当前位置: 仪器信息网 > 行业主题 > >

甘露糖磷酸酯钠

仪器信息网甘露糖磷酸酯钠专题为您提供2024年最新甘露糖磷酸酯钠价格报价、厂家品牌的相关信息, 包括甘露糖磷酸酯钠参数、型号等,不管是国产,还是进口品牌的甘露糖磷酸酯钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甘露糖磷酸酯钠相关的耗材配件、试剂标物,还有甘露糖磷酸酯钠相关的最新资讯、资料,以及甘露糖磷酸酯钠相关的解决方案。

甘露糖磷酸酯钠相关的论坛

  • 【原创】半乳甘露聚糖

    半乳甘露聚糖是一种包含了甘露糖骨干与半乳糖旁基的多糖,更准确的一点来说,半乳甘露聚糖是直线状(1-4)-连结的β-D型甘露糖((1-4)-linked beta-D-mannopyranose )骨干于它们6-连接点连接到α-D型半乳糖(alpha-D-galactose)的多糖,即1-6-连结的α-D型吡喃半乳糖(1-6-linked alpha-D-galactopyranose)。部分的植物与真菌都含有半乳甘露聚糖的成分。目前主要有四种来源的半乳甘露聚糖,分别来源于胡芦巴胶(Fenugreek Gum),瓜尔豆胶(Guar Gum),长角豆胶(Locust Bean Gum)和他拉胶(Tara Gum),它们具有不同支化度的半乳甘露聚糖。 这四种半乳甘露聚糖的结构都是以甘露糖为主链,半乳糖为侧链基团。更准确地说,它们是以主链为β(1,4)连接的D-甘露糖聚合物,每隔几个甘露糖残基有一个α-D-半乳糖以1,6键与主链相连。PS-FNG,-GG,-TG和–LBG都是半乳甘露聚糖,不同的仅仅是他们的半乳糖和甘露糖的比例,比例分别是1:1,1:2,1:2。5~3,和1:3.5~4。[size=4][color=#DC143C]请注意不要在技术论坛做广告,不显示公司名字[/color][/size]

