当前位置: 仪器信息网 > 行业主题 > >

硅杂哌啶盐酸盐

仪器信息网硅杂哌啶盐酸盐专题为您提供2024年最新硅杂哌啶盐酸盐价格报价、厂家品牌的相关信息, 包括硅杂哌啶盐酸盐参数、型号等,不管是国产,还是进口品牌的硅杂哌啶盐酸盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硅杂哌啶盐酸盐相关的耗材配件、试剂标物,还有硅杂哌啶盐酸盐相关的最新资讯、资料,以及硅杂哌啶盐酸盐相关的解决方案。

硅杂哌啶盐酸盐相关的资讯

  • 二苯胺盐酸盐促销
    货号:CFEQ-4-120052-0025 二苯胺盐酸盐,&ge 99.0%,4℃保存 25g 报价:860.00元 促销价: 688元 促销截止日期:2012.3.31 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 2020版 《中国药典》盐酸利多卡因注射剂有关物质的分析
    盐酸利多卡因是局麻醉、抗心律失常药物,属于酰胺类化合物,这类物质在C18色谱柱分析过程中容易出现拖尾的问题。 我们按照2020版 《中国药典》和EP方法,对盐酸利多卡因注射剂及其杂质2,6-二甲基苯胺、2,6-二甲基氯代乙酰苯胺进行分析,希望能够解决主成分与杂质分离效果差和拖尾的问题。 常规硅胶系色谱柱,由于受到硅胶基材表面残留硅醇基和金属杂质的影响,在分析碱性化合物时普遍易出现色谱峰拖尾的现象。CAPCELL PAK色谱柱凭借填料表面致密的聚合物包被来抑制硅胶基材的影响,因此能得到对称性良好的色谱峰。 我们使用经过包膜处理的 CAPCELL PAK C18 AQ S5 柱,很好地解决了盐酸利多卡因拖尾的问题;同时主峰与杂质的分离也满足要求。 2020版《中国药典》方法 推荐色谱柱: CAPCELL PAK C18 AQ S5 系统适用性要求:盐酸利多卡因与杂质2,6-二甲基苯分离度满足要求,理论塔板数不低于2000。按照2020版 《中国药典》的要求,选择经过包膜处理的CAPCELL PAK C18 AQ S5 柱,盐酸利多卡因峰形良好;同时2,6-二甲基苯胺与利多卡因分离度16.49,满足基线分离要求。图1 盐酸利多卡因与2,6-二甲基苯胺的色谱图 HPLC Conditions 色谱柱:CAPCELL PAK C18 AQ S5 4.6mm i.d.×250mm流动相:磷酸盐缓冲液:乙腈=50:50(pH8.0)流 速:1.0 mL / min温 度:30 °C检 测:PDA 230 nm进样量:20 µL浓 度:盐酸利多卡因样品2mg/mL、系统适用性溶液:50 µg/mL(溶剂为流动相) 注:磷酸盐缓冲液:1mol/L磷酸二氢钠溶液1.3mL,0.5mol/L磷酸二氢钠32.5 mL,用水稀释至1000 mL,摇匀。 EP 9.0方法 推荐色谱柱:CAPCELL PAK C18 AQ S5 目前,EP没有盐酸利多卡因注射剂的相关规定,因此我们参考了EP中盐酸利多卡因的检测方法。 系统适用性要求:主峰(盐酸利多卡因)保留时间约为17min,杂质A(2,6-二甲基苯胺)与主峰的相对保留时间约为0.4,杂质H(2,6-二甲基氯代乙酰苯胺)与主峰的相对保留时间约为0.37,杂质A与杂质H的分离度不小于1.5。 按照EP 9.0的检测方法,对杂质A、H以及盐酸利多卡因混合标准品进行分析,结果如图2所示,杂质H保留时间6.098min,杂质A保留时间7.357min,杂质A、H分离度为5.31,满足二者分离度大于1.5的标准要求。图2 盐酸利多卡因与杂质A、H的色谱图 HPLC Conditions 色谱柱:CAPCELL PAK C18 AQ S5 4.6mm i.d.×150mm流动相:磷酸盐缓冲液:乙腈=70:30(pH8.0)流 速:1.0 mL / min温 度:30 °C检 测:PDA 230 nm进样量:20 µL浓 度:杂质A:0.5µg/mL、杂质H:5µg/mL、盐酸利多卡因:5µg/mL(溶剂为流动相) 注:磷酸盐缓冲液:4.85g/L磷酸二氢钾溶液。
  • 缓冲盐的这些“陷阱”你中招了吗?
    在色谱分析过程中常常需要使用缓冲盐来调节流动相的pH值,缓冲盐的不当使用对色谱柱可能造成柱压升高、柱效下降以及使化合物的保留时间发生变化等影响。“柱压升高原因:缓冲盐使用不当导致缓冲盐析出,堵塞塞板和键合相颗粒之间的孔隙,阻碍流动相传质,引起柱压升高;“相同化合物的保留时间发生变化原因:如果没有冲洗干净就进行进样,色谱柱内含有的盐会使化合物的保留时间发生变化;“柱效下降原因:1)有些缓冲盐会渗入到键合相的深处,损害硅胶基体,导致色谱柱键合相流失,柱床变松,柱效下降;2)凝结在键合相表面,使C18碳链难以舒展,对物质的保留能力下降,导致柱效下降。因此用过缓冲盐后需要对色谱柱进行冲洗,水中缓冲盐浓度较大时应特别引起注意。那么如何正确使用缓冲盐呢?使用前的处理:在使用缓冲盐作流动相之前需要用不含缓冲盐的流动相冲洗色谱柱,直至基线平稳。原则上,用于冲洗的流动相与分析时所用的流动相含水的比例相同(或含水更多),不同的只是用于冲洗用的流动相中不含缓冲盐。缓冲盐通常易溶于水,难溶于有机溶剂。用含缓冲盐的(特别是做流动相的水为饱和的缓冲盐溶液时)流动相进行分析时,如果分析前色谱柱中用于保存色谱柱的流动相中含水的比例相对较小,不先冲洗掉,接下来做样品的时候所用的流动相中如果有机溶剂含量大,而其比例中所含的水又不足以溶解该缓冲盐时,缓冲盐将会在色谱柱柱体上析出,沉积下来,这将可能导致上述对色谱柱的损害。使用后的处理:用与分析时含水比例相同的流动相(与分析用流动相唯一的区别是,用于冲洗的流动相不含缓冲盐)进行冲洗约30min,直至基线平稳。如果该色谱柱在接下来很长的一段时间内不使用,要长期保存,则需再加上一步,即用纯的有机溶剂冲洗一遍,直至基线平稳。使用缓冲液要注意几点01避免使用盐酸盐,盐酸盐对钢质有腐蚀作用。02缓冲液是良好的菌类培养液,缓冲液最好要现配现用。03实验后不可用有机溶剂直接过度,有机溶剂会处使盐类析出,造成液路或色谱柱堵塞。04使用缓冲液要及时掌握pH范围,做到胸中有数。05清洗液路和柱子时,有温控可加热到30摄氏度易于冲洗。06长时间用缓冲溶液要注意观察接头处有无析出,若有白色盐类析出,可考虑一定周期用10%硝酸冲洗一下液路(拆下柱子,走30mL,再用5倍水冲洗)可以避免液路的堵塞。07选择缓冲液要用可靠的试剂,避免不纯的盐类造成不必要的麻烦。如果流动相中有机溶剂的比例很高是不能用来冲洗缓冲盐的,是洗不出来的。通常C18柱先用5%~10%的甲醇冲洗,是可以把缓冲盐冲洗出来的,然后用纯的有机溶剂来保护柱子。最好的方法是使用与流动相相同浓度不含盐的流动相进行清洗。但就是速度慢一些。用水是为了快速替换,一般在15分钟以内最好,且用0.8的流速较好。如果用纯水冲,容易造成键合的碳链的流失,最好用5%~10%甲醇水溶液冲。可以用纯水代替流动相中的缓冲液,有机相不变。这样冲洗柱子比较稳妥。小结正确使用缓冲盐很有必要,既可以防止缓冲盐析出,也可以达到提高色谱柱使用寿命的目的。我们不妨用一句话来总结它的使用方法:用前要过滤,用后需冲洗。
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 315剑指食品乱象 皖仪科技助力安全检测
    导读 食品安全涉及人民群众最关心、最直接、最现实的利益,也是食品企业持续健康发展的根基和保障。昨晚,315晚会曝光“土坑”酸菜、变味粉条等食品安全问题,危及消费者生命财产安全,引发了社会上的巨大反响。另外,农产品农兽药残留、农资乱象、儿童化妆品安全......315曝光的,不仅仅是这些事件,而是这背后隐藏在百姓生活中方方面面的安全隐患。PART 01热点回顾Hot spot review“土坑”酸菜,酸菜清洗、腌制、加工过程各种乱象,仅其恶劣的卫生环境就让人不忍直视,更何况在其背后人们所肉眼看不见的各种食品添加剂,如防腐剂、护色剂及重金属、真菌毒素等等,每一项都让人惊恐不已。变味红薯粉,不仅仅是因为原材料的造假让其变味,其中使用的食品添加剂-漂白剂二氧化硫,以及木薯粉中的剧毒氢氰酸都给食品安全带来很大隐患。晚会最后,还提到的农产品农兽药残留,农资产品的造假乱象以及儿童化妆品安全等问题,同样给我们在身边生活安全上敲响了警钟。PART 02解决方案Solution 随着人们生活水平的提高,对食品及生活安全提出更高的要求,需要更真实有效的检测手段。现阶段,检测仪器分析技术逐渐成熟,并且已经逐渐代替化学检验成为主要检测手段。面对当今的情况和需求,皖仪科技分析仪器专注实验室分析十余载,为企业提供一站式、专业高效的解决方案。相关检测方案链接1.食品中亚硝酸盐测定Lily,公众号:皖仪科技应用开发中心离子色谱在食品行业的应用——米饼中亚硝酸盐及硝酸盐的测定2.食品中二氧化硫的测定婷婷,公众号:皖仪科技应用开发中心离子色谱法测定中药材二氧化硫残留量3.食品中真菌毒素的测定Penny,公众号:皖仪科技应用开发中心皖仪液相色谱为食品安全保驾护航--食品中真菌毒素检测(液相色谱法)4.农药鉴别Penny,公众号:皖仪科技应用开发中心是真是假?逃不过离子色谱的法眼!皖仪离子色谱在农药行业应用专题---农药真假鉴别5.植物生长调节素Lily,公众号:皖仪科技应用开发中心离子色谱法丨甲哌鎓中甲哌鎓、N-甲基哌啶盐酸盐、氯化钠含量测定6.化妆品Kevin,公众号:皖仪科技应用开发中心行业应用丨皖仪原子吸收助力化妆品中铅的测定PART 03科技助手Technology assistant离子色谱仪 IC6600系列多功能离子色谱仪是皖仪科技最新推出的高端离子色谱系统,全新的模块化设计,具有极大的灵活性,功能更全面,操作更简便。可通过配置电导检测器、安培检测器、紫外检测器,实现对常规阴、阳离子及氰根、碘离子、糖、小分子有机酸、六价铬(铬酸雾)、过渡金属等所有与离子色谱相关项目的检测。安培和电导检测器的插拔式设计可实现其自由切换。一机多能,满足客户常规检测的同时,可升级柱后衍生、在线富集、在线基体消除等功能,其完美卓越的性能将色谱分析带入一个新的更高境界。 高灵活系统,能应对潜在的挑战以及高级应用场景,提高了工作效率,扩展了工作能力、提升了色谱性能。液相色谱仪皖仪科技在液相色谱领域深耕多年,推出一系列满足客户不同需求的代表性的产品。采用主流分体式设计,配置丰富齐全,搭配灵活,拥有自主研发适应公司所有色谱产品的色谱工作站,满足用户对高效液相色谱的所有配置要求,泵、检测器种类齐全,可任意搭配组合,单一检测器或联用均可满足要求,随心搭配,无缝联接,实现拥有所有检测器的梦想。系统易于使用,可大幅减少培训需求,同时提供高质量、可靠的性能,让您对结果充满信心。我们的 LC 系统具有多种配置,因此总有一种配置可以满足您的需求。 气相色谱仪传承经典,持续创新。皖仪科技GC6000系列气相色谱仪在采用经典气相色谱技术上,结合皖仪科技持续创新的色谱技术,配有FID检测器,搭配自动进样器,开发出皖仪科技气相色谱仪,让经典再现;可增配FPD、ECD检测器,选配皖仪自产空气净化系统。原子吸收分光光度计皖仪科技原子吸收分光光度计自公司成立以来,潜心开发,一直跟随世界无机分析技术的前沿,持续更新原子吸收分光光度计技术,持续提升光谱仪产品性能及相关配套产品的创新,开发出一系列原子吸收分光光度计系统,简洁而高性价比的原子光谱仪器。易用,高性能,以及优异的可靠性是这些产品的共同特点。选择皖仪科技原子光谱将显著增强您实验室的工作效率和分析数据的可靠度,更多方位满足您的需求。PART 04社会使命Social mission食品安全标准和检验检测体系的完善将为我国监督管理提供有力的技术支持,专业、高效的现代分析仪器的普及与应用是建设食品、生活类产品质量安全屏障的基石。皖仪科技为您提供国内先进的食品安全分析仪器、相关耗材配件及行业内最新的应用解决方案。凭借自身强大的技术储备,助力企业客户实现价值提升,致力保障人类生命安全与健康。 ●公众号 : 皖仪分析仪器云平台 ● 联系电话:0551-62521516
  • 致死2人!小林化工发生严重“混药”事故,涉及液相色谱
    日本福井县的制药公司“小林化工”,因制药厂员工将装有原料药的容器弄混,在生产伊曲康唑片50MEEK的过程中混入了睡眠诱导剂成分“利马扎封盐酸盐水合物”。在这批药品出厂前,工厂使用液相色谱对其成分进行分析,出现了一个前所未见的色谱峰,这代表该批次的药物主要成分含量可能不同,有异物混入。但是,公司内部并没有就此进行排查,而是直接出货。导致有一名被开处方药的患者死亡,133起意识消失和记忆丧失等症状。其中,确认住院(含已出院)的有34起。疑似受服药影响的汽车等驾驶事故共有16起。截止到12月底,又有一名患者死亡,且药物造成的健康危害病例和交通事故仍在增加。其中,药品出货前使用的液相色谱是利用混合物在液-固或不互溶的两种液体之间分配比的差异,对混合物进行先分离,后分析鉴定的仪器。广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。不仅能快速鉴定天然药物成分,还能快速筛选出多种未知成分,为分析复杂的天然药物提供了强有力的工具。这起严重的“混药”事故为各制药企业敲响了警钟,不仅要强化GMP(药品生产质量管理规范)管理,还要增强对药物分析仪器的学习和使用。
  • 《水质 硝酸盐氮的测定 流动注射法》等8项团标正式实施!
