当前位置: 仪器信息网 > 行业主题 > >

帕布昔利布杂质

仪器信息网帕布昔利布杂质专题为您提供2024年最新帕布昔利布杂质价格报价、厂家品牌的相关信息, 包括帕布昔利布杂质参数、型号等,不管是国产,还是进口品牌的帕布昔利布杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合帕布昔利布杂质相关的耗材配件、试剂标物,还有帕布昔利布杂质相关的最新资讯、资料,以及帕布昔利布杂质相关的解决方案。

帕布昔利布杂质相关的论坛

  • CATO独家 | 新型治疗乳腺癌杂质——帕布昔利布杂质

    CATO独家 | 新型治疗乳腺癌杂质——帕布昔利布杂质

    ◇关于帕布昔利布杂质 帕布昔利布杂质是一种治疗乳腺癌的杂质,它也是一种新型的CDK4/6抑制剂,它是FDA首个获得批准的药物。帕布昔利布杂质是通过调节细胞周期,抑制CDK4和CDK6的活性,从而阻止细胞从G1期进入到S期,进一步抑制DNA的合成。 帕布昔利布首次于 2015 年 2 月在美国获得批准,CATO标准品提供的帕布昔利布杂质,在妇女绝经后的人群中还显示它还可以与来曲唑合并用于 HR+、HER2-晚期或转移性乳腺癌治疗。[img=,600,523]https://ng1.17img.cn/bbsfiles/images/2024/02/202402040904326373_1427_6381607_3.png!w600x523.jpg[/img]

  • 尼达尼布杂质的作用

    尼达尼布杂质的作用

    尼达尼布杂质可能会对药物的药理活性产生不利影响,导致药效降低。比如,有可能降低尼达尼布对肿瘤细胞的抑制作用,从而影响治疗效果。另一方面,尼达尼布杂质可能对人体产生毒性反应,对患者的身体健康产生不良影响。例如,有可能引起过敏反应,导致患者出现皮疹、呼吸困难等症状。但是,值得注意的是,这些展示都是可能性,并不一定在所有情况下都会发生。具体情况需要根据尼达尼布药品中杂质的类型和含量来判断。为了避免杂质对药物效果的影响,CATO标准品在药品生产中会进行严格的质量控制,对杂质进行有效的控制和清除。同时,掌握和理解杂质的产生机制,也有助于进一步完善和优化药品的生产工艺。[img=,604,514]https://ng1.17img.cn/bbsfiles/images/2024/02/202402041439114552_8061_6381668_3.png!w604x514.jpg[/img]

  • 依折麦布杂质的作用

    依折麦布杂质的作用

    依折麦布是一种抗凝血药物,用于预防和治疗血栓和栓塞疾病。然而,在其生产过程中可能会生成杂质。依折麦布杂质可能会影响依折麦布的质量、疗效和安全性。如果杂质存在过多,可能对药物的抗凝作用产生干扰,造成药效减弱;此外,某些杂质可能对人体产生毒性,增加药物的副作用,甚至引发不良反应。因此,对于依折麦布的杂质需要通过有效的生产工艺和质量控制手段进行控制,以确保药物的质量和安全性。同时,药物注册时,也需要对杂质进行详细的评估,并提供关于杂质来源、性质、水平以及控制措施等的信息。在实际研究过程中,杂质的研究和控制也是药品研发的重要部分。CATO标准品通过研究依折麦布的杂质,可以进一步了解其化学性质和生理作用,有助于更好地理解和优化药物的生产过程,提高药品的质量和疗效。[img=,604,583]https://ng1.17img.cn/bbsfiles/images/2024/02/202402021712539448_6005_6381668_3.png!w604x583.jpg[/img]

  • 伊伐布雷定杂质的作用

    伊伐布雷定杂质的作用

    伊伐布雷定是一种用于治疗成人和儿童音乐综合症等疾病的药物。在伊伐布雷定的制造过程中,可能会产生一些杂质。这些伊伐布雷定杂质可能由化学反应生成,也可能来自原始材料。无论杂质来源如何,过多的杂质可能会影响药品的质量、疗效和安全性。例如,一些杂质可能会导致药物的疗效降低,或者引发不良反应。因此,制药公司必须在生产过程中严格检测和控制这些杂质,以确保药品的质量和安全性。CATO标准品对杂质进行研究和分析也可以有助于优化制药过程,例如,找出产生杂质的环节并进行调整,以减少杂质的生成。这有助于提高药品质量,保证疗效,保证患者的安全。[img=,613,522]https://ng1.17img.cn/bbsfiles/images/2024/02/202402052104420028_3541_6381668_3.png!w613x522.jpg[/img]

  • CATO独家 | 帕唑帕尼杂质标准品

    CATO独家 | 帕唑帕尼杂质标准品

    ◇帕唑帕尼杂质 帕唑帕尼杂质是在帕唑帕尼药物制备或存储过程中可能产生的物质。帕唑帕尼杂质有多种,其中一些具有特定的CAS号、化学式和分子量。例如,帕唑帕尼杂质(Pazopanib Impurities)的CAS号为59816-94-3,化学式为C22H22N8,分子量为398.46。此外,帕唑帕尼杂质还包括一些异构体和其他结构类似物,如Pazopanib Isomer等。 CATO标准品提供的帕唑帕尼全套的杂质,这些杂质对于药物的纯度和稳定性研究至关重要,也是药物研发过程中不可或缺的一部分。[img=,605,510]https://ng1.17img.cn/bbsfiles/images/2024/02/202402192050040241_6306_6381607_3.png!w605x510.jpg[/img] 广州佳途科技股份有限公司深知药物研发与质量控制的重要性,CATO标准品厂家,提供帕唑帕尼全套的杂质,为客户提供更加精准、可靠的分析标准品,助力药物研发事业的快速发展,以满足客户在药物研发和质量控制方面的需求。

