当前位置: 仪器信息网 > 行业主题 > >

酮咯酸氨丁三醇

仪器信息网酮咯酸氨丁三醇专题为您提供2024年最新酮咯酸氨丁三醇价格报价、厂家品牌的相关信息, 包括酮咯酸氨丁三醇参数、型号等,不管是国产,还是进口品牌的酮咯酸氨丁三醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合酮咯酸氨丁三醇相关的耗材配件、试剂标物,还有酮咯酸氨丁三醇相关的最新资讯、资料,以及酮咯酸氨丁三醇相关的解决方案。

酮咯酸氨丁三醇相关的资讯

  • 博纯发布美国博纯SASS-3000独立除氨系统新品
    产品特性:博纯SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。SASS-3000样气除氨系统安装简单,使用方便,可在环境温度-20℃至50℃范围内稳定运行。快插式连接使更换操作更简单和快速。样气处理流量可达5.0 LPM,可处理≤30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。产品应用: 燃煤锅炉SCR脱硝系统 工业锅炉脱硝、氨法脱硫系统 垃圾焚烧厂脱硝、氨法脱硫系统 其他类型脱硝、氨法脱硫系统 等等注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途创新点:上市时间:2019年6月 SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。 样气处理流量可达5.0 LPM,可处理≤ 30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。 美国博纯SASS-3000独立除氨系统
  • 博纯发布美国博纯SASS-3000独立除氨系统新品
    产品特性:博纯SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。SASS-3000样气除氨系统安装简单,使用方便,可在环境温度-20℃至50℃范围内稳定运行。快插式连接使更换操作更简单和快速。样气处理流量可达5.0 LPM,可处理≤30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。产品应用: 燃煤锅炉SCR脱硝系统 工业锅炉脱硝、氨法脱硫系统 垃圾焚烧厂脱硝、氨法脱硫系统 其他类型脱硝、氨法脱硫系统 等等创新点:SASS-3000样气除氨系统采用了独特的除氨技术,使用固体除氨介质去除样气中的氨气,而无危险性废液产生。三个独立除氨筒自动切换,每一个可去除高达40,000 PPM/L/M的氨气。 样气处理流量可达5.0 LPM,可处理≤ 30%V/V水分含量的样气,处理后样气中的氨浓度可低于2PPM。避免低浓度SO2(<35 mg/m3)被氨气所形成的铵盐结晶吸附损失,可解决铵盐结晶给CEMS管线及冷凝器带来的堵塞,从而确保CEMS系统尾端分析仪在高湿度、低SO2量程情况下测试的稳定性和准确性,保证较高的测试响应速度。最终有效延长CEMS系统使用寿命,并减少运维人员繁杂的工作量。
  • 脂肪酸分析用三氟化硼甲醇溶液
    下载:脂肪酸分析用三氟化硼甲醇溶液.pdf 关键词:三氟化硼甲醇 脂肪酸 甲酯化 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 喜讯 |首批水杨酸氨氮的CCEP认证花落朗石
    近日,首批由中环协(北京)认证中心颁发的氨氮在线监测仪(水杨酸法)《中国环境保护产品认证证书》(即CCEP证书)花落朗石。又一次的权威认可不仅是朗石实力的有力证明,也是给朗石客户的“定心丸”——行业先进的朗石产品将持续为您想要的稳定、准确的监测保驾护航。朗石氨氮在线监测仪(水杨酸法)朗石氨氮水质自动在线监测仪(水杨酸法)是朗石独立创新研发的,采用国家标准方法《水杨酸分光光度法》的检测原理,结合双光路检测技术,适用于地表水(河流、湖泊、水库)、饮用水源地以及自来水管网等,能快速、准确、简单、经济地测定水质中氨氮的浓度。
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 岛津应用:盐酸氨溴索片在4种溶出介质中的体外溶出研究
    盐酸氨溴索(Ambroxol Hydrochloride)于20世纪80年代在德国上市,后在法国、日本等国家陆续上市,是目前临床作用较强的祛痰药。其作用机理为增加呼吸道黏膜浆液腺的分泌,减少粘液腺分泌,促进肺表面活性物质分泌,增加支气管纤毛运动,使痰液易于咳出。盐酸氨溴索片为固体制剂,其体外溶出度的考察不仅是评价产品质量的一个重要指标,还是我国食品药品监督管理局规定的仿制药一致性评价中需要与原研药对比的一个重要指标。盐酸氨溴索的结构式 本研究根据国食药监注[2013]34号文《国家食品药品监督管理局关于开展仿制药质量一致性评价工作的通知》要求制定的仿制药质量一致性评价—盐酸氨溴索片一致性评价参比制剂/溶出曲线测定(草案)制定实验方案。使用岛津SNTR-8400溶出度仪和LC-30A超高效液相色谱系统开展盐酸氨溴索片体外溶出的研究。盐酸氨溴索片经溶出实验,用超高效液相色谱 LC-30A系统进行含量测定。在四种介质中分别对两组33μg/mL 浓度的盐酸氨溴索对照品连续测定3次作为对照,结果显示使用岛津SNTR-8400溶出度仪以及岛津LC-30A超高效液相色谱系统在测定盐酸氨溴索片体外溶出曲线时具有良好适应性和重复性,能够满足国家规定药物体外溶出曲线测定的相关要求。岛津SNTR-8400溶出度仪 了解详情,敬请点击《盐酸氨溴索片在4种溶出介质中的体外溶出研究》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020
    坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020产品编号BWT900637-100-ACAS号规格1mL标准值100μg/mL序号名称CAS号1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 氨基酸衍生法数据大PK:OPA or 茚三酮,原来选它
    氨基酸是构建生物机体的众多生物活性大分子之一,是构建细胞、修复组织的基础材料。它被人体用于制造抗体蛋白、血红蛋白、酶和激素以维持和调节新陈代谢,是一切生命之源。 由于氨基酸的重要性,合适可靠的检测方案将成为评估食品、饲料、药物及生理样品中氨基酸指标的重要选择。 HPLC—柱后衍生法,50多年来作为氨基酸领域的重要检测手段,因为其高效的测试准确性和重现性,深受广大用户的信赖。氨基酸检测在药物、食品、饲料中的主要应用有 ● 通过分析氨基酸组鉴定多肤和蛋白质;● 原料药和中间体中的杂质和有关物质的测定;● 药物中单个或总氨基酸的定量, 包括复杂基质中标记物的测定;● 重组蛋白生产过程的控制;● 确定氨基酸组成也是保证食品和饲料营养价值的必要条件;● 用于产品质量及过程监测。 衍生方法介绍Pickering Laboratories根据上述应用的检测对象的不同,将衍生方法分为OPA衍生法和茚三酮衍生法,两种方法都可以与任何氨基酸阳离子交换柱和洗脱液组合使用。其中我们称为Trione ® 的*茚三酮试剂,也广泛应用于氨基酸分析仪中。 OPA法与茚三酮法区别见下表:氨基酸衍生法 _Trione® 试剂(*)分析法OPA试剂分析法衍生试剂TlOO-预混试剂 ;自生产日期起计算, 4个月保质期(950 ml/瓶) TlOOC -预混试剂;自生产日期起计算, 4个月保质期(950 mL/瓶) T200 - 2部分试剂,混合后使用,从生产之日起12个月保质期;4组/箱(900mL/瓶)OD104-氨基酸分析用OPA稀释液; O120-OPA试剂(5g/瓶) 3700-2000 -疏基化合物。(10g/瓶) 这三种产品都是用于氨基酸OPA分析法适用样品一级和二级氨基酸一级氨基酸 在与OPA反应之前需要检测二级氨基酸氧化步骤。使用氧化步骤时,一级氨基酸的检测灵敏度会有所降低。检测器UV/VISFLD仪器灵敏度10 pmole (在色谱柱上)2 pmole (在色谱柱上)色谱柱&洗脱液适用于任何阳离子交换柱氨基酸分析法与任何用于氨基酸分析的阳离子交换柱配合使用配置单泵Ony×PCXI vector PCX+ 0.5 m L反应器单泵Ony×PCX/ vector PCX+ 0.15 ml反应器。 *需要带有0.5 mL和0.1 mL反应器的双泵OnyxPCX来检测二级氨基酸。 在此模式下, 初级氨基酸的灵敏度会降低。 色谱柱的选择图1:钠柱氨基酸分析选择 图2:锂柱氨基酸分析选择 图3:氨基酸标品 图4:豆粕样品 图5:水解单克隆样品 Pickering产品 完整解决方案欧洲药典8.0对于氨基酸的柱后衍生茚三酮法做了详细的要求,药典对于包括化学、 动物、 人或草药来源的活性物质、赋形剂和制剂,顺势疗法制剂,抗生素,制剂和容器等都有所要求。 Pickering Laboratories 将欧洲药典作为测试依据,为客户提供完整的氨基酸分析解决方案。 Pickering 柱后衍生仪 解决方案包括Onyx PCX/Vector PCX 柱后衍生仪器、分析柱、保护柱、缓冲液和Trione ® 茚三酮试剂。并且对方法进行了优化, 在符合药典各项体系适宜性要求的同时,提高了分析的灵敏度及分析效率。 Pickering全套试剂包 图6:依据欧洲药典8.0法测试氨基酸 关于Pickering Laboratories 美国Pickering Laboratories公司是全球仅有的专业提供人工测试体液和柱后衍生化学试剂、色谱柱、分析方法等柱后衍生分析整体解决方案的机构,其不断创新及良好的信誉被众多的美国政府机构如EPA、ATF、FDA、AOAC和世界知名的厂商所认可。
  • 牙膏添加处方药“氨甲环酸”,为什么大家反应这么大?