    近期,宁夏化学分析测试协会对《水质 敌百虫的测定 液相色谱串联质谱法》等7项团体标准进行了评审,并予以发布,7项标准自2023年12月31日起正式实施。此次实施的团标为水质检测标准,涉及到液相色谱串联质谱法、气相色谱、连续流动分析法和全自动电位滴定法。《水质 硝酸盐氮的测定 流动注射法》(T/NAIA0247-2023)本标准按照 GB/T 1.1-2020 《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定编写。原理:硝酸盐在碱性环境下在铜的催化作用下,被硫酸肼还原成亚硝酸盐,并和对氨基苯磺酰胺及 N-(1-萘基)乙二胺二盐酸(NEDD) 反应生成粉红色化合物在 550nm 波长下检测。加入磷酸是为了降低 pH 值,防止产生氢氧化钙和氢氧化镁。加入锌是为了抑制氧化物和铜的反应。仪器和设备:1.四通道连续流动分析仪:含自动进样器、化学反应单元、检测单元和数据处理单元。2.天平:感量0.001g。3.水性滤膜:孔径为0.45μm。4.一般实验室常用仪器和设备。本文件规定了用流动注射法测定生活饮用水、水源水中的硝酸盐氮。本文件适用于生活饮用水、水源水中硝酸盐氮的测定。本方法当进样速率为50个/h 时,最低检测质量浓度为0.012mg/L。《水质 亚硝酸盐氮的测定 流动注射法》(T/NAIA0248-2023)本标准按照 GB/T 1.1-2020 《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定编写。原理:在酸性条件下,亚硝酸盐氮与对氨基苯磺酰胺反应,生成偶氮化合物,再与 N-(1-萘基)乙二胺二盐酸(NEDD) 反应生成粉红色化合物在550nm 波长下检测。仪器和设备:1.四通道连续流动分析仪:含自动进样器、化学反应单元、检测单元和数据处理单元。2.天平:感量0.001g。3.水性滤膜:孔径为0.45μm。4.一般实验室常用仪器和设备。本文件规定了用流动注射法测定生活饮用水、水源水中的亚硝酸盐氮。本文件适用于生活饮用水、水源水中亚硝酸盐氮的测定。本方法当进样速率为50个/h 时,最低检测质量浓度为0.012mg/L。
  • 3.15晚会海能发布权威解决方案:亚硝酸盐,还在把它“当饭吃”!
    今天,3月15日,CCTV-2财经频道315晚会如约而至。两个多小时的时间里,过半的时间被用来披露食品安全相关的内容。网络订餐卫生、义齿重金属、红参泡糖、食品中铅、二氧化硫、菌落、过氧化值超标,食品安全问题俨然成为消费者权益受到危害的重灾区!    针对以上问题,海能仪器第一时间做出反应,科学解读相关问题,提供一手解决方案,希望对您有所帮助。    亚硝酸盐,还在把它“当饭吃”!解决方案一事件315晚会第一案,“饿了吗”背后的黑心快餐作坊!危害解读  “饿了么”背后的黑心作坊监管不力、无证经营,卫生安全不达标。甚至为了省事一次性贮存大量盒饭,隔天、数天之后再送到我们嘴边。饭菜放置的时间久,会在细菌的分解作用下,将所含的硝酸盐还原成亚硝酸盐。亚硝酸盐有致癌作用,即使加热也不能去除!  解决方案:  1 仪器与试剂  1.1 仪器  Hanon i8双光束紫外可见分光光度计    海能仪器 i8 双光束紫外可见分光光度计  1.2 试剂配置  (1)饱和硼砂溶液(50g/L) :称取5.0g硼酸钠,溶于100mL热水中,冷却备用。  (2)亚铁氰化钾溶液(106g/L):称取106.0g亚铁氰化钾,用水溶解,并稀释至1000mL。  (3)乙酸锌溶液(220g/L):称220g乙酸锌,先加30mL乙酸溶解,用水稀释至1000mL。  (4)对氨基苯磺酸溶液(4g/L):称0.4g对氨基苯磺酸,溶于100mL20%(V/V)盐酸中,混匀后,至棕色瓶中,避光保存。  (5)盐酸萘乙二胺溶液(2g/L):称取0.2g盐酸萘乙二胺,溶于100mL水中混匀后,至棕色瓶中,避光保存。  (6)亚硝酸钠标准溶液(100μg/mL):准确称取0.1000g亚硝酸钠,加水移入1000mL容量瓶,加水稀释至刻度,混匀。  (7)亚硝酸钠标准使用液(10μg/L):临用前,吸取10mL亚硝酸盐标准溶液,置于100mL容量瓶,加水稀释至刻度。  2 实验过程  2.1 样品制备  将切碎的样品取5g左右,置于50mL的烧杯中,加12.5 mL饱和硼砂溶液,搅拌均匀,以70°C左右的水约250mL,将试样洗入500mL容量瓶,加热沸腾15min,取出冷却,并放置至室温。  2.2 样品净化    在震荡上述提取液时,加入5mL亚铁氰化钾溶液,摇匀,再加入5mL乙酸锌溶液,以沉淀蛋白质。加水定容至刻度,摇匀,放置30min,除去上层脂肪,上层清液用滤纸过滤,并弃去30mL初滤液,滤液备用。  2.3 建立标准曲线  吸取亚硝酸钠标准使用液配置测试溶液,绘制标准曲线。  2.4 样品测试  吸取40mL上述滤液于50mL容量瓶中,分别加入2mL对氨基苯磺酸溶液,混匀,放置3-5min,加入1mL盐酸萘乙二胺溶液,加水至刻度,混匀,静置15min,用2cm比色皿,以零管调节零点,于波长538nm处测吸光度。    2.5 结果讨论  实验样品为2组对照实验和一个空白实验,检测发现放置较长的菜品确实亚硝酸盐高于新的菜品,不同的蔬菜本身亚硝酸盐的含量也有差别,所以放置一段时间以后亚硝酸盐的增加量也有所不同。
  • 赛默飞发布盐酸法舒地尔药品中高哌嗪含量检测方案
    2014年12月8日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布盐酸法舒地尔药物中高哌嗪含量检测方案。盐酸法舒地尔作为高效的血管扩张药物,可以有效缓解脑血管痉挛,是一种具有广泛药理作用的新型药物。高哌嗪是盐酸法舒地尔合成过程的中间体杂质,其测定方法鲜有文献报道,主要原因是高哌嗪含量较低,在常规的反相色谱柱上保留较弱,同时没有紫外吸收。因此本检测方法采用离子色谱的方法,电导作为检测器测定盐酸法舒地尔药品中高哌嗪的含量。盐酸法舒地尔的结构图 赛默飞发布离子色谱法检测盐酸法舒地尔中高哌嗪含量,采用ICS-2100系统,配备EG淋洗液发生装置,在前处理过程中将药物盐酸法舒地尔去除,采用与流动相浓度一致的17 mmol/LMSA作为溶解样品的最佳溶液,配备Ion Pac CS17色谱柱,选择15%含量的乙腈作为淋洗液条件,在此分析条件下,采用离子色谱技术分析盐酸法舒地尔中高哌嗪的含量,方法简单,分离柱效高,测定结果满足要求。高效离子色谱方法在药物杂质离子的测定中有比较广泛的应用前景。ICS-2100 RFIC 离子色谱系统产品详情:www.thermo.com.cn/Product6474.html应用纪要:《离子色谱法测定盐酸法舒地尔药物中高哌嗪含量》下载地址:www.thermo.com.cn/Resources/201410/30102057126.pdf --------------------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 清华大学环境学院李淼副教授团队开发磷掺杂单原子钴催化剂实现水中硝酸盐污染高效还原去除与能源利用
    全球活性氮增加引起的氮循环失衡使硝酸盐成为水中最普遍的污染物之一。硝酸盐污染威胁着生态安全和人类健康。通过硝酸盐还原方式合成氨,不仅有助于水中硝态氮污染物的去除,而且有助于缓解社会对氨能源的需求,减少污染,降低能耗。电化学反应过程对条件要求适中,易于运行并且高效,可将硝酸盐直接转化为氨。但通常,在硝酸盐的电化学还原过程中,在纳米及更大尺寸电极的活性位点上易于发生氮-氮偶联反应生成氮气,制约氨的高效生成。因此,开发具有高活性、低成本和高选择性优势的电极材料是该领域研究的核心之一。李淼团队针对钴(Co)金属电极活性差、易钝化导致难以实用的瓶颈,通过缺陷碳的稳定固化作用,开发了一种磷(P)掺杂的单原子钴催化剂材料(如图1所示),可有效避免偶联反应发生,使最终产物具有更高的氨选择性和还原活性。这种磷掺杂单原子钴催化剂具有更高的硝酸盐还原去除性能,以其作为催化剂的最高氨生成法拉第效率为92.0%、最高氨产率为433.3μgNH4+h−1cm−2。图1 单原子催化剂结构形貌分析结果研究团队采用自然界极少的15NO3−作为氮源,以同位素标记法进一步证明了氨生成的唯一氮来源为硝酸盐。利用1H核磁共振(NMR)仪对产生的氨进行检测,14NH4+和15NH4+的核磁谱图分别具有典型的三峰和双峰结构。研究采用多种实验分析手段对载体结构进行了分析。结果表明,磷的掺杂进一步提高了碳氮载体的缺陷程度,提供了更多的固定位点负载单原子钴,并且缺陷位点会对相邻金属钴活性位点的电子结构和性能产生影响,提高了电极导电性。图2 电极性能结果研究团队根据密度泛函理论计算,创新强化污染物净化的单原子尺度结构调控理论与方法,从分子水平上对硝酸根在模型单原子钴催化剂活性位点的转化反应机理进行了探究,分析反应路径和能量变化。结果表明,硝酸根在单原子位点上逐步发生脱氧加氢的基元反应,N*物种可以在外部提供能量时进一步偶联形成氮气,也可以自发与氢逐步反应形成铵盐。磷掺杂后形成的缺陷位点可以促进临近CoP1N3位点对硝酸盐的催化转化,硝酸盐还原过程发生8电子数转移生成铵盐。此外,研究还发现,金属活性位点临近的缺陷结构有助于进一步提高单原子催化剂活性,在理论上为设计高活性位点的催化剂提供指导并揭示硝酸反应转化和产物分布规律。图3 反应机理示意图该研究成果于7月12日以《高法拉第效率钴单原子催化剂显著促进氨生成》(Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies)为题在线发表在《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)上。论文第一作者为清华大学环境学院博士后李佳澄,论文通讯作者为清华大学环境学院李淼副教授,环境学院刘翔教授等人对实验提供了重要指导和帮助。研究项目得到国家自然科学基金面上项目和重点研发计划的资助。
  • 离子色谱,助你心中有谱
    小伙伴们在药物分析研究中,是否对无机、有机阴阳离子的分析感到头疼,这类离子在传统高效液相色谱中保留不佳或无紫外吸收,如溴离子、亚硝酸根离子、碱土金属和有机酸离子、有机胺离子等的分析。 用传统液相色谱进行检测存在一定难度,而我们今天的主角离子色谱主要利用离子在水溶液中电离产生电导的特性,可以用于无机、有机阴阳离子的分析,便捷高效的完成上述分析检测。 离子色谱按分离原理可分为离子交换色谱、离子排斥色谱和离子对色谱3 种,目前应用广泛的是离子交换色谱法。 离子色谱仪通常由输液系统、进样系统、分离系统、检测系统(通常为电导检测器)和数据处理系统5个部分组成,其中电导检测器为了提高检测灵敏度和选择性通常还会联用抑制器,降低淋洗液的背景电导,增加被测离子的电导值,改善信噪比。岛津目前有配备化学型阴/阳离子抑制器和电渗析型阴离子抑制器的不同离子色谱仪以应对不同的检测需求。 近年来由于离子色谱法分离机制的独特性,可弥补液相色谱或气相色谱对离子型药物分析时的不足,使得其在药品检测领域中的应用越来越广泛。特别是《美国药典》31 版和《欧洲药典》6. 0版首次对妥布霉素等 7 个氨基苷类抗菌药物品种使用离子色谱法检测,标志着其正式被法定的药品标准收载和使用。《中国药典》从2010 版开始,增加了离子色谱法的指导原则, 最新的2020版《中国药典》中涉及离子色谱检测项目如下: 岛津的应用工程师与医药行业监管、研发及生产单位合作,开发了应对离子色谱检测需求的检测方法,汇集成检测方案和应用文集,我们关注的药物离子色谱检测常见问题都包括其中。 岛津离子色谱应用方案 # 01甲硝唑氯化钠注射液中亚硝酸盐分析 甲硝唑是常见的一类硝基咪唑类药物,硝基咪唑类药物的一类降解产物为亚硝酸盐。参考2020年版《中国药典》甲硝唑氯化钠注射液中亚硝酸盐含量测定的方法,采用搭载阴离子电化学自再生膜抑制器的岛津离子色谱仪Essentia IC-16,建立了甲硝唑氯化钠注射液中的NO2-的含量的测定方法并完成了方法学验证。2020版《中国药典》甲硝唑氯化钠注射液中亚硝酸盐含量测定的推荐进样体积为25 μL,本方法条件下进样体积仅为2 μL小进样量也能获得高灵敏度;亚硝酸根的标准曲线线性相关系数均>0.999;在三个浓度下加标平行测定6次,亚硝酸根的保留时间和峰面积的RSD分别为0.19%-0.21% 和0.18%-1.04%,系统精密度良好;亚硝酸根在三个浓度下加标回收率在87.1~100.1%之间,均符合中国药典9101 分析方法验证指导原则要求。