当前位置: 仪器信息网 > 行业主题 > >

神经节苷酯二钠盐

仪器信息网神经节苷酯二钠盐专题为您提供2024年最新神经节苷酯二钠盐价格报价、厂家品牌的相关信息, 包括神经节苷酯二钠盐参数、型号等,不管是国产,还是进口品牌的神经节苷酯二钠盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合神经节苷酯二钠盐相关的耗材配件、试剂标物,还有神经节苷酯二钠盐相关的最新资讯、资料,以及神经节苷酯二钠盐相关的解决方案。

神经节苷酯二钠盐相关的论坛

  • 【分享】神经细胞培养

    体外神经细胞的培养已成为神经生物学研究中十分有用的技术手段。神经细胞培养的主要优点是:(1)分散培养的神经细胞在体外生长成熟后,能保持结构和功能上的某些特点, 而且长期培养能形成髓鞘和建立突触联系,这就提供了体内生长过程在体外重现的机会。(2)能在较长时间内直接观察活细胞的生长、分化、形态和功能变化,便于使用各种不同的技术方法如相差显微镜、荧光显微镜、电子显微镜、激光共聚焦显微镜、同位素标记、原位杂交、免疫组化和电生理等手段进行研究。(3)易于施行物理(如缺血、缺氧)、化学和生物因子(如神经营养因子)等实验条件, 观察条件变更对神经细胞的直接或间接作用。(4)便于从细胞和分子水平探讨某些神经疾病的发病机制,药物或各种因素对胚胎或新生动物神经细胞在生长、发育和分化等各方面的影响。 我们实验室从80年代始开展了神经细胞的体外培养工作,取得了一些经验,现将培养细胞分类及方法简要介绍如下:一.鸡胚背根神经节组织块培养 主要用于神经生长因子(NGF)等神经营养因子的生物活性测定。在差倒置显微镜下观察以神经突起的生长长度和密度为指标半定量评估NGF的活性。1. 材料和方法 (1)选正常受精的鸡蛋,置于37℃生化培养箱内孵化,每日翻动鸡蛋一次。 (2)取孵化8-12 d 的鸡蛋, 用70% 酒精消毒蛋壳,从气室端敲开蛋壳,用消毒镊剥除气室部蛋壳。(3)用弯镊钩住鸡胚颈部,无菌条件下取出鸡胚置小平皿内,除去头部后,腹侧向上置 灭菌毛玻璃片上,用眼科弯镊子打开胸腹腔,除去内脏器官。(4)在解剖显微镜下,小心除去腹膜,暴露脊柱及其两侧,在椎间孔旁可见到沿脊柱两侧 排列的背根节(图1),用一对5号微解剖镊小心取出。(5)置背根节于解剖溶液内,用微解剖镊去除附带组织,接种于涂有鼠尾胶的玻璃或塑料 培养瓶中,在DMEM无血清培养液中培养。2. 结果鸡胚背根神经节在含神经生长因子(NGF, 2.5S,20ng/ml)的无血清培养液中培养24 h,神经节长出密集的神经突起。而未加NGF的神经节培养24 h, 未见神经突起生长。二.新生大鼠、新生小鼠及鸡胚背根神经节分散细胞培养背根神经节(DRG)细胞起源于神经嵴,NGF研究先驱Levi-Montalcini的实验表明,外原性NGF能刺激DRG细胞生长发育并形成广泛的神经网络。在体外,分离培养的神经节在NGF存在的情况下,神经突起的生长在一天之内可长达数毫米,因此,利用培养的DRG细胞,进行轴突生长发育的研究,是最为经典而常用的方法之一。

  • 【原创大赛】手动电位滴定法测定脂肪酸甲酯磺酸钠 二钠盐含量(确定计量点)

    【原创大赛】手动电位滴定法测定脂肪酸甲酯磺酸钠 二钠盐含量(确定计量点)

    用最老土的办法,解决测试问题。虽然计算量好大,但是,这种办法,叫土办法——本文题记手动电位滴定法测定脂肪酸甲酯磺酸钠 二钠盐含量(确定计量点) 脂肪酸甲酯磺酸钠,是一类天然可再生原料生产的阴离子表面活性剂。具有良好的生物降解性和去污力。二钠盐(脂肪酸磺酸二钠和脂肪酸磺酸钠)是生产该原料中副产物。其含量高低,衡量脂肪酸甲酯磺酸钠生产技术和工艺水平。由于脂肪酸磺酸二钠在低温水中溶解性能差,洗涤效果比不过脂肪酸价值磺酸钠,所以,控制二钠盐含量有着极其重要的作用。要测定脂肪酸甲酯磺酸钠 中二钠盐含量,标准上说用NaOH的电位滴定方法。加入只有一个突跃点,那么我就去选择合适的指示剂。但是,其中有一钠和二钠,则说明在滴定过程中应该有两个突跃。因为有两个pKb。手头没有电位滴定,这可为难我了。怎么办?硬着头皮来吧。还好,实验室有pH计。PH计上有电极电势的显示。所以,还不算糟,通过滴定一定体积的量,和电极电势做曲线,那么就可以迎刃而解这个问题。只要找到两个突跃点就可以了。随即就可以操作了。按照测试的方法,称取0.5961g样品,到烧杯中,加入10ml乙醇,90ml纯水,60℃搅拌30min,冷却到室温。插入pH计,调节pH 到2.6,随即用0.0976mol/LNaOH滴定。V(ml)E(mV)0271.612642254.9324042004.31524.5102.24.684.54.768.44.854.54.940.5524.45.2-81.95.3-141.45.4-157.6[

  • 【求助】求助:邻羟基苯乙酸的一钠盐、二钠盐液相无法定量问题??

    如题,在合成中有一步反应是用邻羟基苯乙酸制备其二钠盐,其中产物中可能含有的成分有邻羟基苯乙酸、邻羟基苯乙酸的一钠盐、二钠盐,请问如何建立检测方法将其分离呢?谢谢! 试过液相的方法,但是分不开,也试过双相滴定,但是里面还有过量的NaOH,影响结果,也试过用酚羟基的显色反应,但这个又太灵敏了,无法定量。请大家指导一下吧。

  • 乙二胺四乙酸镁二钠盐鉴别?

    在配制氨-氯化铵锾冲溶液中所加的乙二胺四乙酸镁二钠盐,测定水样硬度之前,对所用Na2MgY必须进行鉴定,以免对分析结果产生误差。鉴定方法:取一定量的Na2MgY溶于除盐水中,按硬度测定方法测定其中Mg2+或EDTA是否有过剩量,根据分析结果精确地加入EDTA或Mg2+,使溶液中EDTA和Mg2+均无过剩量”。在上面所说的测定Mg2+或EDTA是否有过剩量,是否是说:取一定体积V1的除盐水,测其除盐水的硬度为YD1。按上面所说在同样体积V1的除盐水中加入Na2MgY,测量硬度为YD2。然后根据YD1和YD2硬度比较,所消耗EDTA标准溶液体积变化,来说明Mg2+或EDTA谁多,如果EDTA标准液消耗体积变大,说明Mg2+离子多。我的理解对不对,大家告诉下我好吗。再问下市售的乙二胺四乙酸镁二钠盐中的Mg2+和EDTA含量是不是1:1呀?除

  • EDTA二钠盐的溶液怎么储存?

    最近有专家评审,提出我们检测总硬度使用的滴定管应该用酸式的,因为EDTA二钠盐的溶液是显酸性的,但是EDTA二钠盐具有络合性,会跟玻璃中的金属反应,所以是不是应该放碱式滴定管呢?包括储存,也放在塑料瓶里?很迷惑,希望大家热烈讨论下,了解的给个专业的解答,到底用那个滴定管?用什么瓶储存?