  • CNS_19.017_D-甘露糖醇

    CNS_19.017_D-甘露糖醇

    李少晖目录第1章 认识D-甘露糖醇11.1 D-甘露糖醇的性质1第2章 D-甘露糖醇的生产22.1生产工艺22.1.1海带提取法22.1.2葡萄糖电化学还原22.1.3蔗糖水解催化氢化法2第3章D-甘露糖醇在食品中的应用43.1 D-甘露糖醇在食品中的优点4第4章 D-甘露糖醇在其他领域上的应用64.1生产聚醚64.2大功率的电解电容64.3在医药方面上的应用6第5章 D-甘露糖醇的发展趋势75.1市场情况75.2 近年产品货紧价扬的原因分析75.2.1提取法生产成本的增高和产量的降低75.2.2国际市场供货量的降低75.2.3人工合成法的普及不足7第6章 对D-甘露糖醇的展望8第7章 D-甘露醇的产品标准、限量标准及检测标准介绍97.1产品标准及最大使用量97.2甘露醇的检验97.2.1定性检测97.2.2定量检测97.2.2.1碘量法97.2.2.2薄层层析法97.2.2.3比色法10[align=left][font='times new roman'][size=21px][color=#000000]第1章 [/color][/size][/font][font='times new roman'][size=21px][color=#000000]认识D-甘露糖醇[/color][/size][/font][/align][font='calibri'][size=14px]长期以来,[/size][/font][font='calibri'][size=14px]D-[/size][/font][font='calibri'][size=14px]甘露[/size][/font][font='calibri'][size=14px]糖[/size][/font][font='calibri'][size=14px]醇生产的发展受到原料来源的限制,与山梨醇相似,生产工艺短,主要用途成本低的影响。[/size][/font][font='calibri'][size=14px]但[/size][/font][font='calibri'][size=14px]随着[/size][/font][font='calibri'][size=14px]D-[/size][/font][font='calibri'][size=14px]甘露[/size][/font][font='calibri'][size=14px]糖[/size][/font][font='calibri'][size=14px]醇应用的不断发展,原料来源的多样化、成本的降低以及[/size][/font][font='calibri'][size=14px]D-甘露糖[/size][/font][font='calibri'][size=14px]醇的独特用途,预示着[/size][/font][font='calibri'][size=14px]D-[/size][/font][font='calibri'][size=14px]甘露[/size][/font][font='calibri'][size=14px]糖[/size][/font][font='calibri'][size=14px]醇将是一种前景广阔的精细化工产品。[/size][/font][font='calibri'][size=14px]1.1 [/size][/font][font='calibri'][size=14px]D-甘露糖醇的性质[/size][/font][font='calibri'][size=14px]D-[/size][/font][font='calibri'][size=14px]甘露[/size][/font][font='calibri'][size=14px]糖[/size][/font][font='calibri'][size=14px]醇[/size][/font][font='calibri'][size=14px]([/size][/font][font='calibri'][size=14px]D- mannitl、D- mannita[/size][/font][font='calibri'][size=14px]l、[/size][/font][font='calibri'][size=14px]mannite、manna sugar)学名己六醇[CH[/size][/font][font='calibri'][size=14px]8[/size][/font][font='calibri'][size=14px](OH)[/size][/font][font='calibri'][size=14px]6[/size][/font][font='calibri'][size=14px]],又称甘露醇、木蜜醇,分子式C[/size][/font][font='calibri'][size=14px]6[/size][/font][font='calibri'][size=14px]H[/size][/font][font='calibri'][size=14px]14[/size][/font][font='calibri'][size=14px]O[/size][/font][font='calibri'][size=14px]6[/size][/font][font='calibri'][size=14px]。[/size][/font][font='calibri'][size=14px]D-甘露糖醇的化学性质稳定,对稀酸、稀碱、热较稳定,在空气中不氧化。具有多元醇的通性,其羟基具有较强的反应性能,可以通过取代、醇化、醚化、缩合等生成一系列的衍生物或中间体,中间体再进一步合成获得更多的衍生物。[/size][/font][font='calibri'][size=14px]D-甘露糖醇是一种[/size][/font][font='calibri'][size=14px]无色至白色针状或斜方柱状晶体或结晶性粉末。无臭,具有清凉甜味[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]甜度约为蔗糖的57%~72%[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]每g产生8.37J热量,约为葡萄糖的一半。含少量山梨糖醇。相对密度1.49[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]吸湿性极小。水溶液稳定。溶于水(5.6g/100ml,20℃)及甘油(5.5g/100ml)[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]略溶于乙醇(1.2g/100ml)[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]溶于热乙醇。几乎不溶于大多数其他常用有机溶剂。20%水溶液的pH值为5.5~6.5。[/size][/font][font='calibri'][size=14px]D-甘露糖醇的红外光谱图见图1。[/size][/font][font='calibri'][size=14px][1][/size][/font][font='calibri'][size=14px]甘露醇与山梨醇[D (L)- sorbitol]、艾杜糖醇[D (L)- iditol]、 塔里糖醇 [D (L)- talitd][/size][/font][font='calibri'][size=14px]、[/size][/font][font='calibri'][size=14px]卫矛醇[dulcitol]、蒜糖醇[allitd ]互为同分异构体[/size][/font][font='calibri'][size=14px],因[/size][/font][font='calibri'][size=14px]具有多元醇的化学性质,[/size][/font][font='calibri'][size=14px]所以[/size][/font][font='calibri'][size=14px]在医药食品、纺织化工、火工等方面大量应用。[/size][/font][align=center][/align][align=center][/align][align=center][font='times new roman'][size=21px][color=#000000]第2章 [/color][/size][/font][font='times new roman'][size=21px][color=#000000]D-甘露糖醇的生产[/color][/size][/font][/align][font='calibri'][size=14px]2.1[/size][/font][font='calibri'][size=14px]生产工艺[/size][/font][font='calibri'][size=14px]D-甘露糖醇是第一个从自然界发现的结晶糖醇,也是目前唯一从自然界植物提取具有工业价值的精醇。D-甘露糖醇广泛存在于自然界的海藻、水果、植物的叶和杆中,它最早发现存在于南瓜、洋葱、蘑菇以及褐海藻中。1806年,普鲁斯特(Proust)首先从甘露蜜树(manna ash)中分离得到,甘露醇由此得名,也由此开创了用热乙醇或其他可选溶媒从以树汁或其他天然原料中提取甘露醇的先例。[/size][/font][font='calibri'][size=14px][2][/size][/font][font='calibri'][size=14px] D-甘露糖醇的生产方法颇多,但大部分产物都不是纯净物,是山梨醇和甘露醇的混合物,如果要得到单一产品,必须经过分离提纯。[/size][/font][font='calibri'][size=14px]2.1.1海带提取法[/size][/font][font='calibri'][size=14px] 其工艺过程:将提碘后的海带浸泡、加碱中和,经电渗析、蒸发浓缩、冷却结晶、分离,除去无机盐得粗品。再溶解、脱色、过滤、离子交换、精过滤、蒸发浓缩、冷却结晶、分离干燥得到成品。原料海带可生产三种化工产品:海参藻酸钠、精制碘、甘露醇。