该方法可以为定性、定量分析甲硝唑注射液、甲硝唑葡萄糖注射液及甲硝唑氯化钠注射液三种注射剂中的NO2-提供准确、有效的检测依据。 岛津Essentia IC-16离子色谱仪 # 02丁酸氯维地平中的残留哌啶分析 丁酸氯维地平是一种短效的新型静脉注射用二氢吡啶类钙拮抗剂。丁酸氯维地平合成中需要哌啶做催化剂,哌啶具有中等毒性,因此必须控制最终产物中哌啶的残留量。哌啶极性很大且无紫外吸收,其pKa=11.1,水溶液为碱性, 使用岛津HIC-ESP离子色谱仪,建立丁酸氯维地平中哌啶的测定方法并完成了方法学验证。结果表明哌啶在1-20 μg/mL范围内,线性良好,线性相关系数均0.999;在三个浓度下加标平行测定6次,保留时间和峰面积的RSD 分别为0.01%-0.02%和0.41%-2.89%;哌啶在1ug/mL的加标浓度下, 回收率为108.5%,处于75%-120%范围内,均符合中国药典9101 分析方法验证指导原则要求。实验结果表明系统适用性实验、专属性、线性及精密度实验结果均满足哌啶的测定要求,可用于丁酸氯维地平中哌啶含量测定。 岛津HIC-ESP离子色谱仪 # 03葡萄糖酸钙锌口服溶液中葡萄糖酸钙、葡萄糖酸锌、盐酸赖氨酸的分析 葡萄糖酸钙锌口服溶液为复方制剂,包含葡萄糖酸钙、葡萄糖酸锌及、盐酸赖氨酸。用于治疗因缺钙、锌引起的疾病,对葡萄糖酸钙锌口服溶液中三种成分的含量测定是对其进行质量控制的关键指标。常用滴定法、比色法、AAS法、ICP-MS法对葡萄糖酸锌口服溶液进行质量检验,该类方法只是对葡萄糖酸钙、葡萄糖酸锌定量检测,未能同时对盐酸赖氨酸进行准确分析,而使用岛津Essentia IC-16离子色谱仪可同时对葡萄糖酸钙、葡萄糖酸锌和盐酸赖氨酸定量检测。葡萄糖酸钙、葡萄糖酸锌和盐酸赖氨酸分别在各自范围内,线性良好,相关系数大于0.999;在葡萄糖酸锌150 μg/mL、盐酸赖氨酸50μg/mL和葡萄糖酸钙300μg/mL的浓度下连续测定6次,三种目标物保留时间和峰面积的相对标准偏差分别为0.03%~0.07%和1.10%~1.94%之间 在上述浓度下,进行三种目标物的加标回收率测试,回收率在95.8%-101.9%之间,均符合中国药典9101 分析方法验证指导原则要求。该方法专属性强、灵敏度高、操作自动化等特点,适合葡萄糖酸钙、葡萄糖酸锌和盐酸赖氨酸的同时检测。 岛津离子色谱技术为您提供更精准、快速、合规的分析检测方案,离子色谱助您心中有谱! 本文内容非商业广告,仅供专业人士参考。
  • 赫施曼助力硝酸、盐酸的测定与使用
    硝酸和盐酸是试验室常用试剂,它们是易挥发酸类的代表,较高浓度下,在空气中会产生白雾,是其蒸汽与水蒸汽结合而形成的小液滴,危险性较高,试剂浓度也会有较大波动。硝酸、盐酸的含量测定一般用滴定法,滴定剂用氢氧化钠,其中比较特殊的是发烟硝酸,要用到轻体安瓿球(用于易挥发试剂),盐酸虽然不用,但浓盐酸的浓度一般是36%到38%之间,用盐酸作滴定剂时,也要先用滴定法测出其具体浓度数值后再用于试验和计算。滴定法作为含量分析中的经典方法,常用仪器是滴定管。赫施曼的光能滴定器和电子滴定器,可代替常规滴定管,能够实现抽提加液、手转/手按控制滴定速度、屏幕直接读数,可解决滴定管的三大难点:灌液慢、控速难,读数乱(不同人、不同位、不同次的凹液面读数均有可能出现偏差)。硝酸和盐酸具有的挥发性和腐蚀性,导致其在使用时,也更加危险,如果试剂瓶敞口时间过长,其浓度也会有较大变化。赫施曼的ceramus瓶口分配器,在瓶口上沿设计了密封阀,可以在瓶口处进行试剂密封,阻止挥发性、腐蚀性、易结晶、有毒有害的试剂进入到仪器内,如不阻止,会明显降低仪器的寿命、精度和稳定性,这也是相比于排液管处密封阀的一大优势。如果担心试剂扩散到外界环境中,可加装过滤管(选配),可以防止试剂挥发、外泄,也可保护试剂不受外界空气中水分、二氧化碳等气体的影响,形成了对人员(环境)、试剂、仪器的三大保护。赫施曼的ceramus瓶口分配器和滴定器,可助力试验室更加便捷、安全地使用硝酸、盐酸,甚至王水和氢氟酸等危险试剂,可代替量筒、移液管等玻璃量具,降低人为误差和失误。
  • 盘管还是微反?倍他司汀的连续流工艺研究
    倍他司汀(Betahistine 1)是临床上常用的药物。主要用于治疗缺血性脑血管病,血管性头疼、眩晕综合征和梅尼埃综合征。方案 1. 倍他司汀合成示意图目前常见合成方法之一是甲胺(3)和2-乙烯基吡啶(2)之间通过氮杂迈克尔(胺烯加成)反应得到。(方案1, (a)) 常规釜式工艺中,需要较长的反应时间(8小时)来提高转化率(方案1,(b)); 2-乙烯基吡啶受热易发生聚合产生杂质(化合物4、5、6),很难获得高纯度产品; 2-乙烯基吡啶为易燃危险化学品,其蒸气与空气混合,能形成爆炸性混合物,生产中存在不安全因素。为了提高生产过程的安全性以及产品质量,该过程的连续流工艺研究具有重要意义。本文将介绍华东理工大学药学院叶金星课题组于2021.5.15发表在OPR&D上,关于倍他司汀连续流工艺研究成果(方案1,(d))。 该工艺以2-乙烯基吡啶和饱和甲胺盐酸盐水溶液为起始原料,同时使用哈氏合金盘管反应器和碳化硅微反应器进行了连续流工艺研究。研究过程考虑到生产成本和安全性,作者选用盐酸甲胺作为胺化试剂。为了避免连续流合成过程产生沉淀堵塞反应通道,作者首先对溶剂进行了筛选。二甲基甲酰胺(DMF)、二甲亚砜(DMSO)、 i-PrOH、EtOH和水加热在110oC, 5 小时高压封管反应。如表1所示,在上述溶剂中均未观察到沉淀。实验表明,水作为溶剂可以得到较高的转化率和选择性(表1,entry 7)。表 1. 合成倍他司汀的溶剂筛选 二、哈氏合金盘管反应器连续流工艺研究1、研究者首先研究了在哈氏合金盘管反应器中的连续化工艺(如图1)。 图 1. 倍他司汀合成的连续流设置经过实验分析在3.0 mL哈氏合金反应器上,可连续合成倍他司汀。在反应温度170 °C ,停留时间为2.1分钟,系统压力7bar的条件下,反应转化率可达98%,选择性为94%。三、在 SiC微反应器中的连续流工艺研究由于在高温高压条件下反应体系中氯离子的强腐蚀作用,哈氏合金反应器盘管在长期工业生产中不可避免地会被腐蚀。高的流量可能会使加热操作变得更加困难和危险,需要更安全的保护。烧结碳化硅 (SiC) 的耐腐蚀性远远大于哈氏合金,可应用于更苛刻条件下的高腐蚀性试剂。故在倍他司汀的连续流放大合成中,作者使用了带有静态混合元件的市售模块化 SiC 反应器(图 2)。图 2. 在 SiC 反应器中合成倍他司汀的连续流设置使用SiC微反应器,在 45 mL min-1 的总流速下,将甲胺盐酸盐的量增加到 1.9 当量,可实现完全转化(99.94%,表 4 Entry4)。表 4. 在 SiC 反应器中连续流动合成倍他司汀的放大实验SiC 反应器中的优化条件:2-乙烯基吡啶(流速:15 mL min-1),甲胺盐酸盐 (9.0 M) 水溶液(流速:30 mL min-1),在 170 °C ,停留时间为 2.4 分钟的条件下,转化率 99.94%,选择性为 94%。在上述条件下长时间运行,过程稳定,没有发生堵塞现象。 连续流反应与釜式反应的比对研究者同时进行了纯化改进和杂质分析,得到高纯度产品(99.9%)。连续流工艺与间歇工艺的比较(表 5)。表 5. 合成 1.0 kg 倍他司汀的间歇法和连续流法的比较结果讨论本研究成功实现了倍他司汀的连续合成;在 SiC 反应器中, 170 oC, 2.4 分钟,总流速为 45 mL min-1 的条件下,实现了高转化率 (99.94%) 和高选择性 (94%) ,该结果优于盘管反应器的实验结果;长时间连续运行,过程稳定,产品质量可靠;通过优化精馏提纯工艺,得到高纯度产品(99.9%);以水作为溶剂的新工艺节能、省时且经济,与釜式工艺相比,PMI 降低了 50%。参考文献:OPR&D, 2021,5(15)
  • 采用三价钛还原法分析硝酸盐氮氧同位素-德国元素elementar
    溶解态硝酸盐的同位素分析是环境科学的一个重要应用,与目前的细菌反硝化法和叠氮化镉法相比,新型的三价钛还原法用于硝酸盐同位素分析大大降低了样品预处理的技术门槛。实验名称:硝酸盐氮氧同位素分析实验仪器:德国元素elementarenvirovisION样品预处理Altabet等人在2019年对三价钛还原法进行了详细的描述。简单地说,在制备硝酸盐样品前,用锌金属粉对三氯化钛进行预处理30分钟,以确保反应效果。在预处理之后,样品制备将每个小瓶中溶解的NO3-转化为N2O气体,用于顶空IRMS分析,这是通过用移液管加入样品,去离子水脱气,10%盐酸和处理过的钛试剂来完成的。然后轻轻搅动小瓶,放置12 - 24小时,以待反应完成。一步反应1. 用移液管将试剂和样品加入40毫升或20毫升的小瓶中2. 静置小瓶12-24小时反应(硝酸样品转化为N2O)3. 在EnvirovisION IRMS上运行样品一旦完成,样品可以在iso FLOW GHG和isoprime precisION或EnvirovisION系统的N2O分析模式下进行分析。分析速度显著提高与广泛使用的细菌反硝化法相比,钛(III)还原法大大缩短了样品制备时间,样品制备从7-9天减少到一天。以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 外包工加错消毒剂!里约终于公布碧池原因...一池盐酸!
    话说,里约那一滩“碧池”大家还记得吗?  前几天,这次奥运会跳水项目的泳池突然一夜变绿...  到底咋就变绿了?  网友也是各种脑洞大开...  有人说是黄+蓝=绿,尿的...  也有人说是巴西故意弄成绿色以此呼应国旗的颜色。  更有网友说,这是主办方贴心,特地为运动员把泳池调成绿色,好缓解强日光对眼睛的刺激。  昨天... 德国的跳水选手抱怨...  这池水简直弥漫着一股屁味.........  而匈牙利的水球运动员也表示....  这池水辣眼睛。。。  不得不接受队医的紧急处理........  好吧....  于是所有人都在问...  这特么究竟为什么???  刚开始,里约奥组委也是全程蒙比,完全不造是什么情况,只是说不会对运动员的身体造成危害。  通过几天的调查...  今天,泳池变绿的真实原因总算是被调查出来了......  他们表示: 东西加错了,加错啦!!!  原来,场馆的一个contractor往两个池子里分别倒了80升的双氧水!  (Contractor这词嘛,在国外你要说是承包工好,说是临时工也行,总之就是这人是我们外面外包找来的,不是我们自己人!)  然而....  这哥们万万没搞懂.....  这两个池子之前并没有用双氧水来消毒,而用的是氯!  现在双氧水一加,刚刚好抵消掉了池水中氯的杀菌作用。 没了杀菌消毒剂,自然导致池水中绿藻繁殖,这才变绿了。  --------- 当当当 化学时间到 --------  一般来说,游泳池消毒有两种方法:  1 用氯系消毒剂,比如用像自来水厂一样用少量的氯气,或者用漂白粉次氯酸钙等等... 总之原理就是在水中生成次氯酸离子消毒灭菌。  2 用双氧水消毒。 利用双氧水的强氧化性来消毒。  一般来说,单独用,两种消毒方式都有效果..  然而!!!  里约,把这两个。弄混了!!!  他们之前用的氯系消毒剂,之后这个临时工又往里面加了双氧水....  那么....  两者反应就生成了没有消毒作用的盐酸,水和氧气,所以水藻才出来了。  泳池才变绿...  敲黑板!!!  2017高考题:  里约奥运会的跳水池先是使用了氯系消毒剂做池水消毒,后来又往池水中加入了双氧水,请问为何池水会变绿? 试写出其中的化学反应原理并解释。  答:因为次氯酸和双氧水反应生成盐酸,二氧化碳和氧气  HClO + H2O2 = HCl + O2 + H2O  而盐酸没有消毒作用,促进了藻类的繁殖。  事情现在是搞清楚了...  所以你们为什么会觉得辣眼睛?  里面有盐酸这特么当然辣眼睛啦!  (虽然被稀释的非常稀.. )  那这两滩“碧池”怎么办?  在花样游泳运动员抱怨花游池太绿,他们比赛时都看不清互相之后,里约官方终于重新放水清理了大池...  里约官方表示,这么大一池水,接近100万加仑... 光是排水就要10小时,排完再放水又要10小时..... 我们但愿能赶上花样游泳的比赛.....  好吧..  但愿你们能好.......  然而...  现在跳水那边还是绿的.........  他们表示不影响比赛,先不换... 不换.......  他们会进一步启动池水的净水循环系统,希望能这么慢慢把池水净化回来.......  好吧,心疼跳水运动员3秒钟...
