当前位置: 仪器信息网 > 行业主题 > >

阿普斯特降解杂质

仪器信息网阿普斯特降解杂质专题为您提供2024年最新阿普斯特降解杂质价格报价、厂家品牌的相关信息, 包括阿普斯特降解杂质参数、型号等,不管是国产,还是进口品牌的阿普斯特降解杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阿普斯特降解杂质相关的耗材配件、试剂标物,还有阿普斯特降解杂质相关的最新资讯、资料,以及阿普斯特降解杂质相关的解决方案。

阿普斯特降解杂质相关的论坛

  • 阿普斯特杂质的作用

    阿普斯特杂质的作用

    阿普斯特杂质(Acceptor impurities)在半导体中起到了非常关键的作用。1. 提供洞:阿普斯特杂质是电子受主,它会吸收自由电子,形成空穴(或称为“洞”)。这些空穴可以移动,起到电流传导的作用。因此,添加阿普斯特杂质后,半导体的导电性能会增强。2. 形成P型半导体:当阿普斯特杂质的浓度足够高时,半导体中的空穴数量将超过电子数量,形成了主导电流传导的是空穴的P型半导体。3. 局域能级:阿普斯特杂质也能产生在能带间的局域态,充当了能量级的“桥梁”,使电子更容易通过能阶间跃迁,也有助于电流的传导。CATO标准品改变半导体性质:通过改变阿普斯特杂质的种类和浓度,可以改变半导体的性质,如导电性、光学性质、磁性等,使之满足特定的使用需求。[img=,601,517]https://ng1.17img.cn/bbsfiles/images/2024/02/202402021700369834_2567_6381668_3.png!w601x517.jpg[/img]

  • 请问哪里可以查到阿特拉津及其降解产物在液相色谱中的出峰时间

    [color=#444444]请问哪里可以查到阿特拉津及其降解产物在液相色谱中的出峰时间,下面是参数[/color][color=#444444]Agilent 1260 LC液相色谱仪,HC-C18色谱柱(4.6×150 mm,5 μm),VWD检测器(波长220 nm),温度25 ℃,自动进样仪,进样量10μL,水相为磷酸盐缓冲液(10 mmol∙ L-1),流动相为80:20的甲醇和水,流速1 mL∙ min-1。[/color]

  • 强制降解实验色谱图中的忽略限问题

    现在强制降解实验中,因为遭遇比较苛刻的条件,在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图中,积分方法如何合理的设施忽略限?1:一般样品检测我们设置0.03%,所以强制降解实验也是设置0.03%2:根据ICH要求,设置忽略限为0.05%3:设置忽略限为0.10%,没有降解出来很大的杂质没有必要研究欢迎各位老师讨论

  • 阿洛利汀杂质的作用

    阿洛利汀杂质的作用

    阿洛利汀杂质可以作为标准物质,用于评价阿洛利汀的质量和纯度。通过测量此类杂质的含量,可以对阿洛利汀的生产过程进行控制和优化,以制造出更优质的药物。此外,某些类型的杂质还可能被用作药物的标记物,以跟踪药物在体内的分布和代谢。CATO标准品目前的药品生产技术已经可以有效地降低杂质的含量,保证药品的质量和安全性。任何药物在上市之前,都需要经过严格的质量控制检测,以确保其杂质含量符合规定的标准。此外,药品在上市后也会进行定期的质量监控,以确保其安全性和效力。[img=,607,516]https://ng1.17img.cn/bbsfiles/images/2024/02/202402041447097355_1644_6381668_3.png!w607x516.jpg[/img]

  • 【求助】强降解试验中未能破坏出杂质,怎么办?

    在做某产品的有关物质方法验证的专属性的强降解试验中,使用了1M酸、1M碱、5%H2O2、回流来进行酸碱氧化高温破坏试验,产品使用了粉末和溶液两种形式,结果是主成份未能降解。现在怎么办呢?在方法验证中就这么说明可以吗?还要寻找降解的手段吗?

  • 关于色谱柱影响杂质含量的问题?

    各位老师,我现在在做硝苯地平的有关物质,有一个硝苯地平杂质1的含量忽大忽小,后来我们发现不同的色谱柱,检测出来的含量不同,用了安捷伦、迪马家的C18柱,杂质1含量约0.3%,但是用Waters家的色谱柱,杂质1就是未检出。所以,我想问一下,C18色谱柱中,会不会存在微量物质,促使硝苯地平降解为杂质1。硝苯地平在紫外光破坏、酸破坏、热破坏条件下产生杂质1。另外,单独进杂质1对照品溶液峰面积无变化,每个色谱柱都很稳定。

  • 【极限体验+原创大赛】Ultimate与其它色谱柱对阿奇霉素及其杂质的的检测效果对比

    【极限体验+原创大赛】Ultimate与其它色谱柱对阿奇霉素及其杂质的的检测效果对比

    (一)分析背景及色谱条件 红霉素是一种十四元大环内酯类抗生素,一直是临床上治疗革兰氏阳性菌感染的重要药物,半个世纪以来为人类提供了一条安全高效的用药途径。经过不断研究人们相继开发出了耐酸性好的第二代红霉素和不易引起细菌耐药性的第三代红霉素。阿奇霉素可以说是目前第二代红霉素中最具有活力的大环内酯类抗生素,其生产步骤简单,在国内外都具有很大的生产量,尤其在国内,在许多药厂都有生产。但与其它第二代大环内酯类抗生素相比阿奇霉素的HPLC分析一直是个难点,这也与其独特的十五元环结构有关系。而且我们经过试验发现不同色谱柱对其检测的结果差别很大,普通的C18柱无法保证效果,C18 BDS的色谱柱的检测结果也不是很好,我们尝试了几种不同的在C18柱基础上经过各种填料处理的色谱柱,其中包括了“极限”系列的色谱柱。 阿奇霉素分子式http://ng1.17img.cn/bbsfiles/images/2009/11/200911211508_185763_1916092_3.jpg 色谱条件:磷酸氢二钾盐水溶液与乙腈以45:55混合。检测波长210纳米,柱温30°C,流速1.0ml/min,进样量50微克。阿奇霉素样品取自上海某药厂提供的产品,其纯度在95%以上。色谱柱我们共尝试了五根:(1)普通C18柱,编号为1;(2)某品牌BDS C18柱,编号为2;(3)大连某国产色谱柱,编号3;(4)日本某色谱柱(药检所推荐)。编号4;(5)Ultimate XB-C18色谱柱,编号5.(二)试验结果 (1)http://ng1.17img.cn/bbsfiles/images/2009/11/200911211502_185756_1916092_3.jpg(2)http://ng1.17img.cn/bbsfiles/images/2009/11/200911211503_185757_1916092_3.jpg(3)http://ng1.17img.cn/bbsfiles/images/2009/11/200911211503_185758_1916092_3.jpg(4)http://ng1.17img.cn/bbsfiles/images/2009/11/200911211503_185759_1916092_3.jpg(5)http://ng1.17img.cn/bbsfiles/images/2009/11/200911211503_185760_1916092_3.jpg 主峰时间 拖尾因子不对称度半峰宽 理论塔板数 杂质分离度118.4324.8567.2580.6534409——216.7801.4551.7040.42088440.452318.6201.0381.0390.41711067——428.9951.2311.4490.583136981.860527.3920.7440.4750.582123061.172(三)分析与讨论(1)对于两种主要杂质的显示情况,1和3只能显示出一种。4对它们的分离度最好,5次之。(2)从主峰阿奇霉素的峰型来看3最好,4,5次之。(3)关于主峰也就是阿奇霉素的出峰时间,4,5明显晚于前三个色谱柱。关于不同厂家不同批次的阿奇霉素我们已做过很多实验,绝大多数杂质出峰都在阿奇霉素之前,而且种类很多,也就是除了本实验所测样品显示的这两种主要杂质之外还存在有很多杂质,理论上讲主峰出峰时间晚有利于前面杂质峰的分离。 总结起来,从初步的对比检测中发现Ultimate XB-C18色谱柱对阿奇霉素杂质检测的情况还是很令人满意的,甚至不亚于药检所推荐使用的色谱柱。我们准备继续进行一系列的分析实验,对几种较难分离的杂质进行对比分析。

  • 降解实验

    强制降解实验中1mol/L氢氧化钠1ml,水浴90度加热1h,发现原原料药中杂质也降解了产生新的杂质,这样能行吗

  • 高分辨质谱鉴定降解产物

    流动相0.1%三氟乙酸水-0.1%三氟乙酸乙腈,对主成分进行强制降解实验,结果如下,为什么主成分前面的降解杂质在质谱中检测不出来呢,是仪器灵敏度变低了吗?[img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009121431114806_5022_4037032_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009121431114188_6433_4037032_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009121431114553_3286_4037032_3.png[/img]