甘露醇是在前两种产品加工完后,在废液中进一步提取而制成,约10t海带可得1t甘露醇。[/size][/font][font='calibri'][size=14px]2.1.2葡萄糖电化学还原[/size][/font][font='calibri'][size=14px] 以葡萄糖为原料,将葡萄糖电解,再中和、蒸发、除盐、结晶、精制、干燥得到甘露醇,此法电解转化率为98%-99.6%。[/size][/font][font='calibri'][size=14px]2.1.3蔗糖水解催化氢化法[/size][/font][align=left][font='宋体'][size=16px]蔗糖与水1:1比例投入溶解锅,加热溶解,用盐调pH至2.5-4.0,然后继续加热至沸,温度控制在90-105[/size][/font][font='宋体'][size=16px][color=#000000]℃[/color][/size][/font][font='宋体'][size=16px][color=#000000]下1-2小时(预处理),冷却备用。[/color][/size][/font][font='宋体'][size=16px]经预处理后的糖水经阴、阳离子交换树脂提纯,再进入氢化釜。以雷尼镍为催化剂,用量为投料量的5-10%,在氢气压力为4.0MPa、温度100-150℃、pH值为6-8的条件下进行氢化反应,反应时间1-2小时。[/size][/font][/align][align=left][font='宋体'][size=16px]分离出催化剂后的反应物料,再经阴-阳离子交换树脂净化,以除去残余的催化剂和反应生成的色素,然后进入真空浓缩器将物料浓缩至60-70%,送至第一结晶釜结晶,结晶温度控制在10-30℃,时间10-16小时,然后离心分离,结晶为粗甘露醇 母液即为工业山梨醇。[/size][/font][font='宋体'][size=16px] 将上述第一次结晶的粗甘瞎醇投人二次结晶釜,加水配成50-60%浓度进行第二次结晶,结晶条件与第一次相同,母液为山梨醇和甘露醇混合液,并人第一次结晶物料,得到的晶体在90-105℃温度下烘干,即得工业级甘露醇。[/size][/font][font='宋体'][size=16px][3、4][/size][/font][font='宋体'][size=16px] 将第二次结晶的甘露醇用蒸馏水配至40-50%浓度,加人1-2%活性炭,搅拌加热至90-105℃,保持1-1.5小时,趁热压滤进行第三次结晶,结晶条件控制与第一、二次相同。再经离心分离,在90-105℃温度下烘干,即得到医药级甘露醇,质量符合国家药典85版标准。[/size][/font][font='宋体'][size=16px] 将上述第一次结晶的山梨醇母液真空蒸发,浓缩至浓度为70-80%,进行重结晶,结晶温度控制在10-30℃,时间24-48小时,同时加人1-2%甘露醇作晶种,结晶完毕进行压滤,滤液经阴-阳交换柱处理,即得到医药级山梨醇,比旋度小于5.3,滤饼并人第一次结晶物料中。[/size][/font][font='宋体'][size=16px][5][/size][/font][font='宋体'][size=16px] 采用该工艺生产甘露醇比海带提取法成本降低50%,且原料不受地区限制,各地均可生产。[/size][/font][/align][align=left][font='times new roman'][size=17px]2.1.4[/size][/font][font='times new roman'][size=17px]果糖催化氢化制甘露醇[/size][/font][/align][align=left][font='times new roman'][size=17px]将淀粉水解为葡萄糖后,在异构酶存在下,或者化学法转化成果糖、葡萄糖、甘露糖的混合液,然后催化加氢制甘露醇。上述方法,氢化后得到的产物是以山梨醇、甘露醇为主的混合物,通常采用结晶法或吸附分离法精制提纯。[/size][/font][/align][align=left][font='宋体'][size=16px]在上述生产方法中,海带提取法,采用海带碘和海藻酸钠废水提取,作为一种综合利用,这种方法不会被淘汰,但由于海藻资源的限制,难以扩大产量。葡萄糖电化学还原法的电解能耗较高,目前已停止工业生产。果糖糖浆的催化还原法,虽然甘露醇收率高,但由于工艺时间长,技术难度大,成本高,不适合推广采用。以蔗糖为原料,将果糖和葡萄糖进行水解,然后部分葡萄糖转化为甘露糖,[/size][/font][font='宋体'][size=16px]成为[/size][/font][font='宋体'][size=16px]果糖、葡萄糖和甘露糖的混合[/size][/font][font='宋体'][size=16px]液[/size][/font][font='宋体'][size=16px],然后氢化生成甘露醇[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]原料来源丰富,相对工艺时间短,生产成本低。这是今后发展甘露醇生产的一种很有前途的方法。[/size][/font][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=center][font='黑体'][size=21px]第3章D-甘露糖醇在食品中的应用[/size][/font][/align][font='黑体'][size=18px]3.1 [/size][/font][font='黑体'][size=18px]D-甘露糖醇在食品中的优点[/size][/font][align=left][font='宋体'][size=16px]多年来,人们对甘露醇的医学作用进行了许多研究。然而,由于甘露醇来源的短缺和市场供应的波动,甘露醇在食品中的应用研究较少。[/size][/font][font='宋体'][size=16px]但如今[/size][/font][font='宋体'][size=16px]随着合成甘露醇生产工艺的发展,甘露醇的生产规模[/size][/font][font='宋体'][size=16px]的[/size][/font][font='宋体'][size=16px]扩大,生产成本和价格趋于稳定[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]甘露醇进入食品行业势在必行。[/size][/font][/align][font='times new roman'][size=17px]D-甘露糖醇作为食品添加剂可用于食品工业中,具有以下优点:[/size][/font][font='calibri'][size=17px]①D-甘露糖醇在人体中的一次代谢途径与胰岛素无关,摄入后不会引起血液葡萄糖与胰岛素水平太大幅度的波动,可以给糖尿病病人食用。[/size][/font][font='cambria'][size=16px]②D-甘露糖醇具有清凉的甜味,其甜度相当于蔗糖的0.6倍,其溶解吸热为-29Cal/g,相当于木糖醇的76%,利用这点,可以应用在口香糖上,作为甜味剂使用。[/size][/font][font='calibri'][size=16px]③D-甘露糖醇不会作为口腔微生物的营养源,还可以抑制突变链球菌的生长繁殖,可以用于防止牙齿龋变的食品。[/size][/font][font='宋体'][size=16px]④D-甘露糖醇与山梨醇、木糖醇等不同,它不易吸潮,20℃时,其溶解度仅为18克/100克,远比山梨醇、木糖醇与麦芽糖醇等低。因此,它可以用作隔潮剂,当用于口香糖、胶姆糖等其他食品中,可防止加工使用过程中的粘连。[/size][/font][font='宋体'][size=16px]⑤D-甘露糖醇没有还原基,不参与美拉德反应,所以用于烘烤食品,可以保持良好的颜色,不容易焦化。[/size][/font][font='宋体'][size=16px][6][/size][/font][font='宋体'][size=16px]由于上述优点,甘露醇在食品工业中得到了广泛的应用。比如可作为一种低热值和低糖的甜味剂,用于糖尿病肥胖患者的食品使用,也适合减肥者服用。甘露醇在食品中被用作无糖口香糖的甜味剂,因为它不吸收水分。用于防粘剂也得到了广泛的应用。另外,甘露醇是用来制作冰淇淋、糖果巧克力的风味糖主,也就是所谓的巧克力皮酥脆,可以保持产品硬皮,效果很好。甘露醇还可以隐藏其他食品添加剂的坏味道,如糖精的铁锈味和其他物质的苦味,因此可以用高倍甜味剂混合用于饮料、糖浆及其他食品。如蜜饯、果酱、果冻等等。[/size][/font][font='宋体'][size=16px]目前,甘露醇是食品中使用最多的无糖口香糖甜味剂或抗粘剂。[/size][/font][font='宋体'][size=16px]其次[/size][/font][font='宋体'][size=16px],它可以为冰淇淋和糖果制作巧克力糖果外套。甘露醇还可用作充填剂和质量改良剂,防止结块。此外,它还可以添加到各种食物中。为了延长保质期[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]甘露醇与食品中其他成分相容性好,与其他甜味剂有协同作用。与[/size][/font][font='宋体'][size=16px]高倍[/size][/font][font='宋体'][size=16px]甜味剂相结合,可获得最佳甜度,降低成本,提高产品稳定性和贮存性能。制作巧克力糖衣时,如果使用甘露醇,可添加其他乙二醇(如麦芽糖醇氢化淀粉水解物等),以提高人体耐受性,降低吸热效应。[/size][/font][font='宋体'][size=16px]甘露醇作为多元醇是不能被口腔微生物利用的,服用后也不会增加口腔酸度。这就意味着,不会促成牙垢与形成龋齿。美国牙医协会认为,包括甘露醇在内的多元醇可作为蔗糖的替代品,可以保护牙齿。美国食品与医药管理局同意在使用甘露醇等多元醇的无糖食品上标注“不形成龋齿”的宣传。[/size][/font][font='宋体'][size=16px]而D-甘露糖醇也是国际上公认的在食品工业上使用是安全的。目前我国食品添加剂使用标准中糖果制品最大的使用量是可按生产需要适量使用。