  • 缓冲盐使用不当对色谱柱影响很大!该注意什么?如何解决?
    p style=" text-indent: 2em " 柱压升高 /p p style=" text-indent: 2em " 原因:缓冲盐使用不当导致缓冲盐析出,堵塞塞板和键合相颗粒之间的孔隙,阻碍流动相传质,引起柱压升高; /p p /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 相同化合物的保留时间发生变化 /p p style=" text-indent: 2em " 原因:如果没有冲洗干净就进行进样,色谱柱内含有的盐会使化合物的保留时间发生变化; /p p /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 柱效下降 /p p style=" text-indent: 2em " 原因: /p p style=" text-indent: 2em " i)有些缓冲盐会渗入到键合相的深处,损害硅胶基体,导致色谱柱键合相流失,柱床变松,柱效下降 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " ii)凝结在键合相表面,使C18碳链难以舒展,对物质的保留能力下降,导致柱效下降。因此用过缓冲盐后需要对色谱柱进行冲洗,水中缓冲盐浓度较大时应特别引起注意。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 流动相中缓冲盐的正确使用方法: /p p style=" text-indent: 2em " 1. 使用前的处理:& nbsp 在使用缓冲盐作流动相之前需要用不含缓冲盐的流动相冲洗色谱柱,直至基线平稳。原则上,用于冲洗的流动相与分析时所用的流动相含水的比例相同(或含水更多),不同的只是用于冲洗用的流动相中不含缓冲盐。理由:缓冲盐通常易溶于水,难溶于有机溶剂。用含缓冲盐的(特别是做流动相的水为饱和的缓冲盐溶液时)流动相进行分析时,如果分析前色谱柱中用于保存色谱柱的流动相中含水的比例相对较小,不先冲洗掉,接下来做样品的时候所用的流动相中如果有机溶剂含量大,而其比例中所含的水又不足以溶解该缓冲盐时,缓冲盐将会在色谱柱柱体上析出,沉积下来,这将可能导致上述对色谱柱的损害。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 2. 使用后的处理:用与分析时含水比例相同的流动相(与分析用流动相唯一的区别是,用于冲洗的流动相不含缓冲盐)进行冲洗约30min,直至基线平稳。如果该色谱柱在接下来很长的一段时间内不使用,要长期保存,则需再加上一步,即用纯的有机溶剂冲洗一遍,直至基线平稳。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 使用缓冲液要注意几点: /p p style=" text-indent: 2em " 1:避免使用盐酸盐,盐酸盐对钢质有腐蚀作用。 br/ /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 2:缓冲液最好要现配现用,往往缓冲液是良好的菌类培养液,隔天或放置长时间实验时会有很多怪现象发生。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 3:实验后不可用有机溶剂直接过度,有机溶剂会处使盐类析出,造成液路或色谱柱堵塞,可用95:5的水甲醇冲洗。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 4:使用缓冲液要及时掌握ph范围,做到胸中有数。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 5:清洗液路和柱子时,有温控可加热到30摄氏度易于冲洗。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 6:长时间用缓冲溶液要注意观察接头处有无析出,若有白色盐类析出,可考虑一定周期用10%硝酸冲洗一下液路(拆下柱子,走30ml,再用5倍水冲洗)可以避免液路的堵塞。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 7:选择缓冲液要用可靠的试剂,避免不纯的盐类造成不必要的麻烦。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 如果流动相中有机溶剂的比例很高是不能用来冲洗缓冲盐的,是洗不出来的。通常C18柱先用5%~10%的甲醇冲洗,是可以把缓冲盐冲洗出来的,然后用纯的有机溶剂来保护柱子。最好的方法是使用与流动相相同浓度不含盐的流动相进行清洗。但就是速度慢一些。用水是为了快速替换,一般在15分钟以内最好,且用0.8的流速较好. 如果用纯水冲,容易造成键合的碳链的流失,最好用5%~10%甲醇水溶液冲。可以用纯水代替流动相中的缓冲液,有机相不变。这样冲洗柱子比较稳妥。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 色谱柱异常及解决办法 /p p style=" text-indent: 2em " 柱压与硅胶基质的形态(如无定形或球形硅胶)、颗粒大小、填料合成条件、装柱条件、所用流动相和分析时的温度有关。不同厂家的色谱柱柱压会有所差别,相同流动相和温度的条件下,不同厂家的新色谱柱有的柱压可能相差4、5个MPa,特别是低端和高端色谱柱之间,这一区别比较明显。这是由色谱柱厂家所选用的硅胶基质及其生产条件决定的,这种差异的存在是正常的。同时需要说明的一点是,柱压与柱效有一定的关系,通常柱效高的色谱柱柱压相对而言会高一点,但柱压高的色谱柱并不一定就具有高柱效。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 在色谱柱的使用过程中柱压通常会出现两种升高的形式: /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 第一种是,随着使用时间的延长色谱柱柱压慢慢上升,这是正常的; /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 第二种是,使用过程中(流动相和温度没有改变的条件下)色谱柱压力突然升高很多。这种压力突然升高的现象,通常是由工作人员操作不当引起的。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 原因: /p p style=" text-indent: 2em " 1)样品太脏,使用前没有过滤,导致柱筛板堵塞; /p p style=" text-indent: 2em " 2)样品含有的杂质在流动相中的溶解性不是很好,与流动相混合后析出,导致柱塞板堵塞;& nbsp /p p style=" text-indent: 2em " 3)使用缓冲盐,处理错误,缓冲盐在色谱柱中析出,堵塞塞板和键合相颗粒之间的孔隙。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 解决办法对于第二种,即柱压突然升高的情况,通常有以下几种解决办法: /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 1)将色谱柱反接,用含水比例较大的流动相进行冲洗。 /p p style=" text-indent: 2em " 2)色谱柱进样一端的筛板取下,分别放在水中和甲醇中超声或更换新的柱筛板。如果柱效没变,但柱压仍然较高,则应考虑进样端填料受污染的问题,因此除了取下进样端筛板超声外,还需要挖掉进样端的部分填料,挖去填料之前先检查一下填料的颜色,如果填料的颜色发生了变化,则应该挖掉直到见到白色的填料为止。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 挖掉后色谱柱将出现一个缺口,填补缺口的填料可以从另一支相同品牌、相同型号的报废色谱柱的出口端获得,填料用有机溶剂如甲醇等调成糊状装入缺口处,压紧刮平,再装上筛板。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 柱子使用经验谈: /p p style=" text-indent: 2em " 色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同;另外,在做柱性能测试时是按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有这样,测得的结果才有可比性。 br/ /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 1、样品的前处理: /p p style=" text-indent: 2em " a、最好使用流动相溶解样品。 /p p style=" text-indent: 2em " b、使用予处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质。& nbsp /p p style=" text-indent: 2em " c、使用0.45µ m的过滤膜过滤除去微粒杂质。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 2、流动相的配制: /p p style=" text-indent: 2em " 液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下的特点: /p p style=" text-indent: 2em " a、流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。 /p p style=" text-indent: 2em " b、流动相具有一定惰性,与样品不产生化学反应(特殊情况除外)。 /p p style=" text-indent: 2em " c、流动相的黏度要尽量小,以便在使用较长的分析柱时能得到好的分离效果;同时降低柱压降,延长液体泵的使用寿命(可运用提高温度的方法降低流动相的黏度)。 /p p style=" text-indent: 2em " d、流动相的物化性质要与使用的检测器相适应。如使用UV检测器,最好使用对紫外吸收较低的溶剂配制。 /p p style=" text-indent: 2em " e、流动相沸点不要太低,否则容易产生气泡,导致实验无法进行。 /p p style=" text-indent: 2em " f、在流动相配制好后,一定要进行脱气。除去溶解在流动相中的微量气体既有利于检测,还可以防止流动相中的微量氧与样品发生作用。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 3、流动相流速的选择: /p p style=" text-indent: 2em " 因柱效是柱中流动相线性流速的函数,使用不同的流速可得到不同的柱效。对于一根特定的色谱柱,要追求最佳柱效,最好使用最佳流速。对内径为4.6mm的色谱柱,流速一般选择1ml/min,对于内径为4.0mm柱,流速0.8ml/min为佳。当选用最佳流速时,分析时间可能延长。可采用改变流动相的洗涤强度的方法以缩短分析时间(如使用反相柱时,可适当增加甲醇或乙腈的含量)。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 注意: /p p style=" text-indent: 2em " a.由于甲醇廉价,对于反相柱推荐使用甲醇体系(必须使用乙腈的场合除外)。& nbsp /p p style=" text-indent: 2em " b.对于正相柱推荐使用沸程为30-60℃的石油醚或提纯后的己烷作流动相,没有提纯的己烷不得使用。用水最好使用超纯水(电阻率大于18兆欧),去离子水及双蒸水中含有酚类杂质,有可能影响分析结果。 /p p style=" text-indent: 2em " c.含水流动相最*在实验前配制,尤其是夏天使用缓冲溶液作为流动相不要过夜。最好加入叠氮化钠,防止细菌生长。 /p p style=" text-indent: 2em " d.流动相要求使用0.45 µ m滤膜过滤,除去微粒杂质。 /p p style=" text-indent: 2em " e.使用HPLC级溶剂配制流动相,使用合适的流动相可延长色谱柱的使用寿命,提高柱性能。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 冲柱子的目的: /p p style=" text-indent: 2em " 只要是有机溶剂就行,不过黏度不要太大,因为有机溶剂能够防止细菌生长,冲柱子的目的就是为了防止细菌生长堵塞仪器系统和柱子。一般甲醇和乙腈相互冲洗是没有问题的,但乙腈要比甲醇价格贵的 。 /p p /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 保留时间变化的原因: /p p style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/2cd56489-c062-4aa1-be75-7281c5c04309.jpg" title=" 16-47-25-88-510998.png" alt=" 16-47-25-88-510998.png" / br/ & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 柱头塌陷 /p p /p p style=" text-indent: 2em " 在使用过程中,填料下沉,在柱子进口处出现一个小空间,使得分离效果不良。 br/ /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 补救方法:卸开柱头螺丝,找一点同类填料,用甲醇湿润后,添在柱子上,反复几次。然后装上螺丝,用溶剂冲洗1-2小时,使之平衡。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em " 小结 /p p /p p style=" text-indent: 2em " 正确使用缓冲盐很有必要,既可以防止缓冲盐析出,也可以达到提高色谱柱使用寿命的目的。我们不妨用一句话来总结它的使用方法:用前要过滤,用后需冲洗。 /p p br/ /p
  • 大气环境质量监测分析方法
    摘 要:大气中的有害物质是多种多样的,不同地区污染类型和排放污染物种类不尽相同,因此,在进行大气质量评价时,应根据各地的实际情况确定需要检测的大气环境指标。   关键字:大气环境 质量监测 分析方法   大气中的有害物质是多种多样的,不同地区污染类型和排放污染物种类不尽相同,因此,在进行大气质量评价时,应根据各地的实际情况确定需要检测的大气环境指标。   大气中常见的污染物有总悬浮颗粒物、降尘、可吸入颗粒物、二氧化硫、氮氧化物、总烃、铅、氟化物、臭氧和苯并[a]芘。   颗粒物质的测定:颗粒物质是大气污染物中数量最大、成分复杂、性质多样、危害较大的一种,它本身可以是有毒物质,还可以是其他有毒有害物质在大气中的运载体、催化剂或反应床。在某些情况下,颗粒物质与所吸附的气态或蒸气态物质结合,会产生比单个组分更大的协同毒性作用。所以,对颗粒物质的研究是控制大气污染的一个重要内容.大气中颗粒物质的检测项目有:总悬浮颗粒物的测定、可吸入颗粒物浓度及粒度分布的测定、降尘量的测定、颗粒中化学组分的测定。   其中,颗粒物浓度的测定最常用的是重量法,原理是:使一定体积的空气进入切割器,将大于某一粒径的微粒分离,小于这一粒径的微粒随着气流经分离器的出口被阻留在已恒重的滤膜上。根据采样前后滤膜的重量差及采样体积,计算出颗粒物浓度,以mg/m3表示(m3指标准状况下)。   二氧化硫的测定: 大气中的含硫污染物主要有H2S、SO2、SO3、CS2、H2SO4和各种硫酸盐。他们主要来源于煤和石油燃料的燃烧、含硫矿石的冶炼、硫酸等化工产品生产排放的废气。   作为大气污染的主要指标之一,二氧化硫在各种大气污染物中分布最广、影响最大,因此,在硫氧化物的检测中常常以二氧化硫为代表。   二氧化硫对人体健康、生活和工农业生产等各方面的影响。   测定二氧化硫的方法主要有四氯汞钾溶液吸收-盐酸副玫瑰苯胺分光光度法(GB 8970-88)、甲醛缓冲溶液吸收-盐酸副玫瑰苯胺分光光度法(GB/T 15262-94)、钍试剂分光光度法、紫外荧光法、电导法、库仑滴定法、火焰光度法、定电位电解法(HJ/T57-2000)。   甲醛缓冲溶液-副玫瑰苯胺分光光度法测定二氧化硫:二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、甲醛作用,生成紫红色化合物,用分光光度计在577nm处测定。   氮氧化物的测定:氮氧化物主要来源于石化燃料高温燃烧和硝酸、化肥等生产排放的废气,以及汽车排气。   氮氧化物包括NO、NO2、N2O、N2O3、N2O4、N2O5等,这些氧化物中占主要成分的是一氧化氮和二氧化氮。   氮氧化物及其在空气中的反应产物对人体健康的影响。   大气中氮氧化物的测定可分为化学法和仪器法两类。   化学法中最常用的是Saltzman法( GB/T 15435-95)、酸性高锰酸钾溶液氧化法、三氧化铬-石英砂氧化法。其中Saltzman法仅适于测二氧化氮的含量,酸性高锰酸钾溶液氧化法和三氧化铬-石英砂氧化法可以检测大气中氮氧化物总量。   仪器法有化学光化法和库仑原电池法等。   Saltzman法测定二氧化氮的基本原理: 空气中的二氧化氮与吸收液中的对氨基苯磺酸进行重氮化反应,再与N-(1-萘基)乙二胺盐酸盐作用,生成粉红色的偶氮染料,于波长540~545 nm之间用分光光度计测定其吸光度。   更多详情请关注:青岛佳明测控仪器有限公司官方主页 http://www.cn-cems.com/
  • 广西壮族自治区市场监督管理局公开征求废止《蔬菜、水果中亚硝酸盐与硝酸盐测定方法》等486项地方标准意见
