当前位置: 仪器信息网 > 行业主题 > >

硝基丙二酸二甲酯

仪器信息网硝基丙二酸二甲酯专题为您提供2024年最新硝基丙二酸二甲酯价格报价、厂家品牌的相关信息, 包括硝基丙二酸二甲酯参数、型号等,不管是国产,还是进口品牌的硝基丙二酸二甲酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硝基丙二酸二甲酯相关的耗材配件、试剂标物,还有硝基丙二酸二甲酯相关的最新资讯、资料,以及硝基丙二酸二甲酯相关的解决方案。

硝基丙二酸二甲酯相关的资讯

  • 五大问题困扰我国碳酸二甲酯行业
    到2010年10月底,全国碳酸二甲酯(DMC)的实际产能已经达到23.6万吨,明年有望达到49万吨。中国石油和化工杂志社副总编辑杨扬在第七届全国有机碳酸酯技术开发与应用研讨会上,披露上述数据。作为一个持续关注、跟踪报道碳酸二甲酯行业将近10年的记者,杨扬对整个行业有着独到的见解和认识。   据杨扬介绍,前些年,由于DMC生产能力较小,产品供不应求。一些企业因此上马几套数万吨级酯交换法碳酸二甲酯装置。这些装置投产后,对国际、国内市场产生较大影响,供应量充足,从金融危机以来价格基本稳定在5000—6000元/吨左右。预计以后的价格只会越来越低。   经过长时间的实地调研、考察与采访,杨扬认为目前我国DMC行业存在着如下制约行业发展的全局性、战略性的问题。缺乏统一的行业管理 缺乏行业性的合作、协作与沟通的机制和渠道 缺乏行业的领军企业和企业家,没有形成一致对外的合力 缺乏DMC新兴应用领域的相关标准和知识产权保护制度 缺乏共同开拓与培养市场的意识与机制。同时全行业长期受制于环氧丙烷等上游原料供应,没有市场和原料供应的话语权。   为推进中国DMC产业健康发展,杨扬建议上项目时选择适合本企业的工艺路线,就近主要原料或产品销售市场选择厂址。建议重新组建全国DMC行业协作组,完善运行机制与管理办法。通过各种渠道向政府主管部门呼吁和反映行业存在的问题,给予政策、税收、科研专项等等方面的支持。   本次研讨会11月4日在北京召开,由中国化工报社、中国碳酸二甲酯行业协作组联合主办。
  • 6月4日起,全欧盟限制富马酸二甲酯
    5月15日,欧盟发布政府公报,颁布(EU)No 412/2012指令,将富马酸二甲酯加入REACH法规附件17(对某些危险物质、混合物、物品在制造,投放市场和使用过程中的限制)物质清单第61项,法令在自欧盟公报发布之日20天后执行,并要求成员国将其无条件转化为本国法律。这预示着6月4日起,全欧盟限制富马酸二甲酯。   富马酸二甲酯是一种挥发性化合物,通常用作真菌杀灭剂,也可用于干燥剂袋中,以防止皮革、家具、鞋或皮革配件在储存或运输过程中产生霉菌。人体吸入、摄入或与之接触,会对皮肤、眼睛和上呼吸道造成刺激和伤害。   针对富马酸二甲酯对人体的伤害作用,欧盟发布2009/251/EC规定,2009年5月1日后,欧盟市场上流通的产品或产品零件中富马酸二甲酯的含量不应超过0.1ppm,产品及包装内不得使用含有富马酸二甲酯的干燥剂、防霉剂小袋。欧盟又于2012年1月26日发布了该禁令的修订指令2012/48/EU,将2009/251/EC指令的有效期延至2013年3月15日。2012/48/EU指令明确指出,若富马酸二甲酯列入REACH法规附录17中进行强制管控的提案正式通过的时间早于前者,则富马酸二甲酯禁令即时生效。   根据此次修订,用于物品及物品的任一成分中的富马酸二甲酯含量不得超过0.1mg/kg,物品及物品中任一成分富马酸二甲酯含量超过0.1mg/kg不得置于市场销售。在此,检验检疫部门建议广大出口企业:继续严格遵守欧盟富马酸二甲酯指令,确保出口产品符合进口国的相关要求。
  • 欧盟通过禁用富马酸二甲酯草案
    1月29日,欧盟成员国通过了“保证含有富马酸二甲酯的消费品不会投放欧洲市场”的决议草案。目前,该决议仍处于欧洲议会审查阶段,预计将在5月1日前正式生效。   草案明确规定,如果消费品或其部件中富马酸二甲酯的含量超过了0.1毫克/千克,或者产品本身已声明了其富马酸二甲酯的含量,就将被认定为“含有富马酸二甲酯”的产品,其将禁止进入欧盟市场流通和销售。   富马酸二甲酯(简称DMF)通常被用作防腐防霉剂产品,常用于皮革、鞋类、纺织品等的生产、储存、运输中。但从去年10月起,欧盟方面就陆续通报了多起因消费者接触含有富马酸二甲酯的鞋、皮沙发等而产生皮肤过敏、急性湿疹及灼伤的案例,使其受到了广泛关注。欧盟也在此后进行了研究和分析,并最终出台了上述草案及限量标准。   在欧盟草案通过之前,法国、比利时已采取了具体措施,禁止进口和销售含富马酸二甲酯的鞋和座椅。西班牙也出台规定,禁止任何接触到皮肤的产品含有富马酸二甲酯。而且,自去年年底开始,已有多批中国产品因富马酸二甲酯含量超标被法国等国扣留。   富马酸二甲酯在国内产品中的应用十分广泛,相当多的鞋类、皮革家具及家纺等产品都会在包装中放入含该成分的防潮袋,用于防潮防霉。而在我省,温州、海宁等地的皮革类产品是传统的外贸出口产品,仅温州一地,其2008年鞋类产品出口就达到了2.76亿美元。纺织品更是浙江的出口优势产品,每年约有400亿的出口量。上述出口产品占了欧盟市场相当大的份额。更让人担心的是,据资料显示,由于富马酸二甲酯具有毒性低、抑菌能力强、抑菌种类多、不受环境影响等特点,还被广泛用于食品、粮食、饲料、化妆品、烟草等防腐防霉及保鲜,因此,欧盟此次对所有含有富马酸二甲酯的消费品颁布禁令,势必将给我省相关行业带来很大的不利影响。   面对该禁令的巨大挑战,检验检疫部门提醒相关出口企业应及时进行调整,换用更为环保和健康的防潮防霉产品,以符合草案的要求,并积极与国外客户进行沟通,减少草案对产品出口的影响。近期,检验检疫部门也将对辖区内的相关企业加强检验和监管,避免不合格产品运至欧盟后,造成更大的经济和声誉上的损失。
  • 欧盟公布富马酸二甲酯限令草案
    据chemicalwatch网站消息,近日欧盟修订了REACH法规附录XVII,将富马酸二甲酯限令纳入其中,本次修订草案公布于欧盟相关文件中(comitology register)。   据了解,此项草案有望于11月份在REACH委员会会议上获得通过,它体现了欧洲化学品管理局风险评估委员会与社会经济委员会的观点。
  • 辽宁检验检疫局具备富马酸二甲酯检测能力
    近期,为应对欧盟关于禁止含有富马酸二甲酯的产品投放市场或在市场上销售的有关决议,辽宁检验检疫局加强了出口轻纺产品中使用富马酸二甲酯的监测工作,辽宁局技术中心轻纺实验室发挥技术优势开展业务攻关,进行了一系列测试试验,努力改进试行的标准方法,通过确认试验,证实测试结果准确可靠。   目前,辽宁局已具备了轻纺产品中富马酸二甲酯成分检测能力,检测方法已投入应用,为辽宁口岸出口检验监管工作提供了强有力的技术支持
  • 欧盟根据REACH指令起草法规限制富马酸二甲酯
    欧盟委员会近日公布一项法规草案,限制在消费品中使用富马酸二甲酯(DMF)。法规将在草案公布于欧盟《官方公报》的二十天后生效。该限制法规也将被收录进REACH法规附件十七条中。   富马酸二甲酯一直作为防腐剂在欧盟制造业中使用,直至98/8/EC指令颁布。但是该指令并未限制经DMF处理后的商品进口至欧盟。因此,欧盟采取紧急措施,决定采纳2009/251/EC指令以确保含有DMF的商品不会进入或在欧盟范围内生产。   作为临时措施,2009/251/EC指令被扩展为2010/153/EU指令和2011/135/EU指令,在2012年3月15日之前有效。此次,若DMF被添加至REACH法规附件十七中,临时限制将成为永久性限制措施。
  • 欧盟将富马酸二甲酯限制令纳入REACH法规
    近日,欧盟将一项有关富马酸二甲酯(Dimethyl Fumarate,DMFu)的法令合并到了REACH法规附件十七中。新法规已于2012年6月4日生效。 2009年3月,欧盟采纳2009/251/EC指令,采取临时措施限制消费品中的DMFu,该措施的有效期被3项进一步的指令延长,最新的2012/48/EU指令将于REACH生效时适用或于2013年3月15日生效,以时间早者为准。 2012年5月16日,欧盟官方公报(OJEU)公布了(EU) 412/2012法规。根据新法规,DMFu临时限制法规将被整合成永久性限制令列入REACH法规附件十七中。新法规已于2012年6月4日生效(公布于OJEU的20天后)。新法规的重点如表格一所示: 物质 引证 范围 要求 注意事项 富马酸二甲酯(DMFu) (EU) 412/2012法规 物品或零部件 ≤ 0.1 毫克/千克 目前受2012/48/EU指令规管,直至2012年6月4日。 根据REACH法规附件十七第61条整合为永久性限制令。
  • 软体家具遭遇富马酸二甲酯污染风险
    软体家具遭遇DMF(富马酸二甲酯)污染风险   前不久,国家质检总局在对全国85家木质家具制造企业进行检测后发现,甲醛超标的企业占76.9%,最高超标116倍。在板式家具尚未能摆脱甲醛阴影的此时,软体家具又蒙上DMF的新罪。   板式家具必须使用的板材、油漆、胶水等材料大多含有甲醛成分,虽然市面上有达到E1级和E0级甚至零甲醛的板材以及环保漆,但成本高昂,令很多企业望而却步。有业内人士透露,市场上标有“零甲醛”的产品基本都是在忽悠消费者。   欧美的板式家具也有很大的市场份额,记者了解发现,美国加州的CARB(California Air Resources Board,加州空气资源委员会)法规最为严厉。它不仅严格规定了各类板材的甲醛含量,还要求工厂必须建立质量管理体系和品质控制实验室,并必须强制第三方认证,产品必须贴上合格标签。而国内的板式家具,很多连规范的使用说明书都没有。   记者在了解欧盟对家具的相关环保要求时,发现其不仅对甲醛有相应规定,还对REACH(化学品注册、评估、许可和限制,影响化工、纺织、机电、玩具、家具等行业)有严格的规定,DMF(Dimethyl fumarate,富马酸二甲酯)更是在禁止之列。   据悉,DMF主要存在于沙发、床等软体家具之中,用于皮革和纺织品的生产、储存、运输等过程的杀菌和防霉,它虽然能抑制30多种霉菌、酵母菌和细菌,特别对肉毒梭菌和黄曲霉菌有很好的抑制作用,但根据相关专家论证,该物质在常温下升华具有熏蒸性,对眼睛、呼吸系统、皮肤和黏膜具有一定的刺激作用,与皮肤接触后易发生过敏、可引起皮肤湿疹和灼伤。
  • 《鞋类化学试验方法富马酸二甲酯检测方法》等标准通过审定
    全国制鞋标准化技术委员会第一届三次会议日前在福建省龙岩市召开。会上对四项标准进行了审查,分别为国家强制性标准《鞋类钢勾心》、国家标准《鞋类化学试验方法富马酸二甲酯检测方法》、行业标准《鞋类帮面试验方法抗张强度和伸长率》和《鞋类、包装、运输和贮存》。与会委员完善了该四项标准的内容,一致同意秘书处将该标准整理形成报批稿上报。该四项国家、行业标准审查单独形成审查会议纪要。会上,中国皮革协会制鞋办公室主任卫亚非还对制鞋业要密切关注的几个问题和未来中国鞋业市场的预测做了分析。卫亚非从用工环境、内销市场、产业集群、进出口情况、资本运行情况诠释了2009年行业运行情况和特点。她认为,影响鞋业发展的因素已由原来关注的原材料价格、劳动力成本等传统因素方面转向更为关注石油价格、人民币汇率、人口因素、环境保护等。在国际金融危机影响的大环境下,未来还有许多不确定因素。卫亚非指出,制鞋业要密切关注人民币升值、劳动力资源短缺、城市化建设、石油价格、外资零售业的进入、物流业的建设等问题。
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售 中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP) Dimethyl phthalate (DMP) 131-11-3 邻苯二甲酸二乙酯(DEP) Diethyl phthalate(DEP) 84-66-2 邻苯二甲酸二异丁酯(DIBP) Phthalic acid, bis-iso-butyl ester 84-69-5 邻苯二甲酸二丁酯(DBP) Di-n-butyl phthalate 84-74-2 邻苯二甲酸双(2-甲氧基乙)酯(DMEP) Phthalic acid, bis-methylglycol ester 117-82-8 邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester 146-50-9 邻苯二甲酸双-2-乙氧基乙酯 Phthalic acid, bis-2-ethoxyethyl ester 605-54-9 邻苯二甲酸二戊酯(DPP) Diamyl phthalate 131-18-0 邻苯二甲酸二正己酯(DNHP) Dihexyl phthalate 84-75-3 邻苯二甲酸丁苄酯(BBP) Benzyl butyl phthalate 85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP) Phthalic acid,bis-butoxyethyl ester 117-83-9 邻苯二甲酸二环己酯(DCHP) Dicyclohexyl phthalate 84-61-7 邻苯二甲酸二(2-乙基)己酯(DEHP) Di(2-ethyl hexyl) phthalate (DEHP) 117-81-7 邻苯二甲酸二苯酯 Diphenyl phthalate 84-62-8 邻苯二甲酸二正辛酯(DNOP) Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯 Phthalic acid, bis-nonyl ester 84-76-4 相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • 千呼万唤始出来,测定N-二甲基亚硝胺的新标准终于上线啦!
