11.0~13.0%之间;低、高加标量的样品的回收率在90.7%-110.0%之间。该方法快速准确,可为土壤和沉积物中的全氟辛基磺酸和全氟辛基羧酸的含量测定提供参考。
  • 微量卡尔费休水分测定仪测定环己烷中的水分
    环己烷,化学式是C6H12,为无色有刺激性气味的液体。不溶于水,溶于多数有机溶剂,极易燃烧。一般用作溶剂、色谱分析标准物质及有机合成,可在树脂、涂料、脂肪、石蜡油类中应用,还可制备环己醇和环己酮等有机物。本试验采用AKF-3N库仑法仪器测定环己烷中的水分含量。
  • 环己烷中溴值的测定 应用资料
    环己烷中溴值的测定 应用资料 将已知质量的试样溶解于温度维持在0℃~5℃的溶剂中,然后用溴化钾-溴酸钾标准溶液滴定。当溶液中出现的游离溴引起电位滴定仪的电位突然改变时,即表示达到滴定终点。
  • 如海光电 | 微型拉曼光谱仪远距离检测环己烷拉曼信号
    当利用拉曼光谱仪实现对较远处(几十厘米至几百米量级)的目标进行探测时,即为远程拉曼光谱探测技术。研究远程非接触拉曼光谱技术,为上述研究领域提供一种安全、高效的分析手段是如海一直在做的工作之一。如海在远距离探测领域有了新的进展。经实验验证,如海研发的微型拉曼光谱仪已经可以实现在1m距离下检测棕色玻璃瓶盛装的环己烷拉曼光谱信号。
  • 首次发布!水、土壤中全氟辛基磺酸和全氟辛酸及其盐类的测定 前处理解决方案
    据报道,周健副教授于2023年9月汾渭平原地区对露天农田和温室大棚土壤进行研究对比,结果发现温室大棚因频繁浇灌、温度较高,是的全氟化合物(PFASs)具有较高活性。目前大多数农作物种植都采用温室大棚,加上全氟化合物(PFASs)具有稳定性强和生物累积性,故对于土壤中全氟化合物(PFASs)含量检测尤为重要,是全民乃至检测行业需要重点关注的问题。 HJ 1334-2023《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》、HJ 1333-2023《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定同位素稀释/液相色谱-三重四极杆质谱法》标准为首次发布,在今年7月份正式实施。标准填补了水、土壤和沉积物中相关分析方法标准的空白,支撑新污染物治理工作及《关于持久性有机污染物的斯德哥尔摩公约》履约监测。莱奥提供正压固相萃取仪、全自动氮吹浓缩仪、氮气发生器等全氟化合物解决方案,以满足客户在新污染物研究领域中各种应用场景需求。
  • 全自动快速溶剂萃取(APLE)技术结合固相萃取技术萃取环境样品中的壬基酚,辛基酚和双酚A等酚类物质
    烷基酚环氧乙烯醚(APEOs)是一种重要的非离子表面活性剂,主要运用于工业生产中,但是它的代谢产物,尤其是壬基酚(NP)和辛基酚(OP)近年来被证实具有明显的雌激素效应。另外一种内分泌干扰物——双酚A(BPA)也是一种重要的工业原料,广泛的用于与人们生活密切相关的日常用品中。壬基酚和辛基酚作为内分泌干扰物质,通过食物链进入人体,会在生物体内积累,对人体癌细胞的生长以及生殖能力会造成严重影响,被欧盟列为优先危害物质。奥斯陆-巴黎公约也已将壬基酚和辛基酚列入优先控制污染物名录。欧盟2003/53/EC指令规定纺织品等商品中壬基酚的含量不得高于0.1%。2008年,加拿大卫生部宣布双酚A为危害物质,禁止进口和销售含有双酚A的聚碳酸酯婴儿奶瓶。本文主要运用固相萃取、快速溶剂萃取技术,结合液相色谱-质谱/质谱(LC-MS/MS)等分析手段, 建立了有效的检测食品中(饮料和动物源食品)壬基酚、辛基酚和双酚A含量的方法。
