当前位置: 仪器信息网 > 行业主题 > >

乙酰水杨酸乙酯

仪器信息网乙酰水杨酸乙酯专题为您提供2024年最新乙酰水杨酸乙酯价格报价、厂家品牌的相关信息, 包括乙酰水杨酸乙酯参数、型号等,不管是国产,还是进口品牌的乙酰水杨酸乙酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰水杨酸乙酯相关的耗材配件、试剂标物,还有乙酰水杨酸乙酯相关的最新资讯、资料,以及乙酰水杨酸乙酯相关的解决方案。

乙酰水杨酸乙酯相关的资讯

  • 水杨酸己酯安全性:从光安全性到人体研究
    光安全性评估是一个综合过程,涉及光化学特性、非临床研究数据以及对人体安全性的评估。这一评估的目的在于确定是否有必要采取风险最小化措施来预防人类的不良事件。光毒性(光刺激)是指光反应性化学物质引起的急性光诱导组织反应;光过敏是指由光化学反应后形成的光产物(如蛋白质加合物)引起的对化学物质的免疫介导反应。《ICH协调指南 药品的光安全性评价S10》根据人用药品技术要求国际协调理事会(ICH)发布的《ICH协调指南 药品的光安全性评价S10》(ICH HARMONISED TRIPARTITE GUIDELINE, PHOTOSAFETY EVALUATION OF PHARMACEUTICALS, S10),如果一个化合物需要阐明其光毒性,则应具备以下关键特征:① 吸收光为自然光线(波长范围为290-700 nm);② 吸收紫外/可见光后产生反应物质;③ 在光暴露组织(如皮肤、眼睛等)有足够的分布。如果不满足这些条件中的一个或多个,化合物通常不会产生直接的光毒性。《化妆品安全评估技术导则》皮肤光毒性试验评价化妆品原料和/或风险物质引起皮肤光毒性的可能性;皮肤光变态反应试验可评估重复接触化妆品原料和/或风险物质,并在紫外线照射下引起皮肤光变态反应的可能性。《化妆品新原料注册备案资料管理规定》申请注册或进行备案的化妆品新原料,原则上应当提供以下毒理学试验项目资料,可以根据申报注册或进行备案新原料的用途、理化特性、定量构效关系、毒理学资料、临床研究、人群流行病学调查以及类似化合物的毒性等情况,增加或减免相应的毒理学试验项目,其中包含:④ 皮肤光毒性试验(原料具有紫外线吸收特性需做该项试验);⑤ 皮肤光变态反应试验(除情形6外,原料具有紫外吸收特性时需提交该项试验资料)。◆ 光安全性评价流程 ◆图1 光安全性评价流程图表1 光安全性评价检测方法汇总《化妆品安全评估资料提交指南》指出,根据原料的化学结构特点,对原料进行充分分析或测试能够证明其不具有紫外线吸收特性的,可豁免对皮肤光毒性的评估。例如,在290nm-700nm波长范围内的摩尔消光系数(Molar Extinction Coefficient, MEC)小于1000L/mol/cm,则该物质的光反应性较低,不足以引起皮肤光毒性。◆ 以水杨酸己酯为例 ◆2024年7月29日,欧盟消费者安全科学委员会SCCS发布了《关于水杨酸己酯的科学意见附录SCCS/1658/23 - 0-3岁儿童接触》,开放征求意见截止日期至2024年9月23日。图片源自SCCS官网文件中根据紫外/可见(UV/Vis)光谱、体外数据和体内数据评估了光刺激/光致敏性终点。相关实验与结论如下:①紫外光谱分析(RIFM (Sears),2014)紫外/可见光谱(OECD TG 101)显示,水杨酸己酯在290-700 nm之间有显著的吸收峰,吸光度峰值在305 nm处,并在330 nm时返回基线。290 ~ 700 nm波长的摩尔吸收系数高于光刺激效应的关注基准(1000 Lmol-1cm-1)。② 体外3T3细胞(RIFM (Harbell),2002)在3T3中性红摄取(NRU)光刺激试验中测试了水杨酸己酯。通过比较有UVA照射和没有UVA照射的IC50值来计算光刺激因子。结果表明,水杨酸己酯不具有光刺激性。未观察到光刺激反应。③ 小鼠研究(RIFM (Urbach),1975)将未稀释的水杨酸己酯(20 ul)涂于无毛突变小鼠背部区域,暴露在长弧氙灯和荧光黑光灯下。分别在4、24、48、72和96小时评估反应。在照射阳性对照部位观察到光毒性反应。无反应辐照或未辐照的试验材料处理部位均观察到水杨酸己酯无光毒性。④ 小型猪研究(RIFM (Urbach),1975年)根据上述小鼠试验的相同程序,用未稀释的水杨酸己酯(20 ul)对两只小型猪进行试验,也未观察到光毒性。⑤豚鼠(RIFM (Learn),2003) 在两组远交白化无毛豚鼠中评价水杨酸己酯的光刺激作用。将0.3 ml水杨酸己酯按0%、5%、10%、50%和100%的比例溶于二乙基苯甲酸乙酯(DEP):乙基苯甲酸乙酯(EtOH)=3:1的溶液中进行试验。受试物给药和紫外线照射后立即、1/4小时,1/2/3天进行临床观察。水杨酸己酯不会引起光刺激引起的皮肤变化。⑥豚鼠(RIFM (Learn) 2003) 两组远交系白化无毛豚鼠暴露于水杨酸己酯(50%和100%)中未观察到光过敏。将0.3 ml用DEP:EtOHl=3:1配制的水杨酸己酯施用于颈部,动物颈部暴露于紫外线辐射约2.25小时。在给药和/或UVR暴露4小时后对这些位点进行评分。根据研究结果,水杨酸己酯不被认为是光过敏原。⑦人体研究(RIFM(Potrebka),2004)对56名受试者(41名女性和15名男性)进行光刺激潜能研究,水杨酸己酯(0.3%、3%和30%溶于DEP:ethanol=3:1的溶液中)施用于每个受试者的背部,然后用UVA和UVB照射,未辐照部位作为对照,评估受试物的刺激潜力。在UVA和UVB照射1、24、48和72小时后评估反应。未观察到任何反应。 根据现有的体外、体内和人体数据,最终可得出结论↓水杨酸己酯不具有光毒性或光致敏性。
  • 喜讯 |首批水杨酸氨氮的CCEP认证花落朗石
    近日,首批由中环协(北京)认证中心颁发的氨氮在线监测仪(水杨酸法)《中国环境保护产品认证证书》(即CCEP证书)花落朗石。又一次的权威认可不仅是朗石实力的有力证明,也是给朗石客户的“定心丸”——行业先进的朗石产品将持续为您想要的稳定、准确的监测保驾护航。朗石氨氮在线监测仪(水杨酸法)朗石氨氮水质自动在线监测仪(水杨酸法)是朗石独立创新研发的,采用国家标准方法《水杨酸分光光度法》的检测原理,结合双光路检测技术,适用于地表水(河流、湖泊、水库)、饮用水源地以及自来水管网等,能快速、准确、简单、经济地测定水质中氨氮的浓度。
  • 北京市场部分化妆品汞、巯基乙酸含量不合格
    北京市药监局昨天公布了第三季度全市药品质量监督抽验结果,其中17种药品抽检不合格,不合格率为1.43%。   此次,药监部门共进行监督性抽验1185批次。抽检不合格的药品包括:度米芬含片、复方乙酰水杨酸片、补肾明目颗粒、仙鹿益肾颗粒、紫苏梗、女宝胶囊、橘红、款冬花、川贝母、丹参、瓜蒌、法半夏、柴胡、银黄颗粒、珍菊降压片、双氯芬酸钠缓释胶囊、清火栀麦片。   市药监局昨天同时公布了今年上半年化妆品的抽检结果,共完成抽检335批次,其中有2批次产品不合格,分别是中法合资深圳市星孜化妆品有限公司生产的医圣牌美白祛斑霜和广州兰皙化妆品有限公司生产的澳桃美牌速效防敏脱毛膏。不合格原因分别是汞含量不合格、巯基乙酸含量不合格。
  • 康宁AFR与安捷伦在线 LC 的完美结合助力工艺高效开发!
    前言本应用展示了Corning Advanced-Flow Reactor流动化学反应器与Agilent Infinity Lab 在线液相色谱结合使用的能力。概要本文将主要介绍应用康宁低流量连续流微反应器对乙酰基水杨酸(阿司匹林)的水解反应进行研究。通过对反应工艺的参数改变,结合在线安捷伦LC数据分析,可以实时优化反应条件,获得最佳反应结果。图1.乙酰基水杨酸水解反应方程式研究过程一. 实验仪器Corning AFR:低流量反应器(LF)Agilent 1290 Infinity II HPLC 在线检测系统二. 实验方法Corning AFR 是一种可灵活调整的模块化微反应设备,具有独特的康宁心形结构专利设计,可将反应物高效混合及换热以优化反应。图2.反应流程装置图对于所有实验:换热器设置为 86 °C;乙酰水杨酸的浓度为 0.016 M;硫酸的浓度在 0.16、0.375、0.75 和 1.5 M 的浓度范围内变化。停留时间及相应的反应器进料流速变化见表 1。表 1. 乙酰水杨酸和硫酸停留时间和进料流速三. 分析方法作者使用Agilent ZORBAX Eclipse Plus C18,4.6 × 50 mm, 1.8 μm色谱柱,流动相为A:水 + 0.1% 甲酸 B: 乙腈 + 0.1% ,柱温50℃,分析流速2ml/min,暂停时间1.5min,进样体积1 μL 。产物从反应器流出后直接注入到液相色谱仪。取样速度:100 μL/min;等待时间:3.6 秒。每个实验条件时间点,需要系统达到稳态条件。在线 HPLC监测进程中,一旦相关目标分析物在峰面积百分比一致达到稳定,就会记录并分析相关数据。四、结果分析与讨论1. 为确保该反应条件设置能够生成高质量数据,将 0.2 mg/mL 乙酰水杨酸和水杨酸的混合物从Corning LF反应容器泵送到 Agilent Infinity Lab Online LC ,每 3 分钟抽取一次样品并立即进行分析。乙酰水杨酸和水杨酸的峰面积精度分别为 1.1% 和 1.3%,保留时间精度分别为 0.07% 和 0.06%(图 3)图3.乙酰水杨酸和水杨酸HPLC图2. 从Agilent Infinity Lab Online LC的结果从直观上可以快速分析:(A)开始与乙酰水杨酸的反应 (B)大约一半的乙酰水杨酸已经水解为乙酰水杨酸(C)几乎完全反应。图4. 间歇式酸催化水解乙酰水杨酸的研究进展【编者语】流动化学与在线检测最大的优势在于:反应进程一目了然,可以快速改变反应条件; 一次实验可以得到多组反应工艺参数;参数优化后,通过在线检测控制产品质量;康宁反应器可以与多种在线检测设备相结合(红外、拉曼、液相、核磁等)3. 为了优化反应,更仔细地考察停留时间和酸浓度。改变物料在Corning LF反应器中的停留时间,相应地修改了输送硫酸和乙酰水杨酸溶液的注射泵流速(表2)。乙酰水杨酸的温度和浓度分别保持恒定在 86 °C 和 0.016 M。从连续流反应器流出的产物连接到在线 LC 系统,每 3 分钟抽取一次样品。当分析物和产物的面积百分比恒定时达到稳定状态。表2 . 停留时间和LC在线监反应组分的组成及杂质含量4. 综上本实验应用展示了康宁AFR卓越的传质和传热效率,使得反应条件改变响应更及时,无放大效应,易升级放大;采样和结果分析通过安捷伦在线 LC 监控软件进行记录,以本质安全、高效经济的方式实现实验条件监控的完全自动化。总结康宁微反应器不仅可以与LC连用,还可以与Spinsolve 系列NMR 分析仪器连用;对两相或多相液体反应结合Zaiput系列分离器可实现在线分离;连续流反应器与在线检测设备相结合,可以实现药品的快速工艺优化;智能化全连续药品生产已成为可能。参考文献:Agilent Technologies application note, publication number 5994-3528EN, 2021.★康宁一体化合成平台★康宁专注于微反应技术的创新,同时与世界一流创新团队紧密合作,打造“微反应+微分离+在线检测”- 连续化学反应快速筛选平台。该工艺平台自动化程度高,反应结果瞬间可知。康宁反应器开放的系统可以与众多PAT设备以及分析软件链接。可对工艺条件进行快速筛选,在短时间内建立强大的化合物库。欢迎您联系我们,共同探讨最新合成技术!康宁“微反应+微分离+在线检测”一体化合成平台
  • 日立高新推出测定维C银翘片中对乙酰氨基酚和马来酸氯苯那敏的数据
    2013年6月18日,香港卫生署呼吁市民不应购买或服用一种标示为&ldquo 维C银翘片&rdquo 的口服产品。涉事药品含有两种未标示及已被禁用的西药成分非那西丁和氨基比林。但在产品包装标示的成份,包括国家药监局允许添加的维生素C、对乙酰氨基酚及马来酸氯苯那敏却并未被验出,也就是说涉事药品根本就没有维C银翘片应有的成分和药效。  维C银翘片作为常见的感冒药,其中的对乙酰氨基酚有解热镇痛作用,马来酸氯苯那敏主要用于鼻炎、皮肤黏膜过敏及缓解流泪、打喷嚏、流涕等感冒症状。除此以外,在感冒药中常见的成分还有起解热镇痛的乙柳酰胺。在次日立高新将分别介绍使用常规液相和超高速液相对感冒药中的常见成分对乙酰氨基酚、马来酸氯苯那敏、乙柳酰胺的同时测定,详细信息请参考:http://www.instrument.com.cn/netshow/SH102446/newsolution.asp?id=1304&ref=4.app.3.0  关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 仪器百科|放射性水样蒸发浓缩赶酸仪 新品分享