    最近,某款牙膏被曝光,所谓的中草药止血,是因为在牙膏里掺了西药处方药“氨甲环酸”,引起了网络一系列讨论。为什么在牙膏里添加氨甲环酸被曝光后,会受到一众抵制呢?这就要从氨甲环酸,这一款处方药说起了。氨甲环酸(Tranexamic acid)又名凝血酸,化学名为反-4-氨甲基环已烷甲酸,白色结晶性粉末;无臭,味微苦。分子式:C8H15NO2氨甲环酸为氨甲苯酸的衍生物,是一种抗纤溶的止血药物。氨甲环酸化学结构与赖氨酸相似,能竞争性抑制纤溶酶原在纤维蛋白上吸附,防止其激活,保护纤维蛋白不被纤溶酶所降解和溶解,最终达到止血效果。但是!氨甲环酸是处方药!必须遵医嘱使用!我们来看看氨甲环酸的使用注意事项:1. 联合用药禁忌 药物名称临床症状及处置方法作用机制 危险因素凝血酶有可能有血栓形成的倾向有促进血栓形成的作用,如果联合用药有增加血栓形成的倾向2. 联合用药时的注意事项:药物名称临床症状及处置方法作用机制 危险因素蛇毒凝血酶大量合用时可引起血栓形成倾向本制剂具有的抗纤溶作用,有可能导致蛇毒血凝酶引起的我纤维蛋白块存留较长时间,从而使栓塞的症状延续巴曲酶有可能引起血栓或栓塞症由巴曲酶所生成的desA ,可阻碍纤维蛋白聚合体的分解。 凝血因子制剂依他凝血染等在口腔等纤溶系统活性比较强的部位,有可能使凝血系统进一步亢进。凝血因子制剂通过活化凝血系统出现止血作用,而本药物通过阻碍纤溶系统也出现止血作用以下患者应慎重给药(1)有血栓的患者(脑血栓、心肌梗塞、血栓静脉炎等)以及可能引起血栓症的患者。[有使血栓稳定化的倾向](2)有消耗性凝血障碍的患者。(与肝素等并用)[有使血栓稳定化的倾向](3)术后处于卧床状态的患者以及正在接受压迫止血的患者。[上述情况易发生静脉血栓,给予本药后有使血栓稳定化的倾向。有在下床运动及解除压迫后发生肺栓塞的报告。](4)有肾功能不全的患者[有时血药浓度升高](5)对本剂有既往过敏史的患者。可以看出,不合理用药,会增加血栓风险,因此氨甲环酸必须在医生指导下使用。而牙膏是我们日常生活必需品,老人小孩都会使用到它。虽然并不是直接服下,但是我们不能排除风险。另外,牙龈出血也不是随随便便把血止住就万事大吉了的。在排除了刷牙方式不当或牙刷刷毛过硬外,牙龈出血表示:1. 你患有牙龈炎,牙周炎了;2. 你牙结石过多了;3. 其他的一些全身性疾病。而所谓的止血牙膏,仅仅是把血止住了而已,对牙龈炎牙周炎等并无改善作用,类似于掩耳盗铃。久而久之,很多人就会错过口腔传递的求救信号,许多疾病就无法得到及时治疗,导致更严重的后果出现。最后,牙膏最主要的功能,就是清洁牙齿防止蛀牙,所以购买牙膏时,不必为了各种花哨的功能而左挑右选,除了含氟牙膏是经过证实能够预防龋齿之外,别的宣传基本上都是噱头。
  • 甲醇中16种挥发性有机物混合-16种TVOC(含乙酸正丁酯)(GB50325-2020)
    81073KACAS号规格2mL库存≥50有效期2021-06-01标准值2000μg/mL1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 滨海正红发布CH酸纯化器,高纯酸提纯器新品
    酸纯化器一、 产品简介:南京滨正红---酸纯化器:又称酸纯化系统,高纯酸提纯器,酸试剂提纯器,高纯酸蒸馏纯化器等,可用于实验室酸如HNO3、HCl、HF、碱溶液和有机溶剂的纯化,纯化后的酸和Merck的一样好,可用于痕量和超痕量分析的样品制备,纯化器带有液位计方便观察里面的溶液,一个出酸口,一个排废液口,操作维护方便,是超纯净实验室化学反应的必备产品。 实验后期可配套我单位Teflon特氟龙系列试剂瓶收取高纯酸。为了满足更多客户的需求,我厂研发了更大规格的酸纯化器(2000ml)二、工作原理:酸纯化器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,广泛应用于样品处理及分析中。目前市场上的超纯酸由于价格较贵,很难满足日常分析需求,因此提纯优化酸的质量,是最为经济可行的途径。是超纯净实验室提取高纯酸的得力助手。典型用户:中国地质大学、中国计量科学研究院、中国科学院地球化学研究所、中国工程物理研究院、中核建中核燃料元件有限公司、长沙核工业230研究所、广西壮族自治区海洋环境监测中心站、中国建材地勘中心陕西总队等。 三、 产品特点:1、可以满足ICP、ICP-MS极低的检测限需要及苛刻的分析应用中提供实验室级超纯酸,所用容器均采用Teflon耐腐蚀无吸附塑料,可处理如HNO3、HCl、HF等实验室的常用酸。2、实验证明将金属杂质含量约10ppb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01ppb左右。若对酸要求更高,可增加提纯次数。四、相关参数:型号CH-I 500mlCH-II 1000mlCH-Ⅲ 2000ml名称酸纯化器酸纯化器酸纯化器产酸率30ml/h50ml/h70ml/h温控方式PID温控数显PID温控数显PID温控数显控温精度±1℃±1℃±1℃材质FEP、PTFE、硅胶(冷却水管)电压220V/50Hz功率(W)350优势1.密闭环境下提纯酸,不受环境污染,确保酸纯度2.纯PFA、FEP、PTFE材质制造,空白值低无腐蚀3.技术先进,结构合理,操作简单,一键式操作,蒸干自我保护4.提纯过程中,极少量酸气逸出5.节约成本,方便实验:较短时间内纯化低成本的酸试剂以达到痕量分析要求实验数据(仅供参考):仪器:CH-I 酸纯化器;试剂:优级纯HF 蒸馏后,经中国地质大学地质过程与矿产资源国家重点实验室ICP-MS检测出HF中杂质的含量:元素测量浓度(ng/g=ppb)元素测量浓度(ng/g=ppb)BeCrEuYbZr0.01U0.01 创新点:顶部驻酸,从源头上避免交叉污染 底部硅胶片加热,PID温控数显,人性化结构设计,可置于通风橱中工作并实现无人看管 所有部件均采用特氟龙塑料、彻底杜绝腐蚀和二次污染的问题 可连续不间断地制备硝酸、盐酸、氢氟酸、碱溶剂及有机溶剂 CH酸纯化器,高纯酸提纯器
  • 日本制修订食品添加剂醋酸钙和异丙醇的相关标准
    2013年12月4日,日本厚生劳动省医药食品局发布食安发1204第3号:部分修订食品卫生法实施规则(省令)及食品、添加剂等规格标准(告示)。内容包括:   1. 省令:   根据食品卫生法第10条规定,在食品卫生法实施规则附表1中追加醋酸钙。   2. 告示:   (1)根据食品卫生法第11条第1项的规定,设定醋酸钙的成分规格。   (2)根据食品卫生法第11条第1项的规定,修订异丙醇的成分规格和使用标准。   该修订自发布之日起实施。
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • 解决方案丨鸡肝中环丙氨嗪残留量的测定
    环丙氨嗪又名灭蛆灵、灭蝇胺,是一种新型的昆虫生长调节剂,对双翅目昆虫幼虫体有杀灭作用,尤其对在粪便中繁殖的几种常见的苍蝇幼虫(蛆)有很好的抑制和杀灭作用。它和一般灭蝇药的不同点是它杀幼虫-蛆,而一般灭蝇药只杀成蝇且毒性较大。该药具有触杀和胃毒作用,并有强内吸传导性,持效期较长,但作用速度较慢。短期内大量接触灭蝇胺对眼睛、皮肤有刺激作用,甚至引起急性中毒,产生恶心、呕吐、眩晕等健康危害,长期摄入对人体健康有不良影响。对于动物性食品中环丙氨嗪残留量的检测现可依据国家标准GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》,本方法参考上述标准,将试料中的环丙氨嗪,用三氯乙酸/乙腈溶液提取,混合阳离子交换固相萃取柱净化,高效液相色谱测定,外标法定量。图-1 环丙氨嗪的结构式仪器和耗材1仪器Fotector Plus高通量全自动固相萃取仪AH 50全自动均质器MPE系列高通量真空平行浓缩仪Auto EVA 80 全自动氮吹浓缩仪Agilent 1260高效液相色谱2 耗材MCX固相萃取柱(60 mg/3mL,P/N:RC-204-72855)3 试剂乙腈(色谱纯)甲醇(色谱纯)正己烷(色谱纯)乙酸乙酯(色谱纯)25 mmol/L乙酸铵溶液:取乙酸铵0.19 g,用水950 mL溶解,用乙酸调pH至5.0,用水稀释至1000 mL。1%三氯乙酸溶液:取三氯乙酸1g,用水溶解并稀释至100 mL。提取液:取1%三氯乙酸溶液15 mL,用乙腈稀释至100 mL。0.1 mol/L 盐酸溶液:取盐酸9 mL,用稀释至1000 mL。