  • COTO标准品|索非布韦杂质研究

    索非布韦杂质是一种化学物质,它是索非布韦的同分异构体或相关化合物。索非布韦是一种直接作用在肝脏的抗病毒药物,用于治疗丙型肝炎。COTO标准品是一种高纯度的标准物质,用于测定索非布韦及其杂质的纯度、含量和化学性质。通过与COTO标准品进行对比和分析,可以确定索非布韦及其杂质的结构、组成和含量,从而保证索非布韦的质量和安全性。在药物研发和生产过程中,COTO标准品的使用非常重要。它可以提供可靠的参照物,用于质量控制、药物分析和化学计量学研究。通过使用COTO标准品,可以确保索非布韦及其杂质的准确性和可靠性,为药物的安全性和有效性提供保障。总的来说,COTO标准品在索非布韦杂质的研究和控制中具有重要作用。通过使用COTO标准品,可以更好地了解索非布韦及其杂质的性质和含量,从而确保药物的安全和有效性。同时,也需要加强生产过程中的管理和监督,加强质量标准和监管措施的执行力度,确保药物质量和安全。

  • 布美他尼杂质的作用

    布美他尼杂质的作用

    布美他尼杂质是药物布美他尼制剂中可能存在的杂质,这些杂质可能来源于原料药的生产过程、制剂的准备过程或者储存过程。1. 影响药效:药物中含有过多的杂质可能会影响药物的药效,产生药效不稳定、药效降低等问题。2. 影响安全性:部分杂质可能具有潜在的毒性,长期或高剂量使用可能对人体造成伤害。严重情况下可能出现药品不良反应甚至中毒。3. 影响药物的稳定性:不同类型的杂质结构,可能影响药物的稳定性,例如酸性或碱性杂质可能引起药物分解,导致药效降低或失效。4. 影响药物的外观质量:杂质可能会影响药物的外观性状,如颜色、透明度和溶解性等。因此,确定和控制药物中的杂质是药品质量控制的重要环节。CATO标准品对于药物杂质的研究,主要包括杂质的来源、形成机理、控制策略和杂质的鉴定、定量测定等内容。[img=,607,514]https://ng1.17img.cn/bbsfiles/images/2024/02/202402041444015575_2473_6381668_3.png!w607x514.jpg[/img]

  • 利器出鞘- Ghost-Buster 流动相杂质捕集柱

    利器出鞘- Ghost-Buster 流动相杂质捕集柱

    [align=center]Ghost-Buster 流动相杂质捕集柱[/align][align=center][img=,300,242]http://ng1.17img.cn/bbsfiles/images/2017/09/201709061345_01_932_3.jpg[/img][/align][align=left][b]ghost peak (鬼峰)[/b]是指,在某个谱图里出现,可能同样的条件再做一次又不出现了,时有时无,没有规律的异常色谱峰。鬼峰一般在梯度洗脱时出现的几率更大,它的出现意味着 流动相中的微小成分和杂质 在柱子的初始比例平衡过程中富集在柱子上,当梯度中流动相洗脱能力变大时,这些东西会象样品一样从柱子上脱离出现峰。[/align][align=left][b]危害[/b]:对样品成分误判断与目标峰重叠,影响分离度增加工作量要做更多的验证工作去判定这个物质是否是目标物质污染仪器[b][/b][/align][align=left][b]来源:[/b]水有很多途径带来杂质净化系统本身存储容器引入和放置时间太长导致细菌生长各种流动相添加剂,盐,酸,碱等一系列的有机污染物[b] 杂质捕集柱使用方法:[/b]1、使用时将杂质捕集小柱安装在梯度混合器和进样器之间。2、流动相中如果使用离子对试剂时,可能会吸附离子对试剂进而影响目标物的保留时间或者峰型[b],这一类的流动相条件建议试用[/b]。3、捕集小柱的寿命与色谱分析条件、流动相品牌及其纯度相关,如捕集效果变差后,[b]建议及时更换,并不是连接上以后无限次使用的[/b]。4、杂质捕集小柱作为仪器的一个小部件,相当于仪器上的在线过滤器,只是说在线过滤器只能过滤固体颗粒物,而杂质捕集小柱不仅仅过滤固体颗粒物,还能净化流动相中的有机污染物,对仪器和色谱柱是更好的保护;5、使用缓冲盐流动相前后注意使用高比例的水进行过渡冲洗,避免换成盐析出,导致填料堵塞。[/align][align=left][/align][align=center][img=,500,197]http://ng1.17img.cn/bbsfiles/images/2017/09/201709061347_01_932_3.jpg[/img][/align][align=center][/align][align=center][img=,500,224]http://ng1.17img.cn/bbsfiles/images/2017/09/201709061347_02_932_3.jpg[/img][/align][align=left][b]使用杂质捕集柱的效果:[/b]消除梯度条件流动相中紫外吸收的杂质产生的鬼峰;消除了梯度条件下基线漂移现象;对目标物进行准确的定量。[/align][align=left][b]其他常见问题:[/b]1、 检测不同的品种,流动相不一样需要取下吗?答:不需要刻意取下来,除非出现出峰位置改变等不满足要求的情况。2、 等度条件需要使用吗?答:建议使用,等度条件下没有检测出来异常峰,只是在等度条件下流动相的洗脱能力都是一样的,所以一般检测不到峰,不代表流动相就没有污染物。3、 在梯度系统中,增加的混合滞后体积影响分离效果怎么办?答:一般杂质捕集小柱是链接在混合器和进样器之间,4.6*50mm规格的体积是[color=#ff0000]400ul,[/color]对常规检测的影响不大,如果有影响,请将捕集柱链接到混合器或者切换阀前水相通道。[/align][align=left]4、 仪器空间不大,客户反馈放不进去,怎么办?答:可以送给客户一定长度的peek管和接头,或者客户自己实验室里的都可以,连接到进样器上流动相入口位。[/align]

  • 【分享】多晶硅表面金属杂质分析国家标准正式发布

    国家质检总局最新发布的国家标准中,多晶硅表面金属杂质分析名列其中:GB/T 24579-2009 酸浸取[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法测定多晶硅表面金属污染物 GB/T 24582-2009 酸浸取电感耦合等离子质谱仪测定多晶硅表面金属杂质还有一些其他相关标准:GB/T 24581-2009 低温傅立叶变换红外光谱法测量硅单晶中III、V族杂质含量的测试方法GB/T 24574-2009 硅单晶中Ⅲ-Ⅴ族杂质的光致发光测试方法GB/T 1558-2009 硅中代位碳原子含量红外吸收测量方法GB/T 12963-2009 硅多晶

  • 【求助】熔融玻璃显色的问题?杂质离子能用xps分析不?