    各有关单位:根据《中华人民共和国标准化法》《地方标准管理办法》《市场监管总局办公厅关于规范地方标准制定和应用促进全国统一大市场建设的通知》(市监标创发〔2023〕108号)有关规定和要求,经专家评估并征求各行业主管部门意见,我局拟对《红麻亩产250公斤栽培技术规程》等486项地方标准(详见附件)作废止处理,现公开征求意见。若对废止项目有意见建议,请于2024年8月1日前书面(签署真实姓名或加盖单位公章、提供联系方式)反馈至广西壮族自治区市场监督管理局,联系人:朱俊荣,联系电话:0771-5303210,邮箱:gxjbzhc@163.com。附件:拟废止486项地方标准清单广西壮族自治区市场监督管理局 2024年7月24日(此件公开发布)附件拟废止486项地方标准清单序号标准号标准名称处理意见1DB45/T 03—1995红麻亩产250公斤栽培技术规程废止2DB45/T 04—1996旱地糖料甘蔗高产栽培技术规程废止3DB45/T 11—2017隆林山羊废止4DB45/T 23—2007牛人工授精技术操作规程废止5DB45/T 28—2000蔬菜、水果中亚硝酸盐与硝酸盐测定方法废止6DB45/T 29—2000蔬菜中有机氮农药残留量测定方法废止7DB45/T 30—2000蔬菜中有机氯农药残留量测定方法废止8DB45/T 31—2000蔬菜中有机磷农药残留量测定方法废止9DB45/T 40—2002西林水牛废止10DB45/T 42—2002合浦鹅废止11DB45/T 43—2002南丹瑶鸡废止12DB45/T 44—2002富钟水牛废止13DB45/T 45—2002马氏珠母贝亲贝和种苗废止14DB45/T 46—2002靖西大麻鸭废止15DB45/T 47—2002环江香猪废止16DB45/T 48—2002南丹黄牛废止17DB45/T 50—2002海水养殖贝类检疫规范废止18DB45/T 53—2002巴马香猪废止19DB45/T 58—2002多重聚合酶链反应(Multi-PCR)检测新城疫病毒、传染性支气管炎病毒、传染性喉气管炎病毒和鸡毒支原体的技术操作规程废止20DB45/T 59—2002反转录聚合酶链反应(RT-PCR)检测猪瘟病毒的技术操作规程废止21DB45/T 64—2003柑桔品种废止22DB45/T 69—2003沙田柚苗木分级废止23DB45/T 70—2003窨茶用茉莉花废止24DB45/T 73—2003窨茶用茉莉花生产技术规程废止25DB45/T 74—2003玉林大蒜废止26DB45/T 90—2014桑蚕种质量废止27DB45/T 91.1—2003南宁市农产品质量安全要求蔬菜废止28DB45/T 91.2—2005南宁市农产品质量安全要求水果废止29DB45/T 96—2003反转录聚合酶链反应(RT-PCR)检测猪繁殖与呼吸障碍综合症病毒(PRRSV)的技术操作规程废止30DB45/T 97—2003反转录聚合酶链反应(RT-PCR)检测禽呼肠孤病毒(ARV)的技术操作规程废止31DB45/T 98—2003反转录聚合酶链反应(RT-PCR)检测禽流感病毒(AIV)的技术操作规程废止32DB45/T 101—2003东兰乌鸡废止33DB45/T 102—2003都安山羊废止34DB45/T 105—2003文蛤养殖技术规范废止35DB45/T 106—2003禾花鲤废止36DB45/T 109—2003黄沙鳖废止37DB45/T 111—2003德保矮马废止38DB45/T 116—2003漂白化学湿竹浆废止39DB45/T 117—2003漂白化学竹浆板废止40DB45/T 122—2004十字花科蔬菜软腐病预测预报调查规范废止41DB45/T 125—2004甜菜夜蛾预测预报调查规范废止42DB45/T 133—2004杂交水稻一代种子生产技术规程废止43DB45/T 134—2004籼型“三系”杂交水稻不育系繁殖技术规程废止44DB45/T 162—2004夏橙品种废止45DB45/T 179—2004陆川猪废止46DB45/T 180—2010霞烟鸡废止47DB45/T 183—2004聚合酶链反应检测猪细小病毒的技术操作规程废止48DB45/T 184—2004聚合酶链反应检测鸡毒支原体的技术操作规程废止49DB45/T 188—2004桂中花猪废止50DB45/T 192—2004合成立方氧化锆废止51DB45/T 193—2004合成红宝石废止52DB45/T 194—2004合成蓝宝石废止53DB45/T 195—2004合成尖晶石废止54DB45/T 208—2017原产地域产品云香精废止55DB45/T 213—2017原产地域产品横县茉莉花废止56DB45/T 217—2005阳离子木薯淀粉废止57DB45/T 222—2005撑绿杂交竹种苗分级废止58DB45/T 231—2005斑点叉尾鮰养殖技术规范废止59DB45/T 236—2005聚合酶链反应检测对虾白斑综合征病毒的技术操作规程废止60DB45/T 239—2005东山猪品种标准废止61DB45/T 240—2005造纸竹片废止62DB45/T 241—2005广西三黄鸡废止63DB45/T 242—2005里当鸡废止64DB45/T 243—2005柳州麻花鸡废止65DB45/T 248—2005聚合酶链反应检测猪接触传染性胸膜肺炎放线杆菌的技术操作规程废止66DB45/T 249—2005聚合酶链反应检测鸡传染性贫血病毒的技术操作规程废止67DB45/T 264—2005百合废止68DB45/T 266—2005香葱废止69DB45/T 267—2005西洋菜废止70DB45/T 268—2005包心肉芥菜废止71DB45/T 269—2005毛节瓜废止72DB45/T 280—2005芫荽废止73DB45/T 286—2005青梅废止74DB45/T 300—2005慈菇废止75DB45/T 301—2005三华李废止76DB45/T 310—2005夏阳白菜废止77DB45/T 311—2005莴苣笋废止78DB45/T 314—2005黑皮冬瓜废止79DB45/T 326—2006灵山香荔废止80DB45/T 327—2006田阳香芒废止81DB45/T 331—2006南美白对虾苗种废止82DB45/T 341—2006右江鹅废止83DB45/T 342—2006东兰鸭废止84DB45/T 343—2006隆林黄牛废止85DB45/T 344—2006涠洲黄牛废止86DB45/T 348—2017反转录聚合酶链反应(RT-PCR)检测家畜口蹄疫病毒(FMDV)的技术操作规程废止87DB45/T 349—2017反转录聚合酶链反应(RT-PCR)检测禽脑脊髓炎病毒(AEV)的技术操作规程废止88DB45/T 350—2006鸡病毒性肿瘤病PCR快速鉴别诊断技术的操作规程废止89DB45/T 357—2006苦脉菜废止90DB45/T 362—2006无籽西瓜种子质量标准废止91DB45/T 451—2007近江牡蛎苗种废止92DB45/T 452—2007岩鯪(唇鯪)废止93DB45/T 453—2007锯缘青蟹废止94DB45/T 461—2007灵山香鸡废止95DB45/T 462—2007广西主要栽培牧草种子质量分级废止96DB45/T 465—2007聚合酶链反应检测牛分枝杆菌的技术操作规程废止97DB45/T 466—2007聚合酶链反应检测猪圆环病毒Ⅱ型的技术操作规程废止98DB45/T 467—2007鸡传染性法氏囊病病毒RT-PCR快速鉴别诊断技术规范废止99DB45/T 468—2007对虾白斑病毒和桃拉病毒二重PCR检测技术操作规程废止100DB45/T 480—2008香蕉组培苗质量标准废止101DB45/T 481—2008罗汉果组培苗质量标准废止102DB45/T 504—2008柑橘黄龙病PCR检测方法废止103DB45/T 505—2008甘蔗螟虫综合防治技术规程废止104DB45/T 512—2008芒果苷废止105DB45/T 513—2008工业提取用芒果叶废止106DB45/T 514—2008锯缘青蟹苗种废止107DB45/T 515—2008罗氏沼虾苗种废止108DB45/T 529—2008猪人工授精技术操作规程废止109DB45/T 530—2008鸡传染性鼻炎副鸡嗜血杆菌PCR检测技术规程废止110DB45/T 531—2008鸡传染性喉气管炎PCR快速检测技术规程废止111DB45/T 537—2008广金钱草种子检验规程废止112DB45/T 540—2008蔓性千斤拔种子质量要求废止113DB45/T 541—2008黄花蒿种子质量要求废止114DB45/T 542—2008广州相思子种子质量要求废止115DB45/T 543—2008毛相思子种子质量要求废止116DB45/T 546—2008实验动物小型猪废止117DB45/T 547—2008龙血素B废止118DB45/T 548—2008龙血素B标准品废止119DB45/T 549—2008食品添加剂 磷酸中钠的测定废止120DB45/T 579—2009隔热混凝土小型空心砌块废止121DB45/T 595—2009黄沙鳖苗种废止122DB45/T 596—2009倒刺鲃鱼苗鱼种废止123DB45/T 598—2009水牛冷冻精液废止124DB45/T 602—2009凌云乌鸡废止125DB45/T 603—2009良凤花鸡废止126DB45/T 605—2009巴马小型猪内源性反转录病毒检测技术规程废止127DB45/T 606—2009鸭肝炎病毒PCR快速检测技术规程废止128DB45/T 607—2009饲料中脱氧雪腐镰刀菌烯醇(呕吐毒素)的测定 &ensp 竞争酶联免疫分析法废止129DB45/T 608—2009饲料添加剂富马酸亚铁的测定还原法废止130DB45/T 610—2009工业锅炉能效限值废止131DB45/T 615—2009竹、木、草编织工艺品质量安全要求废止132DB45/T 616—2009北流荔枝废止133DB45/T 628.1—2009主要造林树种苗木质量分级第1部分:裸根苗废止134DB45/T 628.2—2009主要造林树种苗木质量分级第2部分:容器苗废止135DB45/T 630—2009罗汉果组培苗废止136DB45/T 633—2009园林植物铁冬青苗木的出圃质量要求废止137DB45/T 637—2009青蒿中青蒿素含量的测定高效液相色谱法废止138DB45/T 638—2009八角茴香中莽草酸含量的测定高效液相色谱法废止139DB45/T 656—2010蛋黄果嫁接苗废止140DB45/T 658—2010池塘及网箱养殖用青鱼鱼种废止141DB45/T 663—2010墨底鳖苗种废止142DB45/T 667—2010光倒刺鲃苗种废止143DB45/T 668—2010猪伪狂犬病病毒PCR检测技术规程废止144DB45/T 669—2010鸭传染性浆膜炎与大肠杆菌病的快速鉴别诊断技术规程废止145DB45/T 670—2010聚合酶链反应检测禽I型腺病毒的技术操作规程废止146DB45/T 672—2010隆林猪废止147DB45/T 673—2010天峨六画山鸡废止148DB45/T 674—2010聚合酶链反应检测副猪嗜血杆菌技术规程废止149DB45/T 697—2010浸提桐油废止150DB45/T 698—2010肉桂产品质量等级废止151DB45/T 700—2010实木地板铺装规范废止152DB45/T 707—2010天门冬种苗质量要求废止153DB45/T 709—2010黄藤种苗质量要求废止154DB45/T 712—2010肉桂苗木质量要求废止155DB45/T 714—2010山豆根中苦参碱的测定高效液相色谱法废止156DB45/T 718—2010钩藤中钩藤碱含量的测定高效液相色谱法废止157DB45/T 719—2010植物类中药材铬、锑、锡含量的测定电感耦合等离子体发射光谱(ICP-AES)法废止158DB45/T 748—2011山羊痘病毒、羊传染性脓疮病毒的检测二重聚合酶链反应法废止159DB45/T 749—2011猪脑心肌炎病毒(EMCV)的检测 &ensp 反转录聚合酶链反应(RT-PCR)法废止160DB45/T 750—2011融水香鸭废止161DB45/T 752—2011尿液中盐酸克仑特罗、菜克多巴胺、沙丁胺醇的测定胶体金免疫层析法废止162DB45/T 753—2011牛病毒性腹泻病毒的检测反转录聚合酶链反应法(RT-PCR)废止163DB45/T 754—2011广西拟水龟废止164DB45/T 771—2011莽草酸废止165DB45/T 774—2011鸡血藤种苗质量要求废止166DB45/T 775—2011何首乌扦插苗质量要求废止167DB45/T 780—2011鸡血藤中芒柄花素含量的测定高效液相色谱法废止168DB45/T 781—2011鸡骨草中相思子碱含量的测定高效液相色谱法废止169DB45/T 782—2011铁包金药材中槲皮素含量的测定高效液相色谱法废止170DB45/T 783—2011毛果鱼藤中3-phenylcoumarin robustic acid含量的测定 &ensp 高效液相色谱法废止171DB45/T 794—2011燃煤洁净节煤剂通用技术要求废止172DB45/T 795—2011洁净型燃煤通用技术要求废止173DB45/T 796—2011漓江排筏技术条件废止174DB45/T 797—2011遇龙河竹筏技术条件废止175DB45/T 809—2012工夫红茶发酵适度的确定方法废止176DB45/T 812—2012非食用海水珍珠质层粉废止177DB45/T 825—2012“红姑娘”红薯废止178DB45/T 826—2012“红姑娘”红薯生产技术规程废止179DB45/T 835—2012长叶烯废止180DB45/T 836—2012高分子乳化改性松香施胶剂废止181DB45/T 837—2012水白氢化松香废止182DB45/T 855—201298号车用汽油(Ⅳ)废止183DB45/T 865—2012海水药用无核珍珠废止184DB45/T 866—2012植物类中药材中铝的测定电感耦合等离子体质谱(ICP-MS)法废止185DB45/T 867—2012植物类中药材中总砷的测定原子荧光光谱法废止186DB45/T 868—2012穿山甲甲片的鉴别高效液相色谱指纹图谱法废止187DB45/T 869—2012蛤蚧的鉴别高效液相色谱指纹图谱法废止188DB45/T 870—2012红毛鸡的鉴别高效液相色谱指纹图谱法废止189DB45/T 873—2012千层塔种苗质量要求废止190DB45/T 874—2012汉桃树种子质量要求废止191DB45/T 882—2012茄果类蔬菜穴盘育苗技术规程废止192DB45/T 885—2012芳樟叶(精)油中芳樟醇、樟脑含量的测定毛细管柱气相色谱法废止193DB45/T 887—2012饲料中粪链球菌的检验废止194DB45/T 888—2012无性系芳樟叶(精)油,芳樟醇型废止195DB45/T 889—2012互叶白千层(精)油,1,8-桉叶素型废止196DB45/T 897—2013樟叶(精)油,芳樟醇型废止197DB45/T 915—2013龙胜凤鸡废止198DB45/T 918—2013牛隐孢子虫的检测多重聚合酶链反应法废止199DB45/T 919—2013猪流感病毒检测套式反转录聚合酶链反应法废止200DB45/T 920—2013猪乙型脑炎病毒检测套式反转录聚合酶链反应法废止201DB45/T 921—2013猪繁殖与呼吸综合征病毒和猪瘟病毒的检测多重反转录聚合酶链反应法废止202DB45/T 931—2013葡萄中白藜芦醇的测定液相色谱法废止203DB45/T 932—2013水产品中天然牛磺酸与人工合成牛磺酸的鉴别稳定同位素质谱法废止204DB45/T 939—2013土壤、肥料、饲料、毛发中汞含量的测定直接测汞仪法废止205DB45/T 942—2013罗氏沼虾诺达病毒检测RT-PCR法废止206DB45/T 943—2013水质有机锡的测定气相色谱—质谱法废止207DB45/T 944—2013苏氏圆腹鱼芒苗种废止208DB45/T 946—2013广西拟水龟苗种废止209DB45/T 953—2013牛耳枫苗木质量要求废止210DB45/T 985—2014柑橘衰退病毒RT-PCR检测技术规程废止211DB45/T 986—2014柑橘溃疡病菌PCR检测技术规程废止212DB45/T 998—2014胡子鲶废止213DB45/T 999—2014黄颡鱼苗种废止214DB45/T 1003—2014德保猪废止215DB45/T 1005—2014畜禽血中铅、镉测定石墨炉原子吸收分光光谱法废止216DB45/T 1006—2014牛轮状病毒的检测半巢式反转录聚合酶链反应(semi-nested RT-PCR)法废止217DB45/T 1007—2014猪传染性胃肠炎病毒的检测RT-PCR法废止218DB45/T 1008—2014犬狂犬病抗体的检测酶联免疫吸附法废止219DB45/T 1009—2014家畜戊型肝炎病毒检测巢式反转录聚合酶链反应法废止220DB45/T 1010—2014美洲型及欧洲型猪繁殖与呼吸综合征病毒的检测多重荧光定量反转录聚合酶链反应法废止221DB45/T 1011—2014鸡新城疫病毒及鸡传染性支气管炎病毒的检测二重荧光定量反转录聚合酶链反应法废止222DB45/T 1012—2014猪流行性腹泻病毒(PEDV)的检测 &ensp RT-PCR法废止223DB45/T 1013—2014尿液中苯乙醇胺A的测定 &ensp 液相色谱-质谱/质谱法废止224DB45/T 1014—2014致病性嗜水气单胞菌检测PCR法废止225DB45/T 1015—2014水质硫丹的测定气相色谱法废止226DB45/T 1028—2014佛手苗木质量要求废止227DB45/T 1035—2014山豆根组培苗质量要求废止228DB45/T 1037—2014穿心莲种子质量要求废止229DB45/T 1041—2014苦玄参种子检验规程废止230DB45/T 1058—2014大米中总砷、总汞含量的测定微波消解—原子荧光光谱分析法废止231DB45/T 1059—2014大米中铅、镉、铬含量的测定微波消解—石墨炉原子吸收分光光度法废止232DB45/T 1063—2014巨尾桉(精)油废止233DB45/T 1064—2014岗松(精)油废止234DB45/T 1066—2014贺州玉废止235DB45/T 1068—2014桂林毛尖茶加工技术规程废止236DB45/T 1071—2014蒎烷废止237DB45/T 1072—2014松香三乙二醇酯废止238DB45/T 1073—2014松脂中杂质的检测废止239DB45/T 1074—2014水稻稻飞虱综合防治技术规范废止240DB45/T 1076—2014鸡血玉废止原产地域产品巴马腊香猪废止486DB45/32.6-2000无公害农产品生产食用植物油废止
