当前位置: 仪器信息网 > 行业主题 > >

神经酰胺乳糖苷

仪器信息网神经酰胺乳糖苷专题为您提供2024年最新神经酰胺乳糖苷价格报价、厂家品牌的相关信息, 包括神经酰胺乳糖苷参数、型号等,不管是国产,还是进口品牌的神经酰胺乳糖苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合神经酰胺乳糖苷相关的耗材配件、试剂标物,还有神经酰胺乳糖苷相关的最新资讯、资料,以及神经酰胺乳糖苷相关的解决方案。

神经酰胺乳糖苷相关的资讯

  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 氨基糖苷类抗生素检测新方案 样本富集净化新选择——AGs免疫亲和柱!
    氨基糖苷类化合物(AGs)是由两个或两个以上氨基糖通过糖苷键与氨基环醇骨架连接而成的碱性低聚糖抗生素。这类抗生素包括:链霉素、新霉素、卡那霉素、庆大霉素、壮观霉素等。他们共同特点是水溶性好、性质稳定、抗菌谱较广,又因其价格低廉,在兽药领域应用广泛。AGs存在一定程度的耳毒性、肾毒性和神经肌肉阻滞作用。目前世界多个国家和组织建立了AGs在动物源食品中的相关限量标准,我国GB 31650-2019规定AGs在动物源食品中的限量如下所示:AGs检测方法及制约因素AGs分子中因富含氨基和羟基而呈强极性,其分子中缺少发色团和荧光团,反相色谱保留较差,因此动物源食品中 AGs的检测比其他抗生素更为复杂。目前 AGs的检测方法主要有免疫分析法、高效液相色谱-质谱/质谱法(HPLC-MS/MS)、液相色谱-串联质谱法(LC-MS-MS),其中免疫分析法方便快速更适合定性筛查检测,HPLC-MS/MS、LC-MS-MS定量准确、灵敏度高更适合确证检测。在乳及乳制品中,GB/T 22969-2008《奶粉和牛奶中链霉素、双氢链霉素和卡那霉素残留量》,虽然只规定了链霉素、双氢链霉素和卡那霉素3种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法,但GB 31650-2019《食品中兽药最大残留限量》中还规定了其他氨基糖苷类药物包含大观霉素、安普霉素、庆大霉素、新霉素等,这些项目也是实验室对乳及乳制品安全检测过程的必检项目。目前HPLC-MS/MS、LC-MS-MS方法可对多种AGs进行同时检测,但是一次性不能对多种氨基糖苷类药物富集净化是提高检测效率的主要制约因素之一!在动物组织中,GB/T 21323-2007《动物组织中氨基糖苷类药物残留量的测定 高效液相色谱-质谱/质谱法》规定了动物组织中大观霉素、潮霉素B、双氢链霉素、链霉素、丁胺卡那霉素、卡那霉素、安普霉素、妥布霉素、庆大霉素和新霉素10种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法。但此检测AGs的方法前处理过程使用C18富集净化,检测限仅为20-100μg/kg。美正氨基糖苷类免疫亲和柱美正通过多年的积累,开发出一种使用氨基糖苷类免疫亲和柱前处理的方法,解决了动物源性食品中氨基糖苷类抗生素检测过程中前处理富集净化的难点。使用氨基糖苷类免疫亲和柱的前处理方法,可以将动物源食品中11种氨基糖苷类抗生素进行一次性特异性富集净化,能够更好地消除基质干扰,既提高了前处理富集净化效率又提高了分析的准确度和灵敏度。药物种类壮观霉素潮霉素B双氢链霉素链霉素丁胺卡那霉素卡那霉素安普霉素妥布霉素庆大霉素新霉素巴龙霉素产品特点特异性强:免疫学原理,对样本中AGs选择性高、特异性结合能力强;操作简单:可穿透式柱塞,使用便捷;性能优异:AGs加标回收率80-120%,准确度高样本类型动物源性食品,包括乳制品、动物组织及水产品等。药物残留类免疫亲和柱免费试用!美正在药物残留检测领域有更多的前处理富集净化方法,值美正十五周年之际,意向用户可对我司药物残留类免疫亲和柱进行免费试用。
  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 潘东宁/唐惠儒合作揭示天冬酰胺可促进脂肪细胞产热和糖酵解
    棕色和米色脂肪是一类特殊的“产热脂肪”,能够将代谢底物氧化产生的能量转化为热能,是哺乳动物及人类新生儿在寒冷环境下维持体温的重要手段之一,在进化上具有重大意义。近年来,肥胖、糖尿病等代谢性疾病日益流行,能量过剩是此类疾病的共同特征。产热脂肪具有高代谢活性和可诱导性,同时参与维持机体的能量代谢稳态,因而受到人们的关注,产热功能的调节机制和激活信号成为重要的研究课题。糖和脂肪酸是产热脂肪的两大“燃料”,其代谢途径及信号通路已有大量报道。然而,氨基酸是否能作为代谢底物或信号分子调节产热脂肪的功能,目前尚知之甚少。2021年10月27日,复旦大学潘东宁课题组和唐惠儒课题组合作在EMBO Journal上发表了题为 Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues的研究成果。该研究发现,天冬酰胺通过激活mTORC1信号通路,启动脂肪组织产热和糖酵解,促进白色脂肪米色化,从而提高小鼠对寒冷环境的耐受能力,在肥胖情况下改善胰岛素敏感性、缓解体重增长。天冬酰胺(Asparagine, Asn)属于非必需氨基酸。哺乳动物细胞广泛表达天冬酰胺合成酶(Asparagine synthetase, ASNS),该酶以天冬氨酸为底物,由谷氨酰胺提供氨基,合成天冬酰胺。白血病母细胞(leukemic blasts)缺乏Asns表达,无法合成天冬酰胺,依赖外源摄取。因此,临床上使用天冬酰胺酶(asparaginase, ASNase)作为急性淋巴细胞性白血病的治疗手段,通过清除循环中的天冬酰胺,使白血病细胞由于缺乏天冬酰胺而凋亡。值得注意的是,接受该疗法的患者中,分别有20%和67%出现了高血糖和高血脂。此外,循环中天冬酰胺的水平与代谢综合征、肥胖的发生呈负相关。这些现象引起了本文作者的关注:天冬酰胺是否能影响全身能量代谢?为了探究这一问题,作者改变小鼠循环中天冬酰胺的水平,观察代谢和产热指标的变化。实验发现,在饮水中添加天冬酰胺,提高循环天冬酰胺水平,小鼠在4℃冷暴露时的体温维持能力显著提高,白色脂肪中出现更多米色化细胞;全身耗氧量、产热量均显著增加。另一方面,给予天冬酰胺酶,清除循环中的天冬酰胺,则出现相反的表型。在使用高脂饮食诱导肥胖的同时,给小鼠饮水中添加天冬酰胺,天冬酰胺组肥胖小鼠对β3肾上腺素受体激动剂反应敏感,体重增长减缓,血清胰岛素和血脂水平下降,糖耐量改善。这说明,天冬酰胺确实能促进脂肪组织产热、改善全身能量代谢。天冬酰胺发挥上述作用的机制是什么呢?作者采用代谢组学与同位素标记-靶向代谢流分析手段,发现添加天冬酰胺后,细胞内糖酵解中间产物(果糖-6-磷酸,果糖-1,6-二磷酸)显著增加。与之一致地,糖酵解关键酶(己糖激酶HK2、磷酸果糖激酶PFKL、丙酮酸激酶PKM)蛋白水平显著上调。进一步研究发现,天冬酰胺可激活mTORC1信号通路,上调4E-BP1和S6K的磷酸化水平,从而促进糖酵解关键酶的翻译;天冬酰胺对产热的激活作用,则依赖于mTORC1对Pgc1α的诱导。本研究首次报道了天冬酰胺对脂肪组织产热和糖酵解的激活作用,发现口服补充天冬酰胺能有效改善全身代谢、缓解肥胖进程。这一研究成果完善了我们对氨基酸调节产热脂肪功能的认识,并为利用天冬酰胺作为营养补充来预防和缓解肥胖提供了实验基础。复旦大学基础医学院博士生徐英江和施亭为本文共同第一作者,基础医学院潘东宁研究员和生命科学学院、人类表型组研究院唐惠儒教授为本文共同通讯作者。
  • 关于公开征求谷氨酰胺转氨酶等11种食品添加剂新品种意见
    根据《食品添加剂新品种管理办法》和《食品添加剂新品种申报与受理规定》,谷氨酰胺转氨酶等5种食品添加剂新品种、3-岩藻糖基乳糖等3种食品营养强化剂新品种、扩大使用量的食品添加剂三氯蔗糖和乙酰磺氨酸钾(又名安赛蜜)、扩大使用范围的食品营养强化剂2'-岩藻糖基乳糖的申请,其安全性和工艺必要性已通过专家评审委员会技术审查(具体情况见附件),现公开征求意见。请于2024年10月26日前将相关意见反馈至我中心邮箱(zqyj@cfsa.net.cn),逾期将视为无意见。谷氨酰胺转氨酶等11 种食品添加剂新品种相关材料.pdf
  • 大连化物所开发出基于糖苷键的质谱可碎裂型交联剂
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组研究员张丽华团队,研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。   作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能,其中,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。化学交联技术(Chemical cross-linking mass spectrometry,CXMS),尤其是原位化学交联质谱技术(in-vivo CXMS)具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。然而,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。   本工作基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯(TDS)。该交联剂较目前已报道的可透膜型化学交联剂,展示了更优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。在此基础上,低能量的糖苷键-高能量的肽键的质谱选择性碎裂模式,可将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,降低了交联肽段谱图分析的复杂性,提高了交联肽段的鉴定效率与准确度。该团队从Hela细胞中鉴定到对应于3500对以上交联肽段的1453个蛋白质的构象以及843对蛋白质间的相互作用信息,实现了活细胞中蛋白质复合物的原位交联与规模化分析,为活细胞中蛋白质功能的调控提供了重要的技术支撑和关键的互作位点信息。   近年来,张丽华团队致力于原位化学交联质谱新技术研究,通过开发一系列新型多功能型化学交联剂,并系统建立深度覆盖的化学交联分析方法等,不断提升原位化学交联技术对于蛋白质复合物原位动态构象的深度捕获和精准分析能力。目前,该团队研制了多种类型的具有不同富集基团、正交反应活性基团的可透膜交联剂,并发展了相应的原位快速交联方法,低丰度交联位点的高效酶解和富集方法,以及基于化学交联距离约束的蛋白质原位构象和相互作用解析方法等,为蛋白质复合物功能状态下原位构象的规模化精准解析提供了关键技术支撑。   相关研究成果以A Glycosidic-Bond-Based Mass-Spectrometry-Cleavable Cross-linker Enables In vivo Cross-linking for Protein Complex Analysis为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。
  • 《乳制品中乳糖的测定-核磁共振波谱法》标准征求意见中