  • Co-Sense LC-PDA-MS系统直接分析测定血清中的双酚A和4-辛基酚
    对于生物样品如血清中物质的测定一般都需经过繁琐的样品前处理,本研究使用Co-Sense LCMS系统对直接进样的血清样品中双酚A(Bisphenol A, BPA)和4-辛基酚(4-Octylphenol, 4-OP)进行含量测定,选择大气压化学离子化负离子检测方式。
  • LC-MS/MS测定食品模拟物中壬基酚和辛基酚的含量
    本文使用岛津超高效液相色谱-三重四极杆质谱联用仪建立了食品模拟物中壬基酚和辛基酚含量的测定方法。实验结果表明,各目标物质在1-50 ng/mL浓度范围内线性良好,相关系数均大于0.999,准确度在87.7%-94.1%范围之间;低中高不同浓度的标准品溶液,连续进样6次,保留时间的RSD在0.19%-0.37%之间,峰面积的RSD在1.14%-2.46%之间,表明仪器精密度良好;低中高三个浓度的加标回收率在86.7%-94.3%之间,均满足标准要求;该方法简单,稳定,准确,可供相关实验人员参考使用。
  • 直接注射测试正庚烷、氯仿、环己烷、异辛烷中的水分
    本实验采用平沼卡尔费休库伦法测定仪对烃类和卤代烃中的水分含量进行测试。该类样品不干扰卡尔费休反应,可采用直接注入法,根据样品溶解度选择阳极溶液。使用的阳极溶液都含有甲醇作为溶剂。当长链烃类样品在甲醇中的溶解性较差时,可使用含氯仿或己醇或甲苯的阳极溶液。测试结果稳定性较好
  • 气相色谱法测定工作场所有毒气体-戊烷、己烷、庚烷、辛烷、壬烷
    近年来,工业建设发展迅速,同时工作场所内工作人员健康问题更不容忽视。《工作场所职业卫生管理规定》已经于2021年2月1日起施行,该规定中明确标出用人单位需为劳动者提供符合法律、法规、规章、国家职业卫生标准和卫生要求的工作环境和条件,保障工作劳动者健康。工作场所中有毒气体戊烷、己烷、辛烷、庚烷、壬烷,需要严格检测,福立仪器应用工程师参考国家职业卫生标准《GBZ/T 300.60-2017 工作场所空气有毒物质测定 第60部分:戊烷、己烷、庚烷、辛烷和壬烷》对上述5种烃类进行了溶剂解吸-气相色谱法测定。
  • 水中苯氧羧酸类除草剂的测定
    生态环境部于 2015 年 12 月颁布了 HJ 770-2015《水质 苯氧羧酸类除草剂的测定液相色谱/ 串联质谱法》,对水中苯氧羧酸类除草剂的检测进行了规范。本文使用Agilent 6470 三重四极杆液质联用系统,建立了快速检测地表水中 8 种苯氧羧酸除草剂的分析方法。该方法可以在低浓度下进行测定,灵敏度是原标准方法的 50–100 倍,且仪器仍呈现了良好的稳定性。
  • 北京豫维:长裙竹荪正己烷提取物化学组成及抑菌活性研究
    以正己烷为溶剂,对长裙竹荪子实体进行索氏提取,提取率为1.36%。应用GC-MS对提取物的化学成分进行分析,Rxi-1ms柱分离,质谱解析鉴定出55种成分,其中23种成分是首次从竹荪属中检测出来,其主要成分为:羧酸、醇、酮、倍半萜、芳香烃、酯等。提取物对伤寒杆菌、金黄色葡萄球菌、变形杆菌和枯草芽孢杆菌有很好的抑制作用。
  • 安捷伦 6140 单四极杆液质联用系统和分析数据浏览器软件用于玩具和儿童护理品中邻苯二甲酸酯的高通量筛查分析-邻苯二甲酸二(正辛基 )酯