    优云谱放射性水样蒸发浓缩赶酸仪是一款专为水质检测、环境监测和自来水行业设计的实验设备。这款仪器主要用于处理放射性总α、β及其他放射性水样的蒸发浓缩赶酸前处理,同时也适用于环境空气降尘样品的自动浓缩、溶解性总固体(TDS)的浓缩以及其他大体积水样的处理。了解更多放射性水样蒸发浓缩赶酸仪产品详情→https://www.instrument.com.cn/show/C581916.html主要功能与特点1. 快速浓缩与自动盐化灼烧该仪器利用蒸发浓缩技术,能够迅速处理大量水样。在样品浓缩过程中,仪器会自动进行盐化灼烧处理,无需将样品转移到其他容器。这种设计减少了样品转移可能导致的损失或污染,并简化了操作流程。2. 整机防腐耐高温放射性水样蒸发浓缩赶酸仪采用了防腐耐高温材料制造,这保证了仪器在高温环境下的长期稳定运行。其耐用性使得仪器能够在各种实验条件下提供可靠的性能。3. 自动化操作该仪器配备了先进的自动化系统,能够自动完成样品的蒸发浓缩和盐化灼烧过程。用户只需设置好操作参数,即可实现无人值守的自动化运行,提高了实验的效率和便捷性。4. 准确控制仪器具备精准的温控系统和浓缩速率调节功能,可以准确控制蒸发过程中的温度和速度,确保样品浓缩的一致性和准确性。这对需要严格控制实验条件的应用尤为重要。应用范围放射性水样蒸发浓缩赶酸仪广泛应用于以下领域:放射性水样检测:用于处理放射性总α、β及其他放射性水样,确保检测数据的准确性。环境空气降尘样品分析:自动浓缩降尘样品,为环境监测提供可靠的数据支持。溶解性总固体(TDS)测定:快速浓缩水样中的溶解性固体。大体积水样处理:满足大体积水样的浓缩需求,适用于各种实验和分析任务。总结放射性水样蒸发浓缩赶酸仪以其可靠的浓缩处理能力、自动盐化灼烧功能和整机防腐耐高温设计,成为处理各种水样的理想设备。其自动化操作和精确控制功能,不仅提高了实验效率,还确保了数据的准确性。这款仪器在水质检测、环境监测等领域中提供了可靠的技术支持,是实验室和工业分析中的重要工具。
  • 紫外可见光谱分析仪——为化学与生物化学实验带来快速、准确且可靠的数据分析
    SE-3607紫外可见光谱分析仪是博源光电基于自主研发的光谱分析技术为PASCO公司全新打造的重磅产品。它是一款UV-VIS宽波长范围且易于使用的紫外可见光谱仪,可为化学和生物化学在实验教学中提供快速,准确和性能可靠的常规分析。借助USB通讯和跨平台的光谱分析软件,UV-VIS紫外可见光谱仪改善了实验室成员之间的协作方式,使其在平板电脑,iPad和Chromebook上分析从电脑上采集的数据成为了可能。石英光纤等附件可用于扩展光谱仪的功能,从而可用于测量发射光谱,各类光源或激光器。特征• 测量范围:180nm - 1050nm• 直观跨平台的软件操作• 软件内置常规分析工具• 自动切换亮暗,一键式校准• 清晰的标记指示比色皿的正确放置应用• 溶液浓度的测定• 鉴定未知物质• 测量反应速率或衰减速率• 比色法(例如BCA,Bradford,Lowry)• 合成化合物的纯度测试• 平衡常数的确定• 摩尔吸收系数的测定• 品质测试(例如,发酵培养基,食品掺假,品质保证水平)光谱仪经过严格设计,可在快节奏的实验教学中提供最佳性能• 结构紧凑,体积适中• 高灵敏度CMOS检测器可加快分析速度• 内部排水结构设计,减少液体滴落和溢出造成损坏的风险• 隔离式光路结构,可确保随时间变化的精度(±1 nm)• USB连接及跨平台,支持实验室设备和学生自带设备• 兼容常规长度为1厘米的方形和圆形比色皿在可见光,UVA,UVB和UVC区域的提供宽波长范围检测,为常规应用提供了出色的独立解决方案• 吸光度动态变化• 纯化蛋白质分析• 平衡常数的测定• 核酸纯度测试• DNA和RNA的检测• 分析提取或合成的化合物• 核酸浓度的测定• 用于蛋白质定量的比色测定法(例如Bradford,BCA,Lowry)• 分光光度法测定化学和生化化合物光谱仪集成了易于使用的光谱仪软件该免费软件与大多数学生设备兼容,使实验组可以轻松快速地共享和查看其数据。 跨平台光谱分析软件还可以作为免费的功能齐全的应用程序使用,它具有以下功能,从而提高了分析效率:• 易于使用的菜单导航• 自动切换亮暗,一键式校准• 自动显示和存储样品数据• 进行扫描平均和数据平滑• 直观的数据重命名以优化数据跟踪• 光谱图将可见光的波长与颜色相关联• 内置的Beer-Lambert定律与线性拟合用于测定浓度• 可打印光谱和数据图• 将数据导出为.csv文件或.png屏幕截图,以便在Excel,SPARKvue或Capstone软件中进行进一步分析软件包含四种预置的分析模式吸光度分析模式使用“吸光度分析模式”对溶解在乙醇中的合成乙酰水杨酸样品进行分析。样品的吸收光谱表明样品在237nm 和313 nm处有较强的吸收光谱。使用“吸光度分析模式”可获得合成的乙酰水杨酸样品的吸收光谱。 浓度分析模式:浓度与吸光度(Beer-Lambert定律)使用“浓度分析模式”中的Beer-Lambert定律确定纯化蛋白的浓度。在“吸光度分析模式”屏幕中选择目标波长后,分析了五种已知浓度的蛋白质标准品(BSA)。应用线性拟合以创建标准曲线,并且测定未知蛋白质的浓度确定为0.215 mmol / L。使用Beer-Lambert定律在“浓度与吸光度”显示中确定纯化蛋白的浓度。时间分析模式:时间与吸光度(动态分析)使用“时间分析模式”随时间测量酚酞在NaOH中的褪色。对于具有不同浓度的NaOH的样品,随时间测量与酚酞相关的波长的吸光度。 下面提供了包含0.3M NaOH的酚酞样品的结果。使用“时间分析模式”随时间测量酚酞在NaOH中的褪色。光分析模式:波长与光强附加的石英光纤套件用于分析紫外可见光谱中各种光谱源的强度。氦元素光谱在下面使用“光分析模式”显示。可以将采集到的光谱(例如上面的氦光谱)与“光分析模式”屏幕中的预加载参考光谱进行比较。了解更多的产品详情和资讯信息,请登陆博光商城www.brolight.cn
  • 德合创睿发布放射性水样蒸发浓缩赶酸仪新品
    一、仪器简介传统的放射性水样前处理过程,包括取样、浓缩、转移、洗涤、蒸发、灼烧、灰化、称重等一系列环节;水样浓缩环节,样品量不得超过烧杯的1/2,浓缩过程中要求微沸,浓缩步骤需要多次手工加液、转移、洗涤,浓缩过程中加热功率不好控制,全程需要人员值守;水样硫酸磺化环节,水样蒸干过程容易溅射,不好控制,电炉灼烧不方便且安全性差;整个实验过程操作必须认真仔细,整个水样前处理过程相当漫长和繁琐,给实验人员带来很多不便。德合创睿全自动放射性水样蒸发浓缩赶酸仪依据国标方法,实现各类样品蒸发浓缩赶酸无需人员值守,实验效率大大提高,且转移过程中无样品损失,保证安全高效运行。二、仪器用途适用于水质及自来水行业,放射性总α、β及其他放射性水样检测过程中的水样蒸发浓缩赶酸全自动前处理;环境空气降尘样品自动蒸发浓缩;溶解性总固体(TDS)项目的蒸发浓缩,等其他大体积水样浓缩过程。三、仪器特点可以最多将50L的水样,在无人值守的情况下蒸发浓缩到50ml,蒸发完成后可以不需要转移继续进行浓缩赶酸工序;最多可同时处理6/10个样品,满足大样品量浓缩用户需求;一键启动无人值守工作,仪器智能添加补充水样,实时记录已蒸发量,达到设定量停止工作;使用蒸发皿作为蒸发容器,赶酸无需转移,减少了待测物质的损失;具备断电保护功能,断电开机可继续工作,数据不丢失,样品无损坏;远红外陶瓷辐射加热,加热均匀,避免水样迸溅。一、适用标准 国际标准:? ISO 9696:2007水质 不含盐的水中 总α活度的测量 厚源法? ISO 9697:2008水质 不含盐的水中 总β活度的测量 厚源法 核行业标准:? EJ/T 1075-1998 水中总α放射性活度的测定 厚源法? EJ/T 900-1994 水中总β放射性的测定 蒸发法 地质矿产标准? DZ/T 0064.76-1993 地下水质检验方法 放射性化学法测定总α和β 环保行业标准:? HJ 898-2017 《水质 总α放射性的测定 厚源法》? HJ 899-2017 《水质 总β放射性的测定 厚源法》 国家标准:? GB 8537-2008 《饮用天然矿泉水检验方法》? GB/T 15265-94《环境空气 降尘的测定 重量法》? GB/T 5750.13-2006 《生活饮用水标准检验方法 放射性指标》? GB/T 5750.4-2006 8.1 《水质 溶解性总固体的测定 生活饮用水标准检验方法》创新点:可以最多将50L的水样,在无人值守的情况下蒸发浓缩到50ml,蒸发完成后可以不需要转移继续进行浓缩赶酸工序;最多可同时处理6/10个样品,满足大样品量浓缩用户需求;一键启动无人值守工作,仪器智能添加补充水样,实时记录已蒸发量,达到设定量停止工作;使用蒸发皿作为蒸发容器,赶酸无需转移,减少了待测物质的损失;具备断电保护功能,断电开机可继续工作,数据不丢失,样品无损坏;远红外陶瓷辐射加热,加热均匀,避免水样迸溅。 放射性水样蒸发浓缩赶酸仪
  • 血糖仪检测不准?你是否服用这些药物
    血糖是血液葡萄糖含量的简称。葡萄糖是人体的重要组成成分,也是能量的重要来源。正常人体每天需要很多的糖来提供能量,为各种组织、脏器的正常运作提供动力。所以血糖必须保持一定的水平才能维持体内各器官和组织的需要。血糖不宜过低,也不能过高。当血糖过高的时候,会增加肾小球的滤过压力,甚至会强制破坏肾小球的滤过功能,导致肾单位被破坏。除此之外,对神经、视网膜、心脑血管也有一定程度的损伤。 所以,定期对体内血糖水平进行监测是十分必要的。空腹时,全血血糖的正常值为3.9~6.1mmol/L,可换算为70~110mg/dL,凡是在此范围内的空腹全血血糖值都属于正常情况。长期服用一些药物会导致血糖值出现偏差,造成药物性高血糖。如降压药物、降脂药物、抗病毒药物、抗菌药物、免疫抑制剂、抗精神病类药物、糖皮质激素等。这些药物在用于治疗非血糖相关性疾病时,通过损害胰岛β细胞分泌功能而致胰岛素分泌不足,或降低外周组织对胰岛素的敏感性,进而致血糖升高。另外,服用一些药物短期内不会对血糖造成明显影响,检测时却会误导血糖仪,如对乙酰氨基酚、维生素C、水杨酸、尿酸、 胆红素、甘油三酯、麦芽糖、木糖等。其中,维生素C具有抗氧化作用,会影响血糖的测定,大部分在医院使用的血糖检测设备是通过葡萄糖氧化酶法检测血糖,葡萄糖氧化酶具有氧化的作用,而维生素C具抗氧化的效果,这会减弱葡萄糖氧化酶的氧化效果,从而导致测量值偏低。在日常生活中,血糖监测能够直接了解机体实际的血糖水平,有助于我们判断自身的健康情况,在疾病预防中起到重要作用。
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑
  • 卫生部就71项食品安全国家标准征求意见
    卫生部办公厅关于征求《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)意见的函 卫办监督函〔2011〕561号 各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见(征求意见稿可从卫生部网站http://www.moh.gov.cn下载),请于2011年8月16日前以传真或电子邮件形式反馈我部。   传 真:010-67711813   电子信箱:gb2760@gmail.com。   二○一一年六月十四日   附件:   《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿) 序号 标准名称 1 食品添加剂 庚酸烯丙酯 2 食品添加剂 苯甲醛 3 食品添加剂 月桂酸乙酯 4 食品添加剂 肉豆蔻酸乙酯 5 食品添加剂 乙酸香茅酯 6 食品添加剂 丁酸香叶酯 7 食品添加剂 乙酸丁酯 8 食品添加剂 乙酸己酯 9 食品添加剂 乙酸辛酯 10 食品添加剂 乙酸癸酯 11 食品添加剂 顺式-3-己烯-1-醇乙酸酯(又名乙酸叶醇酯) 12 食品添加剂 乙酸异丁酯 13 食品添加剂 丁酸戊酯 14 食品添加剂 丁酸己酯 15 食品添加剂 顺式-3-己烯醇丁酸酯(又名丁酸叶醇酯) 16 食品添加剂 己酸顺式-3-己烯酯(又名己酸叶醇酯) 17 食品添加剂 2-甲基丁酸乙酯 18 食品添加剂 2-甲基丁酸 19 食品添加剂 乙酸薄荷酯 20 食品添加剂 乳酸l-薄荷酯 21 食品添加剂 二甲基硫醚 22 食品添加剂 3-甲硫基丙醇 23 食品添加剂 3-甲硫基丙醛 24 食品添加剂 3-甲硫基丙酸甲酯 25 食品添加剂 3-甲硫基丙酸乙酯 26 食品添加剂 乙酰乙酸乙酯 27 食品添加剂 乙酸肉桂酯 28 食品添加剂 肉桂醛 29 食品添加剂 肉桂酸 30 食品添加剂 肉桂酸甲酯 31 食品添加剂 肉桂酸乙酯 32 食品添加剂 肉桂酸苯乙酯 33 食品添加剂 5-甲基糠醛 34 食品添加剂 苯甲酸甲酯 35 食品添加剂 茴香醇 36 食品添加剂 大茴香醛 37 食品添加剂 水杨酸甲酯(又名柳酸甲酯) 38 食品添加剂 水杨酸乙酯(又名柳酸乙酯) 39 食品添加剂 水杨酸异戊酯(又名柳酸异戊酯) 40 食品添加剂 丁酰乳酸丁酯 41 食品添加剂 乙酸苯乙酯 42 食品添加剂 苯乙酸苯乙酯 43 食品添加剂 苯乙酸乙酯 44 食品添加剂 苯氧乙酸烯丙酯 45 食品添加剂 二氢香豆素 46 食品添加剂 2-甲基-2-戊烯酸(又名草莓酸) 47 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮 48 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮 49 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮(又名菊苣酮) 50 食品添加剂 2,3-戊二酮 51 食品添加剂 靛蓝 52 食品添加剂 靛蓝铝色淀 53 食品添加剂 植物炭黑 54 食品添加剂 酸性红 55 食品添加剂 β-胡萝卜素(发酵法) 56 食品添加剂 栀子蓝 57 食品添加剂 玫瑰茄红 58 食品添加剂 葡萄皮红 59 食品添加剂 辣椒油树脂 60 食品添加剂 紫草红 61 食品添加剂 番茄红(天然) 62 食品添加剂 核黄素磷酸钠 63 食品添加剂 辛癸酸甘油酯 64 食品添加剂 辛烯基琥珀酸淀粉钠 65 食品添加剂 可得然胶 66 食品添加剂 普鲁兰多糖 67 食品添加剂 磷脂 68 食品添加剂 乳酸钾 69 食品添加剂 瓜尔胶 70 食品添加剂 L-精氨酸 71 食品添加剂 麦芽糖醇和麦芽糖醇液
  • 卫生部发布71项食品安全国标