    近日,全国特殊食品标准化技术委员会发布了关于征求《乳制品中乳糖的测定-核磁共振波谱法》行业标准(征求意见稿)意见的通知,如下图所示:附件1 行业标准(征求意见稿)乳制品中乳糖的测定 核磁共振波谱法Determination of stachyose in food by nuclear magnetic resonance spectroscopy前  言本文件按照 GB/T 1.1-2020《标准化工作导则 第1 部分标准化文件的结构和起草规则》的规定起草。本文件由全国特殊食品标准化技术委员会提出并归口。本文件起草单位:。本文件主要起草人: 。乳制品中乳糖的测定 核磁共振波谱法1  范围本文件描述了乳制品中乳糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定乳制品中的乳糖,包括牛奶、发酵乳、奶片、奶酪、奶粉中乳糖的测定。2  规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T 6682—2008 分析实验室用水规格和试验方法JY/T 0578—2020 超导脉冲傅里叶变换核磁共振波谱测试方法通则JJF 1448—2014 超导脉冲傅里叶变换核磁共振谱仪校准规范3  术语和定义本文件没有需要界定的术语和定义。4  原理在充分弛豫条件下,一维核磁共振波谱谱峰的积分面积与样品中所对应的自旋核的数目成正比。同时基于核磁共振信号强度(峰面积)互易原理,即给定线圈中核磁共振信号强度与90°脉冲宽度成反比,分别测定外标参考物质和待测样品的一维核磁共振氢谱(1H NMR)及90°脉冲宽度,采用外标法测定样品中乳糖的含量。5  试剂和材料5.1  一般要求除非另有说明,本方法所用试剂均为分析纯,水为GB/T 6682—2008规定的二级或二级以上水。5.2  试剂5.2.1  重水(D2O):纯度≥99.8%。5.2.2  3-(三甲基硅烷基)氘代丙酸钠[(CH3)3SiCD2CD2CO2Na,TSP-d4]。2 mol/L盐酸(HCl)。2 mol/L氢氧化钠(NaOH)。叠氮化钠(NaN3)。5.3  试剂配制5.3.1  TSP-d4溶液(10 g/L):称取0.5 g(精确至10 mg)TSP-d4(5.2.4)至50 mL容量瓶,加入5 mg叠氮化钠(5.2.5),用重水(5.2.1)定容,混匀。5.4  标准品5.4.1  柠檬酸标准品(C₆H₈O₇,CAS号:77-92-9):纯度≥99%。或国家有证标准物质。5.4.2  乳糖标准品(C12H22O11,CAS号:63-42-3):纯度≥98%。或经国家认证并授予标准物质证书的标准物质。5.5  标准溶液配制乳糖标准贮备液(51.2 g/L):称取512 mg(精确至1 mg)乳糖标准品(5.4.2)至10 mL容量瓶,用蒸馏水定容,混匀。现配现用。外标参考物柠檬酸溶液配制(2 g/L):称取200 mg(精确至1 mg)柠檬酸(5.4.1)至100 mL容量瓶,用蒸馏水定容,混匀。0℃~4℃密封保存,保值期1个月。乳糖系列标准工作液:准确量取上述乳糖标准储备液(5.5.1)5 mL于10 mL容量瓶中,用蒸馏水定容,摇匀后得到25.6 g/L的乳糖标准溶液。使用以上相同方法,分别得到12.8 g/L、6.4 g/L、3.2 g/L、1.6 g/L、0.8 g/L、0.4 g/L、0.2 g/L、0.1 g/L、0.05 g/L乳糖标准溶液。根据样品中乳糖含量适当调整乳糖标准工作液浓度范围及乳糖标准贮备液浓度。6  仪器设备 6.1  核磁共振波谱仪:氢(1H)共振频率不低于400 MHz;可控温,温度精度不低于±0.1 K。6.2  核磁共振样品管:外径5 mm,同心且均匀。6.3  分析天平:感量为0.1 mg和1 mg。6.4  旋涡震荡仪。6.5  pH计:精度为± 0.01。6.6  移液器:量程为10 μL~100 μL和100 μL~1 000 μL。6.7  水系微孔过滤膜:孔径0.45 μm。6.8  离心机:离心速度≥ 8 000 r/min。7  试验步骤8.%2.%3  上机样品制备牛奶和发酵乳准确称取10 g(精确至1mg)样品于50 mL的容量瓶中,再加入35 mL蒸馏水后涡旋震荡30分钟溶解,用稀盐酸调pH值为4.4至4.5后,再加蒸馏水至刻度。摇匀后取5mL,转速为8 000 r/min离心10 分钟,弃去上层脂肪和蛋白相,取出中间澄清的部分,用滤膜过滤,准确量取900 μL滤液,再加入100 μL浓度为10 g/L的TSP重水溶液(5.3.1),取600 µL于核磁管中待测。奶粉准确称取1 g样品(精确至1 mg)于50 mL容量瓶中,以下部分同纯奶和发酵乳(7.1.2)。奶片取适量样品,压碎研磨成粉末。以下部分同奶粉样品的配制(7.1.2)。奶酪取适量样品,压碎或用粉碎机粉碎。以下部分同奶粉样品的配制(7.1.3)标准样取900 µL样品溶液(5.5.2,5.5.3),100 μL浓度为10 g/L的TSP重水溶液(5.3.1),旋涡震荡至少1min.充分混匀,取600 µL于核磁管中待测。7.1  上机测定参考条件7.1.1  核磁共振样品管不旋转。7.1.2  检测温度:(300.0± 0.1)K。7.1.3  空扫次数:4次。7.1.4  扫描次数:64次。7.1.5  谱宽:8 000 Hz。7.1.6  采样点数:65 536。7.1.7  接收增益:16。7.1.8  弛豫延迟时间:≥4 s。7.1.9  水峰压制脉冲序列:预饱和加相位循环。7.2  上机测定7.2.1  按照JY/T 0578—2020的规定对探头温度进行校正;按照JJF 1448—2014的规定对1H谱灵敏度、分辨力、线性、1H谱定量重复性进行校准。7.2.2  将装有上机样品(7.1.3)的核磁共振样品管置于核磁共振仪检测腔内,设置样品管不旋转。7.2.3  设置待测样品温度为300.0 K,测样前需要等待样品温度稳定。7.2.4  新建氢谱标准实验文件。7.2.5  锁场与调谐。7.2.6  匀场。7.2.7  测定样品的90°脉冲宽度,并记录结果。7.2.8  调用有相位循环的预饱和水峰压制脉冲序列。7.2.9  在7.2条件下设定参数,根据记录结果(7.3.7)设定90°脉冲宽度,根据水峰压制效果优化水峰压制位置、压制功率等,保持各样品接收器增益值一致。7.2.10  采集并保存数据。9  数据处理9.1  数据预处理对原始数据进行傅立叶变换、相位校正和基线校正,并以TSP-d4中硅烷甲基的化学位移作为零点进行定标。9.2  定性分析对乳糖标准品和外标参考物柠檬酸的1H NMR谱(参见附录A)信号峰进行归属,得到乳糖和柠檬酸的定量相关参数(参见附录A),包括定量峰化学位移、耦合常数、氢原子数量及积分区域。应注意定量峰积分区域未受到干扰。9.3  定量峰积分根据定性分析(8.2)得到的积分区域进行积分,分别得到外标柠檬酸和乳糖定量峰积分面积。 10  结果计算10.1  校正因子(CF)的计算10.1.1  乳糖系列标准工作溶液上机样品质量浓度计算乳糖系列标准工作溶液(5.5.3)上机样品质量浓度按照公式(1)计算:… … … … … … (1)式中:CQ——外标柠檬酸溶液(5.5.2)上机样品质量浓度,单位为毫克每升(mg/L);MWQ——柠檬酸摩尔质量,单位为克每摩尔(g/mol);AS——上机样品中乳糖定量峰积分面积;AQ——外标柠檬酸溶液上机样品中柠檬酸定量峰积分面积;nHQ——外标柠檬酸溶液上机样品中柠檬酸积分区域对应的氢原子数量;nHS——上机样品中乳糖积分区域对应的氢原子数量;NSQ——外标柠檬酸溶液上机样品扫描次数;NSS——上机样品扫描次数;PS——上机样品1H 90°脉冲宽度;PQ——外标柠檬酸溶液上机样品1H 90°脉冲宽度;TS——上机样品检测温度,单位为开尔文(K);TQ——外标柠檬酸溶液上机样品检测温度,单位为开尔文(K);MWS——乳糖摩尔质量,单位为克每摩尔(g/mol)。10.1.2  回归方程绘制由公式(1)计算得到的乳糖系列标准工作溶液上机样品质量浓度(9.1.1)为横坐标,乳糖系列标准工作溶液(5.5.3)上机样品质量浓度为纵坐标,建立线性回归方程y=ɑx+β,校正因子(CF)为线性回归方程的斜率ɑ。10.2  结果计算样品中乳糖的含量按照公式(2)计算:… … … … … … … … … … … … … … … (2)式中:CS-S——样品中乳糖的含量,单位为克每千克(g/kg);CS——由公式(1)计算所得溶解并定容后的样品中乳糖含量,单位为毫克每升(mg/L);V——样品定容后的体积,单位为毫升(mL);ms——称取的样品质量,单位为克(g);CF——校正因子,线性回归方程的斜率ɑ。计算结果以重复性条件下获得的两次独立测定结果的算术平均值表示,小数点后保留一位有效数字。11  精密度在重复条件下获得的两次独立测定结果的绝对差值不超过算术平均值的10%。12  检出限及定量限12.1  固体样品奶片、奶酪及奶粉中的乳糖检出限为0.3 g/kg,定量限为1.1 g/kg。12.2  液体样品纯奶、发酵乳中乳糖检出限为0.03 mg/kg,定量限为0.1 mg/kg。附录A乳糖和柠檬酸1H NMR谱图及定量相关参数图A.1 标准品乳糖1H NMR谱图A.2 外标物柠檬酸1H NMR谱表A.1 定量相关参数化合物摩尔质量/(g/mol)δH(峰形,耦合常数)氢原子数量积分区域/Δδ检测温度/K乳糖342.34.45(d, J=7.8 Hz)14.359~4.503300.0柠檬酸192.143.01(d,J = 15.7 Hz)22.921~3.1432.84(d,J = 15.7 Hz)22.693~2.916编制说明.docx
  • 咖啡中的"隐形杀手":丙烯酰胺
    近日,根据福建省消费者权益保护委员会与福州市消费者权益保护委员会的联合调查,他们通过线上和线下途径,对福州市20家咖啡销售点的59款现场制作的咖啡产品进行了抽样检测(包括线下30款和线上29款)。这些样品涵盖了“瑞幸”、“星巴克”、“幸运咖”、“COTTI COFFEE”等多个知名品牌。(来源:福建省消费者权益保护委员会) 令人关注的是,在这次检测的59款样品中,未发现反式脂肪酸(低于0.0013g/100g的检测限),然而却都检出了较低浓度的致癌物质“丙烯酰胺”。被查出的”丙烯酰胺“,是一种有机化合物,损害人体神经系统,为白色结晶性粉末,溶于水、乙醇、乙醚、丙酮,不溶于苯、己烷。它是一种潜在致癌物,属于2A类致癌物,即:虽然在动物试验中具有明确致癌作用,在人群研究结果中还没得定论。丙烯酰胺存在于很多食物中,除了咖啡外,油条、薯条、烧烤等食物都含有。丙烯酷胺检测方法般包括以下几种:1.液相色谱法: 采用高效液相色谱技术,通过分离、净化、测定来确定丙烯酷胺的含量。2.毛细管电泳法: 采用毛细管电泳技术,通过分离、净化、测定来确定丙烯酷胺的含量。3.光谱法:采用紧外、红外、拉是等光谱技术,通过吸收、散射、振动等特征来确定丙烯酷胺的含量。4.化学发光法:采用化学发光技术,通过与相关反应物的化学反应产生化学发光信号来确定丙爆酷胺的含量。5.气相色谱-质谱联用法:采用气相色谱-质谱联用技术,通过分离、净化、测定来确定丙烯酷胺的含量。小编整理了咖啡中检测丙烯酰胺的解决方案供大家参考: 1. 咖啡中丙烯酰胺含量的测定 2. 根据DIN EN ISO 18862标准,对咖啡中丙烯酰胺的自动SPE净化和LC-MS/MS测定 3. 月旭“舌尖上的卫士”为您把关食品中丙烯酰胺的残留更多丙烯酰胺检测相方案请点击查看涉及相关产品:三重四极杆液质联用仪QSight 400(珀金埃尔默)GERSTEL自动进样器 MPS robotic (GERSTEL( 哲斯泰) )月旭固相萃取装置 (月旭科技 ) 在福建省消费者权益保护委员会微信公众中也提到了,目前我国暂未对咖啡中丙烯酰胺有限制性或禁止性规定。同时,也提醒广大消费者,现制现售咖啡口感醇香浓郁,但不宜多喝,应科学、合理饮用。在购买现制现售咖啡需关注以下几点: 1、消费者在进行咖啡消费前要学习了解一些基本的咖啡常识,比如常见咖啡分类及区别(如美式咖啡、卡布奇诺、拿铁、摩卡等)、了解阿拉比卡和罗布斯塔咖啡豆的区别、留意添加牛奶、风味糖浆等原料的咖啡能量及含糖量相对较高等。 2、消费者在购买咖啡时,要注意查看商家菜单或外卖平台选项上有无含糖分、咖啡因等提示警示,并根据个人口味喜好及身体状况,选择合适的咖啡产品。孕妇及哺乳期妇女、儿童、青少年等敏感人群应尽量不饮用或减少饮用咖啡。 3、不要长期过量饮用咖啡,按每日咖啡因的安全摄取量不超过400 mg,一般每天1至2杯,比较安全。同时咖啡中含有咖啡因、草酸等物质,过量饮用会影响钙质的吸收,增加患骨质疏松的风险、会使人体长时间兴奋、失眠、焦虑,严重的还会造成抑郁、记忆力减退等问题。 4、养成正确咖啡饮用方式。平时喝咖啡水温要控制好,最好不要超过65度,否则会影响口腔粘膜、胃肠粘膜,甚至造成粘膜损伤。注意喝咖啡的时间,尽量选择在用餐后,避免在晚上睡觉前或早上空腹时喝咖啡。酒之后不宜喝咖啡,人在饮酒后会进入精神亢奋状态,如再喝咖啡的话,只会加重人体的兴奋状态,对人体器官的伤害很大。 同时建议各现制现售咖啡商家在严格把控咖啡豆/粉、牛奶、糖浆等原料质量的同时,要在产品销售目录上对香草拿铁等含糖量较高产品、咖啡因含量及不适宜人群等予以警示或作出明确标示,以供消费者选择参考。行业应用栏目简介:(http://www.instrument.com.cn/application/) 【行业应用】是仪器信息网专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。
  • 成都生物所发明判断大豆异黄酮糖苷水解的方法
    近日,中科院成都生物所发明的“一种判断大豆异黄酮糖苷是否水解或水解程度的方法”获得国家发明专利授权。   大豆异黄酮是大豆等豆科植物生长过程中形成的一类次生代谢产物,具有多种生理功能。它不仅参与调节植物的生长活动,还能对人体发挥有益的生理调节作用。天然大豆异黄酮苷类的分子结构并不是活性发挥的最佳状态,普遍认为苷元才是活性发挥的最佳状态。然而,在大豆中,大豆异黄酮主要是以染料木黄酮、大豆苷和黄豆苷糖苷形式存在的,它们对应的苷元染料木素、大豆苷元和黄豆苷元的含量很少。为了得到生物活性高的大豆异黄酮苷元,在工业上大多以大豆豆饼或豆粕为底物,采用酸水解或微生物转化的方法将糖苷转化为苷元。此前,判断大豆异黄酮糖苷是否水解及水解程度,通常是通过水解前后苷元含量的变化来判断的,此方法过程相对比较繁琐。   成都生物所发明的该种方法,通过商品豆粕经乙醇提取、提取液抽滤除杂质、减压蒸馏浓缩至无乙醇得水相、以水相为底物进行水解、用乙酸乙酯从水解液中萃取大豆异黄酮苷元、萃取液减压浓缩、浓缩相进行薄层层析、在紫外灯下观察层析结果,以此判断大豆异黄酮糖苷是否水解或水解的程度。该方法具有快速、准确等优点,具有良好的应用前景。
  • 氨基糖苷类抗生素(AGs)方法包发布,攻克行业检测难题!
