当前位置: 仪器信息网 > 行业主题 > >

甘西鼠尾草酸甲

仪器信息网甘西鼠尾草酸甲专题为您提供2024年最新甘西鼠尾草酸甲价格报价、厂家品牌的相关信息, 包括甘西鼠尾草酸甲参数、型号等,不管是国产,还是进口品牌的甘西鼠尾草酸甲您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甘西鼠尾草酸甲相关的耗材配件、试剂标物,还有甘西鼠尾草酸甲相关的最新资讯、资料,以及甘西鼠尾草酸甲相关的解决方案。

甘西鼠尾草酸甲相关的论坛

  • 鼠尾草酸直接结合并抑制ERAP1调节抗原加工和递呈

    [size=15px][font=宋体][color=black]内质网氨基肽酶[i][/i][/color][/font][font=&][color=black]1[/color][/font][font=宋体][color=black]([/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black])的主要功能是在内质网中修剪[/color][/font][font=&][color=black]N[/color][/font][font=宋体][color=black]端延长的肽前体,这是加工和呈递内源性抗原肽的关键步骤,它们被装载到[/color][/font][font=&][color=black]MHC-I[/color][/font][font=宋体][color=black]的凹槽中,在细胞表面呈递,激活[/color][/font][font=&][color=black]CD8+T[/color][/font][font=宋体][color=black]细胞或[/color][/font][font=&][color=black]NK[/color][/font][font=宋体][color=black]细胞,触发相应的免疫反应。[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的过度活性加剧了相关的自身免疫疾病。此外,[/color][/font][font=&][color=black]ERAP1 [/color][/font][font=宋体][color=black]的过度活性会破坏肿瘤新抗原肽,导致肿瘤免疫逃逸。鉴于[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]在自身免疫疾病和肿瘤免疫逃逸中的关键作用,针对[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]功能的抑制将显著减少自身免疫疾病相关的疾病表型,同时也能抑制肿瘤免疫逃逸。因此,开发高效和选择性的[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]抑制剂已成为一个重要的药理学研究方向。[/color][/font][font=&][color=black][/color][/font][/size] [size=15px][font=宋体][color=black]通过高通量虚拟筛选结合物理筛选方法,从近[/color][/font][font=&][color=black]200000[/color][/font][font=宋体][color=black]种化合物中筛选到一种新的[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]选择性抑制剂[/color][/font][font=&][color=black]—[/color][/font][font=宋体][color=black]鼠尾草酸,并证明其与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]有强烈的直接相互作用,通过竞争性抑制结合[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的活性位点抑制其活性,进而抑制内质网应激,保持正常的抗原呈递功能。[/color][/font][font=&][color=black][/color][/font][/size] [align=center] [/align] [size=15px][b][font=&][color=#0070c0]1[/color][/font][font=宋体][color=#0070c0]、[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]抑制剂的筛选[/color][/font][/b][/size] [size=15px][font=宋体][color=black]作者首先通过虚拟筛选从[/color][/font][font=&][color=black]20[/color][/font][font=宋体][color=black]万个小分子化合物库[i][/i]中确定了对接排名靠前的[/color][/font][font=&][color=black]3250[/color][/font][font=宋体][color=black]个化合物,并定制了包含这些化合物的实体库用于酶活抑制效率的筛选,最终确定编号为“[/color][/font][font=&][color=black]3[/color][/font][font=微软雅黑, &][color=black]?[/color][/font][font=&][color=black]23[/color][/font][font=宋体][color=black]”的天然产物鼠尾草酸(广泛存在于唇科植物如迷迭香和鼠尾草)对[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的酶活性抑制效果最佳。此外,鼠尾草酸对其他[/color][/font][font=&][color=black]6[/color][/font][font=宋体][color=black]种氨基肽酶均无明显抑制作用,通过竞争性抑制方式抑制[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]活性[/color][/font][/size][align=center] [/align] [size=15px][b][font=&][color=#0070c0]2[/color][/font][font=宋体][color=#0070c0]、鼠尾草酸能够直接与[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]结合形成稳定的配合物[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]接着,作者通过生物层干涉测量(BLI)[/color][/font][font=宋体][color=black]和细胞热移测定法(CETSA)[/color][/font][font=宋体][color=black]实验确定了鼠尾草酸与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]直接结合,表明鼠尾草酸通过直接结合靶标[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black],进而抑制[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]活性 [/color][/font][/size] [size=15px][b][font=&][color=#0070c0]3[/color][/font][font=宋体][color=#0070c0]、鼠尾草酸与[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]的相互作用模式分析[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]进一步作者研究了鼠尾草酸与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的相互作用模式,通过“[/color][/font][font=&][color=black]ERAP1[/color][/font][font=微软雅黑, &][color=black]?