5%氨水甲醇溶液:取氨水5 mL,用甲醇稀释至100 mL。流动相:取25 mmol/L 乙酸铵溶液40.0 mL,用乙腈定容至1000 mL。样品制备称取试样5 g(准确到±0.01 g),于50 mL离心管中,使用AH 50全自动均质器自动加入提取液15 mL,并均质30 s。5000 r/ min离心5 min,取上清液于分液漏斗中,再于残渣中加提取液10 mL,重复提取一次,合并两次上清液,加正己烷30 mL,振摇2 min,静置使分层。收集下层液体于MPE浓缩杯中,于MPE真空平行浓缩仪50 ℃水浴中浓缩至1 mL,转至10 mL刻度离心管中,用提取液润洗浓缩杯2次,每次2 mL。合并两次提取液,以10000 r/min离心5 min,取上清液,备用。1 净化取MCX固相萃取柱安装在Fotector Plus高通量全自动固相萃取仪上,依次用甲醇5 mL、水3 mL活化,备用液过柱(控制流速约1.0 mL/ min)。依次用甲醇3 mL、0.1 mol/L盐酸溶液3 mL、水3 mL和甲醇3 mL洗柱,弃去洗出液。用5%氨水甲醇5 mL洗脱,收集洗脱液。洗脱液于EVA 80全自动氮吹浓缩仪上50℃氮吹吹干,用流动相1 mL溶解残余物,涡旋混匀,过滤,待上机分析。具体的固相萃取方法见图-2。2 固相萃取净化条件图-2 Fotector Plus固相萃取方法液相检测条件1 液相条件2 色谱图 图-3 环丙氨嗪标准溶液色谱图(200 µ g/L)图-4 鸡肝基质加标环丙氨嗪色谱图(25 µ g/kg)结果与讨论为了验证该方法的回收率,本实验向鸡肝样品中加入环丙氨嗪标准品进行低、中、高三种浓度梯度的基质加标回收验证(n=6),数据如表-1所示。加标回收率在74.5%~77.9%之间,RSD值控制在5%以内。说明该方法能够运用于动物性食品中环丙氨嗪残留量的检测。样品加标回收率及RSD值(n=6)总结本解决方案操作方便、提取和浓缩效率高、重现性好,符合GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》要求。均质过程采用AH 50全自动均质器,仪器自动加液,通过水洗、溶剂洗、超声洗三种刀头清洗方式,全方位杜绝样品间交叉污染。MPE真空平行浓缩仪实现批量、快速、高效的浓缩过程,采用水浴加热和平稳的圆周震荡模式,一批次完成16位大体积浓缩,同时保证样品的平行性和可靠性。浓缩完成后配合Fotector Plus高通量全自动固相萃取仪进行净化,从活化到上样、洗脱等一步到位,全自动过程排除人员操作带来的误差,且六通道同时进行萃取,能够实现高通量处理,最多一天能够处理180个样品;将净化后的样品直接置于EVA 80高通量全自动氮吹浓缩仪中,不仅避免转移的损失,又省时省力,真正为批量检测提供帮助。
  • CT-1Plus电位滴定仪:聚氨酯预聚体NCO测定的精准利器
    在聚氨酯预聚体的性能评估中,NCO(异氰酸酯基)含量是至关重要的指标。而今天,我们将为您介绍一款能够精准测定聚氨酯预聚体NCO含量的先进仪器——CT-1Plus自动电位滴定分析仪。 一、精准的仪器配置1.CT-1Plus电位滴定仪:作为核心设备,具备高精度的电位检测和滴定控制功能,为准确测定提供坚实基础。2.pH-105复合电极:能够精确感知溶液中的电位变化,确保测试数据的可靠性。3.20mL高精度计量管:实现精准的滴定剂添加,将滴定误差控制在极小范围内。4.100mL滴定杯:为化学反应提供适宜的空间,保证反应充分进行。 二、精心配置的试剂1.滴定剂采用盐酸标准溶液,滴定度为0.5235mol/L,确保滴定过程的准确性和一致性。2.溶剂选用无水甲苯/异丙醇,能够有效溶解样品,促进反应进行。3.反应剂为0.1mol/L 二正丁胺甲苯,与NCO发生特定的化学反应,为测定提供可靠依据。 三、科学严谨的测定方法1.采用非水酸碱/电位滴定法,充分考虑聚氨酯预聚体在非水体系中的特性,确保测试方法的科学性。2.二正丁胺甲苯溶液的精心配制,量取16.6mL二正丁胺溶于1000mL甲苯备用,为反应提供准确的试剂条件。3.具体操作过程中,称取适量样品于250mL具塞锥形瓶中(注意不要沾附在瓶颈上),加入无水甲苯25mL,盖上瓶塞在加热板上温热速溶。用移液管吸取25mL二正丁胺甲苯溶液,盖上塞子震荡溶解片刻,将样品转移至滴定杯中,加入 20ml 异丙醇,插入电极和滴定头,设置好仪器滴定方法及计算公式,用盐酸标准溶液滴定至终点。同时,不加样品重复上述操作测定空白,以消除系统误差。 四、优化的仪器参数1. 最小滴定体积为10μL,最大滴定体积为100μL,能够根据不同的样品需求进行精细滴定。2. 搅拌速度设置为200,使溶液充分混合,反应更加均匀。3. 每滴间隔1200ms,确保滴定过程稳定有序。4. 终点模式采用微分判定,微分设置为200,能够敏锐地捕捉到滴定终点,提高测试精度。 五、可靠的测试数据在24℃的环境温度和45%的环境湿度下,对多组样品进行测试。例如,取1.1185g 样品时终点体积为1.6271mL,测试结果为6.28%;取1.1405g 样品时终点体积为1.5592mL,测试结果为6.29%;取1.1428g 样品时终点体积为1.5373mL,测试结果为6.31%,平均值为6.29%。测试时间仅为3min,高效快捷,空白体积为4.8220mL。综上所述,CT-1Plus 自动电位滴定分析仪凭借其精准的仪器配置、科学的测定方法、优化的仪器参数和可靠的测试数据,能够为聚氨酯预聚体NCO含量的测定提供高效、准确的解决方案。无论是在实验室研究还是工业生产中,它都是您值得信赖的选择,助力您精准把握聚氨酯预聚体的性能,推动相关领域的发展与进步。
  • HJ1076-2019环境空气中氨、甲胺、二甲胺、三甲胺的测定
    随着工业文明和城市发展,工业在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。我们的生存环境污染日趋严重,尤其是空气污染几乎危及到每个人。世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难。空气污染物中的许多物质对人有严重的损害,例如其中的氨、甲胺、二甲胺、三甲胺可对人体造成严重损伤。氨能引起喷嚏、流涎、咳嗽、恶心、头痛、出汗、脸面充血、胸部痛、呼吸急促、尿频、眩晕、窒息感、不安感、胃痛、闭尿等症状。刺激眼睛引起流泪、眼疼、视觉障碍。皮肤接触后引起皮肤刺激、皮肤发红、可致灼伤和糜烂。慢性中毒时出现头痛、恶梦、食欲不振、易激动、慢性结膜炎、慢性支气管炎、血痰、耳聋等。甲胺具有强烈刺激性和腐蚀性。吸入后,可引起咽喉炎、支气管炎、重者可因肺水肿、呼吸窘迫综合征而死亡;极高浓度吸入引起声门痉挛、喉水肿而很快窒息死亡,或致呼吸道灼伤。二甲胺对眼和呼吸道有强烈的刺激作用。液态二甲胺接触皮肤可引起坏死,眼睛接触可引起角膜损伤、混浊。三甲胺主要是刺激人的眼、鼻、咽喉和呼吸道。长期接触会感到眼、鼻、咽喉干燥不适。盛瀚解决方案为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护生态环境,保障人体健康,测定环境空气和固定污染源无组织排放监控点空气中氨、甲胺、二甲胺SH和三甲胺,盛瀚色谱推出了相关解决方案。采用盛瀚CIC-D120型离子色谱仪,使用盛瀚SH-CC-3(4.6×250)阳离子色谱柱和甲烷磺酸淋洗液对氨、甲胺、二甲胺、三甲胺检测,能够满足《HJ1076-2019环境空气氨、甲胺、二甲胺和三甲胺的测定离子色谱法》的检测要求。SH-CC-3 型色谱柱是青岛盛瀚色谱技术有限公司生产的一种弱酸型阳离子色谱柱。基质为交联度 55%的苯乙烯-二乙烯苯聚合物,表面接枝羧基。SH-CC-3 型色谱柱可用非抑制或抑制电导法完成常规阳离子分析,可同时分析 6 种常见阳离子:Li+、Na+、NH4+、K+、Mg2+、 Ca2+,在特定条件下,可直接电导分析部分过渡金属阳离子。盛瀚一直致力于研究开发高精度、高灵敏度和高智能的离子色谱仪,目前CIC系列产品已广泛应用于环保、疾控、自来水、质检、水文、地质、高校、科研院所、企业等众多领域,并出口到韩国、印度等34个国家和地区。“保障人类生存环境,促进生态良性发展”是盛瀚所属集团新光智源集团的企业宗旨,集团一直在为“成为环境生态文明安全管理的推动者”的伟大愿景不懈奋斗,期望我们共同缔造蓝天白云、绿水青山,让环境更美好!