  • CATO独家 |神经肌肉接头阻断剂——阿曲库铵杂质

    CATO独家 |神经肌肉接头阻断剂——阿曲库铵杂质

    ◇关于阿曲库铵杂质 阿曲库铵杂质是一种神经肌肉接头阻断剂的杂质,阿曲库铵杂质主要通过竞争胆碱能受体,来阻断乙酰胆碱的传递而起作用,并且可以被新斯的明等抗胆碱酯酶药所逆转。阿曲库铵杂质可以作为麻醉辅助药,不仅可以起镇静作用、松弛骨骼肌,还适用于气管插管时所需的肌肉松弛。阿曲库铵杂质静注后,95%主要分布在胆汁、尿液、[font=.pingfang sc]粪便及呼出气体,剩余的约[/font]5%集中于肝脏。[font=UICTFontTextStyleBody]CATO[/font]标准品提供的[font=宋体]阿曲库铵杂质[/font][font=宋体],可以用于手术的全麻的辅助作用。[img=,603,516]https://ng1.17img.cn/bbsfiles/images/2024/02/202402041034214652_487_6381607_3.png!w603x516.jpg[/img][/font]

  • CATO独家 | 预防静脉血栓栓塞——阿哌沙班杂质

    CATO独家 | 预防静脉血栓栓塞——阿哌沙班杂质

    ◇关于阿哌沙班杂质 阿哌沙班杂质是用于髋关节或膝关节择期置换术的成年患者,预防静脉血栓栓塞的杂质,阿哌沙班是一种结构新颖的中性双环吡唑,分子量为459.5 g/mol,水溶性为 40–50 μg/mL,Caco-2细胞渗透率为0.9?×?10?6 cm/s。阿哌沙班是通过抑制凝血因子Xa来发挥抗凝作用,阿哌沙班杂质的吸收主要发生在小肠。与其它的杂质相比,阿哌沙班杂质疗效更好,安全性更高。[font=UICTFontTextStyleBody]CATO[/font]标准品提供的[font=宋体]阿哌沙班杂质[/font][font=宋体],是抗凝[/font][font=宋体][font=宋体]剂领域的[/font]“领头羊”[/font][font=宋体]。[img=,602,514]https://ng1.17img.cn/bbsfiles/images/2024/02/202402040843332660_3775_6381607_3.png!w602x514.jpg[/img][/font]

  • COTO标准品|阿伐那非杂质研究

    阿伐那非杂质是阿伐那非的同分异构体或相关化合物,其纯度、含量和杂质情况对阿伐那非的药效和安全性有重要影响。在药物研发和生产过程中,需要使用标准品来检测和鉴定阿伐那非及其杂质的性质和含量。COTO标准品是一种高纯度的标准物质,用于测定阿伐那非及其杂质的纯度、含量和化学性质。通过与COTO标准品进行对比和分析,可以确定阿伐那非及其杂质的结构、组成和含量,从而保证阿伐那非的质量和安全性。在药物研发和生产过程中,COTO标准品的使用非常重要。它可以提供可靠的参照物,用于质量控制、药物分析和化学计量学研究。通过使用COTO标准品,可以确保阿伐那非及其杂质的准确性和可靠性,为药物的安全性和有效性提供保障。总的来说,COTO标准品在阿伐那非杂质的研究和控制中具有重要作用。通过使用COTO标准品,可以更好地了解阿伐那非及其杂质的性质和含量,从而确保药物的安全和有效性。同时,也需要加强生产过程中的管理和监督,加强质量标准和监管措施的执行力度,确保药物质量和安全。

  • 药物杂质鉴定新流程实现泮托拉唑杂质谱分析

    药物杂质鉴定新流程实现泮托拉唑杂质谱分析

    药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门制定了相应的指导原则对其进行严格管控。http://ng1.17img.cn/bbsfiles/images/2015/12/201512141737_577892_3005330_3.jpg 独有的四极杆静电场轨道阱Q Exactive™ Focus高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合新一代的智能小分子化合物鉴定软件Compound Discoverer™,以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:http://ng1.17img.cn/bbsfiles/images/2015/12/201512141737_577893_3005330_3.jpg 通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息:http://ng1.17img.cn/bbsfiles/images/2015/12/201512141738_577894_3005330_3.jpg 在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,可进一步对杂质变化位点进行推测。在本例中,通过152、185等共有碎片和200、216等特征差异碎片的比对,推测出该杂质为泮托拉唑砜:http://ng1.17img.cn/bbsfiles/images/2015/12/201512141738_577895_3005330_3.jpg 基于新一代四极杆-静电场轨道阱质谱Q Exactive Focus和新一代小分子化合物分析软件Compound Discoverer,建立了药物杂质鉴定的新流程。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美的实现。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。(分享)

  • 【转帖】浅谈强制降解试验。

    摘要:本文简要介绍了强制降解试验的定义、目的与常规的考察项目及试验条件,为规范这方面的研究提供参考。 关键词:强制降解试验 目的 考察项目 试验条件 强制降解试验是指将原料药或制剂置于比较剧烈的试验条件下,考察其稳定性的一系列试验。一般而言,该试验的目的主要有以下两方面:一是通过考察药品在一系列剧烈条件下的稳定性,了解该药品内在的稳定特性及其降解途径与降解产物。例如,通过高温降解试验,可以了解所考察的药品在高温条件下是否稳定;如果不稳定,大致在何种条件下不稳定,该药品又是通过何种降解途径得到何种降解产物。其二,这些试验也能在一定程度上对有关物质分析方法用于检查降解产物的专属性进行验证。 对于创新药,由于对其各方面的性质均不够了解,因此,通过设计比较完整的强制降解试验,可以比较全面地了解其稳定特性,从而为制剂处方、工艺的设计,以及产品储存条件的确定等提供有益的参考。所以对于创新药而言,通过强制降解试验来了解药物的稳定特性就显得尤为重要。对于仿制药而言,如果已有充分的文献资料对该药物的稳定特性及其降解途径与降解产物进行比较全面的阐述,则没有必要再通过强制降解试验来重复了解这些背景知识。此时,强制降解试验的目的主要就是为了验证降解产物分析方法的专属性。并且,由于国内在进行有关物质研究时,一般不对各有关物质进行定性研究,也无相应的杂质对照品,所以在对有关物质的分析方法进行验证时,很难用杂质对照品对方法的专属性、检测限等进行验证。故作为对有关物质分析方法验证的一种补充,国内在制定相关指导原则时,要求对原料药及制剂进行必要的强制降解试验,以考察分析方法的可靠性。 经查阅国内外相关的指导原则,均未对强制降解试验的具体项目与试验条件作明确的规定。国内的部分研发单位在进行该项研究时,由于未充分理解该项试验的目的,所做的研究根本达不到强制降解试验的要求。基于以上现实情况,本人在查阅相关资料的基础上,综合提出了强制降解试验的常规项目与部分试验条件,供大家参考。 根据强制降解试验的目的,该项试验一般应考察药品在酸、碱、高温、强光、氧化等因素影响下的稳定性。对固体状态的原料药而言,一般还需分别考察该原料药在固体和溶液状态下的稳定性。另外,为全面了解该药品的稳定特性及其降解途径,还可根据情况进行以上因素综合存在时的强制降解试验,例如,可以考察样品溶液分别在中性、酸性或碱性条件下对高温或强光的稳定性等。 在设计各项目的具体试验条件时,应结合该药的剂型、工艺条件等进行综合考虑,只要达到了强制降解试验的目的,所选的试验条件就是合理的。由于各药品的化学结构、剂型、工艺条件等各有不同,很难提出一个统一的试验条件,下面所介绍的各降解试验的条件仅供大家在研究中参考: 1.酸降解试验 一般选择0.1N的盐酸,在室温或加热条件下进行考察。酸液的浓度、考察的温度与时间均可根据具体品种,在前期预试验的基础上灵活确定。

  • 阿伐他汀杂质液相分析

    最近我们在做阿伐他汀中3位上的羟基变成甲氧基那个杂质,我们判断它相对阿伐他汀峰的相对保留时间是0.89,但是阿伐他汀前面一直没有峰出现,我想请我问下是不是我们的判断是错误的,还是我们这个杂质一直没有做出来。

  • 有关物质方法,强制降解,主峰过载质量守恒

    我现在的有关物质方法,有一个主成分供试品浓度(7.5mg/ml)有些过载(同一个浓度下,不同的供试品样品,峰面积不一样,峰拖尾因子大概2.0,我认为是过载),想请教一下我强制降解的质量守恒该怎么算呢。方法是梯度,算质量守恒主要是为了证明我的方法能检出所有杂质,希望各位大佬解答一下,谢谢各位!!!