    根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂核黄素5'-磷酸钠》(GB28301-2012)等71项食品安全国家标准。其编号和名称如下:   GB 28301-2012食品添加剂 核黄素5'—磷酸钠   GB 28302-2012食品添加剂 辛,癸酸甘油酯   GB 28303-2012食品添加剂 辛烯基琥珀酸淀粉钠   GB 28304-2012食品添加剂 可得然胶   GB 28305-2012食品添加剂 乳酸钾   GB 28306-2012食品添加剂 L-精氨酸   GB 28307-2012食品添加剂 麦芽糖醇和麦芽糖醇液   GB 28308-2012食品添加剂 植物炭黑   GB 28309-2012食品添加剂 酸性红(偶氮玉红)   GB 28310-2012食品添加剂 β-胡萝卜素(发酵法)   GB 28311-2012食品添加剂 栀子蓝   GB 28312-2012食品添加剂 玫瑰茄红   GB 28313-2012食品添加剂 葡萄皮红   GB 28314-2012食品添加剂 辣椒油树脂   GB 28315-2012食品添加剂 紫草红   GB 28316-2012食品添加剂 番茄红   GB 28317-2012食品添加剂 靛蓝   GB 28318-2012食品添加剂 靛蓝铝色淀   GB 28319-2012食品添加剂 庚酸烯丙酯   GB 28320-2012 食品添加剂 苯甲醛   GB 28321-2012 食品添加剂 十二酸乙酯(月桂酸乙酯)   GB 28322-2012 食品添加剂 十四酸乙酯(肉豆蔻酸乙酯)   GB 28323-2012 食品添加剂 乙酸香茅酯   GB 28324-2012 食品添加剂 丁酸香叶酯   GB 28325-2012 食品添加剂 乙酸丁酯   GB 28326-2012 食品添加剂 乙酸己酯   GB 28327-2012 食品添加剂 乙酸辛酯   GB 28328-2012 食品添加剂 乙酸癸酯   GB 28329-2012 食品添加剂 顺式-3-己烯醇乙酸酯(乙酸叶醇酯)   GB 28330-2012 食品添加剂 乙酸异丁酯   GB 28331-2012 食品添加剂 丁酸戊酯   GB 28332-2012 食品添加剂 丁酸己酯   GB 28333-2012 食品添加剂 顺式-3-己烯醇丁酸酯(丁酸叶醇酯)   GB 28334-2012 食品添加剂 顺式-3-己烯醇己酸酯(己酸叶醇酯)   GB 28335-2012 食品添加剂 2-甲基丁酸乙酯   GB 28336-2012 食品添加剂 2-甲基丁酸   GB 28337-2012 食品添加剂 乙酸薄荷酯   GB 28338-2012 食品添加剂 乳酸 l-薄荷酯   GB 28339-2012 食品添加剂 二甲基硫醚   GB 28340-2012 食品添加剂 3-甲硫基丙醇   GB 28341-2012 食品添加剂 3-甲硫基丙醛   GB 28342-2012 食品添加剂 3-甲硫基丙酸甲酯   GB 28343-2012 食品添加剂 3-甲硫基丙酸乙酯   GB 28344-2012 食品添加剂 乙酰乙酸乙酯   GB 28345-2012 食品添加剂 乙酸肉桂酯   GB 28346-2012 食品添加剂 肉桂醛   GB 28347-2012 食品添加剂 肉桂酸   GB 28348-2012 食品添加剂 肉桂酸甲酯   GB 28349-2012 食品添加剂 肉桂酸乙酯   GB 28350-2012 食品添加剂 肉桂酸苯乙酯   GB 28351-2012 食品添加剂 5-甲基糠醛   GB 28352-2012 食品添加剂 苯甲酸甲酯   GB 28353-2012 食品添加剂 茴香醇   GB 28354-2012 食品添加剂 大茴香醛   GB 28355-2012 食品添加剂 水杨酸甲酯(柳酸甲酯)   GB 28356-2012 食品添加剂 水杨酸乙酯(柳酸乙酯)   GB 28357-2012 食品添加剂 水杨酸异戊酯(柳酸异戊酯)   GB 28358-2012 食品添加剂 丁酰乳酸丁酯   GB 28359-2012 食品添加剂 乙酸苯乙酯   GB 28360-2012 食品添加剂 苯乙酸苯乙酯   GB 28361-2012 食品添加剂 苯乙酸乙酯   GB 28362-2012 食品添加剂 苯氧乙酸烯丙酯   GB 28363-2012 食品添加剂 二氢香豆素   GB 28364-2012 食品添加剂 2-甲基-2-戊烯酸(草莓酸)   GB 28365-2012 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮   GB 28366-2012 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮   GB 28367-2012 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮   GB 28368-2012 食品添加剂 2,3-戊二酮   GB 14930.2-2012 消毒剂(代替GB14930.2-1994)   GB 11676-2012 有机硅防粘涂料(代替GB11676-1989)   GB 11677-2012 易拉罐内壁水基改性环氧树脂涂料(代替GB11677-1989)   附件:71项食品标准文本.rar
  • 选好方法开发的柱子—ACE方法开发工具包
    方法开发成功的第一步——选好柱子色谱分析中色谱柱的选择是方法开发过程中重要的一步,对于分离效率具有重大影响。一旦选错了色谱柱,将会无谓地延长和消耗方法开发和优化的时间、资金和精力。许多实验室常常限制色谱柱的选用,常会将其方法建立在一种主流的色谱柱化学(例如惯用的端基封口的C18 色谱柱)上。然而,还有更多改善后的固定相、填料基质可供方法开发时筛查选择性和提高分离之用。ACE方法开发工具包,为方法开发智能解决方案 l 性能优越且独特,规格齐全l 不同机制之间相互作用,显著增加选择性和分离度l 固定相的差异,直接节约方法重建的时间成本l 专业高端,价格便宜,节约经费样品: 1) 甲硝唑,2) 4-羟基苯甲酸,3) 3-羟基苯甲酸, 4) 苯甲醇, 5) 苯甲酸, 6) 杨梅素, 7) 对甲酚, 8) 普萘洛尔, 9) 对羟苯甲酸乙酯, 10) 呋塞米, 11) 苯甲醚, 12) 1,3,5-三硝基苯, 13) 甲苯, 14) 尼美舒利, 15) 甲芬那酸, 16) 1,2,3-三氯苯ACE高级方法开发工具包(一)l 包含ACEC18,C18 ACE-AR和ACE C18-PFP固定相l 适合零起点的常规方法开发l 包含从微孔(0.5毫米)到通用分析(4.6毫米)的尺寸l 特别推荐用于含有芳香环的化合物 (1)ACE-C18 l 高纯、超惰性碱灭活硅胶,可避免硅羟基与分析物的次级作用。l 在 酸性、碱性和中性化合物高效极佳分离;l 与其它品牌色谱柱相比,更适用于碱性物质分离分析相似:SunFire C18 、Luna C18(2)、Zorbax XDB、Hypersil GOLD ODS等 (2)ACE-C18 ARl C18、苯基(Ph)两种键合相的特性融入单一键合相中,结合两种键合相的优势,形成独特的选择性。耐受100%水相。l 应用于方法筛选开发中单独C18或Ph无法实现的复杂混合物分离和具有吸电子基团的异构体分离。如:卤素,硝基,酮,酯和酸、芳香族烃、类固醇、含硫化合物 (3)ACE-C18 PFP l C18、五氟苯(PFP)两种键合相的特性融入单一键合相中,结合两种键合相的优势,形成独特的选择性。耐受100%水相。l 应用于方法筛选开发中单独C18或PFP无法实现的复杂混合物分离和具有供电子基团的异构体分离。如:酚类,芳族醚和胺,芳香烃、类固醇、紫杉烷类化合物样品:1) 4-乙酰氨基苯酚, 2) 4-氨基苯甲酸, 3)4-羟基苯甲酸, 4)咖啡因, 5)2-乙酰氨基苯酚, 6)3-羟基苯甲酸, 7)水杨酰胺, 8)N-乙酰苯胺, 9)苯酚, 10)乙酰水杨酸, 11)苯甲酸, 12)山梨酸, 13)水杨酸, 14)phenylacetin, 15)水杨醛样品:1)1,2,3-三甲氧基苯 2)1,2,4-三甲氧基苯 3)1,2-二甲氧基苯 4)1,4-二甲氧基苯5)甲氧基苯 6)1,3-二甲氧基苯 7)1,3,5-三甲氧基苯 8)中性分子ACE扩展方法开发工具包(二)l 包含ACESuperC18,ACE CN-ES和ACEC18-Amide固定相l 使用ACESuperC18可根据目标物在低,中,高pH值的选择性变化进行方法筛选l 包含从微孔(0.5毫米)到通用分析(4.6毫米)的尺寸l ACEC18-Amide和ACE CN-ES阶段都提供了另一种选择,特别是对于极性分子 (1)ACE Super C18 l 专利的EBT固定相键合封端技术l 中低极性选择和高PH耐受性(1.5-11.5)l 高比例缓冲盐条件下的LC/MS实验,稳定性极佳l 多种规格符合UPLC和HPLC要求且均达到高效相似:Xbridge 、Xttra、EcosilExtend、MG Ⅱ等 (2)ACE CN-ES l 采用高纯惰性硅胶表面与CN基间扩展长的烷基链键和方式,增加了C18的稳定性和疏水性。l 较传统短烷基链接的氰基柱有更耐水(100%)、更稳定、更长柱寿命。l 多应用于强极性、极性、非极性的混合物的共同分离、三键或双键化合物分析、正反两相兼容;方法筛选开发中传统短链CN无法实现的复杂混合物分离。 (3)ACE C18-Amide ? 超长烷烃与C18链间嵌入酰胺基团,提高极性,酸性,碱性和酚类化合物的分离,耐受100%纯水相,扩展烷烃链技术还提供了更长的柱寿命。相似:symmtrysheild C18、Zorbax Bouns、sigmaDiscoveryRP Amide C16 、Ecosil EPS样品: 1)尼扎替丁 2)沙丁胺醇 3)阿米洛利 4)N- acetylprocainamide 5)喹喔啉 6)对羟基苯甲酸甲酯 7)对-甲酚 8)利血平 9)胡椒素 10)甲苯 11)非洛地平样品:1)间苯二酚2)邻苯二酚3)2-甲基间苯二酚4)4-甲基儿茶酚5)3-甲基儿茶酚6)4-硝基儿茶酚样品:1)甲硝唑2)苄醇3)双氢4)香草醛5)对羟基苯甲酸甲酯6)1,2-二硝基苯ACE UltraCore方法开发工具包(三)l 包含核壳型填料ACEUltraCore SuperC18和SuperPhenylHexyl优异封端技术固定相l 利用在低,中,高pH值的选择性变化进行方法筛选l 包含从微孔(0.5毫米)到通用分析(4.6毫米)的尺寸l 超惰性核壳粒子和封装键合技术(EBT?)提供优异的峰形 ACE UltraCore(核-壳) ????l 高效率2.5μ m和5μ m实心核颗粒,快速分析。l两种选择性互补的键合相SuperC18和Super PhenylHexyl(苯基-已基),为方法开发提供了便捷。l超惰性硅胶表面采用独特的封装键合技术(EBT),高PH稳定性(PH1.5-11.5)。l 细小分散的硅胶颗粒附着在超强度实芯核表现出超高的柱效和低的背景压力,实现普通HPLC上完美的UHPLC效率和性能。相似:Aglient Proshell ,waters CORTECS? 、Thermo Scientific Accucore、Kinetex等 人参皂苷分离分析对比图:样品:1)吡哆醇 2)对氨基苯甲酸 3)泛酸 4)叶酸 5)d-生物素 6)氰钴胺素 7)核黄素ACE生物分析300?方法开发工具包(四)l 包含ACE C18-300,ACE C4-300和ACE苯基-300固定相l 适合零起点蛋白质和多肽的方法开发l 包含从微孔(0.5毫米)到通用分析(4.6毫米)的尺寸l 超惰性300?阶段提供优异的峰形和重现性 ACE 300? 系列超惰性HPLC柱 l 采用了先进的技术制造,几乎消除硅醇基和金属污染对肽,蛋白质、其他高分子量的生物大分子分离的负面影响l 该系列的超惰性特性体现在如流动相中仅使用低至0.005%的TFA仍能保持很好的峰对称度;而市面上其他品牌的300?系列大多使用0.01%TFA就表现出了很差的峰型,从而间接降低了灵敏度的运行能力。样品:1)甘氨酸 - 酪氨酸 2)催产素 3)血管紧张素Ⅱ 4)神经降压素ACE 分 析 方 法 包 推 广 大 促—— 为方法开发提供智能的解决方案惊喜一 高质低价,让实验结果给你大吃一惊!!!一套超级优惠的方法包(相同规格新颖固定相的2支或3支高性能多填料类型色谱柱),只需1支ACE色谱柱的市场价格!! 惊喜二 丰富好礼,价值500元大礼任你选!!!即日起凡成功订购一套并成功关注广州绿百草微信公众号的客户,即送价值500元的京东礼品~ ~ 多定多得,数量有限!还等什么?赶紧联系 广州绿百草 咨询吧!活动时间:2015年11月1日- 2015年12月31日 注:本活动最终解释权归广州绿百草生物科技有限公司所有英国ACE色谱技术有限公司 致力于解决色谱应用领域的挑战而开发各系列产品,以满足色谱分析工作的要求。极限的性能、合理价格的产品以及优质的技术服务,在世界范围内的制药、生物技术公司、 大学、医院、科研机 构、政府机构以及环境与工业过程质量控制行业中获得了无与伦比的声誉。更多英国ACE的产品信息、应用实例及资料,请联系ACE一级代理商 —— 广州绿百草生物科技有限公司
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法
  • XRDynamic 500 | 让止痛药的药剂更精确,更安全!