[/color][/font][font=宋体][color=black]鼠尾草酸”对接配合物的最佳结构、相互作用能计算和分子动力学模拟等理论方法以及点突变的实验方法,发现“[/color][/font][font=&][color=black]ERAP1 -[/color][/font][font=宋体][color=black]鼠尾草酸”[/color][/font] [font=宋体][color=black]结合方式非常稳定,鼠尾草酸占据了[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]的催化中心,形成稳定的氢键网络,突变实验表明鼠尾草酸对[/color][/font][font=&][color=black]ERAP1 E183A[/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black]Q181A[/color][/font][font=宋体][color=black]突变体的抑制活性显著减少[/color][/font][font=宋体][color=black]。此外,鼠尾草酸与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]和[/color][/font][font=&][color=black]ERAP2[/color][/font][font=宋体][color=black]结合模式存在显著不同 [/color][/font][/size] [size=15px][b][font=&][color=#0070c0]4[/color][/font][font=宋体][color=#0070c0]、鼠尾草酸逆转[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]引起的内质网应激反应[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]可通过过度剪切内源性抗原肽导致一系列免疫反应紊乱,如增加错误折叠[/color][/font][font=&][color=black]HLA[i][/i][/color][/font][font=宋体][color=black]分子组装的效率导致内质网应激。作者发现[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]过表达诱导内质网应激,体现在内质网应激标记蛋白[/color][/font][font=&][color=black]BIP[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]Chop[/color][/font][font=宋体][color=black]、[/color][/font][font=&][color=black]CANX[/color][/font][font=宋体][color=black]显著升高,而鼠尾草酸可抑制[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]引起的内质网应激[/color][/font][font=宋体][color=black]。[/color][/font][font=&][color=black][/color][/font][/size] [align=center][img=图片,1,]data:image/svg+xml,%3C%3Fxml version='1.0' encoding='UTF-8'%3F%3E%3Csvg width='1px' height='1px' viewBox='0 0 1 1' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Ctitle%3E%3C/title%3E%3Cg stroke='none' stroke-width='1' fill='none' fill-rule='evenodd' fill-opacity='0'%3E%3Cg transform='translate(-249.000000, -126.000000)' fill='%23FFFFFF'%3E%3Crect x='249' y='126' width='1' height='1'%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E[/img][/align][align=center] [/align] [size=15px][b][font=&][color=#0070c0]5[/color][/font][font=宋体][color=#0070c0]、鼠尾草酸显著减少[/color][/font][font=&][color=#0070c0]ERAP1[/color][/font][font=宋体][color=#0070c0]引起的内源性抗原[i][/i]加工和递呈途径的中断[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]接着,作者评估了鼠尾草酸在细胞水平对抗原呈递功能的影响。[/color][/font][font=&][color=black]Western blot[/color][/font][font=宋体][color=black]和免疫荧光结果显示,[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]过表达导致内质网和细胞表面[/color][/font][font=&][color=black]HLA[/color][/font][font=宋体][color=black]水平升高,而鼠尾草酸的加入显著地扭转了这一趋势,减少细胞表面显示的额外大量[/color][/font][font=&][color=black]HLA[/color][/font][font=宋体][color=black]分子,以及减少细胞表面错误组装的[/color][/font][font=&][color=black]HLA[/color][/font][font=宋体][color=black]的比例,并保持正常的抗原呈递功能[/color][/font][/size] [align=center][img=图片,1,]data:image/svg+xml,%3C%3Fxml version='1.0' encoding='UTF-8'%3F%3E%3Csvg width='1px' height='1px' viewBox='0 0 1 1' version='1.1' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Ctitle%3E%3C/title%3E%3Cg stroke='none' stroke-width='1' fill='none' fill-rule='evenodd' fill-opacity='0'%3E%3Cg transform='translate(-249.000000, -126.000000)' fill='%23FFFFFF'%3E%3Crect x='249' y='126' width='1' height='1'%3E%3C/rect%3E%3C/g%3E%3C/g%3E%3C/svg%3E[/img][/align][align=center] [/align] [size=15px][b][font=宋体][color=#0070c0]总结[/color][/font][font=&][color=#0070c0][/color][/font][/b][/size] [size=15px][font=宋体][color=black]该研究通过高通量虚拟筛选结合物理筛选方法,从近[/color][/font][font=&][color=black]200,000[/color][/font][font=宋体][color=black]种化合物中筛选出一种结构特异性化合物[/color][/font][font=&][color=black]—[/color][/font][font=宋体][color=black]鼠尾草酸。作者发现鼠尾草酸在蛋白质和细胞水平上与[/color][/font][font=&][color=black]ERAP1[/color][/font][font=宋体][color=black]有强烈的直接相互作用,通过竞争性抑制结合[/color][/font][font=&][color=black] ERAP1 [/color][/font][font=宋体][color=black]的活性位点,并且对同源蛋白[/color][/font][font=&][color=black] ERAP2 [/color][/font][font=宋体][color=black]以及广泛的相关代表性蛋白酶没有抑制活性,从而实现了有效的蛋白酶选择性[/color][/font][/size]