  • CATO独家 | 阿戈美拉汀杂质标准品

    CATO独家 | 阿戈美拉汀杂质标准品

    [font=宋体] 阿戈美拉汀杂质是在阿戈美拉汀的生产或保存过程中产生的非目标化合物。这些杂质可能会影响阿戈美拉汀的纯度和药效。阿戈美拉汀[/font][font=宋体]在临床上[/font][font=宋体][font=宋体]是一种治疗抑郁症的药物,属于褪黑素受体激动剂和[/font][font=Calibri]5-[/font][font=宋体]羟色胺受体拮抗剂。[/font][/font][font=宋体][font=宋体] 阿戈美拉汀杂质有多种类型,每一种都具有不同的化学特性,如[/font][font=Calibri]CAS[/font][font=宋体]号、分子式、分子量等。例如,阿戈美拉汀杂质[/font][font=Calibri]7-Desmethyl-3-hydroxyagomelatine[/font][font=宋体]([/font][font=Calibri]3-Hydroxy-7-desmethyl agomelatine[/font][font=宋体])是[/font][font=Calibri]Agomelatine[/font][font=宋体]的代谢产物,其[/font][font=Calibri]CAS[/font][font=宋体]号为[/font][font=Calibri]166526-99-4[/font][font=宋体],纯度为[/font][font=Calibri]98%[/font][font=宋体],具有特定的化学结构和性质。另一种阿戈美拉汀杂质是[/font][font=Calibri]AgoMelatine DiMer Urea[/font][font=宋体],其[/font][font=Calibri]CAS[/font][font=宋体]号为[/font][font=Calibri]185421-27-6[/font][font=宋体]。[/font][font=Calibri]CATO[/font][font=宋体]标准品提供的阿戈美拉汀全套的杂质[/font][/font][font=宋体],[/font][font=宋体]这些杂质对于药物的纯度和稳定性研究至关重要,也是药物研发过程中不可或缺的一部分[/font][font=宋体]。[img=,606,514]https://ng1.17img.cn/bbsfiles/images/2024/02/202402182106267012_9724_6381607_3.png!w606x514.jpg[/img][/font][font=宋体][color=#05073b][back=#fdfdfe] 广州[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]佳途科技[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]股份有限公司[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]深知药物研发与质量控制的重要性[/back][/color][/font][font=宋体][font=宋体],[/font][font=Calibri]CATO[/font][font=宋体]标准品厂家,提供阿戈美拉汀全套[/font][/font][font=宋体]的[/font][font=宋体]杂质,为客户提供更加精准、可靠的分析标准品,助力药物研发事业的快速发展[/font][font=宋体],[/font][font=宋体]以满足客户在药物研发和质量控制方面的需求。[/font]

  • 液相色谱杂质的分离

    [color=#444444]最近在做一个酯类的液相分析,它在高温条件下容易发生聚合反应,高温降解的样品在现在的液相条件下2min左右就有很多杂质峰出现,但完全不能分离,我们调节了流动相、柱温、流速等都没有效果,请问这种情况应该怎么办,一般用什么方法或者什么柱子来分离比较好[/color]

  • 【转帖】杂质谱的分析。

    在药品研发及药品评价的过程中,杂质研究是一项非常重要的内容。因为药物在临床使用过程中所发生的不良反应除了与药品本身的药理活性有关外,有时还与药品中所含有的杂质有很大的关系。众所周知,从事药品研发及药品评价所要遵循的一个基本原则就是要保证上市药品的安全性和有效性,由于药品质量的稳定可控是保证药品安全有效的前提和基础,而杂质研究又是药品质量研究的一项重要内容,所以杂质研究及杂质控制是药品质量保证的关键要素,是确保药品安全有效性的重要体现。 2005年SFDA颁布的《化学药物杂质研究技术指导原则》中明确说明任何影响药物纯度的物质统称为杂质。具体的解释就是指药物中所含有的没有治疗作用、可能影响药物的稳定性和疗效,甚至是对人体健康有害的物质。杂质的来源有工艺杂质和降解产物等,工艺杂质指的是药品在制备工艺过程中引入的杂质,它包括没有反应完全的反应物、反应过程中所生成的中间体及副产物、反应过程中所使用的试剂及催化剂等。降解产物指的是药品在生产和贮藏过程中发生化学变化而产生的杂质,如发生水解、氧化、开环等反应,降解产物主要与药物的结构特征密切相关。 由于杂质研究与药品的质量及安全有效性直接相关,为了提高药品的质量,保障公众的用药安全,因此,在药品研发过程中需规范地进行杂质研究,并将其控制在安全、合理的限度范围内。在杂质研究总体原则的指导下,其中杂质谱的分析应是杂质研究的重要内容之一。

  • 如何定性一种“杂质”

    我是做药物分析的,近期遇到一个问题:[url=https://insevent.instrument.com.cn/t/Mp]气相[/url](FID检测器)测定样品中的挥发性杂质,采用顶空测试(顶空温度约80℃),约2min出现一未知峰,位于甲醇峰前;同样色谱条件,改变进样方式,液体进样,则2min没有峰。第一个问题,该未知杂质从何来?首先考虑是溶媒,但液体进样测不到,不应该是样品本身引入的;其次是降解产生,但液体进样的进样口温度会远远高于顶空平衡温度,这一点也矛盾;是不是供试品与溶剂加热反应?或是其他?第二个问题,如何对顶空中出现的未知杂质定性?出峰时间早于甲醇,至少表明其沸点很低,分子量不大,估计也就是小分子烷烃或甲醛,那么设定扫描范围的起点至少要从15amu起吧,那么问题来了,水峰、氮气峰、氧气峰的干扰都来了,更多的情况下,氮气峰会掩盖该杂质(假如推测是甲醛的话,甲醛是可以与氮气峰分开的)。即氮气峰会干扰该未知杂质,之前也遇到过,只是未深究。在此请各位高手支招,或者开拓下研究的思路,不胜感激。

  • 原料药中大于鉴定限的杂质研究问题

    购买的原料回来做药学研究,里面有几个未知杂质大于0.1%,所有破坏试验这个杂质的面积均未增加的迹象,反而有些破坏还减小了。可以通过破坏试验的结果分析该杂质不是降解杂质而是工艺杂质吗,要怎么去对它定性呢