  • 【金秋计划】黄芪桂枝五物汤治疗糖尿病周围神经病变的研究进展

    随着人口老龄化,糖尿病患病率持续上升,最新数据显示全球大约有5.366亿人患有糖尿病(患病率10.5%),预计到2045年患病人数将达到7.832亿(患病率12.2%)[1]。随着时间的推移,大约50%的糖尿病患者会发展为糖尿病周围神经病变(diabetic peripheral neuropathy,DPN)[2]。DPN是一种以感觉神经病变为主,并累及自主神经系统的神经退行性疾病,表现为远端肢体对疼痛、温度、振动和本体感觉的丧失[3],是下肢截肢和致残性神经病理性疼痛的主要原因[4]。高血糖、血脂异常、微血管损伤、氧化应激、炎症、线粒体功能障碍、晚期糖基化终末产物(advanced glycosylation end products,AGEs)、神经营养因子缺失等在DPN中具有重要作用。目前,治疗DPN的主要目的是缓解症状和疼痛管理[5],针对DPN的疼痛管理,主要应用抗抑郁药物、抗惊厥药物和阿片类镇痛药物,通过抗氧化应激、改善微循环、纠正代谢紊乱、营养神经、缓解疼痛等机制减轻DPN症状。临床上大多数被批准用于治疗DPN的药物如硫辛酸、依帕司他、阿米替林、丙米嗪、加巴喷丁等,虽能有效减轻疼痛,但存在作用途径单一、耐药性差,容易出现头晕、嗜睡、恶心、失眠、视力模糊等不良反应。此外,目前没有新的治疗疼痛性DPN的疗法被批准,临床最有效的一线药物或联合用药尚不清楚[6]。因此,寻找新的治疗DPN的药物刻不容缓。黄芪桂枝五物汤(Huangqi Guizhi Wuwu Decoction,HGD)作为经典名方之一,由黄芪、桂枝、芍药、生姜、大枣组成,具有益气活血、和营通脉的疗效[7],对缓解DPN引起的疼痛、麻木等症状疗效显著,被广泛用于DPN的治疗,具有良好的研究价值和发展前景。本文就DPN的发病机制、HGD治疗DPN的药效基础、临床研究及作用机制进行综述,为HGD治疗DPN的临床应用提供科学依据和理论基础。 1 DPN的发病机制DPN是糖尿病患者常见的严重并发症之一,目前其发病机制尚未完全明确,是由多种病理因素相互作用的结果。以高血糖参与的异常代谢通路为基础,包括多元醇通路、AGEs堆积、己糖胺通路、蛋白激酶C(protein kinase C,PKC)信号通路、内质网应激等[8],这些异常的代谢通路可引起炎症反应、血管内皮增生、神经纤维损伤、破坏线粒体稳态,产生大量活性氧和活性氮自由基,导致氧化应激反应,造成组织损伤。此外活性氧的增加还会激活聚腺苷二磷酸-核糖聚合酶(poly ADP-ribose polymerase,PARP)信号通路,导致神经血管损伤,诱发氧化应激,而氧化应激又会对通路形成正反馈,造成恶性循环。除了高血糖引起的异常代谢通路外,脂代谢异常、神经生长因子(nerve growth factor,NGF)及神经营养不足、胰岛素抵抗等[9]也与DPN的发生发展密切相关。研究发现,糖尿病患者血浆游离饱和脂肪酸的浓度通常会升高,而长链饱和脂肪酸,如棕榈酸酯和硬脂酸酯,会阻碍线粒体的功能及其运输,导致感觉背根神经节的神经元凋亡[10]。脂代谢异常会生成二酰甘油,刺激多元醇通路和PKC通路,细胞内的游离脂肪酸还能够激活核因子-κB(nuclear factor-κB,NF-κB),诱发炎症反应,刺激产生活性氧,破坏线粒体,加剧氧化应激反应[11]。NGF能促进中枢和外周神经元的生长、发育、分化、成熟,维持神经系统的正常功能,加快神经系统损伤后的修复[12]。有研究发现,在糖尿病动物皮肤中,NGF的产生受到抑制[13]。胰岛素信号传导也可能是引起DPN的原因之一,胰岛素不仅是一种激素,同时也是一种具有神经营养作用的神经保护因子[14]。炎症反应主要通过释放炎症因子参与DPN的发生和发展,细胞间黏附因子促进白细胞的迁移和活化,在趋化因子的影响下,单核细胞和巨噬细胞等吞噬细胞到达DPN受损组织并激活,然后分泌包括白细胞介素(interleukin,IL)在内的多种炎性因子,如IL-1β、IL-6和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)等[15]。这3种炎症因子可以影响DPN神经损伤,破坏雪旺细胞与轴突之间的沟通[16-17],DPN的发生和严重程度与TNF-α在内的炎症因子相关联,炎症因子参与疼痛和痛觉过敏的产生,并增加血神经屏障的渗透性,将TNF-α注射到坐骨神经可诱导炎症性脱髓鞘或轴索变性[18]。氧化应激被认为是导致DPN多种代谢途径受损的共同引发因素,大量研究表明高血糖可导致氧化应激的产生,并对周围神经中的神经元和雪旺细胞产生损伤[19]。引发氧化应激的原因是活性氧的过量产生,氧化还原平衡被打破导致抗氧化系统失调[20],最终造成组织损伤。高血糖引起的异常代谢通路:多元醇通路、AGEs通路、PARP通路等最终都会引起细胞内氧化应激反应,多元醇通路和PARP通路中消耗了大量的还原性辅酶,导致胞内活性氧清除能力不足,AGEs代谢过程中产生大量活性氧,导致氧化应激反应。综上,DPN的发病机制十分复杂,其病理生理学的核心是神经代谢受损和生物能衰竭[9],高血糖及异常代谢通路、胰岛素抵抗、脂代谢异常、NGF缺失、炎症反应、氧化应激等机制相互影响,造成恶性循环,损伤周围神经组织,最终导致DPN的发生。 2 HGD治疗DPN的方证基础和药效基础2.1 方证基础在中医理论中并未记载DPN病名,但根据其肢体麻木、疼痛等症状可归属于中医“痹证”“痛证”“痿痹”等范畴[21]。《素问奇病论》中提出“此肥美之所发也,此人必数食甘美而多肥也。肥者令人内热,甘者令人中满,故其气上溢,转为消渴。”消渴患者病因多为饮食不节、情志失调等,燥热内盛,煎熬阴液,气血滞而不行。《黄帝内经素问痹论》[22]曰:“病久入深,荣卫之行涩,经络时疏,故不痛,皮肤不营,故为不仁。”消渴日久,但见手足麻木,肢体如冰。DPN病机多因消渴日久,气阴损耗,阴虚邪热内生,精华内涸,导致血气凝滞,络脉不通,不能外输四肢而发病,属本虚标实,瘀血贯穿了疾病的始终。倪青教授认为,该病主要病机可总结为虚、瘀,虚即气阴亏虚,瘀为瘀血阻络,因虚致瘀,虚瘀相兼,虚为本,瘀为标,贯穿DPN的始终[23]。仝小林院士认为DPN属于糖尿病“郁、热、虚、损”4大阶段中的虚、损阶段,脏腑热、经络寒,总以脾虚为本,通补兼施、寒热并用是仝院士辨治DPN的治疗大法[24]。《素问逆调论》[22]云:“营气虚则不仁,卫气虚则不用。”肌肉筋骨失于濡养,故见手足麻木、感觉减退,犹如风痹之状;气阴两虚迁延不愈,阴损及阳,阳虚失煦,故四肢厥冷;气血阴阳俱虚,血行缓滞因热成瘀,痹阻脉络,不通则痛,故见皮肤肌肉刺痛,入夜尤甚;久病肝肾脾胃虚弱,聚湿成痰,痰瘀互结,肢体脉络失荣,故见肌肉日渐萎缩、软弱无力。张仲景在《金匮要略》中对血痹虚劳进行了论述,认为血痹、虚劳都是由于气血不足引起的慢性虚损性疾病,因此,DPN与血痹虚劳具有相关性[25]。HGD出自《金匮要略血痹虚劳病脉证治篇》,是治疗素体营卫不足,外受风邪所致血痹的常用方。方中黄芪补气,为君药。桂枝既能扶助卫阳以祛风邪,又能温通血脉以行血滞,与黄芪相伍,共奏益气扶阳,和血通痹之效。芍药养血,与桂枝相伍,共奏调和营卫,和血通痹之效,2药共为臣药。生姜、大枣养血益气,助芪、芍之力,又能调和营卫,扶阳祛风,共为佐使。诸药相伍,共奏补气温阳,和血通痹之功。2.2 药效基础现代药理实验证明,HGD的主要活性成分为黄酮类和苷类,如毛蕊异黄酮葡萄糖苷、毛蕊异黄酮和刺芒柄花素,可促进胰岛素释放而发挥降糖作用[26]。网络药理学预测HGD可以通过抗氧化应激、抗炎、阻止胆碱能神经信号传递、降低内质网应激水平等[27],直接或间接地发挥保护神经纤维、减轻疼痛、促进能量代谢及神经修复的作用。黄芪性甘,微温,有敛疮生肌、益卫固表、补气升阳的作用[28]。