    测定N-二甲基亚硝胺的新标准!本次标准更新,新增了QuEChERS法测定,Detelogy带你一起解读!亚硝酸盐广泛存在于食品之中,很容易与胺化合,生成亚硝胺。亚硝胺与苯并(α)芘、黄曲霉素是世界公认的三大强致癌物质。N-二甲基亚硝胺是N-亚硝胺类化合物的一种,食品中天然存在的N-亚硝胺类化合物含量极微,但其前体物质亚硝酸盐和胺类广泛存在于自然界中,在适宜的条件下可以形成N-亚硝胺类化合物。N-二甲基亚硝胺是国际公认的毒性较大的污染物,具有肝毒性和致癌性。N-二甲基亚硝胺在啤酒、肉制品及鱼类腌制品等食品和环境中广泛存在。肉制品加工过程中会使用亚硝酸盐添加剂,使其产生理想的粉红色,增加风味,且还具有抗氧化的效果。但是,亚硝酸盐在腌肉中可以转化为亚硝酸,极易反应生成致癌性物质:N-亚硝胺类化合物;水产品腌制过程中使用的粗盐通常含有硝酸盐、亚硝酸盐,加上微生物能将硝酸盐还原成亚硝酸盐,从而蓄积亚硝酸盐。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次更新,大家的目光都聚焦在新增的第二法:QuEChERS-气相色谱-质谱/质谱法上,相比起其他实验方法,不仅精简了实验设备,在一定程度上也加快了实验的效率。下面一起来看看!实 验 步 骤 提 取 干制品称取5g于50mL离心管,加入5mL水,振荡混匀(鲜样品称取10g置于50 mL离心管中),加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈,MultiVortex多样品涡旋混合器调节3000rpm,涡旋振荡2min后置于-20℃冰箱冷冻20min,取出后加入陶瓷研磨珠1粒以及4g硫酸镁和1g氯化钠,放入MGS-24高通量智能动植物研磨均质仪振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min,上清液待净化。 净 化 称取150mgPLS-A粉末(或1g增强型脂质去除EMR-Lipid萃取粉剂或同级品)于15mL离心管中,加入5mL水于MultiVortex多样品涡旋混合器涡旋振荡,立即加入5mL待净化上清液涡旋振荡1min,置于冷冻离心机,9000r/min,10℃离心5min,待除水。 除 水 称取1.6g硫酸镁和0.4g氯化钠于另一15mL离心管,加入上述待除水净化液于MultiVortex多样品涡旋混合器涡旋振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min。取上层有机相经0.22μm微孔滤膜过滤后。上机测定。“PreferenceDetelogy优选仪器
  • 应用丨N-二甲基亚硝胺检测前处理解决方案
    亚硝酸盐在腌肉中转化为亚硝酸,极易生成致癌性物质:N-亚硝胺类化合物。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。N-二甲基亚硝胺广泛存在于啤酒、肉制品及鱼类腌制品等食品和环境中,可溶于水、乙醇、乙醚、二氯甲烷,用于制造二甲基肼,是国际公认的毒性较大的污染物,具有肝毒性和致癌性。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次增加QuEChERS-气相色谱-质谱/质谱法(第二法),QuEChERS方法相较于其他前处理方法操作更简单,更容易实现批量前处理,试剂使用量更少,更环保。 样品前处理步骤提取 干制品称取5g于50mL离心管(RC-50004M,50mL尖底) 加入5mL水,振荡混匀(鲜样品称取10g置于50mL离心管中) 加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈 MTV3000多管涡旋混合仪2500rpm,涡旋振荡2min,置于-20℃冰箱冷冻20min 取出后加入1颗陶瓷均质子(RC-5003C)以及提取盐包(RC-50106M,内含4g硫酸镁和1g氯化钠) 置于V20垂直振荡器,1300rpm振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 上清液待净化净化 量取5mL水加入15mL净化管(RC-15164M含有150mgHLB-2粉末或RC-15165M,含有1gHolipid) 置于MTV 3000多管涡旋混合仪,2500rpm 涡旋混匀,立即加入5mL待净化上清液涡旋振荡1min 取出置于冷冻离心机,9000r/min,10℃离心5min 待除水除水 取上述待除水净化液加入15mL除水净化管中(RC-15166M,含有1.6g硫酸镁和0.4g氯化钠) 置于MTV3000多管涡旋混合仪,2500rpm涡旋振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 取上层有机相经0.22μm微孔滤膜过滤后 上机测定前处理仪器及耗材推荐Raykol V20垂直振荡器 振荡方式:垂直振荡 振荡速度:500-1800rpm 振幅:32mm样品数量:50mL*20,15mL*38,100mL*10,2mL*52等,96孔板*6,可定制 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等 预约启动,预约时间0-840minRaykol MTV3000多管涡旋混合仪 振荡方式:偏芯振荡 振荡速度:最高速度3000rpm 操作简单,适配各种管架 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等耗材RC-50004M50mL螺口尖底管,PP材质,25支/包,2包RC-50106M萃取盐包:4g MgSO4+1g NaCl,50/盒RC-5003C陶瓷均质子,用于50mL萃取管,100个/瓶RC-15164M15mL净化管:150mg HLB-2,25支/盒RC-15165M15mL净化管:1g Holipid,25支/盒RC-15166M15mL净化管:400mg NaCl+1600mg MgS04, 50支/盒
  • 二硝化新案例:3,5-二硝基苯甲酸的连续合成!
    二硝化新案例:3,5-二硝基苯甲酸的连续合成!康宁用“心"做反应让阅读成为习惯,让灵魂拥有温度3,5-二硝基苯甲酸是重要的有机合成中间体,其主要用于生产诊断用药泛影酸, 泛影酸为x线诊断用阳性造影剂,主要用于泌尿系统造影;同时也可用作树脂衍生化和氨苄青霉素测定等用途的分析试剂,是替米沙坦等药物的主要中间体,属于新兴的高附加值精细化工产品。传统工艺:3,5-二硝基苯甲酸合成工艺主要有两种:采用浓硝酸作为硝化剂直接硝化苯甲酸生成3,5-二硝基苯甲酸间硝基苯甲酸经一步硝化生成3,5-二硝基苯甲酸目前工业上两种工艺均采用间歇釜式反应,存在反应时间长、物料易积蓄、过程控制不稳定及反应釜持液量大等问题;苯甲酸硝化合成3,5-二硝基苯甲酸是强放热反应,反应热约为278.96 kj/mol,反应温度不易控制,易产生“飞温"现象;温度是影响硝化反应的重要因素,该反应需要具有稳定且快速的传热效果的反应器来控制反应温度;微通道连续流工艺:与传统釜式反应器相比,微通道反应器:面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成的反应失控,提高反应的安全性;微通道反应器通过对物料充分混合及对时间精确把控,可极大地提升整个反应体系的传质,相比传统间歇反应器收率和选择性都有所提高;反应时间短,控制精准,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免副产物的产生。本文将向读者介绍今年10月《天然气化工—c1 化学与化工》上的一篇文章,“微通道反应器中3,5-二硝基苯甲酸的连续合成工艺"。该新工艺成果已申请技术保护,公开号:cn112679358a。研究者以苯甲酸和发烟硫酸为底物,应用了连续流微通道反应器系统,以探究不同工艺条件对苯甲酸硝化制备3,5-二硝基苯甲酸反应的影响,并获得3,5-二硝基苯甲酸连续合成的较优工艺条件,反应流程如下图所示。研究介绍一、反应机理浓硝酸硝化苯甲酸合成3,5-二硝基苯甲酸反应机理如图2所示。图2.苯甲酸硝化反应机理苯甲酸和混酸溶液在发生一硝化反应时,可以在苯环的邻、间、对位上进行亲电取代反应,一硝产物以间硝基苯甲酸为主;该反应在室温下即可快速进行,但在引入一个硝基后,由于no2+也是吸电子基团,会使苯环上电子云密度进一步下降, 使得二硝化速度大大降低,需要更为强化的反应条件。本文采用的发烟硫酸中的三氧化硫比硫酸的脱水能力更强,使浓硝酸在发烟硫酸中尽可能完全转化为no2+,加快反应进程,提高反应速率。二、实验步骤图3.连续流反应装置流程连续流反应装置如图3所示。将苯甲酸溶于发烟硫酸中,记为原料a;将发烟硫酸加入浓硝酸中组成混合溶液,记为原料b;此装置主要分为预热区和反应区, 温度通过恒温循环换热器装置设定和调节;待温度达到设定值,将原料a与原料b通过泵3和泵4同时流入反应模块,依次经过预热区、反应区,产物由出口处连续流出,然后利用冰水淬灭,冷却、结晶、过滤得到产物;产物进行hplc分析。三、反应条件研究研究者对3,5-二硝基苯甲酸的微通道连续合成工艺多个影响因素进行了考察,探究发烟硫酸用量、反应物料配比、反应温度、停留时间对合成3,5-二硝基苯甲酸收率和选择性的影响。图4. 发烟硫酸用量对反应的影响图6. 温度对反应的影响图5. 反应物料比对反应的影响图7. 停留时间对反应的影响图8. 体系各组分含量随时间变化关系最终研究者获得了该合成工艺的最佳条件:取用 n(苯甲酸):n(发烟硫酸) :n(浓硝酸) = 1 : 7:2.8,反应停留时间4min,反应体系温度为75℃,此时3,5-二硝基苯甲酸收率为91.0%,选择性达97.2%。结果讨论与小结:本文以苯甲酸为原料,浓硝酸为硝化剂,发烟硫酸为催化溶剂,应用微通道反应器探究了苯甲酸硝化合成3,5-二硝基苯甲酸反应的工艺条件;与传统间歇方法相比,该工艺具有反应时间短、效率高、混合效果佳等优点,提升了苯甲酸硝化过程的本质安全性;对于单因素实验,均选最优结果,得到的最终工艺条件非常接近理论上的较优工艺条件。在n(苯甲酸):n(浓硝酸):n(发烟硫酸)= 1:2.8:7,温度75 ℃,停留时间4 min的较优工艺条件下,3,5-二硝基苯甲酸收率为91.0%,选择性达97.2%。参考文献:《天然气化工—c1 化学与化工》:第46 卷第2 期
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 上海市食品接触材料协会公开征求《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准意见
    各有关单位及专家:由上海市食品接触材料协会组织制定的《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准已完成征求意见稿的编制,现面向社会公开征求意见。诚请有关单位及行业专家积极提出宝贵意见和建议,并填写《意见反馈表》于2024年11月21日之前将书面意见以邮件或寄送方式反馈至上海市食品接触材料协会。联 系 人: 陈宁宁 黄 蔚联系电话: 021-64372216 邮 箱:safcmxh@163.com邮寄地址:上海市徐汇区永嘉路627号301室上海市食品接触材料协会2024年10月22日上海市食品接触材料协会关于公开征求《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准意见的通知.pdf《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》团体标准-征求意见稿.pdf《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》_编制说明.pdf《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准-征求意见稿.pdf《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》_编制说明.pdf《意见反馈表》.docx
  • 邻苯二甲酸酯,你了解吗?
