当前位置: 仪器信息网 > 行业主题 > >

氯化二苯基硅烷

仪器信息网氯化二苯基硅烷专题为您提供2024年最新氯化二苯基硅烷价格报价、厂家品牌的相关信息, 包括氯化二苯基硅烷参数、型号等,不管是国产,还是进口品牌的氯化二苯基硅烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯化二苯基硅烷相关的耗材配件、试剂标物,还有氯化二苯基硅烷相关的最新资讯、资料,以及氯化二苯基硅烷相关的解决方案。

氯化二苯基硅烷相关的资讯

  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 昆明理工大学在单分子内苯基迁移机理研究取得新进展
    日前,昆明理工大学材料科学与工程学院蔡金明教授团队研究成果以“Real-Space Imaging of a Phenyl Group Migration Reaction on Metal Surfaces”为题,发表在Nature Communications14, 970 (2023)上。该研究工作得到了国家自然科学基金项目、云南省科学基金项目、中科院战略先导项目等多个项目资助。据介绍,表面合成由于其精准性和易观测性,一直是化学合成领域的重要方向,然而目前表面合成只实现了少数已有的化学反应,探索表面合成过程中的新反应、新机理一直是国际上的研究热点,是精准制备低维纳米材料的关键所在。化学迁移反应是一类特殊的化学重排反应,会在分子中的某一位点产生自由基,随后高反应活性的自由基位点在分子内部转移,导致分子中基团位置的改变。与传统的亲核重排反应不同,芳香基自由基迁移反应的机理一直以来都存在争议。鉴于此,昆明理工大学材料科学与工程学院蔡金明教授团队系统研究了1,4-二甲基-2,3,5,6-四苯基苯(DMTPB)分子在Au(111)、Cu(111)和Ag(110)三种基底上不同反应活性和不同对称性的化学反应。利用具有原子分辨能力的扫描隧道显微镜(STM)和具有化学键分辨能力的非接触原子力显微镜(NC-AFM)精确识别了反应过程中的中间产物以及最终产物的精细结构,证实了在DMTPB分子内发生了新奇的苯基迁移反应,并结合第一性原理计算,揭示了DMTPB分子内苯基迁移反应的机制。该工作为简化化学反应路径、合成新的低维纳米材料提供了新的研究思路。
  • 沃特世隆重推出CORTECS C8以及苯基1.6和2.7 μm色谱柱
    这两款实心颗粒色谱柱产品系列的新成员将为突破分离效率和分析通量极限带来新的可能 美国马萨诸塞州米尔福德市,2016年2月2日 – 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出两款采用新型填料的色谱柱产品,进一步壮大了CORTECS色谱柱产品系列。Waters CORTECS C8和CORTECS苯基分析柱采用沃特世成熟的实心颗粒技术,能够让科研人员在扩大色谱分离应用范围的同时,最大程度提升小分子HPLC、UHPLC或UPLC分离的分离速度、分离度和灵敏度。这两款色谱柱兼具高柱效、低柱压的优势,为科研人员带来更多的选择性的同时,能够有效缩短方法开发的时间,通过单次分析运行可获得的信息量也更大。CORTECS C8和CORTECS苯基填料有两种粒径可选(1.6和2.7 μm),可提供总共50种不同的色谱柱配置。 “沃特世推出的这些新型色谱柱产品为那些希望提高分离度、分析速度和灵敏度的实验室提供了更丰富的选择,”沃特世科技公司主管消耗品业务的副总裁Michael Yelle说道,“我们将努力拓宽CORTECS实心颗粒色谱柱产品系列的选择性范围,同时在产品批次间重现性、产品可靠性及产品品质方面保持一贯的市场领先地位,不辜负客户对沃特世的期望。” CORTECS C8色谱柱的疏水性比一般的C18键合相更弱,适用于分离强疏水性化合物。对于希望使用更稳定的色谱柱技术来转换或按比率缩放药典C8 HPLC方法的化学家而言,这类色谱柱也将成为他们的理想之选。 基于苯基键合相独特的选择性,CORTECS苯基色谱柱将成为常用C18键合相的最佳替代品,尤其是在分析芳香族化合物时。 CORTECS C8和CORTECS苯基色谱柱均具有全面的可扩展性,能够在1.6和2.7 μm两种粒径之间实现无缝的方法转换。 CORTECS UPLC 1.6 μm颗粒色谱柱经过专门设计,与超低扩散性Waters ACQUITY UPLC仪器平台联用时可实现最高柱效。在分离市场领域,它能够为科研人员提供前所未有的性能水平。 CORTECS 2.7 μm颗粒色谱柱用于UHPLC和HPLC仪器平台时,能够依靠其独特的设计展现出最大的灵活性。这款色谱柱能够在较低的柱压下高效运行,因此分析人员可以使用更长的色谱柱来提高分离度,或者采用更快的流速加快仪器分析速度和提高通量。 这两款新型色谱柱填料进一步扩充了沃特世的CORTECS产品系列,是对CORTECS C18+、C18和HILIC等现有填料的补充。 关于沃特世实心颗粒技术CORTECS色谱柱颗粒的特点是在多孔硅胶外层内有一个不能渗透的实心硅胶核,固定相和分析物之间的相互作用即在多孔硅胶外层中进行。凭借沃特世在键合和表面技术领域四十余年的知识积累以及在亚2 μm颗粒色谱柱合成与填充方面十余年的技术经验,新开发的CORTECS色谱柱系列充分体现了实心核颗粒技术的领先优势。 更多信息:www.waters.com/cortecs 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### Waters、UltraPerformance LC、UPLC、ACQUITY、ACQUITY UPLC和CORTECS是沃特世公司的商标。
  • 沃特世推出新品CORTECS C8和CORTECS苯基分析柱
    美国马萨诸塞州米尔福德市,2016年2月2日 – 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出两款采用新型填料的色谱柱产品,进一步壮大了CORTECS色谱柱产品系列。Waters CORTECS C8 和CORTECS苯基分析柱采用沃特世成熟的实心颗粒技术,能够让科研人员在扩大色谱分离应用范围的同时,最大程度提升小分子HPLC、UHPLC或UPLC分离的分离速度、分离度和灵敏度。这两款色谱柱兼具高柱效、低柱压的优势,为科研人员带来更多的选择性的同时,能够有效缩短方法开发的时间,通过单次分析运行可获得的信息量也更大。CORTECS C8 和CORTECS苯基填料有两种粒径可选(1.6和2.7μ m),可提供总共50种不同的色谱柱配置。  “沃特世推出的这些新型色谱柱产品为那些希望提高分离度、分析速度和灵敏度的实验室提供了更丰富的选择,”沃特世科技公司主管消耗品业务的副总裁Michael Yelle说道,“我们将努力拓宽CORTECS实心颗粒色谱柱产品系列的选择性范围,同时在产品批次间重现性、产品可靠性及产品品质方面保持一贯的市场领先地位,不辜负客户对沃特世的期望。”  CORTECS C8 色谱柱的疏水性比一般的C18键合相更弱,适用于分离强疏水性化合物。对于希望使用更稳定的色谱柱技术来转换或按比率缩放药典C8 HPLC方法的化学家而言,这类色谱柱也将成为他们的理想之选。  基于苯基键合相独特的选择性,CORTECS苯基色谱柱将成为常用C18键合相的最佳替代品,尤其是在分析芳香族化合物时。  CORTECS C8和CORTECS苯基色谱柱均具有全面的可扩展性,能够在1.6和2.7μ m两种粒径之间实现无缝的方法转换。  CORTECS UPLC 1.6 μ m色谱柱经过专门设计,与超低扩散性Waters ACQUITY UPLC仪器平台联用时可实现最高柱效。在分离市场领域,它能够为科研人员提供前所未有的性能水平。  CORTECS 2.7 μ m颗粒色谱柱用于UHPLC和HPLC仪器平台时,能够依靠其独特的设计展现出最大的灵活性。这款色谱柱能够在较低的柱压下高效运行,因此分析人员可以使用更长的色谱柱来提高分离度,或者采用更快的流速加快仪器分析速度和提高通量。  这两款新型色谱柱填料进一步扩充了沃特世的CORTECS产品系列,是对CORTECS C18+、C18和HILIC等现有填料的补充。  关于沃特世实心颗粒技术  CORTECS色谱柱颗粒的特点是在多孔硅胶外层内有一个不能渗透的实心硅胶核,固定相和分析物之间的相互作用即在多孔硅胶外层中进行。凭借沃特世在键合和表面技术领域四十余年的知识积累以及在亚2 μ m颗粒色谱柱合成与填充方面十余年的技术经验,新开发的CORTECS色谱柱系列充分体现了实心核颗粒技术的领先优势。  更多信息:www.waters.com/cortecs  关于沃特世公司(www.waters.com)  50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。  作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。  2014年沃特世拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。  Waters、UltraPerformance LC、UPLC、ACQUITY、ACQUITY UPLC和CORTECS是沃特世公司的商标。
  • 将取消气相色谱法 测定染料产品中氯化甲苯
    在染料生产和纺织品生产过程中,氯化甲苯得到了广泛应用,但其对环境及人身健康安全有着较大的危险性,故而,各国及行业组织均对氯化甲苯化合物的残留做了严格的限量。我国早在2009年就制订发布了有关氯化甲苯测定的标准,即GB/T 24167-2009《染料产品中氯化甲苯的测定》,但其在实施应用中存在各式各样的问题,故而业内提出了修订该标准。近日,由沈阳化工研究院有限公司、国家染料质量监督检验中心主要起草的《染料产品中氯化甲苯的测定》已经修订完成,正面向社会征求意见。拟实施日期:发布后个月正式实施。与GB/T 24167-2009相比,更改了标准适用范围;删除了气相色谱测定方法;更改了方法原理;更改了标准溶液制备方法;更改了样品溶液制备方法;更改了色谱分析条件;更改了方法的检出限;更改了方法准确度判定要求;更改了氯化甲苯目标物种类。标准中规定了采用气相色谱-质谱法(GC/MS)测定染料产品中12种氯化甲苯残留量的方法,而该方法的原理是在超声波浴中,用二氯甲烷提取试样中的氯化甲苯,采用气相色谱-质谱联用仪(GC/MS)进行分离和测定,峰面积外标法定量即可。标准中也明确表明实验过程中需要用到的仪器设备包括具有EI源的气相色谱-质谱联用仪、色谱柱、分析天平、超声波发生器、提取器、离心机、氮吹浓缩仪等。目前《染料产品中氯化甲苯的测定》新标准处于意见征集阶段,相信2021年将会公示执行。随着对燃料染料产品把控的越来越严格,对于我们自身的健康安全就愈发有保障,并减少环境污染和资源浪费。
  • 安捷伦科技新增C3和二苯基固定相的亚2µ m蛋白质分析生物色谱柱以提供更多选择性和
