当前位置: 仪器信息网 > 行业主题 > >

左旋马尾松树脂醇

仪器信息网左旋马尾松树脂醇专题为您提供2024年最新左旋马尾松树脂醇价格报价、厂家品牌的相关信息, 包括左旋马尾松树脂醇参数、型号等,不管是国产,还是进口品牌的左旋马尾松树脂醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合左旋马尾松树脂醇相关的耗材配件、试剂标物,还有左旋马尾松树脂醇相关的最新资讯、资料,以及左旋马尾松树脂醇相关的解决方案。

左旋马尾松树脂醇相关的论坛

  • 14.3 反相离子对色谱法测定马尾松松针中莽草酸的含量

    反相离子对色谱法测定马尾松松针中莽草酸的含量 马廉举, 刘 新(重庆医科大学药学院, 重庆400016)摘要 目的: 建立反相离子对色谱法测定马尾松松针中莽草酸的含量方法。方法: 采用D iamonsil C18色谱柱( 250 mm @ 41 6 mm, 5 Lm ), 流动相为5 mmo l/L磷酸溶液( 先用2 mo l/L氢氧化钠调至pH 612, 再加入四丁基溴化铵, 使其浓度为1 mm o l/L)-甲醇( 90B10), 检测波长为217 nm, 流速为11 0 m l/m in, 柱温为25e 。结果: 莽草酸在5~ 300 Lg /m l范围内与峰面积呈良好的线性关系( r= 01 9999), 样品的平均回收率为97151%, RSD为0199%。结论: 此方法准确、简便, 适用于马尾松松针中莽草酸的定量分析。关键词 莽草酸; 马尾松松针; HPLC; 离子对

  • 松树结种子

    这是松树籽。[img]https://ng1.17img.cn/bbsfiles/images/2022/01/202201201345504261_7804_1642069_3.png[/img]

  • 【国庆随拍】难得一见的大松鼠

    【国庆随拍】难得一见的大松鼠

    今天爬野山,突然看到了一只大松鼠,这个小东西见到我,足足与我对视了30秒都没有逃掉,也许是惊呆了的缘故,于是我有机会连续拍了几张松鼠的照片,这是我第一次看到大松鼠。http://ng1.17img.cn/bbsfiles/images/2012/10/201210042144_394568_1602290_3.jpg图-1 发现前面的一棵松树上,站立着一只可爱的大松鼠http://ng1.17img.cn/bbsfiles/images/2012/10/201210042144_394569_1602290_3.jpg图-2 可能是我的突然出现将它惊呆了http://ng1.17img.cn/bbsfiles/images/2012/10/201210042145_394570_1602290_3.jpg图-3 小家伙一动不动,可能是想以静制动而蒙混过关吧?http://ng1.17img.cn/bbsfiles/images/2012/10/201210042145_394571_1602290_3.jpg图-4 别看她的两只眼睛一动也不动,其实是在斜视着我,心里不定多么恐惧呢http://ng1.17img.cn/bbsfiles/images/2012/10/201210042145_394572_1602290_3.jpg图-5 她继续与我对持着 http://ng1.17img.cn/bbsfiles/images/2012/10/201210042145_394573_1602290_3.jpg图-6 这是一只正处在哺乳期的雌松鼠,估计她的洞穴就在附近,否则她不会这样冒险露面的,都是为了子女啊!http://ng1.17img.cn/bbsfiles/images/2012/10/201210042146_394574_1602290_3.jpg图-7 她缓过神了,准备逃跑了。http://ng1.17img.cn/bbsfiles/images/2012/10/201210042146_394575_1602290_3.jpg图-8 终于逃跑了,仅仅留下一条美丽的大尾巴的背影。