  • 干货分享|水质检测人绕不过的坎:总氮小于氨氮
    首先,我们先了解一下什么总氮?什么是氨氮?以及总氮与氨氮的区别及联系。简单来说,氨氮是总氮的组成之一,同种废水中,总氮浓度要比氨氮浓度高。两者的关系还可以用下面这张图来表示。 理论上,在水质中氨氮的含量肯定是小于总氮的,但是实际检测中,往往会出现氨氮的检测结果大于总氮的现象,为什么会产生这种现象呢?●总氮小于氨氮的几种影响因素●1、 实验环境导致的误差在实验室周围环境有卫生间或存放氨水等等,实验室的空气中含有少量的氨气,这些氨气极易溶于水,使实验用水也不同程度地含有铵离子。在实验分析中,稀释水样所用的无氨水的制备和保存往往不被重视,导致外界氨氮溶解到水样中,增加了水样的氨氮浓度误差。2、样品引入的误差由于水中的氮化合物是在不断变化着的,采集后送回实验室等待实验分析的样品, 它们的存放时间、 存放地点,光照情况等, 甚至分析人员取样的先后次序等,都会给氨氮和总氮的实验分析带来不同的误差。3、试剂和水引入的误差实验时首先要进行过硫酸钾的提纯处理,没有经过提纯的过硫酸钾溶液的吸光度远大于经过提纯的过硫酸钾溶液,且经过提纯的过硫酸钾溶液标准偏差更小,对水样测定结果的偏差影响更小。总氮实验的成败与实验用水和试剂的优劣直接相关。首先是实验用水,普通的蒸馏水不能满足要求,必须进行二次蒸馏,使用自制无氨水时,在保存水期间,要避免与实验室空气中含有氨接触,而受其重新污染。其次是试剂的选择和配制,试剂的选择也极其重要,过硫酸钾的质量影响到整个实验的成败,,其纯度关系到空白值得高低和测定结果的准确度。通过实验发现默克的过硫酸钾可以满足实验要求。 4、实验方法引入的误差氨氮的分析通常采用较为经典的纳氏试剂光度法,虽然显色要求碱性环境,但前处理过程比较简单,直接显色测定后,就可以计算得出结果。相对来说总氮的分析的前处理过程要复杂一些,要经历在碱性条件下30min的加压处理,在前处理过程中如果密封不好,也会导致在高温高压下氨氮的释放,一般很少有化验室做到每次总氮的消解用生料带密封瓶塞的,因此转化不可能为100%的转化,这当中会导致总氮过程中的氨氮释放,从而引起误差存在。5、样品浊度引入的误差总氮分析前处理能消除的浊度影响在氨氮分析中消除不了, 加上比色时常用不同种比色皿, 这几种影响因素加起来, 对最后结果带来差异。由于两种测试方法都是用测量吸光度的,样品中的悬浮物造成的浊度是样品分析中最难消除的影响因素,在总氮和氨氮的实验分析测定中, 总氮分析前处理能消除的浊度影响在氨氮分析中就消除不了,可能会对水样检测中的氨氮造成较高的情况。6、不同分析方法和分析仪器引入的误差几乎所有的分析实验方法测定样品都有一定的方法误差, 总氮和氨氮的实验分析也不例外,分析氨氮的纳氏试剂光度法有误差,分析总氮的碱性过硫酸盐分解法同样也有误差, 两种分析方法误差给最后测定结果带来的误差,有很大的不确定性。在两个项目的整个分析过程中所使用的各种量器、比色管、比色皿等多种仪器,它们都可能引入程度不同的误差 比色时所使用的分光光度计的灵敏度、精密度和准确度都可能不是一样的,引入的误差大小也不一样。特别对总氮和氨氮的比色测定采用的是可见和紫外两种不同光区的光, 引入的误差差异更大。7、数据处理引入的误差在数据处理中, 有两方面可能引入误差:一是不同的校正曲线引入的误差,虽然这两个项目使用的两条曲线都经统计检验合格,但曲线与曲线有差别,这种差别带来误差 二是对有效数字的取舍引入误差。两方面的误差总和起来就形成了两分析项目间不小的误差。样品的浓度越小,这种误差越大,这就是有些情况下,经过稀释的水样反而会出现氨氮小于总氮的情况。8、还有就是不同人员的因素导致的各种误差实验手法,误差控制上都会有不同的差别:从上面的分析可以看到氨氮和总氮在化验过程中出现的误差的情况有客观和主观的多方面的因素影响,综合的误差会导致氨氮可能超过总氮的情况发生。●如何预防误差带来的错误数据●综上所述,在污水检测中,氨氮和总氮的化验中会经常出现的氨氮高于总氮的情况,是不可避免的,特别是在一些总氮中氨氮所占的比例较大的水样中,由于多种诱发误差的原因存在,出现这种情况的几率很高。检测人员应该对于总氮和氨氮的分析时间要保持一致,消除药品样品及实验条件的干扰。
  • 关注环保——博纯推出专利除氨器
    在脱硝后烟气气体分析应用中,经常会有逃逸氨问题的困扰。博纯专利除氨器能有效去除逃逸氨,防止采样管线因结盐而堵塞,有效的保护仪器设备。   美国博纯有限责任公司研制了博纯专利除氨器其中的专利洗涤器介质并投入连续生产。该介质的使用寿命取决于样气的流速和气流中的氨浓度,在与气体反应时,具有很强的选择性,仅仅将气体中的氨去除,防止氨盐产生 同时,它是一种非常安全、稳定的化学物质,便于进行搬运和存储。   博纯专利除氨器安装方便(安装于采样探头后方),便于维护。   查看产品图片http://www.instrument.com.cn/netshow/SH101541/C96354.htm   更多产品信息,请登录www.permapure.com   关于博纯   成立于1972年,总部位于美国的博纯(Perma Pure)有限责任公司是国际领先的气体处理设备制造商。我们为全世界医疗、工业和科学、氢燃料电池和环境监测应用领域提供气体采样和预处理类产品如,干燥器、加湿器、过滤器、冷凝器、特种气体洗涤器及完整采样系统等。   博纯(Perma Pure)已经成为医疗设备市场中呼吸气体干燥器的主要供应商,应用包括麻醉监护、呼吸监测及代谢测试中对呼出气体进行干燥,同时可对呼吸器的供气或供氧进行加湿。近年来,公司也开始向燃料电池厂商提供加湿器,并逐步成为环保和流程气体分析仪器的OEM供应商,应用包括电化学传感器(用于气体检测)、红外分析、化学发光、总碳测定(TOC)和颗粒测量的样气脱水处理。   博纯(Perma Pure)公司在1978年向DuPont公司买下了Nafion材料生产特许权,Nafion的膜渗透脱水技术以其独特的原理和优异的性能闻名于业内。一直以来博纯(Perma Pure)运用Nafion® 技术,连同其他创新多样的技术和专业知识,为客户提供全面的样气处理应用解决方案。公司于1992年加入英国豪迈集团(Halma p.l.c.),豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。依托豪迈全球性业务的支持,公司在技术、投资以及生产上获得了长足发展。公司已获得ISO9001:2000认证,相关产品也均获得CE认证。   拥有完整的样气处理器件和成套系统,各种气体分析应用的客户化解决方案以及几十年来的产品应用经验和成功案例,相信我们在样气预处理方面的专业能力将为您的业务发展提供长久助力。   关于豪迈:   创立于1894年的英国豪迈国际有限公司(Halma p.l.c. – www.halma.cn )是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。   销售联系方式   夏黎明先生 中国区销售经理   上海市长宁区仙霞路137号盛高国际大厦1801室   邮编:200051   电话:021-52068686-113   传真:021-52068191   电子信箱: fxia@permapure.com   网址:http://www.permapure.com
  • 蓝天保卫战中不可忽视的一个战场——氨逃逸
    p strong /strong strong   易被忽视的“大气污染元凶” /strong /p p   众所周知,机动车尾气排放、工业污染、燃煤污染、施工扬尘等是我国大气污染的主要来源。然而,还有一个重要污染源,一直被社会忽视,却是中国空气污染拼图中极重要的一块,更是PM2.5指数被持续推高的重要密码--氨气。据了解,氨气与空气中的酸反应生成的硫酸铵、硝酸铵在重污染天气可占到PM2.5质量浓度的40%以上。 /p p   除了形成PM2.5外,氨气还是一种具有刺激性的有毒有害气体,对人体具有腐蚀性作用,经呼吸道吸入后会伤害人的呼吸系统甚至脑神经系统。 /p p    strong 工业氨逃逸问题日益突出 /strong /p p   在我国,空气中氨的主要来源是农业施用的大量氮肥,约占氨气污染的60%,其次就是工业企业的氨逃逸问题。 /p p   氮氧化物(NOx)是大气污染的主要成分之一,随着我国对大气污染治理的重视不断加强,我国提出了“超低排放”的概念,率先对燃煤电厂排放的烟尘、氮氧化物、硫化物、汞等大气污染物做了严格的要求,并不断向非电行业比如钢铁、水泥行业推进。 /p p   随之而来的氨逃逸也引起了广泛的关注。据了解,在氮氧化物超低排放改造工程中,选择性催化还原技术(SCR)、选择性非催化还原技术(SNCR)和炉内燃烧控制技术这三种脱硝工艺被广泛采用,而前两种技术都需要用到氨水这一原料。为了达到环保超低排放的要求,大多数电厂往往会在脱硝过程中加入过量的氨水,导致烟气中存在多余的氨气排入大气,这一现象被称为 span style=" color: rgb(255, 0, 0) " strong 氨逃逸 /strong /span 。随着电力行业超低排放改造的基本完成,和非电力行业节能改造工程的推行,大量脱硝工艺的运行导致氨逃逸问题逐渐严重起来。 /p p    strong 排放标准率先公布 检测标准亟待出台 /strong /p p   据了解,河南、山东、河北三省率先出台了地方性氨逃逸排放限制要求。2019年3月,河南省发布的《2019年大气污染防治攻坚战实施方案》中规定,2019年年底前,水泥窑废气在基准氧含量10%的条件下,氨逃逸不得高于8mg/m sup 3 /sup 。