  • 【讨论】杂质检查分析方法建立过程中破坏性试验的意义和存在的问题分析。

    杂质与药品临床使用的安全性密切相关,如果药品中存在的杂质未能通过有效的方法加以检出、控制,将给临床安全造成直接或潜在的危害,因此,制订合理、有效的药品杂质检测方法控制药品中的杂质是一项非常重要的工作。杂质检测方法的建立基于方法学研究,主要包括专属性试验、检测限试验、溶液稳定性试验等内容,如果定量检测杂质还需进行线性、回收率等试验,从不同的角度、层面验证分析方法的可行,从而保证药品中的杂质能够有效地检测。破坏性试验是杂质检测方法建立时验证专属性、检测灵敏度重要试验内容之一。由于破坏性试验的实验过程复杂,分析检测技术要求高,在技术审评过程中经常发现存在研究过程中不完善、不全面,因此,在此结合化学药物创新药的审评工作体会,分析如何合理开展破坏性试验研究。 破坏性试验,也称为强制降解试验(stressing test),它是在人为设定的特殊条件下,如酸、碱、氧化、高温、光照等,引起药物的降解,通过对降解产物的测定,验证检测方法的可行性,分析药物可能的降解途径和降解机制。每项破坏性试验通常包括以下内容:酸降解一般采用0.1mol/L-1mol/L盐酸或硫酸;碱降解采用0.1mol/L-1mol/L的氢氧化钠溶液;氧化降解采用合适的过氧化氢溶液。以上三种试验,为了加快反应或者提高降解强度,必要时可以加热或提高浓度;高温试验通常温度高于加速试验温度的10℃,如50℃、60℃等,对于原料药有时需考虑水溶液或混悬液的降解,或者考虑在不同的pH值条件下的降解;光照试验条件可采用4500LX。破坏性试验的具体条件,与具体药物密切相关,需结合具体药物的特点,选择合适的条件,使药物有一定量的降解,并对可能的降解途径和降解机制进行分析,保证实验的意义。 药物经强力破坏产生的降解产物通常采用色谱法测定,需结合药物和可能降解产物的理化性质,选择不同的色谱方法(HPLC、GC、TLC)或检测器,有时可采用不同分离机理的色谱系统。下面以HPLC法分析降解产物为例,说明在进行破坏性试验时的关注点和存在的问题: 1、在选定的破坏条件下,药物应有一定量的降解。 虽然不是每一种破坏性条件都使药物产生降解产物,但一般情况下,很少有一种化合物对每一种破坏性试验条件都稳定,因此,可以通过试验,选择合适的条件,如提高酸、碱、氧化的浓度或者通过加热等,使药物降解。 对于采用HPLC法测定降解产物时,以主成分计算,一般降解10%左右。应采用有效的方法对降解产物进行检测,关注测定的回收量,通常应达到90%左右,证明检测方法的有效性。 对于破坏性试验时降解量较大的降解产物,建议结合稳定性研究中加速试验和长期试验的具体杂质数据,参考ICH对新原料药中杂质的规定(每日服用最大剂量不超过2克时,鉴定阈值为0.10%;每日服用最大剂量超过2克时,鉴定阈值为0.05%。),必要时进行定性分析,并作为已知杂质,根据安全性数据,采用已知杂质对照,确定合理的限度,订入质量标准。不能采用已知杂质进行对照时,可通过测定降解产物、主成分在测定波长处的吸收系数,分析两者的差异。若两者吸收系数相差较大时,建议采用响应因子校正后进行有效控制;如果两者吸收系数相差较小,建议采用自身对照法或峰面积归一化法进行有效控制。 药物进行破坏性试验时通常降解为小分子物质,但也有发生聚合,形成聚合物,如β-内酰胺类抗菌药物,在高温或高湿时有可能产生聚合物,故应采取有效方法进行检测。 在这方面存在的主要问题是:(1)主药完全降解,无法对降解产物进行有效检测;(2)由于选择的降解条件强度不够,使药物未能降解,而误认为药物稳定;(3)不能选择合适测定方法,测定降解产物,使主成分降解后测定的回收量偏低;(4)未考虑破坏性试验时产生的聚合物;(5)选择的色谱流动相不合适,在图谱中有干扰峰。 2、分离度与峰纯度分析 破坏性试验产生的降解产物的个数比较多,采用HPLC法测定时,需考虑主成分与降解产物之间、降解产物相互之间的分离度,保证降解产物峰与主峰、降解产物峰之间有良好的分离度。另外,对于原料药,分离度符合要求也应考虑到主药与起始原料、各合成中间体是否有良好的分离度;对于制剂,应注意辅料、辅料降解产物的干扰。色谱条件的确定通常以最难分离的两个降解产物或降解产物与主成分之间的分离度符合要求作为依据之一。鉴于降解产物检测时对分离度要求高,故推荐色谱分析时采用梯度洗脱,以有效分离降解产物。 与分离度密切相关的是峰纯度分析。检测峰纯度通常采用二级管阵列检测器或者液质连用技术分析测定各色谱峰的纯度,说明在主峰中、各降解产物峰中有没有包含其它峰。简单地通过观察峰形判断峰的纯度没有说服力。对于创新药物.的破坏性试验来说,峰纯度分析非常重要,一是可以了解降解产物的特性;二是可以有效地检出和控制杂质。存在的主要问题是:(1)主峰上出现明显的降解产物峰,测定方法不可行;(2)未对峰纯度进行有效分析,这是一种常见现象,在此情况下无法判断主峰中是否包含着降解产物峰;(3)对于制剂,未考虑辅料降解对测定结果的干扰。 3、检测灵敏度的考虑 对破坏性试验产生的降解产物,通常考虑采取改变测定波长,来分析和检测降解产物峰个数和含量,确定合理的检测条件和方法。这也是测定波长确定的重要依据之一。必要时可采用不同机理的色谱系统检测降解产物。原则上讲,所选择的杂质检测方法应能测定破坏性试验中药物的每个降解产物(而且也考虑到起始原料、每个合成中间体的检出),从而达到对降解产物的控制,同时只有这样,才能保证有合适的回收量。目前在审评中发现存在的主要问题是仅提供主成分的检测限,以主成分的检测限作为测定波长确定的依据,而忽视对部分降解产物(包括起始原料和中间体)的检出,最终体现在降解的回收量达不到一定的要求,仅有药物降解,没有降解产物检出。 充分认识破坏性试验在杂质检测方法建立中的重要意义,建立科学合理的杂质检测方法,对于保证临床用药安全起着重要作用。以上为个人观点,仅供参考。

  • 【分享】杂质检查分析方法建立过程中破坏性试验的意义和存在的问题分析

    杂质检查分析方法建立过程中破坏性试验的意义和存在的问题分析 正文 杂质与药品临床使用的安全性密切相关,如果药品中存在的杂质未能通过有效的方法加以检出、控制,将给临床安全造成直接或潜在的危害,因此,制订合理、有效的药品杂质检测方法控制药品中的杂质是一项非常重要的工作。杂质检测方法的建立基于方法学研究,主要包括专属性试验、检测限试验、溶液稳定性试验等内容,如果定量检测杂质还需进行线性、回收率等试验,从不同的角度、层面验证分析方法的可行,从而保证药品中的杂质能够有效地检测。破坏性试验是杂质检测方法建立时验证专属性、检测灵敏度重要试验内容之一。由于破坏性试验的实验过程复杂,分析检测技术要求高,在技术审评过程中经常发现存在研究过程中不完善、不全面,因此,在此结合化学药物创新药的审评工作体会,分析如何合理开展破坏性试验研究。 破坏性试验,也称为强制降解试验(stressing test),它是在人为设定的特殊条件下,如酸、碱、氧化、高温、光照等,引起药物的降解,通过对降解产物的测定,验证检测方法的可行性,分析药物可能的降解途径和降解机制。每项破坏性试验通常包括以下内容:酸降解一般采用0.1mol/L-1mol/L盐酸或硫酸;碱降解采用0.1mol/L-1mol/L的氢氧化钠溶液;氧化降解采用合适的过氧化氢溶液。以上三种试验,为了加快反应或者提高降解强度,必要时可以加热或提高浓度;高温试验通常温度高于加速试验温度的10℃,如50℃、60℃等,对于原料药有时需考虑水溶液或混悬液的降解,或者考虑在不同的pH值条件下的降解;光照试验条件可采用4500LX。破坏性试验的具体条件,与具体药物密切相关,需结合具体药物的特点,选择合适的条件,使药物有一定量的降解,并对可能的降解途径和降解机制进行分析,保证实验的意义。 药物经强力破坏产生的降解产物通常采用色谱法测定,需结合药物和可能降解产物的理化性质,选择不同的色谱方法(HPLC、GC、TLC)或检测器,有时可采用不同分离机理的色谱系统。下面以HPLC法分析降解产物为例,说明在进行破坏性试验时的关注点和存在的问题: 1、在选定的破坏条件下,药物应有一定量的降解。 虽然不是每一种破坏性条件都使药物产生降解产物,但一般情况下,很少有一种化合物对每一种破坏性试验条件都稳定,因此,可以通过试验,选择合适的条件,如提高酸、碱、氧化的浓度或者通过加热等,使药物降解。 对于采用HPLC法测定降解产物时,以主成分计算,一般降解10%左右。应采用有效的方法对降解产物进行检测,关注测定的回收量,通常应达到90%左右,证明检测方法的有效性。 对于破坏性试验时降解量较大的降解产物,建议结合稳定性研究中加速试验和长期试验的具体杂质数据,参考ICH对新原料药中杂质的规定(每日服用最大剂量不超过2克时,鉴定阈值为0.10%;每日服用最大剂量超过2克时,鉴定阈值为0.05%。),必要时进行定性分析,并作为已知杂质,根据安全性数据,采用已知杂质对照,确定合理的限度,订入质量标准。不能采用已知杂质进行对照时,可通过测定降解产物、主成分在测定波长处的吸收系数,分析两者的差异。若两者吸收系数相差较大时,建议采用响应因子校正后进行有效控制;如果两者吸收系数相差较小,建议采用自身对照法或峰面积归一化法进行有效控制。 药物进行破坏性试验时通常降解为小分子物质,但也有发生聚合,形成聚合物,如β-内酰胺类抗菌药物,在高温或高湿时有可能产生聚合物,故应采取有效方法进行检测。 在这方面存在的主要问题是:(1)主药完全降解,无法对降解产物进行有效检测;(2)由于选择的降解条件强度不够,使药物未能降解,而误认为药物稳定;(3)不能选择合适测定方法,测定降解产物,使主成分降解后测定的回收量偏低;(4)未考虑破坏性试验时产生的聚合物;(5)选择的色谱流动相不合适,在图谱中有干扰峰。 2、分离度与峰纯度分析 破坏性试验产生的降解产物的个数比较多,采用HPLC法测定时,需考虑主成分与降解产物之间、降解产物相互之间的分离度,保证降解产物峰与主峰、降解产物峰之间有良好的分离度。另外,对于原料药,分离度符合要求也应考虑到主药与起始原料、各合成中间体是否有良好的分离度;对于制剂,应注意辅料、辅料降解产物的干扰。色谱条件的确定通常以最难分离的两个降解产物或降解产物与主成分之间的分离度符合要求作为依据之一。鉴于降解产物检测时对分离度要求高,故推荐色谱分析时采用梯度洗脱,以有效分离降解产物。 与分离度密切相关的是峰纯度分析。检测峰纯度通常采用二级管阵列检测器或者[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]连用技术分析测定各色谱峰的纯度,说明在主峰中、各降解产物峰中有没有包含其它峰。简单地通过观察峰形判断峰的纯度没有说服力。对于创新药物的破坏性试验来说,峰纯度分析非常重要,一是可以了解降解产物的特性;二是可以有效地检出和控制杂质。存在的主要问题是:(1)主峰上出现明显的降解产物峰,测定方法不可行;(2)未对峰纯度进行有效分析,这是一种常见现象,在此情况下无法判断主峰中是否包含着降解产物峰;(3)对于制剂,未考虑辅料降解对测定结果的干扰。 3、检测灵敏度的考虑 对破坏性试验产生的降解产物,通常考虑采取改变测定波长,来分析和检测降解产物峰个数和含量,确定合理的检测条件和方法。这也是测定波长确定的重要依据之一。必要时可采用不同机理的色谱系统检测降解产物。原则上讲,所选择的杂质检测方法应能测定破坏性试验中药物的每个降解产物(而且也考虑到起始原料、每个合成中间体的检出),从而达到对降解产物的控制,同时只有这样,才能保证有合适的回收量。目前在审评中发现存在的主要问题是仅提供主成分的检测限,以主成分的检测限作为测定波长确定的依据,而忽视对部分降解产物(包括起始原料和中间体)的检出,最终体现在降解的回收量达不到一定的要求,仅有药物降解,没有降解产物检出。 充分认识破坏性试验在杂质检测方法建立中的重要意义,建立科学合理的杂质检测方法,对于保证临床用药安全起着重要作用。以上为个人观点,仅供参考。本文由提供,更多精彩请访问 http://daxs.5d6d.com谢谢您的支持!