  • 甘草酸二甲

    我用液相色谱仪测试甘草酸二钾流动相为30乙睛40水可以出峰但是又拖尾,然后我就加了千分之一的三氟乙酸,然后就不出峰了,我想问一下是不是吸附在柱子上了,不加三氟乙酸又可以出峰,我可不可以在加入了三氟乙酸后调高乙睛的比例就可以了。求助各位大神。

  • 甘草酸二钾

    甘草酸二钾在测硫酸盐时,加入2ml稀盐酸后有絮状沉淀,是什么原因

  • 甘草酸测定?

    我最近按中国药典2010版方法测定复方甘草口服溶液中甘草酸突然含量测定不上来,原来测定结果能与原料甘草流浸膏中甘草酸基本对应一致,现在会差很大,从柱效、拖尾因子看现在与原先无太大差异,且符合中国药典2010版要求,请教各位同仁,在测定复方甘草口服溶液中甘草酸有什么特别注意点吗?

  • CNS_19.009_甘草酸盐

    CNS_19.009_甘草酸盐

    [align=center]CNS食品添加剂—甘草酸盐性质概述[/align] 杨勉疾[align=center]2021年 7 月[/align]1.甘草酸盐系列物质理化性质概述1.1 甘草酸理化性质 甘草入药史自古以来,是最为广泛的药用植物之一。其中甘草酸(CA)被认为是其提取物中最主要活性成分。甘草酸呈白色结晶性粉末,甜度约为蔗糖的200倍。显甜迟后,但留甜时间长;相对密度(d204):1.43;熔点在212-217℃左右;常压沸点972℃;闪点288℃;溶解性:难溶于冷水,易溶于热水,不溶于油脂,其热水溶液冷却后呈黏稠冻胶状。溶于丙二醇。 GA是一种单桥皂甙,其由三萜类疏水性苷元(18β甘草次酸)与亲水性二葡萄糖醛酸结合而成,GA的两亲性结构决定了其性能溶液中的物理性质。使得GA分子聚集水溶液中的表面活性化合物会导致聚集体、胶束的形成,并且在较高浓度下尤甚。其皂苷结构决定了GA许多特殊药理功能,调节其疏水分子形成水溶性复合物能力,可以用于调节其他物质化学稳定性,水溶性,生物利用度;以及在临床上应用于能性药物释放系统(DDS)。其有急性毒性:人体口经TDLo:280mg/kg/4W;小鼠口经LCLo:3gm/kg;小鼠腹经LCLo:2gm/kg;小鼠静脉LC:300mg/kg。在环境方面,甘草酸对水稍有危害,不可使未稀释或大量的产品接触地下水、水道或者污水系统。若无政府许可,不得排入周围环境。[1] 下图1.2分别为二维糖平台与三萜组成的基本结构单元透视图从两边伸出的部分;球和棍子(b)和空间填充(c)表示,显示由相互渗透的基本元素形成的通道单位(以浅灰色和深灰色显示的分子属于相邻单位)。通道约占晶体体积的42%。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081544564157_4482_1608728_3.png[/img][/align][align=center]图 1甘草酸二维结构[size=16px][2][/size][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108081544567370_8_1608728_3.png[/img][/align][align=center]图 2 甘草酸三维立体结构[2][/align] 甘草酸作为一种多元酸,在碱性或离子液体内会不同程度脱质子成盐,在自然条件下,会和钾、钠离子结合存在。甘草酸盐是由甘草酸衍生的一系列盐类总称,包括甘草酸铵、甘草酸一钾及三钾、甘草甜素二钠等。1.2 甘草酸铵 甘草酸铵为白色粉末或淡黄色结晶型粉末,有强甜味,甜度约为蔗糖的200倍,溶于氨水,不溶于冰乙酸。应用于甜味剂,依照我国《食品添加剂使用卫生标准》,可按生产需要适量用于肉类罐头、调味品、糖果、饼干、蜜饯凉果、饮料等等。还可以用于进一步制备其他甘草酸盐类的中间物。 甘草酸单铵盐具激素样活性,但无激素的副作用,不仅对气管炎、支气管炎、咳嗽、哮喘等呼吸系统疾病有显著疗效。而且对消化道感染、乙肝、口腔溃疡、胃溃疡等也有奇效。对于多种毒素如白喉毒素、河月豕毒素、破伤风毒素和蛇毒等有着较强的解毒功效。同时还具有类似肾上腺皮质激素的作用。其毒理学半数致死量为10g/kg;经骨髓微核实验证实无致突变作用[3]。1.3 甘草酸一钾及三钾 甘草酸一钾及三钾类似白色或淡黄色粉末,无臭。有特殊甜味(甘草酸一钾为蔗糖的500倍;甘草酸三钾为蔗糖的150倍),甜味残留时间长,易溶于水,溶于稀乙醇、甘油、丙二醇,微溶于无水乙醇和乙醚。其同样应用于甜味剂,和甘草酸铵类似;毒理依据其半致死量为小鼠口服>10g/kg[4]。 在化妆品行业,可配制成护肤霜,祛斑霜高级珍珠膏等,既有美容护肤,又能消炎、抗变态反应,治疗皮肤病等作用;在医药行业,可用于眼药水、口腔炎的药膏;在日化行业,可用于牙膏。1.4 甘草酸二钠 甘草酸二钠又名甘草甜素二钠。为白色至淡黄色粉末,味极甜,稀释4000倍仍有甜味,甜度约为蔗糖的150-200倍,且甜味残留时间长。易溶于水,溶于稀乙醇、甘油、丙二醇,不溶于无水乙醇、乙醚、氯仿和油脂。用作甜味剂。日本限用于酱油(0.015g/L)和豆酱(0.03-0.07g/L)。毒性为半致死量5g/kg[5]。 由于其在水中非常易溶解,溶液澄清透明,无杂质和怪味,口感好,在食品添加剂方面具有低热能、安全无毒和较强的医疗保健功效,是高血压、肥胖症、糖尿病、心脏病患者使用的最理想甜味剂,有浓郁的甘草特殊香味,具有保健、解毒、护肝、消炎、增香等功效,是非常理想的纯天然甜味剂原料。2.甘草酸盐的制备及检测标准2.1 甘草酸生产方法及指标[6] 甘草酸以甘草为直接制备原料。将甘草的根茎干燥后粉碎至0.833mm的粉末(保留纤维部分)取粉末及纤维200kg,加水1200kg,在85-100℃下浸提2h。过滤后滤渣再用1000kg水提取2h,过滤后滤渣再重复浸提1次。合并3次滤液,在搪瓷蒸发器中浓缩至1/5体积。冷却后加入95%乙醇,使乙醇浓度达到65%,静置24h,过滤除去植物蛋白、多糖等杂质。滤液中加入硫酸,调节PH至甘草酸沉淀析出。过滤。洗涤后,加入3倍的丙酮,加热可回流3h,倾出提取液,残渣再反复回流提取2次。合并3次提取液,过滤后回收丙酮,浸湿甘草酸,与45℃干燥1h,缓缓升温至85-95℃,快烘干时,升至100-105℃烘干5min,经粉碎后即得成品。 此外,也可直接用氨水萃取,经浓缩后用硫酸沉淀,再用95%乙醇重结晶而得。 其质量指标需要符合中国企标:水分≤13%;灰分15%;熔点为220℃。2.2甘草酸二钠制备及质量标准[7] 甘草酸二钠一般由甘草酸为直接原料。