  • 【原创大赛】醇酸树脂的结构解析

    【原创大赛】醇酸树脂的结构解析

    [b]一. 醇酸树脂介绍[/b] 醇酸树脂是由多元醇、多元酸和植物油/合成脂肪酸缩合聚合而成的油改性聚酯树脂,如Table 1所示。醇酸树脂的分类可依据植物油/合成脂肪酸的种类,也可依据脂肪酸或油脂在醇酸树脂中的含量(油度,OL),如Table 2所示。[align=center]Table 1 醇酸树脂的组成[/align][align=center][img=,644,258]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120933417115_7822_2879355_3.jpg!w644x258.jpg[/img][/align][align=center]Table 2 醇酸树脂的分类[/align][align=center][img=,645,293]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120934044045_9365_2879355_3.jpg!w645x293.jpg[/img][/align][b]二. 微谱技术在醇酸树脂结构解析方面的积累[/b] 醇酸树脂固化成膜后有光泽和韧性,附着力强,并具有良好的耐磨性、耐候性和绝缘性,通常作为木器漆、烤漆、油墨等产品的主体树脂使用。主体树脂的角色意味着醇酸树脂的性能直接影响应用产品的性能,所以对醇酸树脂的组成及单体的结构解析非常重要,而微谱胶涂油事业部已在这方面进行了一定的知识积累。 技术工程师首先利用已知单体及比例合成多组醇酸树脂标准样品,然后对这些标准样品进行GC-MS、[sup]1[/sup]H-NMR、[sup]13[/sup]C-NMR等测试,建立醇酸树脂单体谱图库,优化醇酸树脂结构解析方法,进而对醇酸树脂的合成单体(多元醇、多元酸和植物油/合成脂肪酸)进行定性定量解析。[b]三. 解析案例 解析对象:[/b]亚麻油改性的醇酸树脂 [b]解析思路:[/b]醇酸树脂中植物油/脂肪酸可以根据醇酸树脂甲酯化产物中各脂肪酸甲酯的种类与质量比来鉴定,多元醇及多元酸可以通过[sup]1[/sup]H-NMR 和[sup]13[/sup]C-NMR 中化学位移的归属进行确定。[b] 解析过程:[/b]如 Figure 1 所示,对各脂肪酸甲酯的色谱峰进行积分并作归一化计算,结果与亚麻油组分的文献值对比(Table 3),发现脂肪酸种类及含量与椰子油组分有良好的对应关系,确定醇酸树脂的植物油为亚麻油。 分析醇酸树脂的[sup]1[/sup]H-NMR(Figure 2) 和[sup]13[/sup]C-NMR(Figure3),确定多元醇为季戊四醇和二乙二醇,多元酸为邻苯二甲酸酐,并且存在羟基未反应完全的季戊四醇。单体定性确定后,通过[sup]1[/sup]H-NMR,对合成单体的特征化学位移进行积分面积计算,确定单体的定量数据。[align=center][img=,502,222]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120934352578_5386_2879355_3.jpg!w502x222.jpg[/img][/align][align=center]Figure 1 醇酸树脂GCMS谱图[/align][align=center]Table 3 醇酸树脂中各脂肪酸甲酯的色谱峰面积与亚麻油组分文献值对比(%)[/align][align=center][img=,606,382]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120935055605_9200_2879355_3.jpg!w606x382.jpg[/img][/align][align=center][img=,556,107]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120935221815_9280_2879355_3.jpg!w556x107.jpg[/img][/align][align=center][img=,623,436]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120935499435_8090_2879355_3.jpg!w623x436.jpg[/img][/align][align=center]Figure 2 醇酸树脂[sup]1[/sup]H-NMR谱图[/align][align=center][img=,623,436]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120936123835_2273_2879355_3.jpg!w623x436.jpg[/img][/align][align=center]Figure 3 醇酸树脂[sup]13[/sup]C-NMR谱图[/align][b] 解析结果:[/b]对于醇酸树脂的单体结构解析,该方法准确度很高,可以将醇酸树脂中多元醇、多元酸和植物油/合成脂肪酸进行定性定量解析。该方法已为多家开发醇酸树脂的客户提供了非常大的帮助,客户按照醇酸树脂结构信息可以更快地完成产品开发,缩短研发周期。[list][*]声明:本文资料为“上海微谱化工技术服务有限公司”原创,未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/list]

  • 【原创大赛】浅浅评估松鼠栗子中super-cute因子的不确定度

    正文前,先把名词解释弄出来,这样初次涉猎的朋友先认清猎物,别搞混了。测量不确定度(MU)--表征合理地赋予被测量之值的分散性,与测量结果相联系的参数.标准不确定度(σ)--以标准偏差表示的测量不确定度。合成不确定度(Uc)--合成标准不确定度组分的结果。包含因子(k)–用于合成标准不确定度相乘,从而对该测试中可能存在的所有的因素进行评定。k=2通常用于95%的包含区间。下面就我就开始啰嗦下不确定度的大致心路过程曲折。1, 知道自己所评估的对象,所需求的是什么。通常这就是我们的不确定度评定的题目了,这也是最不以为然的地方。就好像我们在论坛发帖求助一样,要把那问题说清楚,坛友们才好伸出手。问题说小了,词不达意,没问到重点,问题说大了,坛友们切入点就五花八门了,所得答案肯定也不是远远大于或粗于答案中了。2, 确定不确定度的来源。即我们所说的列出整个方法中的操作步骤,可能带来变异性的来源。列出操作步骤目的是为了仔细推敲每一步中所引入的误差、变异性来源。此时需要对仪器设备,测试原理烂熟于心。不确定度来源:A类;B类A类:考虑所有随机不确定度来源。该类的不确定度是通过一系列的观察或者多次重复试验之后将其数据进行统计计算后得到的。重复性和再现性研究得到一个稳定的变异性。比如,通过一个比较大的样本测量值,获得一个标准偏差(S.D.)。B类:考虑到所有可能的系统不确定度来源。此类多来源于经验。一般检定/校准证书,有CNAS或类似认可的资质的,我们当做正态分布来看,置信区间在95%水平。其它的,比如生产说明书,未认可的实验室出具的证书,或没有其它特别规定,一般都当做矩形分布来操作。下一步就是:通过平方,开平方将所有的标准不确定度合在一起。3, 扩展不确定度=合成不确定度乘以一个包含因子k,一般都取95%置信区间。注意下:偏差与准确度有关系。任何已知的偏差是不在不确定度评定的考虑范围内的。4, 接下来我就要举个栗子了,因为有坛友反应我上篇原创只有文字没有栗子,不好吃,加点栗子才好吃,松鼠吃起来才萌萌哒。开锅放栗子:目的:松鼠栗子中super-cute因子的不确定度评估不确定度来源:http://ng1.17img.cn/bbsfiles/images/2014/11/201411281126_525033_2368716_3.gif平均值可以利用总合除以总数据的个数。标准偏差(SD)用于鉴定偏离平均值的偏离度。再煮一个简单的平均值和SD的栗子,考虑以下八个数值:4,4,6,4,5,5,8,

  • 【实战宝典】大孔树脂色谱再生方法有哪些?