这是自超低排放概念在水泥行业推出后,地方首次将氨逃逸问题列入监测要求 同样在2019年3月,山东省发布《火电厂大气污染物排放标准DB 37/664-2019》,增加了氨逃逸和氨厂界浓度控制指标要求 2020年3月,河北印发《水泥工业大气污染物超低排放标准》、《平板玻璃工业大气污染物超低排放标准》和《锅炉大气污染物排放标准》三项地方标准,均在严格了烟气颗粒物、二氧化硫、氮氧化物排放限制的基础上,增加了氨逃逸控制指标。这意味着不仅在脱硝工艺过程中需要对氨逃逸现象进行监测,工厂总排放口的气体氨含量也需要进行监控,以往喷洒过量氨水以达到去除氮氧化物的做法将受到严格管控。 /p p   为此企业开始在烟气排放管道装设氨逃逸在线监测系统,用以监测氨气排放浓度。目前氨气的检测方法有激光法、红外法、电化学法、光腔衰荡光谱法等,由于氨在空气中的浓度低且易于吸附,因此如何对氨检测仪器进行校准和精度检验,是行业内公认的难题。当前业内对准确检测氨浓度的方法并无统一意见,基于此,行业有关专家对上述地方出台的监测标准也提出了质疑。专家认为如果仅仅列出了排放限制,并未规定具体的、经过验证的检测方法,相关标准的颁布恐会流于形式,而无法对氨逃逸控制起到有效帮助。 /p p   虽然目前在线氨逃逸监测技术仍待完善,市场还不成熟。但据了解,氨逃逸的监测问题已经得到有关部门的重视,相信在不久的将来,环境空气中氨气在线监测的相关标准会逐步颁布实施。 /p p strong 相关仪器专场: span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/zc/654.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " 氨气分析仪/氨分析仪 /a /span /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/5095ac24-d08a-4023-9106-e9840df09f71.jpg" title=" 绿仪社.jpg" alt=" 绿仪社.jpg" / /strong /p p strong /strong /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加绿· 仪社为好友 及时了解科学仪器市场最新动态! /span /p
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • 儿童感冒药标准修订:1岁内禁用优卡丹、好娃娃
    国家药监局重新修订儿童感冒药品说明书   1岁内婴儿禁用“好娃娃”、“优卡丹”   感冒发烧是儿童常见疾病,有关用药问题倍受家长关注,日前国家药监局下发通知,根据盐酸金刚烷胺单方制剂说明书中有关儿童用药的规定,对含盐酸金刚烷胺的非处方药(OTC)的说明书进行了修订,因缺乏新生儿和1岁以下婴儿安全性和有效性的数据,要求在此类群体中禁用有关药品。   药监局:1岁以内禁用   根据国家药监局的通知,含盐酸金刚烷胺非处方药的说明书已被重新修订:对于仅用于儿童的氨金黄敏颗粒、小儿氨酚烷胺颗粒、小儿复方氨酚烷胺片,删除了“注意事项”中“1岁以下儿童应在指导下使用”,在“禁忌”项中增加了“因缺乏新生儿和1岁以下婴儿安全性和有效性的数据,新生儿和1岁以下婴儿禁用本品。”   对于可用于儿童,也可用于成人的氨酚烷胺那敏胶囊,将“5岁以下儿童应在医师指导下使用”,修订为“5岁以下儿童不推荐使用”,在“禁忌”项中增加了“因缺乏新生儿和1岁以下婴儿安全性和有效性的数据,新生儿和1岁以下婴儿禁用本品。”   市场:此类品牌药很常见   记者采访了几位妈妈,她们表示,孩子很容易感冒发烧,一般都会到药店购买一些类似的感冒药备在家中。而在记者走访的几家药店,发现药店销售的含盐酸金刚烷胺的儿童感冒药大多是“好娃娃”(小儿氨酚烷胺颗粒)、“优卡丹”(小儿氨酚烷胺颗粒)、葵花康宝(小儿氨酚烷胺颗粒)以及“迪龙”(氨金黄敏颗粒)这几个品牌产品。   “您这里有1岁以下幼儿能服用的感冒药吗?”在广州五羊新城附近一家名为居嘉堂的药店,记者以消费者身份向一位女营业员询问,营业员询问了小孩的感冒症状之后推荐了迪龙牌氨金黄敏颗粒。记者又问:“1岁以下婴儿服用安全吗?”“只要按照说明书上的剂量服用就行了。”营业员见记者犹豫不决,又推荐了另外一种针对婴幼儿服用的感冒药。在另一家名为大参林的药房,营业员同样推荐了类似成分的“好娃娃”、“优卡丹”两大品牌儿童感冒药,并说“这个小孩服用不会有什么副作用”.药店营业员大多医学知识不全面,对这些药品的具体成分、药理性能了解不到位,只是一味地向消费者推荐各种品牌的感冒药。   专家:医院临床极少用此类药   盐酸金刚烷胺类药物属抗病毒药。南方医院儿科腾志丽副教授在接受记者采访时明确表示,“我们医院没再用含‘金刚烷胺’的儿童感冒药品”,临床上该类药也不常用于儿童。她解释说,一般儿童感冒症状无非是鼻塞、流鼻涕、咳嗽、打喷嚏等,只要没有细菌感染,三至七天就能康复。若是细菌感染,一般就会使用一些抗生素进行治疗。一般五岁以下儿童前来就诊,首先都要进行初步检查,分清是细菌感染还是病毒感染引起的,再针对性治疗。儿童属特殊群体,身体机能各方面还未发育完全,很容易因感冒引发各种并发症,因此针对儿童感冒最主要的是进行并发症的预防。防止儿童因感冒引发心肌炎、肺炎等症状。   对于儿童感冒用药,腾志丽说:如非特殊的细菌感染型感冒,一般情况的感冒只需使用一些清热解毒的中成药,如板蓝根冲剂就够了。就含金刚烷胺这类药,主要对甲型流感病毒有一定效果,但对抗普上呼吸道病毒感染没有明显优势,相关的安全性也未经证实,医院一般不会进这类药品给儿童用。儿童感冒的表现复杂多变,目前为止没有一种药物可以治疗所有症状,通常对症处理,一般不主张吃药,家长因特别注意,一般儿童感冒,不打针吃药,在3-7天内,只要注意营养、多喝水、多休息,通过自身免疫系统就会康复,根本无须吃一些重症西药。   另外,需要提醒的是,除了小儿氨酚烷胺颗粒现在被禁之外,一些氨基苷类抗生素,如诺氟沙星等,家长也不要擅自给孩子服用。药物进入人体后,一般要通过肝脏、肾脏代谢转化、排泄清除。3岁以下的婴幼儿,尤其是一岁以内的孩子,肝、肾等器官发育未成熟,肝、肾功能不全,器官很容易被药物损伤。
  • 迪马“毒淀粉”中顺丁烯二酸(酐)检测解决方案
    近日,台湾“毒淀粉”事件愈演愈烈,广大民众陷入“毒食”恐慌。所谓“毒淀粉”,主要是指在淀粉中添加了顺丁烯二酸酐。顺丁烯二酸酐(Maleic anhydride)简称马来酸酐或失水苹果酸酐,遇水即水解成顺丁烯二酸(又称马来酸)。加入淀粉后可增加食物的弹性、黏性及外观光亮度,但会对人体肾脏造成极大损伤。目前,我国国家标准GB 2760-2011未将顺丁烯二酸酐列为食品添加剂。方法优势 我国现有的国家标准GB/T 23296.21-2009采用高效液相色谱及内标法对食品模拟物中顺丁烯二酸及顺丁烯二酸酐进行分离与测定,但关于淀粉及淀粉制品中顺丁烯二酸酐的检测尚未见报道。2012年,浙江省质量技术监督检测研究院采用迪马科技Platisil ODS C18液相色谱柱开发了基于高效液相色谱(HPLC)测定淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的批量检测。样品前处理 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL体积分数5%的乙醇水溶液,涡旋2 min,超声提取10 min后用提取液定容至50 mL,摇匀,12000 r/min离心5 min后,过膜上机测定。色谱条件色谱柱:Platisil ODS C18,250 mm × 4.6 mm,5 μm (Cat.#:99503)流动相:甲醇-1‰磷酸溶液(2∶98)流速:1.0 mL/min柱温:30 ℃进样量:15 μL检测器:UV 214 nm 色谱柱的选择 参考标准GB 25544-2010及有关马来酸的文献报道,为减少目标物出峰时间附近物质的干扰,延长其色谱保留时间,本方法采用Platisil ODS C18色谱柱,与普通ODS C18柱相比,该色谱柱可以纯水为流动相。 顺丁烯二酸标准品色谱图含顺丁烯二酸阴性样品加标的谱图 添加回收结果 回收率 88%~89%(添加水平:10、50、100 mg/kg) 相对标准偏差(n=5) 定量下限 5.0 mg/kg * 以上数据来源于高效液相色谱法测定淀粉及淀粉制品中的顺丁烯二酸与顺丁烯二酸酐总含量,分析测试学报,2012,31(8),1013-1016 “毒淀粉”中顺丁烯二酸(酐)检测解决方案相关产品信息: 货号 名称 规格 样品前处理 37177 针头式过滤器 Nylon 13 mm,0.22 μm 100/pk 37180 针头式过滤器 Nylon 13 mm,0.45 μm 100/pk 色谱柱及保护柱 99503 耐100%纯水流动相反相液相色谱柱Platisil ODS C18 250 × 4.6 mm, 5 μm 标准品 46672 顺丁烯二酸酐[108-31-6] 1 g 46671 顺丁烯二酸[110-16-7] 1 g HPLC溶剂 缓冲盐 离子对试剂 50102 甲醇 HPLC级 4 L 50108 无水乙醇 HPLC级 4 L 50133 磷酸 HPLC级 50 mL 通用色谱产品 52401B 瓶架/蓝色 50 孔 52401A 瓶架/白色 50孔 5323 样品瓶(棕色/螺纹 2 mL, 100/pk 5325 样品瓶盖/含垫(已经组装) 100/pk H80465 HPLC 进样针 25 μL
  • 硫酸铜产线颗粒管控利器——普洛帝硫酸铜液体颗粒计数器