    邻苯二甲酸酯(PAEs)又称酞酸酯, 大部分常用的邻苯二甲酸酯为邻苯二甲酰酐与醇的反应产物。该类化合物从邻苯二甲酸二甲酯到十三烷基酯共有20多种,大部分为无色液体(个别的为白色固体如二环己酯、二苯酯),无味或略带气味,难溶于水, 易溶于有机溶剂。邻苯二甲酸酯类常用作增塑剂和软化剂, 其含量有时可达高聚体本身的60%,用于增大塑料的可塑性和韧性。 PAEs与塑料本身很难牢固结合,很容易从中溶解出来, 从而进入环境。 为什么我们会摄入邻苯二甲酸酯? 一般人容易会在塑胶制品包装中接触到邻苯二甲酸酯类,在生活中有很多食物在加工、加热、包装、盛装的过程里可能会造成邻苯二甲酸酯的溶出且渗入食物中。例如:塑胶玩具、覆盖食物微波加热的保鲜膜、盛装食物的塑胶容器、室内装潢或家庭产品亦多数属于塑胶材质、吃手扒鸡的塑胶手套、医疗用的塑胶手套或输血袋等,都可见邻苯二甲酸酯类的踪影。 另外,有一些不法厂家,为了达到降低成本的目的,用邻苯二甲酸酯代替起云剂添加到食品当中,以达到增稠效果,将会给消费者带来巨大危害。 邻苯二甲酸酯有哪些危害? 研究表明邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,可干扰内分泌,使男子精液量和精子数量减少,精子运动能力低下,精子形态异常,严重的会导致睾丸癌,是造成男子生殖问题的“罪魁祸首”。 含有邻苯二甲酸酯的软塑料玩具及儿童用品有可能被小孩放进口中,如果放置的时间足够长,就会导致邻苯二甲酸酯的溶出量超过安全水平,会危害儿童的肝脏和肾脏,也可引起儿童性早熟。 在化妆品中,指甲油的邻苯二甲酸酯含量最高,很多化妆品的芳香成分也含有该物质。化妆品中的这种物质会通过女性的呼吸系统和皮肤进入体内,如果过多使用,会增加女性患乳腺癌的几率,还会危害到她们未来生育的男婴的生殖系统。 如何检测邻苯二甲酸酯? 邻苯二甲酸酯检测方法已非常成熟,国内外都发布了检测标准。一般是用有机溶剂萃取后使用气相色谱质谱联用仪(GC)进行检测。 主要检测标准有: ◆ GBT 22048-2008?玩具及儿童用品?聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定◆ EN 14372 儿童产品安全要求及测试方法(欧洲标准,采用索氏提取法)◆ SNT 1779-2006?塑料血袋中邻苯二甲酸酯类增塑剂的测定-气相色谱串联质谱法◆ SNT 2037-2007?与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定?气相色谱质谱联用法◆ SNT 2249-2009?塑料及其制品中邻苯二甲酸酯类增塑剂的测定?气相色谱-质谱法◆ WST 149-1999?作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法◆ GBT20388-2006 纺织品邻苯二甲酸酯的测定◆GBT21911-2008 食品中邻苯二甲酸酯的测定◆GBT21928-2008食品塑料包装材料中邻苯二甲酸酯的测定◆ EN 15777 纺织品.邻苯二甲酸酯测试方法(欧洲标准,采用索氏提取法)◆ CPSC-CH-C1001-09.3 邻苯二甲酸酯测试标准作业程序(美国标准,采用溶解凝固法)◆ Health Canada Method C34 聚氯乙烯产品中邻苯二甲酸酯的测定(加拿大标准,采用溶出法) 阿尔塔科技部分邻苯二甲酸酯产品 货号中文名称英文名称CAS#1ST1111邻苯二甲酸丁苄酯(BBP)Benzyl n-butyl phthalate85-68-71ST1112邻苯二甲酸二苯酯Diphenyl phthalate84-62-81ST1113邻苯二甲酸二丁氧基乙酯Bis(2-butoxyethyl) phthalate 117-83-91ST1114邻苯二甲酸二丁酯Di-n-butyl phthalate84-74-21ST1115邻苯二甲酸二环己酯Dicyclohexyl phthalate84-61-71ST1116邻苯二甲酸二甲酯(DMP)Dimethyl phthalate131-11-31ST1117邻苯二甲酸二戊酯(DPP)Di-n-pentyl phthalate131-18-01ST1118邻苯二甲酸二乙酯(DEP)Diethyl phthalate84-66-21ST1119邻苯二甲酸二异丁酯(DIBP)Diisobutyl phthalate84-69-51ST1120邻苯二甲酸二正己酯(DNHP)Di-n-hexyl phthalate84-75-31ST1121邻苯二甲酸二正辛酯(DNOP)Di-n-octyl phthalate117-84-01ST1122邻苯二甲酸双(2-甲氧基乙)酯Bis(2-methoxyethyl) phthalate117-82-81ST1123邻苯二甲酸双(2-乙氧基乙)酯Bis(2-ethoxyethyl) phthalate605-54-91ST1124邻苯二甲酸双(4-甲基-2-戊)酯Bis(4-methyl-2-pentyl) Phthalate146-50-91ST1125邻苯二甲酸双(2-乙基己)酯Bis(2-ethylhexyl) phthalate117-81-71ST1126邻苯二甲酸二壬酯Di-n-nonyl phthalate84-76-41ST1127邻苯二甲酸二丙酯(DPP)Dipropyl phthalate131-16-81ST1128邻苯二甲酸二异辛酯(DIOP)(异构体混合物)Diisooctyl phthalate (The mixture of isomers)27554-26-4
  • 土壤/水质中11种邻苯二甲酸酯类混标全新上市!
    11种邻苯二甲酸酯类混标迪马科技根据《ISO 13913-2014 /ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法》定制了11种邻苯二甲酸酯类混标。 产品信息:DIKMA NO:46907DESCRIPTION:Custom Mixed phthalate esters Standard(11 Analytes) ,1000 μg/mL in Ethyl acetate 1mL中文名称:邻苯二甲酸酯混标(11种化合物),1000 μg/mL在乙酸乙酯中,1 mL/安瓿 适用于ISO 13913-2014/ISO 18856-2004土壤/水质中邻苯二甲酸酯类的测定GC/MS法,1000 μg/mL在乙酸乙酯中,1 mL/安瓿,Cat. No.: 46907序号化合物英文名CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二丙酯Dipropyl phthalate(DPP)131-16-84邻苯二甲酸二异丁酯Diisobutyl phthalate (DiBP)84-69-55邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-26邻苯二甲酸丁苄酯Butylbenzyl phthalate (BBzP) 85-68-77邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-78邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-79邻苯二甲酸二正辛酯Dioctyl phthalate (DOP)117-84-010邻苯二甲酸二癸酯Didecyl phthalate(DDcP)84-77-5111,2-苯二羧酸双十一烷基酯Diundecyl phthalate(DUP)3648-20-2
  • 糖尿病药物治疗史里程碑成果:林圣彩团队破解二甲双胍靶点
    二甲双胍作为一种天然化合物的衍生物自1957 年上市后,历经 60 多年的发展,至今仍作为一 线药物在临床被广泛使用,而且近年来发现二甲双胍有越来越多的益处,有“神药”之称。然而业内人士谈到其具体的作用靶点时总是争论不休,以至于学术圈都觉得“神药”之所以神就是因为没有明确靶点,久而久之没有明确靶点成了“广泛共识”。今日,来自厦门大学的林圣彩教授团队经历7年的科研攻关,用“钓鱼”的方法破解了破解二甲双胍直接作用靶点之谜,围绕二甲双胍发表的论文已经有近3万篇,林圣彩团队的这项工作称得上是里程碑式的工作,相关研究以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题发表在Nature杂志上,鉴于该工作的重要意义,来自复旦大学附属中山医院李小英教授和原新加坡分子细胞生物学研究所所长 CHRIS Y H TAN对这项工作进行了精彩点评,以飨读者!如果要我们列举几种自己所熟悉的药物,那么二甲双胍一定能占据一席之地。它不仅仅是治疗二型糖尿病的一线药物:便宜、降糖效果好且副作用小,更因为近年来不断发现的各种神奇功效:降低糖尿病人的体重、缓解脂肪肝,甚至于有潜在的抵抗由于糖尿病所引起的多种癌症的效果等,而被称为“明星”药物。特别地,对于健康人群,二甲双胍也很可能有抵抗衰老、延长寿命的作用。因此,它经常和卡路里限制一起,被列为人类未来通向健康长寿之路的重要手段之一。在国外,有数个大规模的探索二甲双胍对人类寿命影响的长期临床实验已经展开,目的就是要找到这一“健康密码”的最终证据,造福于我们的子孙后代。然而,尽管二甲双胍有着如此耀眼的作用,它的分子靶点却一直没有弄清,这极大地限制了我们对二甲双胍的理解和应用——我们不知道二甲双胍的这些神奇效果是从何而来,由哪些分子所介导,当然也就没办法“举一反三”,去借助这些原理,设计相应策略来更好地行使这些功能。换句话说,我们还没有真正理解二甲双胍这一健康密码的本质。更何况,二甲双胍的作用是有局限性的,例如它只能作用于肝脏、肠道等少数几个组织,对于脂肪组织则无可奈何。因此,如果我们想使用二甲双胍,在减少脂肪的同时保留健硕的肌肉,而不是(因为吃得少)一起减少,那就是要尤其慎重的。如果能设计出专一性靶向脂肪组织里的二甲双胍靶点的药物,突破这一瓶颈,一定能为眼下日益严重的营养过剩等各种代谢性疾病的治疗带来福祉。厦门大学林圣彩院士团队正是在二甲双胍的分子靶点研究方面取得了突破。他们团队长期致力于代谢稳态和代谢疾病发生机制的研究,而从2014年起,他们就对二甲双胍产生了兴趣。那时人们已经发现,二甲双胍能够通过激活一个名为AMPK的蛋白行使上述的诸多功效,然而对于它如何激活AMPK,靶点又是什么,则完全没有弄明白:和二甲双胍相比,其它合成的AMPK激活剂并不具有二甲双胍的所有功效,而二甲双胍(超过临床剂量的除外)对于AMPK在体内的天然激活剂——AMP的水平提升也没有任何作用。种种迹象表明,二甲双胍对AMPK的激活可能是“另辟蹊径”的。经过探索,他们团队在2016年于Cell Metabolism上报道了二甲双胍可能通过他们先前发现的,机体感应饥饿和葡萄糖水平下降时所用的一条名为“溶酶体途径”的通路,激活AMPK的初步结论,为二甲双胍的功效行使指明了一个粗略的方向(关于这条中国人自己发现的新通路,详见林圣彩团队参与撰写的重要综述:『珍藏版』“Must-Read”综述丨阴阳相济的中庸之道——AMPK和mTORC1营养感知与细胞生长调节)。在上述基础上,他们又经过了五年多的探索,最终找到了二甲双胍的分子靶点——PEN2(γ-secretase的亚基),并搞清了它导向溶酶体途径,激活AMPK的具体方式,相关工作以Low-dose metformin targets the lysosome–AMPK pathway through PEN2为题于2022年2月24日发表在Nature杂志上。在这一工作中,林圣彩团队首先通过和厦门大学邓贤明团队合作,后者通过一系列摸索,突破了多个化学合成上的难题,合成了二甲双胍的化学探针。简单地说,这个探针的工作原理就像我们钓鱼一样,前端的“鱼钩”是二甲双胍这个分子,后端的“钓竿”则是一个名为生物素的标签:当前端的二甲双胍分子碰到了它所结合的蛋白,也就是靶点以后,我们就可以通过后端的标签,把二甲双胍连同它的靶点一起“钓”上来,再通过质谱等手段分析,就能知道二甲双胍结合的这个靶点是什么。通过这种方法,他们从细胞中“钓”出了2000多种可能和二甲双胍结合的蛋白。由于二甲双胍可以独立地通过溶酶体途径激活AMPK,他们于是从中筛选出了317种存在于溶酶体上的蛋白进行进一步验证。鉴于这些蛋白又很可能有不少是被“拔出萝卜带出泥”的,他们于是逐一验证了二甲双胍和这些蛋白的相互作用,又从中筛选到了113种,真正直接结合了二甲双胍的蛋白。之后,他们又逐一在细胞中敲低这些蛋白,最终找到了一个名为PEN2的蛋白,能够介导二甲双胍对AMPK的激活。后续的实验进一步表明,PEN2就是二甲双胍启动溶酶体途径激活AMPK的前提,而敲除了PEN2,二甲双胍不但不能激活AMPK,它对于降低脂肪肝、缓解高血糖、延长寿命等诸多效果就都不存在了。这些结果充分说明,二甲双胍确实通过PEN2激活AMPK,并起到各种功效,也就是说,PEN2就是二甲双胍的靶点。林圣彩团队的这一发现无疑加深了我们对二甲双胍这一“健康密码”的理解,不但首次从分子角度勾画出了二甲双胍行使功能的路线图,还为二甲双胍替代药品的筛选提供了潜在的靶点,从而在治疗糖尿病和其他代谢性疾病方面产生更好的疗效。有意思的是,尽管具体的分子靶点有些许不同,但二甲双胍和饥饿(葡萄糖水平下降)走的是同一条路线,即上述的溶酶体途径,可见大自然的大道至简。联想到卡路里限制可以看做是一种大尺度下的饥饿,而它和二甲双胍的功效又大有相似之处,这又让我们不得不喟叹长寿之路的万化归一,而我们祖先所推崇的辟谷养生是多么有前瞻性!当然,这一切的机制的解析的背后,离不开林圣彩团队长期以来的辛勤工作。据林圣彩老师透露,实际上在目前,解析类似于二甲双胍这样的小分子和蛋白质的相互作用,仍是一个很前沿,或者说是很不成熟的领域。以他们此次发现二甲双胍的靶点的经历来看,事实上二甲双胍在水溶液中就像溶于其中的无数盐离子一样,而它所能结合的同样是水溶性的蛋白分子,就如同水中的各种盐离子一样,也是数不胜数。即使对于PEN2这个靶点本身,他们都发现了多个能结合二甲双胍的位点,这可能也是为什么他们课题组最后从2000多个潜在靶点中只找到了一个真正的靶点的原因。对于这种极高的“假阳性”,目前并没有任何手段加以避免,只能说是小分子和蛋白质结合的本质就是如此。因此,唯一的方法只能是不厌其烦地逐一筛选,而这需要的是热爱和执着,以及对小分子“见微知著”的坚定信念。据悉,本文的第一作者马腾是厦门大学2014级博士,从博士入学时起就参与了这一系列工作,为该靶点的最终鉴定付出了长达七年的辛勤努力。而本文的另外两位共同第一作者田潇和张保锭,也都长期高强度地投入在本课题的研究工作上,和本文其他作者一起,为该靶点的鉴定做出了重大贡献。特别值得一提的是,本文的共同通讯作者之一、林圣彩教授培养的得意弟子张宸崧博士(如今也是厦门大学生命科学学院教授)长期围绕AMPK做出的一系列创新性工作,包括2017年作为第一作者发表在Nature上颠覆性工作(颠覆性发现:林圣彩组Nature破解葡萄糖感受的新机制)。我们在此期待着林圣彩团队未来能有更多的成果,也许在那时,我们“游于空虚之境,顺乎自然之理”的长寿之路,就将不再遥远。