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/5247249问题描述:大孔树脂色谱再生方法有哪些?解答:a)[font=宋体]酸性树脂用[/font]2.5[font=宋体]倍树脂体积的[/font]HCl[font=宋体]溶液(浓度[/font]4%[font=宋体])以[/font]2[font=宋体]倍树脂体积[/font]60-80min[font=宋体]通完,然后用纯水的相同流速(慢速淋洗)[/font]10min[font=宋体]之后,加大流速([/font]6BV/h[font=宋体])快速淋洗至出水[/font]PH[font=宋体]至[/font]6-7[font=宋体]为止。[/font]b)[font=宋体]碱性树脂方法同上,再生剂为[/font]4%NaOH[font=宋体]溶液,尘洗终点为出水[/font]PH7-8[font=宋体]。[/font]c)[font=宋体]中性树脂配制碱性盐水(含[/font]8%NaCl[font=宋体],[/font]2%NaOH[font=宋体]),以用[/font]2.5[font=宋体]倍树脂体积[/font]60-80min[font=宋体]通完,然后浸泡[/font]2-4[font=宋体]小时,以纯水淋洗至出水[/font]pH[font=宋体]呈中性。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 【分享】不同环境污染物的吸附类植物或敏感性植物

    1.二氧化硫: ①抗性强的植物:大叶黄杨、雀舌黄杨、瓜子黄杨、海桐、蚊母、山茶、女贞、小叶女贞、枳橙、棕榈、凤尾兰、夹竹桃、枸骨、枇杷、构树、无花果、枸杞、白蜡、木麻黄、相思树、榕树、十大功劳、九里香、侧柏、银杏、广玉兰、北美鹅掌楸、柽柳、梧桐、重阳木、合欢、皂荚、刺槐、国槐等。 ②敏感的植物:苹果、梨、羽毛槭、郁李、悬铃木、雪松、油松、马尾松、云南松、落叶松、白桦、樱花、毛樱桃、贴梗海棠、梅花、玫瑰、月季等。 2.氯气: ①抗性强的植物:龙柏、侧柏、大叶黄杨、海桐、蚊母、山茶、女贞、夹竹桃、凤尾兰、棕榈、构树、木槿、紫藤、无花果、樱花、枸骨、臭椿、榕树、九里香、小叶女贞、丝兰、广玉兰、柽柳、合欢、皂荚、国槐、黄杨、白榆、丝棉木、正木、沙枣、苦楝、白蜡、杜仲、厚皮香、桑树、柳树、枸杞等。 ②敏感的植物:池柏、薄壳山核桃、枫杨、小锦、樟子松、紫椴、赤杨等。 3.氟化氢: ①抗性强的植物:大叶黄杨、海桐、蚊母、山茶、凤尾兰、瓜子黄杨、龙柏、构树、朴树、花石榴、石榴、桑树、香椿、丝棉木、青冈栎、侧柏、皂荚、国槐、柽柳、木麻黄、白榆、正木、沙枣、夹竹桃、棕榈、红茴香、杜仲、细叶香桂、红花油茶、厚皮香等。 ②敏感的植物:葡萄、杏、山桃、榆叶梅、紫荆、梓树、金丝桃、慈竹、池柏、白千层等。 4.乙稀: ①抗性强的植物:夹竹桃、棕榈、悬铃木、凤尾兰、女贞、榆树、枫杨、重阳木、乌桕、红叶李等。 ②敏感的植物:月季、十姐妹、大叶黄杨、苦栎、刺槐、臭椿、合欢、玉兰等。 5.氨气: ①抗性强的植物:女贞、樟树、丝棉木、腊梅、柳杉、银杏、紫荆、杉木、石楠、石榴、朴树、无花果、皂荚、木槿、紫薇、玉兰、广玉兰等。 ②敏感的植物:紫藤、小叶女贞、杨树、虎杖、悬铃木、薄壳山核桃、杜仲、珊瑚树、枫杨、芙蓉、栎树、刺槐等。

  • 【我们不一YOUNG】纯水产生的废树脂、废滤膜算危废吗

    [font=&][size=16px][color=#616161]问题:纯水制备产生的废树脂、废滤膜在最新版的危废名录内未定义为危废,但在环评内将纯水制备产生的废树脂、废滤膜定义为危废处置。实际在纯水制备过程中对水质会进行严格把控,制备过程中会对水质监控,需达到纯水的使用标准,所以其中的树脂、滤膜不会沾染有毒有害化学品。请问纯水制备产生的此部分废树脂、废滤膜是否可以作为一般废物进行处置?回复:未列入《国家危险废物名录》且排除危险特性的物质,不建议按危险废物管理。[/color][/size][/font]

  • 关于大孔树脂分离纯化的问题,请大神指教!