    固定剂量复方止痛药X 射线衍射法固定剂量复合剂 (FDC) 描述的是在单一剂型种包含一种以上活性药物成分(API)的药物。结合不同的 APIs 可以提高药物的效力或帮助抵消副作用。在质量控制和生产研发中,精确确认FDC中不同 APIs 的比例至关重要;XRD 被证明是这种测试的最理想工具。简介据世界卫生组织统计,头痛是最常见的神经系统疾病之一,估计有 50% 的成年人每年至少头痛一次。止痛药是专门为缓解头痛症状而配制的,通常作为非处方药和处方药提供。由于头痛可能是由不同的,并且有时是多种因素引起的,因此以不同方式影响身体的多种 APIs 的复合剂可以提高镇痛的效果。在此类固定剂量复合剂 (FDCs) 中,产品中不同镇痛药的比例至关重要。因此,物相组成的确定和确认是研发和质量控制过程中的重要步骤,这通常使用 X 射线衍射(XRD)进行表征。在本应用报告中,确定了市售的抗头痛药物的物相组成,即三种不同成分(乙酰水杨酸、对乙酰氨基酚和咖啡因)的FDC。研究了不同结晶和无定型辅料的存在,并通过 Rietveld 方法定量拟合最终确定了三种组分的比例。实验样品制备FDC 以片剂形式购买,并在玛瑙研钵中手工研磨成细粉。将粉末填充在直径为 1 mm 的毛细管中用于 XRD 测试。X 射线衍射测试衍射测试是在安东帕的自动化多用途粉末 X 射线衍射仪 XRDynamic 500 上进行的,衍射仪配有毛细管旋转台和 Primux 3000 密封管 Cu靶 X 射线源。入射光路使用椭球 Ni/C 多层膜反射镜聚焦 X 射线束的水平透射几何,毛细管在其中旋转时进行测试。结果定性分析本报告中检测的样品包含三种主要成分:乙酰水杨酸(ASA)、对乙酰氨基酚(扑热息痛)和咖啡因。FDC 的衍射图案显示出几个尖锐的布拉格峰,清楚地表明存在结晶相。与文献数据模拟的所有三种 APIs 的粉末图样直接比较表明,测试数据的大多数反射都与模拟非常吻合,无论是在峰值位置还是强度(图1)。 数个反射峰 (见于12.5°, 16.5°, 19.2°, 19.6°, 20°, 21.3° 和 23.8° 2θ) 无法与 API 相关,因此需要进一步分析。图 1:将 FDC 样品的测试衍射图与从所有三种已知 APIs 模拟的图谱进行比较。无法解释的反射标有 *。三个最强的无法解释的反射的放大视图显示为镶嵌。比较从文献数据模拟的 α-乳糖水合物的衍射图与 FDC 衍射图清楚地表明,乳糖的最强反射与迄今为止 API 未解释的峰位置一致(图 2)。图 2: 测试的 FDC 衍射图谱与 α-乳糖水合物的模拟图谱比较。对数坐标绘制 FDC 图谱清楚地揭示了广泛的特征,表明除了已经确定的晶相之外,还有其他非晶成分(图3)。图 3: 对数坐标绘制测试FDC衍射谱图和由所有结晶组分和背景拟合模拟的谱图。定量分析图4 显示了基于 Rietveld 精修的 FDC 的定量评估结果。图 4: 测试的FDC 衍射谱和定量拟合后的拟合谱图的比较。还绘制了拟合和测试谱图之间的差异以及拟合的背景。在拟合程序后,模拟数据的所有反射位置和强度都与测试数据吻合良好。通过安东帕的 XRDanalysis PRO 软件中的自动 Rietveld 拟合顺序进行拟合,使用具有 12 个系数的 Chebyshev 多项式来描述背景。选定的拟合 R 值在表 1 中给出。表1: FDC 样品定量拟合的选定的 R 值。表2:不考虑无定形组分,从定量拟合结果计算的相对和绝对质量。以所有结晶组分值为M(all)=600 mg 和用于APIs 的值为M(all)=500 mg 进行计算。绝对质量是由从Rietveld 精修获得的相对质量和用作样品片剂的质量计算出。这种近似是有缺陷的,因为无定形成分的相对数量是未知的,因此尚不清楚药片的总质量中有多少是由四个结晶相组成的。为了给出更真实的近似值,在计算成分的相对重量时忽略了乳糖,将三种APIs 的总和看成100。由于结构中存在可见的非晶峰,因此也可以对非晶进行量化(图5)。为此,假定线性背景代表理想化的预期背景。背景上方的区域被分配为一个无定形的驼峰,在21.3° 2θ 处 FWHM 约为8°。图 5: FDC 测试的谱图和基于 Rietveld 精修的定量分析后模拟谱图的比较。还绘制了理想化的线性背景和非晶物相的贡献。计算出无定形相的相对质量为 19%,再次假定片剂为 600 mg,其绝对质量为 114 mg。表 3 中给出了结晶和无定形组分的相对和绝对质量。表3:对 M(all)=600 mg,所有结晶和无定形组分的定量拟合计算的相对和绝对质量根据制造商的说法,一粒 600 mg 的药片应含有 500 mg 的 API,这意味着计算出的 114 mg 的无定形比预期的要大。因此,API 物相的绝对质量都比预期的少约 10 mg。然而,由于绝对质量的这些差异仅转化为相对质量高达 3% 的偏差,因此它们完全在这种定量拟合的误差范围内。此外,与表 2 中的值相比,考虑到无定形相的定量分析提供了更合理的值,并且还允许在相对质量中包含乳糖-水合物。还应该提到的是,用于量化无定形成分的理想化背景只是一个近似值,选择不同的背景参数可以改变结果。在这种情况下,当量化无定形成分时,这会导致固有的不准确性。解决此问题的一种可能解决方案是测量仅包含结晶 APIs 而没有任何无定形材料的样品,并将这种图样的背景与 FDC 样品衍射谱图进行比较。结论实验清楚地表明,粉末 X 射线衍射是确定研发和质量控制药物材料中物相组成的强有力工具。即使在非常低的浓度下,也可以确定结晶辅料和无定形组分的存在和数量。由于物相确定和定量拟合可能很困难,特别是对于包含不同浓度的多相体系,因此必须使用具有高分辨和良好信噪比的衍射仪,XRDynamic 500 已被证明是完美用于此类应用的仪器。
  • 美国最新*产品DPX高效萃取吸管及装置首次亮相北京BCEIA,德祥
    美国最新*产品DPX高效萃取吸管及装置首次亮相北京BCEIA,德祥 由中国分析测试协会主办的&ldquo 第十三届北京分析测试学术报告会暨展览会(BCEIA)&rdquo 于2009年11月25日至28日在北京展览馆隆重举行。 德祥科技总代理的美国最新*产品(*号:US Patent No. 6,566,145)DPX高效萃取吸管及装置携手德祥在BCEIA 2009首次精彩亮相。 美国DPX 公司位于美国哥伦比亚,主要生产SPE固相萃取小柱等样品前处理装置及耗材,DPX高效萃取吸管是其最新*技术。 图一 美国DPX公司高层Habben先生和德祥集团CEO Stephen 这是继年初在美国匹兹堡展会后的又一次完美亮相,DPX作为展会最新的*产品引起了广泛的关注。DPX&mdash 高效移液萃取,它是SPE固相萃取的一个*技术,不同于以往所有SPE萃取技术。DPX采用业界领先制造商的吸附剂材料,萃取时,样品与松散的吸附剂在类似移液器吸嘴的DPX吸管中充分混合,样品与吸附剂形成一种均相混合凝胶体,然后经过洗提,快速完成萃取。因此,萃取效率及质量均达到最高。 DPX与SPE方法的对比 这意味着: ★ 最少的成本 ★ *的萃取容量 ★ 无溶剂蒸发 ★ 环保无污染 ★ 只需简单的培训 本次展出了多功能全自动Gerstel MPS-2和DPX手动萃取装置(24孔位),DPX在食品、农残、药物分析等领域有着广泛的应用,能够完全取代现有的SPE前处理方法。本次展出吸引了众多客户的关注和咨询,并现场成功敲定了多笔订单! 图二 DPX和多功能全自动 Gerstel MPS-2联用 图三DPX手动萃取装置(24孔位) DPX高效萃取吸管针对于不同性质样品有多种填料。 1. DPX-CX:基于阳离子交换机制,磺酸修饰的高聚合物。 应用范围: ● 可卡因及其代谢物活性组分 ● 阿片类药物,如*,可待因,羟考酮等。 ● 苯丙胺,甲基苯丙胺和MADA ● PCP(五氯酚) ● 美沙酮,派替啶,甲喹酮(镇静剂) ● 三环抗抑郁药、苯二氮类药物 此填料可完全取代市场上的Strata-XC,Prexa PCX,SCX等产品 2. DPX-RP:基于反相保留机制,是一种反相吸附剂,即高度交联的聚苯乙烯-二乙烯基苯共聚合物。 应用范围: ● 血液和尿样中四氢大麻酚及羧基-四氢大麻酚的提取 ● 尿样中的巴比妥类药物 ● 水果和蔬菜中的有机氯,有机磷,拟除虫菊酯农药残留 此填料可完全取代市场上的ENV PS-DVB,SDB-L,ENV,ENVI-ChromP等SPE产品。 3. DPX-Q:依据美国农残检测新方法QuEchERS 而生产的新型萃取吸管,不仅可以完全取代DPX-RP并且扩展了其应用, 应用范围:  可用于水果和蔬菜中绝大多数杀虫剂的萃取,  对于极性较大的杀虫剂如乙酰甲胺磷也具有很强的保留,回收率较高。 DPX-Qg萃取吸管:其吸附剂使用一种&ldquo 高品质&rdquo 的石墨碳黑,是专业去除植物样本中叶绿素的*选择,在不影响本身样品基质的基础上,高效去除色素,避免色素对色谱仪器的危害. 4.DPX-WAX:阴离子交换萃取吸管。包含高分子聚合物吸附剂。 应用范围:  水杨酸,脂肪酸,四氢大麻酚;  从农产品中、可可豆中提取农药,组织标本中提取药物;  可用于从临床尿液中提取有机酸。 相当于安捷伦的SAX,Si-SAX小柱。 现正提供DPX试用装,欢迎联系德祥各地办事处申请试用。 德祥作为美国中国和香港地区总代理,将致力于为食品,农残,环境等众多领域的客户提供*的产品及服务。 更多产品详情和后续报道,请关注:www.tegent.com.cn 客服热线:4008 822 822
  • 茫茫人海,我们在寻找-氰酸根
    茫茫人海,我们在寻找-氰酸根哈希公司各位水质守护者们不知道在您的工作中是否会涉及氰酸根的测量?在日常的测量过程中,您都使用什么测量方法?是否还在使用异烟酸-吡唑啉酮分光光度法?是否有使用试剂繁琐的困扰?硫酸钠、硫酸、乙酸、氢氧化钠、磷酸钠、氯氨T、硫代硫酸钠、异烟酸-吡唑啉酮、硫氰酸钠以及各种缓冲溶液,测量一次需要做的准备工作太多?又或者您日常做的常规参数居多,需要增项做氰酸根,或者需要增加在线仪表,预算不足?目前在一些诸如QPQ等工艺上,都将氰酸根作为日常重要的检测项目,那么有没有办法将氰酸根检测做简化,可用您现在正在使用或使用过的设备做测量呢?有研究人员提出可以用水杨酸法(测氨氮的原理)间接地测量氰酸根,将氰酸根测量简化为大家更为熟悉的氨氮测量。作为专注水质分析70余年的哈希,当水质守护者们沐风栉雨的坚守在水质检测第一线时,我们也在不断改进产品与服务,尽可能的减少水质守护者们的工作量,提高水质检测效率与精度。哈希邀请您与我们一道,为更高效的水质分析共同努力前行。附:哈希氨氮监测方案 实验室&便携光度计及预置试剂 在线监测 Amtax NA8000氨氮自动检测仪END
  • 禾工发布三聚氰胺检测方法和整套仪器配置