    我国每年约有30000儿童因药物性致聋陷入无声世界,其中因抗生素使用不当致聋占了约一半。近年研究还发现,我国药源性耳聋患者中50%与遗传因素有关,而且属“母系遗传”,有家族史的患者应禁用氨基糖苷类药物。 氨基糖苷类抗生素药因价格低廉、抗菌谱广等特点,也应用于兽用药杀菌以促进家畜生长。此类抗生素由2个或多个氨基糖基团通过糖苷和氨基环多醇键合而成,极性大,易溶于水,脂溶性差,人体和禽畜的胃肠道不易吸收,通过肌肉注射后大部分以原药经肾排泄,通过粪肥可能迁移至土壤及周围水体中,最终进入食物链,对动物和人体健康及生态系统构成潜在威胁。 氨基糖苷类抗生素药分析检测中的挑战由于此类化合物极性极大,常规色谱保留弱或无保留,无紫外吸收或紫外吸收弱,业内目前也没有特别成熟稳定且灵敏的检测方法。 Idea 1对于极性化合物的检测,一般会首先想到选用亲水作用液相色谱-HILIC,理论上亲水性越强的化合物,在Hilic柱上被保留的时间越长。市面上有两款Hilic柱在极性化合物的保留能力方面颇受广大科研工作者的青睐,但在进行氨基糖苷类抗生素化合物分析检测时,因基质残留大、稳定性差、重现性不好、灵敏度不高等原因而未受认可。 Idea 2另外一个思路是在流动相中添加七氟丁酸(HFBA)、三氟乙酸(TFA)等离子对试剂来增强极性化合物的保留,GBT21323-2007《动物组织中氨基糖苷类药物残留量的测定高效液相色谱-质谱/质谱法》中,使用100mM HFBA作为流动相,结合常规的C18柱,对这类化合物保留良好。但是,TFA、HFBA等离子对试剂,负离子响应极强,进到质谱中极易残留且不容易洗掉,极大地影响其他负离子化合物的检测灵敏度,质谱分析中是不建议使用离子对试剂的。另外,国标方法中,进样量大(30μL),基质效应明显,其检测的10种氨基糖类抗生素LOQ分别为50ppb、300ppb,灵敏度不高。 ??检测氨基糖苷,赛默飞有妙招!??赛默飞氨基糖苷类抗生素(AGs)检测方法包赛默飞采用Thermo Scientific™ Vanquish™ Binary Horizon液相系统与Thermo Scientific™ TSQ Fortis™ 三重四极杆质谱仪联用平台,通过在流动相中添加TFA和HFBA等离子对试剂,搭配Thermo Scientific™ Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱(可耐pH范围0.5~10),来增强这些极性化合物的保留,再结合赛默飞离子色谱专利的电解再生膜抑制器技术,去掉TFA和HFBA离子,避免污染质谱。Vanquish™ Binary Horizon液相系统与TSQ Fortis™ 三重四极杆质谱仪联用平台 基于这样的理念和赛默飞独有的技术平台,成功建立了快速检测动物源食品中14种氨基糖苷类抗生素残留的方法(潮霉素、阿米卡星、安普霉素、巴龙霉素、卡那霉素、链霉素、奈替米星、庆大霉素、大观霉素、双氢链霉素、妥布霉素、新霉素、西索米星、依替米星)。Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱 样品前处理方式与国标GBT21323-2007一致,21min内获得良好的分离(国标35 min),灵敏度满足国标要求,LOQ均≤20ppb(进样量5μL)且连续6针的RSD均<14%,连续进50针猪肉基质样品后,保留时间精密度和峰面积重复性良好,RTs偏差≤±0.03min,各化合物50ppb的峰面积重复性均<11%,本方案快速灵敏、可靠稳定。 电解再生膜抑制器 部分实验数据展示14种氨基糖苷类抗生素在21min内实现良好保留和分离。点击查看大图点击查看大图 抑制器原理小贴士在下图抑制器原理图中,两边是选择性透过膜,中间为流动相通道,通过电解水作用,在阴极产生OH?置换出流动相中的TFA?和HFBA?,直接从阳极排到废液。点击查看大图 参考文献徐媛,陈达,钟新林,徐牛生,LC-MSMS结合离子色谱电解再生膜抑制器技术快速检测动物源食品中14种氨基糖苷类抗生素残留 点击下载完整版【赛默飞氨基糖苷类抗生素方案】!
  • “流光”新组合之 SFC-ELSD联用技术
    研究背景 葡萄糖神经酰胺是一种鞘脂糖,多存在于大米、玉米和魔芋中,具有保持皮肤水分的作用,常被运用于化妆品、补助剂和保健食品等商品化产品中。 通常使用LC法测定葡萄糖神经酰胺含量,因流动相多使用氯仿,会对人体造成很大危害。此外,由于葡萄糖神经酰胺紫外吸附能力有限,需要一种非常通用的检测器进行检测。 近日,岛津制作所成功地将超临界流体色谱(SFC)和蒸发光散射检测器(ELSD)组合成SFC-ELSD联用系统,用于葡萄糖神经酰胺分析。该系统具体以下特点: ① 流动相采用低极性的二氧化碳,无需使用氯仿,避免了潜在毒性风险;② 分析速度快,葡萄糖神经酰胺可在2分钟内被SFC洗脱;③ 运行成本低,节省流动相(如氯仿),不需要昂贵的废溶剂处理费;④ 配合岛津新一代蒸发光散射检测器ELSD-LT III,轻松获得高灵敏度的微量分析结果。 大米标准溶液中葡萄糖神经酰胺的分析2分钟内完成大米标准溶液中葡萄糖神经酰胺的分析 标准曲线 使用25、50、100、150和300 mg/L的浓度建立了葡萄糖神经酰胺的校准曲线。实验结果表明,标准曲线,r2达到0.9998。 重复性 通过对50 mg/L标液葡萄糖神经酰胺溶液的重复性分析(n=6),证实了保留时间和面积的重复性较好。 补充剂中葡萄糖神经酰胺的分析经分析,补充剂中葡萄糖神经酰胺的含量为3.1 mg/L。 结论 将超临界流体色谱技术(SFC)和蒸发光散射检测器(ELSD)完美结合,对商品化补充剂中葡萄糖神经酰胺的含量进行了定量测定。SFC使用二氧化碳作为流动相,可在2分钟内完全洗脱出来,且安全无毒,低运行成本,最终获得重现性好,灵敏度高的分析结果。 本文内容非商业广告,仅供专业人士参考。
  • 菲罗门 ACE色谱柱 乳糖的含量测定
    乳糖的含量测定方法:chp2015 二部色谱柱:ace excel nh2 5μm 150×4.6mm(货号:exl-1214-1546u) 流动相:乙腈-水(70:30)流速:1.0 ml/min 进样体积:10μl 柱温:35℃检测:ri@35℃样品:5 mg/ml,溶于流动相中 附:ace nh2 用于糖分析时,每次使用前的冲洗方案保存好的 ace nh2 柱,每次拿出来用于分析还原糖之前,应按下列步骤进行操作,以便在开始分析之前获得最佳的色谱柱性能。1. 乙腈/水(7:3),冲洗 20 倍柱体积;2. 乙腈/水(7:3),加 0.1% v/v 氨水溶液(氨水溶液浓度约 32%),冲洗 50 倍柱体积;3. 乙腈/水(7:3),冲洗 20 倍柱体积; ace nh2 柱长期保存条件:为了最大程度上延长色谱柱使用寿命,先用乙腈/水(1:1)冲洗 20 倍柱体积,再用100%异丙醇冲洗 20 倍柱体积,然后取下柱子塞紧柱堵头放置。
  • 科学家首次揭示诱发性共刺激分子免疫新功能
    科学家首次揭示诱发性共刺激分子免疫新功能 清华大学医学院祁海教授课题组首次揭示了诱发性共刺激分子(ICOS)的免疫新功能——直接控制免疫细胞T细胞在体内迁移运动,为理解免疫器官产生抗体提供了新线索,从而给保护性疫苗的研制指出了新方向。 人类抵抗长期感染类疾病的过程,其实是免疫细胞产生抗体消灭病毒和细菌等病原微生物。祁海在接受科技日报记者采访时说:“为了抵抗病原,有两类免疫细胞特别重要:T细胞和B细胞。负责产生抗体的B细胞不单独工作,必须和T细胞的一个亚类——滤泡性辅助T细胞协同工作才能产生抗体。可以说,滤泡性辅助T细胞的数量在一定程度上直接决定了抗体的数量和质量。” 为帮助B细胞产生抗体,滤泡辅助T细胞需要移动到B细胞生活的区域。祁海研究组发现,ICOS在体内促进T细胞的持续运动能力,决定它们在B细胞区组织中的迁移与分布。“如果把T细胞比作一辆汽车,那么ICOS就相当于发动机。”祁海作了个形象的比喻。而在此之前,医学界一直认为ICOS所起的作用仅仅是让这类T细胞更好地识别那些“诱惑”因子。 “当前,通过疫苗来刺激机体产生保护性抗体是预防病毒感染的重要手段。而研究清楚诸如ICOS分子调节滤泡性辅助T细胞的运动及功能机制后,医学界在研制疫苗时就可以考虑通过提高滤泡性辅助T细胞的产生来改进抗体疫苗的效率。”祁海说,通过控制滤泡性辅助T细胞的产生,还可能对人类的自身免疫疾病,如红斑狼疮、类风湿性关节炎的治疗提供新思路。YSRIBIO1345 人抗酿酒酵母抗体(ASCA)ELISA试剂盒 Human Anti-Saccharomyces cerevisiae antibody,ASCA ELISA KitYSRIBIO1346 人迟现抗原4(VLA4)ELISA试剂盒 Human very late appearing antigen 4,VLA4 ELISA KitYSRIBIO1347 人吖啶橙(AO)ELISA试剂盒 Human Acrine Orange,AO ELISA KitYSRIBIO1348 人甲胺喋呤(MTX)ELISA试剂盒 Human methotrexate,MTX ELISA KitYSRIBIO1349 人对氨基苯甲酸(PABA)ELISA试剂盒 Human para-aminobenzoic acid,PABA ELISA KitYSRIBIO1350 人苯丙氨酸(LPA)ELISA试剂盒 Human L-phenylalanine,LPA ELISA KitYSRIBIO1351 人免疫核糖核酸(Irna)ELISA试剂盒 Human Immune RNA,Irna ELISA KitYSRIBIO1352 人β内酰胺酶抑制剂(BLI)ELISA试剂盒 Human β-Lactamase inhibitors,BLI ELISA KitYSRIBIO1353 人α半乳糖基抗体(Gal)ELISA试剂盒 Human α-galactoyl,Gal ELISA KitYSRIBIO1354 人αN已酰氨基葡糖苷酶(αNAG)ELISA试剂盒 Human αN-acetylglucosaminidase,αNAG ELISA KitYSRIBIO1355 人α2纤溶酶抑制物(α2-PI)ELISA试剂盒 Human α2-plasmin inhititor,α2-PI ELISA KitYSRIBIO1356 人烟酰胺腺嘌呤二核苷酸磷酸(NADPH)ELISA试剂盒 人高香草酸(HVA) ELISA KitYSRIBIO1357 人钙粘蛋白相关的神经受体1(CNR-1)ELISA试剂盒 Human cadherln-related neuronal receptor1,CNR-1 ELISA KitYSRIBIO1358 人毛细血管扩张性共济失调突变基因(ATM)ELISA试剂盒 Human Ataxia telangiectasia mutated,ATM ELISA KitYSRIBIO1359 人芳香烃受体(AhR)ELISA试剂盒 Human aryl hydrocarbon receptor,AhR ELISA Kit
  • β-内酰胺酶尚无国标 乳品检测遇盲区