[/size][/font][font='宋体'][size=16px][7][/size][/font][align=left][font='宋体'][size=16px]但是,多元糖醇在服用时,有一个共同特点,即超过一定量时,会引起肠胃不适或腹泻。这是因为大部分糖醇在肠道中吸收速度要比糖难得多,小肠内壁未被吸收的糖醇会产生很高的渗透压,这样导致小肠壁粘膜表面产生水流,故引起了腹泻。而未消化吸收的糖醇进入大肠中,,被肠道细菌利用,发酵又产生大量挥发性物质,如果超出了能通过血液重新吸收和随粪便排出的数量极限,就会产生肠胃胀气。这方面,甘露醇和木糖醇、山梨醇都有相同情况。所以美国政府规定,如果一次性服用甘露醇可能超过20克时,必须在食品标志上加以说明。[/size][/font][font='宋体'][size=16px][6][/size][/font][/align][align=left][font='宋体'][size=16px]在美国,50%的糖醇用于食品,在日本,60%的糖醇用于食品,而我国现在食品中糖醇的应用还不到10%。中国有13亿人口,对甜味剂及功能性甜味剂的需求量大,市场潜力巨大,大力开发糖醇在食品中的应用是食品生产商及糖醇企业的当务之急。[/size][/font][/align][align=left][/align][align=center]第4章 [font='黑体'][size=21px]D-甘露糖醇在其他领域上的应用[/size][/font][/align][align=left][font='黑体'][size=18px]4.1生产聚醚[/size][/font][/align][align=left][font='宋体'][size=16px]在精细化工上,甘露醇可用于生产聚醚,作为制造耐高温泡沫塑料,用于保温与消防。甘露醇聚醚制造的泡沫塑料其品质优良,并可以耐温高达180[/size][/font][font='宋体'][size=16px]℃[/size][/font][font='宋体'][size=16px],这是其他多元醇生产的聚醚制造的泡沫塑料所无法比较的,所以用于特殊管道保温时,必须要采取甘露醇聚醚。[/size][/font][/align][align=left][font='黑体'][size=18px]4.2大功率的电解电容[/size][/font][/align][align=left][font='宋体'][size=16px]如大型铝电解用的电解电容器,其中的电解液中必须加入甘露醇,以降低电解液的饱和蒸汽压,抑制氧化膜的水合作用,提高电容器的高温稳定性和电解液的高低温特性。南通江海电容器厂使用国产甘露醇配制的中高压工作电解液,使得在105℃下的铝电解电容器寿命从2000小时突破到5000小时。[/size][/font][/align][align=left][font='黑体'][size=18px]4.3在医药方面上的应用[/size][/font][/align][align=left][font='宋体'][size=16px]甘露醇的利尿脱水作用。甘露醇可以减轻脑水肿,使血糖度下降和离血管舒张,从而发送离血流,保持了脑的自动调节作用。还可增加冠脉的血流,最大程度地降低缺血心肌的损害程度和范围。正因为甘露醇在医疗上有以上重要作用,所以在所有的医院里,甘露醇是利尿排水的首选药物,甘露醇注射液都属必备药物之一。[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]由于甘露醇在血管中,可以从体液中吸收水份,从而起到了扩张血管的作用。所以在医药方面[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]甘露醇广泛用于脑血管舒张剂,用于治疗脑血管梗塞。由于它的扩张血管作用,甘露醇可以间接起到降低血压,舒筋活血的作用。[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]甘露醇在人的肠胃中不易吸收,所以它还是一种温和的轻泻剂,对于长期性的便泌有良好的治疗作用。[/size][/font][/align][align=left][font='宋体'][size=16px]甘露醇可用于制备醒酒剂,目前在市场上可 以见到的醒酒药片, 其80%以上成分是甘露醇,再加一些葛根提取液或葛根粉制成。[/size][/font][font='宋体'][size=16px][6][/size][/font][/align][align=left][font='宋体'][size=16px]甘露醇具有保健功能性的作用,也越来越多的人了解它,而且随着甘露醇生产的扩大以及人们的保健意识的提高,甘露醇的功能与作用也会有愈来愈多的人认识,甘露醇也将开始大规模应用与各个领域。[/size][/font][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=center]第5章 [font='黑体'][size=21px]D-甘露糖醇的发展趋势[/size][/font][/align][font='黑体'][size=18px]5.1市场情况[/size][/font][align=left][font='宋体'][size=16px]目前,我国甘露醇生产能力小,生产企业大多是中小企业,生产成本无法与国外先进企业相竞争,必须实现规模化、系列化生产,提高经济效益,同时亟须实现下游产品系列化、装置通用化、上下游一体化。[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]国内化学合成法比较成熟。南宁化工研究设计院已成功开发出以蔗糖为原料,经水解氢化、分离结晶制备甘露醇的方法和以葡萄糖为原料,异构后加氢,分离结晶制备甘露醇技术,并建有数套工业化装置,其工艺技术简单,环境污染小,产品质量好,收率高,生产成本低、适合大规模工业化生产。南宁化学制药公司已经采用该技术,开工建设1万t/a的装置。无锡轻工大学以淀粉为原材料,采用化学-酶双异构化法、制备高含量的甘露糖和果糖(质量分数分别为43.0%[/size][/font][font='宋体'][size=16px]和[/size][/font][font='宋体'][size=16px]21.5%),将反应液氢化可获得质量分数为53.5%的甘露醇。该工艺投资少,生产易连续化、甘露醇得率高,从而较大程度降低了甘露醇的生产成本,是一个有应用价值的新生产方法。[/size][/font][font='黑体'][size=16px][8][/size][/font][/align][align=left][font='黑体'][size=18px]5.2[/size][/font][font='黑体'][size=18px] 近年产品货紧价扬的原因分析[/size][/font][/align][align=left][font='黑体'][size=17px]5.2.1提取法生产成本的增高和产量的降低[/size][/font][/align][align=left][font='宋体'][size=16px]传统工艺仍然是我国甘露醇的主导生产方法,我国甘露醇生产地的沿海地区,劳动力成本大幅度上涨,海藻类植物随着过度开发导致产量日益减少,加剧了甘露醇产品成本的上扬,带动其它辅料价格也相应上涨,对甘露醇价格的,上涨产生了很大影响。虽然近年来甘露醇产量有一定的增长,但仍远远不能满足市场日益增长的需要。我国以传统的生产方式产出的甘露醇,在今后较长时期内,产量将会逐年下降,市场用量则不断上升,使供求缺口继续扩大。[/size][/font][/align][align=left][font='黑体'][size=17px]5.2.2国际市场供货量的降低[/size][/font][/align][align=left][font='宋体'][size=16px]世界上甘露醇最大的生产国家及出口国-智利、巴西的产量大幅度减少,导致国际市场供求总量失衡,牵动价格上扬。我国是甘露醇的出口大国之一,国际市场上的甘露醇货稀价扬,必然会牵动国内市场的上涨。此外海带资源日趋减少,也导致价格上涨。[/size][/font][/align][align=left][font='黑体'][size=17px]5.2.3人工合成法的普及不足[/size][/font][/align][align=left][font='宋体'][size=16px]目前我国的人工合成甘露技术已经与世界同步,但生产能力和产量还比较低,[/size][/font][/align][align=left][font='宋体'][size=16px]没有发挥出应有的潜力,这也是造成甘露醇货紧价扬的重要原因[/size][/font][font='宋体'][size=16px];[/size][/font][font='宋体'][size=16px]值得庆幸的是在广西南宁一条5 kt/a( 总醇)甘露醇-山梨醇生产线已经投人运行,这将对缓和我国甘露醇供不应求的局面产生积极的作用。[/size][/font][/align][align=left][/align][align=center]第6章 [font='黑体'][size=21px]对D-甘露糖醇的展望[/size][/font][/align][align=center][/align][align=left][font='宋体'][size=16px]目前,我国的甘露醇市场-直呈现供不应求的局面,预计这种供不应求的现象在一定范围内还将持续一段时间,而且随着人们生活水平的提高,这种供不应求的局面还可能进一步加强。因此有条件的企业可以考虑新建或扩建生产装置,以提高我国的甘露醇的生产能力,满足国内外市场的需求。[/size][/font][/align][align=left][font='宋体'][size=16px]但是,也应该清醒地看到:由于甘露醇的市场状况,目前国内不少企业正在投资建设生产装置或在现 有装置上进行扩产改造,国家一定要加强宏观调控,防止一哄而上,出现生产能力和产量过剩的局面。此外,在市场经济条件下,企业的自主权增大,筹集资金的渠道较多,要想避免出现能力和产量过剩的局面,除国家进行必要的宏观调控外,主要依靠企业自律。