药理实验和临床研究表明,黄芪在抗炎、抗氧化、改善微循环、降血糖、增强免疫等方面疗效显著[29-31]。黄芪皂苷IV是黄芪的主要活性成分之一,《中国药典》2020年版将黄芪皂苷IV确定为黄芪质量控制的重要指标。研究发现,黄芪皂苷IV 24 mg/kg可有效提高DPN大鼠腓总神经运动传导速度,降低血糖浓度和糖化血红蛋白(glycosylated hemoglobin,GHb)水平,减少神经细胞中AGEs的积累,从而有效抑制DPN大鼠有髓纤维面积的减少和节段性脱髓鞘的增加[32]。Yin等[33]通过构建DPN大鼠模型和DPN雪旺细胞损伤模型发现,黄芪皂苷IV 80 mg/kg能够通过增强自噬,减轻雪旺细胞凋亡引起的DPN髓鞘损伤,改善神经功能。Ben等[34]应用黄芪皂苷IV 60 mg/kg连续12周干预DPN大鼠模型,发现黄芪皂苷IV能够改善DPN大鼠背根神经节中线粒体的损伤,显著减少DPN大鼠的机械性异常疼痛,提示黄芪皂苷IV在治疗DPN中有着巨大潜力。桂枝具有散寒解表、温通经脉的功效,临床常用于镇痛、抑菌、抗过敏及促进血管舒张、抗血小板聚集等[35-36]。目前DPN的发病机制被认为与胰岛素缺乏或胰岛素抵抗、高血糖和血脂异常有关[6],桂枝提取物不仅具有降血糖的作用[37-38],还可以减少肠道对胆固醇和脂肪酸的吸收[39]。现代药理研究发现,桂枝主要含有挥发油类和有机酸类化合物成分[40],其中挥发油中的主要药效成分为肉桂醛。Chun等[41]通过构建肉桂醛调控的编码基因对周围神经变性影响的生物信息学分析发现,肉桂醛能够通过影响雪旺细胞氧化应激反应而抑制周围神经变性。背根神经节神经元对高葡萄糖浓度应激的易感性与DPN的发生发展有关,是DPN损伤的靶细胞[42]。Shi等[43]通过构建高糖诱导的背根神经节神经元细胞模型发现,肉桂醛100 nmol/L能够通过抑制NF-κB通路,从而起到保护背根神经节神经元作用,减少细胞凋亡。另有研究发现,肉桂醛20、40 mg/kg可显著降低糖尿病大鼠的血糖水平,逆转糖尿病大鼠的神经炎症反应和神经递质水平的变化,提示肉桂醛在防治DPN方面具有巨大潜力[44]。现代药理研究发现,白芍化学成分主要有单萜及其苷类、三萜类、黄酮类等,具有抗炎、镇痛、抗血栓、抗氧化、降血糖等作用[45-46]。Huang等[47]通过大鼠坐骨神经受损实验发现,白芍提取物能显著增强神经突起的生长及其生长相关蛋白和突触素的表达,有助于促进周围神经再生,提示白芍提取物可能是一种潜在的神经生长促进因子。《中国药典》2020年版中将芍药苷定量控制作为对白芍的含量测定项,表明芍药苷是白芍的重要质量标志物。研究发现,芍药苷100 μmol/L具有显著的抗氧化应激作用,可以通过激活核因子E2相关因子2(nuclear factor E2 related factor 2,Nrf2)/抗氧化反应元件(antioxidant response element,ARE)信号通路保护雪旺细胞免受高糖诱导的氧化损伤[48]。朱晏伯等[49]通过观察芍药苷对高糖环境下雪旺细胞线粒体动力学的影响,发现芍药苷100 μmol/L能促进高糖环境下雪旺细胞线粒体融合,降低分裂,维持线粒体动力学平衡,改善线粒体形态与功能,降低雪旺细胞凋亡。邢琪昌等[50]构建了芍药苷-疾病-靶点网络分析,结果得出芍药苷具有降血糖、抗氧化、减轻神经炎症和疼痛等功效,在治疗DPN中具有潜在的应用价值。生姜是一种广泛使用的药食同源类中药,具有辛温解表、温里散寒的功效[51],现代药理研究表明生姜具有抗炎镇痛、抗糖尿病、增强免疫力等作用[52]。生姜可通过促进外周血葡萄糖的利用,纠正受损的肝肾糖酵解,限制糖异生物质的形成,从而有效地控制组织糖原含量[53]。此外,炎症反应与DPN的发生发展密切相关[54],生姜提取物还能够显著抑制炎性因子IL-6和TNF-α的表达,减轻白细胞浸润或水肿的形成,起到保护神经的作用[55]。Shen等[56]通过构建DPN大鼠模型,并用生姜提取物进行治疗,发现生姜提取物不仅可以减轻疼痛,还可以调节DPN大鼠肠道菌群微生物的组成,表明生姜提取物靶向肠道微生物群可能是治疗DPN的一种新治疗策略。6-姜烯酚是生姜中的重要生物活性化合物之一[57],已广泛用于治疗多种疾病。Nurrochmad等[58]研究发现,6-姜烯酚15 mg/kg和生姜提取物400 mg/kg能够降低血糖,减轻糖尿病神经疼痛小鼠模型的热痛和机械疼痛,减轻坐骨神经微结构受损程度,提示6-姜烯酚和生姜提取物对糖尿病神经疼痛小鼠具有抗痛觉过敏和神经保护作用。大枣具有增强免疫、抗氧化的功效[59]。小胶质细胞激活介导的神经炎症在DPN神经病理性疼痛中起着重要作用[60]。大枣提取物对小胶质细胞的激活有抑制作用,可减轻小胶质细胞一氧化氮释放的增加,同时降低促炎因子IL-6、IL-1β和TNF-α的表达,改善神经性疼痛[61]。另有研究证实,大枣提取物还能促进神经末梢乙酰胆碱释放,刺激胰腺细胞促进胰岛素释放,起到降低血糖的作用[62]。Kaeidi等[63]将大鼠肾上腺嗜铬细胞瘤PC12细胞作为DPN体外模型,研究大枣提取物对PC12细胞中葡萄糖诱导的神经毒性的神经保护作用,发现大枣提取物300 μg/mL可降低高葡萄糖诱导的细胞毒性,并阻止活性氧的生成,抑制神经细胞凋亡,表明大枣提取物具有减轻DPN的治疗潜力。上述研究为阐明HGD是治疗DPN的标准方剂提供了有力证据。药效基础研究发现,5味中药能够通过降血糖、抗炎、抗氧化、修复受损神经、调节肠道微生物群、改善线粒体形态与功能等多种途径防治DPN的发生发展。然而关于HGD全方治疗DPN的研究尚缺乏相关模型的入血成分、药动学分析,因此利用现有中药分析技术明确其药效物质基础,特别是HGD体内外化学成分分析及量效关系研究,在治疗DPN方面具有重要意义。3 HGD治疗DPN的临床研究近年来,临床研究证明使用HGD可有效治疗DPN,通过增减药味,或联合化学药、其他方剂及外用疗法,达到治疗疾病,改善患者生活质量的目标。3.1 原方应用在临床治疗治疗中,因为患者年龄、病程、症状严重程度等不同,所以直接采用原方剂量治疗的案例比较少。胡宗华[64]将90例DPN患者分为对照组和观察组,对照组给予甲钴胺片治疗,观察组给予HGD治疗,结果显示观察组空腹血糖、餐后血糖、血液流变学指标均低于对照组。雷琳丽[65]应用HGD治疗DPN患者发现,HGD组空腹血糖、感觉神经传导速度、下肢振动感觉阈值均优于甲钴胺组,总有效率达93.33%。这2项临床研究表明HGD对于缓解DPN患者的血糖及症状方面效果显著。3.2 复方加减联合化学药HGD加减和甲钴胺联合应用,可明显改善患者四肢麻木、烧灼、疼痛、针刺感等临床症状[66],降低血清TNF-α炎性因子,提高超氧化物歧化酶水平[67]。HGD加减与盐酸法舒地尔注射液组合可以降低DPN患者空腹血糖、餐后2 h血糖、HbA1c、总胆固醇等指标,显著改善感觉神经传导速度和运动神经传导速度[68]。在一项为期12周治疗DPN的研究中[69],HGD、依帕司他、长春西汀注射液三者联合治疗,周围神经传导速度显著提高,中医证候积分较治疗前显著降低且优于对照组,血糖得到明显改善。根据以上临床研究,发现HGD加减联合化学药可有效降低患者血糖水平,抑制炎症反应发生及发展,改善氧化应激,减轻麻木、疼痛等临床症状,进而提升了患者的生活质量。可总结以下用药加减规律:若舌脉以血瘀为主,临床症状以刺痛为主,则加用当归、川芎、桃仁、三七等活血类药物;若患者肢体疼痛以刺痛且有定处为主,则加用鸡血藤、红花、牛膝、丹参等活血祛瘀止痛类药物;若患者肢体疼痛加重,出现入夜痛甚,则加用全蝎、地龙、没药、乳香等以痛经活络消痹止痛;若患者肢体出现水肿,则加用苍术、薏苡仁、木瓜等利水除湿、通络除痹。目前常用的化学药有甲钴胺、依帕司他、阿司匹林肠溶片、盐酸法舒地尔等药物。见表1。图片3.3 复方加减联合其他方剂相比于单独应用和联合化学药应用,HGD联合当归四逆汤、补阳还五汤、桃红四物汤等方剂治疗DPN,也取得良好的疗效。