  • 2020药典 |《9306 遗传毒性杂质控制指导原则》解读与对策
    p style=" text-indent: 2em " 不同的药物的生产工艺决定了来源各异、种类众多的杂质类型。杂质的成份复杂且含量较低,难以检测。然而,药品的安全关系到千千万万人的生命安全,必须制定严格的要求来控制药品的质量。 /p p style=" text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 相关政策 /strong /span br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 为控制药物中遗传毒性杂质潜在的致癌风险, span style=" color: rgb(255, 0, 0) " strong 2020版中国药典 /strong /span 四部通则部分,添加了 span style=" color: rgb(255, 192, 0) " strong 《9306 遗传毒性杂质控制指导原则》 /strong /span 。这个新的指导原则为药品标准制修订、上市药品安全性再评估提供参考。 br/ /p p style=" text-indent: 2em " 药物杂质包括有机杂质、无机杂质以及残留溶剂等等。其中,2006年提出的基因毒性杂质是近两年关注的热门。该杂质又叫遗传毒性杂质(genotoxic impurities, GTIs),是指能引起遗传毒性的杂质。包括直接或间接损伤细胞DNA产生致突变和致癌作用的物质,也包括其他类型无致突变性杂质。 /p p style=" text-align: justify text-indent: 2em " EMEA和FDA发布了相应的指南。2007年欧洲药品局EMEA实施了关于基因毒性杂质的解决方案。2008美国FDA发布了《Guidance for industry—Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches》 /p p style=" text-indent: 2em text-align: justify " 对于未知数据的基因毒性杂质,制定了 span style=" color: rgb(255, 0, 0) " strong 相关摄入阈值TCC /strong /span ( span style=" color: rgb(255, 192, 0) " strong Threshold of Toxicological Concern,毒性物质限量 /strong /span ),也叫做毒理学关注阈值。其意义在于最大程度上保证服药的安全,使致突变的风险低于相关限度。 span style=" color: rgb(255, 0, 0) " strong TTC的限度为1.5 μg/d /strong /span 。 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性杂质来源与分类 /strong /span /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 基因毒性杂质可能产生的环节包括:1)新药合成;2)原料纯化;3)存储运输(与包装物接触)等。其主要来源有:原料药合成过程中的起始物料、中间体、试剂、反应副产物;药物在合成、储存或者制剂过程中的降解产物;部分药物通过激活正常细胞而产生基因毒性物质。常见类型有卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、双烷基硫酸酯、氨基甲酸乙酯、环氧化合物、四甲基哌啶氧化物、肼类、芳香胺、硼酸以及乙酰胺等,在列表中的种类有1,574种。这些结构在药物中就是“警示结构”。(如下图) /p p style=" text-align: center margin-top: 15px " img style=" max-width: 100% max-height: 100% width: 505px height: 423px " src=" https://img1.17img.cn/17img/images/202007/uepic/8020e615-ec50-477a-954a-243f7067ac87.jpg" title=" 种类.jpg" alt=" 种类.jpg" width=" 505" height=" 423" / /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 化药中基因毒性杂质的案例有很多报道,比如沙坦类药物中的叠氮化物、亚硝胺类化合物,美罗培南中的318BP、M9、S5,抗艾滋药物Viracept (nelfinavir mesylate)中的甲基磺酸乙酯,以及阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等等。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 基因毒性作用原理 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 根据Miller理论,基因毒性试剂是亲电试剂或者可以代谢成亲电试剂,与DNA上的亲核基团反应生造成基因毒性。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 酰基卤化物: /strong /span 由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 甲醛: /strong /span 高活性致癌物,与DNA发生多种反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 卤代脂肪族类: /strong /span 毒性取决于卤素的性质、数量和位置以及化合物的分子大小。 /p p style=" text-align: justify text-indent: 2em " 一卤甲烷的肝脏代谢的第一步是与谷胱甘肽(GSH)结合,导致S-甲基谷胱甘肽的形成。最终可能转化为甲硫醇(有毒的代谢物)。甲醛产生也可能导致细胞损伤。甲醛来源于细胞色素P450直接氧化母体化合物或甲硫醇的代谢。 /p p style=" text-align: justify text-indent: 2em " 二卤代烷烃通常通过谷胱甘肽或者细胞色素P450代谢后活化,产生遗传毒性。 /p p style=" text-align: justify text-indent: 2em " 三卤代烷烃容易被P450氧化活化,产生光气,光气是一种高活性的亲电中间体。完全卤代烷烃倾向于自由基机理反应。 /p p style=" text-align: justify text-indent: 2em " 四氯化碳在P450中被还原成三氯甲基自由基,该自由基和DNA之间的加合物是导致肝癌的主要原因。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 亚硝酸烷基酯亚硝酸酯: /strong /span 亚硝酸酯和DNA上的氮发生酯交换反应。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong α,β-不饱和羰基: /strong /span 活泼的迈克尔受体,容易被亲核试剂进攻β碳或者羰基碳。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 醌: /strong /span 亲核剂的烷基化。易于被亲核试剂进攻,可以和蛋白质上GSH、半胱氨酸烷基化。氧化还原反应。它们可以与相应的半醌自由基进行酶促(即细胞色素P450/P450还原酶)和非酶氧化还原循环,导致ROS的形成,包括超氧阴离子,过氧化氢,并最终形成羟基自由基。ROS是造成衰老和癌变的主要元凶。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 烷基化间接作用试剂: /strong /span 单卤代烯烃卤代烯烃经过P450代谢后会被氧化成环氧化合物,然和和DNA反应诱导癌变。多卤代烯烃的反应更为复杂,三氯代乙烯进过P450代谢可以生成酰氯、环氧、氯代醛,这些物质均会诱导癌变。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 肼类: /strong /span 该类物质通过P450中氧化酶的催化,肼被氧化成偶氮类化合物。然后反应生成一系列碳正离子、自由基等活性物质,最终导致DNA烷基化,诱导癌变。脂肪族偶氮化合物该系列化合物是肼的氧化中间体。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong N-亚硝胺化合物: /strong /span 一类非常稳定的化学致癌物。代谢得到活性烷基和大分子(DNA或者蛋白质)烷基化是产生遗传毒性和致癌性的主要原因。得到的小分子醛会进一步和DNA结合造成额外的损伤。NDMA在缬沙坦中的限度被要求限制到<0.3 ppm。 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " strong 芳香胺: /strong /span 必须代谢为反应性亲电试剂,才发挥致癌作用。对于芳香胺和酰胺,这通常涉及N-羟基芳胺和N-羟基芳酰胺的初始N-氧化。这是由细胞色素P450介导的。在通过酶的酯化作用进一步活化,形成活性亲电物种。最终造成DNA损伤。 /p p style=" text-align: justify text-indent: 2em margin-top: 20px " span style=" color: rgb(0, 112, 192) " strong 检测方案 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 15px " 对于基因毒性杂质,只有高灵敏度、高选择性的分析方法才能为更好地选择和建立基因毒性杂质的检测方法提供重要参考。分析方法包括 span style=" color: rgb(255, 0, 0) " strong GC、LC、GC-MS和LC-MS法 /strong /span 等,还有相关的前处理技术包括 span style=" color: rgb(255, 0, 0) " strong 顶空分析法、固相萃取法和衍生化法 /strong /span 等。下图所示为,不同的基因毒性杂质的检测策略。 /p p style=" text-align: center " span style=" font-size: 14px " strong 表1 /strong 不同类型杂质的检测方法和前处理办法 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 443px height: 475px " src=" https://img1.17img.cn/17img/images/202007/uepic/09a28c14-95da-4f42-8d1f-76fe5f0190fc.jpg" title=" 不同杂质的解决方案.png" alt=" 不同杂质的解决方案.png" width=" 443" vspace=" 0" height=" 475" border=" 0" / /p p style=" text-align: center margin-top: 20px " span style=" font-size: 14px " strong 表2 /strong 常用分析方法的特点 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 461px height: 303px " src=" https://img1.17img.cn/17img/images/202007/noimg/7c9ec587-73dc-4805-9637-bff9c8d74d87.gif" title=" 分析方法特点.gif" alt=" 分析方法特点.gif" width=" 461" height=" 303" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 525px height: 428px " src=" https://img1.17img.cn/17img/images/202007/uepic/3c20ff8e-079b-469e-ba13-e1236aea38f9.jpg" title=" 决策树.png" alt=" 决策树.png" width=" 525" height=" 428" / br/ /p p style=" text-align: justify text-indent: 2em margin-top: 15px " span style=" color: rgb(0, 112, 192) " strong 具体解决方案【附连接】 /strong /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:卤代烷) /span /p p style=" text-align: justify text-indent: 2em " 【Agilent GC-MS】N,N-二甲基-3-氯丙胺盐酸盐(1,3-溴氯丙烷) br/ & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp Intuvo 9000 气相色谱系统+5977B单四极杆质谱检测器 /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:N-亚硝基二甲胺,NDMA) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-928363.html#advant" target=" _blank" 【Thermo】缬沙坦及雷尼替丁 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-924963.html" target=" _blank" 【岛津】氯沙坦: LCMS-8050 高效液相色谱-三重四极杆质谱 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912288.html" target=" _blank" 【WATERS】缬沙坦——UPLC I-Class,Xevo TQ-S micro /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:环氧化物/醚) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-911034.html" target=" _blank" 【Thermo】盐酸普萘洛尔:高分辨液质Q Exactive Focus+ESI和APCI /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:磺酸类、磺酸酯、氨基酯类) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-871218.html" target=" _blank" 【Thermo】Triplus 300 顶空自动进样器+1300GC+ISQ-MS /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912519.html" target=" _blank" 【SHIMADZU】维格列汀:GCMS-TQ8050 NX /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-926017.html" target=" _blank" 【SHIMADZU】酸肌酸钠 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-532949.html" target=" _blank" 【WATERS】——Waters Xevo TQD 三重四极杆质谱:快速正负切换的模式 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-813258.html" target=" _blank" 【Gs-Tek】(毛细管柱)气相柱GSBP-INOWAX 30m-0.25mm-0.25um液体直接进样法 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:4-硝基卞醇) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-912413.html" target=" _blank" 【Thermo】 TSQ 8000 Evo+Unknown Screening 插件 /a br/ /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:氯苯胺) /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-822564.html" target=" _self" 【SHIMADZU】 /a span style=" color: rgb(255, 0, 0) " br/ /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(255, 0, 0) " (杂质:丁酸氯甲酯和2,3-二氯苯甲醛) /span br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/application/Solution-910495.html" target=" _blank" 【SHIMADZU】丁酸氯维地平 /a /p p br/ /p p (文中图片来自文献:汪生, 杭太俊. 药物中基因毒性杂质检测策略的研究[J]. 中国新药杂志, 2019(23).) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 151px height: 46px " src=" https://img1.17img.cn/17img/images/202007/noimg/857572b4-04e8-4c23-8b52-b8b57dd8fb2c.gif" title=" 箭头分割线.gif" alt=" 箭头分割线.gif" width=" 151" height=" 46" / /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/chemmed-impurity" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e377c5b6-1a94-40a2-b0ba-868cd2c52f62.jpg" title=" w640h110impurity.jpg" alt=" w640h110impurity.jpg" / /a /p p span style=" color: rgb(255, 0, 0) " strong & nbsp span style=" color: rgb(0, 0, 0) " 欲了解更多”药典与化药杂质“相关内容,请点击 span style=" background-color: rgb(255, 192, 0) color: rgb(255, 0, 0) " 图片 /span 进入以上专题~ /span /strong /span /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/yoloChemDrug2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 640px height: 110px " src=" https://img1.17img.cn/17img/images/202007/uepic/ab578eb9-cc5b-4578-a6d9-26c3d27e426d.jpg" title=" 2020 banner.jpg" alt=" 2020 banner.jpg" width=" 640" vspace=" 0" height=" 110" border=" 0" / /a /p p & nbsp strong 2020年“化药杂质研究与技术”WEBINAR【戳链接,看回放】 /strong span style=" color: rgb(255, 0, 0) " strong /strong /span br/ /p