  • 【原创大赛】邻苯二甲酸二乙酯不同降解方法研究

    【原创大赛】邻苯二甲酸二乙酯不同降解方法研究

    [align=center]论文题目:邻苯二甲酸二乙酯不同降解方法研究[/align][align=center]邻苯二甲酸二乙酯不同降解方法研究[/align]摘要:邻苯二甲酸二乙酯(DEP)常作为增塑剂出现在大众的视野之中,由于目前塑料被大肆使用,造成DEP成为主要环境污染物之一。DEP不仅能够对环境产生污染,还可以通过生物富集或皮肤接触等方式对人体健康产生危害。本文主要研究了近年来降解DEP的不同降解方法,如微生物降解、Fenton与类Fenton处理、臭氧氧化降解、光催化降解等。关键词:邻苯二甲酸二乙酯,微生物降解,臭氧氧化,芬顿效应,光催化[align=center]Study on Different Degradation Methods of Diethyl Phthalate[/align]ABSTRACT:Diethyl phthalate (DEP) often appear as plasticizer in public view, and the current plastic use wholesale, DEP has become one of the main environmental pollutants.DEP can not only pollut to the environment, but also harm human health through [font=arial][size=10px][color=#434343] [/color][/size][/font]biological concentration or skin contact and so on. In this paper, different degradation methods for DEP degradation in recent years were mainly studied, such as micro-biological degradation, Fenton and Fenton-like [font=georgia][size=13px][color=#2e2e2e]reactions[/color][/size][/font] , ozone oxidation degradation, photocatalytic degradation, etc. [size=18px]KEY WORDS:[/size][size=18px] Diethyl Phthalate,Micro-biological Degradation,Ozonation,Fenton Method,Photocatalysis[/size][align=center]目 录[/align]前言.............................[color=black](6)[/color]第1章 概论.[color=black]................................................(7)[/color]第1.1节 邻苯二甲酸二乙酯简介[font=宋体].[/font][font=宋体][color=black]..............................[/color][/font][color=black](7)[/color]第1.2节 邻苯二甲酸二乙酯对环境影响[font=宋体][color=black]........................[/color][/font][color=black](7)[/color]第1.3节 邻苯二甲酸二乙酯对生物体影响[font=宋体][color=black].......................[/color][/font][color=black](8)[/color]第2章 降解邻苯二甲酸二乙酯不同途径...................[color=black](8)[/color]第2.1节 微生物降解...................................(9)2.1.1 微生物降解机理................................([color=black]9)[/color]2.1.2 不同菌类降解DEP研究.................[color=black](9)[/color]2.1.3 本节小结...................................[color=black](13)[/color]第2.2节 化学催化降解.......................................[color=black](14)[/color]2.2.1 Fenton法降解DEP机理.....................(14)2.2.2 不同催化体系降解DEP研究................[color=black](14)[/color]2.2.3 臭氧氧化降解方法......................[color=black](18)[/color]2.2.4 本节小结.........................(19)第2.3节 光催化降解.......................................[color=black](20)[/color]2.3.1 光催化降解DEP途径概述.................(20)2.3.2 不同光催化降解DEP研究.................(20)2.3.3 本节小结.........................(21)结论.............................[color=black](22)[/color]参考文献...........................[color=black](23)[/color][align=center]前 言[/align]邻苯二甲酸二乙酯(DEP)是一种环境污染物,对大气、水、土壤等均有不同程度的污染,同时通过对土壤的污染,影响植物生长,通过食物链威胁人体健康。并且DEP作为增塑剂,在日常生活中被大量使用,所以对DEP降解技术的研究是至关重要的。本课题主要围绕近年来邻苯二甲酸二乙酯不同降解技术的介绍以及分析,为传统降解技术提供优化降解效率(主要以添加催化剂为主)的方法。[align=center]第1章 概论[/align][align=center]第1.1节 邻苯二甲酸二乙酯简介[/align]邻苯二甲酸二乙酯(Diethyl phthalate DEP)。分子式:C12H14O4,属于肽酸酯类,是一种无色或微黄色带有芳香味的澄清油状液体。易溶于有机溶剂,几乎不溶于水。属于难挥发、中等极性和高脂溶性物质[1]。可以用作增塑剂,润滑剂,定香剂等,同时也可以改善部分这类材料的性能。[align=center]图1[color=black][/color]1 邻苯二甲酸二乙酯的分子结构式[/align][align=center]第1.2节 邻苯二甲酸二乙酯对环境影响[/align]DEP在工业领域的广泛使用会导致空气、水、土壤污染等环境问题。具体而言,DEP在大气中主要以气态的形式存在,并能够吸附于空气和水环境中的固体颗粒而引起污染[2]。所以实际上DEP可以说是“无处不在”,大量探究检测得出DEP存在于空气、水等各类物质中,并且严重污染土壤的质量。而将其作为增塑剂时,只要改变外界的温度等环境因素,DEP很容易就从塑料中脱附,影响生态环境。Demirta?, G等[2]通过洋葱曲霉测试得出DEP可以通过破坏细胞有丝分裂纺锤体从而影响洋葱生长,在高浓度的DEP中还会引起细胞的结构变化甚至坏死(图1[color=black][/color]2)。所以控制DEP浓度也是非常重要的。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202229657_7874_5365519_3.png[/img][/align][align=center]图1[color=black][/color]2 DEP引起的结构畸变和变化:a一个不清晰的维管束[font=宋体],[/font]b皮质细胞变形[font=宋体],[/font]c表皮中的物质积累[font=宋体],[/font]d扁平核[font=宋体],[/font]e表皮细胞变形,f坏死。[2][/align]DEP本身就是具有毒性的环境激素,所以DEP对生物体会产生不利影响。[align=center]第1.3节 邻苯二甲酸二乙酯对生物体影响[/align]DEP可以通过多种途径对人体健康产生威胁,如皮肤直接接触、呼吸等。主要途径一般是通过污染脂肪类食物。人类摄入这类食物,导致男性雄激素水平下降,精子数量、形态异常等危害[1,2],而对于女性,高富梅等[3]则通过实验证实DEP作为增塑剂,用于各类生活产品中,在这样的生活环境下,DEP高度暴露在空气中。孕妇长期生活于其中有自然流产的高风险。对婴儿也会有很大的影响。人们还通过对鼠类进行实验发现DEP除影响生殖系统外会对肝脏等器官造成破坏。总之,由于DEP对生态环境以及动物体的危害性是巨大的也是不可逆转的,所以中国《地表水环境质量标准》和《饮用水质量标准》规定了DEP 的限值为300μgL-1。目前国际上也较为看重DEP的降解处理。接下来我将从生物降解、氧化降解、光催化降解三个方面介绍近年来降解DEP的主要方法。[align=center] 降解邻苯二甲酸二乙酯不同途径[/align]由于DEP不溶于水,易于吸附在固体颗粒上的性质所以可以通过活性炭等吸附剂以物理处理的方式去除DEP[4]。但物理处理效率低,需要大量的吸附剂,而吸附剂价格贵且无法回收再利用,最终达到的效果也只是让DEP由环境转移至吸附剂中不能使其降解,还有一定的可能造成二次污染,所以一般都是利用化学处理降解。[align=center]第2.1节 微生物降解[/align]2.1.1[color=black]、[/color]微生物降解机理在自然条件下,DEP的水解、光解速度都很慢,而微生物降解的速率较快、原料便宜、对环境影响小并且不会二次污染环境所以成为DEP降解主要途径。DEP通过吸附在菌体上,作为唯一碳源和能源被微生物利用后降解,虽然好氧菌类和厌氧菌类都可以降解但目前仍然以好氧菌类为主要研究对象,一般都是利用好氧菌类对DEP进行降解,主要是通过侧脸水解形成邻苯二甲酸(PA),PA再进一步降解[5]。形成PA则有两种途径,脱脂化和转酯化。脱脂化:在酯酶作用下DEP侧链酯基水解成邻苯二甲酸单酯,其进一步水解就形成了PA。转酯化:DEP侧链烷基脱落形成邻苯二甲酸二甲酯后进一步水解成PA。微生物中的酶使PA降解为原儿茶酚。原儿茶酚可以转化为三羧酸循环中必要的有机酸从而转化为CO2和H2O[4]。[align=center]图2[color=black][/color]1 DEP微生物降解简易流程(a邻苯二甲酸二乙酯 b邻苯二甲酸 c原儿茶酚)[/align]2.1.2[color=black]、[/color]不同菌类降解DEP研究虽然微生物降解速率较快,但并不是所有的微生物都能够起到这样的作用。这就需要我们去寻找高降解效率的菌类物质。如薛潮等[6]以鞘氨醇单胞菌为实验对象探究其对DEP的降解,吸附等行为。 通过对不同浓度(100mgL-1、300mgL-1)的鞘氨醇单胞菌对DEP去除、降解、吸附行为进行实验(图2[color=black][/color]2).可以得出降解是鞘氨醇单胞菌去除DEP的最主要途径。在实验规定的时间内,降解率与时间正相关,与吸附率负相关。这是由于在去除过程将要结束时,作为微生物的唯一碳源DEP含量明显降低,DEP解吸到溶液中,最终被菌利用。