    固相萃取(SPE)方法介绍 1、固相萃取(SPE)柱的选择: 三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子和反相两种吸附机理,并具有以下优点: 1)、可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。 2)、批次重复性好。 3)、回收率高,重现性好,即使小柱跑干也可以得到较高回收率。 五、HPLC-UV检测方法(GB/T&hellip &hellip ..) 一、 检测方法 1、试剂与材料: 除另有规定外,试剂为分析纯,水符合GB/T6682规定的三级水,色谱用水符合一级水的规定。 1.1 乙腈:色谱纯 1.2 甲醇:色谱纯 1.3 氨水:浓度25%~28% 1.4 混合型阳离子交换固相萃取小柱:60mg/3mL 1.5 三氯乙酸溶液10g/L :称取10g三氯乙酸加水至1000mL。 1.6 乙腈水溶液:乙腈:水为50:50 1.7 盐酸溶液:0.1mol/L 1.8 氨水-甲醇溶液:量取5mL 氨水,溶解于100mL 甲醇中。 1.9 乙酸锌溶液219 g/L:取219g乙酸锌用300mL 水溶解后,定溶至1L。 1.10 20%甲醇溶液:200mL 甲醇,溶解于800mL 水中。混匀。 1.11 缓冲液:10mmol/L辛烷磺酸钠,10mmol/L柠檬酸,调pH3.0。 1.12 标准溶液: 1.12.1 标准贮备液1mg/mL :称取100.0mg 与小烧杯中,加少量乙腈: 水40:60 溶解并转入100mL 容 量瓶中定容。 1.12.2 标准工作液10&mu g/mL :准确吸取标准贮备液1mL 于100mL 容量瓶中,用乙腈: 水40:60定容。 2 仪器设备 实验室常用仪器及: 2.1 液相色谱仪 2.2 超声波振荡器 3 操作步骤 3.1 试样提取: 称取5g试样(精确到0.01g)与150mL 三角瓶中,加入50mL三氯乙酸溶液(1.5)或乙腈水溶液溶解 样品,放于超声波振荡器中超声萃取30min。取出加入5mL 乙酸锌溶液(1.9),前者采用三氯乙酸溶液 (1.5)、后者采用盐酸溶液(1.7)将试样转入100mL 容量瓶中定容至刻度,混匀后用滤纸过滤。 3.2 净化 分别用3mL 水,3mL 甲醇活化混合型阳离子交换固相萃取小柱后。取2mL 滤液上柱,然后分别用3mL 甲醇和3mL 水淋洗,将淋洗液全部抽干后,用3mL 氨水-甲醇(1.8)洗脱,洗脱液于50℃水浴中旋转蒸发至干。用20%甲醇溶液定容至1mL ,漩涡震荡1min,过0.45um滤膜过滤,上机测定。 3.3 测定 3.3.1 色谱条件 色谱柱:极性 C8柱(4.6mmi.d.× 250mm,5&mu m)或C18柱(4.6mmi.d.× 250mm,5um); 流 速:1.0mL /min; 进样量:50&mu l; 柱 温:35℃; 波 长:240nm. 流动相:C8柱使用的为缓冲液(3.11):乙腈=95:5; C18柱使用的为缓冲液(3.11):乙腈=90:10; 3.3.2 标准曲线绘制 分别吸取标准工作液(3.12.2)0.5、2.0、4.0、7.5、10.0mL于50mL 容量瓶中,用乙腈: 水40:60 分别定容混匀,该标准系列浓度分别为0.10、0.40、0.80、1.50、2.00&mu g/mL。将该标准系列溶液分别 注入仪器中,测定峰高(或峰面积)。以标准系列浓度为横坐标,峰高(或峰面积)为纵坐标绘制标准 曲线。或计算回归方程。3.3.3 测定 分别吸取试液(3.2)注入仪器中,测定峰高(或峰面积)。由标准曲线查得试液中三聚氰胺的浓度或通过回归方程计算出试液中三聚氰胺的浓度。 4 结果表示 4.1 试样中三聚氰胺的含量X,以质量分数毫克每千克(mg/kg)表示 式中: Cs&mdash 试液中三聚氰胺的浓度,(&mu g/mL ); V&mdash 试液体积,(100mL ); m&mdash 试样的质量,(g); n&mdash 稀释倍数; 6.2 平行测定结果用算术平均值表示,结果保留小数点后两位有效数字。 六、HPLC-DAD检测方法(GB/T&hellip &hellip ..) (婴幼儿配方奶粉和牛奶中三聚氰胺的高效液相色谱筛选法) 一、检测方法 1、方法来源 本方法是在参考FCC三聚氰胺检测方法[Updated FCC Development MelamineQuantitation(HPLC&mdash UV),April2,2007],FDA三聚氰胺检测方法 [GC-MS Screen for the Presence of Melamine ,(Adapted from FDA/ORA Forensic Chemistry Center SOP T015) Revised April 10, 2007]的基础上,综合制定而成的 婴幼儿配方奶粉和牛奶中三聚氰胺高效液相色谱筛选方法。 2、试剂 1.1 磺基水杨酸:分析纯; 1.2 柠檬酸:分析纯; 1.3 辛烷磺酸钠:高效液相色谱离子对试剂; 1.4 乙腈:色谱纯; 1.5 盐酸:分析纯; 1.6 超纯水:18.2M&Omega ; 1.7 60g/L磺基水杨酸:称取60g磺基水杨酸用水定容至1L; 1.8 0.1N HCl:量取8.3mL盐酸用水稀释至1L; 1.9 标准储备液:精密称取三聚氰胺0.0100g,用甲醇配制成浓度为1mg/mL 标准储备液。 2.0 标准使用液:将标准储备液用甲醇逐级稀释至适宜浓度。 3、仪器 高效液相色谱,附二极管阵列检测器 4、样品处理 2.1 配方奶粉:称取0.5g样品,加入0.1N HCl约15mL,涡旋混匀,超声提取30min后加入60g/L磺基 水杨酸3~4mL,用0.1N HCl定容至25mL,混匀后离心,上清液经0.45&mu m的微孔滤膜过滤后进样。 2.2 牛奶:称取15g左右样品,加入60g/L磺基水杨酸3~4mL,用0.1N HCl 定容至25mL,混匀后离心, 上清液经0.45&mu m的微孔滤膜过滤后进样。 5、参考色谱条件 4.1 色谱柱:ODS C8,250mm× 4.6mm 4.2 流动相:缓冲液:乙腈=85:15,等度洗脱 4.3 缓冲液:10mM柠檬酸+10mM辛烷磺酸钠,调pH为3.0 4.4 流 速:1.0mL/min 4.5 柱 温:40 ℃ 4.6 波 长:240nm 6 计算公式 式中:X&mdash 样品中三聚氰胺含量,mg/kg; C&mdash 从标准曲线上查出的含量,&mu g/mL; V&mdash 定容体积,mL; M&mdash 称样量,g 7 定量限 本方法的定量限为1mg/kg 8 参考色谱图和光谱图 高效液相色谱仪三聚氰胺检测配置 1) STI 5000型液相色谱仪系统 1 P5000 型高压恒流输液泵 1台 2 UV5000紫外检测器 1台 3 Rheohyne 7725i 手动进样阀 1支 4 三聚氰胺分析专用液相色谱柱 1支 5 25/50ul微量注射器 1支 6 N2000色谱工作站(SP1版) 1套 7 液相启动工具包 1套 2) 液相附助设备 1 KQ-2200 超声波清洗器 3L 1台 2 HP-01袖珍式真空泵 0.80MP 1台 3 FB-10T溶剂过滤器 1000mL 1台 4 HG-330色谱柱温箱 室温-100℃ / 0.1℃ 1台 6 有机过滤膜 &phi 50× 0.45mm 1盒 7 水系过滤膜 &phi 50× 0.45mm 1盒 8 有机针式过滤器 &phi 13× 0.45mm 1盒 9 水系针式过滤器 &phi 13× 0.45mm 1盒 10 RO DI反渗透超纯水机 15L/H  1台 VERTEX系列液相色谱仪主要指标 一、P5000高压恒流输液泵 技术指标 产品说明 等度泵 流速精度:0.1% 流速范围:0.001~10ml/min/0.001ml增量 最高耐压:6000psi(0~10ml/min) 压力脉冲:1% 特点说明 双柱塞串联式往复泵,自动脉冲抑制系统 输液泵开机自检,自动判断故障 泵头各部件单独设计,便于拆装维护 内置高低压报警和保护功能 多种泵头选择:微量泵、分析泵、半制备/制备泵 自动检测泵头类型,智能修正参数设置 程序化溶剂压缩因子,能自动补偿流量 梯度由内部软件实现自动控制,可编辑、存贮60个梯度方法,能运行复杂的梯度程序 可以通过外部接点闭合控制。 独特优点: 独特的柱塞杆自动清洗装置,使P5000系列高压输液泵不需要花钱购买在线清洗装置,也无须担心盐类晶体的析出对柱塞杆造成损伤; 专利设计的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,可设定溶剂相应的压缩因子,泵头可以自动排空,无须手动排空即可输液;可延长密封圈使用寿命; P5000型输液泵使用的&ldquo 自吸式单向阀&rdquo ,是世界上最好的单向阀,阀球能在溶剂通过单向阀后回流之前回到阀座将之密封,保障了泵流量超常的稳定。 优秀的单向阀设计与先进的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,使P5000输液泵在0-10ml/min的流量范围内都能耐压6000Psi,且压力波动远小于10Psi,成为国内外压力波动最小的泵之一。 拥有用户至关重要的两大功能 ①自动排空 ②自动清洗 二元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min(等度), 0.001~10ml/min(梯度)/0.001ml增量 延迟体积:150uL 最高耐压:6000psi(0-10ml/min) 压力脉冲:1% 比例精度:± 0.2%, 2ml/min 四元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min,0.001ml增量 延迟体积:400uL 最高耐压:6000psi(具高低压保护功能) 压力脉冲:1% 外置4流路在线真空脱气机 制备泵 流速精度:0.1% 流速范围:0.2~80ml/min(等度), 0.2~100ml/min(梯度),0.001ml增量 延迟体积:150uL 压力脉冲:1.5% 比例精度:± 0.2%, 5ml/min 自吸式单向阀-世界上最为优秀的单向阀 高压输液泵所使用的ASI自吸式单向阀是目前世界上最好的单向阀,它产生的流量有非常好的可重复性与准确性,这意味着单向阀能保持非常好的重复性。下图是Waters公司的单向阀与ASI公司的单向阀的使用比较,显而易见,ASI的自吸式单向阀的性能效果要优于Waters的单向阀。(Data Certified by: Baseline Services, Mercerville, NJ May 21, 1997, Bodman Chromatography Aston, PA May 21, 1997)
  • 哈希发布哈希Amtax NA8000氨氮自动监测仪新品
    - 工作原理:水杨酸 - 靛酚蓝法 催化剂的作用下,NH4+在碱性介质中,与次氯酸根离子和水杨酸盐离子反应,生成靛酚化合物,并呈现出绿色。在仪器测量范围内,其颜色改变程度和样品中的NH4+浓度成正比,因此,通过测量颜色变化的程度, 就可以计算出样品中NH4+的浓度。- 应用行业:用于市政污水、饮用水、地表水及工业等领域的在线氨氮监测。- 仪器特点:● 双波长及双光程的比色皿设计(专利号:ZL201720404712.9)测量水中氨氮浓度。通过参比光束的测量,仪器消除了样品浊度、电源波动等因素对测量结果的干扰。● 提供多种固定量程选择的同时,也可提供量程自动切换功能。● 具有自动校准和自动清洗等功能。● 数据存储功能,图形显示功能。● 试剂常温保存及使用。● 可灵活配置的多通道多模块输入输出模块。● 使用CYQ型水样预处理器进行样品预处理。● 支持中文操作界面,更好的历史数据显示界面。● 语言:中文、英文。● 哈希先进的Prognosys预诊断技术,提供预防性维护提醒,降低停机风险。创新点:哈希升级研发了全新一代氨氮在线测定产品——Amtax NA8000氨氮测定仪,来满足中国市场对于氨氮测定仪的需求。Amtax NA8000氨氮测定仪采用水杨酸-靛酚蓝法进行氨氮的测定,在测量准确性、稳定性及维护等方面做出了改进。该氨氮测定仪采用双波长及双光程比色皿设计(专利号:ZL201720404712.9),4档量程可自动切换,自动校准、清洗,同时支持数据存储和图形显示。 哈希Amtax NA8000氨氮自动监测仪
