当前位置: 仪器信息网 > 行业主题 > >

去环丙甲基纳美芬

仪器信息网去环丙甲基纳美芬专题为您提供2024年最新去环丙甲基纳美芬价格报价、厂家品牌的相关信息, 包括去环丙甲基纳美芬参数、型号等,不管是国产,还是进口品牌的去环丙甲基纳美芬您都可以在这里找到。 除此之外,仪器信息网还免费为您整合去环丙甲基纳美芬相关的耗材配件、试剂标物,还有去环丙甲基纳美芬相关的最新资讯、资料,以及去环丙甲基纳美芬相关的解决方案。

去环丙甲基纳美芬相关的论坛

  • 溴甲基环丙烷的含量测定?

    [color=#444444]大侠求助,怎么用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的方法对溴甲基环丙烷进行含量测定,急急急。[/color][color=#444444] 请给出载气、流速、柱温等具体测定条件哦。。。[/color][color=#444444] 谢谢啊[/color]

  • 请教关于“甲基丙烯酸羟乙酯”和“甲基丙烯酸羟丙酯”的气相色谱

    请教关于“甲基丙烯酸羟乙酯”和“甲基丙烯酸羟丙酯”的气相色谱

    读书的时候没认真听课,所以对于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]真心不懂,请各位大侠教导教导。实验室最近新买的一台[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],型号是GC9000C,柱型号是OV-225,规格:30mX0.32mmX0.25mm.来装机的人说,我们这个柱的柱温最高只能到250度。然后,我们主要是测甲基丙烯酸羟乙酯和甲基丙烯酸羟丙酯。不过我不会设温度。刚开始的时候,设的是柱温225度,检测器和进样器都是200度左右。[img=,690,557]https://ng1.17img.cn/bbsfiles/images/2019/09/201909251136543900_1849_1853141_3.png!w690x557.jpg[/img]得出的峰都是平顶的。后来自己研究来研究去,发现只要电压上到1200以上都是平顶的。。。后来,我们的供应商提供了一张他们测的谱图给我,顺便也告诉我他们的测试条件:柱温170,检测器、进样器230.这张是供应商测的。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/09/201909251136436020_7265_1853141_3.png!w690x517.jpg[/img]我按照一样的条件去测同一批羟乙酯,可是很不一样啊:首先,出峰时间是4~5分钟,电压是1200以上,平顶,含量是95左右。。。。为什么会这样?我自己用柱温138度,进样器、检测器200度测的结果是这样的:[img=,690,581]https://ng1.17img.cn/bbsfiles/images/2019/09/201909251136256900_4608_1853141_3.png!w690x581.jpg[/img]真心搞不懂啊。。。。。然后甲基丙烯酸羟丙酯更奇怪。。。[img=,690,646]https://ng1.17img.cn/bbsfiles/images/2019/09/201909251136104940_5072_1853141_3.png!w690x646.jpg[/img]这是什么状况啊?!!!跪求大侠大神帮忙~~~~~