    各位大大,想请教一个问题?我在熔玻璃的时候 熔出来水淬后 有时候是淡红色(熔融时间短) ,长时间熔融就变淡蓝色了?玻璃是“钙-硅-磷-钠”系统 碱性比较高请教各位一下 为什么会有颜色?颜色为什么会变呢?是杂质显色嘛?我想分析是什么杂质显色的话 应该用什么分析手段好呢?打算用xps 但是不知道微量的杂质离子能不能测试出来? 请各位帮帮忙帮我分析下!谢谢啦! [em0808]

  • 布洛芬中杂质4-异丁基苯基乙酮的测定

    请问大家布洛芬中杂质4-异丁基苯基乙酮是用什么方法测定的,我按欧洲药典中的梯度洗脱怎么测出来只有一个主峰呢,其他的峰都是很小很小,几乎看不出来,具体方法:流动相A是乙腈:水:磷酸=340:660:0.5,流动相B是乙腈,梯度洗脱,柱温=30,流速=2,波长=214,你们都是用什么方法测这个杂质的呀,求指教!

  • 杂质捕集柱

    想问下大家,现在杂质捕集柱都有哪些牌子的,哪个牌子比较好用!!!谢谢[img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010221138139319_2077_4234095_3.png[/img]

  • COTO标准品|艾曲波帕杂质研究

    艾曲波帕杂质是一种化学物质,它是艾曲波帕的同分异构体或相关化合物。艾曲波帕是一种血小板生成素受体激动剂,用于治疗慢性免疫性血小板减少症。COTO标准品是一种高纯度的标准物质,用于测定艾曲波帕及其杂质的纯度、含量和化学性质。通过与COTO标准品进行对比和分析,可以确定艾曲波帕及其杂质的结构、组成和含量,从而保证艾曲波帕的质量和安全性。在药物研发和生产过程中,COTO标准品的使用非常重要。它可以提供可靠的参照物,用于质量控制、药物分析和化学计量学研究。通过使用COTO标准品,可以确保艾曲波帕及其杂质的准确性和可靠性,为药物的安全性和有效性提供保障。总的来说,COTO标准品在艾曲波帕杂质的研究和控制中具有重要作用。通过使用COTO标准品,可以更好地了解艾曲波帕及其杂质的性质和含量,从而确保药物的安全和有效性。同时,也需要加强生产过程中的管理和监督,加强质量标准和监管措施的执行力度,确保药物质量和安全。