    安捷伦科技新增C3和二苯基固定相的亚2µ m蛋白质分析生物色谱柱以提供更多选择性和更好峰形 2012 年 2 月 6 日,安捷伦科技公司(纽约证交所:A)宣布了其用于反相液相色谱仪的孔径 300 Å 、亚 2 µ m 填料色谱柱系列迎来了新成员:超高压快速高分离度 ZORBAX 300SB-C3 和 300-二苯基 1.8 µ m 色谱柱。 这两种色谱柱的加入实现了超高效液相色谱(UHPLC)的反相生物分子分离。C3固定相能够为大分子蛋白质分离(包括抗体在内)提供更多选择性和更好的峰形,回收率也更高而 二苯基固定相通过一级结构中的芳香族氨基酸的pi-pi 相互作用带来更多选择性。 安捷伦产品经理 Linda Lloyd 说道:“安捷伦现有的亚 2 µ m 宽孔径生物色谱柱能够全面满足反相液相色谱系统的需求新型 1.8 µ m 色谱柱进一步扩展了 ZORBAX C18、C8 和 C3 固定相系列,这三种固定相已有 3.5 和 5 µ m 两种规格的填料。我们非常高兴能够为 UHPLC 用户带来更准确的鉴定和更快的分析速度。” 该款粒径 1.8 µ m,孔径 300Å 的色谱柱将 UHPLC 特有的效率、分离度和强大的定量功能在反相液相色谱蛋白质分离上发挥到极致。此外,该色谱柱在高达 1200 bar 的压力下同样稳定安捷伦的 C18、C8 和 C3 色谱柱采用成熟的 StableBond 技术,加上封端的联苯和 Pursuit 色谱柱的化学性质,当采用三氟乙酸或甲酸流动相改性剂时能够得到对称峰形,即使在低 pH 条件下亦是如此。丝毫无损色谱柱寿命。 目前,全套 ZORBAX 超高压快速高分离度色谱柱系列包括用于小分子应用的 13 种固定相(包括 HILIC)以及用于大分子分离的四种固定相。如此广的选择范围使得色谱分析人员能够选择最适合的色谱柱来优化 UHPLC 分离。此外,RRHD 高达 1200 bar 的稳定性也提供了更灵活的流速和流动相选择。 要了解更多信息,请访问:www.agilent.com/chem/biohplcproteins。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A) 是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者公司的 18,700 名员工为 100 多个国家的客户提供服务在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424
  • 沃特世最新PFP(全氟苯基)色谱柱适用于USP方法紫杉醇及其注射液含量测定
    紫杉醇(Paclitaxel)最初是从红豆杉科红豆杉属(Taxus)植物的树皮中提取得到的二萜类化合物,具有独特抗癌活性,曾被美国国立癌症研究所认为是近15~20年来肿瘤化疗的最重要的进展。紫杉醇注射液功效主治卵巢癌和乳腺癌及NSCLC的一线和二线治疗。头颈癌、食管癌,精原细胞瘤,复发非何金氏淋巴瘤等。 USP对紫杉醇[1]以及紫杉醇注射液[2]的含量测定系统方法(系统方法参见色谱通则*): 流动相:水-乙腈 11:9(即 55:45),如需要时可适当调整比例。 洗脱:等度,1.5mL/min[1] 色谱柱:5um, 4.6[1] 或 4.0[2] mmID x 250mmL,L43(即:PFP,全氟苯基) 检测:UV227nm 要求:拖尾因子0.7-1.3范围内[1];紫杉醇峰的保留时间在6.0-10.0min范围内[2] *USP Chromatography 允许调整范围如下而仍具有法规依从性: - 色谱柱粒径可减小(但减小程度最多为50%) - 柱长度可调整± 70% - 流速可调整± 50% 使用沃特世最新产品XSelect&trade HSS PFP色谱柱(3.5um, 4.6x150mm, PN186005862),流速1mL/min,可对混标得到如下分离效果,满足对紫杉醇定量分析的要求。沃特世公司也提供更多规格XSelect HSS PFP色谱柱以满足不同应用与需要。 适当调整流动相,如降低乙腈浓度至42%v/v,即可获得更完全可靠的紫杉醇分离度如下: 关于沃特世XSelect&trade HSS PFP柱产品: 是目前市场上稳定性最好的、最具重现性的PFP(全氟苯基)柱 基于沃特世HSS(高强度硅胶)颗粒,有完全对等的ACQUITY UPLC亚二微米柱,可供未来无忧升级至UPLC技术平台 独特的PFP(全氟苯基)键合相对碱性化合物和平面状芳香族化合物具有独特选择性 (产品手册请见:http://www.waters.com/waters/library.htm?cid=511436&lid=134643659,欢迎垂询索取中文资料) [1] USP34, 3798, Assay of Paclitaxel Monograph. [2] USP34, 3799, Assay of Paclitaxel Injection Monograph.
  • 岛津应用:矿泉水中氰化物和氯化氰的检测
    2014年12月22日,日本颁布了牛奶和奶制品成分标准的相关指令,以及食品、添加物等规格基准的部分修订指令(日本厚生劳动省令第141号、厚生劳动省告示第482号;同日实施),还规定了有关试验方法(食安发1222第4号)。指令中规定,矿泉水中的氰标准值为0.01 mg/L(氰化物离子和氯化氰的总值),试验方法为离子色谱柱后衍生化法。 本文向您介绍按照修订后的清凉饮料水试验方法(以下称为“指令”),使用岛津氰化物分析系统对矿泉水中的氰化物离子和氯化氰进行分析的示例。 按照指令规定,使用离子排斥柱将氰化物离子和氯化氰分离,然后使用4-吡啶羧酸吡唑啉酮法进行柱后衍生化,在波长638nm处进行检测。柱后衍生化反应分两步进行,第一步利用氯胺T 溶液进行氯化,第二步利用 1-苯基-3-甲基-5-吡唑啉酮/4-吡啶羧酸溶液进行显色。 按照指令规定的岛津氰化物系统流路图 了解详情,敬请点击《使用离子色谱柱后衍生化法分析矿泉水中的氰化物和氯化氰》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • Supelco推出Ascentis Express F5五氟苯基柱
    Sigma-Aldrich旗下著名分析品牌Supelco 近日宣布推出基于熔融核® 色谱填料技术的Ascentis® Express F5 五氟苯基柱。Supelco 早先推出的Discovery HS F5 五氟苯基柱,一直就深受广大分析工作者的喜爱。现在推出基于更高技术的Ascentis® Express F5 五氟苯基柱,使得广大分析工作者不但可以享受五氟苯基所带来的独特选择性,又可享受到更加快速、高效的分离。   基于熔融核® 色谱填料技术的Ascentis® Express系列色谱柱是一款高速,高性能液相色谱。熔融核® 颗粒2.7um粒径,中心实心核1.7um,外层0.5um键合不同固定相的多孔硅胶。更短的扩散通道,2.7um 总粒径,使得Ascentis Express 系列色谱柱更加高效。加上非常窄的填料粒径分布,高填充密度,Ascentis Express系列色谱柱每米塔板数可达240,000N/m,是传统3um色谱柱柱效的2倍,完全可以和亚2um色谱柱相媲美。Ascentis Express 色谱柱目前有:   Ascentis Express C18,   Ascentis Express C8,   Ascentis Express 反相酰胺(RP-Amide) ,   Ascentis Express HILIC,   Ascentis Express ES-C18 多肽柱,   Ascentis Express F5五氟苯基柱   固定相产品线。   Ascentis Express F5五氟苯基柱,除具有熔融核技术带来的快速、高效、低背压的特点外,还具有:   *替代C18的理想选择   *可保留碱性化合物,比C18的疏水性低   *可在反相、HILIC、100%纯水模式下操作   *稳定、低流失适用于LC-MS,LC-UV等。
  • BSTFA+1%TMCS硅烷化试剂促销 售完为止
    CYCQ-270123 BSTFA:TMCS=99:1, BSTFA+1%TMCS硅烷化试剂(干燥保存) 批号 46815 有效期至 09/2013 2瓶 批号 47187 有效期至 10/2013 3瓶 促销价:180元/瓶 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 北京市房山区园林绿化局本级170.55万元采购VOC检测仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: VOC检测仪 开标时间: null 采购金额: 170.55万元 采购单位: 北京市房山区园林绿化局本级 采购联系人: 王思思 采购联系方式: 立即查看 招标代理机构: 北京捷迅通力工程咨询有限公司 代理联系人: 苏德山 代理联系方式: 立即查看 详细信息 [房山]2022年全民义务植树苗木资金竞争性磋商公告 北京市-房山区 状态:公告 更新时间: 2022-03-30 项目概况 2022年全民义务植树苗木资金采购项目的潜在供应商应在北京市政府采购电子交易平台获取采购文件,并于2022-04-12 14:00(北京时间)前提交响应文件。 一、项目基本情况 项目编号:11011122210200000540-XM001 项目名称:2022年全民义务植树苗木资金 采购方式:竞争性磋商 预算金额:170.55 万元(人民币) 采购需求: 为满足我区全民义务植树需要,本项目采购苗木100500株。 合同履行期限:自合同签订之日起40日内完成供货 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)本项目为专门面向小微企业采购的项目; (2)符合《中华人民共和国政府采购法》(主席令第68号)、《中华人民共和国政府采购法实施条例》(中华人民共和国国务院令第658号)、《政府采购货物和服务招标投标管理办法》(财政部令第87号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发【2007】51号)、《关于开展政府采购信用担保试点工作的通知》(财库【2011】124号)、《政府采购促进中小企业发展管理办法》(财库【2020】46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库【2014】68号)等相关条例和国家相关法律法规规定。 3.本项目的特定资格要求: (1)具有有效的林木种子生产经营许可证或林草种子生产经营许可证; (2)供应商被“信用中国”网站、“中国政府采购网”网站列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单之一的,不得参加本次项目的投标。 三、获取采购文件 时间:2022-03-31至2022-04-07, ,每天上午09:30至11:30,下午13:30至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台 方式: 供应商应在北京市政府采购电子交易平台选择参与本项目并下载竞争性磋商文件,供应商如在规定的获取竞争性磋商文件时间内,未按以下方式在北京市政府采购电子交易平台获取竞争性磋商文件的,其投标无效。 供应商需在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)注册登录后,选择参与本项目并下载电子竞争性磋商文件。供应商无需在此平台上传电子响应文件。 北京市政府采购电子交易平台注册、登录事项如下: 1)办理数字证书:办理流程详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)中的数字证书办理平台 2)市场主体(供应商)注册入库:供应商办理数字证书后,需在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home) 中选择供应商入口,进行供应商注册、完善企业信息,并提交审核,待平台审核通过后即完成北京市政府采购电子交易平台注册。 3)竞争性磋商文件获取方式:供应商市场主体(供应商)注册入库后,需在规定的获取竞争性磋商文件时间内,持本单位数字证书登录北京市政府采购电子交易平台选择参与本项目并免费下载电子竞争性磋商文件。 数字证书服务热线:010-58515511 技术支持服务热线:010-86483801 售价:¥0元 四、响应文件提交 截止时间:2022-04-12 14:00(北京时间) 地点:北京市大兴区金华寺东路2号西配房105室 五、开启 时间:2022-04-12 14:00(北京时间) 地点:北京市大兴区金华寺东路2号西配房105室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1、资金来源:财政资金 2、采购方式:竞争性磋商 3、评审办法:综合评分法 4、批复文号:房财采购核【2022】097号 5、意向公开时间:2022年01月07日 6、本项目所属行业划分为:其他未列明行业。 7、需要落实的政府采购政策:严格执行《中华人民共和国政府采购法》、《中 华人民共和国招标投标法》及有关法规、制度规定,在政府采购活动中扶持贫困地区、监狱企业、中小企业和残疾人福利性单位发展,支持节能减排、环境保护。