    硫酸铜生产线上的颗粒管控,历来是确保产品纯度与品质的关键环节。而今,这一领域迎来了一位革新性的守护者——普洛帝硫酸铜液体颗粒计数器,它不仅是生产线上的科技明珠,更是提升生产效率与产品质量的智慧之钥。 普洛帝,以其精准的测量技术与非凡的创新设计,颠覆了传统颗粒检测的方式。这款液体颗粒计数器,专为硫酸铜溶液量身打造,如同一位精密的侦探,能在微观世界中捕捉每一粒可能影响产品纯净度的微小颗粒。其采用先进的光学传感技术,结合智能算法分析,能够实时、准确地计数并分类溶液中的微小颗粒,确保每一滴硫酸铜都纯净无瑕。在繁忙的生产线上,普洛帝展现出了无与伦比的稳定性与高效性。它能够连续工作,不间断地监测硫酸铜溶液的颗粒状况,为生产人员提供即时、可靠的数据支持。这不仅大大降低了人工检测的误差与成本,更使得生产线能够迅速响应颗粒污染问题,采取有效措施加以控制,从而保障了产品的整体质量。 普洛帝硫酸铜液体颗粒计数器的出现,无疑是硫酸铜生产领域的一次重大飞跃。它以其卓越的性能与广泛的应用前景,赢得了业界的广泛赞誉与信赖。在未来的日子里,普洛帝将继续以其专业的精神与不懈的努力,为硫酸铜生产线的颗粒管控贡献更多的智慧与力量。
  • 滨海正红发布满足ICP、痕量、超痕量分析用酸高纯酸提纯器新品
    酸提纯器一、 产品简介:酸提纯器:又称酸纯化系统,高纯酸提纯器,酸试剂提纯器,高纯酸蒸馏纯化器等,实验室工作中常常由于酸的纯度较差,造成分析结果的偏差与错误。市售的纯酸往往由于价格较贵,难满足日常分析中对酸的大量需求。因此,提纯优化酸的质量,是为经济可行的途径,我厂的酸纯化器可用于实验室如HNO3、HCl、HF、碱溶液和有机溶剂的纯化,纯化后的酸和Merck的一样好,实验后期可配套我单位Teflon特氟龙系列试剂瓶收取高纯酸。二、工作原理:高纯酸提纯器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,多应用于样品处理及分析实验中。三、我厂高纯酸蒸馏纯化器优势:1、密闭环境下提纯酸,不受环境污染,确保酸纯度;2、节约成本、方便实验:较短时间内纯化低成本的酸试剂以达到痕量分析要求;3、可以满足ICP、ICP-MS低的检测限需要及苛刻的分析应用中提供实验室超纯酸,所用容器均采用Teflon耐腐蚀无吸附塑料,可处理如HNO3、HCl、HF等实验室的常用酸;4、实验证明将金属杂质含量约10ppb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01ppb左右。若对酸要求更高,可增加提纯次数;5、可拆卸清洗,避免腔体里面长期提纯,造成金属杂质含量沉积越来越多,影响提纯的质量;四、相关参数:型号CH-I 500mlCH-II 1000mlCH-Ⅲ 2000ml名称高纯酸提纯器高纯酸提纯器高纯酸提纯器产酸率30ml/h50ml/h70ml/h温控方式PID温控数显PID温控数显PID温控数显控温精度±1℃±1℃±1℃材质FEP、PTFE、硅胶电压220V/50Hz功率(W)350优势1.密闭环境下提纯酸,不受环境污染,确保酸纯度2.纯FEP、PTFE材质制造,值低无腐蚀3.结构合理,操作简单,一键式操作,蒸干自我保护4.提纯过程中,少量酸气逸出五、使用注意事项:1、所有配件(控制器、电源线、加热片等除外)放入按实验要求一定浓度的酸液中浸泡,去除杂质。2、加酸前必须做好个人防护如:防溅眼镜、防酸手套等(蒸水除外)。实验数据(仅供参考):仪器:CH-I 高纯酸提纯器;试剂:优纯HF蒸馏后,经中国地质大学地质过程与矿产资源重点实验室ICP-MS检测出HF中杂质的含量:元素测量浓度(ng/g=ppb)元素测量浓度(ng/g=ppb)BeCrEuNiErRb0.01南京滨正红仪器有限公司 创新点:加大了提取酸的容量,使用中可拆卸清洗,方便操作,无需人员值守,提取的酸的纯度可达到0.01PP 满足ICP、痕量、超痕量分析用酸高纯酸提纯器
  • 国家标准化管理委员会关于开展2023年《食品添加剂 三聚甘油单硬脂酸酯》等强制性国家标准复审工作的通知
    国家发展改革委、教育部、工业和信息化部、公安部、民政部、自然资源部、生态环境部、住房城乡建设部、农业农村部、国家卫生健康委、应急管理部、国家林草局、国家疾控局、国家矿山安监局、国家药监局办公厅(办公室、综合司):为规范强制性国家标准管理,有序推进强制性国家标准复审工作,推动标准复审常态化和制度化,依据《标准化法》和《强制性国家标准管理办法》(以下简称《管理办法》)有关要求,开展2023年强制性国家标准复审工作,有关事项通知如下:一、复审标准范围截至2023年底,实施满5年或距上次复审满5年的强制性国家标准,纳入本次复审范围,已提出修订项目或已列入修订计划的除外,拟开展复审的标准清单见附件1。未列入附件1中的标准也可根据需要纳入复审范围。二、标准复审内容根据《标准化法》及《管理办法》相关规定,从标准的适用性、规范性、时效性和协调性等方面进行复审,复审内容主要包括以下方面:(一)标准的适用性。标准涉及的产品、过程或服务是否已被淘汰,已被淘汰的,应给出“废止”的结论。标准的适用范围是否详细具体,能够覆盖新产品、新工艺、新技术或新服务,适用范围不够具体或不能覆盖新情况的,应给出“修订”的结论。标准规定的内容是否符合强制性标准的制定范围,属于超范围制定的,应给出“修订”(修订转化为推荐性国家标准)或“废止”的结论。(二)标准的规范性。标准技术内容是否可验证、可操作,若技术内容存在不可验证、不可操作的情况,或者标准中未规定证实方法,应给出“修订”的结论。标准是否为全文强制,若标准为条文强制,应给出“修订”的结论。(三)标准的时效性。与产业发展实际水平和健康、安全、环保最新需求相比,标准技术指标及要求是否需要提升,若因标准的指标缺失或要求过低可能导致安全事故或存在较大安全风险,应给出“修订”的结论。与国际国外最新技术法规或标准相比,是否与国际标准或法规主要技术指标一致,若不一致,原则上应给出“修订”的结论。标准的规范性引用文件是否现行有效,若引用的标准已废止或注日期引用的标准已更新,应给出“修订”的结论。(四)标准的协调性。如出现标准与现行相关法律法规、部门规章、其他强制性国家标准或国家产业政策不协调、不一致的情况,应给出“修订”的结论。三、标准复审工作安排标准复审工作分三个阶段开展:(一)第一阶段:工作组复审阶段。组织起草部门可成立复审工作组或委托有关全国专业标准化技术委员会成立复审工作组,开展强制性国家标准复审工作。复审工作组针对附件1中的具体标准,依据标准复审内容,通过问卷调查、标准实施情况统计分析、企业调研、专家论证等方式,开展标准复审,形成每一项标准的《强制性国家标准复审工作报告》(附件2)。(二)第二阶段:专家论证阶段。组织起草部门组织召开专家论证会,对复审工作组形成的《强制性国家标准复审工作报告》进行论证,给出最终的复审结论。(三)第三阶段:材料报送阶段。组织起草部门于2023年11月30日前,将《强制性国家标准复审结论汇总表》(附件3)和各项标准的《强制性国家标准复审工作报告》报送国家标准委。同时,在强制性国家标准制修订子系统中填报各标准的复审信息和报告。四、复审结论的处理国家标准委对组织起草部门报送的复审结论审核后,按照复审结论类别进行分类处理,具体如下:1. 复审结论为“废止”的标准,将通过全国标准信息公共服务平台向社会公开征求意见,并以书面形式征求该强制性国家标准的实施监督管理部门意见。无重大分歧意见或者经协调一致的,我委将以公告形式废止该强制性国家标准。2. 复审结论为“修订”的标准,组织起草部门应在报送复审结论时同步提出修订项目。国家标准委将按照强制性国家标准的立项程序进行办理。3. 复审结论为“继续有效”的标准,将通过全国标准信息公共服务平台向社会告知标准的复审时间。联系人:市场监管总局标准技术司 付允 陈如意联系方式:010-82262614,010-82262616邮箱:chenruyi@samr.gov.cn国家标准技术审评中心 叶子青联系方式:010-65007855邮箱:yezq@ncse.ac.cn附件:1. 2023年复审标准清单2. 强制性国家标准复审工作报告3. 强制性国家标准复审结论汇总表国家标准化管理委员会2023年8月3日(此件公开发布)附件下载国标委发〔2023〕40号-2023年强标复审通知-附件.doc相关标准如下:序号标准编号标准名称主管部门1GB 13510-1992食品添加剂 三聚甘油单硬脂酸酯国家卫生健康委2GB 14891.1-1997辐照熟畜禽肉类卫生标准国家卫生健康委3GB 14891.3-1997辐照干果果脯类卫生标准国家卫生健康委4GB 14891.4-1997辐照香辛料类卫生标准国家卫生健康委5GB 14891.5-1997辐照新鲜水果、蔬菜类卫生标准国家卫生健康委6GB 14891.7-1997辐照冷冻包装畜禽肉类卫生标准国家卫生健康委7GB 14891.8-1997辐照豆类、谷类及其制品卫生标准国家卫生健康委8GB 1986-2007食品添加剂 单、双硬脂酸甘油酯国家卫生健康委9GB 1253-2007工作基准试剂 氯化钠工业和信息化部10GB 1254-2007工作基准试剂 草酸钠工业和信息化部11GB 1257-2007工作基准试剂 邻苯二甲酸氢钾工业和信息化部12GB 12593-2007工作基准试剂 乙二胺四乙酸二钠工业和信息化部13GB 13735-2017聚乙烯吹塑农用地面覆盖薄膜工业和信息化部14GB 15346-2012化学试剂 包装及标志工业和信息化部15GB 19105-2003过氧乙酸包装要求工业和信息化部16GB 19107-2003次氯酸钠溶液包装要求工业和信息化部17GB 