其一由甘草甜素与钠碱进行部分中和而后精制而成。其二,由甘草粉加五倍水煮沸抽提,滤去固形物,加稀硫酸至呈弱酸性。室温下放置至析出物沉降,除去上澄清液,沉淀经水析出后用氨水中和、过滤、滤液加醋酸使甘草甜素铵析出,用70%-80%乙醇重结晶,按理论值加入碳酸钠水溶液,减压浓缩而得。 其质量指标参照日本标准,1999。包括含量95%-100%,溶液性状:10%水溶液应透明;5%溶液PH值5.5-6.5,氯化物(Cl-计)≤0.014%;水分≤13%;砷含量<4mg/kg;重金属<40mg/kg等等。相应的质量指标分析手段一般均通过标准试剂化学滴定得到。2.3甘草酸一钾及三钾制备方法及质量标准[8] 以甘草酸粗品(含量75%)为原料,在乙醇中用氢氧化钾中和而得。将100g甘草酸盐粗品加入400ml工业乙醇中国,在40-50℃下搅拌提取1h。抽滤后滤渣用200ml乙醇在同样的条件下提取1h,合并提取液,在搅拌下加入20%的KOH乙醇溶液至PH至7-8为止。静置片刻后分离得甘草酸三钾黄色结晶200g,将其放入80-90ml冰醋酸中,加热至75℃,保温几分钟使其转化为单钾盐,抽滤得近白色甘草酸单钾盐粗品,用少量工业乙醇洗涤一次,以出去黄酮类色素和甘草次酸等杂质。粗品用400ml乙醇冰醋酸混合液溶解,加入10g活性炭,在80℃下脱色0.5h。过滤后滤液放置结晶,得产品25-30g,收率约为70%。 其质量指标包括含量(UV法≥98%;HPLC≥85%);重金属≤0.001;砷盐≤0.0002;灰分≤9.63%;水中不溶物≤0.5%。2.4 间接甘草酸盐生产制备方法 为使甘草酸发挥更好的疗效和提高生产效率,非常需要实用性较强的制备甘草酸盐精品方法。 根据甘草酸易溶于热水,可溶于热稀醇,几乎不溶于无水乙醇和乙醚, 又可于水溶液中加稀酸游离液,又可于水溶液中加稀酸游离出来的性质,以及甘草酸锌盐、铁盐、铝盐及秘盐在热水中仅微溶或者不溶的性质,可以使甘草酸在水或稀醇溶液中与相应的无机盐水溶液反应制取需要的甘草酸盐。如果选用粗甘草酸溶液作原料,则得到甘草酸盐粗品,要制成精品往往需要反复多次精制,[font=times new roman][size=13px] [/size][/font]操作十分繁琐.如果选用甘草酸单按盐精品为原料,[font=times new roman][size=13px] [/size][/font]可以比较方便地制取草酸盐精品。在实际生产中,可以利用甘草或者甘草浸膏为原料,先制取甘草酸单按盐精品,然后再以甘草酸单按盐为原料制备甘草酸盐别的品种。在质量指标检测方面,甘草酸根含量测定可采用层析法,锌、秘、铝和铁的测定可采用容量分析或重量分析的方法。2.4.1甘草锌制备 取甘草酸单铁盐209溶于80%乙醇90ml中,加热回流,慢慢滴加予热至50℃的5%硫酸锌溶液80g,生成白色沉淀,加完硫酸锌溶液后,保温反应30min,之后降温至20℃,过滤,滤饼用6oml蒸馏水分三次清洗,滤尽母液,取出滤饼真空50℃干燥,得棕黄色甘草锌粉末19.69。测定甘草酸根含量87.6%,锌含为10.5%。2.4.2甘草酸秘制备 取甘草酸单铵盐溶于200ml热水中,于8℃在搅拌下慢慢滴加予热至60℃的10%的硝酸秘酸性溶509,需维持反应液为酸性(PH~3),生成白色沉淀,加完硝酸秘溶液后,保温反应30min,然后降温至30℃,过滤,滤饼用60rnl蒸馏水分三次清洗,滤尽母液,再以95%乙醇45ml分三次清洗,滤尽母液,在40~50℃真空干操,得白色甘草酸秘粉末21.39,测定甘草酸根含量82.2%,秘含量14%。3.甘草酸盐应用 邓淑华等人研究显示,甘草酸二钠、甘草酸二钾、甘草酸二铵在体外实验条件下,对金黄色葡萄球菌、白色葡萄球菌、大肠埃希氏菌、福氏志贺氏菌、乙型副伤寒沙门氏菌等细菌均表现了不同程度的抑菌作用。实验额外证实,甘草酸盐对乙型副伤寒沙门氏菌、金黄色葡萄球菌(附院)、福氏志贺氏菌等细菌具有一定的杀菌作用[9]。 甘草酸盐及甘草煎剂对杀虫双染毒的小鼠急性中毒不仅有顶防作用,而且甘草酸盐对急性中毒还有治疗作用,能明显降低杀虫双不同途径染毒之小鼠 、兔子的死亡率、其解毒机尚待进一步研究[10]。Francesco Maione[font=宋体]等人对单铵甘草酸盐抗炎抗伤害以小鼠实验进行以及生化和对接研究。在小鼠单次给药后的,一次腹腔注射AG对酵母多糖引起的足跖水肿和足跖肿胀均有抗炎作用腹膜炎。此外,在几种疼痛动物模型中,如扭体试验、福尔马林试验,酵母多糖诱发的痛觉过敏,试验前24小时给予AG可诱发痛觉过敏强烈的抗伤害作用。综上所述,所有这些发现都突出了AG在疼痛和或炎症相关疾病临床治疗中的潜在应用。AG与mPGES-2和COX-2的关键氨基酸相互作用。经过实验结果分析,甘草酸单铵的抗炎抗伤效应来自其与mPGES-2和COX-2的特异受体相互作用 。AG在结合处的定位较好COX-2与Trp387、Ser530(氢键)和Arg120等关键氨基酸相互作用时的囊袋。此外,通过结合刚性和柔性分子对接研究,两种可能的方法提出了AG与5-LO相互作用的机制:非氧化还原竞争结合和非氧化还原竞争结合Fe[/font][font=宋体]2+[/font][font=宋体]络合。而理论计算结果显示,前者结合能相对更低。[/font][font=宋体][11][/font]Carlotta Marianecci等人[font=宋体]研究表明甘草提取物可用于治疗皮炎、湿疹和银屑病,其疗效与皮质类固醇相当。在这项工作中,通过研究不同浓度的表面活性剂(吐温85和司班20)和胆固醇组成的囊泡在甘草酸铵(AG)释放中用于治疗各种炎症性疾病的效果。对囊泡进行了包括尺寸、ζ电位、各向异性、药物包封率、稳定性、细胞毒性评价和皮肤耐受性等方面的表征,证实纤维素膜在甘草酸铵囊泡的体外释药特性中作用[/font][font=宋体][12][/font][font=宋体]。[/font]甘草酸在大多数肝脏疾病的临床实践中用作肝脏保护剂。万荣等研究证实,甘草酸二铵减缓肝损伤并可阻止自然杀伤T细胞。其通过两种不同剂量甘草酸多铵给药对照试验,通过检测相应指标。得出预处理能显著降低血清ALT并改善cona诱导的自身免疫性肝组织损伤的结论。实验结果证实,DG预处理可下调攻击后的炎性细胞因子与Con A,并可以抑制胸腺T淋巴细胞凋亡。此外,甘草酸二铵还可有效地抑制CD4的增殖+CD25、CD69+、CD8+及CD69型+等外周血和脾脏的亚群,并显著下调NKT细胞的频率,同时上调树突状细胞的频率肝脏[13]。