    我用80%乙醇得到黄酮提取液,现在需要进行纯化,选用的HPD100非极性树脂,2.6*50cm的柱子。因为第一次接触纯化,没人指导,所有不清楚怎么操作,我看了些资料,想问问大家我理解的对不对。首先把新买的树脂进行预处理:95%乙醇泡24h,用乙醇洗至洗脱液和水混合不浑浊,再用水洗至无醇味。然后用5%盐酸洗,水洗至中性,5%氢氧化钠洗,水洗至中性。(有的文献中没有后面的酸洗和碱洗,请问这个步骤的意义是什么呢?可以省略吗?)湿法装柱和上样:往柱子里塞一块棉花,用水打湿。 把溶在水里的树脂倒进柱子,敲打柱子,等树脂沉淀后,打开活塞放水,直到距离树脂面1cm关闭活塞。(这一步骤有2个疑问:1.装柱量2/3是指放完水后的树脂占柱子的2/3吗? 2.有的是留1cm高的水,有的是不留,有的还要放一片滤纸,这个应该怎么弄呢?) 按照计算的最大上样量,把提取液倒入柱子内,等液面下降至与树脂快平齐的时候,加入洗脱剂,收集洗脱液。(1.最大上样量是不是就是,洗脱液中黄酮浓度几乎等于进样浓度时的体积?2. 加入洗脱剂的时间,是在提取液的液面下降至与树脂快平齐的时候吗?)因为我的样品是用乙醇提的,我看许多文献都是把提取液冻干,再用蒸馏水溶解上样,还有的说提取液要无醇。我们实验室没有冻干机,所以想请问一下,我直接把提取液上样可以吗?为什么不能有醇呢?麻烦大神解答一下,感谢!

  • 中国主要土壤类型之黄棕壤

    [font=-apple-system, BlinkMacSystemFont, &][color=#121212]北起秦岭、淮河,南到大巴山和长江,西自青藏高原东南边缘,东至长江下游地带。是黄红壤与棕壤之间过渡型土类。亚热带季风区北缘。夏季高温,冬季较冷,年平均气温为15~18℃,年降水量为750~1000毫米。植被是落叶阔叶林,但杂生有常绿阔叶树种。既具有黄壤与红壤富铝化作用的特点,又具有棕壤粘化作用的特点。呈弱酸性反应,自然肥力比较高。[/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#121212]黄棕壤地区的水热条件优越,自然肥力较高。很适宜多种林木的生长,是中国经济林的集中产地、也是重要的农作区,盛产多种粮食和经济作物。在土层浅薄处,宜栽耐旱耐瘠的马尾松、刺槐、山杨等。土层厚、肥力好的地方,可大力发展栎类、杉木以及油茶、油桐、漆树、竹茶、桑等经济林木、排水较差处可种植经济价值较高的油料乌桕。[/color][/font]

  • 天冷了,小松鼠也出来活动了!

    天冷了,小松鼠也出来活动了!

    [b][color=#cc0000]天冷了,小松鼠也出来活动了![/color][color=#cc0000][img=,600,]https://ng1.17img.cn/bbsfiles/images/2020/10/202010251232358690_6021_1841897_3.jpg!w600x451.jpg[/img][img=,600,]https://ng1.17img.cn/bbsfiles/images/2020/10/202010251232362608_2114_1841897_3.jpg!w600x446.jpg[/img][img=,600,]https://ng1.17img.cn/bbsfiles/images/2020/10/202010251232365917_9167_1841897_3.jpg!w600x425.jpg[/img][img=,600,]https://ng1.17img.cn/bbsfiles/images/2020/10/202010251232368077_3554_1841897_3.jpg!w600x427.jpg[/img][/color][/b]

  • 【求助】关于醇酸树脂的羟值酸值滴定

    各位大大,小弟最近在做醇酸树脂酸值和羟值的滴定,羟值滴定的方法是用乙酸酐--4-DPMA的方法,酸值测定结果为21mg KOH/g 样品。羟值直接滴定的结果为-14mgKOH/g 样品,出现负值是不是因为羧基与滴定剂氢氧化钾反应造成的?根据方法羟值=酸值+测定的羟值,也就是21+(-14)=7mgKOH/g 样品。那这7mgKOH/g 样品就是样品羟值吗?照这样计算样品羧基中的羟基好像没有包含在结果中,现在感觉很纠结。

  • 大孔吸附树脂纯化茶多酚遇到的奇怪现象

    在接80%醇洗脱液浓缩干燥后,发现茶多酚含量连80%都没有的到,会是哪里出了问题?请教各位大侠:为什么80%醇洗脱液液颜色很深,而且浑浊,尤其是一开始,似乎,一换成乙醇水,柱子上的东西全部下来了。即使先用20%的醇先洗1个柱体积,再换成80%醇,刚才说到的现象仍然没有改变。不知道这个现象是否正常?天气冷,洗脱液中乙醇比例是不是需要下降?还是我选择的非极性D101树脂不合适?最近我在用大孔吸附树脂纯化茶多酚时候,用的方法是:1. D101型大孔吸附树脂湿法装柱,2. 茶多酚粗品水溶后以0.8BV/h速度上样,3. 上样结束后会停止半小时,让样品充分和树脂接触吸附,4. 接下来用纯水快速过柱子2个柱体积,流速是2BV/h,5. 用80%的乙醇水洗脱,一般洗2个柱体积,流速为1BV/h.有经验的同学请多多指教!

  • 【求助】离子交换树脂测定纯度-失败的原因?