严格贯彻落实挥发性有机物(VOCs)治理工作,按照北京市房山区财政局 北京市房山区生态环境局关于转发《北京市财政局 北京市生态环境局 关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(房财采购【2020】149号)执行。 8、磋商保证金: 电汇、支票、汇票、转账支票或政府采购投标担保函,同时可接收电子保函。 9、质疑方式联系人和联系电话:供应商认为磋商文件、磋商过程和成交结果使自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,以书面形式向采购人提出质疑。 联系方式:王思思,010-69375141 10、投诉处理方式的联系单位和联系电话: 联系单位:北京市房山区财政局采购办 联系电话:010-69377919 11、发布媒体:本次公告通过《中国政府采购网》、《北京市政府采购网》网站对外公开发布,未经采购人、采购代理机构授权的任何转载,采购人及采购代理机构不对其承担任何法律责任。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市房山区园林绿化局本级 地址:北京市房山区良乡苏庄东街 7 号 联系方式:王思思,010-69375141 2.采购代理机构信息 名 称:北京捷迅通力工程咨询有限公司 地 址:北京市大兴区金华寺东路2号西配房103室 联系方式:苏德山,010-60218807 3.项目联系方式 项目联系人:苏德山 电 话:010-60218807 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:VOC检测仪 开标时间:null 预算金额:170.55万元 采购单位:北京市房山区园林绿化局本级 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:北京捷迅通力工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [房山]2022年全民义务植树苗木资金竞争性磋商公告 北京市-房山区 状态:公告 更新时间: 2022-03-30 项目概况 2022年全民义务植树苗木资金采购项目的潜在供应商应在北京市政府采购电子交易平台获取采购文件,并于2022-04-12 14:00(北京时间)前提交响应文件。 一、项目基本情况 项目编号:11011122210200000540-XM001 项目名称:2022年全民义务植树苗木资金 采购方式:竞争性磋商 预算金额:170.55 万元(人民币) 采购需求: 为满足我区全民义务植树需要,本项目采购苗木100500株。 合同履行期限:自合同签订之日起40日内完成供货 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)本项目为专门面向小微企业采购的项目; (2)符合《中华人民共和国政府采购法》(主席令第68号)、《中华人民共和国政府采购法实施条例》(中华人民共和国国务院令第658号)、《政府采购货物和服务招标投标管理办法》(财政部令第87号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发【2007】51号)、《关于开展政府采购信用担保试点工作的通知》(财库【2011】124号)、《政府采购促进中小企业发展管理办法》(财库【2020】46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库【2014】68号)等相关条例和国家相关法律法规规定。 3.本项目的特定资格要求: (1)具有有效的林木种子生产经营许可证或林草种子生产经营许可证; (2)供应商被“信用中国”网站、“中国政府采购网”网站列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单之一的,不得参加本次项目的投标。 三、获取采购文件 时间:2022-03-31至2022-04-07, ,每天上午09:30至11:30,下午13:30至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台 方式: 供应商应在北京市政府采购电子交易平台选择参与本项目并下载竞争性磋商文件,供应商如在规定的获取竞争性磋商文件时间内,未按以下方式在北京市政府采购电子交易平台获取竞争性磋商文件的,其投标无效。 供应商需在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)注册登录后,选择参与本项目并下载电子竞争性磋商文件。供应商无需在此平台上传电子响应文件。 北京市政府采购电子交易平台注册、登录事项如下: 1)办理数字证书:办理流程详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)中的数字证书办理平台 2)市场主体(供应商)注册入库:供应商办理数字证书后,需在北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home) 中选择供应商入口,进行供应商注册、完善企业信息,并提交审核,待平台审核通过后即完成北京市政府采购电子交易平台注册。 3)竞争性磋商文件获取方式:供应商市场主体(供应商)注册入库后,需在规定的获取竞争性磋商文件时间内,持本单位数字证书登录北京市政府采购电子交易平台选择参与本项目并免费下载电子竞争性磋商文件。 数字证书服务热线:010-58515511技术支持服务热线:010-86483801 售价:¥0元 四、响应文件提交 截止时间:2022-04-12 14:00(北京时间) 地点:北京市大兴区金华寺东路2号西配房105室 五、开启 时间:2022-04-12 14:00(北京时间) 地点:北京市大兴区金华寺东路2号西配房105室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1、资金来源:财政资金 2、采购方式:竞争性磋商 3、评审办法:综合评分法 4、批复文号:房财采购核【2022】097号 5、意向公开时间:2022年01月07日 6、本项目所属行业划分为:其他未列明行业。 7、需要落实的政府采购政策:严格执行《中华人民共和国政府采购法》、《中 华人民共和国招标投标法》及有关法规、制度规定,在政府采购活动中扶持贫困地区、监狱企业、中小企业和残疾人福利性单位发展,支持节能减排、环境保护。严格贯彻落实挥发性有机物(VOCs)治理工作,按照北京市房山区财政局 北京市房山区生态环境局关于转发《北京市财政局 北京市生态环境局 关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(房财采购【2020】149号)执行。 8、磋商保证金: 电汇、支票、汇票、转账支票或政府采购投标担保函,同时可接收电子保函。 9、质疑方式联系人和联系电话:供应商认为磋商文件、磋商过程和成交结果使自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,以书面形式向采购人提出质疑。 联系方式:王思思,010-69375141 10、投诉处理方式的联系单位和联系电话: 联系单位:北京市房山区财政局采购办 联系电话:010-69377919 11、发布媒体:本次公告通过《中国政府采购网》、《北京市政府采购网》网站对外公开发布,未经采购人、采购代理机构授权的任何转载,采购人及采购代理机构不对其承担任何法律责任。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:北京市房山区园林绿化局本级 地址:北京市房山区良乡苏庄东街 7 号 联系方式:王思思,010-69375141 2.采购代理机构信息 名 称:北京捷迅通力工程咨询有限公司 地 址:北京市大兴区金华寺东路2号西配房103室 联系方式:苏德山,010-60218807 3.项目联系方式 项目联系人:苏德山 电 话: 010-60218807
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物 Oxalic acid dihydrate 6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物 Bis[3-(triethoxysilyl)propyl] tetrasulfide 40372-72-3D-薄荷醇 D-Menthol 15356-60-2L-薄荷醇 L-Menthol 2216-51-51-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-辛醇 1-Octanol 111-87-55-甲基呋喃醛 5-Methylfurfural 620-02-0N-环己基甲酰胺 N-Cyclohexylformamide 766-93-84-甲基-2-戊醇 4-Methyl-2-pentanol 108-11-2N,N-二甲基-对苯二胺 N,N-Dimethyl-p-phenylenediamine 99-98-95,6,7,8-四氢-1-萘胺 5,6,7,8-Tetrahydro-1-naphthylamine 2217-41-6肼二盐酸盐 Hydrazine dihydrochloride 5341-61-7硫氰酸钾 Potassium thiocyanate 333-20-0二甲基硫醚 Dimethyl sulfide 75-18-3聚苯醚 Polyphenyl ether 31533-76-3叔丁基甲基醚 气相色谱级 Tert-Butyl methyl ether 1634-04-4七氟丁酸 Heptafluorobutyric acid 375-22-4甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-53,4-二羟基苄胺氢溴酸盐 3,4-Dihydroxybenzylamine hydrobromide 16290-26-9N,N-二(羟基乙基)椰油酰胺 Coconut diethanolamide(CDEA) 68603-42-9/61791-31-9甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-5异冰片基丙烯酸酯 Isobornyl acrylate 5888-33-5N,N' -二苯基硫脲 1,3-Diphenyl-2-thiourea 102-08-9聚合氯化铝 Aluminum chlorohydrate 1327-41-9四丁基氢氧化铵10%溶液 Tetrabutylammonium hydroxide solution 2052-49-5四丁基氢氧化铵25%溶液 Tetrabutylammonium hydroxide solution 2052-49-5L-苯基丙氨酸 L-Phenylalanine 63-91-2无水硫酸铈 Cerium(IV) sulfate 13590-82-4硫酸铈铵四水合物 Ammonium cerium(Ⅳ) sulfate tetrahydrate 18923-36-9脂蛋白脂肪酶 Lipoprotein Lipase 9004/2/8乙二胺≥99.5%标准品 Ethylenediamine 107-15-3壬二酸 Azelaic acid (Nonanedioic acid) 123-99-9N,N-二甲基-1-萘胺 N,N-Dimethyl-1-naphthylamine 86-56-6双(三氟甲烷)磺酰亚胺锂盐 Bis(trifluoromethane)sulfonimide lithium salt 90076-65-6
  • 奶粉又爆“激素门”!博纳艾杰尔提供相关产品