  • 【转帖】“曲美”减肥胶囊全国下架 因可能引发心脏病

    小贴士  包装完整可直接退货  太极集团新闻中心张女士表示,公司已在全国各大零售药店设置退货点,如产品包装完整,消费者可凭购物小票直接到药店退货;如已拆封或购物小票遗失,消费者可拨打热线电话(4008877698)联系退货。  本报记者苏伟 实习记者刘乃榕  市场调查  “曲美”断货顾客生疑  “曲美”是太极集团2000年8月推出的减肥药,主要成分为盐酸西布曲明。因为有巩俐、范冰冰等明星代言,是减肥药市场不折不扣的明星产品。  市民李女士说,她服用“曲美”已有一段时间,前天下午她去金象大药房买药时却发现,“曲美”下架了。“我回来在网上查找,也买不到这款产品。药房销售人员说,‘曲美’本月25日就下架了,今后也不会再卖。不知道这个药出了什么问题。”  李女士说,她服用“曲美”时,一直伴有口干和偶尔便秘等不良反应,此次药品悄然下架,她担心是药品存在问题,希望厂商给予合理解释。  金象大药房销售部门工作人员前日证实,“曲美”已于本月25日下架,系因生产厂商召回,“这个药以后还卖不卖,我们没有接到通知。”  记者随后登录全新大药房、德威治大药房、嘉事堂大药房等网站查询,显示均无“曲美”销售。  太极集团负责北京地区药品销售的吴先生表示,集团已经下达召回指示,目前除一些比较偏僻的零售点,北京地区绝大部分网点已经停止销售“曲美”。  其他厂商  同类产品仍有销售  记者查询得知,在国内市场,含有西布曲明成分的减肥产品多达数十种,“曲美”之外尚有“澳曲轻”、“新芬美琳”、“可秀”等众多品牌。“曲美”下架后,由南京长澳制药有限公司生产的“澳曲轻”和四平埃默药业有限公司生产的“新芬美琳”目前仍有销售。  “新芬美琳”华北地区销售负责人孙女士昨天表示,目前公司没有下达停售指令,但从今年6月开始,公司已不再生产这一产品。孙女士称知晓含有西布曲明的减肥产品在欧美被禁一事,公司正在静候国家药监部门的进一步措施,以决定是否停售该产品。  太极集团  药监部门并无要求  太极集团新闻中心张女士前日表示,本月25日,集团已向全国各大经销商和药房发布了停止销售并召回“曲美”的函。张女士强调,此次召回系公司主动行为,并非出于国家药监部门要求。  据张女士介绍,今年10月8日,美国食品药品监督管理局(FDA)发文称,因西布曲明会给服用者带来患心脏病和中风的风险,责令以此为主要成分的雅培公司减肥产品“诺美婷”退出美国市场。获悉FDA这一决定后,太极集团决定在全国范围停售“曲美”。  张女士说,太极集团针对“曲美”的使用者拟写了《关于停止服用西布曲明胶囊的函》,在全国各大零售药店设置了退货点,并已开通应急处理热线(4008877698),及时解决消费者关于“曲美”的疑问及退货咨询。  张女士表示,“曲美”是在国家药监部门正式依法注册、生产质量完全符合国家标准的产品,虽然此次召回会使集团损失至少上千万元,但公司本着公众利益第一的宗旨,还是决定召回“曲美”。张女士说,在做好退市工作的同时,集团将申请在国家食品药品监督管理局的监管下,继续开展西布曲明的安全性研究工作。  新闻背景  主要成分欧美被禁  西布曲明是一种中枢神经抑制剂,具有兴奋、抑食等作用。  1997年,西布曲明获美国FDA批准上市。当年,雅培公司以西布曲明为主要成分的减肥产品“诺美婷”首先在墨西哥上市,10多年来,同类产品风靡全球。  2005年,欧盟将“诺美婷”纳入“警告类药物”,称其可能引发中风等各种风险。2007年,日本厚生省提醒公众,慎用含有盐酸西布曲明成分的减肥产品。  今年1月,欧盟人用医药产品委员会(CHMP)称西布曲明可能增加服用者患心脏病及中风几率,暂停所有含西布曲明成分的减肥药在欧盟地区销售使用。美国FDA、澳大利亚医疗产品局(TGA)随后要求生产厂商修改产品说明书,警示用药风险。  10月8日,美国FDA发文,责令“诺美婷”撤出美国市场。加拿大卫生部门随后表示,雅培正在该国召回“诺美婷”。  部门举措  用药风险须告知医患  今年2月26日,国家食品药品监督管理局通过其官方网站发布消息,称密切关注西布曲明安全性信息。该消息称,国家药监局已要求国家药品不良反应监测中心立即分析含西布曲明成分的减肥药在我国的不良反应报告和监测情况,并对该类药品在我国应用的安全性情况进行分析评价。  国家药监局同时要求药品生产企业,立即采取适宜的方式将现在已知的用药风险“心血管高危患者服用西布曲明可能导致严重后果”告知医生和患者;针对已知和潜在的风险立即修改完善说明书,提示安全合理用药。  国家药监局称,正密切关注西布曲明心血管终点试验(SCOUT)研究的最终结果,并将根据其结果,参考其他国家药监当局的监管措施,结合我国的情况,采取相应的监管措施。  国家药监局同时提醒医疗机构和公众,所有含西布曲明成分的减肥药都是处方药,必须严格按照适应症和用法用量用药,严密监测用药后的反应,以保障用药安全。  国家药监局同日发布的统计数据显示,2004年1月1日至2010年1月15日,国家药品不良反应监测中心共收到西布曲明相关不良反应报告298例,主要不良反应表现为心悸、便秘、口干、头晕、失眠等,多为说明书已载明的不良反应,目前无死亡病例。