    欧洲委员会禁止了包含含量超过0.1% 的六种邻苯二甲酸酯的任何玩具或儿童护理品进入市场,包括二异壬酯(DINP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、二-n-辛基邻苯二甲酸酯(DNOP)、邻苯二甲酸二异癸酯(DIDP)、邻苯二甲酸丁基苄基酯(BBP)和邻苯二甲酸二丁酯(DBP)。此外,世界上各种其他监管机构也已经禁止了这些邻苯二甲酸酯在玩具中的过度使用。在本应用简报中,我们介绍了玩具或儿童护理品中邻苯二甲酸酯的高通量分析方法,分析时间小于1 min,色谱柱采用亚2 μ m 粒径的填料。使用安捷伦6140 单四极杆液质联用仪和分析数据浏览软件,可以快速鉴别不符合法规要求的样品。快速分析方法降低了消耗品测试机构或玩具生产商质控部门的分析时间。本方法节省了时间和成本,同时还能快速鉴别不符合法规要求的样品。
  • 大昌华嘉:使用HPTLC-UV/FTIR在线耦合检测尿液中羧酸四氢大麻酚
    简介本文描述了一种简单、快速、可靠的薄层色谱技术,用以检测尿液中羧酸四氢大麻酚(THC-COOH)。酰基葡萄糖酸酐经碱裂解后,用一项已证实的固相萃取技术,通过Isolute C8-(EC)柱进行样品预处理。用二氯甲烷-正己烷-甲醇(7+2+1)对60层WRF254s(0.1mm层厚)HPTLC硅胶板展开能获得最佳结果。该色谱的评估是通过HPTLC-UV和HPTLC-FTIR直接在线耦合,因此无需固蓝盐衍生或其他危害健康的偶氮染料。经证实羧酸四氢大麻酚的定性和定量检测限(UV:4 ng mL-1,IR:14 ng mL-1)可达20ng mL-1。
  • 土壤和沉积物 苯氧羧酸类农药的测试报告(UV-环境)
    根据标准HJ 1022-2019 《土壤和沉积物 苯氧羧酸类农药的测定 gao效液相色谱法》进行苯氧羧酸类农药的方法开发,仪器为U3000液相色谱仪。
  • 环己烷在线监测解决方案
    该系统采用电子制冷的低温吸附预浓缩技术,将环境空气或标准气体样品的VOCs成分有效吸附在复合吸附剂上进行富集浓缩,同时分离空气中的氮气、氧气和水分等杂质。经迅速高温解析脱附后,样品被立即送入特殊设计的毛细管色谱柱分离。经色谱柱程序升温分离后流出的VOCs组分,由飞行时间质谱仪做定性定量分析。
  • 7种苯氧羧酸类农药的测定
    本文建立 了 土壤和沉积物中 3,6-二氯 -2-甲氧基苯甲酸(麦草畏)、 2,4-二氯苯氧乙酸( 2,4-D)、 2-甲基 -4-氯苯氧乙酸( MCPA)、 2-(2,4-二氯苯氧基 )-丙酸( 2,4-DP)、 2,4,5-三氯苯氧乙酸( 2,4,5-T)、 2,4-二氯苯氧基) )-丁酸( 2,4-DB)和 2,4,5-三氯苯氧基) )-丙酸( 2,4,5-TP)等 7 种苯 氧羧酸类农药 的 HPLC测定方法。参照 HJ 1022-2019方法 采用色谱柱 Shim-pack GIST C8或 Shim-pack Scepter C8-120分析 上述苯氧羧酸类农药 ,结果显示 7个化合物色谱峰 峰形对称, 相邻峰基线分离,满足标准要求。 此方法可为 土壤和沉积物中 7种苯氧羧酸类农药 的检测提供参考 。
  • 使用 AGILENT CARY 630 FTIR 分析水中的油类
    这一新方法使用环己烷作为萃取溶剂,替代了四氯化碳、氟利昂溶剂或氟代溶剂。同时在 Agilent Cary 630 FTIR 上采用创新的 DialPath 液体采样系统。这些改进使分析更安全、更快速并且更经济。
  • 液相色谱法测定水质6种苯氧羧酸类除草剂和麦草畏含量