    硝酸钾纯度的测试,按照下列方法进行,但出现问题,希望各位大虾能指导一下:准确称取400mg的硝酸钾溶于100ml水中.将该溶液以5ml/min的流速通过阳离子交换树脂(722强酸性树脂),将流出液收集于500ml锥形瓶中.再用水以10ml/min冲洗树脂,收集流出液于同一个锥形瓶中,并加入0.15ml酚酞指示剂,5分钟后用0.1mol/l氢氧化钠溶液滴定直至粉红色终点.但是问题是我一加入酚酞后溶液就变成粉红色了.应该就是说我的流出液已经是碱性了.我不知道为什么,试了几次都是同样的结果.我怀疑是因为树脂没有交换出氢离子来,而可能是因为树脂的问题.树脂用的处理方法为:第一次直接用水浸泡.第二次用5M盐酸浸泡一日,然后用蒸馏水冲洗至流出液为中性。但是两次的结果相同,有可能是什么原因呢?

  • 大孔吸附树脂纯化茶多酚遇到的奇怪现象

    在接80%醇洗脱液浓缩干燥后,发现茶多酚含量连80%都没有的到,会是哪里出了问题?请教各位大侠:为什么80%醇洗脱液液颜色很深,而且浑浊,尤其是一开始,似乎,一换成乙醇水,柱子上的东西全部下来了。即使先用20%的醇先洗1个柱体积,再换成80%醇,刚才说到的现象仍然没有改变。不知道这个现象是否正常?天气冷,洗脱液中乙醇比例是不是需要下降?还是我选择的非极性D101树脂不合适?用大孔吸附树脂纯化茶多酚的方法是:1. D101型大孔吸附树脂湿法装柱,2. 茶多酚粗品水溶后以0.8BV/h速度上样,3. 上样结束后会停止半小时,让样品充分和树脂接触吸附,4. 接下来用纯水快速过柱子2个柱体积,流速是2BV/h,5. 用80%的乙醇水洗脱,一般洗2个柱体积,流速为1BV/h.有经验的同学请多多指教!

  • 【求助】怎样抗生素分离纯化上树脂

    大家好:我现在在做一个化学药物的合成,是抗生素的,酰化反应,反应完全后,有2个副产物,根据液相,用ph8的缓冲液:乙腈=95:5时,底物在5分钟出峰,产物在4分钟出峰,副产物在2.5分钟出峰,不懂怎么样分离纯化,这个物质可能是成了盐了,因为在这过程中我加入碳酸氢钠来做酰化反应的缚酸剂,产物和副产物易溶于水、乙醇、甲醇少量不溶解,真不懂该怎么办,我想上树脂,上了一下硅胶柱,氯仿:甲醇=5:5时,好像都出来了,真不懂该怎么办啊,如果上树脂的话,还有什么树脂可以选择的啊?请高手指点一下!!!不胜感激!

  • 松脂酸(松香酸)测定方法

    松脂酸(松香酸)测定方法

    [align=center][size=24px][b]松脂酸(松香酸)测定方法[/b][/size][/align] 松香酸用于发酵工业,并且可用作肥皂和造纸工业的填料。松香酸为三环二萜类化合物。在含水乙醇中得单斜片状结晶。熔点172~175℃,旋光度-102°(无水乙醇)。不溶于水,溶于乙醇、苯、氯仿、乙醚、丙酮、二硫化碳以及稀氢氧化钠水溶液。为天然松香树脂的主要成分。本测定方法是建立松香中松脂酸测定,液体原药松脂酸铜中松脂酸测定;文献报道,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法测定松脂酸铜需要加入盐酸,[font=宋体]将松脂酸铜衍生转化为松脂酸,图[/font][font='Times New Roman','serif']1[/font][font=宋体]列出了其可能的转化途径,确定松脂酸铜实际测定对象为松脂酸。厂家送过来的原药是盐酸处理过的所以我们直接检测就行。[/font][align=center][img=,589,168]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150859397658_4592_3963412_3.jpg!w589x168.jpg[/img][/align][align=center][b][font=宋体]图[/font][font='Times New Roman','serif']1 [/font][/b][font=宋体][b]松脂酸铜转化为松脂酸[/b][/font][/align][align=left][b]实验方法[/b][/align][align=left][/align][align=left][font='Times New Roman','serif']1[/font][font=宋体]试剂:乙腈(色谱级),磷酸(分析纯);盐酸分析纯[/font][font=&] [font='Times New Roman','serif']2[/font][font=宋体][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]条件:[/font][font='Times New Roman','serif']LC-20AT [/font][font=宋体]波长:[/font][font='Times New Roman','serif']245nm [/font][font=宋体];进样量:[/font][font='Times New Roman','serif']5μL[/font][font=宋体]色谱柱型号:[/font][font='Times New Roman','serif']Agilent Eclipse XDB-C18(2.1 mm×100mm, 2.7 μm), [/font][font=宋体]柱温:[/font][font='Times New Roman','serif']30.5 [/font][font=宋体]℃,流动相条件如表[/font][font='Times New Roman','serif']1[/font][font=宋体]:[/font][/font][/align][align=center][font=&][font=宋体]表1 流动相洗脱程序[/font][/font][/align][align=center][font=&][font=宋体][img=,559,298]https://ng1.17img.cn/bbsfiles/images/2023/08/202308151105132742_2164_3963412_3.jpg!w559x298.jpg[/img][/font][/font][/align][align=left][font='Times New Roman','serif']3 [/font][font=宋体]标准品配制:称取一定量的松脂酸,用乙腈[/font][font='Times New Roman','serif']:0.1%[/font][font=宋体]磷酸([/font][font='Times New Roman','serif']V/V=70:30[/font][font=宋体])溶解,定容,得到浓度为[/font][font='Times New Roman','serif']200 μg/mL[/font][font=宋体],待测。[/font][/align][font=宋体][/font][align=center][img=,534,242]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150902130177_1955_3963412_3.jpg!w534x242.jpg[/img]图2 标准品色谱图[/align][align=left][font='Times New Roman','serif']4[/font][font=宋体]样品制备:[/font][/align][align=left][font='Times New Roman','serif']4.1[/font][font=宋体]松香用研钵研碎,称取一定量的样品,用乙腈[/font][font='Times New Roman','serif']:0.1%[/font][font=宋体]磷酸([/font][font='Times New Roman','serif']V/V=70:30[/font][font=宋体])超声溶解,定容至[/font][font='Times New Roman','serif']50 mL[/font][font=宋体],然后过滤待测。[/font][/align][align=center][img=,532,236]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150904090783_7851_3963412_3.jpg!w532x236.jpg[/img][/align][align=center]图3 松香样1色谱图[/align][align=center][/align][align=center][img=,498,227]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150904412965_7172_3963412_3.jpg!w498x227.jpg[/img][/align][align=center]图4 松香样2色谱图[/align][align=left]4.2 称取一定量的液体原药,用乙腈:0.1%磷酸(V/V=70:30)溶解,定容至50mL, 过0.45μm滤膜,待测。[/align][align=center][img=,560,254]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150908303829_927_3963412_3.jpg!w560x254.jpg[/img]图5 原药1色谱图[/align][align=center][img=,513,235]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150908401428_7495_3963412_3.jpg!w513x235.jpg[/img]图6 原药2色谱图[img=,690,516]https://ng1.17img.cn/bbsfiles/images/2023/08/202308150914267479_9450_3963412_3.jpg!w690x516.jpg[/img]图7 松香(1和2)样品图[/align][align=left]结论:从松香质地能看出来松香2 质地要优于松香1,松香1中松香酸含量44.3%,松香2中松香酸含量88.5%,原药1含量12.5%,原药2中含量42.1%。后来联系客户说松香1是湿地松得到的,松香2是马尾松得到的。不同植物得到的松香差异比较明显。[/align][font='Times New Roman','serif'][/font][align=left][font=宋体][/font][/align][align=center][/align][align=left][/align][align=left][/align]