隋秀文等研究证明了甘草酸多铵盐和氯化锂共同作用抑制伪狂犬病病毒PrV感染,并可诱导PrV细胞凋亡。(PrV)是一种猪嗜神经性疱疹病毒与单纯疱疹病毒1型(HSV-1)有共同的基因组排列。其感染严重威胁畜牧业和人类健康。以甘草酸多铵盐为基底开发有效的抗病毒药物是减少PrV感染的重要策略之一[14]。李云等研究证实,甘草酸二铵(DG)具有抗炎和保肝药理作用。非酒精性脂肪肝(NAFLD),作为常见的慢性肝病,在世界范围内普遍存在。李云团队通过高脂饮食诱导的NAFLD模型小鼠实验,我们观察到DG可以减轻体重、肝脏脂肪变性以及肝脏炎症Illumina对16S rRNA的测序显示DG干预改变NAFLD小鼠肠道微生物群的组成,使得肠道菌群的丰富度显著增加。特别是DG降低了厚壁菌与拟杆菌的比率和产生内毒素的细菌(如脱硫弧菌)提高了益生菌如变形杆菌和乳酸杆菌的丰度。DG能增强短链蛋白的表达水平,如产脂肪酸(SCFA)的细菌、瘤胃科和漆树科,促进SCFA的产生。此外DG补充显著减轻了肠道低度炎症。促进细胞表达紧密连接蛋白、杯状细胞数量和粘蛋白分泌,从而增强肠屏障功能。因此,目前可以认为,DG对NAFLD的预防可能是通过调节肠道菌群和恢复肠道功能来实现的[15]。异甘草酸镁(MgIG)被广泛应用于慢性肝病的治疗。主要认为是通过作用于肝毒性诱导物质——甲氨蝶呤(MTX)诱导的肝毒性实现其效果。曹雨竹等人研究结果显示,预防性的给予小鼠MgIG(9和18mg/kg/天)可显著降低小鼠血液中血清天冬氨酸转氨酶和丙氨酸转氨酶的减少;MgIG还能减轻MTX诱导的肝纤维化。对MTX诱导的肝细胞损伤有较好的保护作用。此外,MTX还可诱导环氧合酶-2(COX-2)表达,给予MgIG后,肠道通透性和炎症减轻。总之,MgIG对甲氨蝶呤引起的肝毒性和肠道损伤有积极作用一种,是有可能缓解MTX肝脏和肠道副作用的药物[16]。4.总结甘草是一种豆科草本植物,其作史古已有之,必然意味着甘草所独具的 性质千百年来一直为人们所使用。而其主要活性成分甘草酸及其衍生盐类由于其甜度极高,且甜度留存时间长,主要用作甜味剂用于食品添加剂中。但都具有一定毒性,需要严格按照国家标准使用。此外,甘草酸盐还具有药理性质,在生物医药研究方面受到了学者的广泛关注,具有抗炎、保肝两方面的功能,因此也频繁应用与新型药物的开发,其价值也得到了更多的延伸。参考文献[1]甘草酸的制备及其在食品工业中的应用.食品工业,1994,(6);49~51[2]Tykarska E , Gdaniec M . Toward Better Understanding of Isomorphism of Glycyrrhizic Acid and Its Mono- and Dibasic Salts[J]. Crystal Growth & Design, 2013, 13(3):1301-1308.[3]郑国斌.从甘草酸粗品制取甘草酸单钾盐.中国医药工业杂志,1995,26(2);54[4-5,7-8]食品添加剂应用手册/孙平,张津凤主编.一北京:化学工业出版社,2010.10 ISBN978-7-122-09417-9[6]苌云玉.甘草酸盐制备方法研究[J].基层中药杂志,1995(04):33-34. [9]邓淑华,王晓斌,王鸿梅,刘艳华.甘草酸盐抗菌作用的实验研究[J].承德医 学院学报,2011,28(03):325-326.[10]黄能慧,曾样锬,刘季昆,夏炳南.甘草酸盐对农药(杀虫双)的解救作用[J].贵阳医学院学报,1982(03):21-22.[size=13px] [/size][11] Maione F , Minosi P , Giannuario A D , et al. Long-Lasting Anti-Inflammatory and Antinociceptive Effects of Acute Ammonium Glycyrrhizinate Administration: Pharmacological, Biochemical, and Docking Studies[J]. Molecules, 2019, 24(13)[12] [size=13px][color=#222222]Koide M , Takahashi M , Tamagaki S , et al. Catalytic effect of dipotassium glycyrrhizinate on the hydrolysis of nonionic ester surfactants[J]. Journal of the American Oil Chemists' Society, 1996, 73.[/color][/size][13]万荣, 刘莎, 范稚坚,等. Clinical Observation of Diammonium Glycyrrhizinate Enteric-coated Capsule in Preventing Liver Injury Induced by Anti-tuberculosis Drugs[J]. 大理学院学报, 2019, 004(004):45-47.[color=#222222][14] Sui X , Yin J , Ren X . Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus.[J]. Antiviral Research, 2010, 85(2):346-353. [15][/color] [color=#222222]Li, Yun, Liu, et al. Diammonium Glycyrrhizinate Protects against Nonalcoholic Fatty Liver Disease in Mice through Modulation of Gut Microbiota and Restoration of Intestinal Barrier[J]. Molecular pharmaceutics, 2018.[/color][16] Marianecci C , Rinaldi F , Mastriota M , et al. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models[J]. Journal of Controlled Release, 2012, 164(1):17-25.