  • 【求助】测多环芳烃时溶剂二甲基亚砜会有影响吗?如何去除?

    【求助】测多环芳烃时溶剂二甲基亚砜会有影响吗?如何去除?

    最近在测多环芳烃降解菌的降解率,遇到了一个问题。实验室的多环芳烃是用二甲基亚砜配的,所以在测样时用丙酮:二氯甲烷(1:1)萃取之后,旋蒸浓缩时都不会浓缩至干,在进样时我就直接定容到1mL,然后拿去测了,结果就是不知道这样是否会有影响。如果要是去除的话怎么去除,因为二甲基亚砜的沸点很高,而旋蒸的时候也不可能把温度调的很高,我一般也就是在35~40度左右。请教各位高手。网上大概查了下,有人说会抬高基线,这个我倒是没觉得,上张图大家帮忙给看看吧,我怀疑前面3~4min出的那个特别高的峰就是二甲基亚砜。。[img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906030128_153298_1623623_3.jpg[/img]

  • 岛津气质联用跑出来很多十四甲基环七硅氧烷这类物质,还每五分钟出一次峰怎么办。

    几个月前用还没啥问题,突然后边跑什么物质都是很少的风味物质,然后还有大量十四甲基环七硅氧烷这类物质,也老化过柱子,但是没啥效果。求大神指导啊,柱子是Rtx-5ms的用了有一段时间了。老板又买了一根新柱子同型号,我嫌老化麻烦没换,但是旧柱子就是这个情况。岛津的仪器[img=,690,518]https://ng1.17img.cn/bbsfiles/images/2019/12/201912261907382463_4597_4081549_3.png[/img]

  • 6.1 HPLC法测定盐酸纳美芬的含量及其有关物质

    6.1  HPLC法测定盐酸纳美芬的含量及其有关物质

    作者:钟武; 郑志兵; 肖军海; 任珅; 李松; 军事医学科学院毒物药物研究所; 军事医学科学院毒物药物研究所 北京;摘要:目的:建立高效液相色谱法测定新药盐酸纳美芬及其注射剂的含量及其有关物质。方法:采用迪马公司C18钻石色谱柱(250 mm×4.6 mm,5μm);流动相:乙腈-0.05 mol·L-1的磷酸缓冲液(20:80),其中1 000 mL缓冲液中含有7.8 g磷酸二氢钠和2 mL的三乙胺,用85%的磷酸调节pH为4.2±0.02;流速:1.0 mL·min-1;检测波长为210 nm。结果:HPLC法测定的线性范围为21-126μg·mL-1,r=1.000,最低检测限为0.2 ng,本方法的重复性和精密度良好(RSD2%),平均回收率为99.30%-99.42%。结论:采用HPLC法测定盐酸纳美芬及其注射液的含量和有关物质,方法简便,结果准确。http://ng1.17img.cn/bbsfiles/images/2012/07/201207161705_377929_2379123_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/07/201207161705_377930_2379123_3.jpg