  • 【供应】大森林ZH-50木材测湿仪说明书

    ZH-50 数字式木材测湿仪产品说明书ZH-50型电磁波式木材测湿仪式在国外先进技术基础上,结合国内木材行业使用特点和要求推出的最新测湿仪表。仪表采用先进的电磁波传感技术,穿透木材深度达50 mm,微电脑通过对传感器采集的数据和用户设定的树种档位值进行运算,计算结果精确。ZH-50型电磁波式木材测湿仪体积小、重量轻、耗电省、测量迅速、携带方便,是各种木材含水率测定的理想无损工具。 主要性能和技术指标:1、测量方式:电磁波感应式(开机自动校零)2、测量范围:3%-40%3、探测深度:0-50 mm4、显示方式:3位液晶数字显示5、分辨率:不低于0.5%6、树种档位:10档比率可供选择7、自动关机时间:1-9分钟,共有9档自动延时关机时间可供设定。8、低电压提示:电池即将耗尽之前,显示屏右下角会有 显示以提示用户及时更换电池。9、工作环境:温度 -5℃ - 40℃ 相对湿度 ≤ 85%.10、工作电源:9V叠层电池一个(6F22型)11、外形尺寸:130mm(H) x 62mm(W) x 25 mm(D),重量:100g(不含电池)操作方法:ZH-50型数字式木材测湿仪具有开机自动校零功能,开机前首先应使底部的方框形传感器远离其它物体,然后再按下“电源启动”钮开启电源。电源开机时显示屏首先提示所设定的自动关机延时时长和树种档位,然后微电脑自动排除传感器所受温、湿度等环境因素的影响,将测量起点自动校正为“0.0”,进入待机状态。若出现误操作或其它需要关机的情况,可持续按住“关机设置”按钮,3秒钟自动关机。操作指南:1、树种选择和自动关机时间设定:如果需要修改树种档位,可按住“树种设置”按钮不放,按“关机设置”按钮进行修改;反之,如果需要修改自动关机的延时时长,可按住“关机设置”按钮不放,按“树种设置”按钮进行设置修改。2、在测量状态下,将仪表传感器稍加用力平衡地压在被测物上,待数字稳定后的值即为该物的含水率。3、测量面积应待遇仪表传感器(底部方形检测框)的面积,否则可能会带来较大的测量误差。同样的被测物厚度明显小于50mm时候,也会带来测量误差,可适当通过该表树种进行修正。由于ZH-50型电磁波式木材测湿仪穿透深度达50mm,所以当测量木材厚度小于50mm时候,应将木材悬空测量。4、测量时被测木材底部不能有金属或其他影响测量的异物。5、测量时根据木材纹理顺向(直向)测量。6、木材表面如有雨水,应擦拭、晾干表面之后再进行测量。长时间在海水里浸泡过的木材,受盐分影响,测量的含水率偏高。7、由于ZH-50型电磁波式木材测湿仪测量精度高、穿透力强,受环境因素影响时,显示值尾数跳动敏感属正常现象。8、测量环境温差剧变可能造成传感器结露,影响测量的准确,应注意避免。保养和维修1、避免碰撞和摔落。2、避免高温或极低温度下存放。3、避免在湿度过大或腐蚀性气体的场合存放或使用。4、仪表长时间不使用,应将电池取出。5、自购买之日起一年内,因产品质量问题,可免费保修。6、面板保护膜启用后可以撕去。“树种选择”档位的确定先将一件尽可能保持平衡含水率的物件在1-A的各档位上测定,紧接着通过干燥法测定出含水率,相对于干燥试验偏差最小的档位可作为测量该树种的含水率档位。树种档位对照表(仅供参考)档位A:山松林、杨木、泥杨、泡桐、白桐、白鸡油。档位9:海松、松木、波赖、大叶漆、日罗东、云山、杉木、池木、贝鲁布、福建柏、苍山冷杉、鱼鳞云杉、红松、异叶罗汉松、黄波罗、枫杨。档位8:核桃楸、枫杨、柳木、椴木、黄波罗、栲树、檫木、红椿、大叶榆、铁杉、桤木、香樟、丛花厚壳桂、新木姜子、大叶榆、银杏、油杉、马尾松、云南松、黄桤、紫椴、裂叶榆、枫香、桢楠、苦楝、花榈木、木荷、侧柏、樟子松、黄杉、臭椿、桤木、山合欢、柏木、五脚梨、长白山落叶松、水松、马找莪、鸟打麻、桶柴、波罗兰、白打麻、黄打麻、红池木、白池木、黄池木、山桂花、山三、漆树、软木槭木、枫木、枫香、栋木、山榴莲、山龙眼、马樟、打玲、春茶、九层糕、茶条槭。档位7:马尾松、白桦、枫香、桢楠、花榈木、木荷、合板、木碎板、软木、槭木、枫木、山榴莲、山龙眼、马樟、打玲、春茶、九层糕、侧柏、云南松、黄杉、山合欢、楸木、柏木。档位6:深红池木、板栗、说桦、兴安岭叶松、魁树、水曲柳、色木、臭椿、重阳亩、山梨、青皮干拔、中密度板、枫桦、柞木。档位4:纤维板、桉树、黑杪、波罗木、红肉杪、柚木、桷栎、刺槐、棒木、山毛榉、椎栗、红豆。档位3:竹板、小叶达理木、黄檀、石栎档位2:竹叶青冈栎、长蒴蚬木、荔枝。联系QQ:22501079 [~83768~]