    博纳艾杰尔可提供相关的产品和标准品 标准品: 前处理产品: 液相色谱柱产品: Venusil 系列液相色谱柱 Venusil高效液相色谱柱使用高纯球形硅胶微粒,采用博纳艾杰尔的新型表面改性技术和独特的键合工艺制备而成,在选择性、稳定性、通用性等方面均表现出卓越的性能。 Venusil系列色谱柱提供全系列键合相的选择,包括C18、C8,C4,C1,NH2,CN,Diol、硅胶、苯基、五氟苯基、阳离子交换、阴离子交换,氨基酸分析专用柱(AA)和多环芳烃分析专用柱(PAH)等。 Durashell系列液相色谱柱-宽pH适用范围(1.0-12.0) New Durashell柱通过在硅胶表面覆盖一种强疏水保护层,从而使得该色谱柱可在高pH和低pH下均可正常使用(pH 1.0-12.0)。该技术可以减弱固定相和化合物间的疏水相互作用,保持高界面动力学系数,从而获得更高的柱效。 Durashell C18色谱柱的pH适用范围为1.0-2.0,类似于Waters Xterra系列和Phenomenex Gemini。 Promosil系列液相色谱柱 Promosil系列液相色谱柱是博纳艾杰尔推出的一款性价比优异的产品。其采用高纯度、高机械强度的硅胶基质和高纯单键合试剂,高表面键合覆盖率和完全的封尾。是一款具有优异性价比的通用型反相色谱柱。 Promosil系列色谱柱具有出众的稳定性、较宽的pH使用范围(1.5-9.0)和优良的峰形。并且具有优良的耐污染性能和较长柱寿命。 Optimix技术色谱柱产品 New Optimix技术,在硅胶表面混合键合长链的C18和短链的硅烷化试剂,解决了C18链的空间位阻大,很难在硅胶表面键合均匀的C18链的问题。采用Optimix技术键合的硅胶表面均匀,并且由于没有空间位阻影响,故而在分离过程中分子具有更好的渗透性。 Optimix新产品可提供不同的选择性、协同多功能性,以及空间位阻特性。 Halo多孔壳层色谱柱 Halo多孔壳层色谱柱由国际著名色谱材料专家柯克兰博士领衔开发,代表了新一代色谱填料的诞生。 Halo多孔壳层色谱柱采用2.7µ m多孔壳层填料,具有与1.8µ m填料相似的分离效率,却只有其1/2的柱压和明显的抗污染性能,将成为新一代高速色谱分析的最佳选择。 Resin聚合物机制色谱柱New Resin系列色谱柱采用博纳艾杰尔科技有限公司新开发的大孔交联苯乙烯色谱填料,其化学性质稳定,可以在广泛的pH值(2.0-13.0,甚至1.0-14.0)范围内使用,同时可以避免硅羟基造成蛋白样品失活的情况出现。 Resin系列包括的种类有RP、CIC、CIS、AIQ、AIW,利巴韦林专用柱等。 Chiral 系列手性色谱柱 博纳艾杰尔研发的系列手性色谱柱包括正相手性色谱和化学键合型两类,其中正相手性为硅胶表面涂敷改性纤维素,分别有AD、OD和OJ三种类型;化学键合型为硅胶表面键合酰胺基团,适用于正反相模式分析,选择性强,寿命长。手性柱常用于分析具有R、S、或D、L构型的对应异构体或手性药物。 详情请登陆http://www.agela.com.cn/web/index.asp
  • 短链氯化石蜡成“新宠儿” 全二维气相将大卖?——POPs2017论坛大会报告
    p    strong 仪器信息网讯 /strong 2017年5月17日,“持久性有机污染物论坛2017暨第十二届持久性有机污染物学术研讨会”(简称“POPs论坛2017”)在武汉市开幕。本次会议的主题为“消除POPs,推进国家化学品安全”。与往届一样的是,多位资深专家在大会报告上介绍了自己的最新工作成果。与往届不一样的是,由于短链氯化石蜡增列了《斯德哥尔摩公约》附件A,其成为了多位报告专家的“新宠儿”。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/49b5fcf9-cc90-4c07-9b03-b9b93b7901bf.jpg" title=" DSC02559_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 环保部环境保护对外合作中心孙阳昭处长/研究员 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:中国履行《斯德哥尔摩公约》进展及未来展望 /span /p p   孙阳昭主要介绍了我国2016年在履行《斯德哥尔摩公约》方面所做的工作以及取得的成就,并对未来的工作重点进行了详细讲解。一是继续加强谈判政策和关键议题研究,完成COP8决议的任务和要求 二是推动2015年新增列POPs人大批约,开展2017年新增列物质社会经济影响分析 三是完成NIP更新稿征求意见及报批,进一步细化“十三五”履约行动 四是进一步争取履约资金,加快现有履约削减淘汰项目实施 五是深化履约与环保重点工作的融合,强化各部委共同履约联动 六是探索化学品相关公约协同增效,协调推进履约和污染防治。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/3d5d80d7-7b67-4099-ba25-face01757dcd.jpg" title=" DSC02588_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 中科院生态环境研究中心 郑明辉研究员 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:持久性有机污染物研究进展 /span /p p   郑明辉研究员的报告分两部分内容。首先介绍的是工业污染源POPs生成与控制。郑明辉团队不仅研究了我国二噁英的排放清单,更是找出了再生铜冶炼中二噁英类产生的关键工艺及关键影响因素,且发明了二噁英阻滞技术。然后介绍了其团队在短链和中链氯化石蜡的研究,包括全二维气相色谱检测方法和环境与人体中污染水平的评估。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/10004961-1b77-42e2-b025-553b01684492.jpg" title=" IMG_1205_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 沃特世科技(上海)有限公司 市场部经理陈宇东 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:接气相色谱的大气压化学源软电离技术介绍-为高质量的溴代联苯醚而来 /span /p p   陈宇东经理介绍了沃特世的APGC/Xevo-XS QqQ and QTOF仪器以及其在十溴联苯醚、多溴联苯醚、1,2-双(2,4,6- 三溴苯氧基)乙烷、十溴二苯乙烷、多氯代二恶英等多种物质分析中的应用效果和优势。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/cd04efc3-7e13-43cd-b3d2-b7487e1649c7.jpg" title=" IMG_1226_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 安捷伦科技(中国)有限公司全球环境行业经理 Craig Marvin /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:Analysis of Phamaceuticals and Personal Care Products(PPCPs)in Environmental Water /span /p p   Craig Marvin介绍了安捷伦的1290LC和Model 6495 MS/MS在分析环境水体中PPCPs方面的分析方法和分析结果判定等内容。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/4ac14bee-3985-4b57-9d20-d68d0fbd64b0.jpg" title=" DSC02617_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 瑞典厄勒布鲁大学 Heidelore Fiedler教授& nbsp /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:Results from the third round of the global interlaboratory assessment on persistent organic pollutants /span /p p   Heidelore Fiedler介绍了2016-2017年间全球POPs实验室比对分析的情况和结果。此次分发的样品包括斯德哥尔摩公约限制的有机氯农药、六种多氯联苯、17种多氯代二噁英、多溴联苯醚以及多种其他类型的POPs,来自全球175家实验室申请参加了比对,其中133家提交了结果。2018-2019年间的比对工作也要马上开始,Heidelore Fiedler欢迎更多的实验室参与比对。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/e9918701-8338-4bae-83d8-fa41e1c819ae.jpg" title=" DSC02782_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 香港浸会大学 蔡宗苇 教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:质谱在持久性有机污染物分子毒理研究的应用 /span /p p   蔡宗苇教授介绍了利用代谢组学研究二噁英类物质环境毒理的研究成果。四氯二苯并-p-二噁英(TCDD)暴露可以引起高敏感性和低敏感性小鼠的代谢紊乱,血液、肝脏、骨骼的光谱信号有明显改变可以充分证明其影响。TCDD可以诱导脂肪酸和磷脂水平的显著升高。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/2a0a1845-b9ec-4a0b-b7f6-fe14a9b42a3e.jpg" title=" DSC02792_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 南京大学 张效伟 教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:从源头到末端——建立毒害有机化合物的高通量监测与管理系统 /span /p p   张效伟教授讲解了目前已登记的全球化学品的数量、各国间化学品种类的差异以及欧美主要的化学品风险评估框架,并介绍了江苏、长三角地区、海河、辽河等地发现的化学品的名单。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/47f61392-7074-4c0e-8cfc-ed2026c7a127.jpg" title=" DSC02803_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 中南民族大学 唐和清 教授/院长 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:难讲解有机卤化物降解与脱卤的新方法 /span /p p   唐和清团队主要研究化学法处理卤代POPs的技术,此次大会报告唐和清对其团队的工作进行了比较全面的介绍,包括利用改性芬顿及类芬顿体系处理卤代污染物 水合电子还原处置全氟化合物 光催化处理氯、溴代和全氟污染物以及机械化学处理溴代阻燃剂。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/17fa0d50-724e-4143-abea-0d72b331dab2.jpg" title=" DSC02822_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 北京大学 胡建信 教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:短链氯化石蜡的增列-环境风险区域管理和全球优先防范的平衡 /span /p p   本月初,短链氯化石蜡(SCCP)被列入《斯德哥尔摩公约》附件A受控POPs。