  • 求甲基丙烯酸的检测方法

    甲基丙烯酸没查到国标,有没有简单合适的滴定方法可以准确的分析甲基丙烯酸呢,我查过有色谱分析的,我怕酸性太强对色谱柱不好

  • DNA酶切及凝胶电泳 怎样跑胶

    第一节 概 述一. DNA的限制性内切酶酶切分析限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA序列之内或其附近的特异位点上,并切割双链DNA。它可分为三类:Ⅰ类和Ⅲ类酶在同一蛋白质分子中兼有切割和修饰(甲基化)作用且依赖于ATP的存在。Ⅰ类酶结合于识别位点并随机的切割识别位点不远处的DNA,而Ⅲ类酶在识别位点上切割DNA分子,然后从底物上解离。Ⅱ类由两种酶组成: 一种为限制性内切核酸酶(限制酶),它切割某一特异的核苷酸序列; 另一种为独立的甲基化酶,它修饰同一识别序列。Ⅱ类中的限制性内切酶在分子克隆中得到了广泛应用,它们是重组DNA的基础。绝大多数Ⅱ类限制酶识别长度为4至6个核苷酸的回文对称特异核苷酸序列(如EcoRⅠ识别六个核苷酸序列:5'- G↓AATTC-3'),有少数酶识别更长的序列或简并序列。Ⅱ类酶切割位点在识别序列中,有的在对称轴处切割,产生平末端的DNA片段(如SmaⅠ:5'-CCC↓GGG-3');有的切割位点在对称轴一侧,产生带有单链突出末端的DNA片段称粘性未端, 如EcoRⅠ切割识别序列后产生两个互补的粘性末端。5'…G↓AATTC…3' →5'… G AATTC…3'3'…CTTAA↑G …5' →3'… CTTAA G…5'DNA纯度、缓冲液、温度条件及限制性内切酶本身都会影响限制性内切酶的活性。大部分限制性内切酶不受RNA或单链DNA的影响。当微量的污染物进入限制性内切酶贮存液中时,会影响其进一步使用,因此在吸取限制性内切酶时,每次都要用新的吸管头。如果采用两种限制性内切酶,必须要注意分别提供各自的最适盐浓度。若两者可用同一缓冲液,则可同时水解。若需要不同的盐浓度,则低盐浓度的限制性内切酶必须首先使用,随后调节盐浓度,再用高盐浓度的限制性内切酶水解。也可在第一个酶切反应完成后,用等体积酚/氯仿抽提,加0.1倍体积3mol/L NaAc和2倍体积无水乙醇,混匀后置-70℃低温冰箱30分钟,离心、干燥并重新溶于缓冲液后进行第二个酶切反应。DNA限制性内切酶酶切图谱又称DNA的物理图谱,它由一系列位置确定的多种限制性内切酶酶切位点组成,以直线或环状图式表示。在DNA序列分析、基因组的功能图谱绘制、DNA的无性繁殖、基因文库的构建等工作中,建立限制性内切酶图谱都是不可缺少的环节,近年来发展起来的RFLP(限制性片段长度多态性)技术更是建立在它的基础上。构建DNA限制性内切酶图谱有许多方法。通常结合使用多种限制性内切酶,通过综合分析多种酶单切及不同组合的多种酶同时切所得到的限制性片段大小来确定各种酶的酶切位点及其相对位置。酶切图谱的使用价值依赖于它的准确性和精确程度。在酶切图谱制作过程中,为了获得条带清晰的电泳图谱,一般DNA用量约为0.5-1μg。限制性内切酶的酶解反应最适条件各不相同,各种酶有其相应的酶切缓冲液和最适反应温度(大多数为37℃)。对质粒DNA酶切反应而言, 限制性内切酶用量可按标准体系1μg DNA加1单位酶,消化1-2小时。但要完全酶解则必须增加酶的用量,一般增加2-3倍,甚至更多,反应时间也要适当延长。二. 凝胶电泳琼脂糖或聚丙烯酰胺凝胶电泳是分离鉴定和纯化DNA片段的标准方法。该技术操作简便快速,可以分辨用其它方法(如密度梯度离心法)所无法分离的DNA片段。当用低浓度的荧光嵌入染料溴化乙啶(Ethidium bromide, EB)染色,在紫外光下至少可以检出1-10ng的DNA条带,从而可以确定DNA片段在凝胶中的位置。此外,还可以从电泳后的凝胶中回收特定的DNA条带,用于以后的克隆操作。琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。琼脂糖凝胶分离DNA片度大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA片段。琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。聚丙烯酰胺分离小片段DNA(5-500bp)效果较好,其分辩力极高,甚至相差1bp的DNA片段就能分开。聚丙烯酰胺凝胶电泳很快,可容纳相对大量的DNA,但制备和操作比琼脂糖凝胶困难。聚丙烯酰胺凝胶采用垂直装置进行电泳。目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。琼脂糖主要在DNA制备电泳中作为一种固体支持基质,其密度取决于琼脂糖的浓度。在电场中,在中性pH值下带负电荷的DNA向阳极迁移,其迁移速率由下列多种因素决定:1、DNA的分子大小:线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中蠕行,因而迁移得越慢。2、琼脂糖浓度一个给定大小的线状DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率的对数与凝胶浓度成线性关系。凝胶浓度的选择取决于DNA分子的大小。分离小于0.5kb的DNA片段所需胶浓度是1.2-1.5%,分离大于10kb的DNA分子所需胶浓度为0.3-0.7%, DNA片段大小间于两者之间则所需胶浓度为0.8-1.0%。