HGD联合当归四逆汤治疗DPN患者后,患者肢体冰冷、疼痛和麻木等临床症状大幅减轻,神经系统反射基本恢复正常[79],患者肢体血流速度得到改善[80]。HGD和补阳还五汤组合治疗总有效率达92%,临床症状明显缓解,神经传导速度增幅较高,密歇根糖尿病审计病变积分明显低于对照组[81]。连珍珍等[82]应用HGD合桃红四物汤加减治疗DPN研究显示,患者治疗前后血糖、HbA1c、中医证候积分、密歇根糖尿病审计病变积分、神经传导速度均有好转。当归四逆汤温经散寒、养血通脉,主治血虚寒厥证。补阳还五汤具有补气、助阳、通络化瘀的功效,主治气虚血瘀之证。桃红四物汤养血活血,主治血虚兼血瘀证。HGD联合补阳还五汤、当归四逆汤、桃红四物汤等方剂治疗DPN,能够有效减轻患者肢体冰冷、疼痛麻木等临床症状,改善神经传导速度,降低血糖。DPN的病因病机复杂多样,但以虚为本、瘀为标,肌肉筋骨失于濡养,致使手足麻木、厥冷、痹阻脉络、不通则痛。因此在临床治疗中,应补气补血补阳、活血化瘀通络。3.4 复方加减联合针灸在临床中,HGD还可以联合针灸治疗DPN。在孟凡冰等[83]的临床研究中,服用HGD,同时联合针灸治疗,血液黏度、多伦多临床评分均下降,神经传导速度也显著提升。赵荣等[84]研究发现,经HGD联合针灸治疗DPN后,患者肢体麻木、疼痛、无力的症状明显好转,中医证候积分量表较治疗前下降,对比患者治疗前后血常规、肝肾功能、心电图指标,差异无统计学意义,表明HGD联合针灸治疗DPN临床疗效确切且安全性较高。相较于单用HGD加减治疗,联用针灸后,临床症状缓解方面疗效更佳。部分穴位如三阴交、太溪和内关穴下有神经走行,针灸针对神经直接刺激后,可明显提高对神经功能的良性调节作用。四肢关节以下的腧穴,如足三里、三阴交、曲池、内关等,能够起到疏通局部经络气血的作用。针对DPN的关键病机,辅以关元穴、肾俞穴、胰俞穴、脾俞穴等,能达到补虚培元、调和脏腑的功效。见表2。图片3.5 复方加减联合其他疗法此外,HGD还可以联合中药足浴、穴位敷贴、高压氧等疗法共同治疗DPN。一项临床实验显示[91],口服HGD联合中药足浴(丹参、艾叶、红花、凤仙透骨草、皂角刺各20 g,肉桂、川椒各10 g),临床疗效优于对照组。HGD配合涌泉穴穴位贴敷治疗DPN后,患者全血高切比黏度、全血低切比黏度、血浆黏度水平均明显下降,有效改善了患者的血糖水平[92]。以上临床实验表明,HGD治疗DPN效果显著,有单独应用、联合化学药、针灸、中药足浴和穴位贴敷等用法,有效改善DPN患者糖脂代谢、血液流变学,降低患者血糖水平、氧化应激指标,抑制炎症反应,降低中医证候积分,提高神经传导速度,减轻DPN患者疼痛、麻木、四肢厥冷等临床症状。4 HGD治疗DPN的机制研究4.1 降低血糖,改善糖脂代谢高血糖是糖尿病前期、糖尿病前期神经病变、DPN的主要危险因素[93],不仅会直接损伤神经,其介导的多种异常代谢途径,如多元醇通路、AGEs通路、己糖胺通路,会通过激活炎症反应、氧化应激、线粒体功能障碍等造成神经屏障破坏、周围微血管损伤,最终累及神经。除高血糖激活的异常代谢途径,最近的研究表明血脂异常也在DPN发生发展中起着重要作用[11]。刘曼曼等[94]研究发现HGD可有效降低DPN患者空腹血糖、餐后2 h血糖、HbA1c,患者肢体神经传导速度、麻、凉、痛等症状得到改善。林云梅等[95]采用HGD治疗DPN患者,检测患者血糖、血脂水平发现,治疗组空腹血糖、餐后2 h血糖、总胆固醇、三酰甘油、低密度脂蛋白胆固醇均显著下降。这2项研究表明HGD能够有效调节DPN患者机体血糖、血脂水平,改善受损神经组织。4.2 抑制异常代谢通路4.2.1 抑制AGEs通路 在糖尿病患者中,神经组织被过度糖化,导致蛋白质、脂质、核酸等与还原糖类发生非酶促反应生成AGEs[96]。糖尿病患者皮肤和周围神经存在大量AGEs,特别是神经元、雪旺细胞、神经内膜和神经外膜微血管中[97]。AGEs与晚期糖基化终产物受体(receptor for advanced glycationend products,RAGE)结合后引起内皮功能障碍、氧化应激和促炎信号的传导[98]。方颖等[99]通过高脂饲养联合ip链脲佐菌素建立DPN大鼠模型,经HGD干预后,发现DPN大鼠血清IL-1β、TNF-α炎症因子的含量显著降低,其作用机制可能与减少AGEs蓄积,阻断AGEs/RAGE/NF-κB信号有关。4.2.2 调节内质网应激,抑制细胞凋亡 高血糖能够扰乱蛋白质稳态并上调未折叠的坐骨神经蛋白[100],而内质网腔内未折叠或错误折叠蛋白的积累会诱导内质网应激[101],最终激活环磷酸腺苷反应元件结合转录因子同源蛋白(C/EBP-homologous protein,Chop)导致细胞凋亡[102]。张岩等[103-104]通过构建DPN大鼠模型发现,经HGD组干预后,DPN大鼠Chop蛋白表达显著降低,HGD可以通过调节内质网应激途径抑制细胞凋亡。此外,HGD还能够显著降低坐骨神经细胞凋亡相关B细胞淋巴瘤-2相关X蛋白和半胱氨酸天冬氨酸蛋白酶-12蛋白的表达,抑制坐骨神经细胞凋亡并改善和修复糖尿病大鼠坐骨神经损伤。内质网应激介导Chop凋亡蛋白的同时,也激活了c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)[105],JNK可以抑制髓鞘蛋白的产生,诱导雪旺细胞去分化,从而导致脱髓鞘和神经损伤的发生[106]。肖凡等[107]研究发现,HGD给药组DPN小鼠神经纤维和髓鞘出现再生,空腹血糖、鼠尾热痛觉敏感程度、坐骨神经传导速度、坐骨神经组织病理状态均显著优于模型组,JNK蛋白表达也显著减少,推测HGD可能通过抑制内质网应激水平来改善DPN大鼠坐骨神经功能、减轻坐骨神经组织损伤。4.3 抗炎镇痛DPN与炎症反应密切相关,炎症标志物的水平可以预测DPN的发生和发展[108]。多项临床研究证明,HGD可以有效降低IL-6、TNF-α等炎症因子水平,改善神经传导速度[109-110]。miR-146a是一种短链非编码RNA分子,miR-146a与糖尿病慢性并发症间存在独立的负相关关系[111],在长期高血糖的情况下,miR-146a的表达下降,NF-κB的抑制减弱,导致IL-1β和TNF-α炎性因子表达水平升高[112]。郭咏梅等[113]研究发现,HGD可以上调DPN大鼠模型miR-146a基因表达,降低DPN大鼠血清中炎症因子IL-1β和TNF-α水平,以及机械痛阈值,提高神经传导速度,推断HGD治疗DPN的机制与抑制炎症反应有关。周雯等[114]研究发现,HGD能够呈剂量相关性降低DPN大鼠血清IL-1β、TNF-α水平,减轻周围神经组织炎症损伤。4.4 抗氧化应激氧化应激被认为是导致DPN多种代谢途径受损的共同引发因素,过多的活性氧除造成轴突变性外,还会导致神经纤维的功能减退,与DPN的发生发展密切相关[115]。经HGD干预后DPN大鼠血糖、丙二醛水平显著下降,血清谷胱甘肽水平升高,提示HGD具有抗氧化作用[116]。硫氧还蛋白(thioredoxin,Trx)是一种广泛存在于生物体内的氧化还原调节蛋白,不仅可以通过清除活性氧来抵抗细胞内的氧化应激,还可以作为一种生长因子促进细胞的生长[117],而硫氧还蛋白互作蛋白(thioredoxin-interacting protein,TXNIP)是Trx的生理抑制剂,能下调Trx表达。张文娓等[118]通过研究HGD对DPN大鼠周围神经组织Trx及TXNIP表达的影响,发现HGD可明显提高Trx的表达,降低TXNIP的表达,进一步表明HGD可通过抗氧化应激来治疗DPN。4.5 营养神经修复NGF在外周神经纤维重建和中枢神经系统的营养维持中具有重要作用[119],有研究发现NGF可明显缩短神经再生长和髓鞘再生时间[120]。多项实验研究表明HGD可有效改善DPN大鼠坐