胡建信教授讲解了一个化学品列入《斯德哥尔摩公约》的条件以及氯化石蜡列入《斯德哥尔摩公约》的过程和依据,并介绍了SCCP的全球生产、管控历史以及主要用途。总之,从当前研究和监测数据来看,SCCP由于远距离输送而导致的环境和健康风险在一定的可控范围 但是SCCP产生的本地和区域风险,对于中国等发展中国家而言正在上升 进而由于发展中国家使用量的增加也可能增加远距离的输送并带来极地等偏远地区的环境和健康风险。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/9758c8e0-76d2-4a40-a953-92e2860c5417.jpg" title=" DSC02836_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 清华大学 邓述波教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:去除水中全氟化合物的吸附技术及应用 /span /p p   邓述波教授介绍了利用氟化蒙脱石吸附剂吸附PFOS的研究,其中很有意思的一项发现是气泡会对PFOS在疏水材料表面的吸附产生很大促进作用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/214b1637-3b08-4c3a-ba05-973c5fbcc821.jpg" title=" DSC02844_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " General Manager of KeAi Publishing & nbsp Gert-Jan Geraeds /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 报告题目:How to get your paper published in international journals /span /p p   Gert-Jan Geraeds讲述了论文投稿方面的注意事项,包括论文如何选题、何时发出,如何选择写法,并从目的和范围、文章类型、目前热点和出版模式等几方面讲解了如何选择杂志。最后还分别讲解了论文撰写方面的关键点,包括题目、关键词、摘要、导语、方法、结果、讨论、总结、致谢以及参考文献。 /p
  • 日本纪本电子意欲进军中国PM2.5监测市场
    只需轻触按钮,PM2.5每小时浓度值实时显现,硫酸根离子、硝酸根离子、可溶性有机物等化学成分浓度一一显示,一年以内的历史数据随时可查 全中文触摸屏操作界面,数台仪器,只需1人就可实现全天侯24小时、全年365天长达十几年的正常运转……原以为高深莫测的仪器操作,却如此轻松、智能,甚至有点“傻瓜式”,无不让参观者啧啧称奇。这是科技日报记者在5月9日举行的PM2.5测定技术专题研讨会演示现场看到的一幕。   这场由廊坊城城环保有限公司主办的研讨会在距离北京40公里的河北廊坊召开,吸引了来自中日两国环保组织、科研院所和环保企业的30余名环境专家。   研讨会上,日本分析化学会副会长、大气环境协会理事、环境监测著名专家纪本岳志作了题为《PM2.5测定历史与课题》的主题演讲。他在总结英国、日本等国治理大气污染的历史经验时表示,中国当前治理PM2.5,首要的基础是要获得精准的监测数据,而这需要更为精确的测定技术方法和设备仪器。他还详细展示和讲解了技术团队研制的大气气溶胶化学成分连续自动测定装置和技术。   记者获悉,该项技术以大气中气溶胶的化学成分和质量浓度作为测定目标,可对微小粒子(PM2.5)和粗大粒子(PM10—2.5)进行分项同时测定,实现每小时1次连续自动分析。纪本岳志表示,这种测定方法与传统的24小时滤膜采样——手动分析法(FRM测定法等)相比,成功解决了“大气气溶胶酸碱度”受气体吸附及粒子挥发影响而不能正确测定的难题,在世界上首次实现了对气溶胶酸碱度和硝酸根离子浓度的精准测定。他们的PM2.5连续自动监测设备在日本国内市场占有率达到70%,并出口韩国、美国和欧洲等世界多个国家和地区。   在廊坊城城环保有限公司的PM2.5测定仪器的演示现场,记者和与会专家一起动手操作了PM2.5浓度及其化学成分在线监测仪ACSA-08及PM712、PM717等PM2.5在线监测仪器。仪器的中文操作系统、及时数据分析界面、自动校准和后期维护的简易性等特点,得到专家的一致认同。   清华大学环境学院副研究员马永亮认为,这套技术及装置在测定PM2.5浓度的基础上,实现了对PM2.5化学成分及来源构成的精准分析,这是很大的一个技术进步。“更为重要的是,这种测定方法不仅可以实现PM2.5数据区域性差异化分析,而且还可为政府环保部门制定PM2.5综合治理决策提供可靠科学依据。”在他看来,这种测定技术及方法非常适合中国PM2.5治理的具体国情及市场需求,值得大力引进和推广。   廊坊城城环保有限公司董事长刘世达透露,该公司已于2011年8月31日同日本纪本电子工业株式会社达成合作协议,引进大气气溶胶化学成分连续自动测定技术,双方将在廊坊经济开发区合资建厂,并于近期完成首批产品的组装和生产。刘世达认为,此次合作标志着我国PM2.5监测和治理将进入精准测定阶段,同时有望进一步降低我国PM2.5检测设备仪器的采购成本,并可培养一批相关本地化专业人才,这不仅可以促进我国PM2.5监测技术的升级,还可进一步推动目前潜力巨大的国内PM2.5治理环保市场的健康良性发展。
  • 新品上架| 阿尔塔助力氯化石蜡检测
    今年的6月9日是第十六个“世界认可日”,阿尔塔科技上新氯化石蜡检测标准品,助力食品安全认证认可检验检测。关于氯化石蜡:氯化石蜡(CPs),也称氯石蜡,是许多工业和商业过程中使用的一系列多氯代烷烃,一般含氯量为40%~70%。氯化石蜡是当今深受关注的新污染物,在全球生产、使用及排放量高,由于国家发文整治新污染物,且其对化学品管理和国家履约有重大需求,因此受到广泛重视。一般按照碳链长度的不同,氯化石蜡可分为:○短链氯化石蜡(Short Chain Chlorinated Paraffins,SCCPs,碳链长度为 10~13)○中链氯化石蜡(Medium Chain Chlorinated Paraffins,MCCPs,碳链长度为 14~17)○长链氯化石蜡(Long Chain Chlorinated Paraffins,LCCPs,碳链长度为 18~30)研究表明,碳链长度越短,对生态环境和人类健康的危害越大。短链氯化石蜡具有长距离迁移能力、持久性、生物累积效应及毒性和潜在致癌性等持久性有机污染物(POPs)的基本特征,是一种常见的有机污染物,在人类和动物体内具有生物蓄积性,并在食物链中逐级放大;对人类和野生生物等均具有毒性,具有致癌、致畸、致突变等”三致"效应。短链氯化石蜡作为新增持久性有机污染物已于2017年被正式列入《关于持久性有机物的斯德哥尔摩公约》附件A中,并于2023年列入重点管控新污染物清单。阿尔塔科技密切关注市场动态,为满足氯化石蜡监管与检测方面不断增长的市场需求,丰富氯化石蜡标准物质产品线,推出短链氯化石蜡及相关产品,帮助实验室标品检测添加助力。部分氯化石蜡产品了解更多产品或需要定制服务,请联系我们天津阿尔塔科技有限公司介绍天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • POPs物质检测新标准实施-多氯化萘
    电子电气设备在丰富、方便我们生活的同时,也产生了一定的环境污染问题。随着各国环境法规的日益完善,电子电气产品中禁用限用的物质也越来越多。如欧盟RoHS指令、中国RoHS2.0、欧盟REACH、POPs法规等等,均对有毒有害物质做出限量要求。为了能更好地实现管控,方法标准需要同时跟进。本月《GB/T 40031-2021 电子电气产品中多氯化萘的测定 气相色谱-质谱法》开始实施。 多氯化萘(PCNs)是一类基于萘环上的氢原子被氯原子所取代的化合物的总称,共有75种同类物,是持久性有机化合物。可用作电容器、变压器介质、绝缘剂、防腐剂等等。 原理本标准采用甲苯作为萃取剂进行索氏萃取,萃取液经过硅胶固相萃取小柱净化后,采用气相色谱-质谱法对多氯化萘进行检测,外标法定量。 检测物质多氯化萘包括75种同类物,标准选取1-氯化萘、1,5-二氯化萘、1,2,3-三氯化萘、1,2,3,4-四氯化萘、1,2,3,5,7-五氯化萘、1,2,3,4,6,7-六氯化萘、1,2,3,4,5,6,7-七氯化萘和八氯化萘,共八种物质进行定量分析,在一定程度上反映出氯化萘物质的添加情况。岛津应对GCMS-QP2020 NX抗污染型高灵敏度气相色谱质谱联用仪 ● 可旋转的预四极及超高效大容量真空系统有效降低主四极及离子源污染问题。● 创新ClickTek技术,实现徒手维护。● 仪器自动检漏、自动判断调谐结果,减少用户等待时间。● 提升信号强度,降低噪音,实现高灵敏度分析。 拓展岛津GCMS在应对欧盟RoHS限量邻苯类物质的筛查及准确定量应用中也有优异表现。热裂解与液体自动进样器安装在同一台GCMS上,两根色谱柱同时接入质谱。无需泄真空,更换色谱柱,即可实现快速筛查与准确定量无缝衔接,节省时间,提高效率。本文内容非商业广告,仅供专业人士参考。
  • Sigma-Aldrich SPME + GCMS 快速、灵敏检测邻苯二甲酸酯
    SPME + GCMS 快速、灵敏检测邻苯二甲酸酯 &mdash &mdash Sigma-Aldrich/Supelco 应对方案 下载详细资料请至: http://www.instrument.com.cn/netshow/SH101420/down_170241.htm 关键词:起云剂 邻苯二甲酸酯 SPME 固相微萃取 气相色谱 前言 邻苯二甲酸酯类物质常被用于增塑剂、起云剂等添加到柔软的聚氯乙烯类产品中,从而增加塑料材质的韧性、通透度、强度和寿命。近期研究发现,邻苯二甲酸酯类物质主要会引起内分泌紊乱(女孩性早熟,男性生殖损害),致癌(乳腺癌)和肝毒性等方面的健康危害。出于公众健康方面的考虑,邻苯二甲酸酯类已经在美国、加拿大和欧盟等地域的部分产品中禁用。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 Sigma-Aldrich公司的Supelco SPME 摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。 检测方法: SPME 萃取头:7 &mu mPDMS (货号:57302) 萃取方式:直接浸没,15分钟,快速搅拌 载气:氦气 流速:40 cm/sec; 质谱:45 - 465 m/z 进样口温度:280 ° C 色谱柱:PTE-5, 30 m × 0.25 mm I.D × df0.25 &mu m (货号:24135-U) 柱温:60 ° C (3 min) -320 ° C(10 ° C/min) 检测结果: 结论: 通过使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头的样品前处理,对加标样品浓度10~200ppb进行考察(方法625和8060)。实验结果数据中,稳定的响应因子和浓度值表现出良好的线性,多点加标(n=5)相对方差(RSD)和标准方差反映了实验卓越的重现性和SPME令人满意的表现。 (表1. 使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头实验结果相应因子) 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mmI.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 41F/ K. Wah Centre / 1010 Huai Hai Zhong Road / Shanghai 200031 / China Ordering Email: orderCN@sial.com Toll-Free(免费订购电话): 400 620 3333, 800 819 3336
  • 解读|GB/T 39560.12-2024 《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》