  • 新技术,美国成功制造了用于半导体纳米晶体的液池透射电镜仪器
    不同尺寸和形状的半导体纳米晶体可以控制材料的光学和电学性质。液池透射电子显微镜LCTEM是一种新兴的方法,用于观察纳米尺度的化学变化,并为具有预期结构特征的纳米结构的精确合成提供信息。科学家们正在研究半导体纳米晶体的反应,方法是研究过程中通过液体辐解产生的高反应环境。在最近发表的一份新论文中,科学家们利用了辐射分解过程,取代了典型半导体纳米材料的单粒子蚀刻轨迹。工作期间使用的硒化铅纳米管代表了各向同性结构,以通过逐层机制保持用于蚀刻的立方形状。各向异性箭头形硒化镉纳米棒保持了带有镉或硒原子的极性刻面,透射式液体细胞电子显微镜的轨迹揭示了液体环境中特定表面的反应性如何控制半导体的纳米级形状转变。半导体纳米晶体包含广泛可调的光学和电学特性,这些特性取决于其尺寸和形状,适用于多种应用。材料科学家已经描述了特定块体晶体小面对生长和蚀刻反应的反应性,开发出任意的图案纳米晶体的多面性及其反应机制使其成为直接研究的热点,胶体纳米晶体的热力学可以影响限定它们的有机或者无机界面。液体细胞透射电子显微镜提供了所需的时空分辨率,以观察纳米级动力学,如自组装过程。因此,科学家们在两个透射电子显微镜网格的超薄碳层之间夹了一个含有纳米晶体的水性袋,并使用三(羟甲基)氨基甲烷盐酸盐,这是一种有机分子来调节敏感半导体纳米晶体的蚀刻。LCTEM和纳米晶体的现有研究仅限于贵金属,因为它们在辐射分解过程中无法调节化学环境,导致活性材料降解。这项新的研究表明,有可能为LCTEM设计新的环境,以观察反应性纳米晶体的单粒子蚀刻轨迹。在实验过程中,三氨基甲烷盐酸盐添加剂调节了蚀刻过程的电化学电位,团队使用动力学建模来估计液体电池中胺自由基物种的浓度和电化学电位。为了证明这一概念,美国科学家们获得了真空中硒化铅纳米立方体的代表性透射电子显微镜图像,并在硒化铅奈米晶体的逐层蚀刻过程中收集了一系列图像。LCTEM成像结果显示,作为蚀刻反应的产物,在硒化铅纳米晶体周围形成了具有较高图像对比度的物质,似乎在蚀刻过程中,硒氧化并分散到液体中,以促进氯化铅的形成,铅袋中有氯离子。与硒化铅的立方晶格相比,纤锌矿硒化镉具有各向异性晶格,镉和硒原子交替层。在纤锌矿硒化镉纳米晶体的生长过程中,表面活性剂配体有利地结合到镉区域,以促进硒区域的快速生长。未来的研究将或者利用核/壳纳米晶体以及通过无机或者有机界面组装的纳米晶体,获得关于功能纳米结构阵列转化的实时信息。
  • 盐酸环丙沙星栓国家标准公示
    我委拟修订盐酸环丙沙星栓国家标准(具体修订内容见附件),现公示征求意见,公示期自上网之日起三个月。该标准适用于生产该品种的所有企业。请各有关单位认真复核。若有异议,请来函与我委联系,来函需加盖公章并附相关说明及充分的实验数据 公示期满未回复意见即视为同意。   附件:2013052810270971000.pdf     电子信箱: liuling@ chp.org.cn。   传真:010-67156318   地址:北京市崇文区体育馆路法华南里11号楼国家药典委员会   邮编:100061   国家药典委员会   2013年5月28日
  • Sigma-Aldrich速成鸡解决方案
    肯德基与麦当劳的大供货商山西粟海集团于2012年11月底被爆出养殖的一只鸡从孵出到端上餐桌,只需要45天,是用饲料和药物喂养的。长期使用药物必然会残留在动物组织中,影响食用者的健康。Sigma-Aldrich提供速成鸡解决方案,采用液相色谱对违禁药物进行分析。 液相色谱Ascentis RP-Amide分析利巴韦林 液相色谱柱Ascentis C8分析地塞米松 色谱柱耗材列表 货号 描述 规格 目录价(元) 565324-U Ascentis RP-Amide液相色谱柱 15cmx4.6mm, 5um 3037.32 581424-U Ascentis C8液相色谱柱 15cmx4.6mm, 5um 3037.32 相关标准品列表 货号 中文名 英文名 CAS 包装 目录价46165-250MG 地塞米松 Dexamethasone 50-02-2 250mg 450.45 46297-250MG 呋喃唑酮 Furazolidone 67-45-8 250mg 404.82 32511-10MG 呋喃唑酮-d4 Furazolidone-d4 1217222-76-8 10mg 5167.89 46289-250MG 呋喃它酮 Furaltadone 139-91-3 250mg 299.52 34061-10MG-R 呋喃它酮-d5 Furaltadon-d5 1015855-64-7 10mg 2855.97 31706-2ML 呋喃西林溶液 (100ng/&mu l溶于乙腈) Nitrofurazone solution 59-87-0 2ml 360.36 32512-10MG 呋喃西林-13C,15N2 Nitrofurazon-13C,15N2 1217220-85-3 10mg 4555.98 46502-250MG 呋喃妥因 Nitrofurantoin 67-20-9 250mg 360.36 32513-10MG 呋喃妥因-13C3 Nitrofurantoin-13C3 1217226-46-4 10mg 8466.12 46494-100MG 硝呋齐特 Nifuroxazide 965-52-6 100mg 329.94 33347-50MG-R 呋喃唑酮代谢产物 AOZ AOZ 80-65-9 50mg 2549.43 33880-10MG-R 代谢产物 AOZ-d4 AOZ-d4 1188331-23-8 10mg 2736.63 33349-50MG-R 呋喃它酮代谢产物 AMOZ AMOZ 43056-63-9 50mg 2549.43 33881-10MG-R 代谢产物 AMOZ-d5 AMOZ-d5 1017793-94-0 10mg 1770.21 33655-100MG-R 呋喃妥因代谢产物 AHD AHD 2827-56-7 100mg 600.21 34006-10MG-R 代谢产物 AHD-13C3 AHD-13C3 957509-31-8 10mg 4368.78 33656-100MG-R 呋喃西林代谢产物 SEM/SCA SEM/SCA 563-41-7 100mg 525.33 33882-10MG-R 代谢产物 SCA-13C-15N2 SCA-13C-15N2 hydrochloride 1173020-16-0 10mg 2736.63 33868-10MG-R 代谢产物 2-NP-AOZ 2-NP-AOZ 19687-73-1 10mg 1409.85 34008-10MG-R 代谢产物 2-NP-AOZ-d4 2-NP-AOZ-d4 1007478-87-0 10mg 3093.48 33869-10MG-R 代谢产物 2-NP-AMOZ 2-NP-AMOZ 183193-59-1 10mg 1409.85 34009-10MG-R 代谢产物 2-NP-AMOZ-d5 2-NP-AMOZ-d5 1173097-59-0 10mg 2907.45 33870-10MG-R 代谢产物 2-NP-AHD 2-NP-AHD 623145-57-3 10mg 1499.94 34010-10MG-R 代谢产物 2-NP-AHD-13C3 2-NP-AHD-13C3 1007476-86-9 10mg 4912.83 33871-10MG-R 代谢产物 2-NP-SCA 2-NP-SCA 16004-43-6 10mg 262.08 34011-10MG-R 代谢产物 2-NP-SCA -13C,15N2 2-NP-SCA-13C,15N2 10mg 3824.73 46874-250MG 磺胺 Sulfanilamide 63-74-1 250mg 360.36 35033-100MG 磺胺嘧啶 Sulfadiazine 68-35-9 100mg 360.36 46826-250MG 磺胺甲嘧啶 Sulfamerazine 127-79-7 250mg 404.8246802-250MG 磺胺二甲嘧啶 Sulfamethazine 57-68-1 250mg 404.82 46794-250MG 磺胺地索辛 (磺胺二甲氧哒嗪) Sulfadimethoxine 122-11-2 250mg 404.82 31741-250MG 四环素盐酸盐 Tetracycline hydrochloride 64-75-5 250mg 329.94 46598-250MG 土霉素盐酸盐 Oxytetracycline hydrochloride 2058-46-0 250mg 404.8246133-250MG-R 金霉素盐酸盐 Chlortetracycline hydrochloride 64-72-2 250mg 404.82 33429-100MG-R 强力霉素盐酸盐 Doxycycline hyclate 24390-14-5 100mg 600.21 442513 氯霉素 Chloramphenicol 56-75-7 1g 1151.28 41724-1MG DL-氯霉素(苏式)-D5 Dl-Threo- Chloramphenicol-D5 202480-68-0 1mg 4010.76 33699-100MG-R 恩诺沙星 Enrofloxacin 93106-60-6 100mg 600.21 32983-10MG 恩诺沙星盐酸盐-d5 Enrofloxacin-d5 hydrochloride 10mg 3059.55 91033-1G 环丙沙星盐酸盐 Ciprofloxacin hydrochloride monohydrate 86393-32-0 1g 740.61 32982-10MG 环丙沙星盐酸盐-d8 Ciprofloxacine-d8- hydrochloride hydrate 1216659-54-9 10mg 3149.6433703-100MG-R 氧氟沙星 Ofloxacin 82419-36-1 100mg 600.21 32436-10MG 氧氟沙星-d3 Ofloxacin-d3 1173147-91-5 10mg 3300.57 33899-100MG-R 诺氟沙星 Norfloxacin 70458-96-7 100mg 1185.21 34058-10MG-R 诺氟沙星-d5 Norfloxacin-d5 1015856-57-1 10mg 3059.55 33984-100MG-R 二氟沙星盐酸盐 Difloxacin-HCl 91296-86-5 100mg 600.21 32987-10MG 二氟沙星盐酸盐-d3 Difloxacin-d3 hydrochloride 1173021-89-0 10mg 3059.55 33700-100MG-R 单诺沙星 Danofloxacin 112398-08-0 100mg 554.58 32862-50MG 3-甲基-2-喹喔啉酸 (MQCA) 3-Methyl-2-quinoxa -linecarboxylic acid 74003-63-7 50mg 3921.84 关于Supelco 美国Supelco公司成立于1966年,一直致力于色谱耗材的研究和生产,是色谱耗材的专业生产公司。超过40年在色谱和分析领域的技术经验,拥有多项专利技术,提供范围广泛的产品:气相色谱柱(包括手性柱)和配件、液相色谱柱(包括手性柱)和配件、固相萃取小柱和装置、固相微萃取手柄和萃取头、空气检测产品、分析标准品和样品瓶等。1993年,Supelco(上海:021-61415566-8209 北京:010-65688088-6812 广州:020-38840730-5001)正式加入美国Sigma-Aldrich公司,成为Sigma-Aldrich公司旗下分析业务的专业品牌。
  • 岛津应用:盐酸氨溴索片在4种溶出介质中的体外溶出研究
    盐酸氨溴索(Ambroxol Hydrochloride)于20世纪80年代在德国上市,后在法国、日本等国家陆续上市,是目前临床作用较强的祛痰药。其作用机理为增加呼吸道黏膜浆液腺的分泌,减少粘液腺分泌,促进肺表面活性物质分泌,增加支气管纤毛运动,使痰液易于咳出。盐酸氨溴索片为固体制剂,其体外溶出度的考察不仅是评价产品质量的一个重要指标,还是我国食品药品监督管理局规定的仿制药一致性评价中需要与原研药对比的一个重要指标。盐酸氨溴索的结构式 本研究根据国食药监注[2013]34号文《国家食品药品监督管理局关于开展仿制药质量一致性评价工作的通知》要求制定的仿制药质量一致性评价—盐酸氨溴索片一致性评价参比制剂/溶出曲线测定(草案)制定实验方案。使用岛津SNTR-8400溶出度仪和LC-30A超高效液相色谱系统开展盐酸氨溴索片体外溶出的研究。盐酸氨溴索片经溶出实验,用超高效液相色谱 LC-30A系统进行含量测定。在四种介质中分别对两组33μg/mL 浓度的盐酸氨溴索对照品连续测定3次作为对照,结果显示使用岛津SNTR-8400溶出度仪以及岛津LC-30A超高效液相色谱系统在测定盐酸氨溴索片体外溶出曲线时具有良好适应性和重复性,能够满足国家规定药物体外溶出曲线测定的相关要求。岛津SNTR-8400溶出度仪 了解详情,敬请点击《盐酸氨溴索片在4种溶出介质中的体外溶出研究》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 阿尔塔科技稳定同位素标记物产业化基地建设成果系列报道之一:稳定同位素标记beta-受体激素类化合物
    建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障是十三五国家重点研发计划“食品安全关键技术研发”重点专项的任务之一。作为任务承接单位,阿尔塔科技有限公司开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,提前超额完成课题指标,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。阿尔塔科技期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,为我国食品安全检测提供助力。作为系列报道的开篇之作,本期向您推荐稳定同位素标记的beta-受体激素类化合物。部分稳定同位素标记beta-受体激素类化合物产品号中文名称英文名称包装规格溶剂1ST1352克伦特罗-D9盐酸盐Clenbuterol-d9 hydrochloride100μg/mL, 1mL甲醇1ST1353沙丁胺醇-D3Salbutamol-d3100μg/mL, 1mL甲醇1ST1304D9A特布他林-D9盐酸盐Terbutaline-d9 hydrochloride5mg;100μg/mL, 1mL甲醇1ST1381莱克多巴胺-D3盐酸盐Ractopamine-d3 hydrochloride100μg/mL, 1mL甲醇1ST1360莱克多巴胺-D6盐酸盐Ractopamine-d6 hydrochloride100μg/mL, 1mL甲醇1ST1355西马特罗-D7Cimaterol-d7100μg/mL, 1mL甲醇1ST1363克伦普罗-D7Clenproperol-d75mg;100μg/mL, 1mL甲醇1ST1385喷布特罗-D9盐酸盐Penbutolol-d9 hydrochloride5mg;100μg/mL, 1mL甲醇1ST1328D3苯乙醇胺A-D3Phenylethanolamine A-d35mg;100μg/mL, 1mL甲醇1ST1371沙美特罗-D3Salmeterol-d3100μg/mL, 1mL甲醇1ST1303D9盐酸妥布特罗-D9Tulobuterol-d9 hydrochloride100μg/mL, 1mL甲醇1ST1313D7氯丙那林-D7Clorprenaline-d75mg;100μg/mL, 1mL甲醇了解更多产品或需要定制服务,请联系我们!