    近日,有网友在人民网食品频道留言,咨询&ldquo &beta -内酰胺酶是什么?对人体有没有害?曾经报道被检出&beta -内酰胺酶阳性的光明牛奶还能不能喝?&rdquo   该网友留言所提及的&ldquo 报道&rdquo ,人民网食品频道检索发现,这是一篇发表于2013年的&ldquo 旧闻&rdquo 。   据《解放日报》报道,宁波市食品药品监管局2013年2月26日公布的乳制品抽检结果显示,光明旗下的200毫升和500毫升盒装优倍高品质鲜牛奶分别被检出&beta -内酰胺酶阳性、大肠菌群超标,而浙江杭江牛奶公司乳品厂生产的200毫升盒装和220毫升瓶装光明鲜牛奶也分别检出&beta -内酰胺酶阳性、大肠杆菌超标。此外,上海乳品四厂有限公司生产的220毫升瓶装鲜牛奶,还同时存在&beta -内酰胺酶阳性及大肠杆菌超标的情况。   网友质疑的曾被检出&beta -内酰胺酶阳性的光明牛奶还能不能喝?人民网食品频道采访了中国农业大学食品科学和营养工程学院检测中心,工作人员郭祥磊表示,目前,因为没有国标,该机构暂不检测酶类,但是抗生素相关方面可以检测。   无独有偶,国家食品质量安全监督检验中心的王姓工作人员也表示,&beta -内酰胺酶检测无具体的标准,所以无法检测该项目。   资深奶业专家陈瑜表示,&beta -内酰胺酶是一种细菌所特有的分解抗生素的酶,牛奶中检测出&beta -内酰胺酶有可能是奶牛体内自身产生的,也有可能是牛奶在加工过程中感染了一些细菌所产生的。   &beta -内酰胺酶对人体有没有害?陈瑜表示,&beta -内酰胺酶肯定是对身体不好的,由于具有分解抗生素的酶不允许检出肯定是有其道理的。他还提到,有时候牛奶紧张有些企业会利用一些抗生素的剂来让抗生素检测不出来。   在新国标《生鲜牛乳收购标准》(GB19301-2010)中,把&ldquo 抗生素残留&rdquo 作为了必检项目,并明确规定的限量。   一位不愿透露姓名的业内人士称,&beta -内酰胺酶其实就是为抗生素打掩护。导致鲜奶&beta -内酰胺酶阳性的主要原因有两个,一是内源性的,即由奶牛体内的耐药菌株产生的 二是为降解牛乳中残留的抗生素而外源性人为加入的。   人民网食品频道通过搜索发现上海紫一试剂厂和上海晨易均有&beta -内酰胺酶销售。上海紫一试剂厂和上海晨易的销售人员都表示,只需报单位名称,都可购买,报单位名称只是为了方便开发票走账。   企业对旗下产品被检出&beta -内酰胺酶阳性一事并无一个最终解释,这是一个偶发现象?还是至今还仍存在?光明乳业公共事务部高级经理殷江玲告诉人民网食品频道,2013年的那次报道,其实是宁波市食品药品监管局的乳制品抽检结果出了问题,该公司的留样检测并没有问题。&ldquo 公司特别派去专业人士去沟通,发现宁波食药监局在检测环节中出了很多的问题&rdquo 。   为何&beta -内酰胺酶没有国标?标准缺失是不是监管的盲区?企业检测的标准来自哪儿?人民网将持续关注报道。
  • 沃特世超高性能色谱柱应对氨基糖苷类抗生素药物分析监测难点
    氨基糖苷类抗生素分析难点: 氨基糖苷类抗生素是一类含有氨基糖苷键的抗生素,抗菌谱广,对需氧革兰阴性杆菌具有强大的抗菌活性,临床应用广泛。该类抗生素由氨基糖与碱性1,3-二氨基肌醇以苷键结合而成,1,3-二氨基肌醇为碱性多元环己醇结构,因此氨基糖苷类抗生素均具有碱性强,极性大的特性。目前大多数氨基糖苷类化合物的液相色谱检测时均使用了高比例的三氟乙酸作为流动相,当采用这些溶剂作为流动相时色谱工作者经常发现色谱柱柱效下降非常厉害,色谱峰重现性差,柱寿命短等方面问题。 2010年版《中国药典》方法摘录: 硫酸依替米星:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min 硫酸庆大霉素C组分: 0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min 硫酸卡那霉素:0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min 硫酸西索米星:0.3mol/L三氟乙酸-甲醇-乙腈 96:3:1;流速0.5mL/min 硫酸奈替米星有关物质:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min 沃特世公司解决方案: 沃特世(Waters® )公司第二代杂化颗粒XBridgeTM系列色谱柱产品,通过在硅胶颗粒合成过程中引入有机的亚乙基桥结构,使其具有行业领先的化学稳定性,pH范围1~12,同时提高了色谱柱产品的耐受性及机械强度,使用该系列色谱柱产品的可以帮您解决氨基糖苷类抗生素的色谱分析问题 利用沃特世XBridge C18 色谱柱分析硫酸庆大霉素C组分所得色谱图及检测结果:
  • 鲍曼不动杆菌的治疗和研究进展!
    鲍曼不动杆菌的治疗和研究进展!鲍曼不动杆菌感染的治疗一直是临床上很大的难题,因为鲍曼不动杆菌极易对各种消毒剂和抗菌药物产生耐药性,对重症患者、ICU病房的患者等威胁很大。MDR-AB(多重耐药鲍曼不动杆菌)、PDR-AB(泛耐药鲍曼不动杆菌)、CRAB(耐碳青霉烯类鲍曼不动杆菌)等的广泛传播更是成了医生和患者的噩梦。 在院内感染中,不动杆菌属的感染占有较高的比例,而在院内提取到的不动杆菌属的菌株,绝大多数为鲍曼不动杆菌。鲍曼不动杆菌为革兰氏阴性菌,故对万古霉素等存在固有耐药,对青霉素G、氨苄西林、阿莫西林、氯霉素、四环素、diyi及第二代头孢菌素也保持着较高的耐药率。通常情况下,对鲍曼不动杆菌有较强作用的药物主要有抗绿脓杆菌的青霉素类、第三和第四代头孢菌素(主要是头孢他啶、头孢吡肟等)、碳青霉烯类、β-内酰胺类抗生素复合制剂(头孢哌酮/舒巴坦、哌拉西林/他唑巴坦等)、氟喹诺酮类、氨基糖苷类、替加环素、多粘菌素、舒巴坦等。但是因为近年来抗菌药物的滥用,鲍曼不动杆菌对以上药物的耐药率也在不断上升,氟喹诺酮类、氨基糖苷类等耐药率甚高,碳青霉烯类的耐药率也有上升。 考虑到鲍曼不动杆菌极易对抗菌药物耐药,故用药时应联合用药。常用的方案有β-内酰胺类+氟喹诺酮类、β-内酰胺类+氨基糖苷类等。我个人shouxuan的方案为头孢哌酮/舒巴坦+磷霉素(时间差攻击疗法),也可选择氨苄西林/舒巴坦+环丙沙星等)。 研究进展 随着医学技术的飞速发展,对疾病特别是危重病的救治水平不断提高,广谱抗生素的广泛使用是其重要手段之一。但是,临床治疗中滥用抗生素现象非常普遍,在抗生素的强大压力下,不可避免地产生大量耐药菌株,这些耐药菌株已成为当代医院感染的棘手问题,从本组资料结果显示,鲍曼不动杆菌对亚安培南、美罗培南的耐药率相对较低,原因是碳青霉烯类药物对青霉素结合蛋白(PBPS)亲和力强。  但仍有少部分鲍曼不动杆菌对其耐药,原因可能是其能产生一种能水解碳青霉烯类药物的β-内酰胺酶ARI-I,这无疑是一个可怕的信号。此外,与头孢哌酮/舒巴坦的化学结构不同或鲍曼不动杆菌的多重耐药性表达形式不同有关。而对喹诺酮类抗生素耐药率达60%以上,这可能是近年来喹诺酮类药物的广泛应用引起抗菌药物介导的耐药性基因突变,编码DNA旋转酶的gyra 或gyrb基因发生突变被认为是细菌产生耐药的主要原因。此外,氨基糖苷类抗生素的耐药率皆较高,这可能是本院普遍应用该类抗生素出现的耐药,给临床治疗带来了巨大的困难,因此,应注意各类抗生素的合理应用。 试验结果表明,临床上不动杆菌感染中,鲍曼不动杆菌占绝大多数(75.0%),其次为醋酸钙不动杆菌、洛菲不动杆菌、琼氏不动杆菌,与有关报道不一致,可能是由于不动杆菌属的命名较混乱,分类原则及鉴定系统不同所致。在4种不动杆菌的鉴定中,41℃培养时生长,苹果酸盐同化试验阳性,可初步鉴定为鲍曼不动杆菌与琼氏不动杆菌,两者的区别在于前者苯乙酸盐同化试验阳性,且氧化木糖,而后者不氧化木糖,且苯乙酸盐同化试验阴性。41℃培养时不生长,癸酸盐同化试验阳性,可初步鉴定为醋酸钙不动杆菌与洛菲不动杆菌,两者区别在于前者枸橼酸盐、苯乙酸盐同化试验均阳性,而后者均阴性。  从72株鲍曼不动杆菌的来源看,其感染部位分布广泛,如呼吸系统、泌尿系统、伤口、腹腔及神经系统等。其中以呼吸系统感染占多数(54.2%)。不动杆菌是近几年医院内感染出现率较高的菌属,其中鲍曼不动杆菌所引起的感染应引起重视。 2001~2005年对12种抗菌药物的药物敏感监测显示,12种药物对鲍曼不动杆菌的耐药率呈总体上升趋势,耐药率zuijin的IMP,其耐药率从2001年的6.5%上升至2005年的31.7%,头孢菌素类(CAZ、CFP、FEP)的耐药率从2001年的20.0%、38.6%、31.5%上升至2005年的66.7%、72.4%、67.7%;PIP、SXT、ATM、CIP、TZP、LEV耐药率也从2001年的19.6%~60.2%增加到2005年的52.2%~72.1%;耐药率下降的有TOB和GEN 2种药物,其耐药率分别从2001年的62.8%和63.6%下降到2005年的48.2%和45.2%,这可能与这类药物临床上现在不常使用有关。从表3可见,ICU 12种药物的耐药率明显高于非ICU,差异存在非常显著性(P0.01),在ICU耐药率较低的是IMP和TZP,耐药率分别为41.7%和53.3%,除此外其余抗生素的耐药率均在70.0%以上,由此可见,ICU鲍曼不动杆菌耐药现象已十分严重,且表现为多重耐药。这与鲍曼不动杆菌产生多种酶有关:对头孢菌素类的耐药,主要是产超广谱β-内酰胺酶;对亚胺培南耐药,主要与产金属β-内酰胺酶有关;喹诺酮类的耐药主要与gyrA和parC基因突变有关。 综上所述,鉴于近年鲍曼不动杆菌的耐药率有进一步上升的趋势,这应当引起临床医师及微生物界的高度重视。为减少该菌医院感染的发生及多重耐药菌株的出现,我们应对医疗器械进行严格彻底的消毒及对鲍曼不动杆菌进行规范的连续监测,弄清其耐药机制并及时监测其耐药情况。同时,临床医师应重视获得性鲍曼不动杆菌感染,与临床微生物实验室密切协作,加强耐药性的监测,有效预防和控制感染。欢迎访问中国微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 上海通微为蒙牛提供乳糖检测设备
    2011年的金秋十月,上海通微分析技术有限公司蒸发光散射检测器在经历了5年多的发展之后,终于迎来了丰硕的成果。蒸发光散射检测器UM 3000已顺利通过蒙牛乳业集团验收,并将继续在其各地分公司采购UM 3000蒸发光散射检测器作为乳糖检测设备。 从最初的饮片厂,到现在的食品公司,制药企业和省级质监所,上海通微正在一步一个脚印的前行。上海通微UM 3000蒸发光散射检测器的各项性能指标均达到国际水平,尤其在信噪比方面我们更是处于国际领先水平。2011年,我们在UM 3000的基础上推出了新一代蒸发光散射检测器UM 5000,新机性能更高,体积也更小巧。 通微(美国)技术有限公司是微分析领域国际领先的仪器制造商,其加压毛细管电色谱,激光诱导荧光检测器是微分析领域中的佼佼者。上海通微分析技术有限公司作为其子公司,业务覆盖更多液相色谱领域,包括高效液相色谱仪,制备液相色谱仪,蒸发光散射检测器,加压毛细管电色谱和激光诱导荧光等。
  • 婴幼儿食品和乳品中烟酸和烟酰胺的测定
    烟酸和烟酰胺统称为维生素B3,是人体必需的维生素之一,在生长、代谢、发育过程中发挥着重要的作用。烟酸在体内可转化为烟酰胺,烟酰胺是辅酶I、辅酶II的组成部分,而辅酶I、辅酶II是许多脱氢酶的辅酶,在氧化还原反应中起着传递氢的作用,与糖酵解、脂肪代谢、丙酮酸代谢、高能磷酸键的生成有密切关系,并在维持皮肤和消化器官正常功能中起着重要作用。烟酸和烟酰胺是婴幼儿食品和乳品中重要的营养成分,对婴幼儿生长发育起着重要作用。因此在婴幼儿食品和乳品中,生产商会添加烟酸和烟酰胺等多种维生素来满足婴幼儿营养需要。国家规定在婴儿配方食品中烟酸(烟酰胺)的限量为70-360g/100kJ,在较大婴儿和幼儿配方食品中烟酸(烟酰胺)的含量最小值为110 g/100kJ。目前食品中烟酸和烟酰胺的检测方法主要包括超临界流体色谱法、离子色谱法、液相色谱法、液相色谱串联质谱法和微生物法等。液相色谱法由于具有灵敏度高、定量准确等优点,成为近年来应用较为广泛的检测方法。日立参照国标,使用高效液相色谱法对婴幼儿食品和乳品中烟酸和烟酰胺进行测定,结果优异,显示了日立高效液相色谱仪的高性能。实验部分 表1. 色谱分析条件 图1.标准品的提取色谱图(上)和等高线图(下)结果与讨论 表2.标准品重现性结果(n=6)(1.0mg/L) 从实验结果可以看出,烟酸和烟酰胺的保留时间和峰面积均获得了良好的重现性。 图2.标准曲线结果 从实验结果可以看出,烟酸和烟酰胺在0.10-25.00mg/L浓度范围的线性相关系数均达到了1.0000,显示了良好的线性。 图3.实际样品前处理流程 图4.实际样品结果 对市售的奶粉和米粉按图3处理后进行烟酸和烟酰胺的测定,并对样品进行加标回收率的测定,在样品中添加的烟酸和烟酰胺的回收率在90.20%~104.00%之间。使用DAD二极管阵列检测器对实际样品与标准品的光谱图进行比较,排除假阳性峰的干扰。结论 本实验所用方法可用于检测婴幼儿食品和乳品中的烟酸和烟酰胺,标准曲线线性良好,通过DAD二极管阵列检测器还可排除假阳性峰的干扰。可用于生产企业、质检等部门对烟酸和烟酰胺的检测。 日立Primaide高效液相色谱仪性能优异、操作简便、结实耐用,可让您获得精准、高灵敏度的实验结果。 关于日立高效液相色谱仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm
  • Nature | 菌群代谢物激活自然杀伤性T细胞的机制