由此我们可以知道微生物降解DEP以利用存在于或解吸到溶液的部分为主,很难直接利用被吸附的物质。同时他们还探究了表面活性剂对DEP降解的影响(图2[color=black]3[/color])。不同的表面活性剂在不同浓度下对DEP产生的影响不同,这也可以作为改进微生物降解效率的一个因素。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202233341_1492_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]2 DEP的表观去除率、降解率、吸附率与非生物损失率[6][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202237578_6652_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]3 吐温80、吐温40和鼠李糖脂对DEP降解的影响[6][/align]李晗绪[7]对高降解菌—假单胞菌DNE-S1的生长环境条件、降解DEP途径、降解能力等因素进行实验。DNE-S1是通过脱脂化作用降解DEP,并且对DEP有耐受性,在 50-1500 mgL-1都可以有效降解DEP,同时发现在给定条件下DEP浓度为500 mgL-1时达到最高降解效率97.8%(图24 a)。在DEP浓度为500 mgL-1的固定值下,绘制三维响应面和轮廓(图25),理论上在三维响应面最高点得到DNE-S1生长的最佳条件是 29.96℃和pH 8.51。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202237316_7897_5365519_3.png[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202239220_4875_5365519_3.png[/img][/align][align=center]图 2[color=black][/color]4 a)和 c):不同 DEP 浓度下菌株 DNE-S1 的生长及降解能力;b)和 d):不同 DEP浓度下的比生长速率和降解速率 [7][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202242011_3235_5365519_3.png[/img][/align][align=center]图2[color=black][/color]5 响应面图和等值线图[7][/align]Elen Aquino Perpetuo等[8]将由土壤中分离出来的皮氏罗尔斯顿菌(Ralstonia pickettii)一种耐盐好氧细菌作为DEP的唯一碳源,进行生物降解分析。发现皮氏罗尔斯顿菌能够在24 h(pH 7、30 ℃和200mgL-1)下完全降解300 mg L-1的DEP。这也可以从侧面证实其实环境中存在着许多能够降解DEP的微生物,还是有待我们发现。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202242169_8666_5365519_3.png[/img][/align][align=center]图2[color=black][/color]6 在300mgL-1DEP下皮氏罗尔斯顿菌的生物降解及细胞生长[8][/align]2.1.3[color=black]、[/color]本节小结综上,通过近年来对高降解菌的寻找以及实验,有许多可高效率短时间降解DEP的菌类被发现。而DEP吸附于微生物表面是降解的前提,解吸后在降解酶的作用下转化成为菌类的营养物质(经过三羧酸循环)。同时菌类的生长条件如温度、pH值等也影响着降解的效率,从而我们要探寻每种菌类最适宜的降解DEP的环境。其次表面活性剂对生物降解也存在一定的影响,表面活性剂通过促进或者抑制吸附作用从而起到间接影响。[align=center]第2.2节 化学催化降解[/align]2.2.1[color=black]、[/color]Fenton法降解DEP机理催化氧化降解如O3氧化、Fenton处理、电化学氧化等手段都是通过利用羟基自由基(OH)的氧化性达到降解DEP的目的[9]。所以OH是降解DEP的主要因素。而OH可以由H2O2分解得到。Fenton反应则是生成OH的一个传统氧化还原反应,主要利用了H2O2的氧化还原性。具体来说则是:Fe2+与H2O2反应生成Fe3+和OH,Fe3+又能和H2O2反应生成Fe2+,这样循环反应直到反应物消耗完为止。而我们利用OH与DEP反应生成其他自由基, 其他自由基进一步被氧化为CO2和H2O由此氧化降解DEP[10]。2.2.2[color=black]、[/color]不同催化体系降解DEP研究由以上原理章琴琴等[11]对影响Fenton降解法的因素进行探究,发现在研究范围内随着Fe2+浓度增大,DEP的降解效率变高(图2[color=black]7[/color]),但不论什么浓度的Fe2+在15min以后降解速率极慢,这是由于反应产生的Fe3+与H2O2反应速度很慢,无法及时还原出Fe2+,直接导致的结果就是OH的产率低。虽然DEP降解效率也随着H2O浓度的增大而升高,但可以从图2[color=black]8[/color]看出500μmolL-1及其以上浓度降解DEP的效率几乎相同。这是由于H2O2浓度过大会让OH进一步氧化成HO2,或者H2O2直接分解为H2O和O2。其次环境的pH值和土壤成分等都会影响DEP的降解效率。 [img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202244443_8618_5365519_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202244132_3876_5365519_3.png[/img][align=center] 图2[color=black]7[/color]不同浓度Fe2+对DEP降解率影响[11] 图2[color=black]8[/color]不同浓度H2O2对DEP降解率影响[11][/align]所以Fenton处理方法在实际应用除了只能在酸性环境下使用外还存在着H2O2易分解,Fe3+利用率低等缺点。于是目前人们利用不同的催化剂催化H2O2或是利用不同催化剂与过一硫酸盐PMS或CaO2体系探究提高降解DEP的效率的方法。截至目前,对PMS采用氧化铝和氧化铁混合物的柱撑黏土活化(Al/Fe-PILCs)是一种较好的方法,还不易产生二次污染[9,12]。邓亚梅等[10]利用V2O5催化H2O2这样的类Fenton处理法探究其影响DEP降解的情况(图29)。可以发现在其他因素不变的情况下,当V2O5投加浓度在0.1gL-1时降解率最大,效果最好。而同样的条件下单独的H2O2即使浓度增大也无法达到这样的降解率。由此可以充分说明V2O5催化H2O2降解效果好。更为重要的是利用5, 5, -二甲基-1-吡咯啉氮氧化物 (DMPO 一种OH捕获剂)来探究此类Fenton处理的机理时发现,在较宽的pH范围内都可以检测到OH的存在(图2[color=black]10[/color]),这也说明V2O5/H2O2体系改善了Fenton反应只能在酸性条件下降解DEP的限制条件。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202245411_5695_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]9 V2O5投加量对其催化H2O2降解邻苯二甲酸二乙酯 (DEP) 的影响((a) 降解动力学 (b) 单独H2O2或V2O5对DEP降解影响)[10][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202247822_1370_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]10 不同pH条件下的V2O5/H2O2体系的EPR信号[10] [/align]Yang Zhou等[13]探究了黄铁矿(FeS2)催化CaO2降解DEP的方法(图2[color=black][/color]11为机理)。在pH为3.5时(经典Fenton处理法最佳pH值)探究不同体系对降解DEP的影响(图2[color=black][/color]12 a)。结果表明,单独使用CaO2降解效率低,但FeS2/CaO2体系比直接用Fe2+/H2O2体系有着更为优越的降解性能。探究FeS2用量也可以发现,在0.3gL-1时DEP在五分钟内完全降解(图2[color=black][/color]12 b),这更加说明了FeS2/CaO2体系优越的降解作用。而黄铁矿(FeS2)活化PMS的机理也与活化CaO2相似,同样提高PMS与FeS2用量能够有效降解DEP[12]。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202249492_5872_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]11 黄铁矿/ CaO2系统降解DEP途径[13][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202250761_2918_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]12 黄铁矿/CaO2体系降解DEP:(a)不同反应体系中DEP的降解动力学;(b)黄铁矿/ CaO2系统中对DEP降解的影响。[13][/align]Xiaolei Wang等[14]则是主要探究了CuS催化PMS体系降解DEP的效率(图2[color=black][/color]13降解途径)。控制温度在25°C下及pH=5,对比了CuS/PMS体系与CuS/H2O2体系等不难发现,CuS/PMS体系降解效率非常好(图2[color=black][/color]14 a)。同样用DMPO检测OH,也可以发现CuS/PMS体系有较强的响应信号。所以证实了此体系也是通过OH机理降解DEP。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202252431_7421_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]13 CuS / PMS体系降解DEP途径[14][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202252169_8666_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]14 CuS/PMS降解DEP:(a)不同氧化剂对DEP降解的动力学;(b)不同反应体系的EPR光谱。[14][/align]2.2.3[color=black]、[/color]臭氧氧化降解方法臭氧降解DEP机理其实和上述降解机理相似,即产生OH进而降解DEP。Mansouri Lobna等[15]对其也进行了研究。我们可以发现单独使用O3也可以有效的降解DEP(图215 a),并且在碱性条件下降解效果最好。此外随着DEP浓度降低,O3降解速率增加(图215 b)。对这个体系进行TOC(总有机碳)分析,同样可以发现DEP被完全降解(图215 c)。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202253107_9016_5365519_3.jpg[/img][/align]图215臭氧对DEP的去除效率:(a)在不同的pH值下([DEP]0= 200 mg/L,CO32-?