近年来,林圣彩教授以细胞代谢稳态调控为研究核心,针对细胞对营养物质与能量的感知机制以及代谢紊乱相关疾病的发生发展的分子机制进行研究,取得了一系列原创性成果,特别是发现和鉴定了细胞感应葡萄糖缺乏的溶酶体途径和所在的“葡萄糖感受器”,及其激活AMPK的方式,并打破了传统的“AMPK的激活仅依赖于AMP浓度的变化”的认知(Cell Metabolism, 2013, 2014 Nature, 2017 Cell Research, 2019)。基于本团队发现的溶酶体AMPK通路,他们揭示了二甲双胍激活AMPK是通过该通路(Cell Metabolism, 2016),以及AMPK依赖于不同应激的状态的时空调控(Cell Research, 2019),揭示了钙离子通道TRPV介导了缩醛酶感知葡萄糖到AMPK激活的过程,让葡萄糖感知的通路全线贯通(Cell Metabolism, 2019),围绕AMPK分别与Grahame Hardie和Michael Hall发表两篇重要综述(Cell Metabolism,2018,2020)。专家点评李小英 教授 (复旦大学附属中山医院内分泌代谢科主任)揭开二甲双胍的神秘面纱 随着生活方式和饮食结构的改变,糖尿病呈现全球流行趋势。2015 年全球糖尿病患者达到 4.15 亿,预计 2040 年糖尿病患者将会上升至 6.42 亿。在糖尿病治疗药物的广阔天空中,二甲双胍无疑是一颗耀眼的明星。过去65年,二甲双胍一直作为糖尿病患者治疗的主要手段,长期占据糖尿病治疗一线药物的地位。它引导我们不断深入探索,以期真正揭开这一经典降糖药物的作用靶点和分子机制。近日,厦门大学林圣彩院士团队及其合作者发表在Nature杂志上的研究,发现了治疗剂量的二甲双胍的直接作用靶点及其分子机制,取得了历史性突破。为糖尿病的治疗,乃至抗肿瘤、抗衰老的药物研发和应用提供了崭新的思路,有望成为糖尿病药物治疗史上的一座闪亮的里程碑。二甲双胍于上世纪20年代从植物山羊豆中分离得到,50年代法国医生Jean Sterne开始研究二甲双胍的降糖作用,直到1957成功用于糖尿病患者的治疗。二甲双胍的同类药物苯乙双胍、丁双胍等均因其乳酸酸中毒发生风险和心脏病事件死亡率增高而于70年代退出市场。70年代以来,以UKPDS为代表的大型糖尿病心血管结局研究证明二甲双胍具有显著的降糖效果、良好的安全性、对肥胖的2型糖尿病患者具有心血管保护作用,长期以来一直是2型糖尿病治疗的一线用药,也是应用最为广泛的口服抗糖尿病药物。随着二甲双胍在临床上的广泛使用,人们发现二甲双胍还具有抗肿瘤、延缓衰老、缓解神经退行性疾病症状等作用。因此,解析二甲双胍的作用机制一直是科学家们的梦想。二甲双胍是一种极亲水的小分子药物,在生理情况下通常以带正电荷的质子化形式存在。其主要通过肠道上皮细胞肠腔侧的血浆单胺转运体(PMAT)吸收,而肝脏对二甲双胍的摄取主要是通过肝细胞基底侧的有机阳离子转运体1(OCT1)。二甲双胍的生物利用度约为50%-60%,1-2g/天(或20 mg/kg)二甲双胍摄入达到血药浓度约为10 µM -40 µM。既往在研究二甲双胍作用机制的不同报道中使用的二甲双胍浓度差异很大,常常远高于二甲双胍治疗剂量的血药浓度,并且二甲双胍的作用还受到给药途径的影响。这些问题都导致二甲双胍的作用机制研究产生不一致的结论。本世纪初,El-Mir和Owen分别发现二甲双胍可以特异性的作用于线粒体呼吸链复合体Ⅰ,抑制电子跨膜流动和膜电位形成,从而降低线粒体氧耗,并抑制三磷酸腺苷(ATP)的生成,使AMP/ATP比值升高。值得注意的是,Owen等人在实验中使用了极高浓度(10 mM)的二甲双胍处理,其结果可能无法反应真实的生理效应。Zhou等人提出:二甲双胍通过单磷酸腺苷激活的蛋白激酶(AMPK)依赖的机制抑制肝脏糖异生——该作用对于二甲双胍缓解糖尿病人的高血糖表型可能十分重要,这在深入探讨二甲双胍作用机制的漫漫长路上无疑是一个里程碑式的发现。随后,Shaw等人的研究进一步证实LKB1/AMPK信号通路的激活是二甲双胍抑制糖异生的重要分子机制。 此外,AMPK 介导的二甲双胍降低肝糖输出的可能机制还包括:1)二甲双胍通过AMPK信号通路上调小异二聚体伴侣(SHP),SHP进而与转录因子CREB直接作用,阻止CREB对CRTC2的招募,从而下调糖异生基因的表达;2)二甲双胍通过AMPK信号通路,上调肝脏去乙酰化酶SIRT1基因的表达,SIRT1使CRTC2去乙酰化,促进其泛素化降解,进而下调糖异生基因的表达。除了在糖尿病中发挥作用以外,AMPK还被认为在二甲双胍所介导的延长寿命、延缓衰老等功能上发挥了作用。近年来的研究也进一步发现了许多二甲双胍不依赖于AMPK行使作用的机制,例如Foretz等人发现,在小鼠肝脏特异性敲除AMPK的α催化亚基,并未对小鼠的血糖或二甲双胍的降糖作用产生影响。而肝脏LKB1特异性敲除的小鼠,虽然在基础状态下存在肝糖输出增加和血糖升高的表现,但并不影响其对二甲双胍的反应性。进一步地,Madiraju等人的研究揭示了二甲双胍在线粒体的另一个作用靶点——线粒体甘油磷酸脱氢酶(mGPD)。二甲双胍通过抑制mGPD的活性,阻断α-磷酸甘油穿梭的过程,使NADH在胞浆内聚积,增加胞浆的还原状态而降低线粒体内的还原状态,最终使以乳酸和甘油为底物的糖异生过程受到抑制。此外,Duca等人最近的研究又为我们认识二甲双胍的作用机制提供了崭新的视角。他们发现,二甲双胍发挥降糖作用的第一靶点可能在肠道。经肠道给药后的短时间内,二甲双胍迅速激活肠道AMPK及其下游信号通路,进而通过分布于肠道的迷走神经传入纤维将局部信号传递至中枢,再通过迷走神经传出纤维支配肝脏,最终抑制肝脏的葡萄糖输出。林圣彩团队发现,低剂量的二甲双胍不会引起线粒体呼吸链复合体I的抑制以及AMP/ATP比值的升高,相对地,它可与PEN2分子直接结合。结合二甲双胍的PEN2进一步与溶酶体膜ATP6AP1结合形成复合物。作为v-ATPase的亚单位,ATP6AP1与PEN2复合物则抑制v-ATPase活性,从而激活溶酶体上的AMPK(图1),这种小范围内的AMPK激活,类似于热卡限制情况下的AMPK激活,避免了整个细胞AMPK激活带来的副作用,包括心肌损伤等。林圣彩团队还分别在小鼠肝脏和肠道,以及线虫敲除PEN2,观察到二甲双胍减少肝脏脂质沉积的作用减弱,二双胍的降糖作用受到影响,以及二甲双胍延长寿命的作用消失。该研究表明,深入认识基于细胞内亚细胞器的区域化精准信号通路调控,对提高药物靶点的安全性和有效性都至关重要。图1 二甲双胍激活AMPK机制专家点评Chris YHTan (新加坡分子细胞生物学研究所前所长,)健康活到120岁将不是梦想!【译文】人类对长生不老孜孜不倦地追求始于文明之初。著名的秦始皇49岁英年早逝,太医配制的延年益寿仙丹含有水银,对长生不老的向往让秦始皇死于水银中毒。寿命延长的追求持续到了现代。1975年,国会批准NIH建立国立衰老研究院(National Institute of Ageing)。一开始科学家们对于如何开展关于衰老的研究没有一丝头绪。我在发现了干扰素和抗氧化酶SOD-1的作用机制后,从耶鲁来到NIA,这些基因也和神经疾病及长寿相关。衰老过程伴随位于染色体两侧的DNA序列--端粒的改变,端粒酶可以阻止端粒变短。寻找激活端粒酶的分子给予了科学家长生不老成药的希望。但是,端粒酶的激活分子也存在危险,可以使衰老的细胞变成永生的癌细胞。研究停滞不前。科学家发现在果蝇中增加SOD-1的基因剂量可使寿命成倍增加,这一发现掀起了另一波探索的热潮。然而SOD-1使寿命延长的机制迟迟未能阐明,基于SOD-1开发长寿药也毫无进展。现在,机缘和实力的加持,来自于厦门大学的林圣彩团队发现了长寿的秘密。二甲双胍是治疗糖尿病的一线药物,近年来又发现了抗衰老和抗癌等神奇功效。林圣彩团队发现了二甲双胍通过低葡萄糖感知通路激活AMPK调节寿命的机制,我将此命名为“林通路”。他们发表在本期Nature的文章研究成果找到了二甲双胍的作用靶点进一步证实这一理论。林通路的发现开启了我们对葡萄糖代谢新的认知认识。在过去的一个世纪,科学研究揭示了葡萄糖代谢产能的中心角色。没有葡萄糖,生命难以延续。从1921年Banting和Best因发现胰岛素而获奖开始,多个诺贝尔生理医学奖授予了葡萄糖代谢的研究。现在多数人会认为葡萄糖研究的热潮已经过去。林团队在模式生物的研究揭示了葡萄糖在寿命延长中重要调控机制,重新发掘葡萄糖代谢的中心地位。他们发现了葡萄糖感受器,在饥饿状态、低葡萄糖水平情况下,果糖(1,6)二磷酸水平降低,其醛缩酶被征召至细胞器溶酶体表面,和v-ATPase形成复合物,激活AMPK,抑制mTORC的活性,抑制细胞生物合成。林通路葡萄糖感受器的发现将AMPK调控的分解代谢和mTOR调控的合成代谢联系起来,组成了细胞阴阳两面。林团队的研究使我们从全新角度思考葡萄糖的功能:葡萄糖不仅仅是能量分子,它也是重要的信使分子。目前,林团队握有崭新的一整个系列先导分子的专利,将可能使我们保持健康活得更长。林团队开启了以前难以想象的药物研发新篇章,首次实现通过无毒药物将癌症变为可控疾病的可能。这些先导分子可预防癌症,可治疗肥胖和脂肪肝。在不远的将来,也可能在我们身上,健康活到120岁将不是梦想!
  • PEN聚萘二甲酸乙二醇酯的粘度测量
    聚萘二甲酸乙二醇酯简称PEN,是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。目前主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,也开始逐渐延伸至碳酸饮料瓶、酸性饮料瓶等包装领域和工业电缆料、过滤器介质用单丝等工业用纤维领域。PEN化学结构与PET相似,其各项特性也与PET类似,但在分子链中PEN由刚性更大的萘环代替了PET中的苯环。使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。国标GB/T 1632.5-2008中对聚萘二甲酸乙二醇酯特性黏度的测量方法给出了详细的说明:对于无定型的PEN采用苯酚四氯乙烷作为溶剂,结晶PEN采用苯酚三氯苯酚作为溶剂,再通过相关辅助设备测试PEN溶液的黏度。在PEN的黏度测试流程中,传统的手动测试方式是使用乌氏粘度管在温控精准度较高的恒温水浴槽中进行黏度测试,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 岛津中国率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案
    2019年3月1日,美国食品和药物管理局(FDA)在官网发布血管紧张素II受体阻滞剂(ARBs)药物氯沙坦的自愿召回公告,涉及到印度Hetero Labs Ltd.生产的87批氯沙坦钾片,而导致该召回的主要原因是发现其中含有N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质。由于NMBA是已知动物和潜在人类的致癌化学物质,是继N?亚硝基二甲胺(NDMA)和N?亚硝基二乙胺(NDEA)之后上市ARBs药物中检测到的第三种亚硝胺类遗传毒性杂质。此后,FDA相继公布了Teva Pharmaceuticals和Vivimed Life Sciences Pvt Ltd等制药公司自愿召回涉及氯沙坦钾的63批药品,其原因为检出含有NMBA。同时,加拿大卫生部(HC)及英国卫生部(DHSC)也在官网上发布了氯沙坦类药物的召回公告。直至2019年6月12日,Teva Pharmaceuticals仍在扩大自愿召回7批检出NMBA氯沙坦钾片,可见药物中的遗传毒性杂质仍受到公众及药品监管机构的高度关注。  在FDA已公布的ARBs药物亚硝胺杂质限度表中,NMBA的日允许摄入量最大值为0.96ppm。 FDA评估了暴露于9.82ppm水平NMBA相比于终生暴露于0.96ppm NMBA的服药水平,表明6个月的暴露量不会存在患癌风险。N-亚硝基-N-甲基-4-氨基丁酸(NMBA)N-Nitroso-N-methyl-4-aminobutyricacid(NMBA)CAS. 61445-55-4  因此,为了确保患者在缓冲期可获得氯沙坦类药物,FDA不反对含NMBA低于9.82ppm的氯沙坦保持销售。该过渡缓冲期FDA设为6个月,直至生产企业提供亚硝胺杂质符合要求的氯沙坦药物来填补市场。目前,关于氯沙坦钾中NMBA的检测方法尚未见公开报道,为及时应对市场检测需求,岛津中国率先推出了基于LC-MS/MS技术的检测方法,该方法操作简单,灵敏度高,适用性强,可有效用于氯沙坦钾中NMBA的分析检测。 1、 实验部分 1.1 仪器: LCMS-8050三重四极杆质谱仪联用仪,含有:LC-30AD×2输液泵,DGU-20A5R在线脱气机,SIL-30AC自动进样器,CTO-30A柱温箱,CBM-20A系统控制器,LCMS-8050三重四极杆质谱仪,LabSolutions(Version 5.82 SP1)色谱工作站。 1.2 分析条件: 液相色谱条件质谱条件 1.3 标准品溶液:取NMBA标准贮备液,以纯甲醇逐级稀释为0.5、1、2、5、10、20、50、100 ng/mL的八个不同浓度的混合标准工作溶液。 1.4 样品溶液:取氯沙坦钾三批原料药(符合EP9.0)0.1 g于10 mL容量瓶中,加甲醇适量,超声1 min至全部溶解,放冷至室温,用甲醇定容待测。 2、 结果 2.1标准品色谱图图1. NMBA标准品色谱图(100 ng/mL)(黑色-总离子流;粉色-MRM147.15/117.10;蓝色-MRM147.15/87.10;棕色-MRM147.15/44.10) 2.2 线性关系及检出定量限图2. NMBA标准曲线检出限(LOD)0.5 ng/mL(MRM147.15/117.10),定量限(LOQ)1.0 ng/mL (MRM147.15/117.10) 2.3 精密度实验:10 ng/mL标准溶液为样本连续进样,日内及日间保留时间相对标准偏差低于0.1%,峰面积低于1.10%。 2.4 加标回收实验 取0.1 g氯沙坦钾样品于10 mL容量瓶中,加入NMBA标准品溶液(相当于50、100、200 ng NMBA标准品),按照1.4中的方法进行处理,上机分析。加标的氯沙坦钾溶液色谱图(以200 ng加标量为例)见图3。三个平行样品的低中高平均回收率分别为98.04%,94.40%,95.61%。 图3 NMBA加标量为200 ng时氯沙坦钾溶液色谱图 2.5 检测结果:三批样品中NMBA均低于最小检出限(LOD)。 3、 结论   本工作建立了使用LCMS-8050三重四极杆质谱联用仪测定氯沙坦钾原料药中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质的方法,在0.5~100 ng/mL浓度范围内线性关系良好,检出限和定量限分别为0.5 ng/mL和1.0 ng/mL。使用此方法对三批次氯沙坦钾原料药进行了测定,结果为NMBA未检出。本方法简单、快速、灵敏、准确,可有效用于氯沙坦钾原料药中NMBA的分析检测。
  • 新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!