19109-2003次氯酸钙包装要求工业和信息化部18GB 21178-2007自反应物质和有机过氧化物分类程序工业和信息化部19GB 28670-2012制药机械(设备)实施药品生产质量管理规范的通则工业和信息化部20GB 21175-2007危险货物分类定级基本程序国家标准委21GB 28932-2012中小学校传染病预防控制工作管理规范国家疾控局22GB 15213-2016医用电子加速器 性能和试验方法国家药监局23GB 2024-2016针灸针国家药监局24GB 9706.14-1997医用电气设备 第二部分:X射线设备附属设备安全专用要求国家药监局25GB 9706.21-2003医用电气设备 第2部分:用于放射治疗与患者接触且具有电气连接辐射探测器的剂量计的安全专用要求国家药监局26GB 11767-2003茶树种苗农业农村部27GB 13078-2017饲料卫生标准农业农村部28GB 18133-2012马铃薯种薯农业农村部29GB 19169-2003黑木耳菌种农业农村部30GB 19170-2003香菇菌种农业农村部31GB 19171-2003双孢蘑菇菌种农业农村部32GB 19172-2003平菇菌种农业农村部33GB 20802-2017饲料添加剂 蛋氨酸铜络(螯)合物农业农村部34GB 21034-2017饲料添加剂 蛋氨酸羟基类似物钙盐农业农村部35GB 21694-2017饲料添加剂 蛋氨酸锌络(螯)合物农业农村部36GB 22489-2017饲料添加剂 蛋氨酸锰络(螯)合物农业农村部37GB 22548-2017饲料添加剂 磷酸二氢钙农业农村部38GB 22549-2017饲料添加剂 磷酸氢钙农业农村部39GB 23386-2017饲料添加剂 维生素A棕榈酸酯(粉)农业农村部40GB 29382-2012硝磺草酮原药农业农村部41GB 29384-2012乙酰甲胺磷原药农业农村部42GB 34456-2017饲料添加剂 磷酸二氢钠农业农村部43GB 34457-2017饲料添加剂 磷酸三钙农业农村部44GB 34458-2017饲料添加剂 磷酸氢二钾农业农村部45GB 34459-2017饲料添加剂 硫酸铜农业农村部46GB 34460-2017饲料添加剂 L-抗坏血酸钠农业农村部47GB 34461-2017饲料添加剂 L-肉碱农业农村部48GB 34462-2017饲料添加剂 氯化胆碱农业农村部49GB 34463-2017饲料添加剂 L-抗坏血酸钙农业农村部50GB 34464-2017饲料添加剂 二甲基嘧啶醇亚硫酸甲萘醌农业农村部51GB 34465-2017饲料添加剂 硫酸亚铁农业农村部52GB 34466-2017饲料添加剂 L-赖氨酸盐酸盐农业农村部53GB 34467-2017饲料添加剂 柠檬酸钙农业农村部54GB 34468-2017饲料添加剂 硫酸锰农业农村部55GB 34469-2017饲料添加剂 β-胡萝卜素(化学合成)农业农村部56GB 34470-2017饲料添加剂 磷酸二氢钾农业农村部57GB 6141-2008豆科草种子质量分级农业农村部58GB 7293-2017饲料添加剂 DL-α-生育酚乙酸酯(粉)农业农村部59GB 7294-2017饲料添加剂 亚硫酸氢钠甲萘醌(维生素K3)农业农村部60GB 7298-2017饲料添加剂 维生素B6(盐酸吡哆醇)农业农村部61GB 7300-2017饲料添加剂 烟酸农业农村部62GB 7301-2017饲料添加剂 烟酰胺农业农村部63GB 9454-2017饲料添加剂 DL-α-生育酚乙酸酯农业农村部64GB 9840-2017饲料添加剂 维生素D3(微粒)农业农村部65GB 9847-2003苹果苗木农业农村部66GB 13458-2013合成氨工业水污染物排放标准生态环境部67GB 19430-2013柠檬酸工业水污染物排放标准生态环境部68GB 21523-2008杂环类农药工业水污染物排放标准生态环境部69GB 21903-2008发酵类制药工业水污染物排放标准生态环境部70GB 21904-2008化学合成类制药工业水污染物排放标准生态环境部71GB 21905-2008提取类制药工业水污染物排放标准生态环境部72GB 21906-2008中药类制药工业水污染物排放标准生态环境部73GB 21907-2008生物工程类制药工业水污染物排放标准生态环境部74GB 21908-2008混装制剂类制药工业水污染物排放标准生态环境部75GB 21909-2008制糖工业水污染物排放标准生态环境部76GB 3544-2008制浆造纸工业水污染物排放标准生态环境部
  • 康宁新案例 |可烯醇化酮α -羟胺化连续流合成工艺之二
    可烯醇化酮的α-羟胺化反应一、以苯乙酮或苯丙酮的α-羟胺化反应以苯乙酮或苯丙酮为底物,在高效、多功能流动化学工艺平台进行了α-氯亚硝基衍生物原位制备、底物拔氢、α-羟胺化反应、硝酮中间体酸解、产物分析、液液分离、环戊酮骨架循环套用的整个流程(下图)。该连续流工艺平台实验室和放大规模反应单元采用的是康宁 LowFlow Reactor 和G1反应器,康宁反应器无缝放大的技术优势是该反应进一步扩大产能的保障。图7. 苯乙酮或苯丙酮的α-羟胺化反应连续流反应体系底物苯乙酮/苯丙酮与LiHMDS进入反应模组I在0℃、1 min停留时间条件下完成拔氢反应。反应液与发生器II中生成的 1-氯-1-亚硝基环戊烷进入反应模组II在0℃、1 min停留时间条件下发生亲电胺化反应。所得反应液中的硝酮中间体与盐酸进入反应模组III在60℃、1 min停留时间条件下发生酸解,原料转化率分别为70%(苯乙酮)和98%(苯丙酮),产物分离收率分别为62%(苯乙酮)和90%(苯丙酮)。表8. 产物收率随时间和温度变化曲线值得一提的是,在反应釜条件下,如果以一级酮(苯乙酮)为底物,即便将反应温度冷却至-78℃,反应生成的硝酮中间体还是更容易与原料烯醇负离子质子交换,进一步反应后只能得到46%的二胺化杂质。而在连续流工艺条件下,得益于物料的快速混合效果、低返混以及局部化学计量的精准控制,有助于得到目标产物,避免二胺化杂质的产生(下表)。对比典型的间歇釜反应条件(-78℃),在连续流工艺中,亲电胺化反应可以在更温和的反应温度(0℃)中进行,同时避免物料分解并在停留时间1分钟内达到几乎定量的转化。但不建议尝试高于0℃的反应条件以进一步减少停留时间,这可能会导致堵塞或物料的爆炸性分解。反应模块III的出料口集成了Zaiput高效液-液分离器在用来在线自动分离水相和有机相,水相中基本为纯的目标产物的盐酸盐,有机相中主要为环戊酮骨架。对有机相进一步处理以回收环戊酮,可转化为环戊酮肟,分离收率83%。环戊酮骨架的循环利用,使整个工艺更加绿色环保。Zaiput 液-液分离器是康宁在中国独家代理的在线分离仪器。是由MIT孵化出来的新型专利技术,可取代传统萃取技术。 二、扩展实验维持反应器设置不变,尝试了包括苯乙酮在内的22个底物,原料转化率和产物分离收率列于下表:实验结果讨论本通过独特、高效、可放大的连续流平台,可实现从可烯醇化酮和α-氯亚硝基化合物1a以高分离收率制备α-羟胺化酮化合物库。对高附加值的α-羟胺化酮中间体的生产可以实现工业化生产。分别以一级、二级和三级酮类化合物为原料制备了22个α-羟胺化酮化合物,为几种医药中间体 (包括世卫组织必需品和短缺药物)的生产开辟了道路。本项研究充分体现了连续流工艺的主要优点包括:高效的传热、传质系数,在线分析的集成、很少的占地面积等。反应平台保持了紧凑和高度集成的反应器设计(包括辅助设备在内小于2平方米)。连续流工艺条件下毒性和有潜在爆炸风险的化合物的原位制备和消耗使反应对环境的影响大大降低,对绿色合成技术延伸与拓展具有显著的参考意义!Reference:Victor-Emmanuel H. Kassin, Romain Morodo,a Thomas Toupy,Isaline Jacquemin, Kristof Van Hecke, Raphaël Robiette and Jean-Christophe M. Monbaliu ,Green Chem., 2021, 23,2336
  • 新品推介—— AP200全自动亚沸酸纯化仪
    对于痕量、超痕量元素分析,酸的质量尤为重要——酸的纯度越高,背景值就越低。市售超纯酸由于价格昂贵,且开盖后纯度会急剧下降,很难满足日常分析需求,因此,通过提纯普通酸的质量,是最为经济可行的途径。亚沸酸纯化器利用亚沸蒸馏原理,亚沸状态下温和蒸发低纯度的酸,再将酸蒸气冷凝,从而制备纯度更高的酸,广泛应用于AAS、ICP-OES、ICP-MS、原子荧光等光谱分析。为什么要亚沸? 为了保证纯化效果,必须控制酸液的温度,确保其始终处于亚沸状态下温和蒸发,这是酸纯化器能否成功的最基本要素。 怎么确保亚沸的? 采用专利的RTC真实温度控制技术,温度探头经过特殊处理,具有与特氟龙一样的抗酸能力,直接插进酸液,监控酸液的真实温度,控制器根据温度信号,自动调节加热器功率,确保始终在亚沸状态下产生高纯度的酸蒸汽。优势:1、图形化显示、10寸彩色触摸屏操作。蓝牙无线通讯。多种语言可选(含中文)。所有参数自动保存,下次开机自动调用。温度、液位等传感器可被校正。2、可实时记录温度、液位等曲线,用户可在事后随时查看纯化过程是否正常,以确认纯化后的酸是否可用,杜绝了因纯化质量不好而浪费大量的微波消解仪、ICP-MS的时间与金钱。 AP200使用廉价的低纯度酸来制备高纯酸。与购买商品化的昂贵的高纯酸相比,AP200制备高纯酸所节约的试剂购置费用是惊人的! 根据不同用量,AP200可以在几个月甚至几周内收回它自身的购置成本!