    2024年6月29日,《电子电气产品中限用物质的限量要求》(GB/T 26572-2011)的《第1号修改单》获得正式批准。这一修改单扩大了中国RoHS限用物质的范围,新增了四种邻苯二甲酸酯类物质。受管控的限用物质总数增至10项,标志着中国在电子电气产品环保管理方面迈出了重要一步。该修改单预计将于2026年1月1日起正式实施。同时,第14号公告还批准发布了标准GB/T 39560.12-2024《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。这项标准作为中国RoHS检测邻苯类物质的方法,将于2024年10月1日开始实施。GB_T 39560_12-2024 《电子电气产品中某些物质的测定第12部分_气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》.pdf近日,GB/T 39560.12-2024全文也已公布,该标准规定了气相色谱-质谱法同时测定聚合物中多溴联苯、多溴二苯醚和邻苯二甲酸酯。目的在于确定一种适应于同时测定电子电气产品中多溴联苯、多溴二苯醚和邻苯二甲酸酯的技术方法。制定背景此次GB/T39560系列标准是为了适应产业对新种类有害物质限制的要求和新型检测技术发展,保持我国RoHS检测技术及结果国际一致。在推动实现中国RoHS与国际的对接互认,努力成为全球电器电子行业绿色发展的参与者、引领者的过程中起到了重要的作用。制定过程本文件等同采用IEC 62321-12:2023《电工产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多溴二苯醚和邻苯二甲酸酯》。本文件还做了下列编辑性修改:-为了与我国现有标准系列一致,将标准名称改为《电子电气产品中某些物质的测定第12部分:气相色谱-质谱法同时测定聚合物中的多溴联苯、多澳二苯醚和邻苯二甲酸酷》:更改了IEC原文的两误,将11.2e)中的“用5个校准点的结果(根据表5)”更改为“用5个校准点的结果(根据表6)”标准GB/T 39560.12-2024主要内容原理:聚合物中不同种类的化合物,如PBB、PBDE、BBP、DBP、DEHP和DIBP等,通过超声辅助同时萃取,然后采用气相色谱-质谱仪(GC-MS)的全扫描模式和(或)单(或“选择”)离子监测(SIM)模式进行定性和定量分析。仪器设备:分析天平、容量瓶、超声波清洗器、带有聚四氟乙烯螺帽的离心管、离心机、去活进样口衬管、铝箔、微升注射器或者自动移液管、巴斯德吸管、带100μL玻璃衬管和PTFE衬垫的1.5mL样品小瓶或根据分析系统选择合适的样品瓶(带棕色或琥珀色)、微型振荡器(已知的如漩涡器或漩涡混合器)、使用带毛细管柱连接质谱检测器(电子电离,EI)的气相色谱、对PBB、PBDE和邻苯二甲酸酷化合物有足够分离效率的约15m长的色谱柱、0.45m聚四氧乙滤膜、预清洗过的滤纸。试验过程:1、 制样:推荐使用液氮冷却的低温研磨,并通过500μm的筛子。否则样品切成小于1mm✖ 1mm。2、 制备储备液:PBB、PBDE、邻苯二甲酸酯、内标。3、 萃取:称取100mg±10mg样品加入4mL丙酮/正己烷于离心管中,再加入标记物(分析回收率),超声水浴提前15min,水浴温度不超过40℃。超声结束后5000r/min离心5mim,取上清液于25mL容量瓶,再次加入萃取重复2次后定容。4、加入内标,将内标储备液稀释后加入萃取液中测定。5、 GC-MS检测:优化特定的GC-MS系统可能需要不同的条件,以实现所有校准同系物的有效分离,并满足质量控制(QC)和检测限(LOD)的要求。 色谱柱:非极性(苯基亚芳基聚合物,相当于5%苯基-甲基聚硅氧烷)长度15m;内径0.25mm;膜厚度0.1μm。应尽量使用高温色谱柱。 进样系统:程序升温、冷柱、分流/不分流进样器或类似的进样系统。 进样衬管:4mm在底部带玻璃棉(去活)的单底锥形玻璃衬管。 载气:氦气 1.0mL/min,恒定流量。 柱温箱:100℃保持2min,20℃/min升至320℃保持3 min。 传输线温度:300℃。 离子源温度:230℃。 电离方法:电子电离(EI),70eV 驻留时间:在SIM模式下为50ms.6、标准曲线制定(难点)7、 分析物浓度计算。我们将陆续邀请多位权威标准制定专家深入阐释“中国RoHS升级解读”相关内容,敬请持续关注本话题的最新动态。
  • 气相色谱-三重四极杆串联质谱法同时测定乳粉中22种邻苯二甲酸酯
    建立了气相色谱-三重四极杆串联质谱法测定乳粉中22种邻苯二甲酸酯含量的方法。乳粉样品以水溶解,通过乙腈提取,以氯化钠盐析后,采用气相色谱-三重四极杆串联质谱的多反应监测模式( MRM) 进行定量分析。结果表明,采用基质匹配标准曲线,在5 ng/mL~500n g/mL范围内,22种邻苯二甲酸酯线性关系良好,相关系数(r)均大于0.99,方法检出限在1.0 μg/kg~5.0 μg/kg范围,定量限在3.0 μg/kg~15.0 μg/kg范围。在奶粉基质中3个加标水平下邻苯二甲酸酯的平均回收率在82.4%~111.4%之间,平行测定6次相对标准偏差(RSD)2.4%~9.5%。该方法高效便捷、灵敏度高、稳定性好,适用于乳粉中22种邻苯二甲酸酯检测。 气相色谱_三重四极杆串联质谱法同时测定乳粉中22种邻苯二甲酸酯_王金翠.pdf
  • 噻苯达唑化学发光检测新方法开发方案
    噻苯达唑化学发光检测新方法开发方案一、实验目的旨在开发一种利用钴修饰黑磷纳米片(Co@BPNs)激活高铁酸盐(VI)高级氧化过程(AOP)的化学发光(CL)检测平台,以实现对噻苯达唑(TBZ)的高效、灵敏、选择性检测。通过生成高产率的活性氧(ROS),该系统能够有效分解TBZ,并产生强烈的CL信号,从而实现环境样品中TBZ的检测。二、实验使用的仪器设备和耗材试剂1. 仪器设备(1). 超微弱化学发光分析仪:BPCL-2-TGG(2). 透射电子显微镜(3). 荧光光谱仪(4). X射线光电子能谱仪(5). X射线衍射仪(6). 拉曼光谱仪(7). 电子顺磁共振光谱仪(8). 紫外-可见分光光度计(9). 红外光谱仪(10). 核磁共振波谱仪(11). Zeta电位仪(12). 高效液相色谱-飞行时间质谱仪2. 耗材试剂(1). 红磷、碘、锡(2). 氯化钴、乙醇、N-甲基-2-吡咯烷酮(NMP)(3). 硝基四氮唑蓝氯化物(NBT)、1,3-二苯基异苯并呋喃(DPBF)(4). 对苯醌(PBQ)、氢氧化钠(NaOH)、硫脲、L-组氨酸(L-His)、抗坏血酸(AA)。三、实验过程1. Co@BPNs的制备(1). 材料准备:将2 mL NMP试剂和10 mg块状BP研磨成均匀粉末,转移到150 mL圆底烧瓶中。加入5 mg氯化钴和98 mL NMP,超声处理20分钟,形成表面均匀分布的Co-BP块状材料。(2). 氮气通入:向溶液中通入氮气30分钟,以去除氧气。(3). 微波加热反应:加入100 mg NaOH,进行微波加热反应(1小时,140°C,375 W)。(4). 冷却和离心:自然冷却后,离心收集上层悬浮液,进一步离心得到Co@BPNs沉淀,真空干燥后储存。2. 化学发光实验(1). CL反应系统:在石英池中加入800 μL Co@BPNs溶液(0.05 mg/mL)和TBZ溶液(0.01 mg/mL),然后注入200 μL FeO4² ⁻ 溶液(10⁻ ³ mol/L)触发CL反应。(2). 数据记录:记录CL发射,PMT电压为0.8 kV,数据采集间隔为0.01秒,实验温度为20°C。每个数据点重复测量三次。3. 表征和分析(1). 结构表征:通过TEM、HRTEM、XRD、拉曼光谱、EDS、XPS和FT-IR等手段对Co@BPNs的结构和组成进行表征。(2). ROS生成研究:使用EPR和化学探针法研究Co@BPNs-FeO4² ⁻ 体系中ROS的生成。(3). CL响应评估:通过CL强度-时间曲线和线性关系图评估TBZ浓度对CL响应的影响。(4). 抗干扰能力评估:考察不同阳离子、阴离子和农药对CL信号的干扰。四、实验结果与讨论1. Co@BPNs的表征(1). TEM和HRTEM表征:TEM图像显示,Co@BPNs呈层状形态,分布均匀,尺寸约为17 nm(图1A)。HRTEM图像表明,Co@BPNs具有高度晶体结构,晶格间距为0.334和0.256 nm,分别对应于Co氧化物和BP的晶面(图1B)。(2). XRD和拉曼光谱:XRD和拉曼光谱进一步确认了Co@BPNs中钴的存在和分布(图1C, 1D)。(3). XPS和FT-IR分析:XPS和FT-IR分析显示,Co@BPNs表面具有多种氧功能团,这些功能团在CL反应中起重要作用(图1E, 1F, 1G)。图1. (A) Co@BPNs的TEM图像、尺寸分布直方图及钴的分布;(B) Co@BPNs的HRTEM图像;(C) Co@BPNs的XRD图谱;(D) Co@BPNs和未修饰BPNs的拉曼光谱;高分辨率XPS光谱:(E) P 2p峰,(F) Co 2p峰,(G) O 1s峰。2. 化学发光特性(1). CL光谱:Co@BPNs-FeO4² ⁻ 体系在引入TBZ后CL信号显著增强,表明Co@BPNs和FeO4² ⁻ 对CL发光的协同作用(图2A)。(2). 捕获剂实验:不同捕获剂对Co@BPNs-FeO4² ⁻ 和Co@BPNs-TBZ-FeO4² ⁻ 体系CL强度的影响表明,AA、L-His、EthOH、PBQ、硫脲对CL信号有不同程度的抑制作用(图2B)。(3). ROS生成验证:EPR光谱研究显示,Co@BPNs-TBZ-FeO4² ⁻ 体系中生成了大量1O2(图2C)。化学捕获实验表明,DPBF在Co@BPNs-FeO4² ⁻ 体系和Co@BPNs-TBZ-FeO4² ⁻ 体系中吸收光谱变化显著(图2D)。(4). 结构变化研究:1H NMR和FT-IR光谱分析显示,TBZ在加入Co@BPNs前后的结构变化明显(图2E, 2F)。图4. (A) Co@BPNs-TBZ-FeO4² ⁻ 体系的化学发光光谱。 (B) 不同捕获剂(AA、L-His、EthOH、PBQ、硫脲)对Co@BPNs-FeO4² ⁻ 和Co@BPNs-TBZ-FeO4² ⁻ 体系化学发光强度的影响。 (C) Co@BPNs-TBZ-FeO4² ⁻ 体系中1O2生成的EPR光谱研究。 (D) 1O2的化学捕获测定:410 nm处DPBF的紫外吸收光谱以及在Co@BPNs-FeO4² ⁻ 体系和Co@BPNs-TBZ-FeO4² ⁻ 体系中的DPBF吸收光谱。 (E) 加入Co@BPNs前后的TBZ的1H NMR光谱。 (F) 加入Co@BPNs前后的TBZ的FTIR光谱。3. 方法性能评估不同浓度TBZ下Co@BPNs-TBZ-FeO4² ⁻ 体系的CL强度-时间曲线显示,TBZ浓度越高,CL信号越强(图3A)。在1.43 × 10⁻ ³ -1.43 μg/mL范围内,CL强度与TBZ浓度的线性关系良好(图2B)。多种阳离子、阴离子和其他农药对Co@BPNs-TBZ-FeO4² ⁻ 体系的CL响应几乎没有干扰,表明该体系具有良好的选择性和抗干扰能力(图5C)。图3. (A) 不同浓度TBZ下Co@BPNs-TBZ-FeO42&minus 体系的化学发光强度-时间曲线。(B) 在1.43 × 10&minus 3-1.43 μg/mL范围内,化学发光强度与TBZ浓度之间的线性关系。(C) 各种阳离子、阴离子和农药(浓度分别为10&minus 5 M, 10&minus 5 M 和10&minus 4 mg/mL)对Co@BPNs-TBZ-FeO4² ⁻ 体系化学发光强度的响应。五、结论本方案开发的基于Co@BPNs激活高铁酸盐(VI)的化学发光检测方法,可实现噻苯达唑的高效、灵敏、选择性检测。该平台通过生成高产率的活性氧,选择性氧化TBZ,产生强CL信号。实验结果表明,该方法具有良好的抗干扰能力和高检测灵敏度,在环境样品中噻苯达唑的检测中具有广泛应用前景。*因学识有限,难免有所疏漏和谬误,恳请批评指正*资料出处:免责声明:1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵删处理!