= 0.98×10-4M);(b):在不同的初始DEP浓度下(pH = 7,CO32-?= 0.98×10-4M);(c)去除总有机碳(TOC)(pH = 7,[DEP]0?= 200 mg/L)T = 20±1℃。[15]他们也探究了不同臭氧体系在不同pH下降解DEP的效率(图216),明显可以看出不同pH下O3/Al2O3体系降解效率最好,并且在pH=11时可以完全降解DEP。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202255537_3951_5365519_3.jpg[/img][/align][align=center]图216 pH对异相催化臭氧化法DEP去除率的影响[15][/align]2.2.4[color=black]、[/color]本节小结其实从以上的实验探究我们也可以发现金属硫化物是较好的助催化剂,用催化PMS和CaO2的方法降解DEP,比起单独使用H2O2的降解效率要高,并且可使用的pH范围也要比H2O2高,当然这三种物质都要合适的催化剂才能体现出更优越的降解效率。而臭氧氧化降解则适用于碱性环境,在pH=11时还可以完全降解DEP。同时通过控制不同环境因素进行实验也不难发现,在不同环境因素(pH、温度等)对O3氧化、Fenton和类Fenton处理法降解效率有着非常大的影响,所以如果想要高效率降解就要针对不同环境使用不同催化降解DEP的物质。[align=center]第2.3节 光催化降解[/align]2.3.1[color=black]、[/color]光催化降解DEP途径概述光解过程主要的三种途径都是利用紫外光进行降解。一是直接由DEP吸收紫外光进行光降解。二是自由基吸收紫外光与 DEP 发生取代、络合、电子转移等反应。三是土壤中的有机物质经紫外光照射激发,激发态能量传递使DEP降解。2.3.2[color=black]、[/color]不同光催化降解DEP研究虽然在自然光照的条件下,光降解DEP的效率低,但加入催化剂后能够明显提高效率。光催化降解DEP常用的催化剂是TiO2,Mansouri Lobna等[15]假设反应为一级反应,探究了TiO2用量与反应速率的关系。明显看出TiO2用量超过1gL-1时反应速率下降,主要原因是光散射导致光透过性差。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202255138_9474_5365519_3.jpg[/img][/align][align=center]图217 TiO2用量对DEP光催化降解的拟一级反应速率常数k的影响[15][/align]实际上TiO2复合型材料光催化性能更好。方媛萍[16]利用CuO/TiO2复合型光催化剂对影响光降解的因素邻苯二甲酸酯类(PAEs)中的DMP、DEP、DBP、DEHP进行了对比实验。除了必要的pH以及催化剂加入量的控制变量实验外,还进一步探究了光照条件。经过5小时的暗反应DEP几乎不降解,而在5小时紫外照射下DEP降解效率达到45.26%,这也充分说明了光照条件也是重要影响因素之一。[align=center]表1[color=black][/color]1 四种不同捏合块构型下流道的物理参数[16][/align][table][tr][td][align=center]化合物[/align][/td][td][align=center]UV[/align][/td][td][align=center]暗反应[/align][/td][/tr][tr][td][align=center]DMP[/align][/td][td][align=center]38.85%[/align][/td][td][align=center]3.25%[/align][/td][/tr][tr][td][align=center]DEP[/align][/td][td][align=center]45.26%[/align][/td][td][align=center]0.41%[/align][/td][/tr][tr][td][align=center]DBP[/align][/td][td][align=center]51.33%[/align][/td][td][align=center]0.54%[/align][/td][/tr][tr][td][align=center]DEHP[/align][/td][td][align=center]54.60%[/align][/td][td][align=center]0.68%[/align][/td][/tr][/table]戴高鹏等[17]则是探究了DEP分子印迹TiO2纳米管阵列(DM-TNA)光电降解DEP,通过与光催化降解和电化学氧化降解进行对比不难发现(图218),光电降解速率快且降解效率高。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202256202_8079_5365519_3.jpg[/img][/align][align=center]图217 三次沉积循环的DM-TNA的(a)电化学氧化、(b)光催化和(c)光电催化降解DEP的活性比较[17][/align]2.3.3[color=black]、本节小结[/color][color=black]光降解DEP一般都是利用紫外光,且若只在紫外光照射下不难发现降解效率仅在50%左右,添加TiO[/color][color=black]2[/color][color=black]催化剂明显降解效率有所提升,而利用TiO[/color][color=black]2[/color][color=black]复合催化材料则是更进一步提升了光降解效率。并且从目前的研究来看,光电降解性能可能要比光降解性能更好,这也不失为一个研究方向。[/color][align=center]结 论[/align]本课题基于近年来各个课题组对邻苯二甲酸二乙酯所作实验研究及理论知识得到以下结论:1、DEP是一种环境激素,对环境中动植物生长起到很大危害,在人们的日常生活中,又由于其作为增塑剂被大量使用,导致人们通过生物聚集、皮肤接触、呼吸等方式摄入DEP,而大量摄入则会影响到人体健康。2、截至目前,微生物降解DEP是最普遍的降解途径,部分微生物能够将DEP作为唯一碳源以及能量,直接将DEP作为营养物质吸收。并且在合适的环境条件及微生物浓度下可以完全降解DEP。3、DEP还可以通过化学氧化降解,其中最重要的就是Fenton效应,但Fenton效应普遍存在循环利用率低,适用pH范围窄等问题,于是产生了类Fenton法,通过加入不同的催化剂活化H2O2、PMS、CaO2等,降解效率显著提升,并且适用pH范围变宽,使得在不同的土壤条件下通过化学氧化降解途径也可以达到高降解效率。4、光降解效率并没有其他化学氧化降解和微生物降解效率高,目前较为优异的光降解催化剂是TiO2,研究表明TiO2复合材料(可加入微量过渡元素氧化物)有着更好的光降解性能。[align=center]参考文献[/align][1] 张政芳. 基于高级氧化技术对邻苯二甲酸二乙酯、草甘膦和四环素的去除研究[D].华南理工大学,2019.[2] Güray Demirta?,Külti?in ?avu?o?lu,Emine Yal?in. Aneugenic, clastogenic, and multi-toxic effects of diethyl phthalate exposure[J]. Environmental Science and Pollution Research,2020,27(5).[3] 高福梅,蔡晓辉,沈浣.邻苯二甲酸酯类化合物暴露情况与自然流产的关系[J].国际生殖健康/计划生育杂志,2013,32(04):281-283.[4] 李静. 邻苯二甲酸酯降解菌的降解特性与降解机制的初步研究[D].西南大学,2018.[5] 唐锦平. 土壤中邻苯二甲酸酯的生物可降解性及影响因素研究[D].湖南农业大学,2019.[6] 薛潮,唐锦平,曹若愚,罗斯.邻苯二甲酸二乙酯的微生物降解与吸附性能研究[J].环境污染与防治,2019,41(05):526-530+535.[7] 李晗绪. 一株DEP高降解菌Pseudomonas sp.DNE-S1对DEP强化降解[D].东北农业大学,2019.[8] Perpetuo Elen Aquino,da Silva Esther Cecília Nunes,Karolski Bruno,do Nascimento Claudio Augusto Oller. Biodegradation of diethyl-phthalate (DEP) by halotolerant bacteria isolated from an estuarine environment.[J]. Biodegradation,2020,31(4-6).[9] 冯莉莎,方国东,周东美,高娟.铝铁柱撑黏土活化单过硫酸盐降解邻苯二甲酸二乙酯的研究[J].土壤,2020,52(05):962-968.[10] 邓亚梅,王荣富,方国东,周东美.五氧化二钒类Fenton降解邻苯二甲酸二乙酯的机制研究[J].生态毒理学报,2017,12(03):717-725.[11] 章琴琴,丁世敏,封享华,余友清,王捷,陈凤贵,黄海燕.Fenton法降解邻苯二甲酸二甲酯的动力学特征及其影响因素研究[J/OL].环境化学:1-8[2021-01-07].http://kns.cnki.net/kcms/detail/11.1844.X.20201109.1030.016.html.[12] 周洋. 基于黄铁矿的非均相类-Fenton反应高效降解邻苯二甲酸二乙酯的机制研究[D].安徽师范大学,2019.[13] Yang Zhou,Min Huang,Xiaolei Wang,Juan Gao,Guodong Fang,Dongmei Zhou. Efficient transformation of diethyl phthalate using calcium peroxide activated by pyrite[J]. Chemosphere,2020,253.[14] Wang Xiaolei,Ding Yingzhi,Dionysiou Dionysios D.,Liu Cun,Tong Yunping,Gao Juan,Fang Guodong,Zhou Dongmei. Efficient activation of peroxymonosulfate by copper sulfide for diethyl phthalate degradation: Performance, radical generation and mechanism[J]. Science of the Total Environment,2020,749.[15] Mansouri Lobna,Tizaoui Chedly,Geissen Sven-Uwe,Bousselmi Latifa. A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water.[J]. Journal of hazardous materials,2019,363.[16] 方媛萍. 水体中邻苯二甲酸酯的直接质谱检测及其光催化降解研究[D].吉林大学,2019.[17] 戴高鹏,周京慧,龙家豪,李尊,刘力.分子印迹TiO_2纳米管阵列的制备与选择性光电催化降解邻苯二甲酸二乙酯[J].无机化学学报,2020,36(05):850-856.李鹏,耿孝正.同向啮合双螺杆挤出机捏合块流道三维流场分析[J].中国塑料,2000,14(3):1.