    本文参照HJ 1267-2022《水质 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法》,建立了液相色谱法测定水质6种苯氧羧酸类除草剂和麦草畏含量的分析方法。该方法中,6种苯氧羧酸类除草剂和麦草畏在0.020~4.00 mg/L线性范围内线性良好,相关系数大于0.9995,准确度为97.0~104.7%;精密度实验中,0.040 mg/L混合标准溶液重复分析6次,各目标化合物保留时间RSD为0.056~0.080%,峰面积RSD为0.327~0.991%,精密度良好。实际样品加标实验中,各目标化合物10、100和400 μg/L加标回收率为90.5~96.0%。实验结果表明,该方法能准确地测定水质6种苯氧羧酸类除草剂和麦草畏含量。
  • 液相色谱法测定水质6种苯氧羧酸类除草剂和麦草畏含量
    本文参照HJ 1267-2022《水质 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法》,建立了液相色谱法测定水质6种苯氧羧酸类除草剂和麦草畏含量的分析方法。该方法中,6种苯氧羧酸类除草剂和麦草畏在0.020~4.00 mg/L线性范围内线性良好,相关系数大于0.9995,准确度为97.0~104.7%;精密度实验中,0.040 mg/L混合标准溶液重复分析6次,各目标化合物保留时间RSD为0.056~0.080%,峰面积RSD为0.327~0.991%,精密度良好。实际样品加标实验中,各目标化合物10、100和400 μg/L加标回收率为90.5~96.0%。实验结果表明,该方法能准确地测定水质6种苯氧羧酸类除草剂和麦草畏含量。
  • 环境空气中环己烷在线监测方案
    大气VOCs吸附浓缩在线监测系统采用GC-FID、GC-MS双通道检测方法,满足《环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法》HJ 1010-2018标准要求,可同时实现环境空气中C2~C12不少于117种挥发性有机物的在线定性与定量分析。为用户提供实时、准确的空气VOCs组分信息
  • 使用 Agilent Cary 630 FTIR 分析水中的脂
    本研究使用 Agilent Cary 630 FTIR 开发了一种水中油类的分析方法,并对其进行了评估。该方法以 ASTM D7678-11 和 ARPA-APPA 意大利指南 75/2011 为基础。这一新方法使用环己烷作为萃取溶剂,替代了四氯化碳、氟利昂溶剂或氟代溶剂。同时在 Agilent Cary 630 FTIR 上采用创新的 DialPath 液体采样系统。这些改进使分析更安全、更快速并且更经济。原油是化学组成不同的烃类混合物。其中所含的烃类包括长链烃、短链烃、石蜡烃、萘、芳烃和脂等。其挑战在于通过采用更环保的溶剂建立一种合适的液液萃取方法,以更低的成本对这些烃类进行快速定量分析。为使用配备 1000 μ m DialPath 和标准软件的 Agilent Cary 630 FTIR,同时为符合 ASTM D7678-11 萃取流程的规定,方法中使用环己烷作为萃取溶液。与氟利昂 113 和四氯化碳等传统溶剂相比,环己烷是更经济和安全的溶剂。这为烃类分析建立了一种更为安全、快速且经济的方法。
  • 使用 Agilent Cary 630 FTIR 分析水中的短链烃
    本研究使用 Agilent Cary 630 FTIR 开发了一种水中油类的分析方法,并对其进行了评估。该方法以 ASTM D7678-11 和 ARPA-APPA 意大利指南 75/2011 为基础。这一新方法使用环己烷作为萃取溶剂,替代了四氯化碳、氟利昂溶剂或氟代溶剂。同时在 Agilent Cary 630 FTIR 上采用创新的 DialPath 液体采样系统。这些改进使分析更安全、更快速并且更经济。原油是化学组成不同的烃类混合物。其中所含的烃类包括长链烃、短链烃、石蜡烃、萘、芳烃和脂等。其挑战在于通过采用更环保的溶剂建立一种合适的液液萃取方法,以更低的成本对这些烃类进行快速定量分析。为使用配备 1000 μ m DialPath 和标准软件的 Agilent Cary 630 FTIR,同时为符合 ASTM D7678-11 萃取流程的规定,方法中使用环己烷作为萃取溶液。与氟利昂 113 和四氯化碳等传统溶剂相比,环己烷是更经济和安全的溶剂。这为烃类分析建立了一种更为安全、快速且经济的方法。