    机体与共生微生物相互作用,共同进化,在机体的免疫系统发育和稳态维持发挥关键作用。微生物代谢物多样性水平很高,宿主已经进化出复杂的机制来区分病原体和共生体衍生而来的分子。但是在一个物种中,微生物代谢物仍然会存在结构变异。以结构为基础探究化学异构体的生物学作用极具挑战性。在人肠道微生物中,脆弱拟杆菌经常用于研究共生菌衍生物活性的分子机制。目前已经鉴定出α-半乳糖神经酰胺(α-Galactosylceramide BfaGCs)是由脆弱拟杆菌产生的可用做免疫调节分子的衍生物。新生小鼠脆弱拟杆菌单菌定植或者新生小鼠口服BfaGCs可以调节肠道NKT细胞数量。而给与小鼠BfaGCs突变的脆弱拟杆菌,小鼠的表现类似于无菌小鼠。也有报道发现鞘氨醇单胞菌可以调控肠道NKT(natural killer T)细胞功能。但是菌群衍生物在调控宿主免疫系统中的分子机制尚不清楚。2021年11月10日,来自哈佛大学的Dennis L. Kasper 团队在Nature 上发表题为Host immunomodulatory lipids created by symbionts from dietary amino acids 的文章。本研究从结构水平上证实BfaGCs可以直接作用于NKT细胞,与CD1d和TCR结合激活NKT。作者首先利用LC-MS/MS技术分析脆弱拟杆菌鞘脂发现BfaGCs是同源酰基链的混合物。其中C34丰度最高。鉴于共生菌来源鞘脂的结构多样性,作者系统构建了16个BfaGCs类似物,7个异构体。支链BfaGCs在真核生物中相对少见,原核生物中更常见。于是作者评估了支链氨基酸对于BfaGCs生物合成的影响。分析后发现支链氨基酸可以直接渗入脂质决定BfaGCs的结构,而不含氨基酸时BfaGCs倾向于单支和非支化结构。进一步研究发现宿主饮食中补充或者去除支链氨基酸直接影响单支和分支型鞘脂的比例。这些结果在分子水平证实了宿主膳食对于肠道菌群衍生物合成的影响。接下来作者开始通过靶向脆弱杆菌支链氨基酸代谢途径来探究支链BfaGCs对于肠道NKT的调控作用。支链氨基酸转氨酶BCAT将支链氨基酸脱氨基为a-酮羧酸,进一步再转化为支链脂肪酸。作者构建了目标基因敲除菌株(BF9343-Δ3671)。对比发现野生菌株与敲除菌株在小鼠肠道定植水平相当,敲除菌株产生不含分支的BfaGCs水平更高。分析结果显示敲除菌株定植的小鼠成年后结肠NKT细胞数量较高。作者又利用BMDC(小鼠骨髓来源树突状细胞)和NKT共培养体系评估21种合成BfaGCs对NKT的作用。检测IL2的产生水平,作者把21中合成物分成了两组:强刺激物和弱刺激物。10个属于强刺激物都是分支结构,11个弱刺激物没有这些结构。作者又直接挑选了支链和不含支链的代表合成分子SB2222和SB2223,浓度梯度实验发现支链长度与刺激强度无关。作者用脆弱拟杆菌主要合成的SB2217 和SB2219进行体内实验。对比与KRN7000诱导的IFNr产生和CD1d配体OCH诱导的IL4,含支链的SB2217则只能较弱的产生IFNr和IL4,不含支链的SB2219则几乎不能产生IFNr和IL4。预防性给与小鼠SB2217可以保护小鼠免受炎症,减少小鼠体重减轻和组织损伤。为了细致分析SB2217的体内效应,作者分析了SB2217处理后脾脏NKT细胞的转录组特征。分析发现SB2217可以促进NKT相关细胞因子表达以及免疫信号的激活。这表明SB2217是CD1d的功能性配体和NKT细胞的激动剂。最后作者分析了BfaGC和CD1d、TCR相互作用的晶体结构,从结构水平上证明了BfaGC是由CD1d呈递的配体,并被NKT细胞受体以保守方式识别。亲和力比较支链BfaGC SB2217大于非支链 SB2219。本研究证实BfaGCs的分支结构是激活NKT细胞的关键决定因素,从而诱导特定的免疫调节基因表达特征,并从结构水平和亲和力分析证实了BfaGCs与CD1d和TCR相互作用方式。本文为菌群、饮食以及免疫系统相互作用提供了分子机制范式。原文链接:https://doi.org/10.1038/s41586-021-04083-0
  • 星巴克咖啡竟含致癌物质?丙烯酰胺究竟何方妖孽...
    p   从3月31日起,星巴克霸屏了。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/4a1546f1-1e09-444b-b0d8-d0c2b6296a19.jpg" title=" 1.jpg" / /p p   缘于外媒报道,在3月28日的一项裁决中,因星巴克产品中含有高含量的丙烯酰胺,被美国法院要求在产品上加贴“致癌”警告标签。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/a0f3ce6c-9ec1-483e-b810-c8c480fe25af.jpg" title=" 2.jpg" width=" 500" height=" 500" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 500px " / /p p   其实,此次裁决并不仅仅针对星巴克一家企业。根据法庭文件,在被告名单中还包括卡夫食品公司、Green Mountain Coffee Roasters Inc,J.M.Smucker Company,甚至麦当劳在内的薯片、薯条等不少食品。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/e15b80a3-914b-4ca6-a2da-0f7f341bccc2.jpg" title=" 3.jpg" width=" 500" height=" 368" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 368px " / /p p   其实,咖啡豆本身并不含丙烯酰胺,而且也不是星巴克添加的,而是在烘培过程中自然出现的。只是由于星巴克本身一直自带话题,才引起大多数媒体和公众都对其保有很高的关注度。尤其是面对“致癌”这样耸人听闻的标签,想不无动于衷都难。 /p p   span style=" color: rgb(255, 0, 0) "   strong 丙烯酰胺酷爱淀粉和高温 /strong /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/2ff89b49-18f6-4b20-957c-977ac07dfbd2.jpg" title=" 4.jpg" width=" 500" height=" 331" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 331px " / /p p   什么?你还没搞清楚丙烯酰胺到底是何方妖孽? /p p   那好,咱就先来普及一下。此次被美国法院裁决的致癌“罪魁祸首” strong 丙烯酰胺,其实就是一种很常见的白色晶体化学物质,也是食物发生“美拉德反应”时的副产物。 /strong /p p   国家食品药品监督管理总局官网2014年的文章《关于薯条检出丙烯酰胺》(文章指导专家:吴永宁,国家食品安全风险评估中心首席专家 陈芳,中国农业大学食品科学与营养工程学院教授)一文中提到,食品中的丙烯酰胺主要是由还原糖(比如葡萄糖、果糖等)和某些氨基酸(主要是天冬氨酸)在油炸、烘培和烤制等高温加工过程中发生美拉德反应而生成的。 /p p   一般来说,丙烯酰胺的产量和美拉德反应的程度呈正相关,即同一种含淀粉食物,热烹调后颜色越深重,香味越浓郁,丙烯酰胺的产量就会越高。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/noimg/9d7a37e6-75b6-4e7e-b55d-879ad1fce2db.gif" title=" 5.gif" / /p p   这也不是什么最新发现,人们知道丙烯酰胺会在这些食物里出现已经快20年了。 /p p   中国农业大学食品科学与营养工程学院副教授范志红解释说: /p p   “丙烯酰胺这种物质其实很常见,不止咖啡里有,包括薯片、炸薯条、大麦茶、烧炒的菜肴等都有。只要一个食物里含有淀粉和有氨基酸,无论油炸还是非油炸,只要达到120度高温加热,都会产生微量丙烯酰胺,而且温度越高、加热时间越长,形成的丙烯酰胺越多。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/c168a91c-8323-4786-84f0-feed6d821939.jpg" title=" 6.jpg" / /p p   你以为这就完了吗?远远不止!因为,所有的爆炒素菜,也都可能含有丙烯酰胺!这主要缘于爆炒的烹饪方式,比如爆炒西葫芦的丙烯酰胺含量可以达到每公斤360微克,比炸薯条还高。不过别害怕,下次再炒西葫芦时,最好切成大一点的块状。因为越薄受热越快,越容易释放出丙烯酰胺。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/0c404b1b-4005-4c7a-a8dd-5d35f0b73e10.jpg" title=" 7.jpg" / /p p   认识到丙烯酰胺在食物中的危害,世界各国都在呼吁,尽可能减少来自高温加工的谷物类及根茎蔬菜类食品中丙烯酰胺的含量,也就是薯条、薯片、烘焙食品、饼干、蛋糕等。 /p p   2017年,原中国食品药品监督管理局也发布了关于食品加工过程中如何控制丙烯酰胺生成量的安全提示,特别提到了油条的消费安全问题。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/a6b0fb6a-21fb-42c9-843b-386083f602ae.jpg" title=" 8.jpg" / /p p   所以,相比于咖啡,以国人的饮食习惯和进食量,我们更应该减少摄入、或者说控制加工温度并控制摄入量的,是各种油条油饼炸糕炸鸡薯片薯条烤鸡翅炸鸡块……而不是刷屏的咖啡焦虑! /p p    span style=" color: rgb(255, 0, 0) " strong 与具体肿瘤关联尚未发现 /strong /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/noimg/da0c6ac2-93f3-43a1-adb1-df815c1ac971.gif" title=" 9.gif" / /p p   丙烯酰胺的确是一种潜在致癌物质。大量动物实验表明,丙烯酰胺具有一定致癌性 并且能够造成神经系统损伤,影响婴儿早期发育,危害男性生殖健康。不过,这些致癌性也只是“疑似”。而且,目前的研究只停留在动物实验阶段,还没有充分证据表明在人类身上具有同样危害。 /p p   上海交通大学医学院附属瑞金医院临床营养科营养医师卞冬生虽然认同: /p p   “丙烯酰胺在体外细胞实验和动物实验证实其的确是一种致癌物,”但也表示,目前没有充足的人群流行病学证据可证明人类某种肿瘤的产生与由食物中摄取的丙烯酰胺有明显相关性。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/b2b4f5a0-ae7a-4cf3-8fed-ade5406aae95.jpg" title=" 10.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p   复旦大学附属肿瘤医院肿瘤预防部主任郑莹则认为,长期以来,咖啡和患癌风险之间的关系,是业界研究热点,结论总是无法确定。 /p p   现实生活中,能致癌的物质并不罕见。根据国际癌症研究机构发布的列表里,迄今致癌物质达502种,原国家食药监局总局公布的致癌物质也有499种,其中包括人们熟知的PM2.5、加工肉等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/noimg/58e23cb9-84f9-412b-82ee-af8b74705aa6.gif" title=" 11.gif" / /p p   “丙烯酰胺作为咖啡里新发现的致癌物质,应该被消费者所了解,但市民也不必为此过于恐慌。”郑莹补充解释,“还有来源于人群研究的证据表明,饮用咖啡多的人群,罹患子宫内膜癌、肝癌的风险均有所降低。” /p p   其实,任何一种致癌物质都需要达到一定浓度,并且需要持续暴露、接触一定时间以后,才能达到致癌后果。如果单纯讲某一种物质是致癌物,不考虑浓度、暴露时间,本身是不科学的。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/08098787-f871-4266-8692-2b265dc88176.jpg" title=" 12.jpg" width=" 500" height=" 313" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 313px " / /p p   解放军309医院营养科主任左小霞同意这一观点。