“九五”期间,我国的医药中间体行业对于这一问题已有了深刻的认识,甘露醇市场也经历了亚洲金融危机之后的一个相当长的市场低谷,一度出现产品亏本的现象。[/size][/font][font='宋体'][size=16px][9][/size][/font][/align][align=center]第7章 [font='黑体'][size=21px]D-甘露醇的产品标准、限量标准及检测标准介绍[/size][/font][/align][font='黑体'][size=18px]7.1[/size][/font][font='黑体'][size=18px]产品标准及最大使用量[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106112258138869_1163_1608728_3.png[/img][font='宋体'][size=16px][7][/size][/font][font='黑体'][size=18px]7.2[/size][/font][font='黑体'][size=18px]甘露醇的检验[/size][/font][font='黑体'][size=17px]7.2.1定性检测[/size][/font][font='黑体'][size=17px] [/size][/font][font='宋体'][size=16px]在实际的分析检测工作中,有时仅需要对未知样品进行定性判定。甘露醇的定性检测基本原理是:晶体甘露醇在碱性条件下与三氯化铁反应生成棕黄色沉淀,振荡不消失,加过量的碱液即溶解生成棕色溶液,这种现象可以作为甘露醉的定性检测,该方法简便、快捷,但是这种方法仅局限于纯度较高的甘露醇晶体,如果样晶中所含杂质较多,则这种检测方法的准确性将无法保证,因此这种定性的检测方法在实际应用中亦有较大的局限性。[/size][/font][font='黑体'][size=17px]7.2.2定量检测[/size][/font][font='黑体'][size=16px]7.2.2.1碘量法[/size][/font][font='黑体'][size=16px] [/size][/font][font='宋体'][size=16px]即中华人民共和国药典中规定的容量法,其原理是:甘露醇与过量的高碘酸盐反应,反应完全后再加入过量的碘化钾,剩余的高碘酸盐及反应生成的碘酸盐都能与碘化钾作用生成游离碘出来,游离碘用硫代硫酸钠标准溶液滴定。碘量法可用于纯度较高的甘露醇样品,如一定浓度的注射液等,但对于含有其他还原性物质如单糖等的样品来说,这些还原性物质也可以被高碘酸氧化,测定结果偏高。此外,碘量法虽然简便快捷,不需要特殊的检测仪器,但操作较为繁琐。近年来也有将碘量法用于测定发酵制品或中草药等复杂体系中的甘露醇含量,这种方法一般需要对样品进行预处理,通过溶剂将样品中的甘露醇提取、纯化,然后对提取液中的甘露醇进行测定。如蔡仲军等人研究了使用不同溶剂处理样晶对虫草甘露醇测定结果的影响,结果表明,在虫草甘露醇含量的测定中,样品预处理采用水提法的准确性和精确性均大大高于醇提取法。[/size][/font][font='黑体'][size=16px]7.2.2.2薄层层析法[/size][/font][font='黑体'][size=16px] [/size][/font][font='宋体'][size=16px]薄层层析是一种微量、快速和简便的色谱方法。其原理是:根据各种化合物的极性不同,吸附能力不相同,在展开剂上移动,进行不同程度的解析。这种方法既可以用于定性检测,也可以用于定量检测。汪宝琪等人采用薄层色谱法,对冬虫夏草中甘露醇进行分离后,用高碘酸钾-联苯胺显色,采用薄层扫描法,在λs =295nm λμ=370nm的条件下进行双波长反射锯齿形扫描,测得西藏产冬 虫夏草中甘露醇的含量为8.4% ,回收率98% - 101.6%。[/size][/font][font='黑体'][size=16px]7.2.2.3比色法[/size][/font][font='宋体'][size=16px] 比色法分析测定甘露醇,是利用高碘酸钠与甘露醇反应产生黄色的3,5-乙酰-1,4-脱氣二甲基吡啶,此化合物在412nm左右处有最大吸收,并且单糖如半乳糖、葡萄糖、甘露糖等对甘露醇的影响很少。李雪芹、包天榈等人比较了测定冬虫夏草中甘露醉含量的两种方法,认为用比色法测定虫草中甘露醇含量较容量法更具特异性且快速简便。在一些较为复杂的体系中,如果含有一定量的果糖,果糖会对甘露醇测定产生较大的干扰,这是因为甘露醇、果糖都可以参与高碘酸氧化反应呈色,且在412nm处有重叠,但通过--定的处理手段可以去除检测体系中的这种影响。蒋华、陈卫等人建立了一种比较简便和精确的分光光度分析法,用以测定乳酸菌发酵体系中的甘露醇含量,通过与盐酸共热脱水反应去除发酵体系中果糖对甘露醇分析测定的干扰和影响,精密度实验和回收率实验表明,此法准确可靠。[/size][/font][font='宋体'][size=16px][10][/size][/font][align=center][/align][align=center][/align][align=center][font='宋体'][size=16px][color=#000000]参考文献[/color][/size][/font][/align][font='calibri'][size=14px][1] [/size][/font][font='calibri'][size=14px][color=#231f20]黎颖.甘露醇的性质、生产与发展建议[J].广西化工[/color][/size][/font][font='calibri'][size=14px][color=#231f20]1999,28(4):29[/color][/size][/font][font='calibri'][size=14px][color=#231f20].[/color][/size][/font][font='calibri'][size=14px][2] [/size][/font][font='calibri'][size=14px]Leen W . W right Sorbitol and M annitol[ J] CHEM TECH, [/size][/font][font='calibri'][size=14px]1944, 4(1): 42-[/size][/font][font='calibri'][size=14px]46[/size][/font][font='calibri'][size=14px].[/size][/font][font='calibri'][size=14px][3] [/size][/font][font='calibri'][size=14px][color=#231f20]黄云翔.ICIA公司蔗糖水解还原法制山梨醇和甘露醇的生产技术[J].广东化工,1995,(1):33-36[/color][/size][/font][font='calibri'][size=14px][4] [/size][/font][font='calibri'][size=14px][color=#231f20]张应茂.李再资.一步法蔗糖直接转化成山梨醇和甘露醇的研究[J].现代化工,1999,19(8):26-27[/color][/size][/font][font='calibri'][size=14px][color=#231f20][5]何燕.精细化工原料及中间体.开发指南.甘露醇生产与应用[J]浙江省巨化集团公司,[/color][/size][/font][font='calibri'][size=14px][color=#231f20]2003,10:15-16[/color][/size][/font][font='calibri'][size=14px][color=#231f20].[/color][/size][/font][align=left][font='calibri'][size=14px][color=#231f20][6]陈为民.甘露醇的性质与应用[J]黑龙江省轻工科学研究院,2009,10(19):41-42.[/color][/size][/font][/align][font='calibri'][size=14px][color=#231f20][7]中华人民共和国国家卫生和计划生育委员会.GB2760-2014食品安全国家标准,食品添加剂使用标准[s].北京:中国标准出版社,2014.[/s][/color][/size][/font][font='calibri'][size=14px][8] [/size][/font][font='calibri'][size=14px]吴国荃.聂美丽.罗书凯.我国甘露醇的生产状况与发展趋势[J]化工技术经济,2004,22(4):5[/size][/font][font='calibri'][size=14px][9] [/size][/font][font='calibri'][size=14px]赵美法.我国甘露醇的生产、市场分析与发展建议[J].山东青岛,2004,(1):4-7.[/size][/font][font='calibri'][size=14px][10] [/size][/font][font='calibri'][size=14px]林成真.甘露醇分析检测技术研究进展[J].河南化工,2010,27(2):5[/size][/font][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][font='times new roman'][size=21px][color=#000000]致谢[/color][/size][/font][/align][font='宋体'][size=16px]在完成毕业***是他们的悉心指导,让我对这个课题有了明确的方向。[/size][/font][font='宋体'][size=16px]尤其要感谢我**文的贡献和教导。[/size][/font][font='宋体'][size=16px]同时感谢所**论文。[/size][/font][font='宋体'][size=16px]感谢这篇**篇论文。[/size][/font][font='宋体'][size=16px]最后再次向*最衷心的感谢![/size][/font]