  • 【原创大赛】第十届原创大赛有奖征文---流动相杂质捕集小柱(Ghost-Buster Column)在多环芳烃(PAHs)测定中的应用

    【原创大赛】第十届原创大赛有奖征文---流动相杂质捕集小柱(Ghost-Buster Column)在多环芳烃(PAHs)测定中的应用

    [align=center][b]流动相杂质捕集小柱(Ghost-Buster Column)在多环芳烃(PAHs)测定中的应用[/b][/align][align=left][b]摘要[/b]: 高效液相色谱法(HPLC)测定多环芳烃(PAHs),连接月旭公司流动相杂质捕集小柱(Ghost-BusterColumn)后,空白溶剂(色谱纯乙腈)和PAHs标准品(10ppb)的进样色谱图相比较没有添加时,流动相梯度基线漂移明显改善,基线更平滑,鬼峰(Ghostpeak)明显减少,更利于多环芳烃(PAHs)的定性定量。[/align][align=left][b]Abstract: [/b]In thedetermination of PAHs with HPLC, after adding GhostBuster Column, it is shownthrough chromatogram of blank solvent and PAHs standard that the baseline driftis improved and Ghost peak reduce compared with no adding, which is more conduciveto qualitative and quantitative of PAHs.[/align][align=left][b]关键词: [/b]高效液相色谱法;多环芳烃;流动相杂质捕集小柱,鬼峰[/align][align=left][b]Key words: [/b]HPLC;PAHs;Ghost-BusterColumn;Ghostpeak[/align][align=left][b]0 引言[/b][/align][align=left] 多环芳烃(Polycyclic AromaticHydrocarbons, PAHs)是指分子结构中含有两个或两个以上并环苯环的烃类化合物,广泛存在于人类生活的自然环境如大气、水体、土壤中,同时存在于作物和食品中。迄今已发现200多种PAHs,其中有相当部分具有致癌性,因而其检测备受关注。多环芳烃(PAHs)的检测方法随科技发展在不断进步,从开始的柱层析、纸色谱、薄层色谱(TLC)和凝胶渗透色谱(GPC)发展到如今的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)、高效液相色谱(HPLC),还有紫外吸收光谱(UV)、发射光谱(包括荧光、磷光和低温发光等)、质谱分析、核磁共振和红外光谱,以及各种分析方法之间的联用技术等。目前较为常用的是高效液相色谱法(HPLC)[sup][/sup]。 液相色谱法测定18种多环芳烃的过程中,特别是在梯度洗脱过程中容易产生时有时无的色谱峰,我们俗称鬼峰(Ghostpeak)。荧光检测器灵敏度高,检测过程中鬼峰严重干扰目标峰,影响PAHs定量,月旭公司流动相杂质捕集小柱(Ghost-BusterColumn)能有效解决这一问题,未来或将成为液相色谱运行梯度分析时的标配。[/align][align=left][b]1 实验部分[/b][/align][align=left][b]1.1 实验材料和仪器[/b][/align][align=left] 仪器和耗材包括:高效液相色谱仪LC-20AD(带荧光检测器RF-20A),日本岛津仪器公司;Ultimate[sup][/sup]PAH(5 um, 4.6×250 mm),月旭科技有限公司;Buster-GhostColumn流动相杂质捕集小柱(4.6×50mm),月旭科技有限公司;超纯水机,成都优普公司;色谱试剂,美国斯百全公司;PAHs标准品(18种),国家标准物质中心。[/align][align=left][b]1.2 色谱条件[/b][/align][align=left] 流动相: 流动相A:水 流动相B:乙腈 流速1.5mL/min,[/align][align=left] 柱温35℃,[/align][align=left] 进样量20μL 表1列出了溶剂洗脱程序(梯度洗脱程序的条件应根据选用的仪器进行调整)。[/align][align=center]表1流动相梯度洗脱程序[/align] [table][tr][td][align=center] [/align][align=center]时间(min)[/align][align=center] [/align][/td][td][align=center] [/align][align=center]流动相A(%)[/align][align=center] [/align][/td][td][align=center] [/align][align=center]流动相B(%)[/align][align=center] [/align][/td][/tr][tr][td][align=center] [/align][align=center]0[/align][align=center] [/align][/td][td][align=center] [/align][align=center]50[/align][align=center] [/align][/td][td][align=center] [/align][align=center]50[/align][align=center] [/align][/td][/tr][tr][td][align=center] [/align][align=center]30[/align][align=center] [/align][/td][td][align=center] [/align][align=center]10[/align][align=center] [/align][/td][td][align=center] [/align][align=center]90[/align][align=center] [/align][/td][/tr][tr][td][align=center] [/align][align=center]40[/align][align=center] [/align][/td][td][align=center] [/align][align=center]10[/align][align=center] [/align][/td][td][align=center] [/align][align=center]90[/align][align=center] [/align][/td][/tr][tr][td][align=center] [/align][align=center]45[/align][align=center] [/align][/td][td][align=center] [/align][align=center]50[/align][align=center] [/align][/td][td][align=center] [/align][align=center]50[/align][align=center] [/align][/td][/tr][/table] 18种PAHs中,苊烯无荧光吸收,而剩余的17种有不同的最大激发和发射波长[sup][/sup],综合考虑后选取了3个,在保证定性定量的前提下简化测试过程。因仪器及实验条件不同,所以检测波长时间段可以根据实际出峰情况进行设置,以保证17种PAHs完全出峰。表2列出了三个时间段内的荧光检测波长及所测物质。[align=center]表2荧光检测波长随梯度变化的检测方案[/align] [table][tr][td] [align=center]时间(min)[/align] [/td][td] [align=center]检测波长[/align] [/td][td] [align=center]所测物质[/align] [/td][/tr][tr][td] [align=center]0-19[/align] [/td][td] [align=center]Ex=270nm,Em=324nm[/align] [/td][td] [align=center]萘、苊烯(无荧光吸收)、1-甲基萘、2-甲基萘、苊、芴[/align] [/td][/tr][tr][td] [align=center]19-41.05[/align] [/td][td] [align=center]Ex=245nm,Em=425nm[/align] [/td][td] [align=center]菲、蒽、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、二苯并(a,h)蒽、苯并(g,h,i)苝[/align] [/td][/tr][tr][td] [align=center]41.05-45[/align] [/td][td] [align=center]Ex=274nm,Em=507nm[/align] [/td][td] [align=center]茚并(1,2,3-cd)芘[/align] [/td][/tr][/table][b]2 结果与讨论[/b][align=left][b]2.1加和不加补集柱时进样空白溶剂时图谱(进样20μL色谱纯乙腈)[/b] [/align][align=left]加和不加补集柱时进样空白溶剂时测试结果,图1a为不加捕集柱进样20 μL色谱纯乙腈时的色谱图,图1b为加捕集柱进样20 μL色谱纯乙腈时的色谱图,图2为加和不加捕集柱进样20 μL色谱纯乙腈时的叠加对比图。[/align][align=center][img=,610,273]http://ng1.17img.cn/bbsfiles/images/2017/08/201708240928_01_2451449_3.png[/img][/align][align=left][/align][align=center][img=,607,274]http://ng1.17img.cn/bbsfiles/images/2017/08/201708240928_02_2451449_3.png[/img][/align][align=center]图1进样20 μL色谱纯乙腈时的色谱图[/align][align=center](a 不加捕集柱的测试结果b. 加捕集柱的测试结果)[/align][align=center][img=,609,194]http://ng1.17img.cn/bbsfiles/images/2017/08/201708240929_01_2451449_3.png[/img][/align][align=center]图2 加和不加捕集柱进样20 μL色谱纯乙腈时的叠加对比图[/align][align=left] 黑色图谱代表不加捕集柱,红色谱图代表加捕集柱。由图2可知,加捕集柱能明显消除鬼峰,基线相比不加捕集柱时更平滑,基线漂移得到明显改善。[/align][align=left][/align][align=left][b]2.2 加和不加捕集柱时进样PAHs时图谱(进样体积20 μL,浓度10 ppb)[/b][/align][align=left] 图3a为不加捕集柱PAHs进样色谱图(进样体积20 μL,浓度10 ppb),图3b为加捕集柱PAHs进样色谱图(进样体积20 μL,浓度10 ppb),图4为加和不加捕集柱PAHs标样叠加对比图。[/align][align=center][img=,618,273]http://ng1.17img.cn/bbsfiles/images/2017/08/201708240931_01_2451449_3.png[/img][/align][align=center][img=,619,268]http://ng1.17img.cn/bbsfiles/images/2017/08/201708240932_01_2451449_3.png[/img][/align][align=center]图3进样20 μL浓度10ppb PAHs时的色谱图[/align][align=center](a 不加捕集柱的测试结果b. 加捕集柱的测试结果)[/align][align=center][img=,594,267]http://ng1.17img.cn/bbsfiles/images/2017/08/201708240933_01_2451449_3.png[/img][/align][align=center]图4为加和不加捕集柱PAHs标样叠加对比图[/align][align=left] 红色图谱代表不加捕集柱,黑色谱图代表加捕集柱。图4可知,加捕集柱能明显消除鬼峰,基线相比不加捕集柱的图也更平滑,更利于PAHs的定性定量。同时,加捕集柱后保留时间有微小位移,原因是捕集柱的加入增加了一段小的管路体积,但不影响最终定量分析。[/align][align=left][b][/b][/align][align=left][b]3.结论[/b][/align][align=left][/align][align=left] 因为18种PAHs中苊烯没有荧光吸收,所以实际测得17种;加和不加补集柱,测得的17种多环芳烃分离度均达到要求;月旭杂质捕集小柱(Ghost-BusterColumn)添加后能有效去除鬼峰对目标物的干扰,运行梯度时基线漂移明显改善,更利于PAHs定性定量分析,未来或将成为液相色谱运行梯度分析时的标配。[/align][align=left][b][/b][/align][align=left][b]4 参考文献[/b][/align][align=left][b][/b][/align][align=left]美国国家环保局. US EPA Method 610[/align][align=left]中华人民共和国国家质量监督检验检疫总局. GB/T24893-2010/ISO 15753:2006[/align]