  • 鼠尾草提取物可以用在其他食品中吗?

    [font=SimSun, STSong, &]当前有一款产品配方中有鼠尾草提取物,但在数据库中未查询到,在论坛中有看到作为食品添加剂,添加在酒类中,不知道是否可以用于其他食品[/font]

  • 2015中国药典检测方案有奖问答03.03(已完结)——四君子颗粒中甘草苷、甘草酸铵的检测

    2015中国药典检测方案有奖问答03.03(已完结)——四君子颗粒中甘草苷、甘草酸铵的检测

    问题:四君子颗粒中甘草苷、甘草酸铵的检测对照品分析中甘草苷与甘草酸铵的分离度是?答案:62.445【活动奖励】因zgx3025(注册ID:v2844608)的答案不正确,所以取消本次获得的钻石币幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币mengzhaocheng(注册ID:mengzhaocheng)莫名其妙(注册ID:moyueqiu)http://ng1.17img.cn/bbsfiles/images/2016/03/201603031621_585902_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/03/201603031621_585903_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================四君子颗粒中甘草苷、甘草酸铵的检测样品制备制备方法1. 对照品:取甘草苷对照品、甘草酸铵对照品适量,精密称定,加甲醇制成每1 mL分别含甘草苷20 μg、甘草酸铵0.2 mg溶液,即得(甘草酸重量=甘草酸铵重量/1.0207)。2. 供试品:取本品装量差异项下的内容物3 g,精密称定,置具塞锥形瓶中,精密加入甲醇25 mL,密塞,称定重量,超声处理(功率250 W,频率40 KHz)30分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,精密量取续滤液15 mL,蒸干,残渣加甲醇使溶解,移至5 mL量瓶中,加甲醇稀释至刻度,摇匀,滤过,取续滤液,即得。分析条件色谱柱Platisil ODS 250 x 4.6 mm,5 μm (Cat#:99503)流动相A:乙腈 B:0.05%磷酸溶液 梯度流速1.0 mL/min柱温30 ℃检测器UV 237 nm 进样量10 μL 色谱图对照品http://ng1.17img.cn/bbsfiles/images/2016/03/201603031020_585805_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 15.739 771814 49202 22131.352 0.998 -- 2 36.170 766340 93054 391608.534 1.043 62.445 *药典要求理论板数按甘草苷峰计算应不低于5000供试品http://ng1.17img.cn/bbsfiles/images/2016/03/201603031021_585807_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 15.784 475765 27766 18773.718 0.973 -- 2 36.033 152478 18510 403100.536 0.997 58.879 *药典要求理论板数按甘草苷峰计算应不低于5000本品种同时使用了Diamonsil C18、DiamonsilC18(2)两款色谱柱,在药典规定条件下进行甘草苷、甘草酸铵的检测,均满足药典要求。

  • 小儿七星茶颗粒甘草酸的含量测定

    最近做小儿七星茶颗粒甘草酸的测定时遇到了很奇怪的问题:对照品有峰,样品却只出杂质峰,开始怀疑是样品没有含量,可是拿以前做过的有含量的样品再做,却没峰了;后来吸一半对照品一半样品进样就出峰了,可是加对照品到样品中一起按标准处理后就又没有峰出来,怎么想都不明白问题出在哪里。所用的试剂换了好几次,也换人配了,结果还是一样没有,会不会是超声引起的呢,因为我们的超声机的功率只有80瓦,不过以前也做得出啊,大家帮帮忙,下面是标准【含量测定】 照高效液相色谱法(中国药典2005年版一部附录VI D)测定。 色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以甲醇-0.2mol/L醋酸铵溶液—冰醋酸(65:35:1)为流动相;检测波长为250nm。理论板数按甘草酸峰计算应不低于2000。 对照品溶液的制备 取甘草酸铵对照品适量,精密称定,加流动相制成每1ml含16μg的溶液,即得(折合甘草酸为15.672μg)。 供试品溶液的制备 取装量差异项下的本品内容物,混匀,研细,取约7g,精密称定,置50ml量瓶中,加流动相约45ml,超声处理(功率300W,频率40kHz)30分钟,放冷,加流动相至刻度,摇匀,滤过,取续滤液,即得。 测定法 精密吸取对照品溶液与供试品溶液各20μl,注入液相色谱仪,测定,即得。

  • 42.6 HPLC法测定犀羚解毒丸中甘草酸的含量

    42.6 HPLC法测定犀羚解毒丸中甘草酸的含量

    作者:秦战勇;林莉莉;姚雪花;杜树山;(河南省药品审评认证中心;北京师范大学资源学院教育部资源药物工程研究中心;)摘要:目的建立犀羚解毒丸中甘草酸含量的测定方法。方法采用HPLC法,色谱柱:Diamonsil C18(250 mm×4.6 mm,5μm),流动相:甲醇-(64∶36),检测波长:250 nm,流速:1.0 mL/min。结果甘草酸铵在0.075~0.375μg范围内呈良好的线性关系(r=0.999 6),加样回收率为98.25%,RSD=0.92%。结论该方法快速、简便、准确、重复性较好,结果可靠,可用于控制犀羚解毒丸制剂的质量。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208131419_383482_1606903_3.jpg

  • 【讨论】色谱柱对甘草酸产生强吸附的原因?

    甘草提取液,同样的条件,在Agilent ZOBAX Eclipse plus C18 和迪马铂金C18上跑出来的图相比,前者就硬是差一个最大的峰----甘草酸,用对照品进样也发现在前者上不出峰,后用100%乙腈冲很久才出来一大堆杂质峰,应该是吸附在柱子上了。请问这2种都是C18的柱子,为什么会有如此大的差别,前者为什么会产生强吸附?谢谢