  • 【求助】用内标法测环氧丙烷时,为什么加水稀释后测量值变大?

    各位大侠,我测量环氧丙烷用的内标物是甲基叔丁基醚,样品里还有大量甲醇和水.没出来的环氧丙烷值比实际值偏大.我配了一份已知质量的环氧丙烷,验证标准曲线没问题,但往其中加水稀释后,测量值大大偏高.请问这是什么原因???按理说内标法不会出现这种情况呀?稀释时连同内标物一同稀释了呀!!!

  • 【讨论】各位帮忙参考下甲基丙烯酸甲酯的分析条件.

    【讨论】各位帮忙参考下甲基丙烯酸甲酯的分析条件.

    各位,请帮助参考下,看看在现有的条件下,有什么办法能够提高各组分的分离度?进样物质:甲基丙烯酸甲酯(AR级)溶剂,可能含有的组分有:甲醇(),丙酮,丙烯酸甲酯,异丁酸甲酯, 甲基丙烯酸乙酯,а-羟基异丁酸甲酯.仪器:AGILENT7890A ,FID, 毛细管DB-WAX: 30m*320mm*0.25mm,ASL进样:1uL.操作条件:分流比:50:1.压力:7psi,27.506sec/min.初温35度,保持0.1分钟,然后以4度/分钟升至50度,再以15度/分钟升至150度,保持10分钟.色谱图:图1:放大图[img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907101554_159431_1625521_3.jpg[/img]图2:缩小图1[img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907101554_159432_1625521_3.jpg[/img]图2:缩小图2[img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907101555_159433_1625521_3.jpg[/img]问题:1在图1中,进入的是溶剂甲基丙烯酸甲酯,为什么会出现主成分的色谱图是前伸峰,而有时候,我在做其它的溶剂的时候,会出现后延峰?2在图2中,除上述的分离方法外,在没有办法改变硬件的情况下,是否有别的办法提高分离度.应该还需要变化那些条件,如何去变化?3在图3中,组分(未知)4.129和9.997是否拖尾太历害,有什么办法改进?(确认不是鬼峰)

  • 【求助】2-甲基-1,3-二氧环戊烷分解产物?