  • 西北农林科技大学单卫星教授团队发现负调控植物对寄生疫霉菌抗性新机制
    近日,西北农林科技大学旱区作物逆境生物学国家重点实验室单卫星教授团队在国际权威学术期刊《Molecular Plant Pathology》(Q1,IF=5.663)在线发表了题为《The Raf-like kinase Raf36 negatively regulates plant resistance against the oomycete pathogen Phytophthora parasitica by targeting MKK2》的研究论文,该研究发现了一种新的负调控植物对寄生疫霉菌抗性的类Raf激酶基因,为植物病虫害防控提供新的策略。卵菌是一类独特的植物病原菌,虽然其在系统发育上与真正的真菌相距甚远,但仍然会造成严重的作物减产和环境破坏。为了获得抗病性,植物已经形成了两种方法:动员抗病蛋白和抑制易感因子。研究植物对卵菌病原体易感性的遗传基础是开发新的抗病策略的有效途径之一。寄生疫霉菌(Phytophthora parasitica)在植物中引起破坏性疾病,从作物到树木都有广泛的宿主,已成为卵菌研究的模式病原体。通过使用拟南芥–寄生疫霉菌致病系统(已被证明涉及水杨酸(SA)、茉莉酸(JA)和乙烯(ET)信号通路),科学家们最近又发现了几种植物对寄生疫霉菌的易感因子。例如,与结瘤蛋白相关的MtN21家族基因AtRTP1(拟南芥对寄生疫霉菌1的抗性)通过调节活性氧(ROS)产生、细胞死亡进程和PR1表达来介导植物对寄生疫霉菌的敏感性。然而含有拟南芥VQ基序的蛋白VQ29已经被证明介导植物对寄生疫霉菌的抗性,而不依赖于已知的SA、JA和ET信号通路、亚麻荠素(Camalexin)生物合成和PTI信号。这种差别可以用拟南芥和寄生疫霉菌之间复杂的相互作用来解释。因此,有必要进一步研究植物对该病原菌的防御机制和敏感性。丝裂原活化蛋白激酶(MAPK)级联反应通常由MAPK激酶激酶(MAPKKK)、MAPK激酶(MAPKK)和MAPK组成,是植物免疫信号网络中的重要节点,传递来自不同刺激物的信号以调节下游防御反应。植物MAPKKKs由三个家族组成:MEKK家族、类Raf家族和ZIK家族。MEKK激酶通常在上游发挥作用,激活MAPKK-MAPK级联,但类Raf激酶与不同的底物相互作用,参与多种生命活动。与此同时,类Raf激酶也在植物与多种病原体的相互作用中发挥作用。然而,类Raf激酶是否参与植物与疫霉菌的相互作用及其机制仍基本未知。在这项研究中,作者鉴定了一个拟南芥T-DNA突变体,该突变体通过在MAPKKK中插入类Raf基因Raf36而增强了对寄生疫霉菌的抗性。随后作者通过CRISPR/Cas9技术构建raf36突变体,并同时构建了Raf36互补株和过表达转化株,感染实验结果一致表明,Raf36介导了拟南芥对寄生疫霉菌的敏感性。利用病毒诱导的基因沉默实验,作者沉默了烟草中的Raf36同源基因,并通过感染实验证明了Raf36的保守免疫功能。突变分析表明,Raf36的激酶活性对其免疫功能以及与MKK2的相互作用非常重要。作者接着通过构建和分析mkk2突变体、MKK2互补株和过表达转化株,发现MKK2是对寄生疫霉菌感染的反应中的一种阳性免疫调节因子。此外,对mkk2-raf36双突变株的感染实验表明,MKK2是raf36对寄生疫霉菌产生抗性所必需的。综上所述,作者发现一种类Raf激酶Raf36是一种新的植物敏感因子,在MKK2上游发挥作用,并直接以其为靶点,对植物对寄生疫霉菌的抗性进行负性调节。在使用萤火虫荧光素酶互补测定AtRaf36与AtMKK2的相互作用实验中,使用PlantView100植物活体成像系统进行拍摄。论文链接 https://doi.org/10.1111/mpp.13176广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了分子影像、蛋白凝胶预制及印迹处理系统、发光检测、活体成像四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 【文献速递】西北农林科技大学单卫星教授团队发现负调控植物对寄生疫霉菌抗性新机制
    近日,西北农林科技大学旱区作物逆境生物学国家重点实验室单卫星教授团队在国际权威学术期刊《Molecular Plant Pathology》(Q1,IF=5.663)在线发表了题为《The Raf-like kinase Raf36 negatively regulates plant resistance against the oomycete pathogen Phytophthora parasitica by targeting MKK2》的研究论文,该研究发现了一种新的负调控植物对寄生疫霉菌抗性的类Raf激酶基因,为植物病虫害防控提供新的策略。卵菌是一类独特的植物病原菌,虽然其在系统发育上与真正的真菌相距甚远,但仍然会造成严重的作物减产和环境破坏。为了获得抗病性,植物已经形成了两种方法:动员抗病蛋白和抑制易感因子。研究植物对卵菌病原体易感性的遗传基础是开发新的抗病策略的有效途径之一。寄生疫霉菌(Phytophthora parasitica)在植物中引起破坏性疾病,从作物到树木都有广泛的宿主,已成为卵菌研究的模式病原体。通过使用拟南芥–寄生疫霉菌致病系统(已被证明涉及水杨酸(SA)、茉莉酸(JA)和乙烯(ET)信号通路),科学家们最近又发现了几种植物对寄生疫霉菌的易感因子。例如,与结瘤蛋白相关的MtN21家族基因AtRTP1(拟南芥对寄生疫霉菌1的抗性)通过调节活性氧(ROS)产生、细胞死亡进程和PR1表达来介导植物对寄生疫霉菌的敏感性。然而含有拟南芥VQ基序的蛋白VQ29已经被证明介导植物对寄生疫霉菌的抗性,而不依赖于已知的SA、JA和ET信号通路、亚麻荠素(Camalexin)生物合成和PTI信号。这种差别可以用拟南芥和寄生疫霉菌之间复杂的相互作用来解释。因此,有必要进一步研究植物对该病原菌的防御机制和敏感性。丝裂原活化蛋白激酶(MAPK)级联反应通常由MAPK激酶激酶(MAPKKK)、MAPK激酶(MAPKK)和MAPK组成,是植物免疫信号网络中的重要节点,传递来自不同刺激物的信号以调节下游防御反应。植物MAPKKKs由三个家族组成:MEKK家族、类Raf家族和ZIK家族。MEKK激酶通常在上游发挥作用,激活MAPKK-MAPK级联,但类Raf激酶与不同的底物相互作用,参与多种生命活动。与此同时,类Raf激酶也在植物与多种病原体的相互作用中发挥作用。然而,类Raf激酶是否参与植物与疫霉菌的相互作用及其机制仍基本未知。在这项研究中,作者鉴定了一个拟南芥T-DNA突变体,该突变体通过在MAPKKK中插入类Raf基因Raf36而增强了对寄生疫霉菌的抗性。随后作者通过CRISPR/Cas9技术构建raf36突变体,并同时构建了Raf36互补株和过表达转化株,感染实验结果一致表明,Raf36介导了拟南芥对寄生疫霉菌的敏感性。利用病毒诱导的基因沉默实验,作者沉默了烟草中的Raf36同源基因,并通过感染实验证明了Raf36的保守免疫功能。突变分析表明,Raf36的激酶活性对其免疫功能以及与MKK2的相互作用非常重要。作者接着通过构建和分析mkk2突变体、MKK2互补株和过表达转化株,发现MKK2是对寄生疫霉菌感染的反应中的一种阳性免疫调节因子。此外,对mkk2-raf36双突变株的感染实验表明,MKK2是raf36对寄生疫霉菌产生抗性所必需的。综上所述,作者发现一种类Raf激酶Raf36是一种新的植物敏感因子,在MKK2上游发挥作用,并直接以其为靶点,对植物对寄生疫霉菌的抗性进行负性调节。在使用萤火虫荧光素酶互补测定AtRaf36与AtMKK2的相互作用实验中,使用PlantView100植物活体成像系统进行拍摄。论文链接 https://doi.org/10.1111/mpp.13176广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了分子影像、蛋白凝胶预制及印迹处理系统、发光检测、活体成像四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 从造纸厂走出的顶尖科学家|未来科学大奖得主柴继杰
    8月16日上午,从北京传来消息,西湖大学植物免疫学讲席教授柴继杰荣获“未来科学大奖—生命科学奖”。  与他一同分享这个奖项的,是中国科学院遗传与发育生物学研究所研究员周俭民,两人在植物免疫上的研究合作,跨度将近20年。  颁奖词写道:“奖励他们为发现抗病小体并阐明其结构和在抗植物病虫害中的功能做出的开创性工作。”  柴继杰刚刚入职西湖,但很多人对这个名字并不陌生。不仅因为他是中国大陆首位“德国洪堡教授”,还有他颇为传奇的人生经历。  这是一位从造纸厂走出的世界顶尖科学家。  柴继杰教授  1. 纸浆  柴,这个字拆开来看,是“此木”,就是“这个木头”。柴继杰似乎注定和植物有缘。  初中毕业时,他倔强地拒绝接替父亲的岗位。父亲是烤烟的一把好手,在烟草收购站工作,在上世纪70年代末,那是可以领细粮的“国家工作”。作为热带植物的烟草,想要在辽东半岛存活,得掐准时间。春末在大棚育苗,然后移栽到大田上,两个月可以收割。烟草茂盛时,比人还高。1980年的夏天,14岁的柴继杰穿梭其间,帮着家里收烟叶子。他没考上重点高中,但无论如何,普通高中他一定要去。七年后,他从大连轻工业学院造纸专业毕业,被分配到丹东鸭绿江造纸厂,做助理工程师,离家比较近。那份工作,那个专业,他说不上喜欢或不喜欢,只是因为报考大学选专业的时候,稀里糊涂就选了。  鸭绿江造纸厂老照片  把木头变成纸浆,是一个艰难的过程。造纸厂的水循环中有大量微生物,如果不及时处理,在高温下发酵变臭,添加物中还有各种含硫物质,味道难闻。再加上蒸汽和水流的噪音,让人避之不及。工人们的牌局就是在这样的氛围中进行的,柴继杰偶尔也会加入。虽然他并不觉得造纸厂的环境有多么难以忍受,但隐隐感觉这并不是他想要的生活。上大学和工作期间,柴继杰曾两次到访北京。他至今仍记得第一次见到立交桥时的震撼,飞驰的汽车、城市的繁华,让他莫名心动。柴继杰回忆说:  对当时的普通人来说,最有效也是最好的改变命运的办法,就是读书。  柴继杰对这次突围有着清晰的考虑。首先,他想去北京 其次,他觉得石油化工有行业优势,所以选择报考石油化工科学研究院。他对自己很有信心,他在大学里的考试成绩不错,尤其是化学相关的学科。  柴继杰花了半年时间备考,笔试通过后,石科院专门派人来造纸厂对他考察,对方很疑惑,这名考生居然来自工厂,且已经工作四年。考察人员走之前,留下一句话:“竟是这样的环境。”柴继杰被应用化学专业录取了。研究生期间的补贴比他在工厂的工资还高,他很开心。1994年,他继续读博,考入中国协和医科大学,误打误撞进入晶体学领域。晶体学是一个伏笔,1994年也是一个伏笔。 这一年,人类首次克隆出植物的相关抗病基因。植物没有动物一样的抗体免疫系统,只能通过不断进化获得防御机制,甚至和病原体协同进化。早在上世纪40年代,美国植物病理学家弗洛尔提出著名的“基因对基因”假说。该假说认为当病原体侵入植物时,会释放出“毒性因子”。在很多情况下这些毒性因子会阻碍植物的生长发育,促进病原体生长。但是在有些植物存在相应的受体,会“感知”这些病原体的“毒性因子”,从而引起植物的免疫反应。而这些配体和受体,都是双方基因表达出来的。