    新品上市,DLM-10-10/氘代二甲亚砜/2206-27-1!关于产品 DLM-10-10/氘代二甲亚砜/2206-27-1 的具体详情:CAS号:2206-27-1编号:DLM-10-10包装:10g纯度/规格:D, 99.9%品牌:美国CILDLM-10-10/氘代二甲亚砜/2206-27-1 公司为答谢新老客户对我们长期以来的支持,现有大量新品上市,低价优惠促销活动,欢迎新老客户前来咨询选购!企业其他相关产品推荐:bs-9642R,17号染色体开放阅读框57抗体|C17orf57抗体价格姜酮对照品/标准品CAS:2212-67-1,禾草知标准品/对照品价格CAS:53411-70-4,D-葡萄糖-6-磷酸三钠盐,6-磷酸葡萄糖三钠盐,6-磷酸葡萄糖酸三钠盐,G-6-P-Na32,4,5-三氯联苯标准品|对照品,cas:15862-07-42,6-(盐酸尼卡地平杂质)对照品/标准品次野鸢尾黄素标准品,cas:41743-73-1对照品CAS:9028-48-2,异柠檬酸脱氢酶,ICDH,Isocitrate dehydrogenasebs-2713R,肾损伤分子1抗体(甲型肝炎细胞受体1)|HAVCR1抗体价格CAS:10031-30-8,过磷酸钙价格重组人 HSPD1/HSP60 蛋白(His & GST 标签)/11322-H20E小鼠血小板衍生生长因子AB(PDGF-AB)ELISA检测试剂盒说明书铑标准溶液,cas:7440-16-6乌药醚内脂标准品,cas:13476-25-0对照品猪血管生成素1(ANG-1)ELISA试剂盒,96T/48T兔子肝细胞生长因子(HGF)ELISA检测试剂盒说明书CAS:61438-64-0,氯碘柳胺钠现货供应CAS:51503-28-7,固红片剂,固红-萘磺酸TR片剂,快红片剂,快红TR片剂,Fast red TR Tablets常山碱乙标准品,cas:24159-07-7对照品bs-15575R,kappa轻链可变区抗体|IGKV A18抗体价格人骨特异性碱性磷酸酶B(ALP-B)ELISA检测试剂盒说明书1,2-|CAS号306-37-6|1,2-Dimethylhydrazine dihydrochlorideCAS:41532-84-7,1,1,2-三甲基-1H-苯并[e]吲哚H-苯并[e]吲哚价格bs-13014R,DNA聚合酶δ2/DNA pol δ 2抗体|DNA polymerase delta p50抗体价格丙硫氧嘧啶对照品/标准品CAS:327-97-9,绿原酸价格CAS:18686-82-3,2-巯基-1,3,4-噻二唑价格沙苑子苷标准品,cas:116183-66-5对照品bs-2679R,细胞粘附分子CD112抗体|CD112抗体价格bs-2978R,硫氧还蛋白过氧化物酶Ⅱ/巯基抗氧化蛋白抗体|Peroxiredoxin 2抗体价格朝藿定A标准品,cas:110623-72-8对照品bs-11975R,周期蛋白结合蛋白抗体|CACYBP抗体价格CAS:1072-98-6,2-氨基-5-氯吡啶价格212304/琼脂,A级培养基厂家
  • 宁波材料所在新型高性能液态邻苯二甲腈单体研究方面取得进展
    邻苯二甲腈树脂(又称为酞腈树脂)是一种集耐高温、阻燃、低烟、优异的力学性能于一身的先进耐高温树脂。该材料在极端环境领域具有非常好的应用潜力,但是苛刻的加工条件阻碍了它的大规模应用。于体系中刚性结构的存在,单体的熔点高(200℃),加工窗口窄,加工工艺繁琐,无法与成熟的树脂加工技术相结合。所以降低邻苯二甲腈单体熔点,对于扩大邻苯二甲腈树脂的应用具有很好的推动作用。   为解决以上问题,哈尔滨工业大学化工学院和中国科学院宁波材料技术与工程研究所先进能源材料工程实验室通过向邻苯二甲腈单体引入柔性链段,有效降低了邻苯二甲腈单体的熔点(如图1所示)。与刚性的苯环结构相比,单键的Si-O键和C-C键构象容易改变,并且Si-O-Si链段具有键长长、键角大的特点,使得链段的内旋转势垒小、柔顺性好。同时,高的结合能可以保证固化后的树脂具有良好的耐热性。   柔性链段的引入,将单体的熔点降低到室温以下(单体的玻璃化转变温度低至-35.6℃,图1a),得到室温下为液态的邻苯二甲腈单体,极大提高了邻苯二甲腈树脂的加工性能。这种液态的单体在室温下具有良好的流动性(30℃,粘度在~2Pas,图1b)和溶解性,可以溶于常见的有机溶剂,如乙酸乙酯、乙醇、丙酮等。这种液态的邻苯二甲腈单体还可以与其他高熔点的单体共混,用于提高粉末单体的加工性能。例如,将这种液态单体与粉末状的邻苯二甲腈单体(熔点~180℃)共混,得到室温下具有一定加工性的混合物(图2a)。固化后的邻苯二甲腈树脂,在氩气和空气中的初始分解温度(Td5%)分别为534.4℃和532.3℃(图2b)。这种共混的方式,可以在提高单体加工性的同时,保证树脂的耐热性。   这种低粘度、易加工的液态邻苯二甲腈单体可以用于复合材料RTM成型,芯片封装等领域。液态的单体能够将邻苯二甲腈单体与成熟的液态加工技术相结合,扩大邻苯二甲腈树脂的应用领域。   以上研究工作近期以“Novel Liquid Phthalonitrile Monomers Towards High Performance Resin”为题,发表在European Polymer Journal上(https://doi.org/10.1016/j.eurpolymj.2023.112027)该研究工作第一作者为哈工大博士生高慕尧,通讯作者为哈工大化工学院刘明教授和宁波材料所宋育杰副研究员。该工作得到了中央高校基本科研业务费(No. LH2021E055)资助。
  • 传赛百味添加偶氮二甲酰胺或为偶氮甲酰胺
    网上疯传的&ldquo 赛百味:食物中含鞋底成分&rdquo ,让正在赛百味啃三明治的张先生有点食不知味。   美国一个知名美食博客的博主曝光了赛百味的三明治面包中有Azodicarbonamide(国内媒体将其翻译为偶氮二甲酰胺)这一成分,在被CNN(美国有线电视新闻网)曝光后,赛百味承认在北美出售的食物中的确含有这种化学物质。CNN还称,市面上大部分连锁,包括麦当劳、星巴克出售的面包都含有此成分。   赛百味中国总部马上联系了第三方检测机构,就供应商提供的面包做了检测。赛百味中国官网发布信息显示,此次检测并未发现偶氮二甲酰胺。接着赛百味也在中国区官网上公布了供应商的名单。   昨天记者向多位食品工业专家咨询,他们纷纷表示头一次听说&ldquo 偶氮二甲酰胺&rdquo 这个化学式。   偶氮二甲酰胺,这个听起来有点拗口的化学名词到底是什么?为什么要将它添加到面包中?   网传赛百味添加的偶氮二甲酰胺 原始报道实指偶氮甲酰胺   偶氮二甲酰胺,是一种工业泡沫塑料发泡剂,通常用作瑜伽垫、橡胶鞋底或者人工皮革等,以增加产品的弹性。它是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。   偶氮二甲酰胺既然不溶于水,如何添加到面包中呢?   记者在查看了CNN的原始报道后发现,CNN报道中提到的Azodicarbonamide,缩写为ADA,实为偶氮甲酰胺。这是一种面粉增筋剂,具有漂白和氧化双重作用,其自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧。在欧盟和澳大利亚,偶氮甲酰胺被禁止使用在食品工业,也有部分国家(包括中国)是允许将其作为添加剂用在食品工业中的。   面包配方对口感影响很大   张先生回忆这些年吃赛百味的经历,发现面包的确有在悄悄变化。&ldquo 前几年,面包坯很扎实,很有嚼劲,现在感觉越来越蓬松了,有时服务员在切面包,如果刀子不够锋利,面包还会被压成一团,是不是就是因为添加了东西啊?&rdquo 张先生好奇。   赛百味浙江地区总代理虞予说:&ldquo 我们的面包全部由总部委托国内一家基层供应商生产,面包的成分、配比也严格按照总部要求执行,之所以顾客会觉得面包口感变了,是因为我们的配方变了。&rdquo 在美国,由于肥胖的人群较多,面包中的小麦粉、植物性原料的比例时常在变,于是国内面包的大小、克数、口感也就跟着变了。有时吃起来偏甜,有时吃起来口感更蓬松。   添加剂是面包配方的一部分   CNN原始报道中,美国面包协会称,在过去美国FDA(食品药品监督管理局)曾指出,少量且恰当地使用ADA作为面团的改良剂,可以使面包更好地成型,能改善面包的质量。   在我国,卫生部公布的《食品添加剂使用标准》(GB2760-2011)中明文指出,偶氮甲酰胺可用于小麦粉,最大使用量为0.045g/kg。   在面粉熟化处理的过程中,添加偶氮甲酰胺能氧化小麦粉中的半胱氨酸,从而使面粉筋度增加,提高面包气体保留量,增加烘焙制品的弹性和韧性。   简单来说,被作为面粉改良剂添加的偶氮甲酰胺主要是让面粉的延展性、加工性能变得更好。&ldquo 加强面筋蛋白的组织结构,使其形成更好的网络结构,改良形态的同时,也能增加面包的嚼劲和延长面包的保质期。&rdquo 中国计量学院标准化学院食品安全标准化研究所的杨勇教授说。自己在家制作的面包放置一段时间以后就容易变塌,也更容易掉渣,跟没有添加偶氮甲酰胺有一定的关系。   关于发泡剂的说法,杨教授表示,发泡并不是我们直接联想到的蓬松。&ldquo 一般在遇到蛋液的时候,才需要添加发泡剂。&rdquo 偶氮甲酰胺与面粉作用,主要是让面粉完成了快速氧化的过程。   食品工业少不了添加剂   本报曾对白吐司用到的添加剂做过调查,发现其中一个样本使用了12种食品添加剂。   面包粉中常见的添加剂有磷酸氢二钠、单硬脂酸甘油酯、羟丙基淀粉、羟丙基二淀粉磷酸酯、磷酸酯双淀粉等,以及食用香精。   面包改良剂中常见的添加剂有醋酸酯淀粉、单、双甘油脂肪酸酯、双乙酰酒石酸单双甘油酯、维生素C、谷朊粉等。   此外还有&alpha -淀粉酶、半纤维素酶等各种酶制剂。   它们中的有一些可以锁住吐司中的水分,有一些使面包变大变蓬变松软,有一些使吐司内部的质地更均匀,烤制后表皮的色泽更好看,还有一些能防止面包老化。它们中的许多都是被复合使用的,才能达到最理想的效果。   为什么外面买的面包总比自家做的面包保鲜度更持久,口感更好,这都是添加剂在起作用。使用几种以及使用哪些种类,各厂家会有自己的做法。但不管来自哪种原料,前提条件是种类和用量都要符合国标规定。   杨教授说,如果把面包中添加的盐写成氯化钠,而恰巧你对氯化钠又不熟悉,是不是也会认为这是一种不好的添加剂?&ldquo 只要没有超标,在国家规定的使用范围内,使用添加剂都是合法、正常的。&rdquo 食品企业有自律性,质检部门也会定期检查、抽查,完全没有必要对食品添加剂过度恐慌。   偶氮甲酰胺,英文简称ADA,是一种黄色至橘红色结晶性粉末。ADA具有漂白和氧化双重作用,是一种速效面粉增筋剂。本品自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧,此时面粉蛋白质中氨基酸的硫氢基被氧化成二硫键,使蛋白质链相互联结而构成立体网状结构,改善面团的弹性、韧性、均匀性,使生产出的面制品具有较大的体积和较好的组织结构。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。   偶氮甲酰胺是对面粉增白增筋和促进成熟作用以提高烘焙制品品质的一类食品添加剂。过去人们大量使用溴酸钾,目前已被世界卫生组织和FDA认定具有较强致癌性,欧美早已禁用。ADA是当今国际上风行和公认的可安全用于食品的面粉改良剂。是溴酸钾的理想替代品。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。
  • 博纳艾杰尔不同基质食品中邻苯二甲酸酯的检测的系统解决方案
    随着现代食品工业的发展,人们为了增加食品的风味、改善色泽和延长货架期等,采用了多种现代食品加工技术,但是不幸的是,由于种种原因,在某些食品加工过程中使用了危害人们健康的物质,比如最近出现的食品中添加&ldquo 塑化剂&rdquo 邻苯二甲酸酯类物质。 以往,由于人们对邻苯二甲酸酯类的安全性认识不足,多种食品都涉嫌&ldquo 被添加&rdquo 。博纳艾杰尔科技根据不同食品基质的具体情况,开发了一系列的检测方案,以供大家参考。 相关产品或技术咨询请拨打400-606-8099或E-mail至service@agela.com.cn 博纳艾杰尔网站www.agela.com.cn 1.水性样品 此类样品包括瓶装纯净水、矿泉水,茶、果汁和功能饮料等;某些可水溶解的固体样品。可以先制成水溶液,然后全部作为待处理液,如无脂糖果。推荐前处理柱为Cleanert DEHP (500mg/6mL)。 样品处理:取10mL样品,进行固相萃取富集处理 固相萃取方法: 活化:5mL甲醇、5mL水 上样:10mL水性样品 淋洗:5mL5%甲醇水,真空抽干20min。 洗脱:5mL甲醇 检测:将洗脱液用氮气吹干后,以1mL甲醇定容,然后用液相色谱法检测。 说明:此法多适用于配套液相色谱检测,当样品中邻苯二甲酸酯类的含量较低时,需要采用固相萃取富集才能检测的情况。 一般来说,对于此类样品,可以采用正己烷液液萃取的办法,用GC/MS(灵敏度较高)直接检测。 2.低脂液体样品 此类样品包含液态奶制品、果酱、糖浆等。推荐前处理产品为Cleanert MAS-PAE管。 样品处理:向玻璃离心管中加入2mL样品,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 3.低脂固体食品 此类样品包括奶粉、饼干、糕点、果冻、奶糖等,推荐产品为Cleanert MAS-PAE管。 样品处理:取1g已制成粉末状的样品,2mL水,加入到Cleanert MAS-PAE离心管中,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 4.高脂样品 此类样品包括植物油脂、动物油脂、奶酪、动物组织性食品等,推荐前处理柱为Cleanert PAE。 4.1 动植物油脂样品的处理 取0.2g样品,用1mL正己烷溶解,作为待净化液。 固相萃取方法: 活化:5mL正己烷 上样:全部待净化液 淋洗:7mL正己烷 洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。 40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡 3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL玻璃样品瓶中,作为待 检液。 检测:GC/MS检测。 4.2其他样品的处理 取样品0.5g,以5mL正己烷于密封玻璃瓶中超声提取,然后以4000rpm转速,离心5min,取上清液作为待净化液。若样品中含有水,视情况加入适量无水硫酸钠后,再进行上述操作。 固相萃取方法: 活化:5mL正己烷 上样:全部待净化液 淋洗:3mL正己烷 洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。 