  • 阿洛利汀杂质的作用

    阿洛利汀杂质的作用

    阿洛利汀杂质可以作为标准物质,用于评价阿洛利汀的质量和纯度。通过测量此类杂质的含量,可以对阿洛利汀的生产过程进行控制和优化,以制造出更优质的药物。此外,某些类型的杂质还可能被用作药物的标记物,以跟踪药物在体内的分布和代谢。CATO标准品目前的药品生产技术已经可以有效地降低杂质的含量,保证药品的质量和安全性。任何药物在上市之前,都需要经过严格的质量控制检测,以确保其杂质含量符合规定的标准。此外,药品在上市后也会进行定期的质量监控,以确保其安全性和效力。[img=,607,516]https://ng1.17img.cn/bbsfiles/images/2024/02/202402041447097355_1644_6381668_3.png!w607x516.jpg[/img]

  • 【转帖】吸附质氮气气源中的气体杂质对吸附过程的影响

    对于99.995%的高纯吸附载气和吸附质气体,其中的主要杂质气体为水份。假设气源气体中水份的含量为0.004%,则样品处在-195.8℃、30ml/min的流速中120min内停留在粉末表面的水的量为 0.14ml(标况下的体积),而对于500mg比表面积为1m2/g的材料,在其表面形成水的单分子层吸附所需要的水蒸汽的量为:0.12 ml(标况),与实际停留在粉末表面的水量相当,材料表面已经被水分饱和;如果不吹扫处理继续测试,那测试结果将不可能正确。对于色谱法孔径测试需要测试三四十个分压点,影响更是显著,若分压点之间不做吹扫处理,最后得到的结果将不是固体材料本身对氮分子的吸附了,而是包覆了水分子的颗粒对氮分子的吸附了,孔隙也早已被高沸点易吸附气体杂质H2O、CO2饱和。 要消除吸附质气源中的气体杂质H2O、CO2等的影响, 可采用冷阱气体净化装置,冷阱是消除高沸点气体杂质的有效方式;比表面仪配备的冷阱,使本会被样 品吸附的水份等高沸点杂质提前被冷阱捕获,使得经过净化后的高纯氮和高纯氦气体中的水分含量低于10-17Pa,达到超高纯气体状态; 3H-2000系列比表面仪是国内唯一配备冷阱的比表面仪器,这也是该系列仪器能够取得高精度和高分辨率的因素之一。

  • 帕纳克荧光光谱仪 测定阳极铜杂质

    阳极铜和粗铜中杂质现在都用直读光谱仪测定其中的杂质,有哪位网友用帕纳克的X射线荧光光谱仪测定过阳极铜中的杂质的?讨论一下,能否可行?其中的氧、硫等元素能否测准?

  • 杂质捕集柱哪个牌子好?

    看了岛津、月旭的杂质捕集柱,还有一些国产的,但是没用过,不知道哪个牌子好用,主要是装在waters e2695的仪器上,用过的大家求推荐一下!