  • 甘露聚糖如何检测

    有人做甘露聚糖检测的吗? 它是多聚糖该怎么检测呢?能不能把每个聚合度的都测出来啊?

  • 【求助】关于VC磷酸酯钠

    求助于各位大侠:我最近收到一个样品是VC磷酸酯钠的,要测里面的Cr,Ni,Pb,和Co,这种样品是水溶液的,我先用ICP测了一下其含量都在1ppm以下,但用石墨炉测的时候含量都很高,怀疑有基体干扰,用马弗炉烧过,用微波消解过,加过基体改进剂,改变过灰化温度,但结果都没什么变化,求各位有做过类似样品的大侠帮忙分析一下。

  • 液相,铁皮石斛,含量甘露糖

    铁皮石斛甘露糖没有出峰,试剂空白与甘露糖定位的峰是一样的,色谱柱是Thermo Hypersil Gold? C18,柱温25摄氏度,其余条件与20版药典一样,求助各位老师要怎么办呀,对照品与供试品都没有甘露糖的峰,做了几遍了都一样[img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204211614596863_1311_5342166_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204211614597567_9185_5342166_3.png[/img]

  • HPLC,铁皮石斛,含量甘露糖

    铁皮石斛甘露糖没有出峰,试剂空白与甘露糖定位的峰是一样的,色谱柱是Thermo Hypersil Gold C18,柱温25摄氏度,其余条件与20版药典一样,求助各位老师要怎么办呀,对照品与供试品都没有甘露糖的峰,做了几遍了都一样[img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204211611554645_3917_3442126_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204211611555524_6036_3442126_3.png[/img]

  • 甘露糖的各种衍生物做质谱加些什么溶剂响应好容易离子化

    [color=#444444]请教,甘露糖的各种衍生物做质谱加些什么溶剂响应好容易离子化,我最近做溴代甘露糖。烯丙基甘露糖打质谱怎么也打出来,但我可以确定做出来了,做质谱的老师说让我查下甘露糖衍生物加点什么溶剂,比如甲酸之类的,是不是可以容易离子化些,拜托了。我甲醇和乙腈都当过溶剂,我是直接过完柱子进样打质谱[/color]