“如果丙烯酰胺算是一种“可能对人类致癌”的物质,没有问题,问题在于首先含有丙烯酰胺的食物还有很多。” /p p   左小霞认为,在我们日常食物中,只要高温煎炸的有碳水化合物、蛋白质的东西都会产生丙烯酰胺。甚至是如果将白糖熬成了红糖、黑糖,那么也会产生丙烯酰胺。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/5ffb23fd-5029-4e02-9cfe-2191184c9868.jpg" title=" 13.jpg" width=" 500" height=" 311" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 311px " / /p p   她进一步解释说,在最新版的美国膳食指南中,已经把每天喝3到5杯不加糖不加奶油的咖啡,作为了健康生活方式的一部分。如果想减少丙烯酰胺,还不如平时在家里做饭的时候,注意温度不要过高,比如像爆炒就是一个应当减少的烹调方法,再有炒菜前也可以稍微焯一下。另外做面包的时候可以考虑少放点糖,避免外皮颜色过深。“对了,记得还有少吃薯片、爆米花等食品呃!” /p p    span style=" color: rgb(255, 0, 0) " strong 想完全避开?别天真了,不可能的 /strong /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/fecc756f-78b7-4449-a186-b509780792ba.jpg" title=" 14.jpg" width=" 500" height=" 376" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 376px " / /p p   对中国人来说,咖啡对食物中丙烯酰胺的贡献度,最乐观的估计,大约也要排到50名开外。 /p p   左小霞解释说,如果是说咖啡里丙烯酰胺的事,可以看看中国国家食品安全风险评估中心给出的数据:一个50公斤体重的成年人,每天摄入2.6μg*50=130μg,也就是10kg咖啡,才会喝到致癌剂量(煮咖啡丙烯酰胺平均剂量 13μg/kg),而10kg咖啡,差不多相当于28杯星巴克中杯咖啡的量!“一天喝8杯水,估计大家都很难做到,更别说28杯咖啡了。所以正常喝咖啡吧,不要操这个心了。” /p p    span style=" color: rgb(255, 0, 0) " strong 教你几招,如何避免 /strong /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/noimg/cc53190a-1363-4687-a9c6-2f1e93f80652.gif" title=" 15.gif" / /p p   但左小霞还是幽默地提醒大家,在买咖啡的时候,尽量选择简单的煮咖啡,少选三合一咖啡。而且,喝咖啡不要过量,否则可能会干扰睡眠。还要注意,不要喝过烫的咖啡,“经常喝超过65℃的任何饮品都会增加食道癌的发生风险。” /p p   对于咖啡致癌这一说法,范志红则表示大可不必惊慌,而应理智对待,想要完全避开是不可能的,但是日常生活中的小细节还是可以注意一下的: /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   在保证做熟、杀灭微生物的前提下,尽量避免过度烹饪食品,比如温度过高、加热时间太长 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   做主食时,建议采用蒸、煮、炖的做法,少用煎、炸、烤 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   最好少吃油条、麻花等油炸食品,炸蔬菜丸子、裹面糊的炸鱼炸虾等也要少吃 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   少吃烤制、煎炸、膨化的薯类制品 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   如果要进行煎、炸、烤烹调,尽量把块切大,把片切厚,这样有利于减少丙烯酰胺 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   馒头片、面包片不要烤得太黄。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/10f7149c-500b-4c5f-9481-a952751f6a60.jpg" title=" 16.jpg" width=" 500" height=" 331" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 331px " / /p p   最后,范志红特别尤其提醒儿童、孕妇、哺乳期妈妈要注意。小孩子更喜欢吃各种零食和油炸食品,往往会摄入过多的丙烯酰胺。丙烯酰胺容易被人体吸收,还可能会通过乳汁传递给小宝宝而宝宝的解毒功能相对较弱,要特别注意控制丙烯酰胺的摄入量,妈妈注意少吃油炸高脂食物。 /p p   总而言之, /p p   星巴克: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/7a2cc08d-bbbc-44b4-8e19-5a5c5a8a1efb.jpg" title=" 17.jpg" width=" 500" height=" 327" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 327px " / /p p br/ /p
  • 标准解读 | GB 5009.8-2023 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》
    近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009.8-2023《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》(以下称新标准)。新标准将替代GB 5009.8-2016 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》和GB 5413.5-2010 《食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖、乳糖的测定》,并于2024年3月6日正式实施。那么,新标准与GB 5009.8-2016、GB 5413.5-2010比较,有哪些变化呢?增加方法数量新标准在GB 5009.8-2016高效液相法和酸水解-莱茵-埃农氏法的基础上,增加了离子色谱法和莱茵-埃农氏法,即新标准共有4种测定方法。扩大方法适用范围新标准第一法高效液相色谱法保留了饮料类,新增了糖果样品中5种糖的测定,且将GB 5009.8-2016中的谷物类、乳制品、果蔬制品、蜂蜜、糖浆等扩大至粮食及粮食制品、乳及乳制品、果蔬及果熟制品、甜味料范畴。新增的第二法离子色谱法则适用于食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定。离子色谱法利用糖类物质在碱性溶液总中呈离子状态的原理,在糖类检测中的应用越来越多。其中,离子色谱-脉冲安培法检测糖类具有灵敏度高、样品无需衍生处理等优点。仪器参考条件:新标准中第三法酸水解-莱茵-埃农氏法与GB 5009.8-2016中第二法适用范围一致,适用于食品中蔗糖的测定。新增的第四法莱茵-埃农氏法与GB 5413.5-2010 第二法适用范围一致,但是新标准仅保留了婴幼儿食品和乳品中乳糖的测定。试样经除去蛋白质后,在加热条件下,以次甲基蓝为指示剂,直接滴定已标定过的费林氏液,根据样液消耗的体积,计算乳糖含量。果糖、葡萄糖、麦芽糖和低聚半乳糖等会对乳糖的测定产生干扰。由此可见,新标准的适用范围更广。修改高效液相色谱法的标液储存时间和浓度新标准将混合标准储备液的保存时间由GB 5009.8-2016的4℃密封储存一个月延长至0℃~4℃密封条件下储存三个月。同时,新标准增加了更低浓度点的(0.200 mg/mL)混合标准工作液,且规定可根据待测液浓度适当调整混合标准工作液浓度。这条内容的修改,使得糖含量的测定更加灵活便捷。完善高效液相色谱法和酸水解-莱茵-埃农氏法试样制备和提取过程新标准取消了GB 5009.8-2016中关于固体、半固体和液体试样要取代表性样品200 g(mL)的要求,新增了对于冷冻饮品、巧克力、胶基糖果等难溶解试样的制备和提取条件,填补了GB 5009.8-2016中此类样品前处理过程的空缺。检出限、定量限修改GB 5009.8-2016高效液相色谱法仅对于检出限作出规定,新标准在此基础上,增加了定量限。因此,在测定低糖含量的样品时,应注意该要求。此外,GB 5413.5-2010和GB 5009.8-2016的滴定法规定了检出限、定量限,而新标准的滴定法删除了检出限和定量限的要求。修改滴定原理新标准第三法酸水解-莱茵-埃农氏法为食品中蔗糖的测定方法。该方法原理特别指出,棉子糖、水苏糖、低聚半乳糖、果聚糖、聚葡萄糖和抗性糊精等会对蔗糖的测定产生干扰。新标准第四法莱茵-埃农氏法为婴幼儿食品和乳品中乳糖的测定方法,该方法原理也特别指出,果糖、葡萄糖、麦芽糖、低聚半乳糖等会对乳糖的测定产生干扰。因此,在使用第三法和第四法进行测定时,要特别注意样品中是否含有上述种类的糖,注意方法适用性。点击获取更多食品新标准解读
  • 【食品安全小课堂】兽药残留检测技术难点——如何做好β -内酰胺类抗生素的检测
    【导语】检测的日常总是充满了各种挑战,为了更好地服务食品检测行业相关用户,岛津科技资讯通现推出“食品安全小课堂”专栏。内容涵盖——食品检测技术难点、方法验证、实验室管理、法规解读等相关内容,我们会不定期更新,敬请期待! 你是否发现有一些兽药无论你怎么用心做,结果都不尽理想?不是峰型差,就是回收率太低。其实很多情况下,这可能不是你的问题,而是兽药本身的化学结构决定的。 今天我们先分析【β-内酰胺类】抗生素图片说到β-内酰胺类抗生素,大家可能没那么快反应过来,但如果我说青霉素类,是不是就秒懂啦。这可是兽残检测界响当当的“黑名单”!β-内酰胺类检测经常出现回收率低、甚至无法出峰的情况,到底是什么原因呢?其实最主要的原因是β-内酰胺类物质的不稳定性导致的。 图1 β-内酰胺类抗生素的基本结构(左:青霉素类、右:头孢菌类)[1] 图1是β-内酰胺类抗生素的基本结构。含有自然界中罕见的β-内酰胺基母核,母核结构中两个稠合环不在一个平面上,β-内酰胺环中羰基和N原子上的未共用电子对不能共轭,既容易受到亲电试剂的攻击,又容易被亲核试剂攻击[1]。因此,该类物质不稳定。有研究表明,β-内酰胺类抗生素对温度、pH、水分都较敏感[2],高温、水分、酸/碱条件都会加速该类物质的降解。 面对如此不安分的β-内酰胺类抗生素,我们该怎么办呢?下面小编给大家支支招。 1、标准品配置和存放▶ 不建议采用纯水、甲醇溶液配置标准品,建议采用50%左右的乙腈/水(V/V)溶液。▶ 配置好的标准储备液(如1000mg/L),放置在棕色瓶中于-18℃保存。建议用小瓶分装,不可反复冻融。▶ 注意一级浓标(1000mg/L)的有效期,推荐有效期为1个月。但具体可以存放多久,需要实验室应进行标准品期间核查后确定。▶ 稀释后的二级标准品储备液及线性用过后不要保存,只使用一次就好。 2、前处理注意事项▶ 麻利——尽可能缩短前处理的时间。▶ 尽量做到避光。▶ 可将耗材提前放置于低温处,必要时也可冰浴,尽量降低前处理过程的温度。 3、上机注意事项▶ 优先该项目上机。▶ 注意设置液相样品盘的温度,可设置为10℃。 以上建议基于小编的检验经验,欢迎大家在评论处讨论和补充哦~ 【食品安全小课堂】下期预告农残检测技术难点——谈谈农残基质效应那些事儿 参考文献[1].刘创基.动物性食品中β-内酰胺类药物及其代谢物检测方法的研究[D].北京化工大学,2010.[2].姜力群,嵇元欣,刘晶锦等.青霉素类抗生素稳定性的影响因素及有关物质测定方法[J].药学进展,2008,32(2).