  • 热脱附-气质联用法分析环境空气中的环己烷
    本文介绍使用了SCION 2350-2360型二级热脱附并结合SCION GC/SQ气质联用仪,测定空气中地5种挥发性有机物。实验结果可靠且线性良好,仪器运行稳定,灵敏度高,符合《HJ 644-2013环境空气中挥发性有机物的测定》要求。
  • 采用 Agilent 6470 三重四极杆液质联用系统直接进样测定水质中苯氧羧酸类除草剂
    使用 Agilent 1290 Infinity Ⅱ 液相色谱系统/6470 三重四极杆液质联用系统成功实现了对水质中 8 种苯氧羧酸类除草剂的高灵敏度、快速、稳定的定量分析。本方法各项参数完全满足水质中苯氧羧酸类除草剂的限量检测要求和快速检测。
  • 使用 Agilent Cary 630 FTIR 分析水中的长链烃
    本研究使用 Agilent Cary 630 FTIR 开发了一种水中油类的分析方法,并对其进行了评估。该方法以 ASTM D7678-11 和 ARPA-APPA 意大利指南 75/2011 为基础。这一新方法使用环己烷作为萃取溶剂,替代了四氯化碳、氟利昂溶剂或氟代溶剂。同时在 Agilent Cary 630 FTIR 上采用创新的 DialPath 液体采样系统。这些改进使分析更安全、更快速并且更经济。原油是化学组成不同的烃类混合物。其中所含的烃类包括长链烃、短链烃、石蜡烃、萘、芳烃和脂等。其挑战在于通过采用更环保的溶剂建立一种合适的液液萃取方法,以更低的成本对这些烃类进行快速定量分析。为使用配备 1000 μ m DialPath 和标准软件的 Agilent Cary 630 FTIR,同时为符合 ASTM D7678-11 萃取流程的规定,方法中使用环己烷作为萃取溶液。与氟利昂 113 和四氯化碳等传统溶剂相比,环己烷是更经济和安全的溶剂。这为烃类分析建立了一种更为安全、快速且经济的方法。
  • 使用 Agilent Cary 630 FTIR 分析水中的石蜡烃
    本研究使用 Agilent Cary 630 FTIR 开发了一种水中油类的分析方法,并对其进行了评估。该方法以 ASTM D7678-11 和 ARPA-APPA 意大利指南 75/2011 为基础。这一新方法使用环己烷作为萃取溶剂,替代了四氯化碳、氟利昂溶剂或氟代溶剂。同时在 Agilent Cary 630 FTIR 上采用创新的 DialPath 液体采样系统。这些改进使分析更安全、更快速并且更经济。原油是化学组成不同的烃类混合物。其中所含的烃类包括长链烃、短链烃、石蜡烃、萘、芳烃和脂等。其挑战在于通过采用更环保的溶剂建立一种合适的液液萃取方法,以更低的成本对这些烃类进行快速定量分析。为使用配备 1000 μ m DialPath 和标准软件的 Agilent Cary 630 FTIR,同时为符合 ASTM D7678-11 萃取流程的规定,方法中使用环己烷作为萃取溶液。与氟利昂 113 和四氯化碳等传统溶剂相比,环己烷是更经济和安全的溶剂。这为烃类分析建立了一种更为安全、快速且经济的方法。
  • 使用 Agilent Cary 630 FTIR 分析水中的芳烃