40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡 3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。 检测:GC/MS检测。 5.复杂样品 此类样品多为油水混合态,同时添加有多种风味物质,成分比较复杂,包括方便面调味包,酱油、醋、用来调味的其它酱汁等。根据样品中的脂肪含量,对于高脂样品推荐前处理柱为Cleanert PAE-C柱,对于低脂样品推荐使用Cleanert MAS-PAEc管。 5.1 以Cleanert PAE-C柱进行样品处理,以方便面调味包为例: 取0.5g样品,加入5mL正己烷,涡旋振荡3min后,再加入500mg无水硫酸钠,涡旋振荡3min后,以4000rpm转速,离心5min,取全部上清液作为待净化液。 固相萃取方法: 活化:5mL正己烷 上样:全部待净化液 淋洗:3mL正己烷 洗脱:3mL乙酸乙酯:正己烷:甲苯(50:40:10,v/v),洗脱2次,合并洗脱液。 40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡 3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。 检测:GC/MS检测。 5.2 以Cleanert MAS-PAEc管进行样品前处理,以酱油为例 样品处理:向Cleanert MAS-PAE离心管中加入2mL样品,然后加入4mL乙腈:甲苯(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAEc填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 附件一: 高效液相色谱法检测15种邻苯二甲酸酯的含量 色谱柱:Agela Venusil XBP C18-L ,4.6× 250mm,5µ m,150Å (订货号:VX952505-L) 流动相:A:水,B:甲醇:乙腈=50:50 Time/min A/% B/% 0 60 40 2 50 50 10 40 6012 30 70 20 30 70 31 0 100 40 0 100 40.01 60 40 流 速:1.0 mL/min 波 长:242 nm 进样量:5 µ L(100ppm),50µ L(10ppm) 样 品:15种邻苯二甲酸酯 浓 度:100 ppm(正己烷),10 ppm(40%流动相A) 溶 剂:正己烷 /40%流动相A 柱 温:30℃ 图1 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:10ppm) (邻苯二甲酸二甲酯DMP,邻苯二甲酸二乙酯DEP,邻苯二甲酸二正丁酯DBP,邻苯二甲酸二辛酯DEHP,邻苯二甲酸丁苄酯BBP,邻苯二甲酸二(2-乙基己基)酯DEHP,邻苯二甲酸二(2-甲氧基)乙酯DMEP,邻苯二甲酸二丁氧基乙酯DBEP,邻苯二甲酸二戊酯DPP,邻苯二甲酸二(4-甲基-2-戊基)酯BMPP,邻苯二甲酸二乙氧基乙基酯DEEP,邻苯二甲酸二环己酯DCHP,邻苯二甲酸二异丁酯DIBP,邻苯二甲酸二己酯DNP,邻苯二甲酸二壬酯DINP) 结论:Agela Venusil XBP C18-L色谱柱能够较好的分离15种邻苯二甲酸酯类物质,分离度较好,完全满足LC检测15种邻苯二甲酸酯类物质的含量。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件二 气质联用法检测15种邻苯二甲酸酯 仪器:Agilent 7890/5975 GC/MS 色谱条件: 色谱柱:DA-5MS 30m*0.25mm*0.25&mu m 进样口:250℃,不分流进样 程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min) 进样量:1&mu L 流速:1 mL/min 质谱条件: 接口温度:280℃ 电离方式:EI 电离能量:70eV 溶剂延迟:7min 监测方式:SIM模式,监测离子见下表 序号 保留时间/min 中文名称 英文缩写 SIM离子 1 8.265 邻苯二甲酸二甲酯 DMP 163、77 2 9.135 邻苯二甲酸二乙酯 DEP 149、177 3 10.888 邻苯二甲酸二异丁酯 DIBP 149、223 4 11.637 邻苯二甲酸二丁酯 DBP 149、223 5 11.979 邻苯二甲酸二(2-甲氧基)乙酯 DMEP 59、149、193 612.72邻苯二甲酸二(4-甲基-2-戊基)酯 BMPP 149、251 7 13.044 邻苯二甲酸二(2-乙氧基)乙酯 DEEP 45、72 8 13.41 邻苯二甲酸二戊酯 DPP 149、237 9 15.552 邻苯二甲酸二己酯 DHXP 104、149、76 10 15.694邻苯二甲酸丁基苄基酯 BBP149、91 11 17.153 邻苯二甲酸二(2-丁氧基)乙酯 DBEP 149、223 12 17.81 邻苯二甲酸二环己酯 DCHP 149、167 13 18.056 邻苯二甲酸二(2-乙基)己酯 DEHP 149、167 14 20.444 邻苯二甲酸二正辛酯 DNOP 149、279 15 22.98 邻苯二甲酸二壬酯 DNP 57、149、71 结论:Agela DA-5ms气相色谱柱能够很好的分离15种邻苯二甲酸酯类物质,完全满足15种邻苯二甲酸酯类物质的几十ppb级含量的定量测定。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件三 牛奶中15种邻苯二甲酸酯的添加回收率 按正文第2项方法进行某种牛奶的添加回收率实验,得到的数据如下: 表1、某种牛奶中添加15种邻苯二甲酸酯(在样品中的浓度为50&mu g/L)的回收率结果列表 序号 保留时间/min
  • 快速反应,剑指邻苯二甲酸酯
    近日,媒体频繁曝光邻苯二甲酸酯违规使用事件,相关部门也采取必要措施,进行限制、排查。针对邻苯二甲酸酯违规使用带来的危害,天瑞仪器出台了相关检测解决方案。 事件:台湾食品掺入塑化剂引风波 据中国网络电视台消息,2011年5月24日,台湾&ldquo 昱伸香料有限公司&rdquo 制售的食品添加剂&ldquo 起云剂&rdquo (避免饮料油水分层)含有化学成分邻苯二甲酸二(2-乙基己基)酯(DEHP),该&ldquo 起云剂&rdquo 已用于部分饮料等产品的生产加工。 截至30日,台湾卫生部门最新统计的数据显示,64家厂商、94种产品确定使用了致癌添加剂。饮料、民众常吃的钙片、乳酸菌咀嚼片等都受到波及,连儿童感冒糖浆也可能含有塑化剂。 短短数日,邻苯二甲酸酯这一化学名词频频出现在媒体的头条,随即曝光的还包括:玩具、纺织、食品包装材料、化妆品等消费品中邻苯二甲酸酯的过量使用。 危害:邻苯二甲酸酯危及人体健康 研究表明,人体如果长期大量食用邻苯二甲酸酯,可能影响肝脏和肾脏健康。塑化剂的毒性比三聚氰胺强20倍,成人每天承受量为1.2毫克,一个人喝一杯500毫升掺了塑化剂的饮料,就达到了承受量的上限。 此外,人类与使用含邻苯二甲酸酯的玩具、化妆品等产品过多接触,会增加儿童性早熟及女性患乳腺癌的概率,而且容易引起孕妇流产及胎儿畸形。 政策:塑化剂被列入非食用物质&ldquo 黑名单&rdquo 据新华社北京6月1日电,针对日前邻苯二甲酸酯相关事件,国务院食品安全委员会办公室已采取措施,加强对台湾进口运动饮料、果汁、茶饮料、果酱果浆、胶锭粉类等食品及相关食品添加剂的检验监管和排查。 排查主要针对进出口、市场流通、餐饮服务、企业生产等环节,检测出的有害产品一律被查封、调查和召回。5月31日,广东省质监部门查封台商投资企业&ldquo 东莞昱延食品有限公司&rdquo ,该企业使用来自台湾的含有邻苯二甲酸酯类物质的原料生产食品添加剂,产品主要流向广州、江门、东莞等地。产品流向的彻查及信息公布正在进行中。 同时,国家食品安全部门已将邻苯二甲酸酯类物质列入可能用于食品的非食用物质&ldquo 黑名单&rdquo 。 方案:天瑞推出邻苯二甲酸酯解决方案 天瑞仪器应用研发中心一直致力于环保健康与食品安全领域的检测方法的研发,具有雄厚的研发实力和技术力量,能满足客户的多样化要求。 针对目前轰动的邻苯二甲酸酯非法使用事件,天瑞仪器进行了广泛而深入的调查及研究。目前,天瑞已经针对食品、玩具、食品包装材料、化妆品等各行业,推出了邻苯二甲酸酯检测解决方案。 如您需要详细的解决方案,请致电天瑞客服热线800-9993-800。 方案链接:http://www.skyray-instrument.com/cn/service/fanganshow.aspx?fanganid=900 了解天瑞仪器:www.skyray-instrument.com
  • 迪马科技推出多种药品中17种邻苯二甲酸酯的检测方案
    药品安全关乎大众的身体健康,我们希望吃药能缓解痛苦,延长生命,但现在吃药似乎等于在吃毒!近日,葛兰素史克公司生产的阿莫西林克拉维酸钾干混悬剂(国内商品名为力百汀),因检出塑化剂类物质邻苯二甲酸二异癸酯(DIDP)被国家食药监局下令要求召回,该产品的销售和使用也被明令禁止。这则消息再次将塑化剂推向风口浪尖,也使得消费者对于药品的选择和使用无所适从。 从台湾多种食品中被查出含有塑化剂到药品中塑化剂的出现,这个普通人知之甚少的化学物质正在以一种令人恐惧的形象步步逼近。迪马科技再接再励,先后开发出多种生活常用药品(片剂-盐酸吡硫醇片;注射液-氢化可的松注射液;颗粒-板蓝根;糖浆-太极止咳糖浆;混悬剂-尼美舒利干混悬剂)中邻苯二甲酸酯的检测方法,希望本方法能为生活常用药品的安全把关尽一份力,让群众吃上放心药。该方法使用有机溶剂提取样品中的邻苯二甲酸酯,经ProElut PSA玻璃固相萃取小柱净化后,运用HPLC、GC-MS分析测定。 详细检测方法链接:http://www.instrument.com.cn/netshow/SH100707/down_172278.htm 应用方法中相关产品信息: 货号 名称 品牌 规格 63206G ProElut PSA玻璃SPE柱 Dikma ProElut 1000mg / 6ml,30/pkg 更多规格和填料,请来电咨询 65584 无水硫酸钠 Dikma ProElut 500g 8221 毛细管气相色谱柱DM-5MS Dikma 30mm*0.25mm*0.25um 99603 Diamonsil C18(2) Dikma 250× 4.6mm,5&mu m 244358 12管防交叉污染 真空SPE萃取装置 进口 12位 5323 样品瓶(棕色/螺纹) Dikma 2 mL, 100/pk 5325 样品瓶盖/含垫(已组装) Dikma 100/pk 37177 针头式过滤器 Nylon Dikma 13mm,0.22&mu m 100/pk 50123 甲基叔丁基醚 HPLC级 DikmaPure 4L 50115 正己烷 HPLC级 DikmaPure 4L 50106 丙酮 HPLC级 DikmaPure 4L 50101 乙腈 HPLC级 DikmaPure 4L 关于ProElut玻璃SPE柱 ProElut玻璃SPE柱是专用于高纯萃取的。惰性的玻璃管体完全消除了来自增塑剂,包括苯二甲酸盐的污染。玻璃萃取小柱作为标准系列的ProElut系列小柱,使用了高质量的ProElut吸附剂以及特别的净化处理的筛板,更加保证了稳定型和重复性。 邻苯二甲酸酯标准品 邻苯二甲酸酯混标 货号 名称 品牌 规格 12-SP-DC04Z 邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice 1ml,1,000ug/mL在正己烷中 12-SP-DC05Z 邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice 1ml, 1,000ug/mL在乙腈中 12-PT8061-1JM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 1ml, 1,000ug/mL在异辛烷中 12-PT8061-1M 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5ml, 1,000ug/mL在异辛烷中 12-PT8061-1RPM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5x1mL, 1,000ug/mL在异辛烷中 GB/T 21911-2008邻苯二甲酸酯16种组份单标 货号 名称 品牌 规格 12-F71 /46595 1.邻苯二甲酸二甲酯(DMP), CAS:131-11-3 Chemservice /xStandard 1g /500mg 12-F70 /46594 2.邻苯二甲酸二乙酯(DEP), CAS:84-66-2 Chemservice /xStandard 1g /500mg 12-F2264 /46588 3.邻苯二甲酸二异丁酯(DIBP), CAS:84-69-5 Chemservice /xStandard 5g/500mg 12-F68 /46597 4.邻苯二甲酸二丁酯(DBP), CAS:84-74-2 Chemservice /xStandard 1g /500mg 12-F2268 /46589 5.邻苯二甲酸二(2-甲氧基乙基)酯(DMEP), CAS:117-82-8 Chemservice /xStandard 500mg /500mg 12-F2309 /46600 6.邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP), CAS:146-50-9 Chemservice /xStandard 5g /500mg 12-F2312 /46601 7.邻苯二甲酸二(2-乙氧基)乙酯(DEEP), CAS:605-54-9 Chemservice /xStandard 500mg /500mg 12-F2263 /46593 8.邻苯二甲酸二戊酯(DPP), CAS:131-18-0 Chemservice /xStandard 500mg /500mg 12-F2314 /46596 9.邻苯二甲酸二己酯(DHXP), CAS:84-75-3 Chemservice /xStandard 5g /500mg 12-F67 /46598 10.邻苯二甲酸丁基苄基酯(BBP), CAS:85-68-7 Chemservice /xStandard 1g /500mg 12-F2315 /46590 11.邻苯二甲酸二(2-丁氧基)乙酯(DBEP), CAS:117-83-9 Chemservice /xStandard 1g /500mg 12-F2262 /46602 12.邻苯二甲酸二环己酯(DCHP), CAS:84-61-7Chemservice /xStandard 5g /500mg 12-F66 /46592 13.邻苯二甲酸二(2-乙基己)酯(DEHP), CAS:117-81-7 Chemservice /xStandard 1g /500mg 12-F1091 /46591 14.邻苯二甲酸二苯酯, CAS:84-62-8 Chemservice /xStandard 5g /500mg 12-F69 /46603 15.邻苯二甲酸正二辛酯(DNOP), CAS:117-84-0 Chemservice /xStandard 1g /500mg 12-F2317 /46599 16.邻苯二甲酸二壬酯(DNP), CAS:84-76-4 Chemservice /xStandard 5g /500mg 更多邻苯二甲酸酯单标,请来电咨询 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 【CEM】儿童玩具中双酚A和邻苯二甲酸酯的样品制备、提取和分析