  • 赫施曼助力饮用水中四氯化碳的测定
    生活饮用水由于加氯消毒可产生新的有机卤代物,主要成分是氯仿和四氯化碳及少量的一氯甲烷、一溴二氯甲烷、二溴一氯甲烷以及溴仿等,统称为卤代烷。根据GB/T 5750.8-2023,生活饮用水中四氯化碳浓度的测定可用毛细管柱气相色谱法。其原理是水样置于密封的顶空瓶中,在一定温度下经一定时间的平衡,水中三氯甲烷、四氯化碳逸至上部空间,并在气液两相中达到动态平衡,此时,三氯甲烷、四氯化碳在气相中的浓度与其在液相中的浓度成正比。通过对气相中三氯甲烷、四氯化碳浓度的测定,可计算出水样中三氯甲烷、四氯化碳的浓度。实验步骤如下:试剂:1.载气:高纯氮。2.纯水:色谱检测无待测成分。3.抗坏血酸。4.甲醇:优级纯,色谱检测无待测成分。5.三氯甲烷和四氯化碳标准物质:纯度均≥99.9%,也可为色谱纯,或使用有证标准物质。6.三氯甲烷标准储备液:准确称取0.8008g三氯甲烷,放入装有少许甲醇的100mL容量瓶,以甲醇定容至刻度,此溶液浓度为8.00mg/mL。7.四氯化碳标准储备液:准确称取0.4004g四氯化碳,放入装有少许甲醇的100mL容量瓶,以甲醇定容至刻度,此溶液浓度为4.00mg/mL。8.混合标准溶液:于200mL容量瓶中加入约100mL甲醇,再用电动移液器分别加入1mL三氯甲烷、四氯化碳的各单标准溶液,然后加入甲醇定容。混合标准溶液中各组分质量浓度分别为三氯甲烷40μg/mL,四氯化碳20μg/mL。9.标准使用溶液:用电动移液器移取1.00mL混合液标准溶液于100mL容量瓶中,纯水定容。标准使用溶液中各组分的质量浓度分别为三氯甲烷0.40μg/mL,四氯化碳0.20μg/mL。现配现用。标准工作曲线的绘制:采用opus电子瓶口分配器(10mL款)的stepper模式,设置5个分液体积分别为0.10、0.50、1.00、2.00、5.00mL,排气泡后进行分液,将标准使用溶液分别加入5个200mL容量瓶中,另备一个不加标准使用溶液,并用纯水稀释至刻度(可用opus电子瓶口分配器50mL款分别设定并加入193-198mL纯水,然后定容),混匀。配置后三氯甲烷的质量浓度为0、0.20、1.0、2.0、4.0、10μg/L;四氯化碳质量浓度为0、0.10、0.50、1.0、2.0、5.0μg/L。再倒入6个顶空瓶至100mL刻度处。加盖密封于40℃恒温水浴中平衡1h,各取顶部空间气体30μL注入色谱仪。以峰高或峰面积为纵坐标,质量浓度为横坐标绘制标准工作曲线。实验室移取几微升到几毫升的液体,一般采用移液器。Miragen电动移液器,接头和内腔为不锈钢,相对于常见的橡胶和塑料,更适合有机试剂。电枪的数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。德国赫施曼的opus分液系列产品,可在0.5%的精度下进行连续分液,且分液次数、间隔时间和流速均可调,既可进行基础的等体积分液,也可进行不等体积分液(每个体积均独立可调,如本试验中的5个体积分液),可用于大批量移液、稀释剂补液(代替烧杯和玻璃棒),还可代替量筒、移液器和部分移液管。
  • 靠‘谱’系列之VOCs走航案例未知因子判定---以四氯化碳为例
    四氯化碳(CCl4),也称四氯甲烷或氯烷,常态下是一种无色透明的挥发性液体,具有特殊的芳香气味,味甜。在四氯化碳分子中,4个氯原子是由共价键以正四面体的结构分布碳原子的四周。因为其结构对称,所以四氯化碳呈非极性,常温下化学性质稳定。四氯化碳是一种优良的有机溶剂,可以作为有机物的氯化剂、药物的萃取剂而应用于物理、化学和医学等领域 也用作香料的浸出剂、纤维的脱脂剂、粮食的蒸煮剂、织物的干洗剂。四氯化碳是一种可致癌的有机化学物,人体吸入高浓度的四氯化碳蒸气后,可迅速出现昏迷、抽搐等急性中毒症状。四氯化碳作为原料生产的氟氯化碳,光解能产生氯自由基,对臭氧层具有极强的破坏性。图1 四氯化碳结构式PTR-TOF对于四氯化碳的测量方法,我国标准(GB/T 16132-1995)中有利用气袋对现场气体进行采集,再带到实验室进行气相色谱离线检测的方法[1]。或者环境监测中,使用气相色谱/氢离子火焰检测器对四氯化碳直接测量的方法(采样频率10分钟),学术届也有使用拉曼光谱对四氯化碳进行光学测量的方式[2]。这些方法有的需要漫长的预处理过程增加了样品的不确定性,有的时间分辨率低达不到走航测量的要求,有的检测限不够低需要预先富集或其他前处理。近年来,利用快速分析飞行时间质谱仪进行车载走航VOCs检测成为了对污染排放源的环境空气影响进行跟踪溯源的重要技术手段(什么是VOCs走航监测技术(VOCs走航车)? )(中国东部大气气态芳烃的移动观测 靠‘谱’系列之VOCs走航案例未知因子判定---以氟苯为例)图2 Vocus小精灵仪器捕捉到的原始四氯化碳质谱图及信号强度变化图3 四氯化碳质谱图位置及信号强度在2022年秋季中国进口博览会空气保障—大气VOCs走航监测任务中。搭载 Vocus Elf PTR-TOF(Vocus 小精灵)的大气走航观测车对华东地区某工业园区的大气VOCs组分进行了走航监测。监测车在园区内某区位走航过程中,在m/Q 116.9659的位置检测到较强的响应(见图2),经确认,该精确质量离子分子式是CCl3+。结合前期标气测量结果,该离子信号定性为四氯化碳(CCl4)质谱信号,该峰相关同位素分布符合含3个氯的特征。同时,该信号的变化趋势与丙酮、苯、二甲苯等物质的信号趋势明显不同(见图3),半定量其峰值浓度为156 ppbV(时间分辨率1秒)。目前对四氯化碳的排放规定较少,在山东省地方标准《挥发性有机物排放标准》(DB37-2801)厂界监测点浓度限值中,四氯化碳的无组织排放浓度规定为0.3mg/m3,计算为48 ppbV。故按照该标准此次排放事件四氯化碳浓度已超标。参考文献1. GB/T 16132-1995 居住区大气中三氯甲烷、四氯化碳卫生检验标准方法 气相色谱法2. 四氯化碳级联受激拉曼散射研究[D].长春.吉林大学.2022
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
  • 三篇新型POPs氯化石蜡研究在环境国际权威期刊发表,分析技术竟然是它!