    本研究使用 Agilent Cary 630 FTIR 开发了一种水中油类的分析方法,并对其进行了评估。该方法以 ASTM D7678-11 和 ARPA-APPA 意大利指南 75/2011 为基础。这一新方法使用环己烷作为萃取溶剂,替代了四氯化碳、氟利昂溶剂或氟代溶剂。同时在 Agilent Cary 630 FTIR 上采用创新的 DialPath 液体采样系统。这些改进使分析更安全、更快速并且更经济。原油是化学组成不同的烃类混合物。其中所含的烃类包括长链烃、短链烃、石蜡烃、萘、芳烃和脂等。其挑战在于通过采用更环保的溶剂建立一种合适的液液萃取方法,以更低的成本对这些烃类进行快速定量分析。为使用配备 1000 μ m DialPath 和标准软件的 Agilent Cary 630 FTIR,同时为符合 ASTM D7678-11 萃取流程的规定,方法中使用环己烷作为萃取溶液。与氟利昂 113 和四氯化碳等传统溶剂相比,环己烷是更经济和安全的溶剂。这为烃类分析建立了一种更为安全、快速且经济的方法。
  • 使用 Agilent Cary 630 FTIR 分析水中的萘
    本研究使用 Agilent Cary 630 FTIR 开发了一种水中油类的分析方法,并对其进行了评估。该方法以 ASTM D7678-11 和 ARPA-APPA 意大利指南 75/2011 为基础。这一新方法使用环己烷作为萃取溶剂,替代了四氯化碳、氟利昂溶剂或氟代溶剂。同时在 Agilent Cary 630 FTIR 上采用创新的 DialPath 液体采样系统。这些改进使分析更安全、更快速并且更经济。原油是化学组成不同的烃类混合物。其中所含的烃类包括长链烃、短链烃、石蜡烃、萘、芳烃和脂等。其挑战在于通过采用更环保的溶剂建立一种合适的液液萃取方法,以更低的成本对这些烃类进行快速定量分析。为使用配备 1000 μ m DialPath 和标准软件的 Agilent Cary 630 FTIR,同时为符合 ASTM D7678-11 萃取流程的规定,方法中使用环己烷作为萃取溶液。与氟利昂 113 和四氯化碳等传统溶剂相比,环己烷是更经济和安全的溶剂。这为烃类分析建立了一种更为安全、快速且经济的方法。
  • 电子制冷在线热脱附监测空气中的环己烷
    使用吸附剂辅助电子制冷的在线热脱附,对环境空气样品进行在线采样、除水、浓缩,在成熟的热脱附二级解析技术基础上,建立了中心切割双柱气相色谱-质谱/氢火焰离子化检测器(GC-MS/FID)以及气相色谱-双氢火焰离子化检测器(GC-FID/FID)测定环境空气中57种臭氧前体有机物的方法。研究了在线热脱附除水温度对高沸点组分响应值的影响,优化了质谱仪的扫描范围以及中心切割的压力和时间。在优化的仪器参数下,考察了做完高浓度样品后系统的残留、长时间采样对组分峰形的影响以及方法的线性范围、准确度和精密度。结果表明,57种臭氧前体物浓度范围在6.25nmol/mol~37.5nmol/mol范围内线性关系良好,线性相关系数都在0.995以上;对37.5nmol/mol和20nmol/mol的标准气体重复八次进样,相对标准偏差在5%以内;而且做完高浓度样品后系统基本没有残留,采样时间对峰形也基本没有影响。表明方法稳定性良好,抗干扰能力强,所需设备简单,运行维护成本低,而且在线热脱附的样品重叠处理功能和双柱中心切割技术可以保证采样时间为40min时采集、浓缩、分析一个样品的时间在1小时以内,能很好地监测环境空气中57种臭氧前体有机物。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制