    一、引言美国已开始限制某些邻苯二甲酸酯在儿童产品中的使用,包括DEHP、DBP、BBP、DINP、DIDP和DIOP。消费品安全委员会(CPSC)已发布了这些受监管的邻苯二甲酸酯的测试方法。双酚A(BPA)的监管仍在讨论中。本研究检查了从当地折扣店或“一元”类型商店购买的26件儿童玩具中的邻苯二甲酸酯和BPA含量。 创建并优化了微波提取方法,与Spex CertiPrep认证的固体参考材料进行对比,以比较玩具中发现的邻苯二甲酸酯和BPA水平。样品使用GC/MS进行检查。大多数PVC玩具中检测到高水平的邻苯二甲酸酯和BPA。在许多样品中,邻苯二甲酸酯的浓度远远超过了CPSC设定的限制。二、材料与方法样品制备26件玩具按照材质类型和颜色进行了分类。复合玩具被进一步拆分成不同的部分和材料。这26件玩具被分成了超过58个样品。油漆未从涂漆表面移除,但在进一步处理之前,表面的贴纸已被移除。 图1. 原始玩具,细分部分和最终研磨成粉。 玩具被切割成5毫米的小块,并使用Spex SamplePrep 冷冻/研磨机® 配合多试管适配器和6571试管研磨成细粉。两到三克的玩具材料通过以下低温程序进行研磨:二十分钟的预冷,然后是五个循环的研磨,每个循环2分钟。每个循环后都会有2分钟的冷却时间。研磨的冲击率是每秒16次冲击。 在没有红外系统的情况下,通过密度和化学测试来识别塑料玩具。58个样品被识别如下:22个低密度聚乙烯(LDPE)样品,18个聚氯乙烯(PVC)样品,7个聚碳酸酯(PC)样品,6个高密度聚乙烯(HDPE)样品,2个聚丙烯(PP)样品,1个布料纺织品样品和1个硅胶样品。大多数儿童玩具和产品由聚乙烯(28个样品)和聚氯乙烯(18个样品)组成。样品提取为了确定提取效率,采用了两种不同的提取方法来对应相应的塑料标准。第一种方法是CPSC方法中概述的溶解/沉淀法:CPSC-CH-C1001-09.03。 将0.05克的PVC样品溶解于5毫升THF中,然后用10毫升己烷沉淀。使用这种方法提取了PVC和HDPE玩具样品,并使用了含有邻苯二甲酸酯的PE和PVC认证参考材料(分别为CRM-PE001和CRM-PVC001)。对于这种方法,恢复数据显示PE基质的提取效率为50%,而PVC基质的提取效率为83-94%。 PVC基质的效率高于PE基质,但随后GC/MS的相对标准偏差(RSD)范围为35-60%,显示出溶液中的聚合物可能对GC/MS系统造成污染问题。 为了蕞大化从每种塑料基质中回收邻苯二甲酸酯,开发了使用微波消化从聚乙烯和聚氯乙烯中提取邻苯二甲酸酯的方法。使用CEM Mars微波系统和XPress容器提取了0.2克样品。聚乙烯提取方法:&bull 10毫升环己烷:丙酮(30:70)&bull 升温&bull 10分钟至140°C&bull 保持10分钟&bull 搅拌:开启 聚氯乙烯提取方法:&bull 10 mL Cyclohexane:IPA (50:50)&bull 升温至130°C&bull 保持10分钟&bull 搅拌:开启 CPSC湿法和优化微波提取法的比较显示,恢复率增加且%RSD结果减少。通过使用优化的微波提取法,PVC的恢复率从85-94%增加到 95%。微波方法的%RSD对所有目标邻苯二甲酸酯均小于2.5%。 表1. CPSC湿法与优化微波法提取PVC中邻苯二甲酸酯的%RSD比较。 分析条件仪器:使用扫描模式的GC/MS,配备EIC (35-450 m/z)色谱柱:CA-5毛细管柱 (30 m x 0.25 mm x 0.25 μm)程序运行:l初始温度55°C,持续1分钟;以20°C/分钟的速率升温至200°C,保持1分钟;再以30°C/分钟的速率升温至310°C,保持3分钟。l检测器和进样口温度:检测器温度为280°C,进样口温度为150°CMS离子监测:在六个邻苯二甲酸酯中,四个的主要监测离子为149 m/z。由于DINP和DIDP部分共流出,因此使用293 m/z(DINP)和307 m/z(DIDP)作为次级离子进行监测。双酚A的定量测定使用213 m/z。所有样品中均添加了内标(Spex CertiPrep CLPS-I90),并与配置在多个浓度水平的外标邻苯二甲酸酯混合标准品(SS-CRM-PVC001)进行比较,以获得校准曲线。同时,也在多个浓度水平下测定了BPA标准品(S-509),以构建BPA的校准曲线。图2. 双酚A和邻苯二甲酸酯的分析色谱图。三、结果高密度聚乙烯玩具在此处讨论的两种塑料玩具中,PVC和HDPE,HDPE玩具显示出蕞低的邻苯二甲酸酯含量。在6个HDPE玩具中的5个检测到了低水平的DNOP,含量低于130微克/克。这个水平远低于CPSC对DNOP的0.1%的限制。在这些HDPE玩具中未检测到双酚A。聚氯乙烯玩具PVC玩具含有高水平的几种不同的邻苯二甲酸酯。这些玩具中主要的邻苯二甲酸酯是DEHP。十七个PVC玩具中有十五个含有DEHP。十二个玩具超过了CPSC的0.1%的限制。最高的DEHP含量在一个橡皮鸭玩具中检测到,含有28,000微克/克的DEHP。十一个玩具含有超过10,000微克/克的DEHP。 在PVC玩具中发现了其他三种邻苯二甲酸酯:DIDP、DINP和DNOP。玩具中DNOP的平均含量约为100微克/克。DIDP和DINP主要在一个驴型玩具中检测到,其中检测到了最高的总体邻苯二甲酸酯水平,DINP的含量为100毫克/克。 在四个玩具中检测到了双酚A。双酚A的蕞高水平是在时装玩偶的头部检测到的1,200微克/克,以及在橡皮鸭玩具中检测到的700微克/克。四、结论在所有经过测试的塑料类型中,PVC玩具含有蕞高水平的邻苯二甲酸酯和双酚A。PVC主要含有DEHP,其含量超过了当前CPSC的0.1%限制。在四个PVC玩具中发现了BPA,其中两个的含量接近或超过1,000微克/克。 确保从不同塑料聚合物中准确回收邻苯二甲酸酯的关键是正确的样品制备和提取。每种聚合物类型都需要不同的方法来实现优化的回收率。未能认识到一种提取方法(主要是CPSC PVC方法)不适用于不同类型的聚合物,可能会改变这些受限制的邻苯二甲酸酯的回收率和分析结果。引用文献1. Consumer Product Safety Commision, Test Method: CPSC-CH-C1001-09.3. Standard Operating Procedure for Determination of Phthalates2.CEM Corporation, Application Note for Solvent Extraction: HDPE3.CEM Corporation, Application Note for Solvent Extraction: PVC4. Spex SamplePrep, Application Note SP007, GrindingPolymers for Qualitative and Quantitative Analysis
  • 迪马科技多种食品基质中17种邻苯二甲酸酯的检测方案
    随着塑化剂污染影响面愈来愈广,目前已演变成全球性的食品安全事件。国家质检总局表示,截至6月16日,受台湾塑化剂污染影响暂停进口产品名单新增至1002种,问题企业增至302家。塑化剂影响力不仅在中国,日本、菲律宾等其他国家均被波及,也引发人们思考:如何有效管控食品产业链,才能将食品安全风险降至最低? 俗话说:&ldquo 民以食为天&rdquo ,如何保证吃到我们口中的食品是安全的目前已成为广大消费者最关心的问题。迪马科技针对塑化剂事件迅速做出反应,先后开发出多种生活常用食品基质(食用油、方便面、方便面酱包、薯片、饮料、牛奶、可乐等)中17种邻苯二甲酸酯的分析方法。为与我们息息相关的食品树立一道安全的屏障。该方法使用有机溶剂提取食品样品中的邻苯二甲酸酯,经ProElut PSA玻璃固相萃取小柱净化,分别采用了HPLC、GC-MS分析测定。本方法适用各种食品中邻苯二甲酸酯检测。 详细检测方法链接: GC-MS法检测:http://www.dikma.com.cn/Application/show/id/519 HPLC法检测: http://www.dikma.com.cn/Application/show/id/520 应用方法中涉及的邻苯二甲酸酯标准品以及相关产品信息: 货号 名称 品牌 规格 63206G ProElut PSA玻璃SPE柱 Dikma ProElut 1000mg / 6ml,30/pkg 更多规格和填料,请来电咨询 8221 毛细管气相色谱柱DM-5MS Dikma 30mm*0.25mm*0.25um 99603 Diamonsil C18(2) Dikma 250× 4.6mm,5&mu m 5323 样品瓶(棕色/螺纹) Dikma 2 mL, 100/pk5325 样品瓶盖/含垫(已组装) Dikma 100/pk 37177 针头式过滤器 Nylon Dikma 13mm,0.22&mu m 100/pk 50123 甲基叔丁基醚 HPLC级 DikmaPure 4L 50115 正己烷 HPLC级 DikmaPure 4L 50106 丙酮 HPLC级 DikmaPure 4L 50102 甲醇 HPLC级 DikmaPure 4L 50101 乙腈 HPLC级 DikmaPure 4L 关于ProElut玻璃SPE柱 ProElut玻璃SPE柱是专用于高纯萃取的。惰性的玻璃管体完全消除了来自增塑剂,包括苯二甲酸盐的污染。玻璃萃取小柱作为标准系列的ProElut系列小柱,使用了高质量的ProElut吸附剂以及特别的净化处理的筛板,更加保证了稳定型和重复性。 邻苯二甲酸酯标准品 邻苯二甲酸酯混标 货号 名称 品牌 规格 12-SP-DC04Z 邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice 1ml,1,000ug/mL在正己烷中 12-SP-DC05Z 邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice 1ml, 1,000ug/mL在乙腈中 12-PT8061-1JM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 1ml, 1,000ug/mL在异辛烷中 12-PT8061-1M 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5ml, 1,000ug/mL在异辛烷中 12-PT8061-1RPM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5x1mL, 1,000ug/mL在异辛烷中 GB/T 21911-2008邻苯二甲酸酯16种组份单标 货号 名称 品牌 规格 12-F71 /46595 1.邻苯二甲酸二甲酯(DMP), CAS:131-11-3 Chemservice /xStandard 1g /500mg 12-F70 /46594 2.邻苯二甲酸二乙酯(DEP), CAS:84-66-2 Chemservice /xStandard 1g /500mg 12-F2264 /46588 3.邻苯二甲酸二异丁酯(DIBP), CAS:84-69-5 Chemservice /xStandard 5g /500mg 12-F68 /46597 4.邻苯二甲酸二丁酯(DBP), CAS:84-74-2 Chemservice /xStandard 1g /500mg 12-F2268 /46589 5.邻苯二甲酸二(2-甲氧基乙基)酯(DMEP), CAS:117-82-8 Chemservice /xStandard 500mg /500mg 12-F2309 /46600 6.邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP), CAS:146-50-9 Chemservice /xStandard 5g /500mg 12-F2312 /46601 7.邻苯二甲酸二(2-乙氧基)乙酯(DEEP), CAS:605-54-9 Chemservice /xStandard 500mg /500mg 12-F2263 /46593 8.邻苯二甲酸二戊酯(DPP), CAS:131-18-0 Chemservice /xStandard 500mg /500mg 12-F2314 /46596 9.邻苯二甲酸二己酯(DHXP), CAS:84-75-3 Chemservice /xStandard 5g /500mg 12-F67 /46598 10.邻苯二甲酸丁基苄基酯(BBP), CAS:85-68-7 Chemservice /xStandard 1g /500mg 12-F2315 /46590 11.邻苯二甲酸二(2-丁氧基)乙酯(DBEP), CAS:117-83-9 Chemservice /xStandard 1g /500mg 12-F2262 /46602 12.邻苯二甲酸二环己酯(DCHP), CAS:84-61-7 Chemservice /xStandard 5g /500mg 12-F66 /46592 13.邻苯二甲酸二(2-乙基己)酯(DEHP), CAS:117-81-7 Chemservice /xStandard 1g /500mg 12-F1091 /46591 14.邻苯二甲酸二苯酯, CAS:84-62-8 Chemservice /xStandard 5g /500mg 12-F69 /46603 15.邻苯二甲酸正二辛酯(DNOP), CAS:117-84-0 Chemservice /xStandard 1g /500mg 12-F2317 /46599 16.邻苯二甲酸二壬酯(DNP), CAS:84-76-4 Chemservice /xStandard 5g /500mg 更多邻苯二甲酸酯单标,请来电咨询 GB/T 21911-2008方法中相关的耗材: 货号 名称 品牌 规格 65584 无水硫酸钠 Dikma ProElut 500g 8221 毛细管气相色谱柱DM-5MS Dikma 30mm*0.25mm*0.25um 37177 针头式过滤器Nylon Dikma 13mm,0.22&mu m 100/pk 5323 样品瓶(棕色,螺纹) Dikma 2 mL, 100/pk 5325 样品瓶盖/含垫(已经组装) Dikma 100/pk 50115 正己烷HPLC级 Dikma Pure 4L 50104 乙酸乙酯HPLC级 Dikma Pure 4L 50103 环己烷HPLC级 Dikma Pure 4L 50106 丙酮HPLC级 Dikma Pure 4L 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 聚焦塑化剂——新型SPE法检测邻苯二甲酸酯