  • 头孢克洛有关物质——与9种杂质的共同分析

    头孢克洛有关物质——与9种杂质的共同分析

    [align=center][b]头孢克洛有关物质——与9种杂质的共同分析[/b][/align]头孢克洛(cefaclor)为白色至微黄色粉末或结晶性粉末的化学品,微臭,本品在水中微溶,在甲醇、乙醇、三氯甲烷或二氯甲烷中几乎不溶,分子式:C15H14ClN3O4S。头孢克洛是β-内酰胺类抗生素,头孢菌素类药,是第二代头孢菌素,主要适用于敏感菌所致的急性咽炎、急性扁桃体炎、中耳炎、支气管炎、肺炎等呼吸道感染、皮肤软组织感染和尿路感染等。[align=center][img=,144,171]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140859582934_5220_2222981_3.gif!w144x171.jpg[/img][/align][align=center]头孢克洛[/align][align=center]M.W.: 367.81[/align]本实验对客户提供的头孢克洛原料药以及9种杂质(杂质A、B、C、D、E,7-ACCA,头孢克洛δ-3异构体,α-苯甘氨酸,苯甘氨酸甲酯盐酸盐)进行分析,希望得到杂质混合对照溶液及供试品溶液中各杂质的良好分离。客户反馈,将流动相磷酸盐体系的pH值由4.0提高到4.5可得到杂质混合对照溶液中7-ACCA和α-苯甘氨酸之间的良好分离,但头孢克洛与其相邻杂质E峰之间分离较难。客户前期使用了CAPCELL PAK C[sub]18 [/sub]MGII S3 4.6 mm i.d. × 250 mm色谱柱进行分析,在此基础上,我们尝试了其他填料的几款色谱柱进行分离尝试,分别为CAPCELL PAK C[sub]18[/sub] AQ(S3& S5)、CAPCELL PAK ADME(金刚烷基)、SUPERIOREX ODS、CAPCELL PAK PFP(五氟苯基)、CAPCELL PAK CN(氰基)。首先,参考客户提供的液相条件,使用高极性色谱柱[b]CAPCELL PAK C[sub]18 [/sub]AQ[/b]对杂质混合对照溶液进行分析尝试;为了得到杂质间的更好分离,粒径选择3 μm,如图1,[color=#2F5496]各杂质间均能得到良好的分离结果,头孢克洛与杂质[/color][color=#2F5496]E[/color][color=#2F5496]的分离度为[/color][color=#2F5496]2.70[/color][color=#2F5496],达到基线分离。[/color][color=#2F5496][/color][align=center][img=,690,405]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140902184290_9307_2222981_3.png!w690x405.jpg[/img][/align][align=center]图1 AQ S3 分析杂质混合对照溶液结果[/align][align=center] [/align][align=center]1.α-苯甘氨酸 2. 7-ACCA 3. 杂质A 4. 杂质B 5. 苯甘氨酸甲酯盐酸盐 6.杂质C[/align][align=center]7. 头孢克洛δ-3异构体 [color=#ff0000]8. 头孢克洛 9. 杂质E [/color]10.杂质D[/align][color=#2F5496][img=,555,311]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140902187828_2715_2222981_3.png!w555x311.jpg[/img][/color]进一步分析供试品溶液,如图2,由于样品浓度较高,导致头孢克洛主峰向后展宽,进而将杂质E包于其中。[color=#2F5496][/color][align=center][color=#2F5496][img=,659,441]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140915544228_5404_2222981_3.png!w659x441.jpg[/img][/color][/align][align=center]图2 AQ S3 分析供试品溶液结果[/align][align=center][/align][align=left]为使头孢克洛和杂质E之间得到更好的分离,我们尝试对色谱条件进行调整。[/align][align=left][/align][align=left][b]1.调整柱温[/b][/align][align=left][b][/b]首先对温度进行调整:实验过程中发现柱温对头孢克洛与杂质E的出峰行为有较大影响——当柱温设置为20 ℃时,头孢克洛和杂质E之间能够得到良好分离;将温度提高到30℃时,杂质E向前移动趋势较大。为使杂质E峰出在头孢克洛峰前,避免由于供试品中头孢克洛峰的展宽而使杂质E被包于其内,进一步将柱温提高到40℃,发现头孢克洛与杂质E峰重合;最终,将柱温提高到45℃,此时杂质E峰移至头孢克洛峰前,但未能得到理想的分离结果。[/align][align=left][/align][align=center][img=,659,430]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140916597550_373_2222981_3.png!w659x430.jpg[/img][/align][align=center]图3 不同柱温条件下AQ S3分析杂质混合对照溶液结果[/align][align=center][/align][align=left][b]2.调整流动相[/b][/align][align=left][b][/b][/align][align=left]考虑到提高柱温对色谱柱寿命的影响,仍选择初始使用的20℃,对流动相梯度条件进行调整。在增强整体保留时间的同时,发现[color=#538135]头孢克洛和杂质[/color][color=#538135]E[/color][color=#538135]的出峰顺序发生了颠倒[/color],且[color=#538135]分离良好[/color],进而有效避免了杂质E被包于头孢克洛主峰中的问题;而在主峰后出峰的杂质D与头孢克洛之间分离度亦较高,即使供试品溶液中的头孢克洛峰展宽,也不会出现将杂质D包于其中的问题。[/align][align=left]因此我们在此梯度条件下进一步对供试品溶液进行分析,如图4,头孢克洛与各杂质峰之间均能得到良好的分离结果。[/align][align=left][/align][align=center][img=,679,417]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140917450308_6331_2222981_3.png!w679x417.jpg[/img][/align][align=center]图4 AQ S3分析杂质混合对照溶液及供试品溶液结果(调整梯度)[/align][align=center] [/align][align=center]1.α-苯甘氨酸 2. 7-ACCA 3. 杂质A 4. 杂质B 5. 苯甘氨酸甲酯盐酸盐 6.杂质C[/align][align=center]7. 头孢克洛δ-3异构体 [color=#ff0000]8. 杂质E 9. 头孢克洛[/color] 10.杂质D[/align][align=left][img=,587,335]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140918136074_9375_2222981_3.png!w587x335.jpg[/img][/align][align=left][/align][align=left]为使客户有更多的色谱柱选择,本实验室也尝试使用键合金刚烷基的高极性色谱柱CAPCELL PAK ADME分析杂质混合对照溶液和供试品溶液,如图5,在分析杂质混合对照溶液时,能够得到各组分的良好分离,同时发现杂质E和头孢克洛出峰顺序发生颠倒,但同时也发现头孢克洛峰与其后相邻杂质D峰之间分离度较低(Rs=1.71);因此,如图6,在分析供试品溶液时,由于色谱峰向后展宽,使得杂质D被包于头孢克洛主峰中,未能得到理想分离结果。[/align][align=left][/align][align=center][img=,690,426]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140918484278_6616_2222981_3.png!w690x426.jpg[/img][/align][align=center]图5 ADME 分析杂质混合对照溶液结果[/align][align=center] [/align][align=center]1.α-苯甘氨酸 2. 7-ACCA 3. 杂质A 4. 杂质B 5. 苯甘氨酸甲酯盐酸盐 6.杂质C[/align][align=center]7. 头孢克洛δ-3异构体 [color=#ff0000]8. 杂质E 9. 头孢克洛[/color] 10.杂质D[/align][align=left][/align][align=center][img=,689,417]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140918485898_9906_2222981_3.png!w689x417.jpg[/img][/align][align=center]图6 ADME 分析杂质混合对照溶液结果[/align][align=left][img=,585,336]http://ng1.17img.cn/bbsfiles/images/2018/06/201806140919331328_5070_2222981_3.png!w585x336.jpg[/img][/align][align=left][/align][align=left][/align][align=left]之后,我们也尝试使用了CN(氰基柱)和PFP(五氟苯基)以及高碳载量的SUPERIOREX ODS色谱柱,在客户提供的色谱条件下对杂质混合对照溶液进行分析,均未能得到更理想的分离结果。[/align]

  • 农残提取 冻析杂质

    农残提取时,样品基质比较复杂,做好的样品放在冰箱冷冻,会有杂质析出,拿出进样的时候还需要超声将析出的杂质重新溶解吗?如果不超声,直接舍弃下面的,会不会影响农药浓度啊?