另一个伏笔是蛋白质晶体学,柴继杰在博士期间的研究方向。蛋白质是参与所有生命活动的重要成员。本质上,它们通过基因来合成。作为一个“密码本”,基因的序列决定了蛋白质的氨基酸序列。不同的蛋白质有不同氨基酸序列,形成不同排列组合、空间折叠,即蛋白质的三维结构。如果条件合适,蛋白质会形成有序“堆积”,即晶体。在显微镜下,蛋白质晶体看上去与宝石很像。蛋白质晶体会对x射线产生衍射。通过收集衍射数据,可以计算出蛋白质的三维结构。蛋白质的三维结构对认识其作用机制具有非常重要的意义。这两个伏笔已经暗暗交织在一起,影响了柴继杰未来的人生走向。尽管读博士期间的柴继杰只是对科研很感兴趣,还说不上理想。事实上,一直到申请普林斯顿的博后时,他身上“造纸厂出身”的标签依然醒目:起点低,基础差,英语也不行。听到类似的声音,柴继杰也不反驳,任凭皱纹在微笑中绽放。他从来没觉得自己不行。很少有人知道,他考入的那所普通高中,在1983年的夏天,他是唯一考上本科的学生。只是没几年,这所“微不足道”的学校就被撤销了。他从唯一的一个,成了孤独的一个。  2. 冷泉  冷泉颇有禅意,以此命名的一个港湾,其实位于纽约长岛之上,《了不起的盖茨比》就是以长岛为背景。那是一战后、经济大萧条之前,纸醉金迷的爵士时代。而冷泉港实验室始建于1890年,也不知见证了多少个跌宕起伏的时代,这里对生命研究的探索一直在持续。把蛋白样品装入液氮罐,放到后备箱,就可以出发去冷泉港了。施一公开车,副驾驶坐着柴继杰。冷泉港的同步辐射光源时间非常紧张,需要预约。同步辐射光源能量相比普通衍射仪光源高得多,通常可以大大提高晶体衍射的分辨率。所以一旦预约上,一般都会连续实验,不分昼夜。冷泉港实验室给施一公和柴继杰提供了一个休息室,只有一张床位,两人每次都争着把床位让给对方,自己打地铺。柴继杰是施一公的博士后。1998年,施一公正在普林斯顿大学组建自己的实验室,翻到了柴继杰的简历,他觉得这个人很“邪乎”,居然在最基层的造纸厂工作了四年,还能再考上研究生。按捺不住好奇心,施一公拨通了北京的电话。他觉得眼前这个比他还大一岁的博士后申请人,能从造纸厂一路坚持下来,一定有他的过人之处。新入职的两位博士后到普林斯顿大学报到的第一天,施一公在实验室旁边的会议室里,认认真真地讲述了研究课题要求和初步的实验设计,讲完后,其中一位博后去准备实验了,剩下柴继杰站在那里没有动:  “一公,你能不能再讲一遍?”柴继杰问。  “你听懂多少?”施一公反问。  “我,可能大部分没太听懂……”柴继杰略显尴尬地说。  施一公很无奈,不得不从头开始,一点一点从基础教起。以至于后来柴继杰回忆起这段历史时还很得意,因为他的生物学实验技术都是施一公亲自传授,绝对的嫡传。是啊,不然呢?柴继杰似乎自带“免疫体质”,这些他都没有太放在心上。他听从了施一公的建议,每天坚持阅读英文报纸及文献,以及,把烟戒了。因为吸烟要下楼,浪费时间。 那些年,在反复开往冷泉港的小车上,正驾驶和副驾驶位置上的两个人,年龄相仿,一个是普林斯顿最年轻最拼的教授之一,一个是在33岁的时候重拾生物学的博士后。  一个愿意等待奇迹,一个愿意相信奇迹。等到普林斯顿的樱花五开五落,柴继杰终于找到了做科研的感觉,也发了不错的文章。他自信满满,但依然不敢说有什么梦想。他一度考虑到工业界工作,施一公把他劝住了,对他说了一句:  继杰,你肯定会后悔的。  当时,北京生命科学研究所(北生所)刚刚组建,在美国招聘独立实验室负责人(PI)研究员,所长是王晓东,也是著名的生物化学家。施一公带着他驱车前往面试地点康涅狄格纽黑文。柴继杰还是坐副驾驶。这一趟旅程之后,他希望自己有“独立驾驶”的机会。  这是北生所第一次招聘PI,一共13位候选人进入最终的面试。面试地点就设在纽黑文国际机场附近的一家酒店。一天面试下来,大家投票,6人顺利入选,柴继杰排在第七位,个别评委对他的潜力仍然存疑。王晓东问施一公:“柴继杰的潜力究竟如何?你给句话吧。”施一公径直回复:“如果继杰和我竞争同一个高难度课题,我的胜率大约50%。”大家释然。经过五年的博士后训练,柴继杰在科学研究上已自信满满。回国之前,他找施一公长聊,他说:“施老师啊,我走了以后,谁和你一起做难的课题啊?”这话说得,就好像傲娇的孙悟空离别唐僧——师傅啊,以后谁帮你打妖怪?而施一公的千言万语,其实早就写入给柴继杰的推荐信里。按照惯例,柴继杰看不到推荐信的内容,所以施一公说了什么,他至今无从知晓。  3.草木  回国后的第二年,柴继杰又重新点燃了香烟,复吸了。这一年他39岁,已近不惑。北京生命科学研究所刚成立,也就二十几个实验室,红色四层建筑。柴继杰的实验室在二楼,对面是周俭民的实验室,中间隔着一些共用的实验设备。周俭民致力于研究植物和微生物相互作用机理,接下来即将发生的合作,正是一种植物撮合的——烟草。柴继杰经常和周俭民一起抽烟。柴继杰一次次掐灭烟头,却逐渐燃起了真正的热情——接下来20年他真正要施展的领域——植物免疫。  周俭民(左)和柴继杰(右)  植物可以说是人类文明的基石之一,特别是农作物。柴继杰经常提起爱尔兰大饥荒,1845年到1850年间,爱尔兰人口锐减了四分之一,起因就是晚疫病菌的卵菌造成的马铃薯腐烂。科幻电影里也展现出这种忧虑——《星际穿越》一开场,农作物的枯萎病蔓延,最后只剩下玉米艰难生存。可人类对植物免疫知之甚少,水杨酸就是最有代表性的故事。古希腊人就知道咀嚼柳树皮可以减轻分娩痛苦。直到1828年,化学家从柳树皮中提炼出少量活性成分。1898年,乙酰水杨酸被合成,这就是著名的解热镇痛药物阿斯匹林。但直到阿斯匹林畅销全球差不多一个世纪后,人类才搞清楚,水杨酸是植物免疫机制中的一种信号分子,最初用来做验证实验的植物恰好就是烟草。周俭民和柴继杰开始合作的时候,虽然前人已经提出了“基因到基因”的理论,并通过遗传方法克隆到的一些抗病基因,但植物的这些抗病蛋白究竟是如何工作的,工作机制是什么,基本一片空白。而理解这一机制,对更好利用抗病蛋白具有重要意义。柴继杰和周俭民从2004年开始合作,直到2007年才有了一些关于抗病蛋白的初步结果。他们描述了这样一场战斗。一边是番茄中抗性蛋白Pto,一边是病原菌产生的效应蛋白AvrPto。Pto伪装成“空城”, AvrPto像是病原菌的先头部队,一旦先头部队误入空城,城上的Prf蛋白就会燃起烽火,传递战事信号。这后来被称为“诱饵模型”,他们捕获到了AvrPto-Pto的结合状态,并通过与周俭民实验合作,探索其免疫机制,这项成果发表在Nature上。虽然这项工作在认识抗病蛋白作用机理的道路上迈了一步,但是仅仅是万里长征的第一步。但受限于当时的技术条件,柴继杰和同事在植物免疫领域的探索“沉寂”了好些年,他们也会做一些植物抗病蛋白之外的研究,保持实验室的科研节奏。植物不会动,没有血液循环,但进化出复杂的免疫机制,每一个细胞,就是一个部队。仅仅是在细胞膜上,就有很多蛋白质肩负着对抗病原体的任务,它们像一个个哨兵,守卫着植物健康生长。神奇的是,柴继杰和团队更多地是用昆虫细胞来表达植物抗病蛋白,表达效果更好。研究植物竟然是借助昆虫细胞,生命进化遥相呼应,正如我们对卑微生命的语言描述,常把两者放在一起:草木虫豸。  4.花环  熟悉施一公的人都知道,他喜欢给学生上课,也喜欢和年轻学生交流。2005年,施一公在清华讲课,台下一位自称来自北大的女生提问,问题很精彩,引起了施一公的关注,问她,你是谁的学生?  “柴大老板。”女生回答说。  “哪个柴大老板?”施一公似乎听懂了,  故意反问。  “柴继杰,柴大教授!”女生得意地回答。  “哦,继杰啊,是我的学生。”施一公故  意漫不经心地笑着说。  “我们柴老师觉得,他是青出于蓝而胜于蓝!”女生话语里透着几分骄傲。  这段对话,同样让施一公倍感骄傲。直到今天,柴继杰仍是他实验室培养出来的最得意的博士后之一。施一公在很多地方不断重复这个故事,在他看来,“输在起跑线上”并不那么重要,关键还是后程发力。柴继杰主攻的植物免疫大致分成两个层面,细胞膜上,由膜表面识别受体(PRR)直接识别病原体,包括受体激酶和受体蛋白两种 细胞内,由核苷酸结合和富含亮氨酸重复序列受体(NLR),识别病原体的效应因子,从而引发免疫效应。根据N端结构域不同,NLR又可以分为CNL和TNL。2013年前后,柴继杰和团队在PRR领域的研究已经取得多项突破,他们发现,不仅是植物免疫、还包括植物生长发育,二聚化是植物受体激酶活化的最小单位,而受体蛋白的活化也遵循“二聚化”的基本规律。这些发现可以为培育广谱抗病作物品种提供理论基础。2017年又是一个转折点。凭借受体激酶的研究,柴继杰与合作者获得国家自然科学二等奖。同年,柴继杰获得德国“洪堡教席奖”,前往普朗克植物育种研究所继续开展研究。  在清华,柴继杰经常是第一个到实验室,最后一个走。“我们很怀疑,柴老师有没有逛过清华园。”柴继杰的同事说。普朗克植物育种研究所一派田园风光,这所创建近百年的研究所,拥有自己的试验田和温室大棚。每到傍晚时分,柴继杰会如期穿梭在其中,一边快走锻炼身体,戴着耳机听音乐,一边思考这一天来的研究工作。以及,他彻底戒掉了香烟。  柴继杰在德国  2019年,更大的突破接踵而至。柴继杰团队揭示CNL类抗病蛋白ZAR1的不同状态,识别到病原体信号时,五个ZAR1蛋白会聚合到一起,形似一朵紫金花。柴继杰和周俭民为它取名为“抗病小体”,这被认为是植物免疫领域里程碑事件。“抗病小体”的激活,会引发植物免疫反应和细胞死亡。“抗病小体”的外形和施一公研究过的凋亡体有一种呼应,凋亡体是花环形,而两者都可以和细胞死亡相关。看到结构后,柴继杰展现出一种敏锐的直觉,虽然结构相似,但后者功能可能不同。“抗病小体”的中心有一个凸起的结构,柴继杰猜测可能和细胞膜通道或膜孔有关。之后,柴继杰和周俭民合作以及其他老师合作,发现 “抗病小体”可以抵达细胞膜,形成钙离子通道,进而引发后续的免疫反应。2020年,柴继杰和团队继续突破,发现TNL类抗病蛋白RPP1四聚化后,会产生全新的核苷类化合物,作为“第二信使”,从而起始植物的免疫和死亡通路。这是2022年柴继杰和合作者连续发表五篇关于植物抗病蛋白的文章。快吗?柴继杰对此的回答是:我们为此准备了近20年。  柴继杰在植物房  现在,柴继杰和他的团队,已经打扫好新的实验室,包括几间植物房,播下了种子,包括拟南芥、水稻,还有本氏烟草。这些都是理想的模式植物。柴继杰画了一张图,上面是植物免疫的各种模式,其中还标注了很多问号。在西湖大学,他要把这些问号拉直,并且探索帮助植物提高免疫的新机制和方法。植物房里的种子刚刚冒出苗头。柴继杰对新环境很喜欢,他的实验室在西湖大学云栖校区,这是杭州著名的风景区之一,周围低山环绕。曾经,他向往都市生活去考了研究生,但现在他更喜欢草木虫豸。曾经,他为了能继续上学拒绝烟叶田,但现在却心甘情愿地在实验室种上烟草。时间给他画了一个圈,就像一个花环。
  • 一致性评价迫在眉睫,药物溶出仪如何验证
    2016年3月25日,CFDA总局办公厅公开征求药物溶出仪机械验证指导原则的意见。  为进一步推进仿制药与原研药品质量和疗效一致性评价工作的开展,根据《国务院关于改革药品医疗器械审评审批制度的意见》(国发〔2015〕44号)要求,制定本指导原则。  在仿制药质量和疗效一致性评价研究工作中,为保证体外溶出试验数据的准确性和重现性,所使用的溶出仪应能够通过本指导原则的各项机械验证技术指标,还应按《中国药典》的要求采用溶出度标准片(如水杨酸片)对仪器进行性能验证试验,均需符合规定。  本指导原则适用于仿制药质量和疗效一致性评价体外溶出试验中,《中国药典》2015年版通则0931溶出度与释放度测定法第一法(篮法)和第二法(桨法)所用溶出仪的机械验证。药物溶出仪机械验证指导原则.doc
  • 国产多功能量热仪研发再出新成果!