  • CNS_08.009_叶绿素铜钠盐

    CNS_08.009_叶绿素铜钠盐

    [align=center][font='黑体'][size=29px]叶绿素铜钠盐[/size][/font][/align][align=center]杨宗琦[/align]叶绿素是植物进行光合作用所必需的催化剂,是由四个吡咯环与镁离子相互配合而形成的镁卟啉类化合物。它是天然生物活性物质之一,具有排毒养颜,抗病强身,抑菌除臭等功效,一方面被广泛应用于日用品、食品、色素、脱臭剂等方面,另一方面在医药上也可用来治疗多种疾病,并应用于各种牙膏的开发中。但游离的叶绿素卟啉环中的镁离子在酸性条件下容易被氢离子取代,生成脱镁叶绿素使色泽褪去,且对光、酸和热比较敏感,使叶绿素的应用受到严重限制。近年来,有不少研究者试图对叶绿素的结构进行修饰,使其变成相对稳定的金属卟啉结构,而叶绿素铜钠盐就是极其重要的一种。叶绿素铜钠盐具有很高的稳定性,在医学上,叶绿素铜钠盐是一类重要的药物,甚至可用叶绿素铜钠盐用于治疗白血病。本文将从基本性质、制备工艺、含量测定等方面介绍叶绿素铜钠盐。[font='黑体'][size=18px]一、基本性质[/size][/font] [align=left]叶绿素,英文名Chlorophyllin,中文别名叶绿素镁钠盐 、叶绿酸粉末、 叶绿素铜三钠,呈墨绿色粉末,着色力强,色泽亮丽,其水溶液呈蓝绿色澄清透明液,[font='宋体'][size=13px][color=#000000]易溶于水,几乎不溶于低醇,不溶于氯仿。水溶液透明、无沉淀。在酸性情况下([/color][/size][/font][font='times new roman'][size=13px][color=#000000]pH 6.5 [/color][/size][/font][font='宋体'][size=13px][color=#000000]以下[/color][/size][/font][font='宋体'][size=9px][color=#000000])[/color][/size][/font][font='宋体'][size=13px][color=#000000]或钙离子存在时,则有沉淀析出。[/color][/size][/font]当其水溶液pH 值小于6 时,染液底部出现粉末状沉淀,这是由于平面空间结构的叶绿素铜钠分子在酸性条件下易于聚集 。叶绿素铜钠盐可以菠菜或蚕粪为原料,用丙酮或乙醇提取叶绿素,添加适量硫酸铜、叶绿素卟啉环中的镁原子被铜置换即生成。[/align]1.1物理化学性质沸点:801.6℃at 760 mmHg分子式:C[font='calibri'][size=13px]34[/size][/font]H[font='calibri'][size=13px]31[/size][/font]CuN[font='calibri'][size=13px]4[/size][/font]Na[font='calibri'][size=13px]3[/size][/font]O[font='calibri'][size=13px]6[/size][/font]分子量:724.148闪点:438.6℃储存条件:密封于2-8℃阴凉干燥处溶解性:易溶于水,略溶于醇和氯仿。[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061804161897_7669_1608728_3.png[/img] [img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061804162109_5211_1608728_3.png[/img]1.2中毒症状和影响,急性和迟发效应系统性铜中毒症状包括:毛细血管损伤、头痛、冷汗、脉搏微弱、肝肾损伤、中枢神经系统兴奋继而抑制、黄疸、抽搐、麻痹和昏迷。休克和肾衰会导致死亡。慢性铜中毒包括肝硬化、脑损伤和脱髓鞘、肾损害;铜沉积在角膜引起人威尔逊病。还有报道铜毒性导致血红蛋白贫血和加剧动脉硬化。目前,其化学、物理和毒性性质尚未经完整的研究。1.3安全操作的注意事项在有粉尘生成的地方,提供合适的排风设备。1.4安全储存的条件,包括任何不兼容性贮存在阴凉处。 容器保持紧闭,储存在干燥通风处。建议的贮存温度:2 - 8℃,对光线敏感[font='黑体'][size=18px]二、制备工艺[/size][/font]工艺流程:原料→预处理→浸提→过滤→皂化→回收乙醇→石油醚洗涤→ 酸化铜代→抽滤水洗→ 溶解成盐→过滤→干燥→ 成品2.1方法一将富含叶绿素的原料( 国内生产以蚕沙为主) 于40~ 50℃烘干后,研细成粉末状。加粉末量3倍的乙醇丙酮混合液( 1/ 1)于40~45℃提取2.5h,抽滤,滤渣用同等体积乙醇丙酮的混合液再提取 一次。合并两次提取液并加NaOH 调pH 值为11,加热皂化( 50°C左右) 30min。皂化是否完全可用石油醚萃取来判断,上层液呈黄色即为皂化完全 。皂化完全后蒸馏浓缩回收混合液( 60°C左右) 直至体积为原来的1/4~ 1/ 3 即可。再用石油醚萃取4次。下层用盐酸调至pH 值为7,加硫酸铜后调pH值为2, 并在50℃下铜代2h。反应结束即有颗粒状沉淀形成,静置冷却。室温下收集沉淀, 先用50~ 60℃水洗涤,再用30% ~ 40% 的乙醇洗涤至乙醇层为浅绿色。再用石油醚洗涤至石油醚层为浅绿色。滤饼用丙酮溶解,用5%的NaOH 乙醇溶液沉淀,pH 值为12,收集沉淀,用无水乙醇洗涤即得产品。在制备过程中反应温度不易过高,调节pH 值时要小心,温度过高以及pH 值过大或过小都能使叶绿素分解 。此为百度文库提供的制备方法。通过查阅知网,我们了解到以下几种从不同原材料出发的制备叶绿素铜钠盐的方法。2.2方法二:螺旋藻制取叶绿素铜钠盐基本思路:利用硫酸铜对螺旋藻进行浸泡铜化,再用丙酮乙醇混合液浸提得到叶绿素的有机溶液,再经过皂化、萃取、浓缩、干燥等步骤将叶绿素改造为叶绿素铜钠盐。具体步骤:材料:螺旋藻主要试剂:AR乙醇(沸点 78.1℃),AR 丙酮(沸点 56.1℃),AR氢氧化钠,AR 石油醚,AR 盐酸,硫酸铜晶体(CuSO[font='calibri'][size=13px]4[/size][/font].5H[font='calibri'][size=13px]2[/size][/font]O),食盐,白砂糖,可溶性淀粉,用时配成各种所需浓度。工艺流程:螺旋藻→粉碎→铜化(5%CuSO[font='calibri'][size=13px]4[/size][/font]溶液)→洗涤、脱水→浸提(丙酮乙醇混合液)→过滤→浓缩→皂化(5%NaOH溶液)→萃取(石油醚)→干燥→叶绿素铜钠盐产品具体步骤:称量 5.0g 粉碎好的螺旋藻于试管中铜化 13h 后,洗涤脱水于锥形瓶中,加入 70:30 的丙酮乙醇混合液 300mL,加盖在室温下浸提 2h,过滤,浓缩,皂化(5%NaOH 溶液),萃取(石油醚),干燥,可制得墨绿色带金属光泽的叶绿素铜钠盐产品。该文献还对叶绿素铜钠盐的稳定性进行实验分析,实验结果表明,螺旋藻叶绿素铜钠盐的耐光性较较差,需在避光条件下保存;热稳定性较好,但不能高于85 ℃;不耐强酸;食盐、白砂糖、淀粉等食品添加剂无不良影响。2.3方法三:剑麻膏中叶绿素铜钠盐的制备基本思路:以从剑麻膏中萃取得到的叶绿素为原料,研究了酸化、铜代、皂化条件对叶绿素铜钠盐产率的影响。该文献指出,叶绿素铜钠盐的制备过程可分为两种,一种是先皂化,后铜代,目前大多数文献都采用这种方法,但由于叶绿素的耐酸性较差,所得产品纯度不够,产率不高 另一种是先铜代后皂化,即将提取出的叶绿素首先脱镁铜代,使叶绿素变成比较稳定的叶绿素铜,再经皂化成盐得到产品。这种方法对反应温度和时间的要求不太苛刻,有利于提高叶绿素的稳定性。故他们采用先铜代后皂化的方法,遵循节能降耗,提高效率的原则,对反应条件进行优化,并对所得叶绿素铜钠盐的性能和质量进行检测。