  • 丙烯酰胺致癌风险 引欧洲监管机构关注
    据新华社布鲁塞尔电 (记者张晓茹)某些食物高温油炸或烘烤时产生的化学物质丙烯酰胺存在致癌危险。欧洲食品安全局近日发布一份丙烯酰胺研究草案,征求公众意见,将来一旦审议通过,它将成为欧盟国家食品安全领域的决策参考。   这份草案由欧洲食品安全局下属的食物链有毒物质研究专家委员会起草。该委员会主席戴安娜· 本福德博士解释说,吃到嘴里的丙烯酰胺进入消化道,然后流向各个器官,并广泛进行新陈代谢。环氧丙酰胺就是这一过程的重要代谢产物之一,也是动物研究中导致基因突变和肿瘤的可能原因。   此外,该委员会还认为丙烯酰胺可能对神经系统、出生前后发育及男性生殖造成不利影响。不过,就目前饮食中摄入的丙烯酰胺水平来看,这些影响还不足以构成实质性威胁。   从7月1日起,欧盟国家的科学工作者或其他有兴趣的各方均可就这一草案在线提交评论,截止日期为今年9月15日,草案最晚于明年6月结束审议。届时,欧洲食品安全局将为欧盟决策者及各国决策者提供科学建议,比如是否应采取措施进一步减少食物中的丙烯酰胺,在饮食习惯和家庭烹饪方式方面是否应做出某些改变。   淀粉等食物在高温油炸等加工过程中,会发生一系列复杂反应,生成棕黑色的大分子物质&mdash &mdash 类黑精。咖啡、炸薯片、饼干、酥皮面包以及一些婴儿食品等可能含有丙烯酰胺。
  • 擒魔序曲——脂质组学研究中的样品处理
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析 前言   脂质是一类自然界存在的疏水或两性、难溶于水而易溶于非极性溶剂的有机物小分子,存在于大多数生物体系中。脂质是细胞膜的骨架物质和第二能量来源,还参与细胞的许多重要功能,人类许多重大疾病都与脂质代谢紊乱有关,如糖尿病、肥胖病、癌症、阿兹海默症、以及一些传染病等,   作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。   2005年国际上把组织、细胞中的脂质分子分为8大类(J Lipid Res 2009,50(Supp) 9-14),有明确结构的脂质化合物已经有38000个(BMC Bioinformatics 2014, 15(Suppl 7):S9),这8类脂质分子见表1。 表 1 8大类脂质分子 类别 缩写 数据库中的结构数量 脂肪酰类(Fatty acyls) FA 2678 甘油脂类(glycerolipids ) GL3009 甘油磷酸脂类(glycerophospholipids) GP 1970 鞘脂类(sphingolipids ) SP 620 固醇脂类(sterol lipids ) ST 1744 异戊烯醇脂类(prenol lipids () PR 610 糖脂类(saccharolipids ) SL 11 多聚乙烯类(polyketides ) PK 132   在过去,由于技术限制人们难以分析数量巨大的脂质分析,因为多种脂质代谢产物的物理性质需要大批纯化系统、分离的复杂技术操作。2003年韩贤林等继基因组学、蛋白质组学等之后提出脂质组学(lipidomics)(Han X et a1.J Lipid Res,2003,44:1071),脂质组学的发展推动了新分析平台的研发,特别是在质谱法领域,该方法已使这些操作合理化,并且已允许更多的脂质分子得到非常详细的分析。   脂质存在于细胞、细胞器和细胞外的体液如血浆、胆汁、乳、肠液、尿液中。若要研究某一特定部位的脂质,首先要将这部分组织或细胞分离出来。由于脂质不溶于水,通常采用有机溶剂进行萃取。传统的萃取剂是氯仿、甲醇和水的混合液。所需的样品在这种混合液中提取所有脂质,向提取液中加入过量的水使之分成2个相,上面是甲醇和水,下面是氯仿。脂质就留在氯仿相,蒸发浓缩后,使之干燥就得到所需的脂质。这种脂质提取方法,能够提出组织样品中的总脂。这种方法降低了脂质的损失率,操作简便,而且提取效果较好。对于只检测总脂中的部分脂质,固相萃取(SPE)是一种较好的方法,利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。固相萃取技术设备要求低,操作简单,能快速分离组分复杂及含量低的样品。当然由于化学分析样品前处理技术的发展,有许多其他可用的样品前处理方法。   总体上对脂质组学的研究Chin Chye Teo等归纳为如下的工作流程,第一步就是对样品的处理。 1、脂质组学研究的工作流程  根据Chin Chye Teo的综述报告(Chin Chye Teo et al,TrAC,2015,65:1-18),脂质组学研究的工作流程如下表1. 表1 脂质组学研究的工作流程 从患者得到脂质组学研究的样品 液体 固体 体液,泪水,血清,血浆,尿液 (低温保存样品) 细胞,组织,器官 对上述样品进行萃取方法 对极性化合物,单独的有机化合物进行: 液-液萃取,固相萃取 对能源性物质进行:加压液相萃取,微波辅助萃取,超声辅助萃取 萃取得到的脂质化合物 使用色谱方法分离:气相色谱,液相色谱,电泳 不使用色谱方法分离:直接进样,成像 上述分离或未分离样品进行质谱分析 质谱分析的接口 质量分析器 电子轰击电离(EI),电喷雾电离(ESI),化学电离(CI),大气压(APCI)化学与电离,基质辅助激光解析电离(MALDI) 四级杆飞行时间质谱(qTOF),三重四级杆质谱( qqq),轨道阱质谱(Orbitrap) 质谱原始数据语预处理 (利用商品或自制软件) 分类和脂质鉴定(使用各种资源如LIPID maps,Lipid Bank,Lipid Blast) 判定在疾病中的机制/在疾病演化中的作用 为进一步诊断找出生物标记物(预防),提供药物治疗的指导 2、脂质组学的样品制备   本文只讲脂质组学的样品制备,Chin Chye Teo等总结了近年在脂质组学研究中使用的样品处理方法,见表2. 表2 脂质组学研究中的样品处理方法比较(Chin Chye Teo et al,TrAC,2015,65:1-18) 萃取方法 临床样品类型 (生物液体或固体) 优点 缺点 原文文献编号 单一有机溶剂萃取(SOSE) 血清(生物液体) 皮肤(固体) 容易完成萃取时间短 成本低 低温适于热敏感化合物 无需外部能量 使用有毒有机溶剂 分析时难以摆脱使用有机溶剂 1.2 3 液-液萃取(LLE) 眼泪(生物液体) 血清(生物液体) 血浆(生物液体) 尿液(生物液体) 滑液(生物液体) 动脉粥样硬化血小板(生物液体) 皮肤(固体) 组织(固体) 易于建立的方法 容易完成 设备便宜 萃取时间短 使用廉价溶剂(如甲醇,水) 低温适于热敏感化合物 无需外部能量 萃取时间短 使用大量有毒有机溶剂 常使用超过一种类型的溶剂 需要排除溶剂以免影响分析 2 4,9-13 5,14-22 8,23 7 24 25-27 28,29 固相萃取(SPE) 血清(生物液体) 血清(生物液体) 血浆(生物液体) 眼(固体) 皮肤(固体) 容易完成 清除干扰基体 EPE的选择 低温适于热敏感化合物 萃取时间短 SPE萃取小柱比较贵 需要洗掉有机溶剂以免影响分析 使用有毒有机溶剂 分析时难以摆脱使用有机溶剂 1,12 2 30 26 3,27 固相微萃取(SPME) 肺(固体) 头发(固体) 容易完成 可与GC和GC xGC 联用 对挥发性化合物可以进行顶空气相色谱 有毒溶剂消耗量少 低温适于热敏感化合物 无需外部能量 萃取时间短 萃取头比较贵 需要洗掉有机溶剂以免影响分析 分析时难以摆脱使用有机溶剂 31 32 超临界流体萃取(SFE) 血浆(生物液体) 容易完成 萃取时间短 对非极性化合物萃取效率高 CO2可循环使用 温度压力可控 可加改性剂提高萃取液极性和效率 要精心操作 设备昂贵 33 微波辅助萃取(MAE) 血浆(生物液体) 皮肤(固体) 容易完成 萃取时间短 萃取效率高 萃取溶剂消耗量少 温度压力可控 需要冷却防止溶剂逃逸 购买设备费用高 34 35 超声辅助萃取(UAE) 血(生物液体) 容易完成 萃取时间短 萃取溶剂消耗量少 温度压力可控 听力会受损 要使用有毒有机溶剂 会吸入有害溶剂 需要外部能源 购买设备费用高 提高温度会使化合物降解 36,37 3、脂质组学的溶剂萃取   液-液萃取是脂质组学研究中使用最为普遍的方法,这一方法是使用两种互不混溶的有机溶剂&mdash &mdash 使用最多的是氯仿、甲醇和水&mdash &mdash 为了对关键脂质类得到最大的萃取效率,从磷脂类和糖脂类到脂肪酸,三酰基甘油类(TAGs)、二酰基甘油类(DAGs)。最初使用的是Folch 脂质萃取法(氯仿/甲醇/水为 8:4:3 v/v/v),之后有Bligh 和 Dyer脂质萃取法(氯仿/甲醇/水为 1:2:0.8 v/v/v)。   (1)Folch 脂质萃取法(Folch et al., J Biol Chem 1957, 226: 497)   把样品组织用2:1氯仿/甲醇均一化,最后的溶剂体积是组织的20倍(20mL 溶剂里有1g样品),分散均匀后于室温下把混合物在轨道振荡器上震动15-20min。均匀混合物经漏斗中折叠滤纸过滤,或进行离心处理,回收液相。   液相溶剂用0.2体积的水(20 mL液相使用4 mL水),最好使用0.9%的NaCl溶液洗涤,涡旋几秒后在低速离心机(2000 rpm)上离心混合物,用虹吸方法弃去上层液相,用以分析神经节糖苷或小分子有机极性化合物,如需要(需移去标记分子),用1:1甲醇/水洗涤交界处的有机相两次,无需混合全部制备物。   经离心分离后虹吸掉上面的液相,下面含有脂质的氯仿在旋转蒸发器中真空蒸发,或用氮气吹拂到2-3 mL体积。   (2)Bligh 和 Dyer脂质萃取法(Can J Biochem Physiol 37:911-917)   a. 每1 mL 样品加入3.75mL 1:2(v/v) CHCl3:CH3OH 很好涡旋,如果要进行GC 分析,溶剂中要含有内标(如0.5&mu g谷甾醇)   b. 然后加入1.5mL CHCl3很好涡旋   c. 最后加入1.25mL蒸馏水很好涡旋   d. 在1000rpm离心机中室温下离心5min,得到一个两相分离(上层为水相,下层为有机相)的液体   e. 回收有机相:用一个巴斯德吸管(Pastuer pipette)通过上层水相,轻微施加正压避免上层水相浸入吸管,吸管口到达离心管底部,吸取下层有机相溶液的90%到吸管中。 下表列出不同样品容积需要加入的试剂量   如果你要得到干净的底部的有机相溶液,就要用上层&ldquo 真正&rdquo 的上层液相洗涤有机相溶液,方法如下:   a 制备&ldquo 真正&rdquo 的上层液相:取一个大的玻璃管,或者几个常规玻璃管,以水代替样品胺上述方法进行萃取操作,把几个管子中的上层水相合并在一起备用。   b 把上述第5步得到的底层溶液倒入一个玻璃管中,然后加入适量(样品+蒸馏水的体积)&ldquo 真正&rdquo 的上层液相。比如你是1 mL样品就加入2.25mL&ldquo 真正&rdquo 的上层液相。   c 好好地涡旋,离心,收集下层相。   Cui等的改进Bligh 和 Dyer脂质萃取法(Cui L,e al, PLoS Negl Trop Dis,2013,7:e2373):   900µ L氯仿-甲醇(1:2)加入到100 µ L样品中,进行涡旋,在4° C下保温,然后加入300µ L氯仿和300µ L双重蒸馏水,以9000 rpm离心2 min,脂质物在离心管底部的有机相中,然后加入500 µ L氯仿在4° C下进行涡旋20 min。从有机相中回收脂质物并与前次得到的脂质物合并,脂质萃取物经真空干燥后于&minus 80° C下存放备用。   多少年来人们使用类似于上述方法进行脂质的萃取,例如:李国琛等在脂质组学研究中也采用Bligh 和 Oyer法萃取磷脂,并作适当改进.他们的方法是:   称取100 mg鱼肉样品,加入400 p,L甲醇/氯仿(体积比2:1),涡旋混匀后,于一30℃放置过夜.取出后于4℃以10000 转速离心5 min.将上清液转出,在残渣中加入200 mL甲醇/氯仿(体积比2:1)再次提取,将2次所得上清液合并.在上清液中先后加入100 mL氯仿及100mL水,离心后,将磷脂所在的氯仿相与水相分离.