  • 【原创大赛】高效液相色谱法测定甘草制品中甘草酸的含量

    【原创大赛】高效液相色谱法测定甘草制品中甘草酸的含量

    高效液相色谱法测定甘草制品中甘草酸的含量前言甘草酸是一味常用的中药,目前有关甘草的研究很多,甘草具有清热解毒,润肺止咳之功效。同时,我们也要注意甘草的副作用,过量的甘草会使到尿量及钠的排出减少,身体会积存过量的钠(盐分)引起高血压;水分储存量增加,会导致水肿。同时过多血钾流失引起的低血钾症,导致心律失常,肌肉无力。所以有高血压症状的人是不能食用甘草的,我们的父母有一种误区,觉得食用甘草可以清热解毒,殊不知其副作用也同样可怕。中药无毒论确实非常可怕啊!闲话少说,回到正题。http://ng1.17img.cn/bbsfiles/images/2013/09/201309190950_465407_2428063_3.jpg甘草切片的图片甘草的主要成分为甘草酸、甘草次酸和甘草苷等。甘草酸是最主要的有效成分。目前,我们使用的检测方法为高效液相色谱法,同时又该方法又有等度高效液相法和梯度高效液相色谱法。1、如果单纯检测甘草酸,我建议使用普通的高效液相色谱法,本单位所使用色谱柱为:Sunfire TM C18色谱柱,填料为5um,规格为4.6*150mm。所使用的仪器为Waters 2695,配备了2887 PDA全波段紫外检测器,可以根据需要提取不同波长的色谱图。如下为:甘草酸的色谱分离条件甲醇-0.2mol醋酸铵-冰醋酸(66:33:1) 检测波长为250nm 流速为1mL/min样品提取过程称取0.2克样品,加入1:1的甲醇水溶液,超声波提取20分钟,然后定容到100mL的容量瓶中。http://ng1.17img.cn/bbsfiles/images/2013/09/201309190952_465408_2428063_3.jpg2、本人查询了最新的2010版药典,发现检测的方法发生了变化,其核心变化就是检测的物质多了一个甘草苷,可以同时实现两种物质的分离,从分离学上来讲是非常有意义的。但是如果单纯的测定甘草酸,我觉得还是使用2005版药典的方法更好。以前的方法5分钟左右就可以出峰,10分钟就可以完成检测。但是采用新方法以后,一针样品要运行1个小时,对色谱柱和时间都是极大的浪费,当然在检测过程中,我们可以进行适当的优化,但是无疑是很劳民伤财的。

  • 测定甘草酸含量的疑惑-中国药典

    中国药典2015版里,测定甘草酸含量为什么不同的甘草产品用不同的流动相和不同波长?有的磷酸,有的乙酸/乙酸铵,有的用237 nm,有的用250 nm,同一物质甘草酸有两个最大吸收波长?求解答

  • 62.7 高效液相色谱法测定肝康颗粒中甘草酸含量

    62.7 高效液相色谱法测定肝康颗粒中甘草酸含量

    作者:刘忠; 张洪涛; 蔡俊安; 王粉;(河南百年康鑫药业有限公司;)摘要:目的建立测定肝康颗粒中甘草酸含量的高效液相色谱(HPLC)法。方法采用外标一点法,色谱柱为Diamonsil ODS1 C18柱(250mm×4.6mm,5μm),流动相为甲醇-0.2mol/L醋酸铵-冰醋酸(67∶33∶1),流速为1.0mL/min,检测波长250nm。结果甘草酸进样量在0.5102~4.0820μg范围内与峰面积线性关系良好,回归方程Y=6422.014X-412.836,r=0.9996(n=5),平均加样回收率为99.29%,RSD为1.22%(n=6)。结论HPLC法简便、准确,专属性强,测定结果重现性好,可用于肝康颗粒中甘草酸的定量分析。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208271038_386324_1606903_3.jpg

  • 【原创】有关于甘草酸盐的分析

    我最近在做检测甘草粉中甘草酸钠的含量,发现很多文献里面把甘草酸钠和甘草酸含量进行了换算,他们检测出的色谱峰标注的是甘草酸。请问进样是纯品甘草酸钠,在液相分析过程中是不是和流动相反应了生成了甘草酸?还是其他原因。

  • 【分享】英国就将芡欧鼠尾草籽用于烘焙制品征求意见

    据英国食品安全局官方网站消息,澳大利亚The Chia Company公司已请求该局批准将芡欧鼠尾草籽(chia seed)用于烘焙制品、谷物早餐以及水果、坚果、种子的混合食品。按照欧盟新型食品法规,该公司的相关产品已获得批准,法规要求该公司面包制品中鼠尾草籽的含量不得超过5%。芡欧鼠尾草是一种夏播一年生草本植物,隶属于薄荷科。该植物已在几个拉美国家与澳大利亚进行商业化种植,然而由于其在欧盟并无重大消费历史,因此应被纳入新型食品。附:新型食品是指1997年5月前在欧盟市场无重大消费历史的食品或食品配料。任何一种新型食品在获准进入欧盟市场之前,都必须经过严格的食用安全性评估。在英国,负责开展该项评估工作的部门为新型食品咨询委员会(ACNFP),ACNFP是英国食品标准局所指定的一个独立的科学机构

  • 44.6 RP-HPLC同时测定温胆汤中甘草苷、柚皮苷、橙皮苷和甘草酸

    44.6 RP-HPLC同时测定温胆汤中甘草苷、柚皮苷、橙皮苷和甘草酸

    【作者】 许栋明; 程可建;【Author】 XU Dongming,CHENG Kejian(1.Science and Technology Innovation of Small and Mid-sized Enterprise Fund Management Center,Ministry of Science and Technology,Beijing 10038,China;2.Bescholor Research Center,Peking University,Beijing 100084,China)【机构】 科技部科技型中小企业技术创新基金管理中心; 北大世佳研究中心;【摘要】 目的:建立HPLC同时测定温胆汤中甘草苷、柚皮苷、橙皮苷和甘草酸含量的方法。方法:DIKMA Diamonsil(2)-C18柱(4.6 mm×250 mm,5μm);流动相乙腈(A)-0.1%磷酸溶液(B),线性梯度洗脱;检测波长237,283 nm;柱温25℃;流速1.0 mL.min-1;进样量10μL。结果:甘草苷、柚皮苷、橙皮苷和甘草酸铵的进样量与峰面积,分别在0.019 9~0.119(r=0.999 7),0.180~1.08(r=0.999 7),0.146~0.873(r=0.999 8),0.0393~0.236μg(r=0.999 7)呈良好的线性关系;平均加样回收率依次为97.7%,97.7%,97.1%,98.5%,RSD 1.4%,2.0%,2.0%,1.9%。结论:该方法快速,简便,重复性好,适合于同时测定温胆汤样品中甘草苷、柚皮苷、橙皮苷和甘草酸的含量。 更多还原http://ng1.17img.cn/bbsfiles/images/2012/08/201208131329_383466_2379123_3.jpg