    湘南学院李强国教授、长江大学谷惠文副教授研制出一种CSC-1型水平旋转微弹燃烧溶液等温多功能量热仪,相关成果近日以题为Construction and performance evaluation of a CSC-1 type horizontal rotating micro-bomb combustion-solution isoperibol multifunctional calorimeter发表在国际热化学期刊《The Journal of Chemical Thermodynamics》上。该量热仪设计了一种由24个金接触点集电环组成的旋转系统,燃烧系统中的微弹可360° 水平旋转。这种量热计的结构与现有的量热仪有三个主要区别:(1) 将燃烧热和溶液热的测量结合起来(2) 采用杜瓦瓶作为共有量热仪容器测定燃烧热和溶解热(3) 水下磁搅拌取代了传统的机械棒式搅拌。用NIST-SRM-39j苯甲酸对量热计中燃烧系统的能量当量进行了标定,结果为(1181.94± 0.23)J⋅K-1。利用该燃烧系统测定了水杨酸的标准燃烧比能,结果表明,298.15 K时水杨酸的标准燃烧比能为–(21884.9± 5.4)Jg-1。计算了水杨酸的标准摩尔生成焓为ΔfHmo[C7H6O3(s),298.15K]=-(589.27±2.98)kJ mol−1。另外,用电能对量热计中溶液体系的能量当量进行了标定,结果为(5.28084± 0.00261)JmV−1。在298.15k的水溶液体系中测定了KCl的标准比焓,结果表明:KCl(1100 H2O,298.15K)的标准比焓和摩尔焓分别为(235.33± 0.03)Jg-1和(17543.2± 8.9)Jmol-1。这些结果表明,所研制的量热仪中燃烧和溶液的量热系统是可靠和可行的。
  • 赛默飞发布Orion 8010cX 氨氮自动监测仪新品
    Thermo Scientific Orion 8010cX 氨氮自动监测仪Thermo Scientific Orion 8010cX氨氮自动监测仪基于国家标准方法水杨酸分光光度法,测量可靠、方法可溯源且无需剧毒试剂。仪器专业的工业设计、界面设计、模块化设计、功能设计、抗干扰的测量流程设计及算法使得仪器可广泛应用于多种应用场合,以满足排放法规及工艺过程氨氮的控制要求。典型应用:市政污水的在线监测:包括污染源在线监测,污水处理设施的入口和出口监测等。地表水在线监测:包括水源地、湖泊、水库等在线监测。饮用水在线监测:消毒过程质量控制和饮用水在线监测。工业过程在线控制:工业过程中需要对氨氮浓度进行控制。氨氮是各种水体中最为常见的污染物之一,其对环境的直接影响及排放到自然水体后因贡献氮元素而带来的间接危害(如水体富营养化)被广泛关注。各国政府对氨氮的排放都有严格的规定,在污水排放标准中是主要的监控指标之一。中国甚至早在15年前就将氨氮列入两个总量控制指标的其中之一。为了达到排放标准,除了对排放口进行排放指标控制性监测,各排污企业必须在污水处理过程中对各工艺段的氨氮浓度进行严格控制,已调整处理的相关工艺参数,否则很难达到最终的排放要求。在线检测技术可以帮助排污企业准确快速的获取氨氮监测数据,为氨氮排放监管提供依据。然而,准确可靠、低维护、低故障的自动监测仪器需要考虑诸多因素。当应对情况较为复杂的污水,仪器需要耐受污水对仪器的污染的同时,还需要可以排除这些干扰因素提供准确数据。仪器应该具备自动量程切换、自动校准和自动清洗等功能以保障仪器长期稳定无人值守运行。新型Orion 8010cX 氨氮自动监测仪正是为了在复杂应用环境下提供准确、稳定的氨氮在线检测方案而设计开发。仪器基于标准方法、功能丰富、操作界面友好、维护量少、维护成本低,适用于多种应用场合。产品优势:旨在提供准确可靠的测量,满足排放的法规和工艺过程控制的要求。自动量程切换功能,保障数据有效性及准确性。丰富的软件功能,直观的图形化操作界面,方便易懂易操作。特殊的测试流程设计和算法使得仪器具备更好的抗干扰(颜色和浊度等)能力。结构紧凑,占用空间小。模块化设计、IP65防护等级机箱及长寿命关键组件保障长期稳定运行。低运营成本,低维护要求——全自动校准功能、自清洗功能。低的试剂消耗量和化学废液产生量。Orion 8010cX 在线氨氮分析仪规格测量性能测量范围量程1:(0.02-2)mg/L 量程2:(0.1-15)mg/L 量程3:(0.5-30)mg/L 量程4:(2-100)mg/L 量程5:(30-500)mg/L 准确度量程1:(0.02-2)mg/L: 读数的3%±0.04 mg/L量程2:(0.1-15)mg/L: 读数的3%±0.1 mg/L量程3:(0.5-30)mg/L: 读数的4%±0.1 mg/L量程4:(2-100)mg/L: 读数的5%±0.1 mg/L量程5:(30-500)mg/L: 读数的10%重复性量程1:(0.02-2)mg/L: 3%或±0.02 mg/L, 取大者量程2:(0.1-15)mg/L: 3%或±0.05 mg/L, 取大者量程3:(0.5-30)mg/L: 3%或±0.1 mg/L, 取大者量程4:(2-100)mg/L: 3%或±0.3 mg/L, 取大者量程5:(30-500)mg/L: 3%或± 0.6 mg/L,, 取大者最低检出限(LOD)量程1:(0.02-2)mg/L: 0.02 mg/L量程2:(0.1-15)mg/L: 0.1 mg/L量程3:(0.5-30)mg/L: 0.5 mg/L量程4:(2-100)mg/L: 1 mg/L量程5:(30-500)mg/L: 5 mg/L分辨率读数连续、周期测量(可设置启动时间)分析原理水杨酸分光光度法测量性能环境温度范围5-40℃*最大湿度95% RH 无凝露采样条件水样流量50-1000mL/min水样压力1-5 bar水样温度范围5-50℃水样连接口流通池入口G1/2母螺纹流通池G1/2母螺纹水样要求总溶解固体量(TDS)色度(铂钴比色法)数据与控制电流输出两路 4-20 mA,最大负载900Ω干触点输出2个干触点,2A@250VAC数字通讯RS485法规符合性电气安全cTUVus, CB, CE-LVD, RCM电磁兼容FCC, CE-EMC, RCM环境安全CE-RoHS, REACH, China RoHS*可能需要附加过滤预处理。创新点:Thermo Scientific™ Orion™ 8010cX 氨氮自动监测仪基于国家标准方法水杨酸分光光度法,检测可靠、方法可塑源且无需剧毒试剂。仪器专业的工业设计、界面设计、模块设计、功能设计、抗干扰的测量流程设计及算法使得仪器可广泛应用于多种应用场合,以满足排放法规及工艺过程氨氮的控制要求。 Orion 8010cX 氨氮自动监测仪
  • 17种化妆品禁/限用物质检测方法公布
    各省、自治区、直辖市食品药品监督管理局(药品监督管理局):   为规范化妆品中禁用物质和限用物质检测技术要求,提高化妆品质量安全,化妆品中氢化可的松等禁用物质或限用物质的检测方法已经国家食品药品监督管理局化妆品标准专家委员会审议通过,现予印发。   附件:   1.化妆品中氢化可的松等7种禁限用物质的检测方法   2.化妆品中水杨酸的检测方法   3.化妆品中酮麝香的检测方法   4.化妆品中巯基乙酸的检测方法   5.化妆品中8种邻苯二甲酸酯的检测方法   6.化妆品中4-氨基偶氮苯和联苯胺的检测方法   7.化妆品中苯并[а]芘的检测方法   8.化妆品中4-氨基联苯及其盐的检测方法   9.化妆品中间苯二酚的检测方法   10.化妆品中32种禁限用染料成分的检测方法   11.化妆品中苯扎氯铵的检测方法   12.化妆品中羟基喹啉的检测方法   13.化妆品中过氧化氢的检测方法   14.化妆品中苄索氯铵、劳拉氯铵和西他氯铵的检测方法   15.化妆品中颜料橙5等5种禁用着色剂检测方法   16.化妆品中呋喃香豆素类(三甲沙林、8-甲氧基补骨脂素、5-甲氧基补骨脂素)和欧前胡内酯的检测方法   17.化妆品中补骨脂特征成分补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮的检测方法   国家食品药品监督管理局   二○一二年一月十六日
  • 化妆品中8种禁用或限用物质检测方法征求意见
    关于征求化妆品中间苯二酚等禁用物质或限用物质检测方法(征求意见稿)意见的函 食药监保化函[2011]327号 各省、自治区、直辖市食品药品监督管理局(药品监督管理局),有关单位:   为进一步加强化妆品安全评价工作,规范化妆品中禁用物质或限用物质检测方法,我司组织起草了化妆品中间苯二酚等禁用物质或限用物质检测方法(征求意见稿)。现向社会公开征求意见,请将修改意见于2011年8月20日前反馈我司。   联 系 人:林庆斌   联系电话:010-88330884   传  真:010-88373268   电子邮件:linqb@sfda.gov.cn   附件:1.化妆品中间苯二酚的检测方法(征求意见稿)      2.化妆品中巯基乙酸的检测方法(征求意见稿)      3.化妆品中水杨酸的检测方法(征求意见稿)      4.化妆品中酮麝香的检测方法(征求意见稿)      5.化妆品中8种邻苯二甲酸酯的检测方法(征求意见稿)      6.化妆品中4-氨基偶氮苯和联苯胺的检测方法(征求意见稿)      7.化妆品中苯并[α]芘的检测方法(征求意见稿)      8.化妆品中4-氨基联苯及其盐的检测方法(征求意见稿)      9.反馈意见表   国家食品药品监督管理局保健食品化妆品监管司   二〇一一年八月三日
  • 福立液相新品LC5190重点行业应用来袭
    福立LC5190低压超高效液相色谱仪采用了全新的系统设计,结合创新的核壳色谱分离填料,实现了低压超高效液相色谱理念,在常规高效液相色谱压力下,就能达到高分离、高灵敏度、高通量分析。 LC5190低压超高效液相色谱仪 LC5190重点行业应用 环境行业:水质 磺酰脲类农药的测定磺酰脲类农药是一类广泛用于农业生产中的除草剂,具有高水溶性和稳定性,能够引起急性中毒、生殖毒性、过敏反应等,长期接触可增加患癌风险。福立LC5190依据国家环境保护标准:《HJ 1018-2019 水质 磺酰脲类农药的测定 高效液相 色谱法》对环境水中10种磺酰脲类农药进行检测分析。常规色谱柱核壳色谱柱 优 势 LC5190可以适用市场上最常见的各种粒径(5,3.5,2.7,甚至1.8μm)色谱柱,能够与已有成熟分析方法无缝衔接。LC5190搭配核壳色谱柱【Chromcore AQ 3μm,150mm×4.6mm】对10种磺酰脲类农药进行分析,分析时间可缩短至24分钟,分析效率提升50%,可有效提高实验室通量。食品行业:水产品中的激素残留水产品养殖滥用、乱用激素类药物的现象已普遍存在。长期食用含有激素残留的水产品,激素类药物会在体内不断地累积,当浓度达到一定量时,就会引发一系列健康问题。1.雌三醇 2.波尼松 3.泼尼松 4.地塞米松. 5.勃地酮 6.醋酸氢氟可的松 7.美雄酮 8.雌二醇 9.睾酮 10. 甲睾酮 11.雌酮 12.己烯雌酚 13.己烷雌酚 优 势 采用LC5190低压超高效液相色谱仪测定虾中13种激素, 目标物线性范围良好,灵敏度较高,重现性良好,能够对虾中13种激素进行准确定性定量分析。制药行业:中药配方颗粒的质量分析市场需求规模的增长和临床需求用量的增大对中药配方颗粒的质量控制也提出了越来越严格的要求,相关部门出台了一系列政策与行业标准,福立仪器依据中药配方颗粒国家药品标准,采用LC5190低压超高效液相色谱仪对金银花配方颗粒进行高效分析。特征谱图1.绿原酸,2.芦丁,3.木犀草苷酚酸类溶液谱图 1.绿原酸,2.3,5-二-O-咖啡酰奎宁酸,3.4,5-二-O-咖啡酰奎宁酸木犀草苷溶液谱图1.木犀草苷 优 势 在配方颗粒标准方法中,某些 HPLC 方法运行时间过长。因此,在灵敏度、相对保留时间 (RRT)、含量测定等方面符合要求的前提下,从 HPLC 转换到 UHPLC 可大大节省时间和溶剂消耗,提高分析通量和效率。化妆品行业:化妆品中水杨酸的测定水杨酸广泛应用于化妆品中,是化妆品中的常见成分,它能有效去除老化角质,促进肌肤新陈代谢,然而,水杨酸若未按标准含量添加将难以发挥对皮肤的改善效果,但长期使用高浓度水杨酸产品,又可能导致皮肤敏感及脆弱,损害和破坏皮肤的自然屏障,因此水杨酸在不同化妆品的使用含量都有明确的标准要求。常规色谱柱核壳色谱柱 优 势 使用福立Nuovasil C18-AQ色谱柱(4.60 mm ×250 mm,粒径为5.0 µ m)在LC5190上对水杨酸检测分析,其保留时间平均值为13.539min;当使用福立SunShell C18色谱柱(3.0mm×100mm,粒径为2.6 µ m),其保留时间缩短至为4.183min,分析效率提升超225%,提升了实验通量。 小结 福立LC5190是一款具有广泛应用优势的低压超高效液相色谱仪,其设计和技术特点使其在多种应用场景中表现出色。多功能兼容性三种运行模式:LC5190兼容常规、快速和低压超高效液相系统三种模式,满足不同应用场景需求。扩展应用:系统兼容氨基酸色谱、二维色谱、凝胶渗透色谱(GPC)等多种拓展应用,增强了其在不同领域的应用能力。高精度控制精准压力控制:全流量范围内压力控制精度在0.1Mpa以内,确保在复杂应用中的出色表现。智能溶剂管理:智能GLP溶剂管理功能,便捷掌控溶剂的使用,提高实验效率和准确性。稳定耐用严格耐受测试:LC5190通过了严格的耐受测验,保证了设备经久耐用的品质。系统稳定性:多种应用场景测评,保障系统稳定可靠,减少了设备故障的可能性。
  • 欧盟禁止2,5-二甲基-3-乙酰基噻吩作为食用香料
    2013年6月15日,据欧盟网站消息,欧盟发布(EU)No 545/2013号委员会条例,修订了(EC)No 1334/2008号食用香精香料法规,禁止2,5-二甲基-3-乙酰基噻吩(3-acetyl-2,5-dimethylthiophene)作为食用香料用于食品。   据欧洲食品安全局2013年5月15日公布的2,5-二甲基-3-乙酰基噻吩评估结果,2,5-二甲基-3-乙酰基噻吩在体内外试验均具有致突变性,因此本法规将其从许可香料清单中删除。   同时,禁止2,5-二甲基-3-乙酰基噻吩作为食用香料投放市场或用于食品;禁止含有香料物质2,5-二甲基-3-乙酰基噻吩的食品投放市场,禁止2,5-二甲基-3-乙酰基噻吩作为香料进口或含有2,5-二甲基-3-乙酰基噻吩的食品进口。   对于在本法规生效前上市的含有2,5-二甲基-3-乙酰基噻吩的食品可在其保质期内进行销售;本法规生效前进口的含有2,5-二甲基-3-乙酰基噻吩的食品不适用于本法规。   本法规自公布之日起生效。
  • 空气、废气、水质中氨的测定国标发布
    关于发布《空气和废气 氨的测定 纳氏试剂分光光度法》等五项国家环境保护标准的公告   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《环境空气和废气 氨的测定 纳氏试剂分光光度法》等五项标准为国家环境保护标准,并予发布。   标准名称、编号如下:   一、《环境空气和废气 氨的测定 纳氏试剂分光光度法》(HJ 533-2009)   二、《环境空气 氨的测定 次氯酸钠-水杨酸分光光度法》(HJ 534-2009)   三、《水质 氨氮的测定 纳氏试剂分光光度法》(HJ 535-2009)   四、《水质 氨氮的测定 水杨酸分光光度法》(HJ 536-2009)   五、《水质 氨氮的测定 蒸馏-中和滴定法》(HJ 537-2009)   以上标准自2010年4月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自以上标准实施之日起,由原国家环境保护局批准、发布的下述五项国家环境保护标准废止,标准名称、编号如下:   一、《空气质量 氨的测定 纳氏试剂比色法》(GB/T 14668-93)   二、《空气质量 氨的测定 次氯酸钠-水杨酸分光光度法》(GB/T 14679-93)   三、《水质 铵的测定 纳氏试剂比色法》(GB 7479-87)   四、《水质 铵的测定 水杨酸分光光度法》(GB 7481-87)   五、《水质 铵的测定 蒸馏和滴定法》(GB 7478-87)。   特此公告。   二○○九年十二月三十一日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制