  • 药物杂质鉴定新流程实现泮托拉唑杂质谱分析

    药物杂质鉴定新流程实现泮托拉唑杂质谱分析

    药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门制定了相应的指导原则对其进行严格管控。http://ng1.17img.cn/bbsfiles/images/2015/12/201512141737_577892_3005330_3.jpg 独有的四极杆静电场轨道阱Q Exactive™ Focus高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合新一代的智能小分子化合物鉴定软件Compound Discoverer™,以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:http://ng1.17img.cn/bbsfiles/images/2015/12/201512141737_577893_3005330_3.jpg 通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息:http://ng1.17img.cn/bbsfiles/images/2015/12/201512141738_577894_3005330_3.jpg 在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,可进一步对杂质变化位点进行推测。在本例中,通过152、185等共有碎片和200、216等特征差异碎片的比对,推测出该杂质为泮托拉唑砜:http://ng1.17img.cn/bbsfiles/images/2015/12/201512141738_577895_3005330_3.jpg 基于新一代四极杆-静电场轨道阱质谱Q Exactive Focus和新一代小分子化合物分析软件Compound Discoverer,建立了药物杂质鉴定的新流程。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美的实现。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。(分享)

  • 过硅胶柱能除去哪些常见的基体或杂质?

    1 前几天把PAHS,HBCD标液直接过硅胶柱子,洗下来后发现HBCD一点都没有了,阳性样品过柱也没有了,而PAHS过柱结果很好,硅胶柱把HBCD吸附了?HBCD是极性化合物?HBCD应该比含苯环的PBDE极性大多了2 硅胶柱除杂质能力不咋的,THF溶解的PVC分子吸不住,对苯二甲酸酯(塑料里含量很高的)也吸不住 硅胶柱吸附极性杂质,但一般的固体样品提取液中有什么极性化合物呢?所以固体样品提取液没必要过硅胶柱 什么样品需要过硅胶柱?或者说过硅胶柱可以起点作用3 做PBDE的标准,同样是电子电器产品,SJ,IEC都没写要过硅胶柱,最多加电甲醇,但SN2005.2却一定要过硅胶柱净化,有必要吗?

  • 【原创大赛】锡球杂质分析

    【原创大赛】锡球杂质分析

    最近在生产线出现废品率很高,经过调查,发现根本原因可能是最新用的一批焊料(锡球)(下面是锡球的电镜图)出了问题。通过显微镜检查,发现新锡球中混入了一些绿色杂质。http://ng1.17img.cn/bbsfiles/images/2014/10/201410301509_520885_2942222_3.jpg1.杂质分析经显微镜放大,发现混入的绿色杂质有点像晶体或者无机物,而且是多种颜色。http://ng1.17img.cn/bbsfiles/images/2014/10/201410301510_520886_2942222_3.jpg为了分析这个杂质,首先把这杂质挑出出来放在碳胶布,进行SEM/EDX分析,确定它的成分从而找到它的来源。SEM观察http://ng1.17img.cn/bbsfiles/images/2014/10/201410301510_520887_2942222_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410301511_520888_2942222_3.jpg EDX分析http://ng1.17img.cn/bbsfiles/images/2014/10/201410301534_520904_2942222_3.jpgSEM观察显示这个杂质的外观不太像常见的脏污;而EDX的分析显示这个杂质主要含有元素C,O,Al,Si,Cl;很奇怪。2. 存放锡球的瓶子分析这些杂质是哪里来的呢?首先考虑到是杂质存在的地方:存放锡球的瓶子。因为这个瓶http://ng1.17img.cn/bbsfiles/images/2014/10/201410301514_520891_2942222_3.jpg子肉眼看起来也是绿色的,特别是瓶盖和瓶子内部,如果这两个地方表面不平或者很粗糙,就可能会导致一些本身材料的颗粒掉到瓶子里,跟里面的锡球混在一起。下面是对瓶子分析:首先,用手术刀在瓶子内壁刮下一些碎片放在硅片上,然后进行显微镜观察和SEM/EDX分析。显微镜观察显示瓶子材料跟杂质明显不同,也不像杂质那样有多种颜色。http://ng1.17img.cn/bbsfiles/images/2014/10/201410301519_520892_2942222_3.jpgSEM观察也发现瓶子材料跟杂质明显不同;瓶子材料的表面也非常光滑,所以表面材料脱落的可能性也很小。http://ng1.17img.cn/bbsfiles/images/2014/10/201410301520_520893_2942222_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410301521_520894_2942222_3.jpgEDX[font=