  • 【原创大赛】方便面中有机磷酸酯的赋存及人体暴露风险

    【原创大赛】方便面中有机磷酸酯的赋存及人体暴露风险

    [align=center][b]方便面中有机磷酸酯的赋存及人体暴露风险[/b][/align][b]摘要:[/b]有机磷酸酯(Organophosphate esters, OPEs)在全球环境中被广泛检出,近年来受到了环境科学家的关注。目前已有一些关于食品中OPEs污染的研究,表明食品可能被其污染并成为人类暴露的重要来源。然而,作为深受消费者喜爱的快消食品方便面中的有机磷酸酯赋存研究极为缺乏。本研究对采集于中国北京市8种市售方便面(TY, KSF, NJC, JML, NX, XHX, CDK, HF)中12种OPEs的残留水平进行了分析。12种OPEs单体中,有8种单体在方便面中检出,∑8OPEs 浓度范围为1.28-99.3ng/g dw。TY中总OPEs残留水平最高。成人和青少年通过摄入方便面所致∑8OPEs的每日预计摄入量分别为2.67和7.53 ng/kg bw/day。TY是不同方便面中总OPEs暴露量的主要贡献者。初步暴露评估表明,目前通过方便面摄入的OPEs所致的慢性疾病危险商数在10-6-10-3范围内,处于低风险水平。此外,OPEs的危险指数表明,青少年(3.04×10-3)的风险高于成人(1.08×10-3)。[b]关键词:[/b]有机磷酸酯;方便面;每日预计摄入量;危险商数;危害指数有机磷酸酯(OPEs)是一组人工合成的磷酸衍生物,其作为阻燃剂、增塑剂、消泡剂、液压油、油漆和地板抛光剂等中的添加剂已使用了几十年。近年来,传统型溴代阻燃剂多溴二苯醚和六溴环十二烷因为具有持久性、生物富集性和生物毒性而相继禁用,OPEs的产量和使用量逐年增加。OPEs作为添加剂掺合到使用的材料中,其与材料之间没有稳定的化学键合作用,因此会通过磨损、泄露和挥发等方式缓慢的释放到周边环境中。目前,OPEs在空气、灰尘、水和沉积物等环境介质,水生动物,陆生动物甚至是人体血液、母乳和尿液中均有检出,表明OPEs的污染已经无处不在。许多毒理学研究表明OPEs,如三(2-正丁氧乙基)磷酸酯(Tris(2-butoxyethyl) phosphate,TBEP),三(1-氯-2丙基)磷酸酯(Tris(2-chloroisopropyl) phosphate,TCPP),三(1,3-二氯-2丙基)磷酸酯(Tris(1,3-dichloro-2-propyl) phosphate,TDCPP),三乙基磷酸酯(TEP)和三甲苯基磷酸酯(Tri-cresyl Phosphate, TCrP)对鱼类,鸟类,啮齿动物和人类的胚胎发育,mRNA表达,甲状腺激素分泌,循环胆汁酸分泌以及神经系统具有毒副作用。此外,三(2-氯乙基)磷酸酯(Tris(2-chloroethyl) phosphate,TCEP)、TCPP、TDCPP、TBEP、三正丁基磷酸酯(Tributyl phosphate, TNBP)、三苯基磷酸酯(Triphenyl phosphate, TPHP)具有潜在的致癌性。因此,了解OPEs的人体暴露水平对于制定策略用以管控其潜在危害十分重要。空气吸入,皮肤接触灰尘和饮食摄入是OPEs暴露于人体的主要途径。 目前,已有一些研究报道了皮肤接触灰尘和吸入是OPEs暴露于人体的两个重要途径,然而OPEs的膳食暴露研究却十分有限。食品在生产、储存和加工期间可能被环境中无处不在的OPEs和存在于涉及食品加工的若干材料中的OPEs污染,从而成为人类暴露的重要来源。方便面是深受消费者喜爱的快消食品。我国作为方便面的生产及消费大国,2015年总消费量为404.3亿份,占全球41.4%,远高于其他国家。然而,关于方便面中有机磷酸酯的残留水平及暴露风险的研究仍未见报道。本研究对采集于北京市8种市售方便面(TY, KSF, NJC, JML, NX, XHX, CDK, HF)中12种OPEs的残留水平进行了分析,对OPEs的暴露水平和风险进行了评估。该结果可以初步了解居民通过方便面摄入OPEs的暴露状况。[b]1 实验部分1.1 仪器、试剂与材料[/b]高效液相色谱仪(Ultimate 3000, 美国Thermo公司),三重四级杆质谱仪(TSQ Quantiva, 美国Thermo公司),高速离心机(美国Sigma-Aldrich公司),低速离心机,氮吹浓缩仪(REACTI-THERM III#TS-18824, 美国Thermo公司),分析天平(CP224S, 德国Sartorius公司)。[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]级别溶剂甲醇和乙腈均购自于美国Fisher Scientific。HPLC级甲酸(Formic acid)购自中国DiKMA公司。分散固相萃取填料氨丙基硅胶(PSA)和十八烷基硅烷(C18)均购自美国Sigma-Aldrich公司。无水MgSO4和NaCl分别购自美国Sigma-Aldrich公司和中国医药集团有限公司,二者使用前置于马弗炉中450℃烘烤8h以去除可能残留的有机物。OPEs标准品,三甲基磷酸酯(Trimethyl phosphate, TMP, 纯度95%)和三异丁基磷酸酯(Triisobutyl phosphate, TiBP, 纯度95%)分别购自美国AccuStandard公司和中国J&K Scientific公司。 纯度为98%的标准品TEP、TCEP、TCPP、TPHP、TDCPP和TNBP均购自美国Cambridge Isotope Laboratories。TBEP、TCrP、2-乙基己基二苯基磷酸酯(2-Ethylhexyl diphenyl phosphate, EHDPP)和磷酸三辛酯(Tris(2-ethylhexyl) phosphate, TEHP)标准品纯度大于98%,均购自于美国Wellington Laboratories。OPEs同位素标准品,包括TEP-d15、TCEP-d12、TCPP-d18、TDCPP-d18、TPHP-d15和TNBP-d27 均购自于美国Cambridge Isotope Laboratories。TEHP-d51(纯度100%)购自于加拿大Toronto Research Chemicals公司。[b]1.2 样品及前处理[/b]8种不同品牌的方便面样品采集自北京市区超市。使用粉碎机将面饼充分粉碎后,准确称取1g样品加入到15mL Corning离心管中,然后加入7种氘代OPE作为内标(1ng)并老化过夜。之后,加入5 mL含0.5%甲酸的乙腈溶液并涡旋1-2min至其完全混合。使用超声萃取10min,之后在4000 r/min下离心并收集上清液。提取步骤以上述相同步骤重复两次,并将提取溶液合并。合并提取液使用高纯氮气在柔和气流下浓缩至2mL。然后加入400 mg MgSO4和100 mg NaCl并涡旋1min,在4000 r/min下离心5min。将上清液小心转移至干净的Corning 离心管中,加入300 mg MgSO4和100 mg PSA以进一步去除杂质。同上,涡旋、离心、收集上清液。然后用高纯氮气以柔和气流下吹干,然后复溶至1 mL甲醇,保存于冰箱中(4℃)。进样前,在12000 r/min下离心5min,取上清液上机分析,进样量为10μL。[b]1.3 仪器分析[/b]OPEs的分析使用HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS系统。液相分离色谱柱为SunFire C18柱(4.6mm×150mm×3.5μm, Waters),柱温为40℃。采用二元流动相(A:超纯水,B:甲醇,二者均含0.1%的甲酸)进行梯度洗脱,流速为1mL/min,梯度洗脱程序为:0min (10%B),2min (10%B),5.5min (65%B),9.5min(80%B),11.5min(100%B),15min(100%B),16min(10%B),20min(10%B)。OPEs的保留时间见表1。三重四级杆质谱使用电喷雾离子源并以正离子模式运行。电喷雾电压为3.5千伏,喷雾锥和离子传输管温度均为350℃。氩气和氮气分别充当碰撞气和脱溶剂气。质谱数据采集模式为选择反应离子监测(selected reaction monitoring, SRM),每种OPEs分析物的SRM参数,包括定量/定性离子对、碰撞能等列于表1。[b]1.4 质量控制[/b]每批实际样品处理中均加入程序空白,以监测实验过程中可能存在的污染,详细数据列于表1。对于程序空白中检出的OPEs单体,以其平均浓度加上3倍标准偏差计算化合物的方法检出限(MDL)。对于程序空白中未检出的OPEs单体,以仪器检出限(IDL,3倍信噪比计算而得)代替方法检出限。本文中OPEs的方法检出限范围为:0.002-0.19ng/g,详细数据见表1。本文使用7种OPEs氘代同位素标准品作为内标,配制了内标标准曲线,线性范围为:0.1-100ng/mL,0.998 JML(2.59 ng/g dw) CDK(2.31 ng/g dw) XHX(1.43 ng/g dw) NX(1.39 ng/g dw) HF(1.28 ng/g dw)。JML、XHX、NX和HF中均以TEP和TCPP为主要单体,二者对于∑8OPEs的贡献率范围为67.6%-86.7%(77.9%,均值)。NJC中主要的OPE单体为TCrP、TPHP、TCPP和TDCPP,总贡献为89.4%,而CDK中主要的OPE单体为EHDPP、TCEP和TCPP,总贡献为73.6%。不同方便面中OPEs浓度和单体组成差异性可能与其使用的原材料、生产工艺以及包装材料差异有关。尽管不同方便面中每种OPE单体对于∑8OPEs的相对贡献率不同,但8种方便面总体上以TEP, TCEP和TCPP为主要单体,其贡献总和为78.4%(见图3),表明这三种OPE单体在方便面的生产加工或者包装中有相似的来源。[align=center][img=,690,391]https://ng1.17img.cn/bbsfiles/images/2019/08/201908312016446825_2789_2823651_3.jpg!w690x391.jpg[/img][/align][align=center][img=,592,384]https://ng1.17img.cn/bbsfiles/images/2019/08/201908312018367142_8877_2823651_3.jpg!w592x384.jpg[/img][/align][align=center][img=,562,380]https://ng1.17img.cn/bbsfiles/images/2019/08/201908312021278938_1636_2823651_3.jpg!w562x380.jpg[/img][/align][align=center][img=,549,389]https://ng1.17img.cn/bbsfiles/images/2019/08/201908312021462572_4041_2823651_3.jpg!w549x389.jpg[/img][/align][align=left][b]2.2 OPEs暴露量及其风险评估[/b][/align]表2给出了成人和青少年的OPEs膳食摄入量。成人总OPEs的平均EDIs值为2.67 ng/kg bw/day,低于青少年总OPEs的平均EDIs值(7.53 ng/kg bw/day)。TCEP和TEP是OPEs中暴露剂量最高的两种单体,二者暴露剂量之和约占总OPEs暴露剂量的93%。成人TCEP和TEP的平均EDIs值分别为2.13和0.35 ng/kg bw/day,低于青少年中TCEP和TEP的平均EDIs值(6.01和0.99)。方便面中赋存的OPEs通过膳食暴露于人体可能对健康产生危害,因此对每种OPEs单体暴露风险(HQ)及∑[sub]8[/sub]OPEs的暴露风险(HI)进行了评估,结果见表2。成人因方便面膳食摄入所致∑[sub]8[/sub]OPEs的暴露风险(HI)值为1.08×10[sup]-3[/sup]小于儿童HI 值3.04×10[sup]-3[/sup],二者因膳食方便面暴露于OPEs所致的暴露风险较低(HI1)。就每种OPEs单体而言,成人和儿童因方便面膳食摄入所致TCEP的暴露风险(HQ)值最高,分别为9.68×10[sup]-4[/sup]和2.73×10[sup]-3[/sup]。值得注意的是,本文仅评估了居民通过摄入方便面暴露于OPEs的健康风险,没有进行广泛的食品调查,因此居民通过饮食摄入暴露于OPEs的健康风险可能被低估;并且儿童和青少年作为易感人群,在未来OPEs的膳食暴露研究中更值得关注。[align=center][img=,690,391]https://ng1.17img.cn/bbsfiles/images/2019/08/201908312026331842_336_2823651_3.jpg!w690x391.jpg[/img][/align][align=left][b]3 结语[/b]在本研究中,12种OPEs单体中有8种单体在方便面中检出,∑8OPEs 浓度范围为1.28-99.3ng/g dw。TY中总OPEs残留水平最高。本研究的结果表明,通过摄入方便面是OPEs暴露于我国人体的一种重要途径;青少年作为易感人群,可能具有更高的暴露风险。此外,某些品牌中OPEs含量较高,为降低因长期摄入该品牌方便面带来的潜在健康风险,建议经常更换品牌进行消费。[/align][b]参考文献[/b]1. Wei, G. L. Li, D. Q. Zhuo, M. N. Liao, Y. S. Xie, Z. Y. Guo, T. L. Li, J. J. Zhang, S. Y. Liang, Z. Q. Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environ Pollut. 2015, 196, 29-46.2. Greaves, A. K. Letcher, R. J. A Review of Organophosphate Esters in the Environment from Biological Effects to Distribution and Fate. Bulletin of environmental contamination and toxicology. 2017, 98(1), 2-7.3. Greaves, A. K. Letcher, R. J. Comparative body compartment composition and in ovo transfer of organophosphate flame retardants in North American Great Lakes herring gulls. Environmental science & technology. 2014, 48(14), 7942-7950.4. Li, J. Xie, Z. Mi, W. Lai, S. Tian, C. Emeis, K. C. Ebinghaus, R. Organophosphate Esters in Air, Snow, and Seawater in the North Atlantic and the Arctic. Environmental science & technology. 2017, 51(12), 6887-6896.5. Salamova, A. Hermanson, M. H. Hites, R. A. Organophosphate and halogenated flame retardants in atmospheric particles from a European Arctic site. Environmental science & technology. 2014, 48(11), 6133-6140.6. He, C. Wang, X. Tang, S. Thai, P. Li, Z. Baduel, C. Mueller, J. F. Concentrations of Organophosphate Esters and Their Specific Metabolites in Food in Southeast Queensland, Australia: Is Dietary Exposure an Important Pathway of Organophosphate Esters and Their Metabolites? Environmental science & technology. 2018, 52(21), 12765-12773.7. 郭齐雅, 于冬梅, 赵丽云, 等. 2010-2012年中国6岁及以上居民方便面消费状况.卫生研究, 2018, 47(5), 700-704.8. Zhang, X. Zou, W. Mu, L. Chen, Y. Ren, C. Hu, X. Zhou, Q. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. Journal of hazardous materials. 2016, 318, 686-693.9. Guo, X. Mu, T. Xian, Y. Luo, D. Wang, C. Ultraperformance liquid chromatography tandem mass spectrometry for the rapid simultaneous analysis of nine organophosphate esters in milk powder. Food chemistry. 2016, 196, 673-681.