实验试剂与仪器:剑麻膏,由广西武鸣东风农场提供 乙醇、丙酮、盐酸、氢氧化钠、石油醚、硫酸铜均为分析纯。BSA224S电子天平 FZ102 微型植物试样粉碎机 HH-2数显恒温水浴锅 723N可见分光光度计 R201L 旋转蒸发仪。具体步骤:[font='宋体']①[/font]叶绿素的提取称取30 g 剑麻膏于250 mL的三口烧瓶中,用 85% 的乙醇在 60 ℃水浴锅中提取3 h。提取液减压浓缩,得到含有叶绿素的提取膏状物。加入丙酮,萃取叶绿素,回收丙酮,得到叶绿素膏状物。[font='宋体']②[/font]叶绿素铜的制备 叶绿素加入少量乙醇溶解,用 10%的盐酸调 pH 为酸性,这时溶液由绿色变成黄褐色,酸化脱镁 45 min 后,边搅拌边加入10%CuSO[font='calibri'][size=13px]4[/size][/font]溶液进行铜代,有絮状沉淀生成,抽滤,用热水反复洗涤,得叶绿素铜。[font='宋体']③[/font]叶绿素铜钠盐的制备 叶绿素铜用少量乙醇溶解,加入 10% NaOH 溶液,75 ℃皂化 1 h,加入等量的石油醚,充分摇动,静置分层。除去上层黄色的叶黄素等脂溶性杂质,将下层深绿色的叶绿素铜钠盐收集于小烧杯中,水浴蒸干水分,在 60 ℃下烘干,即得目标产物。 该文献还讨论了酸化脱镁的条件优化,他们发现,叶绿素铜的产率随着溶液 pH 的增大而逐渐减小,pH>3时,产率下降。说明当 pH较大时,酸度不够,一部分叶绿素卟啉环中的镁离子没有脱落下来,导致叶绿素铜得率下降。所以,以pH =3 为宜。对于[font='fzktk--gbk1-00'][size=13px][color=#000000]酸化时间对叶绿素铜得率的影响[/color][/size][/font][font='fzktk--gbk1-00'][size=13px][color=#000000],研究发现[/color][/size][/font][font='ssj4'][size=13px][color=#000000],[/color][/size][/font]酸化时间超过 60 min 时,叶绿素铜的产率增大不太明显,说明酸化反应基本完成。为了节约实验时间,酸化时间以 60 min 为宜。对于酸化温度对叶绿素铜得率的影响,发现叶绿素铜得率在45-65℃随着酸化温度的升高呈上升趋势在65-85 ℃产率变化不大,超过85 ℃时,产率突然下降。可能是高温使叶绿素铜中的环状结构氧化,四吡咯环破坏而被降解,使叶绿素铜的产率降低。所以,酸化温度以65℃为宜。对于加铜量对叶绿素铜得率的影响,研究发现随着硫酸铜量的增加,叶绿素铜的得率增加,加入量大于 15 mL 时,增大幅度不明显,基本保持稳定。实验过程中还发现,加铜量太多时,溶液中游离铜的量也会增多,会延长叶绿素铜的洗涤时间。考虑到实验效率和能耗问题,加铜量以15 mL为宜。对于铜代时间对叶绿素铜得率的影响,研究发现叶绿素铜的得率随着铜代时间的延长呈增大趋势,铜代时间超过2h时,叶绿素铜得率的增大幅度不大。所以,铜代时间以2h为宜。对于皂化温度对叶绿素铜钠盐得率的影响,叶绿素铜钠盐的产率随着皂化温度的升高不断提高,当温度高于85℃时,产率稍有下降,这可能是因为生成的叶绿素铜钠盐在较高的温度下会部分分解,导致产率下降,为了保证叶绿素铜钠盐的质量,皂化温度选择75 ℃为宜。对于皂化时间对叶绿素铜钠盐得率的影响,研究发现叶绿素铜钠盐的得率随着皂化时 间的延长而增大,≥60 min 后得率趋于稳定。皂化时间较短时,用石油醚萃取的过程中,分层不明显,醚相呈绿色,说明没有皂化完全。所以,皂化时间以60 min 为宜。对于pH 对叶绿素铜钠盐得率的影响,研究发现,当pH>11 时,叶绿素铜钠盐的得率趋于稳定,在实验过程中发现,当 pH为9或10时,用石油醚萃取酯溶性物质时,界面会有固体颗粒,分层界面不清晰,醚相为绿色,这都是因加碱量不够,导致皂化不完全。所以,皂化时以pH = 12为宜。该文献还对叶绿素铜钠盐的性质进行了探究。对于耐光性,研究表明叶绿素铜钠盐在强光下不稳定,但与叶绿素相比,已经大大提高了耐光性。对于耐热性,实验结果为在90 ℃以内,叶绿素铜钠盐的吸光度基本保持不变,颜色均为绿色 温度高于90 ℃时,吸光度开始有下降趋势,但幅度不大,即使是在110 ℃时,叶绿素的保存率也为96.9%,说明叶绿素铜钠盐的耐热性还是比较理想的,可添加到处理温 度在100 ℃以内的食物中。对于耐酸碱性,从实验数据可以看出溶液的吸光度随着pH的增大而升高,pH在3~6 范围内,吸光度变化幅度不大,溶液颜色呈土绿色 pH = 7时,吸光度值有个比较大的跳跃 在 7~12 范围内,吸光度的变化幅度也不太大,溶液颜色呈碧绿色。在实验过程中发现,当 pH<3时,溶液中会出现大量沉淀,这可能是因为叶绿素铜钠盐在强酸条件下生成了不溶于水的叶绿素铜酸 当pH>11时,因碱性太强,加速脱酯反应,使叶绿素分解,溶液的吸光度迅速下降,但在碱性条件下,因不发生脱镁或碳环裂解反应,却能保持相对稳定的色泽,在使用中只要控制溶液 pH 值在近中性或偏碱水平,就能基本维持叶绿素铜钠盐的稳定性。综上可以得出,采用先铜代后皂化的方法制备叶绿素铜钠盐,即叶绿素提取出来后先脱镁铜代,增加中间产物的稳定性,在后续操作中,不必考虑因温度太高或时间太长而使叶绿素分解的问题,从而提高了产品的产率和纯度。从剑麻膏中萃取制备叶绿素铜钠盐的优化条件是: 酸化时 pH = 3,酸化时间 60 min,温 度 65 ℃ 铜代时硫酸铜加量1.5 g,时间2h 皂化时温度 75 ℃,时间 60 min,pH = 12。在此条件下,产率为 4.46% ,产品为墨绿色粉末,略带氨臭,易溶于水,水溶液呈绿色透明澄清液,微溶于或不溶于乙醇、乙醚、丙酮、氯仿等有机溶剂,有Ca[font='calibri'][size=13px]2+[/size][/font],Mg[font='calibri'][size=13px]2+[/size][/font]存在时,产品中会有少许白色沉淀,在空气中容易吸潮,应隔绝空气保存。[font='黑体'][size=18px]三、含量测定[/size][/font]3.1试剂与材料氢氧化钠乙酸铵甲醇冰乙酸聚酰胺粉:粒径0.150mm~0.180mm。3.2试剂配制氢氧化钠溶液(4mol/L):称取16.0g氢氧化钠,用水溶解并定容至100mL。氢氧化钠溶液(0.1mol/L):称取0.40g氢氧化钠,用水溶解并定容至100mL。乙酸铵缓冲溶液(0.2mol/L):称取7.708g乙酸铵,用水溶解并定容至500mL。解吸液:0.1mol/L氢氧化钠溶液+甲醇=1+10(体积比)。3.3标准溶液配制精确称取经105℃±1℃干燥至恒重并按其纯度折算为100%质量的叶绿素铜钠标准品0.0500g,用水溶解并定容至100mL棕色容量瓶中,此溶液浓度为500μg/mL,当天配制,避光保存。3.4标准工作溶液准确移取500μg/mL标准溶液10mL至100mL烧杯中,加入0.2mol/L的乙酸铵溶液30mL,用4mol/L氢氧化钠溶液和冰乙酸调pH5~6。加入3.0g聚酰胺粉,充分搅拌2min,避光静置5min用约20mL蒸馏水转移至 G3砂芯漏斗中抽滤,弃去滤液。用75mL 解吸液分3次解吸色素:每次倒入约25mL解吸液,浸泡2min,再振摇2min,抽滤并用20mL解吸液洗净抽滤瓶中残液。收集滤液,用解吸液定容至100mL,配制成浓度为50μg/mL的标准溶液,此溶液临用时配制。[font='e-bz'][size=12px][color=#000000] [/color][/size][/font]3.5被测样品溶液后期处理向含有被测样品粉末或样品浆液的100mL烧杯中加入0.2mol/L的乙酸铵溶液30mL,溶解并混匀样液,用4mol/L氢氧化钠溶液和冰乙酸调pH5~6。加入3.0g聚酰胺粉,充分搅拌2min。将样品溶液用约20mL60 ℃±2 ℃蒸馏水转移至 G3砂芯漏斗中抽滤,弃去滤液。再用75mL 解吸液分3次解吸色素,抽滤并用20mL解吸液洗净抽滤瓶中残液,收集滤液,用解吸液定容至100mL。