  • 清洗玻璃器皿的杂质

    用硝酸浸泡,清除玻璃器皿残留的金属杂质,搞烦了。文献里有采用加热酸,产生酸蒸汽来清洗器皿的设备,哪位用过啊,给推荐一台,操作越简单越好。多谢多谢了。

  • 美国《科学》杂志20日公布了本年度10大科学突破

    美国《科学》杂志20日公布了本年度10大科学突破,科学家在难以捉摸的希格斯玻色子亚原子粒子研究领域取得的成果被评为2012年最重要的科学发现。40多年前,科学家假定了希格斯玻色子的存在,它是解释其他基本粒子(诸如电子和夸克等)如何获取其质量的关键。1.希格斯玻色子7月4日,科学家宣布找到了希格斯玻色子存在的证据,从而完成了粒子物理标准模型。该模型解释了粒子如何通过电磁力、弱核力和强核力相互作用以组成宇宙中的物质。然而,在今年之前,科学家无法解释这些基本粒子如何获得它们的质量。《科学》新闻记者艾德里安表示,物理学家假设空间由与电场类似的“希格斯场”所填充。粒子与“希格斯场”相互作用以获取能量以及质量。“希格斯场”是由分布在真空中的希格斯玻色子组成,物理学家现在将它们从真空中轰出并进入短暂的存在状态。但是,观察到希格斯玻色子可谓来之不易甚或代价不菲。在瑞士日内瓦附近的粒子物理实验室中,与造价高达55亿美元的原子加速器相伴的数千名研究人员借助两台巨型粒子探测器(ATLAS和CMS)发现了盼望已久的玻色子。除希格斯玻色子的发现外,《科学》杂志及其发行机构美国科促会确认的本年度其他9项具有开创性的科学成就如下:2.丹尼索瓦人基因组一种将特定分子绑定在DNA(脱氧核糖核酸)单链上的新技术帮助研究人员仅用一块远古人的小指骨碎片,就完成丹尼索瓦人完整的基因组测序。该基因组序列让研究人员能够将丹尼索瓦人——这是与尼安德特人密切相关的古老人类——与现代人进行比较。研究显示,该指骨属于生活在7.4万年至8.2万年之间的一个眼睛、毛发和皮肤均为棕色的女孩,她死于西伯利亚。3.让干细胞形成卵子日本研究人员证实,小鼠的胚胎干细胞可被诱导成为具有生育能力的卵细胞。在研究中,他们让实验室中受精的细胞在代孕母体发育并产下小鼠幼仔。这种方法要求发育中的卵子在雌性小鼠体内存留一段时间。虽然这没有达到科学家追求的完全在实验室中得到卵细胞的终极目标,但是它为研究基因和其他影响生育力和卵细胞发育的因素提供了强有力的工具。4.好奇号的着陆系统尽管无法在火星条件下测试其探测器所有的着陆系统,但在加州帕萨迪纳美国宇航局喷气动力实验室里承担探索火星使命的工程师们仍安全并准确地将好奇号探测车抵达火星表面。这个3.3吨的飞行器因过重而无法以传统的方式登陆,为此该团队从起重机和直升飞机那里得到灵感,创建了“空中起重机”着陆系统,它将带轮的好奇号吊挂在3根线缆的末端让其着落。这一完美无暇的着陆让设计人员再次获得了信心,宇航局希望未来在已有的探测车附近让第二辆探测车着陆,并将第一辆探测车取得的样本收集起来送回地球。5.X射线激光解开蛋白质的结构研究人员用一种比传统的同步加速辐射源亮10亿倍的X射线激光确认了布氏锥虫所需的一种酶的结钩,这种寄生虫是引起非洲昏睡病的原因。新的研究进展证明了X射线激光解密蛋白质的潜力,而这是传统的X射线源所无法做到的。6.基因组的精密工程通常,人们无法确定对高级生物的DNA进行修改和删除的最终结果。然而,在2012年,名为“转录激活子样效应因子核酸酶”(TALENs)的工具赋予研究人员改变或关闭斑马鱼、蟾蜍、牲畜及其他动物甚至病人的细胞中特定基因的能力。这种技术以及其他新兴的技术与已有的基因靶向技术一样廉价和有效,同时它能让研究人员在健康人和病人中确认基因及变异的特定作用。7.马约拉纳费米子人们有关马约拉纳费米子是否存在的问题的争论已有70多年,该粒子会作为它们自己的反物质并湮灭它们自己。今年,由荷兰物理学家和化学家组成的研究小组首次提出了马约拉纳费米子以准粒子形式存在的可靠证据,它们是相互作为的电子群,其行为像单个粒子。该发现促使人们努力将马约拉纳费米子结合到量子计算中,因为科学家们认为由这些神秘粒子组成的“量子比特”与目前数字计算机中所拥有的比特相比,能够更有效率地存储和处理数据。8.ENCODE项目今年,超过30篇文章报道的一项长达10年的研究显示,人类基因组比研究人员曾经认为的更具“功能”。尽管只有2%的基因组会为实际蛋白编码,但“DNA元素百科全书”(ENCODE)研究项目表明,基因组的大约80%是有活性的,可帮助开启或关闭基因。这些新的细节有望帮助研究人员理解基因受到控制的途径,以及澄清某些疾病的遗传学风险因子。9.大脑/机器界面曾经用大脑神经记录移动电脑荧幕上光标的同一个研究团队在2012年向人们展示,瘫痪的病人能够用他们的思想来移动一个机械臂并从事复杂的三维运动。该技术虽然仍处于试验阶段且极端昂贵,但科学家希望更先进的计算程序可改善这种神经性假体以帮助因中风、脊髓损伤及其他疾病导致瘫痪的病人。10.中微子混合角数百名在中国大亚湾反应堆中微子实验中工作的研究人员报告了一个模型的最后的未知参数,该模型描述了被称作中微子的这种难以捉摸的粒子在以接近光速穿行时,如何从一种类型或“特色”变形为另一种类型。这些结果显示,中微子和反中微子可能会以不同的方式改变其特色,并提示中微子物理可能有朝一日帮助研究人员解释为什么宇宙含有如此多的物质及如此少的反物质。如果物理学家无法发现超越希格斯玻色子的新粒子,那么中微子物理可能会代表粒子物理学的未来。

  • 富马酸卢帕他定杂质

    下面的结构式是富马酸卢帕他定的一个氧化杂质,我想请问下这是哪个化合物,N旁边的O是怎么结合的?[img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110201856032930_4323_3860760_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制