    精彩推荐近期,中国农业科学院农业质量标准与检测技术研究所“饲料质量安全检测与评价”创新团队开展了畜产品以及饲料中短链和中链氯化石蜡污染特征研究,解析了污染来源,进一步揭示了氯化石蜡在“环境—青贮饲料—奶牛—生鲜乳”生产链条中迁移转化规律,评估了暴露风险,为新型持久性有机污染物在动物性食品生产链条中的迁移防控提供了技术支撑。相关研究成果[1,2]相继在线发表在《环境国际(Environment International)》和《危害物质学报(Journal of Hazardous Materials)》上。图片来源:ScienceDirect 与此同时,国家环境测试中心发表大气环境中短链氯化石蜡SCCPs的污染水平与特性,相关研究成果[3]在线发表在《Environmental Pollution》上。图片来源:ScienceDirect 什么是氯化石蜡?氯化石蜡(ChlorinatedParaffins,CPs)是一类组成复杂的正构烷烃的氯代衍生物,其中短链氯化石蜡(ShortChain Chlorinated Paraffins, SCCPs)及中链氯化石蜡(Medium Chain Chlorinated Paraffins, MCCPs)均具有典型持久性有机污染物(PersistentOrganic Pollutants, POPs)的特征,是近年来备受关注的一类新型的有机污染物(图1)。短链氯化石蜡已于2017年5月被正式列入《关于持久性有机污染物的斯德哥尔摩公约》受控名单附件A中,其在环境介质和生物中的含量,以及对人体的暴露风险评价等成为现今研究的热点课题。图1:氯化石蜡分类 岛津创新中心基于全二维气相色谱串联质谱联用仪(图3),开发了环境中新型POPs氯化石蜡分析方法包。可有效分离短链氯化石蜡与中链氯化石蜡,同时可准确定量短链氯化石蜡SCCPs和中链氯化石蜡MCCPs的总含量以及同系物的相对含量,该方法学文章[4](图2)在2018年发表于《色谱A(Journal of Chromatography A)》,可有效应用于大气、土壤、底泥、生物、血液、饲料和食品等各类样品。同时获得一项分析方法专利。 图2:全二维三重四极杆质谱技术在短链氯化石蜡检测中的应用 中国农业科学院农业质量标准与检测技术研究所和国家环境测试中心发表的三篇文章,正是参照分析方法学文献[4]并采用了氯化石蜡分析方法包,完成大量不同基质样品的实际检测。图3:全二维气相色谱质谱联用仪 在氯化石蜡分析方法的基础上,创新中心又开发全二维气质联用GCxGC分离定量209种多氯联苯(PolychlorinatedBiphenyls,PCBs)单体的应用(图4)。该应用系统可分离198个PCB单体,4对两单体重合,1组三单体重合,以及实现12个Dioxin-likePCB单体的完全分离。该方法可应用于大气、土壤、底泥等环境及食品领域。图4:2019ASMS Poster《全二维气质联用分离定量209种多氯联苯单体》 [1] Shujun Dong, Su Zhang, Xiaomin Li, et al. Short- and medium-chain chlorinated paraffins in plastic animal feed packaging and factors affect their migration intoanimal feed, Journal of Hazardous Materials,389,2020.https://doi.org/10.1016/j.jhazmat.2019.121836 [2] Shujun Dong,Su Zhang,Xiaomin Li, et al. Occurrence of short- and medium-chain chlorinated paraffins in raw dairy cow milk from fiveChinese provinces,Environment International 136 (2020). https://doi.org/10.1016/j.envint.2020.105466 [3] Shan Niu, Ruiwen Chen, Yun Zou, et al. Spatial distribution and profile of atmospheric short-chain chlorinated paraffins in the Yangtze River Delta,259, April 2020.https://doi.org/10.1016/j.envpol.2020.113958 [4] Yun Zou, Shan Niu, Liang Dong, et al. Determination of short-chain chlorinated paraffins using comprehensive two-dimensional gas chromatography coupled with lowresolution mass spectrometry, Journal of Chromatography A, 1581 (2018) 135–143. https://doi.org/10.1016/j.chroma.2018.11.004
  • GC Smart+HS-10测定生活饮用水中氯仿、四氯化碳应用方案
    随着社会的发展,人们对生活饮用水的质量要求也在不断提高,不仅仅是需要清洁、卫生,更需要“安全”。国家从2007年7月1日全面实施《gb 5749-2006 生活饮用水卫生标准》,总共规定了106项水质指标,分为微生物指标、毒理指标、化学指标和放射性指标。其中毒理指标涉及氯仿和四氯化碳。通过监测生活饮用水中氯仿、四氯化碳的浓度可以指导生产中的加氯量,避免加氯量过大对人体健康造成危害或加氯量过小导致微生物指标不达标。现行国标《gb/t 5750.8-2006 生活饮用水标准检验方法 有机物指标》中规定了顶空法结合气相色谱ecd检测器测定生活饮用水中氯仿、四氯化碳。顶空法采用气体进样,不需要进行有机溶剂萃取等前处理,操作简单。ecd检测器是一种高灵敏度、高选择性检测器,对电负性物质具有极高的灵敏度。本解决方案参照国标《gb/t 5750.8-2006》,建立了顶空进样结合气相色谱ecd检测器测定生活饮用水中氯仿、四氯化碳含量的方法。岛津公司 hs-10 顶空自动进样器延续了 hs-20 系列的良好重复性,gc smart 气相色谱仪采用载气手动控制模式并结合了 apc 高精度控制技术,两者通过工作站 labsolutions le实现分析的全自动化。本方法操作简单、检出限低,样品中氯仿、四氯化碳加标回收率分别为 99.3%和 98.4%,方法准确可靠,对于生活饮用水中氯仿、四氯化碳含量控制具有现实意义。所谓顶空,是指"物质上部的空间",在液体或固体的上部存在着液体或固体中所含的挥发性成分,特别是低沸点的成分。顶空进样器将样品放置于密封恒温系统中进行一定时间恒温,当气液或气固两相达到热力学平衡后采样并导入气相色谱仪(gc)进行分析。通常应用于食品中的香气成分、化学制品的气味成分,环境水中的有害挥发性成分的定性或定量分析。hs-20系列顶空进样器为从研究部门到品质管理部门所有涉及挥发性成分的分析提供有力的支持。hs-20 系列顶空进样器包括定量环采集模式hs-20/hs-20lt型和冷阱模式hs-20trap型。 卓越的性能良好的重现性极低的交叉污染友好的界面设计样品盘设计人性化维护简便灵活的扩展性电子冷却捕集阱条形码阅读器选件hs-20系列顶空进样器加热炉温度上限可以达到300℃,全惰性化样品传输管线,可以分析以往顶空进样器难以分析的高沸点化合物。环硅氧烷是硅氧烷生产的一种原料,常痕量存在于硅油、液体橡胶和某些化合物中。环硅氧烷具有挥发性,可能造成电子部品接点不良,所以控制环硅氧烷的含量非常重要。hs-20系列顶空进样器可在相同条件下测定从环硅氧烷到邻苯二甲酸酯等成分。
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 新国标应对|强制性国家标准GB15892-2020《生活饮用水用聚氯化铝》于8月1日正式实施
    安全的饮用水是人类健康的基本保障,是关系国计民生的重要公共健康资源。伴随着GB 5749—2006《生活饮用水卫生标准》修订工作的开展,作为与水相关的化学品,必须同步修订。 聚合氯化铝主要作为生活饮用水,生活用水和工业污水(如含油污水、印染、造纸污水、钢厂污水等)处理的絮凝剂,以及高毒性重金属和含氟污水的处理等;此外,在精密铸造、制革等方面亦有广泛用途。国标聚合氯化铝的显著特点是净水效果明显,絮凝沉淀速度快,沉降快、活性好、不需加碱性助剂。适应PH范围宽;对管道设备腐蚀性低;能有效除去水中色质SS(悬浮固体)、COD(化学需氧量)、BOD(生化需氧量)及砷、汞等重金属离子。 聚氯化铝在处理自来水过程中,主要起到絮凝沉淀、改善水质的作用。为避免聚氯化铝对自来水造成的二次污染,聚氯化铝本身的杂质检测,特别是元素杂质检测非常重要。《生活饮用水用聚氯化铝》GB15892-2020强制性国家标准于8月1日起正式实施。标准解读标准应用范围本标准规定了生活饮用水用聚氯化铝的要求、试验方法、检验规则、标志、包装、运输和储存;本标准适用于生活饮用水用聚氯化铝,该产品主要用于生活饮用水的净化;本标准替代GB15982-2009 新标准检测的项目与旧标准GB15892-2009相比,新标准有如下差异:除了上表的差异外,另有将砷含量测定中的砷斑法改为原子荧光光谱法将汞含量测定中的分光光度法改为原子荧光光谱法铅、镉含量测定中增加了火焰原子吸收光谱法增加了铁含量的测定增加了铬含量的测定删除了六价铬含量的测定 东西分析应对方案 东西分析原子吸收分光光度计可以满足Pb、Cd、Cr含量的测定 AA-7090型原子吸收分光光度计特点横向加热、纵向交流塞曼,使仪器具有更高的灵敏度;塞曼、氘灯背景校正模式互为补充,选择更加灵活;原子化器切换速度快,可2s完成火焰/石墨炉的自动快速切换;具备石墨炉可视系统对火焰或石墨炉进行实时观测;自动化程度高,气路自动保护,软件自动点火;燃烧头自动升降,前后位置及旋转角度可调;自动氘灯,石墨炉电源自动开关,自动识别编码灯;配合自动进样器,达到真正无人值守。东西分析原子荧光可以满足As、Hg含量的测定AF-7550型双道氢化物-原子荧光光度计特点:双通道同时测定双元素;六通进样阀和可变定量管相结合;气液分离采用二次分离(专利号:200720104068.x),并用红外传感器控制液位,消除其对分析的影响;人性化、环保节气型气路设计;仪器自动识别元素灯,监控空芯阴极灯使用寿命;开机自检、实现系统自动诊断功能;三维立体可调远红外加热原子化器、短焦距透镜聚光,全封闭无色散光学系统;可配备160位大容量自动进样器.GBC紫外可满足Fe、As含量测定Cintra 紫外-可见分光光度计 Cintra系列由cintra1010,2020,3030和4040组成,光学性能好;双光束光学系统,具有长时间稳定性;巧妙的光学设计,即使对μL级的样品量,测试结果可靠而稳定;可满足多种性能规范要求;可以通过软件模块完成多种应用,如常规测试、定量分析、系统性能验证等。
  • 硝酸盐、总磷、氯化物试剂整盒免费试用,不要错过!
    硝酸盐、总磷、氯化物试剂整盒免费试用,不要错过!哈希公司 申请条件立即申请!我们将从符合以上条件的申请者中,抽取5名幸运儿,可直接获得所申请的整盒试用试剂。点击下方【原文链接】即可填写试剂申请表,获得试用机会!上期获得试剂名单上期获得礼品名单预制试剂,将为您提供更加便捷可靠的水质测试方案点击下方的阅读原文申请试用吧!END
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制