  • 草酸钙的烘干温度

    如题,TGA上面用来做分解实验的草酸钙,放置了很久需要烘干一下,大家一般用多少度来烘干的阿?小于100就行么

  • 2015中国药典检测方案有奖问答03.17(已完结)——玄麦甘桔胶囊中甘草酸的检测

    2015中国药典检测方案有奖问答03.17(已完结)——玄麦甘桔胶囊中甘草酸的检测

    问题:玄麦甘桔胶囊中甘草酸的检测对照品分析中甘草酸的理论塔板数是?答案:15108.406【活动奖励】幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币捌道巴拉巴巴巴(注册ID:v3082413)翠湖园(注册ID:hhx050)m3071659(注册ID:m3071659)http://ng1.17img.cn/bbsfiles/images/2016/03/201603171519_587237_1610895_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/03/201603171519_587238_1610895_3.png积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================玄麦甘桔胶囊中甘草酸的检测样品制备 制备方法1. 对照品:取甘草酸对照品适量,精密称定,加80%甲醇制成每1 mL含0.2 mg的溶液。2. 供试品:取装量差异项下的本品内容物,研细,混匀,取约1 g,精密称定,置具塞锥形瓶中,精密加入80%甲醇25 mL,称定重量,超声处理(功率250 W,频率33 kHz)30分钟,放冷,再称定重量,用80%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。分析条件 色谱柱Platisil ODS 250 x 4.6 mm,5 μm (Cat#:99503)流动相乙腈:0.1%磷酸溶液=37:63 流速1 mL/min柱温30 ℃检测器UV 250 nm进样量5 μL色谱图对照品http://ng1.17img.cn/bbsfiles/images/2016/03/201603170956_587210_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 21.026 694197 26857 15108.406 1.009 -- *药典要求理论板数按甘草酸峰计算应不低于4000供试品http://ng1.17img.cn/bbsfiles/images/2016/03/201603170956_587211_1610895_3.jpg 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 22.033 991915 35292 14188.640 1.081 -- *药典要求理论板数按甘草酸峰计算应不低于4000本品种同时使用了Leapsil C18色谱柱,在药典规定条件下进行甘草酸的检测,满足药典要求。

  • 2015中国药典检测方案有奖问答12.23(已完结)——玄麦甘桔含片中甘草酸的检测

    2015中国药典检测方案有奖问答12.23(已完结)——玄麦甘桔含片中甘草酸的检测

    问题:玄麦甘桔含片中甘草酸的检测:USP拖尾因子是多少呢答案:1.009活动奖励:zengzhengce163(ID:zengzhengce163)sixingxing(ID:v2889187)千层峰(ID:jxyan)http://ng1.17img.cn/bbsfiles/images/2015/12/201512231541_579203_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512231541_579204_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512231542_579205_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512231542_579206_708_3.jpg【活动奖励】幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。玄麦甘桔含片中甘草酸的检测样品制备 制备方法对照品:取甘草酸对照品适量,精密称定,加80%甲醇制成每1 mL含0.2 mg的溶液。分析条件 色谱柱Platisil ODS 250 x 4.6 mm,5 μm (Cat#:99503)流动相乙腈:0.1%磷酸溶液=37:63 流速1 mL/min柱温30 ℃检测器UV 250 nm进样量5 μL色谱图对照品http://ng1.17img.cn/bbsfiles/images/2015/12/201512231017_579120_708_3.png 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 21.026 694197 26857 15108.406 1.009 -- *药典要求理论板数按甘草酸峰计算应不低于4000本品种同时使用了Leapsil C18色谱柱,在药典规定条件下进行甘草酸的检测,满足药典要求。

  • 2015中国药典检测方案有奖问答03.23(已完结)——玄麦甘桔颗粒中甘草酸的检测

    2015中国药典检测方案有奖问答03.23(已完结)——玄麦甘桔颗粒中甘草酸的检测

    问题:玄麦甘桔颗粒中甘草酸的检测:用到了迪马哪几款色谱柱?答案:Platisil ODS,Leapsil C18获奖名单:WUYUWUQIU(ID:wulin321)m3071659(ID:m3071659)sixingxing(ID:v2889187)http://ng1.17img.cn/bbsfiles/images/2016/03/201603231529_587978_708_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/03/201603231529_587979_708_3.jpg【活动奖励】幸运奖(2钻石币):抽奖软件,当天随机抽取3个回答正确的版友ID号(最后一个ID号,截止至下午3:00),每人奖励2个钻石币积分奖励:所有回答正确的版友奖励10个积分(幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。玄麦甘桔颗粒中甘草酸的检测样品制备 制备方法1. 对照品:取甘草酸对照品适量,精密称定,加80%甲醇制成每1 mL含30 μg的溶液,摇匀,即得。2. 供试品:取装量差异项下的本品内容物,研细,混匀,取约1 g,精密称定,置具塞锥形瓶中,精密加入80%甲醇25 mL,称定重量,超声处理(功率250 W,频率33 kHz)30分钟,放冷,再称定重量,用80%甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。分析条件 色谱柱Platisil ODS 250 x 4.6 mm,5 μm (Cat#:99503)流动相乙腈:0.1%磷酸溶液=37:63 流速1 mL/min柱温30 ℃检测器UV 250 nm进样量5 μL色谱图对照品http://ng1.17img.cn/bbsfiles/images/2016/03/201603230951_587901_708_3.png 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 21.299 413351 15834 15232.463 1.016 -- *药典要求理论板数按甘草酸峰计算应不低于4000供试品http://ng1.17img.cn/bbsfiles/images/2016/03/201603230951_587902_708_3.png 峰号 保留时间 min 峰面积 μV*s 峰高 μV 理论塔板数* N USP拖尾因子 分离度 1 21.607 706476 26568 14700.090 1.065 -- *药典要求理论板数按甘草酸峰计算应不低于4000本品种同时使用了Leapsil C18色谱柱,在药典规定条件下进行甘草酸的检测,满足药典要求。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制