  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style=" text-indent: 2em " 近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。 /p p style=" text-indent: 2em " H酸、对位酯价格暴涨 /p p style=" text-indent: 2em " 作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。 /p p style=" text-indent: 2em " TDI价格上涨4.16% /p p style=" text-indent: 2em " TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。 /p p style=" text-indent: 2em " 对二甲苯价格上涨 /p p style=" text-indent: 2em " 10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。 /p p style=" text-indent: 2em " 正丁醇 /p p style=" text-indent: 2em " 正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。 /p
  • 水质铜超标?我们如何判定?
    一、背景介绍在自然水体、废水和工业废水中都有铜的存在,微量的铜对人体是有益的,可补充人类食物中铜的不足,同时,铜能起到杀灭自来水中某些细菌的作用。但是铜含量过高的饮用水会对人体有危害,且含铜废水灌溉农田,使铜在土壤和农作物中累积,会造成农作物生长不良。《生活饮用水卫生标准》、GB/T 14848-2017《地下水质量标准》、GB 3838-2002《地表水环境质量标准》、GB 8978-2002《污水综合排放标准》等水质标准对铜含量均有限值要求,故我们需要对水质中铜含量进行检测。下面我们将具体介绍铜含量检测的标准要求、测试方法、具体测试过程及结果。 二、方法及限值水中铜的测定方法主要有分光光度法、原子吸收分光光度法、电感耦合等离子体质谱法和电感耦合等离子发射光谱法等。AAS法、ICP-AES法、ICP-MS法所需仪器体积庞大,需要专业的实验室,而且价格昂贵,而分光光度法不仅体积小巧,测试性价比高,易于携带保管,比较适合于在农村或县级实验室推广使用。对于铜的现场测量,双乙醛草酰二腙分光光度法不仅适用范围广,而且测量准确。双乙醛草酰二腙分光光度法:在pH 8.4-9.8的氨性介质中,以柠檬酸铵为配位剂,铜与双环己酮草酰二腙生产蓝色配合物,在特定波长下测定其吸光度。表1铜的检测标准及限值标准编号标准名称限值GB 5749-2006GB5749-XXXX征求意见稿生活饮用水卫生标准1.0mg/LGB/T 14848-2017地下水质量标准≤1.50mg/L(Ⅳ类)GB 3838-2002地表水环境质量标准≤1.0mg/L(Ⅳ类)GB 8978-2002污水综合排放标准≤2.0mg/L(三级标准) 三、铜含量测定1、检测仪器:DGB-480型多参数水质分析仪2、检测试剂:铜试剂包:铜缓冲液、铜显色剂溶剂、铜显色剂粉剂 铜标准溶液:ρ=1000.0mg/L3、检测流程及结果:参数方法号方法检出限mg/L测量范围mg/L重复性测量误差铜24双乙醛草酰二腙法0.0250.025-10.002.00%±5%或±0.05mg/L 图 1 铜含量测定流程 图2 铜含量测定显色图(从左到右依次为0mg/L、2mg/L、5mg/L、8 mg/L、10mg/L) 图3 铜含量测定曲线图4、结果总结:● 对0mg/L、2mg/L、5mg/L、8 mg/L、10mg/L的铜标准溶液进行检测,重复性≤0.6%,测量误差≤2.8%,结果良好。● 采用DGB-480型多参数水质分析仪测定水中铜含量,测量方法为国家标准方法。测试仪器体积小巧,配套有铜检测试剂和校准试剂,测试方便,测试性价比高。 四、检测仪器介绍DGB-480型多参数水质分析仪,采用8波长光学测量系统和90度光散射浊度检测光路,内置浊度、色度、臭氧、亚硝酸盐氮、尿素、六价铬、总铬、锰、总氮、 硝酸盐氮、硝酸盐、甲醛、水硬度、锌、亚硝酸盐、余氯、总氯、 二氧化氯、高锰酸盐指数、低浓度 CODCr、高浓度 CODCr、镉、 氨氮、铵离子、总磷、总磷酸盐、镍、亚铁离子、铁、亚硫酸盐、 过氧化氢、铝、铅、铜、钙、汞、硼、砷、氟、阴离子洗涤剂、 银、溴酸盐、硫酸盐、钼、铍、钴、钡、氯化物等40多种检测项目和方法,直接调用,测量快速、简便。既可以配套雷磁专用试剂盒检测也可以自制试剂检测,使用灵活。主要应用于生活饮用水、地表水、自来水、污水、游泳池水等水质的现场测定或者实验室分析。
  • 明天实施!详解食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定
    《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》于今年2月发布,将于8月8日正式实施,为市场监管和行业质量提升提供科学依据。何为氯丙醇酯和缩水甘油酯?氯丙醇酯(MCPDE)和缩水甘油酯(GE)是氯丙醇(MCPD)和缩水甘油(Gly)与食品中脂肪酸酯化产物,广泛存在于精炼油脂(油脂精炼可有效去除原油不良气味与颜色)及油脂食品中,绝大部分经加热处理的食物以及油脂含量较高的食物也均能检测到氯丙醇酯,如咖啡、油炸薯条、饼干、食用油、面包、糕点、婴幼儿配方奶粉(“婴配粉”)等。 为何要检测氯丙醇酯和缩水甘油酯?氯丙醇酯以及缩水甘油酯在消化过程中会水解并高效释出游离氯丙醇和缩水甘油。氯丙醇酯水解产物3-MCPD是公认的食品污染物,具有潜在的致癌性、神经毒性、免疫毒性、遗传毒性和生殖毒性;缩水甘油酯降解产物缩水甘油同样具有致癌风险。岛津解决方案仪器方法+耗材匹配,全面应对标准更新!岛津在GB 5009.191标准修订过程中与制标单位福建省疾病预防控制中心深度合作,全程参与了标准的开发与验证工作。第一篇:GCMS法测定氯丙醇步骤:无水解、硅藻土小柱净化萃取(SLE法)、HFBI衍生、GCMS分析适用于:含水解植物蛋白液、酱油、鱼露、蚝油、鸡精、固体汤料、方便面调味包、香肠、婴幼儿配方乳粉中3-MCPD、2-MCPD、1,3-DCP及2,3-DCP含量的测定图1. 第一篇 氯丙醇及内标衍生物总离子流图第二篇第一法:GC-MS/MS法测定氯丙醇脂肪酸酯及缩水甘油酯步骤:碱水解、液液萃取、PBA衍生、GC-MS/MS分析适用于:油脂及其制品、乳粉、油炸食品、膨化食品、焙烤食品、水产制品和肉制品中3-MCPDE、2-MCPDE和GE含量的测定图2. 第二篇第一法 氯丙醇、缩水甘油及内标衍生物总离子流图第二篇第二法:GC-MS/MS法测定氯丙醇脂肪酸酯及缩水甘油酯步骤:酸水解、液液萃取、氨基柱净化(SPE)、PBA衍生、GC-MS/MS分析适用于:油脂及其制品、乳粉、油炸食品、膨化食品、焙烤食品、水产制品和肉制品中3-MCPDE、2-MCPDE和GE含量的测定图3. 第二篇第二法 氯丙醇、缩水甘油及内标衍生物质量色谱图第二篇第三法:GCMS法测定氯丙醇脂肪酸酯及缩水甘油酯步骤:碱水解、液液萃取、PBA衍生、GCMS分析适用于:动植物油脂及其制品图4. 第二篇第三法 氯丙醇及内标衍生物总离子流图岛津方案方案亮点亮点1:仪器建议配置PTV进样,可有效减少高沸点杂质对方法稳定性的影响SPL进样模式下进样150针左右时缩水甘油酯MRM色谱图PTV进样模式下进样150针左右时缩水甘油酯MRM色谱图亮点2:加装保护柱,有效避免色谱柱和离子源的污染保护柱为经过惰性化处理的脱活石英毛细空管,不会引起目标物保留时间的偏移,并能有效避免PBA和其他高沸点污染物流入分析柱和离子源,从而保证色谱柱柱效、方法稳定性和灵敏度,也可以有效确保同一根色谱柱在其它项目的分析上仍能保持良好表现(不接保护柱,采用PBA衍生法分析氯丙醇酯后,农残等其他项目的出峰情况可能出现异常)。不接保护柱进行氯丙醇项目测试前后,氧乐果的峰型对比(氯丙醇酯分析方法——碱水解+PBA衍生,农残分析方法——GB 23200.113)亮点3:标准全对应仪器耗材全覆盖岛津在提供GCMS和GC-MS/MS仪器方案的同时,可提供前处理+色谱柱+标准品+通用耗材的消耗品一站式服务,新标准应对全搞定!项目混用时,建议更换进样口隔垫、衬管,并及时清洗进样针。岛津氯丙醇及缩水甘油酯消耗品应对表.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制