  • 【转帖】离子交换树脂的性质

    离子交换树脂的性质1)多孔性 树脂为疏松的,多孔的网络物质,而活性基团一般都处以树脂网孔内,外来离子必须进入网孔内才能进行离子交换。  2)不溶性 树脂在水中及稀酸、稀碱和一般有机溶剂中都不溶解,以维持其立体网状结构。  3)稳定性 离子交换树脂具有强稳定的化学性质,母体本身不与酸、碱起作用。例如强酸型阳离子交换树脂(国产732树脂)很稳定,可使用几百次,其交换能量改变不大,又可长时间浸泡于5%氢氧化钠中,1%高锰酸钾中,双氧水,0.1N硝酸,耐热性较好,可在100℃左右处理。  4)离子交换性 离子交换树脂必须具备相当数量的可交换离子或带电基团,这些离子和基团的类型决定了离子交换剂的类型,而基团的总数和他们的亲和性决定树脂的交换总量。

  • 超高精度PID控制器的特殊功能(3)——变送输出功能及其应用

    超高精度PID控制器的特殊功能(3)——变送输出功能及其应用

    [color=#3366ff]摘要:变送输出是高级PID控制器的一项重要扩展功能,可用于多区控制、串级控制、比值控制和差值控制以及数据采集及记录。为展示变送输出功能的强大作用,本文主要针对超高精度VPC 2021系列PID控制器,介绍了变送输出的具体功能、参数设置、接线和具体应用。[/color][align=center][img=PID控制器变送输出功能,550,263]https://ng1.17img.cn/bbsfiles/images/2023/02/202302101001459926_3198_3221506_3.jpg!w690x330.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#3366ff]1. 变送输出功能简介[/color][/size][/b] 在一些高级PID控制器和调节器中,往往会配备变送输出功能,以增加PID控制器的多功能性。所谓变送输出(Retransmit Output)功能,是指在PID调节器运行过程中,PID调节器同时输出代表设定值或其他过程值的模拟信号。[size=14px][/size] 变送输出功能的主要应用是该变送模拟信号可以作为另一个PID控制器的远程设定点,或者作为数据采集或记录系统的输入。[size=14px][/size] 为了展示PID控制器变送输出功能的强大作用,本文主要针对VPC 2021系列超高精度PID控制器,介绍了变送输出的具体功能、参数设置和具体应用案例。本文同时也可做为变送输出功能的使用说明书。[b][size=18px][color=#3366ff]2. 变送输出功能的使用说明[/color][/size][/b] 作为一种超高精度多功能PID调节器,VPC 2021所有系列的超高精度PID控制器都具备变送输出功能,具体输出功能如下:[size=14px][/size] (1)可变送的过程变量包括:测量值PV、设定值SV,输出值Output和偏差值Deviation。[size=14px][/size] (2)可变送的模拟量类型包括:4~20mA、0~10mA、0~20mA、0~10V、2~10V、 0~5V 和 1~5V 七种。[size=14px][/size] 在VPC 2021系列PID控制器中,包括了单通道VPC 2021-1和双通道VPC 2021-2两个系列的PID控制器,单通道控制器可提供一路变送接口,而双通道控制器在两个独立通道中提供二选一方式的变送接口。单通道和双通道控制器的变送功能配置如图1和图2所示。[align=center][b][color=#3366ff][img=01.单通道控制器变送功能配置,690,256]https://ng1.17img.cn/bbsfiles/images/2023/02/202302101004000666_6614_3221506_3.jpg!w690x256.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图1 单通道控制器VPC 2021-1的变送功能配置表[/color][/b][/align][align=center][b][color=#3366ff][/color][/b][/align][align=center][b][color=#3366ff][img=02.双单通道控制器变送功能配置,690,309]https://ng1.17img.cn/bbsfiles/images/2023/02/202302101004196543_9549_3221506_3.jpg!w690x309.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图2 双通道控制器VPC 2021-2的变送功能配置表[/color][/b][/align] 上述变送功能配置表可用于指导PID控制器面板操作和设置。而无论是单通道VPC 2021-1和双通道VPC 2021-2系列的PID控制器,都随机配备了计算机控制软件,通过软件界面可以替代控制器面板手动操作。单通道和双通道控制器变送功能配置的软件操作界面如图3和图4所示。[align=center][b][color=#3366ff][img=03.