3.6仪器条件测定波长:405nm。比色皿:1cm。3.7标准曲线的制作分别取标准工作液0mL、5.0mL、10mL、20mL、30mL、40mL、50mL至100mL容量中,用解吸液稀释至刻度,配制成浓度为 0μg/mL、5μg/mL、10μg/mL、20μg/mL、30μg/mL、40μg/mL、50μg/mL的标准系列。以0μg/mL溶液为空白,测定其吸光值。以浓度为横坐标,以吸光值为纵坐标绘制标准曲线。试样溶液的测定取经过前处理的样品的制备液,以标准曲线的0μg/mL为空白,测定其吸光值,根据标准曲线获得样品溶液中叶绿素铜钠的浓度。本标准检出限为0.001g/kg,定量限为0.005g/kg。3.8总铜含量试样处理[align=left][font='宋体'][size=13px][color=#000000]准确称取 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.1g [/color][/size][/font][font='宋体'][size=13px][color=#000000]试样,精确至 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.000 2g[/color][/size][/font][font='宋体'][size=13px][color=#000000],置于硅皿中,在不超过 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]500[/color][/size][/font][font='宋体'][size=13px][color=#000000]℃下灼烧至无碳,用[/color][/size][/font][font='times new roman'][size=13px][color=#000000]1[/color][/size][/font][font='宋体'][size=13px][color=#000000]滴[/color][/size][/font][font='times new roman'][size=13px][color=#000000]~2 [/color][/size][/font][/align][font='宋体'][size=13px][color=#000000]滴硫酸湿润,再次灰化。用质量分数为[/color][/size][/font][font='times new roman'][size=13px][color=#000000]10%[/color][/size][/font][font='宋体'][size=13px][color=#000000]的盐酸溶液分[/color][/size][/font][font='times new roman'][size=13px][color=#000000]3[/color][/size][/font][font='宋体'][size=13px][color=#000000]次(每次[/color][/size][/font][font='times new roman'][size=13px][color=#000000]5mL[/color][/size][/font][font='宋体'][size=13px][color=#000000])煮沸溶解灰分,并过滤[/color][/size][/font]于100mL容量瓶中,冷却后用水定容至刻度,此为试样液。测定[align=left][font='宋体'][size=13px][color=#000000]除试样处理外,其他步骤按[/color][/size][/font][font='times new roman'][size=13px][color=#000000]GB/T 5009.13[/color][/size][/font][font='宋体'][size=13px][color=#000000]规定的方法测定。[/color][/size][/font][/align]游离铜含量3.9试样处理[align=left][font='宋体'][size=13px][color=#000000]准确称取[/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.1g[/color][/size][/font][font='宋体'][size=13px][color=#000000]试样,加水约[/color][/size][/font][font='times new roman'][size=13px][color=#000000]50mL[/color][/size][/font][font='宋体'][size=13px][color=#000000]溶解后,用[/color][/size][/font][font='times new roman'][size=13px][color=#000000]1mol/L [/color][/size][/font][font='宋体'][size=13px][color=#000000]盐酸调节[/color][/size][/font][font='times new roman'][size=13px][color=#000000]pH[/color][/size][/font][font='宋体'][size=13px][color=#000000]至[/color][/size][/font][font='times new roman'][size=13px][color=#000000]4.0[/color][/size][/font][font='宋体'][size=13px][color=#000000],定容至[/color][/size][/font][font='times new roman'][size=13px][color=#000000]100mL[/color][/size][/font][font='宋体'][size=13px][color=#000000],过 [/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]滤,此为试样液。[/color][/size][/font][/align]测定[align=left][font='宋体'][size=13px][color=#000000]除试样处理外,其他步骤按[/color][/size][/font][font='times new roman'][size=13px][color=#000000]GB/T 5009.13[/color][/size][/font][font='宋体'][size=13px][color=#000000]规定的方法测定。[/color][/size][/font][/align]参考文献[align=left][font='宋体'][size=13px][color=#000000]【1】韩敏.直接皂化法制备叶绿素铜钠盐[J].应用化工,:,2014.43(4):704-707.[/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]【2】赖海涛.螺旋藻制取叶绿素铜钠盐的稳定性研究[J].化学工程与装备,:,2020.3(3):14-15.[/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]【3】李祥.剑麻膏中叶绿素铜钠盐的制备及性能测定[J].应 用 化 工,:,2018.47(2):262-267.[/color][/size][/font][/align][align=left][/align][align=left][/align][align=left][/align]