  • 欧盟就三种化妆品物质要求提供科学意见
    2013年7月4日消息,欧盟委员会已经要求消费者安全科学委员会(the Scientific Committee on Consumer Safety ,SCCS)就以下物质的安全使用提供意见:   ●巯基乙酸(thioglycolic acid)及其盐类,用于烫发或拉直的产品,以及脱毛产品和其他使用后洗掉的头发护理产品   ●亚苯基双 - 二苯基三嗪(phenylene bis-diphenyltriazine),在各种化妆品配方中作为过滤紫外线的一种成分   ●乙基月桂酰精氨酸盐酸盐(ethyl lauroyl arginate HCl ,ELA),作为防腐剂,可用于口腔护理产品,如牙膏和漱口水。(
  • 空运肉进京安检 抽检项目为盐酸克伦特罗
    北京市动物卫生监督所发布消息,自2012年8月1日起,航空检疫监督执法人员将根据北京市农业局《外埠进京动物及动物产品安全检测》方案,随机对航空运输进京的猪肉、牛肉、羊肉等畜禽产品进行抽检,抽检项目为盐酸克伦特罗。   至此,航空运输进京动物产品被纳入北京市畜禽产品安全检测范畴,第一阶段检测样品量为84份,结果显示全部合格。
  • 赛默飞发布乳制品中氯酸盐、高氯酸盐的检测方案
    2015年3月27日,上海——近日,赛默飞发布乳制品中氯酸盐、高氯酸盐的检测方案,旨在为检测机构提供更具针对性的解决方案,确保消费者能够获得优质奶粉,进而维护广大婴幼儿的身体健康。近年来我国很多消费者对国产婴儿奶粉质量问题存在担心,而德国、新西兰等国生产的婴幼儿奶粉则成为了家长们的首选,尤其是一些知名品牌奶粉最受欢迎。今年 2月,多家国外媒体报道出德国质量检测机构的乳粉检测报告,其中关于乳品中氯酸盐、高氯酸盐超标的信息让不少消费者感到不安。测评结果指出,某品牌的奶粉 中氯酸盐、高氯酸盐超标,并且已经超过世界卫生组织在2007年制定的每日容许摄入量。牛奶在加工包装过程中可能涉及到各种器皿的清洗和消毒,而最常见的有害人体健康的消毒副产物氯酸盐和亚氯酸盐,存在于各种牛奶产品中。国际癌症 研究中心(IARC)已将亚氯酸盐列为致癌物,氯酸盐为中等毒性化合物。而高氯酸盐则是一种新型的持久性污染物质,其作为一种强力甲状腺毒素,会导致成人 新陈代谢功能紊乱。目前大量研究结果表明,饮用水、牛奶、鱼肉等都有可能受到这几种物质的污染。因此精确检测牛奶中的氯酸盐、高氯酸盐显得尤为重要。针对这一问题,赛默飞发布了乳制品中氯酸盐、亚氯酸盐的检测方案,采用离子色谱ICS-2100,配备串联质谱系统,建立了同时测定乳制品中氯酸盐和亚氯 酸盐的方法。样品经过前处理后进行分析,该方法极大地降低了基体干扰,提高了分析方法的信噪比和灵敏度。该方法应用于牛奶样品中亚氯酸盐和氯酸盐的同时测 定,取得了良好的测定效果。对于乳制品中高氯酸盐的检测,赛默飞同样采用离子色谱与质谱联用技术,检测限可达1 μg/kg,完全可以满足鲜牛奶、酸牛奶等其它乳制品中高氯酸盐的测定要求。ICS-2100 RFIC 离子色谱系统产品详情:www.thermo.com.cn/Product6474.html下载应用纪要:AN_C_IC-42_离子色谱-串联质谱法同时测定牛奶中氯酸盐和亚氯酸盐:http://www.thermo.com.cn/Resources/201503/191598140.pdfAB_C_IC-5_离子色谱-质谱法测定乳制品中的高氯酸盐:http://www.thermo.com.cn/Resources/201503/20161442921.pdf乳制品食品安全检测解决方案:http://www.thermo.com.cn/Resources/201503/20161313328.pdf有关ICS-2100 RFIC 离子色谱系统的更多信息,请访问:http://www.thermo.com.cn/Product6474.html ------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我 们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊 断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公 司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中 国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与 培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国 技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 包装饮用水中溴酸盐检测经济解决方案
    近日,国家卫生计生委办公厅下发了《包装饮用水》、辐射食品等14项食品安全国家标准(征求意见稿),其中《包装饮用水》国标中新增溴酸盐指标。在目前的纯净水生产中,臭氧消毒因副产物的危害性小,成本较低而被广泛应用。然后,使用臭氧对纯净水消毒的过程中,会将水体中自然存在的溴化物氧化为对人体有害的溴酸盐,而溴酸盐则是被国际癌症研究机构定为2B级的潜在致癌物。虽然溴酸盐含量短期内不会对饮用者的身体健康带来任何危害,但是长期饮用这种高溴酸盐含量的饮品,将增加癌症的患病率,过量食用溴酸盐会损害人的血液、中枢神经和肾脏等。 在目前的国家标准中饮用水的溴酸盐含量不得高于10μg/L,这就对溴酸盐的检测技术提出更高的要求。由于饮用水中的溴酸盐的含量较低,目前常用的测定方法是离子色谱法以及一些新型的联用技术,然而由于这些大型仪器设备的费用昂贵,仪器操作相对复杂,检测过程中易受氯化物等物质的干扰,在实际生产应用中存在一定的局限性。针对这些弊端,默克密理博采用简单而高精度的分光光度法测量饮用水中微量的溴酸盐含量,已成为许多瓶装水生产企业溴酸盐检测方案的首选。 默克密理博纯净水中溴酸盐检测经济解决方案,主要是利用分光光度法的原理,仪器内置溴酸盐标准测量曲线,无需校准。使用者只需进行简单的水样预处理即可,该方法是基于3,3二甲基萘啶与碘化物和溴酸盐的化学反应产生红色色团,使用默克Nova60或Pharo系列分光光度计测定其在550nm处的吸光度得出样品中溴酸盐的含量。此方法的检测范围为0.003–0.120 mg/l。并在实际样品的对照实验中,得到了满意的结果。分光光度法具有灵敏度高、简便、快速、维护量小、易操作、成本低廉的特点,是测定饮用水中溴酸盐含量的理想方法之一,同时默克密理博的分光光度计内置了170多条标准曲线,涵盖了所有的常规水质分析项目。所有Spectroquant?测试盒带有条形码自动识别功能,仪器自带试剂空白值,节约用户成本和时间。AQA质量保证功能,确保用户每次测量的准确性。其中,很多中测试方法被德国DIN以及美国USEPA认证,并提供完整的批次文件和分析质量证书。德国默克饮用水中溴酸盐检测经济解决方案所需试剂和附件:碘化钾 GR(1.05043.0250)3,3二甲基萘啶(1.03122.0001)乙酸100% GR(1.00063.1000)高氯酸70-72% GR(1.00519.1000)高纯水GR(1.16754.9010)50 mm方形比色皿(1.14944.0001)0.45 μm滤膜(测试浑浊样品时用)所需测量仪器:Spectroquant? NOVA-Photometer (NOVA 60/60A)Spectroquant? Pharo Spectrophotometer(Pharo 100/ 300)测试试剂配置方法:试剂1:将1g的碘化钾溶于100ml的高纯水中,将此溶液避光室温密闭保存,有效期1年左右。试剂2:将0.125g3,3二甲基萘啶溶于25ml加热后的乙酸(温度不能超过50°C),直至二甲基萘啶完全溶解。该溶液避光密闭保存可长期使用,放在冰箱里保存可以延长使用寿命。建议尽量使用新配制的试剂,以保证分析质量。样品的预处理:需使用干净的水样,如有必要,可使用0.45μm滤膜进行过滤(针对浑浊样品)。在一个400ml玻璃烧杯放入200ml的样品进行蒸发至干,将剩余残留物用高纯水定容到20ml的标准容量瓶中。测试步骤简介:取10ml经过预处理的样品至一个空白试剂管中,首先加入0.10ml的试剂1后摇匀,然后加入0.20ml的试剂2后摇匀。接着加入0.20ml高氯酸摇匀后静置30分钟。最后将反应后的样品转移至50mm方形比色皿中,放入仪器测量槽,选择方法号195即可得到最终测试结果。
  • 新材料创新,中国科学家刷新串联钙钛矿太阳能电池器件的性能新纪录!
    【科学背景】随着对可再生能源的需求不断增长,太阳能电池成为了一种重要的能源转换技术。金属卤化物钙钛矿材料因其高效率和低成本而备受关注,单结钙钛矿太阳能电池已经取得了显著的进展,但在放大到大面积时存在均匀结晶的挑战。串联太阳能电池被认为是提高效率并拓展光谱利用范围的重要途径。全钙钛矿串联太阳能电池的制备面临着挑战,其中主要问题之一是宽带隙和低带隙钙钛矿层的非均质结晶。在制备过程中,由于涂覆时间窗口的短暂性,钙钛矿薄膜往往无法均匀形成,导致效率受到影响。为了解决这一问题,南京大学谭海仁教授团队通过引入了氨基乙酰胺盐酸盐(AAH)到混合锡(Sn)-铅(Pb)金属卤化物钙钛矿前驱体中,并采用二甲基甲酰胺和二甲基亚砜作为溶剂。这种两性离子盐的加入触发了前驱体中各成分之间的相互作用,有助于形成均匀的钙钛矿薄膜。特别是,AAH盐和二甲基甲酰胺的配位能有效减缓溶剂释放过程,延长了钙钛矿薄膜形成的时间窗口。该研究通过延长钙钛矿薄膜形成的时间窗口,成功解决了全钙钛矿串联太阳能电池制备过程中的非均匀结晶问题。通过引入AAH盐和优化溶剂体系,科学家们成功制备出大面积且均匀的钙钛矿薄膜,从而提高了太阳能电池的效率。这一研究为全钙钛矿串联太阳能电池的可扩展制造提供了一种新的策略和途径。【科学解读】为了研究二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)比例对涂覆的Pb-Sn钙钛矿薄膜的影响,研究者在图1中首先展示了不同DMF:DMSO比例下的Pb-Sn钙钛矿薄膜形貌。结果表明,当DMF:DMSO = 9:1(v/v)时,Pb-Sn钙钛矿薄膜呈现最佳形貌,而不适当的溶剂比会导致薄膜中出现空隙。接下来,研究者进一步研究了涂覆处理窗口(Δt)与钙钛矿薄膜质量的关系。他们将Δt分为涂覆钙钛矿油墨所需的总时间(Δt1)和将湿膜转移到加热阶段所需的时间(Δt2),并发现DMF:DMSO = 9:1(v/v)的对照油具有较短的处理窗口,导致后续刮刀涂覆的Pb-Sn钙钛矿薄膜上出现针孔。然而,当作者将氨基乙酰胺盐酸盐(AAH)掺入前驱体油墨中时,发现Δt被延长至100秒,并且产生了无针孔的Pb-Sn钙钛矿薄膜,其晶粒呈大而垂直的取向。进一步研究表明,处理窗口Δt影响了Pb-Sn钙钛矿太阳能电池(PSCs)的性能。对照PSCs表现出对Δt的高敏感性,而AAH Pb-Sn PSCs在Δt延长时保持相似的性能。这些结果表明,适当的DMF:DMSO比例和处理窗口时间对于形成均匀且无缺陷的Pb-Sn钙钛矿薄膜至关重要。通过调节溶剂比例和处理窗口时间,并引入AAH掺杂,可以改善钙钛矿薄膜的质量,从而提高PSCs的性能和稳定性。图1. 涂覆Pb-Sn钙钛矿薄膜的均匀性。研究者旨在了解为什么AAH可以改善Pb-Sn钙钛矿薄膜的均匀性。他们发现,AAH与几乎所有钙钛矿前体成分都存在着分子间相互作用,包括PbI2、SnI2、甲胺碘化物(FAI)和溶剂。X射线光电子能谱(XPS)证实了结晶膜中存在AAH。吸收光谱表明,在AAH存在时,Pb-Sn钙钛矿的能隙基本保持不变。X射线衍射图样显示了相似的结晶度和晶体学取向,表明仅存在单一的钙钛矿相。Pb 4f7/2和Sn 3d5/2的结合能降低表明形成了Lewis酸碱AAH-Pb/Sn加合物,从而增加了无机盐的溶解度。二维1H-1H自旋扩散核磁共振(NMR)光谱揭示了AAH与钙钛矿的有机阳离子FAI之间的相互作用。傅里叶变换红外(FTIR)光谱分析表明,AAH与DMF之间存在分子间氢键作用。密度泛函理论(DFT)计算表明,DMF的-C=O与AAH的-NH3+之间形成氢键。气相色谱(GC)分析显示,AAH有助于维持气体辅助湿法钙钛矿中的DMF,并延长了处理时间窗口。因此,研究者得出结论,AAH+有利于与Pb-Sn钙钛矿前体中的组分发生分子间相互作用,并延缓了结晶过程。图2. 延长处理窗口的机理。为了理解氨基乙酰胺盐酸盐(AAH)对刮刀涂覆的Pb-Sn钙钛矿太阳能电池(PSCs)性能的影响,研究者首先研究了AAH在Pb-Sn钙钛矿薄膜中的定位和积累情况。时间飞行二次离子质谱(TOF-SIMS)显示了AAH+离子在钙钛矿薄膜中自顶部到底部逐渐增加的趋势,表明了AAH在Pb-Sn钙钛矿-PEDOT:PSS埋藏界面的积累,从而提高了界面的粘附性。接着,研究者研究了AAH对钙钛矿光物理性能的影响。超快激光吸收光谱显示了AAH Pb-Sn钙钛矿薄膜两侧动态的相似性。稳态荧光发射显示AAH Pb-Sn薄膜的强度相同且高于对照膜,而荧光衰减寿命远远长于对照膜。这表明AAH通过钝化底部表面减少了电荷载流子的俘获。接着,研究者评估了AAH对Pb-Sn PSCs光伏性能的影响。与对照器件相比,AAH基础器件的所有光伏性能都有所改善,其中包括更高的开路电压(Voc)和短路电流密度(Jsc),以及更高的填充因子(FF)。这一研究揭示了AAH在提高Pb-Sn钙钛矿太阳能电池性能方面的潜力,为钙钛矿光伏器件的进一步优化提供了重要参考(见图3)。图3. 涂覆Pb-Sn钙钛矿薄膜和太阳能电池的光电性能。研究者进行了图4的实验,旨在评估全钙钛矿串联太阳能电池的性能和稳定性。首先,他们利用具有AAH的Pb-Sn窄带隙(NBG)钙钛矿制备了单体全钙钛矿串联太阳能电池,并通过可扩展的加工技术进行了制备。结果显示,全钙钛矿串联太阳能电池展现出了显著的高效性能,冠军效率达到了26.8%,Voc为2.15 V,Jsc为15.5 mA cm&minus 2,FF为80.5%。随后,研究者在6x6 cm基板上制备了全钙钛矿串联太阳能电池模块,并优化了模块制造工艺。最佳PCE的八亚电池模块达到了96.1%的高GFF和220 μm的窄死宽度。通过引入AAH,他们还观察到了NBG钙钛矿油墨中Sn4+还原为Sn2+的现象,从而实现了在常温下进行模块制造的激光刻蚀。40个制造的全钙钛矿串联太阳能电池模块的平均PCE为23.3 ± 0.7%,冠军模块的PCE为24.9%,并在认证的独立实验室中获得了24.5%的认证PCE。这项研究的结果表明,AAH在提高全钙钛矿串联太阳能电池性能和稳定性方面发挥了关键作用,为实现高效、稳定的全钙钛矿光伏器件提供了重要的实验和理论基础。图4. 全钙钛矿串联太阳能电池的光伏性能及组件。【科学结论】作者展示了20.25 cm2的全钙钛矿串联太阳能电池模块,达到了24.5%的认证效率。为了实现这一性能,作者使用了Good清单中的短链缓冲层来均匀化钙钛矿的结晶并钝化了埋藏界面。全钙钛矿串联太阳能电池可以实际达到30%的效率。低Jsc仍然是主要瓶颈,这是由于光反射、寄生吸收、Pb-Sn亚电池中的光吸收效率低和模块中的大死区引起的光学损耗。这些挑战可以通过光管理、增加具有长载流子扩散长度的Pb-Sn吸收层厚度以及减少模块中的死区来解决。由于钙钛矿-C60界面引起的Voc损失可以通过利用可扩展的后处理钝化方法来抑制,例如由刮涂沉积的化学钝化或者就像作者以前的工作中一样与3D/3D异质结合并,但其均匀沉积仍待开发。在稳定性方面,用惰性的背金属电极替代,例如导电的透明氧化物,并且将隧道复合结构替换为热稳定的结构,将进一步增强全钙钛矿串联模块的耐久性。原文详情:Han Gao et al. ,Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules.Science383,855-859(2024).DOI:10.1126/science.adj6088
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制