单通道控制器控制软件中的变送功能设置界面,690,174]https://ng1.17img.cn/bbsfiles/images/2023/02/202302101004420202_2561_3221506_3.jpg!w690x174.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图3 单通道控制器VPC 2021-1变送功能软件设置界面[/color][/b][/align][align=center][b][color=#3366ff][/color][/b][/align][align=center][b][color=#3366ff][img=04.双通道控制器控制软件中的变送功能设置界面,690,175]https://ng1.17img.cn/bbsfiles/images/2023/02/202302101004567922_3795_3221506_3.jpg!w690x175.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图4 双通道控制器VPC 2021-2变送功能软件设置界面[/color][/b][/align] 在上述变送输出设置过程中,特别需要注意以下几点:[size=14px][/size] (1)变送信号类型:需根据具体应用的需要进行选择,在变送信号作为另一个控制器的远程设定点时,变送信号类型一定要与串级控制中的另一个控制器输入信号类型保持好一致。[size=14px][/size] (2)变送上限和下限:必须要与PID控制器过程参数(测量值、设定值、输出值和偏差值)的上下限设定值相同。[size=14px][/size] (3)变送参数:根据具体应用需要进行选择。[size=14px][/size] (4)变送通道选择:在双通道控制器中,要选择变送输出哪一个通道的过程参数。[b][size=18px][color=#3366ff]3. 变送输出接线[/color][/size][/b] 在VPC2021系列的所有PID控制器中,变送输出都是如图5所示的接线端子9和10,其中10为正端子,9为公共端子。[align=center][b][color=#3366ff][img=05.变送输出接线图,500,293]https://ng1.17img.cn/bbsfiles/images/2023/02/202302101005151931_5294_3221506_3.jpg!w690x405.jpg[/img][/color][/b][/align][align=center][b][color=#3366ff]图5 VPC 2021系列PID控制器的变送输出接线端子[/color][/b][/align] 在变送端子连接负载时,需要特别注意以下两点:[size=14px][/size] (1)当变送设置为电流信号时,变送端子所串联的负载总有效电阻不能超过500欧姆。[size=14px][/size] (2)当变送设置为电压信号时,变送端子所并联的负载总有效电阻应大于10K欧姆。[size=14px][/size] 特别说明:变送功能是一个选定功能,在标准配置的VPC2021系列控制中并不包含变送功能。因此,在订购中要特别注明配置“变送功能”。[b][size=18px][color=#3366ff]4. 变送输出功能的应用[/color][/size][/b] 变送输出极大的增强了PID控制器的功能,在PID控制器中,变送输出功能可在以下几个方面得到应用:[size=14px][/size] (1)由于变送功能可将PID控制器中的测量值(PV)转为电流或电压模拟量进行变送输出,这使得带有变送功能的PID调节器同时可作为多种测量信号(如温度、湿度、压力、真空度和张力等)的变送器使用。同时,变送功能将设定值(SV)的变送输出,可使得PID调节器作为电流和电压信号源使用。[size=14px][/size] (2)变送功能可将设定值进行变送输出,此设定值可输入给另一个PID控制器作为远程设定值,由此来实现多区控制的同步控制。[size=14px][/size] (3)变送功能最常用的方式是在串级控制中的应用,其中利用了远程设定点功能,由此可组成双回路PID控制进行串级控制。[size=14px][/size] (4)变送功能也可以在差值和比值控制中得到应用,即通过变送功能和远程设定点功能,可使得两路PID控制过程中的设定值始终保持固定差值和比值,具体是通过改变变送上限和下限来实现。[size=14px][/size] (5)另一个变送功能的常用形式是过程参数的采集和记录,即通过设置的变送参数,将变送端子与数据采集器或记录仪连接,可实时采集和记录过程参数随时间的变化。如果使用的多个PID控制器都设置了变送功能,则可以实现对多个过程参数进行实施采集和记录。[size=14px][/size] (6)变送功能的另一个强大应用是可用于PID控制器的校准,采用标准传感器一方面可以校准PID控制器的显示精度和控制精度之外,还可以校准作为变送器和信号源使用的PID控制器的准确度。[size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制