  • 样品降解求助

    各位老师,我现在有一个样品,是一个有18个碳原子的三级醇,进样检测的时候会出现降解,降解率在1-10%左右。如果换用新的衬管就基本不会降解,但是要是运行其它样品后,就又开始降解了。换了玻璃棉能坚持几针就又开始降解。还有分流比10的时候,降解厉害,分流比50的时候基本不降解,但是50 的分流比需要的样品浓度很大,所以我不想开50 的分流比。还有一个很奇怪的现象,就是在有一台仪器上,总是不降解。各位老师,引起降解的原因到底是什么,是玻璃棉活性太高了么,还是什么其它原因,为什么只有一台仪器不降解呢?其它仪器都降解。头疼阿!

  • 警惕药物中的“基因毒性杂质”

    近几年频频出现药物制剂中检出基因毒性杂质残留而被召回的事件。何为基因毒性杂质呢?“基因毒性杂质”(又称遗传毒性杂质Genotoxic Impurity ,GTI),是指本身直接或间接损伤细胞DNA,产生基因突变或体内诱变,具有致癌可能或者倾向的化合物。其主要来源为原料药合成过程中的起始物料、中间体、试剂和反应副产物,此外,药物在合成、储存或者制剂过程中也可能因为降解而产生基因毒性杂质,因其特点为毒性极强,在很低浓度时即可造成人体遗传物质的损伤,进而导致基因突变并可能促使肿瘤的发生,对用药的安全性产生了强烈的威胁。化学药品中的典型基因毒性杂质包括亚硝胺类杂质和磺酸酯类杂质,它们经过代谢激活后基因毒性非常强,是药物研发过程当中最易产生且需严格把控的基因毒性杂质。因此,各国的法规机构如ICH、FDA、EMA等都对基因毒性杂质提出了明确的要求,越来越多的药企在创新药和仿制药研发过程中也更加关注基因毒性杂质的控制和检测。2020 版《中国药典》四部通则中新增了《遗传毒性杂质控制指导原则》,本指导原则对基因毒性杂质的监管策略与ICH M7指导原则几乎保持一致。2020年5月国家药监局药审中心网站发布了《化学药物中亚硝胺类杂质研究技术指导原则》,该原则为注册申请上市以及已上市化学药品中亚硝胺类杂质的研究和控制提供了指导。在理论上,大部分药物都存在残留基因毒性杂质或被基因毒性杂质污染的风险,因此建立便捷、高效的分析方法是非常有必要的。

  • CATO独家 | 孟鲁司特杂质标准品

    CATO独家 | 孟鲁司特杂质标准品

    [font=宋体]◇孟鲁司特[/font][font=宋体]杂质[/font][font=宋体] 孟鲁司特[/font][font=宋体],[/font][font=宋体]其英文名为[/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]Montelukast[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe],[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]也被称为孟鲁司特钠,[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]它[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]是一种白三烯受体拮抗剂[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]。[/back][/color][/font][font=宋体]孟鲁司特[/font][font=宋体]的[/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]原理机制主要是通过抑制白三烯受体和阻断炎症介质[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]的[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]释放,[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]它[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]能够与白三烯受体结合,竞争性地阻止白三烯与受体结合,从而抑制白三烯的活性,减轻炎症反应[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]。[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]所以在临床上,[/back][/color][/font][font=宋体]孟鲁司特[/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]主要用于预防和治疗哮喘以及过敏性鼻炎[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]。[/back][/color][/font][font=宋体][font=Calibri] CATO[/font][font=宋体]标准品提供的孟鲁司特全套的杂质[/font][/font][font=宋体],[/font][font=宋体]这些杂质对于药物的纯度和稳定性研究至关重要,也是药物研发过程中不可或缺的一部分[/font][font=宋体]。[img=,601,512]https://ng1.17img.cn/bbsfiles/images/2024/02/202402062150449184_6802_6381607_3.png!w601x512.jpg[/img][/font][font=宋体][color=#05073b][back=#fdfdfe] 广州[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]佳途科技[/back][/color][/font][font=宋体][color=#05073b][back=#fdfdfe]股份有限公司[/back][/color][/font][font='Segoe UI'][color=#05073b][back=#fdfdfe]深知药物研发与质量控制的重要性[/back][/color][/font][font=宋体][font=宋体],[/font][font=Calibri]CATO[/font][font=宋体]标准品厂家,提供孟鲁司特全套[/font][/font][font=宋体]的[/font][font=宋体]杂质,为客户提供更加精准、可靠的分析标准品,助力药物研发事业的快速发展[/font][font=宋体]。[/font]

  • 液质联用技术在药物杂质分析中的应用,7月27日专家开讲!!

    液质联用技术在药物杂质分析中的应用,7月27日专家开讲!!

    药物杂质是指无治疗作用或影响药物的稳定性以及疗效的物质。由于杂质检测和含量控制对药品质量控制以及安全用药密切相关,国家药品监督管理局(National Medical Products Administration, NMPA)对药物临床前研究中的杂质分析越来越重视。 化药中的杂质可分为有机杂质、无机杂质、残留溶剂。对于新药制剂来说:有活性组分的降解产物、活性组分与赋形剂和(或)内包装/密封系统的反应产物、遗传毒性杂质以及药包材杂质。关于杂质的分析方法,对于有机杂质的分析(起始物、副产物、中间体、降解产物等),使用色谱法分析居多;对于无机杂质(重金属,无机盐等),通常采用ICP/AA/[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICPMS[/color][/url]等仪器分析;对于残留溶剂杂质,则以GC分析为主。 贯穿于药品研发的整个过程的理念就是保证安全。选择合适的分析方法,准确地测定杂质的含量,综合毒理及临床研究的结果可以更好地研究药物杂质。基于此,[b]仪器信息网[/b]与[b]天津市分析测试协会[/b]拟于[b][color=#ff0000]2021年7月27日[/color][/b]联合举办[color=#ff0000][b][url=https://insevent.instrument.com.cn/t/Kk]“化学药物杂质研究及检测技术”主题网络研讨会[/url][/b][/color],旨在关注药物安全和药物杂质分析检测,为广大药学工作者和检测人员提供交流的空间。[url=https://insevent.instrument.com.cn/t/Kk][img=,690,483]https://ng1.17img.cn/bbsfiles/images/2021/07/202107231500576930_1336_2507958_3.png!w690x483.jpg[/img][/url][url=https://insevent.instrument.com.cn/t/Kk][size=18px][color=#ff0000][b]点击报名:https://insevent.instrument.com.cn/t/Kk[/b][/color][/size][/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制