  • 【涨姿势】低钠盐,你了解吗?

    低钠盐是什么?低钠盐是一种健康食盐。以加碘食盐为基础,添加一定量氯化钾(含量约30%)。与普通钠盐相比含钠低(氯化钠70%左右),富含钾(氯化钾30%左右),有助人体钠钾平衡,降低高血压、心血管疾病的风险。在食盐中,导致咸味的是氯离子而非钠离子,故低钠盐能够实现减钠补钾而基本不减咸。低钠盐的基本介绍低钠盐的两大功能:减盐不减咸,帮助人体钠钾平衡;重要功效:防控高血压。适用人群:最适合中老年人和患有高血压,以及身怀六甲的孕妇长期服用。但高钾药物服用者和肾功能不全、高血钾患者须遵医嘱。不适人群:不适合心脏有疾病的人群,K+易增加心脏负担,如滥用可能引起猝死。2013年1月31日,世界卫生组织发布新的食盐摄取指南,明确指出钠摄入过量或钾摄入不足都是导致高血压的风险因素。从饮食结构来看,中国人主要的钠摄入源自食盐,而低钠盐是能实现减钠补钾的最佳选择。注意事项1、必须注意的是,千万不可因为低钠盐有好处就大把大把的用,不咸其实是心理因素,做菜时若用太多,就失去了减盐的意义了。2、荤菜和半荤素的菜使用低钠盐不会有口味上的不同,纯青菜的烹饪上,可能会有些口感上的差异。针对此点在料理青菜时,可以用葱姜蒜等香辛料来提味,久了就会习惯。3、肾脏病应该低钠饮食,但也不可用低钠盐,这是因为低钠盐中含有较多的钾,肾脏病人,尤其是排尿功能出现障碍(例如尿毒症)的患者,不可以吃低钠盐,较多的钾不能有效排出体外,堆积在体内会造成高血钾,容易造成心律不整,心衰竭的危险。4、甲状腺机能亢进(甲亢)用无碘盐,甲状腺机能亢进和慢性淋巴球性甲状腺炎病人,除了不可以吃含碘的食物,譬如海菜、昆布(海带),还应该用不含碘的食盐,因为碘是制造甲状腺荷尔蒙的原料。【来源:生活中的化学】

  • 【求助】关于制备钠盐的样品的问题,求教!!

    各位大侠有没有做有机物钠盐的纯化?小弟是用c18柱反向纯化,但是有个问题,我们纯化的样品是个羧酸钠盐,我分离后,接到的组分是不是成了羧酸了?如果是,怎么再弄回钠盐呢?前提,我们样品有内酰胺结构,加碱容易坏掉,跪求方法~~~~[em0808]

  • 【求助】如何配制EDTA钠盐缓冲溶液,pH值8左右

    如何EDTA钠盐缓冲溶液,pH值8左右因工作需要,需配制EDTA缓冲溶液,拟用于解决土壤中硼中毒的问题。要求EDTA钠盐缓冲溶液pH值为8左右,浓度为0.05mol/L不知道这能否起到缓解土壤硼中毒的作用啊。

  • 【金秋计划】天丝饮对阿尔茨海默病的神经保护作用及其对神经炎症的抑制作用

    [b][size=15px][color=#595959]阿尔茨海默病[/color][/size][size=15px][color=#595959](AD)[/color][/size][/b][size=15px][color=#595959]是老年人中最常见的神经退行性疾病。作为一种传统的中药,[b]天丝饮[/b]出自《辨证录》,由[b]巴戟天和菟丝子[/b]组成,已被广泛用于[b]补肾[/b]。有趣的是,天思饮也被用来治疗痴呆、[/color][/size][b][size=15px][color=#595959]抑郁症[/color][/size][/b][size=15px][color=#595959]和其他神经系统疾病。研究表明,天丝饮对东莨菪碱引起的小鼠记忆缺陷、胆碱能[/color][/size][b][size=15px][color=#595959]功能障碍[/color][/size][/b][size=15px][color=#595959]、氧化损伤和神经炎症具有保护作用。然而,其治疗神经退行性疾病如阿尔茨海默病的潜力及其潜在机制尚不清楚。[/color][/size] [size=15px][color=#595959]该研究旨在评价天丝饮对AD的治疗作用,并探讨其作用机制。[/color][/size][size=15px][color=#595959][/color][/size] [size=15px][color=#595959]采用β淀粉样蛋白(Aβ)肽或过表达淀粉样前体蛋白(APP)处理的N2a细胞建立AD细胞模型。采用秀丽隐杆线虫和3 × Tg-AD小鼠模型评价其体内抗AD作用。天丝饮分别以10、15、20 mg/kg/d给药,连续8周。采用Morris水迷宫和恐惧条件反射实验考察其对小鼠记忆缺陷的保护作用。利用[/color][/size][b][size=15px][color=#595959]网络药理学、[/color][/size][size=15px][color=#595959]蛋白质[/color][/size][size=15px][color=#595959]组学分析[/color][/size][/b][size=15px][color=#595959]和超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱/质谱(UHP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)分析其潜在的分子机制,并通过Western blotting和[/color][/size][b][size=15px][color=#595959]免疫[/color][/size][/b][size=15px][color=#595959]组织化学进一步研究其分子机制。[/color][/size] [align=center][size=16px][color=#3573b9]结[/color][/size][size=16px][color=#3573b9]果[/color][/size][/align] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]天丝饮可提高Aβ处理的N2a细胞和表达APP的N2a-APP细胞的细胞活力。天思饮还能降低ROS水平,延长转基因AD样秀丽隐杆线虫模型的寿命。天丝饮中剂量口服可有效恢复3 × Tg小鼠的记忆损伤。天丝饮通过[b]抑制神经胶质细胞活化、下调炎症细胞因子、减少tau磷酸化和Aβ沉积,进一步抑制神经炎症[/b]。利用UHP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS和网络药理学技术,从天丝饮68种成分中鉴定出17种植物化学物质为潜在的抗AD活性成分。通过网络药理学和质谱分析,确定了天丝饮抗AD的靶点为[b]MAPK1、BRAF、TTR和Fyn[/b]。[/color][/size] [align=center][size=16px][color=#3573b9]结论[/color][/size][/align] [b][size=15px][color=#595959][/color][/size][/b][size=15px][color=#595959]该研究证实了天丝饮对AD的保护作用,表明[b]天丝饮可通过调节炎症反应改善Aβ水平、tau病理和突触紊乱[/b]。这些发现为天丝饮治疗AD提供了重要的见解。[/color][/size][size=15px][color=#595959][/color][/size]

  • 低钠盐用氯化钾替代部分氯化钠

    低钠盐用氯化钾替代部分氯化钠,从而降低30%的钠含量,而咸味相当,可以减少钠的摄入,有效预防高血压。研究证实,低钠盐可显著减少脑卒中等心血管事件的发生和死亡,对高血压及健康人群均适用。注意:肾功能不全、高钾血症患者谨慎食用,避免钾无法有效排出体外而导致心律不齐、心力衰竭等危险。

  • 【原创】大家有没有甲基二磺隆、甲基碘磺隆钠盐的残留分析方法

    甲基二磺隆、甲基碘磺隆钠盐的残留分析方法,最好是液相的 我们这没有[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url],现在新的残留分析方法 几乎都爱上[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url],可苦了好多单位 ,如果实在没有 能否有相关的,如磺酰脲类,英文的也行 谢谢大家

  • 【求助】低钠盐是什么???

    【求助】低钠盐是什么???

    在超市逛时发现有各种各样的食盐销售:加碘盐,铁强化,锌强化,钙强化盐……其中还发现了“低钠盐”。按照理解盐就是Nacl么,那低钠盐到底是什么?难道就是把钠去除,改成其他的元素?低钠盐有什么好处?适用于哪些人群?低钠盐有没有什么禁忌?[img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007131439_230469_1633499_3.jpg[/img]

  • 求助 急急。。。。核苷酸标准品怎么校正钠盐含量

    婴幼儿配方食品和乳粉 核苷酸检测中,配制核苷酸标准品时要求每个组分的浓度都要校正水分和钠盐含量,采用酸型表示,校正水分这个没问题,就是纯品的含量,这个校正钠盐含量并采用酸型表示,这个是什么意思?不太明白,请知道的大侠详细解释一下,谢谢!

  • 还原剂钠盐与钾盐

    硼氢化钠与氢氧化钠,硼氢化钾与氢氧化钾,使用这两种还原剂有什么不同之处?目前我尝试过对比,火焰钠盐的是黄色的,而钾盐为微蓝色,钾盐的灵敏度要高些,还有吗?大家一起讨论下

  • 钠盐的质谱,母离子怎么选择

    要分析的化合物是钠盐,分子量是446.9,去掉23是,423.9,但在423.9附近,esi正负扫描都找不到+-1的峰,偶尔有也只有一丁点,母离子到底该怎么选呢

  • 【讨论】测铅时钠盐有没有干扰?

    各位版友,请教大家一个问题:在化学试剂标准里,有很多钠盐测铅时都用萃取法,但是在食品添加剂标准里,钠盐测铅时一般都是直接测定.究竟钠盐对铅有没有干扰?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制