采用真空离心蒸发浓缩器干燥氯仿相(温度不超过45℃,下同),将干燥后的样品于一30℃保存备用.(高等学校化学学报,2010,31(2):269-273)   人们为了提高某些脂质种类的萃取效率,改变氯仿/甲醇/水的比例,并加入一些其他添加剂,如乙酸、盐酸等,探索改进萃取各类脂质化合物的得率,如酸性磷脂和脂肪酸。(Jensen S K, Lipid Technol,2008, 20: 280&ndash 281)。 HCl-Bligh萃取法步骤:   为了更好地萃取生物样品中的脂肪酸,使用加盐酸的HCl-Bligh萃取法:取0.6 g均匀好的样品装入10-ml 带盖的培养试管中,加如1 ml 3M HCl,在80℃水浴上加热1 h,之后加入1.50 ml甲醇和1.00 ml氯仿,以及17:0脂肪酸内标,把混合物摇震1 min,然后加入ELGA-纯水系统制备的纯水1.00 ml 和2.00 ml氯仿,把试管振荡1 min,然后在3000 rpm离心机上进行离心处理5 min。把1 ml氯仿相进行甲基化,用氮气把氯仿蒸发掉,加入0.8 ml NaOH/甲醇溶液,把试管充满氮气,密封在100 ℃下烘箱中15 min,冷却后加入1 ml BF3溶液,密封在100 ℃下烘箱中45 min。在冷却后加入2 ml辛烷和4 ml饱和NaCl溶液,把混合物进行涡旋,在3000 rpm离心机上进行离心处理10 min。用1&mu L 样品进行气相色谱分析。   根据Jensen的研究,认为此方法可以对脂肪酸的萃取率提高15%,对多不饱和脂肪酸的萃取率可提高30-50%。   由于氯仿的毒性大人们就用二氯甲烷来代替氯仿(J Agr Food Chem,2008,56:4297-4303),之后就有许多研究者效仿用以萃取临床样品,包括生物液体,如血清/血浆,尿液和固体样品,如皮肤和动脉粥样硬化血小板(表中文献4,5,8,9,10,14-17,23-25,28).   近几年也用甲基特丁基醚(MTBM )做萃取溶剂代替氯仿(Matyash et al. J Lipid Res. 2008,49 (5) :1137&ndash 1146.)。Matyash 认为MTBM进行萃取快速而且可以得到干净的脂质,可以适合于自动进行鸟枪法得到脂质轮廓。因为MTBM的密度低,水相和有机相分开时,有机相在上层,这样简化了手机有机相的手续,减少了吸取的损失,不可萃取的基质小球处于离心管的底部,易于去除。严格的测试证明MTBM进行萃取对绝大多数脂质种类和&ldquo 黄金标准&rdquo Folch 或 Bligh and Dyer萃取方法类似或更好。2013年中科院大连化学物理研究所许国旺和德国图宾根大学医学院的R Lehmannb使用MTBM进行萃取开创了一个从一小片肝脏或肌肉组织同时进行道谢组学和脂质组学的研究(J Chromatog A, 2013, 1298:9&ndash 16)   人们的思路总是由简单到复杂,又由复杂回归到简单,所以脂质组学中的萃取方法,近来也有多种溶剂向单一溶剂发展, Stü biger G (表中文献1)就使用 Zhao Z等提出的单一溶剂萃取(SOSE)磷脂类脂质(J Lipid Res 2010 51:652)方法如下:   把500 mL甲醇加入到20 mL人血浆中,其中已经含有0.01% BHT(2,6-二叔丁基对甲酚)和0.5 mmol EDTA (用作抗氧化剂)和3mmol Pefablock(4-(2 aminoethyl) benzenesulfonylfluoride hydrochloride)用作磷脂酶的抑制剂,加入内标物,把样品激烈震荡1min,在冰浴中放置30 min,进行脂质的萃取,之后在10,000 rpm离心机上,离心5 min(4℃),最后把离心管上面的液体小心滴转移到2 mL玻璃样品瓶中,在零下70℃保存备用。 4、固相萃取(SPE)   SPE 是十分成熟的样品预处理技术,使用装有固定相的小柱子和各种流动相选择性地保留与固定相有特定作用力的特殊种类分子。SPE的典型应用是和 SOSE 和 LLE相结合,作为一种附加的净化步骤或从生物液体或固体住址样品中富集某种特定种类的目标脂质(表中文献1,3,12,26,27),市场有各种各样的萃取小柱供选择。供脂质萃取的SPE小柱有正相硅胶柱和反相柱(C8 和 C18),以及离子交换柱(氨丙基柱),硅胶柱和氨丙基柱多用于分离中性和极性脂质,利用改变洗脱溶剂以达到分离的目的。而C8 和 C18柱用于从水基样品中分离卵磷脂(PC)、脑苷脂、神经节糖苷和脂肪酸。   针对不同的脂质使用不同的SPE,如 Stü biger(表2文献1)在进行导致动脉粥样硬化的磷脂的研究中,使用C18 净化柱从血浆脂质萃取和富集体液氧化磷脂(OxPLs),其步骤如下:   把脂质萃取液倒入微量制备高效固相萃取柱(mHP-SPE)C18 spin-columns (PepClean, Pierce)中,小柱事先用500mL MeOH:0.2%甲酸(70:30 重量比)洗涤,然后用700 mL MeOH:0.2%甲酸(82:18 重量比)洗脱一次,再用800 mL MeOH:0.2%甲酸(92:2 重量比)洗脱一次,最后小柱用500 mL 2-丙醇再生,以便从小柱中彻底清除脂质(即中性脂质),净化后的纯度用薄层色谱检查,得到的氧化脂质用LC-ESI-MS/MS进行分析。   而Ruben t&rsquo Kindt进行皮肤神经酰胺的脂质组学研究中,则使用氨丙基硅胶小柱对脂质萃取液进行净化(表2文献3),方法如下:   使用氨丙基硅胶小柱(100 mg, 3.0 mL)先用2 mL己烷洗涤,把已经干燥的脂质溶于300 &mu L 11:1 的己烷:异丙醇(v/v)中,用2 mL己烷/甲醇/氯仿(80/10/10 (v/v))洗脱神经酰胺,用氮气吹扫干燥,溶于300 &mu L异丙醇/氯仿(50/50)(v/v)中,进行HPLC/MS分析。 5、固相微萃取(SPME)   Pawliszyn 研究组在1991年发明了SPME,1993年出现了SPME的商品化产品,使之成为广泛使用的样品前处理技术。这一方法是集萃取、浓缩、解吸、进样于一体,它以固相萃取(SPE)为基础,保留了SPE的全部优点,排除了需要柱填充物和使用有机溶剂进行解吸的缺点。SPME是以涂渍在石英玻璃纤维上的固定相(高分子涂层或吸着剂)作为吸收(吸附)介质,对目标分析物进行萃取和浓缩,并在气相色谱进样口中直接热解吸(或用HPLC流动相冲洗到液相色谱柱中,甚至可以直接进行质谱分析),这一技术适合于挥发性和半挥发性有机物的样品处理和分析。SPME有8大优点:1 操作简单,2 功能多样,3 设备低廉,4 萃取快捷,5 无需溶剂,6 可在线、活体取样,7 可自动化, 8 可在分析系统直接脱附。SPME可以对环境中的污染物进行检测,如:农药残留、酚类、多氯联苯、多环芳烃、脂肪酸、胺类、醛类、苯系物、非离子表面活性剂以及有机金属化合物、无机金属离子等,也可以用有类似特点的领域,如食品、医药、临床、后用不同的的溶液洗脱柱子,将各种待测物洗脱下来。其依据是采用脂溶性材料(C18)破坏细胞膜并将组织分散,C18充当分散剂。在硅胶固相萃取材料表面键合有机相,与传统方法使用砂子做吸附剂类似,在样品与固体材料搅拌的过程中,利用剪切力作用将组织分散。键合的有机相就像溶剂或洗涤剂一样,将样品组分溶解和分散在支持物表面。这大大增加了萃取样品的表面积,样品按各自极性分布在有机相中,如非极性组分分散在非极性有机相中,极性小分子与硅胶上的硅烷醇结合,大的弱极性分子则分散在多相物质表面。(乌日娜等,食品科学,2006,26(6):266-268)。香港城市大学的Qing Shen等利用二氧化钛纳米颗粒作萃取剂,以基质固相分散萃取方法进行橄榄果的脂质组学研究,研究证明这一方法可以把磷脂从非磷脂中完全选择性地分离出来。(Food Research Int,2013, 54:2054&ndash 2061)。 表2中的文献 1 Stubiger G, et al, Atherosclerosis, 2012,224:177&ndash 186. 2 Zhao Z, et al, J Lipid Res, 2010, 51:652&ndash 659 3 t&rsquo Kindt R, et al, Anal Chem, 2012,84:403&ndash 411 4 Cui L, et al, PLoS Negl Trop Dis,2013,7:e2373 5 Sandra K,et al, J Chromatogr A,2010,1217:4087&ndash 4099. 6 Lam S M, et al, J Lipid Res, 2014,55: 289&ndash 298 7 Giera M, et al, Biochim Biophys Acta, 2012, 1821:415&ndash 424 8 Min H K, Anal Bioanal Chem, 2011, 399:823&ndash 830. 9 Heilbronn L K, et al, Obesity,2013, 21:E649&ndash E659 10 Hilvo M, et al, Int J Cancer 134 (2014) 1725&ndash 1733 11 Montoliu I, et al, Aging (Albany NY),2014,6:9&ndash 25 12 Chen Y , et al, Clin. Chim. Acta, 2013,428: 20&ndash 25. 13 Zivkovic A M, et al, Metabolomics,2009,5:507&ndash 516 14 Chen F,et al, Biomarkers, 2011, 16:321&ndash 333 15 M. Ollero, et al, J. Lipid Res, 2011, 52:1011&ndash 1022 16ras Hematol Hemoter,2010,32:439&ndash 443. 35 Gonzalez-Illan F,et al,J Anal Toxicol,2011,35:232&ndash 237. 36 Pizarro C, et al, Anal Chem,2013,8:12085&ndash 12092. 37 Pang L Q, et al, J Chromatogr B,2008,869: 118&ndash 125
  • 岛津化妆品中丙烯酰胺LCMSMS检测方案
    丙烯酰胺(Acrylamide,CAS 号:79-06-1)作为常见工业原料聚丙烯酰胺中未聚合单体残留在于化妆品当中。丙烯酰胺经皮吸收进入人体中可转化为环丙酰胺,并与谷胱甘肽、血红蛋白和DNA结合,各种代谢产物经尿液排出。丙烯酰胺对啮齿类动物具有神经毒性、生殖毒性和致癌作用;职业暴露可引起人体神经毒性,尽管目前流行病学研究仍不能充分证明其是否会增加人类患恶性肿瘤的风险,但是欧盟化妆品法(Regulation(EC)1223/2009)和我国化妆品法规都已将丙烯酰胺列为化妆品中的禁用物质。对于聚丙烯酰胺中残留的丙烯酰胺单体,规定在驻留类护肤品中丙烯酰胺单体最大残留为0.1 mg/kg,以及在其他物品中丙烯酰胺单体最大残留量为0.5 mg/kg。 本方案采用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用,建立了化妆品中丙烯酰胺的分析方法,此方法操作简单,分析快速、选择性强和灵敏度高。丙烯酰胺的线性良好,相关系数均大于0.9999;检出限分别为0.11 &mu g/L(0.0011 mg/kg),定量限分别为0.42 &mu g/L(0.0042 mg/kg);加标回收率在75.5 ~ 112.2%之间,完全满足检测的要求。 了解详情,请点击《超高效液相色谱三重四极杆质谱测定化妆品中丙烯酰胺》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站http://www.shimadzu.com.cn/an/。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制