    台湾因塑化剂引起的食品、保健品安全风波持续蔓延。最新调查数字显示,台湾受塑化剂污染的产品已增加到945种,涉及运动饮料、果汁饮料、茶饮料、果酱、果浆或果冻、方便面胶囊锭状粉状食品、保健食品、添加剂等类型。   面对日益严重的塑化剂事件,迪马科技技术中心快速做出反应开发出适合油脂性样品分析的SPE前处理方法以及HPLC分析检测方法。该方法采用ProElut PSA玻璃固相萃取小柱进行样品前处理净化,反相高效液相色谱法分离油脂性样品(食用油、方便面、方便面酱包等)中邻苯二甲酸酯。   惰性的玻璃管体完全消除了来自增塑剂,包括苯二甲酸盐的污染,高质量的ProElut吸附剂和PTFE材质筛板更加保证了结果的稳定型和重复性。SPE方法克服了国标方法使用凝胶色谱柱需要仪器(GPC)配套,消耗溶剂多,操作繁琐等缺点。此方法操作简单,快速,为您检测食品中邻苯二甲酸酯工作带来便利。   欲了解详细检测方法,欢迎来电咨询。迪马科技北京:400-608-7719 上海:021-6126 3966 广州:020-8559 3520 沈阳:024-2294 3513 成都:028-8661 2625 青岛:0532-8372 5230更多办事机构联系方式请见:http://www.dikma.com.cn/Catalog/index/cid/35 以下是检测油脂性样品中邻苯二甲酸酯配的色谱耗材,包括邻苯二甲酸酯标准品、HPLC级溶剂、玻璃SPE小柱、色谱柱等。大部分有现货,欢迎您来电咨询。 相关产品订货信息 货号 名称 品牌 规格 63206G ProElut PSA玻璃SPE柱 Dikma ProElut 1000mg / 6ml,30/pkg 99603 Diamonsil C18(2) HPLC柱 Dikma 250×4.6mm,5μm 5323 样品瓶(棕色/螺纹) Dikma 2 mL, 100/pk 5325 样品瓶盖/含垫(已组装) Dikma 100/pk 37177 针头式过滤器 Nylon Dikma 13mm,0.22μm 100/pk 50115 正己烷HPLC级 DikmaPure 4L 50106 丙酮HPLC级 DikmaPure 4L 50102 甲醇HPLC级 DikmaPure 4L 50101 乙腈HPLC级 DikmaPure 4L 邻苯二甲酸酯标准品 邻苯二甲酸酯混标 货号 名称 品牌 规格 12-SP-DC04Z 邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice 1ml,1,000ug/mL在正己烷中 12-PT8061-1JM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 1ml,1,000ug/mL在异辛烷中 12-PT8061-1M 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5ml,1,000ug/mL在异辛烷中 12-PT8061-1RPM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5x1mL,1,000ug/mL在异辛烷中 GB/T 21911-2008邻苯二甲酸酯16种组份单标 货号 名称 品牌 规格 12-F71 1.邻苯二甲酸二甲酯(DMP) Chemservice 1g 12-F70 2.邻苯二甲酸二乙酯(DEP) Chemservice 1g 12-F2264 3.邻苯二甲酸二异丁酯(DIBP) Chemservice 5g 12-F68 4.邻苯二甲酸二丁酯(DBP) Chemservice 1g 12-F2268 5.邻苯二甲酸二(2-甲氧基乙基)酯(DMEP) Chemservice 500mg 12-F2309 6.邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP) Chemservice 5g 12-F2312 7.邻苯二甲酸二(2-乙氧基)乙酯(DEEP) Chemservice 500mg 12-F2263 8.邻苯二甲酸二戊酯(DPP) Chemservice 500mg 12-F2314 9.邻苯二甲酸二己酯(DHXP) Chemservice 5g 12-F67 10.邻苯二甲酸丁基苄基酯(BBP) Chemservice 1g 12-F2315 11.邻苯二甲酸二(2-丁氧基)乙酯(DBEP) Chemservice 1g 12-F2262 (DCHP) 12.邻苯二甲酸二环己酯 Chemservice 5g 12-F66 13.邻苯二甲酸二(2-乙基己)酯(DEHP) Chemservice 1g 12-F1091 14.邻苯二甲酸二苯酯 Chemservice 5g 12-F69 15.邻苯二甲酸正二辛酯(DNOP) Chemservice 1g 12-F2317 16.邻苯二甲酸二壬酯(DNP) Chemservice 5g 更多邻苯二甲酸酯单标,请来电咨询。 GB/T 21911-2008方法中相关的耗材: 货号 名称 品牌 规格 65584 无水硫酸钠 Dikma ProElut 500g 8221 毛细管气相色谱柱DM-5MS Dikma 30mm*0.25mm*0.25um 37177 针头式过滤器Nylon Dikma 13mm,0.22μm 100/pk 5323 样品瓶(棕色,螺纹) Dikma 2 mL, 100/pk 5325 样品瓶盖/含垫(已经组装) Dikma 100/pk 50115 正己烷HPLC级 Dikma Pure 4L 50104 乙酸乙酯HPLC级 Dikma Pure 4L 50103 环己烷HPLC级 Dikma Pure 4L 50106 丙酮HPLC级 Dikma Pure 4L 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • Sigma-Aldrich提供塑化剂邻苯二甲酸酯(DEHP等)检测的解决方案
    最近台湾出现的塑化剂污染饮料事件备受关注,一些不法商贩为了节约成本,用塑化剂替代棕榈油添加到&ldquo 起云剂&rdquo 中。塑化剂学名叫邻苯二甲酸酯,过多使用的话将影响生殖功能甚至导致癌症。对于塑化剂(邻苯二甲酸酯)的检测,Sigma-aldrich可以提供固相萃取的方法解决这一问题,采用Supelco玻璃管(无邻苯二甲酸酯类杂质干扰)SPE小柱对饮料中的邻苯二甲酸酯进行固相萃取富集,然后进行液相色谱或者GC/MS分析。此外,我们还可提供SPME(固相微萃取)快速检测邻苯二甲酸酯的检测方法。标准品、色谱溶剂、色谱柱等相关产品清单如下: 标准品 英文名 货号 包装 单价 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 280.8 邻苯二甲酸二乙酯DEP Diethyl phthalate36737-1G 1g 267.93 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 533.52 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 267.93 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 341.64 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 1932.84 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 238.68 邻苯二甲酸二环己酯 DCHP Dicyclohexyl phthalate 36908-250MG 250mg 310.05 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 401.31 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 48557 1g 527.67 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 267.93 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 299.52 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 849.42 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 417.69 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 506.61 邻苯二甲酸二异丙酯DIPrP Diisopropyl phthalate 80137-50ML 50ML 2190.24 邻苯二甲酸二烯丙酯DAP Diallyl phthalate 36925-250MG 250MG 341.64 邻苯二甲酸二丙酯DPrP Dipropyl phthalate 45624-250MG 250MG 267.93 邻苯二甲酸二庚酯DHP Diheptyl phthalate 454818-10G 10G 865.80 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml 453.96 BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml 424.71 BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml424.71 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml 464.49 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml 475.02 DEHP BBP DBP DNOPDEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml 475.02 DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 咨询 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 110 17种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 邻苯二甲酸二异壬酯 68515-48-0 DINP 色谱溶剂         正已烷 农残级 34484-2.5L 2.5L 418.86 乙酸乙酯 农残级 31063-2.5L 2.5L 418.86 环己烷 农残级 34496-2.5L 2.5L 528.84 石油醚,40-60 ° C 农残级 34491-2.5L 2.5L 645.84 乙醇 色谱级 34964-2.5L 2.5L 1744.47 乙酸 LC-MS级 49199-50ML-F 50ML 603.72 异辛烷 农残级 34499-2.5L 2.5L 1690.65 甲醇 农残级 34485-2.5L 2.5L 279.63 试剂         无水硫酸钠 农残级 35896-500G 500G 308.88 气相柱         SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.25&mu m 28471-U 1根 4699.89 SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.10&mu m 28467-U 1根 4699.89 液相柱         Ascentis® C18液相柱 5&mu m,25cm× 4.6mm 581325-U 1根 3239.73 Ascentis® C18保护柱 5&mu m,2cm× 4.0mm 581373-U 1kit 1077.57 固相萃取产品         防交叉污染固相萃取装置 12位 57044 1套 5717.79Supelclean&trade LC-Si 500mg/6ml 505374 30支/盒 741.78 Supelclean&trade LC-Si 1g/6ml(玻璃管,PTFE筛板 54335-U 30支/盒 3127.41 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-18 500mg/6ml(玻璃管,PTFE筛板 54331-U 30支/盒 2190.24 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-Florisil® 500mg/3ml(PTFE筛板) 57058 54支/盒 1736.28 装置         Supelco索氏抽提器 200mL 64826 1套 4186.26 产品适用的国家标准: GB/T 21911-2008 食品中邻苯二甲酸酯的测定 GB/T 21928-2008 食品塑料包装材料中邻苯二甲酸酯的测定 GB/T 22048-2008 玩具及儿童用品 聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定 GB/T 20388-2006 纺织品 邻苯二甲酸酯的测定 SN/T 2037-2007 与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定 气相色谱质谱联用法 SN/T 2249-2009 塑料及其制品中邻苯二甲酸酯类增塑剂的测定 气相色谱-质谱法 SN/T 1779-2006 塑料血袋中邻苯二甲酸酯类增塑剂的测定 气相色谱串联质谱法 WS/T 149-1999 作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制