  • 如何用HPLC定量分离阿拉伯糖,木糖,葡萄糖,果糖,甘露糖

    如何用HPLC定量分离阿拉伯糖,木糖,葡萄糖,果糖,甘露糖

    [color=#444444]分离阿拉伯糖,木糖,葡萄糖,果糖,甘露糖。用的安捷伦的液相色谱,示差检测器,安捷伦碳水化合物柱,柱温30度,流动相,乙腈:水=85:15,70:30均试过,流速1mL/min,只出现一个峰,感觉像这几个糖都在一起,没跑开。[/color][color=#444444][img=,690,194]https://ng1.17img.cn/bbsfiles/images/2019/08/201908291106007998_838_1827556_3.jpg!w690x194.jpg[/img][/color]

  • 【讨论】葡萄糖\甘露糖\半乳糖用液相分析的分离度

    本人最近在做糖方法分析时遇到一些困惑,求助各位高手赐教阿所用仪器为Agilent1290液相色谱,蒸发光散色检测器,prevail carbohydrate ES 5u 4.6mm*250mm,流动相为乙腈和水,调适了流动相各种比例,始终无法很好分离甘露糖、半乳糖、葡萄糖,不知你们做的时候能有多少分离度?

  • 【分享】卫生部关于指定D-甘露糖醇等58个食品添加剂产品标准的公告(2011年第8号)

    2011年 第8号 根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,我部组织中国疾病预防控制中心参照国际标准,指定D-甘露糖醇等58个食品添加剂产品标准。 特此公告。 附件: 1.D-甘露糖醇等58个食品添加剂产品标准目录(见下文) 2.D-甘露糖醇等58个食品添加剂产品标准 二○一一年三月十八日

  • 环氧磷酸酯的用处

    用途:主要用于桥梁、船舶、海上石油钻井平台、港湾设备及一切喷砂后的底材。环氧磷酸酯的优点:1)、更丰富的官能团种类,提供更优异的附着性和反应活性2)、与涂料体系更优异的相容性,不对光泽产生负面影响3)、高官能度赋予涂层更高交联密度,能减少氨基树脂用量4)、独特结构和特殊官能团能提升涂层耐水解性和抗刮性环氧磷酸酯主要用于桥梁、船舶、海上石油钻井平台、港湾设备及一切喷砂后的底材。环氧磷酸酯的用途以磷酸酯化环氧树脂为成膜物质的一种烘漆。与常规环氧树脂烘漆比较,漆膜有更好的附着性和挠曲性。品种有预涂卷材底漆和罐头内壁涂料。用途:主要用于桥梁、船舶、海上石油钻井平台、港湾设备及一切喷砂后的底材。环氧磷酸酯的优点:1)、更丰富的官能团种类,提供更优异的附着性和反应活性2)、与涂料体系更优异的相容性,不对光泽产生负面影响3)、高官能度赋予涂层更高交联密度,能减少氨基树脂用量4)、独特结构和特殊官能团能提升涂层耐水解性和抗刮性环氧磷酸酯主要用于桥梁、船舶、海上石油钻井平台、港湾设备及一切喷砂后的底材。环氧磷酸酯的用途以磷酸酯化环氧树脂为成膜物质的一种烘漆。与常规环氧树脂烘漆比较,漆膜有更好的附着性和挠曲性。品种有预涂卷材底漆和罐头内壁涂料。

  • 【分享】卫生部监督局关于公开征求D-甘露糖醇等58个指定食品添加剂标准意见的函

    卫监督食便函〔2011〕4号 各有关单位:根据《食品安全法》及其实施条例的规定,按照卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)的要求,拟指定D-甘露糖醇等58个食品添加剂标准。现公开征求意见,请于2011年1月14日前按下列方式反馈意见:传真010-67711813或电子信箱gb2760@gmail.com。附件:D-甘露糖醇等58个食品添加剂.rar 二○一一年一月五日

  • 【求助】甘露醇测定

    请问是否有按照欧洲药典标准测定药用辅料甘露醇有关物质的?我们在检验时发现样品和欧洲药典对照品在甘露醇主峰和山梨醇峰之间均出现一未知杂质峰,均不符合标准要求

  • 求助:药典测铁皮石斛中甘露糖含量怎么确定内标盐酸氨基葡萄糖的峰

    求助:药典测铁皮石斛中甘露糖含量怎么确定内标盐酸氨基葡萄糖的峰

    采用药典内标法测铁皮石斛中甘露糖的含量时,我为了确定混标中内标物盐酸氨基葡萄糖的峰,对盐酸氨基葡萄糖进行了pmp衍生化做成单标进样,但是单标走不出盐酸氨基葡萄糖的峰,想请教一下原因,还有我要怎么做?难道单标不需要衍生化吗?还请教一下做法,拜托拜托[img=,690,516]https://ng1.17img.cn/bbsfiles/images/2022/07/202207251153388131_5664_5615623_3.jpg!w690x516.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制