    谁帮下忙。。2-甲基-1,3-二氧环戊烷分解后可以产生乙醛和什么??这种物质子在我的填充柱色谱中在乙二醇后面很临近。我猜的环氧乙烷肯定不在这个位置,丙二醇的话化学式好像写不出平衡~!谁能帮我分析下。。。非常感谢

  • DNA甲基化及其影响

    [size=20px]DNA[/size][size=20px]甲基化[/size][size=20px]及其影响[/size][size=16px]DNA[/size][size=16px]甲基化是指在[/size][size=16px]DNA[/size][size=16px]甲基转移酶([/size][size=16px]DNA methyltransferase[/size][size=16px],[/size][size=16px]DNMT[/size][size=16px])的催化作用下,[/size][size=16px]DNA[/size][size=16px]双螺旋的胞嘧啶核苷酸嘧啶环的第[/size][size=16px]5[/size][size=16px]位碳原子甲基化,并与其[/size][size=16px]3[/size][font='等线'][size=16px]'[/size][/font][size=16px]端鸟嘌呤形成甲基化的胞嘧啶[/size][size=16px]-[/size][size=16px]鸟嘌呤二核苷酸[/size][size=16px](Cytosine -phosphoric acid-Guanine, CpG)[/size][size=16px]。[/size][size=16px]DNA[/size][size=16px]低甲基[/size][size=16px]化增加[/size][size=16px]染色体不稳定性[/size][size=16px],[/size][size=16px]启动子[/size][size=16px]CpG[/size][size=16px]岛局部高甲基化可使其下游基因[/size][size=16px]([/size][size=16px]包括抑癌基因[/size][size=16px])[/size][size=16px]失活从而发挥致癌作用。与[/size][size=16px]TCGA (The Cancer Genome Atlas)[/size][size=16px]数据库中其他癌种相比,[/size][size=16px]SCLC[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]启动子甲基化水平是最高的[/size][font='times new roman'][sup][size=16px][1][/size][/sup][/font][size=16px],它与[/size][size=16px]SCLC[/size][size=16px]神经内分泌特性关系密切,影响[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]1.1 DNA[/size][size=20px]甲基化定义[/size][size=20px]SCLC[/size][size=20px]不同亚型且影响[/size][size=20px]SCLC[/size][size=20px]神经内分泌特性[/size][size=16px]Poirier[/size][size=16px]等[/size][font='times new roman'][sup][size=16px][1][/size][/sup][/font][size=16px]发现甲基化与基因表达相关并能区分原发性[/size][size=16px]SCLC[/size][size=16px]亚型。[/size][size=16px]M1[/size][size=16px]、[/size][size=16px]M2[/size][size=16px]和[/size][size=16px]SQ-P[/size][size=16px]是[/size][size=16px]SCLC[/size][size=16px]三个亚型,它们具有不同的甲基化模式和基因表达,[/size][size=16px]SQ-P[/size][size=16px]甲基化频率明显低于[/size][size=16px]M1[/size][size=16px]和[/size][size=16px]M2[/size][size=16px]。但这种分型与[/size][size=16px]SCLC[/size][size=16px]临床预后无关。随后,[/size][size=16px]Saito Yuichi [/size][font='times new roman'][sup][size=16px][2][/size][/sup][/font][size=16px]等发现了甲基化模式和预后均不同的两种[/size][size=16px]SCLC[/size][size=16px]类型[/size][size=16px]:[/size][size=16px]一类是[/size][size=16px]CpG[/size][size=16px]岛甲基化表型[/size][size=16px](CpG island methylator phenotype, CIMP)[/size][size=16px]整体高而预后差的聚类[/size][size=16px]1 (SCLC CIMP)[/size][size=16px],另一类是[/size][size=16px]CIMP[/size][size=16px]低而预后较好的聚类[/size][size=16px]2 (non-CIMP)[/size][size=16px]。他们证明了甲基化水平的升高与预后不良有关,[/size][size=16px]SCLC CIMP[/size][size=16px]可能是手术治疗的预后指标。因此,我们可以利用[/size][size=16px]DNA[/size][size=16px]甲基化及基因表达分析定义[/size][size=16px]SCLC[/size][size=16px]亚型并进一步预测[/size][size=16px]SCLC[/size][size=16px]临床预后。[/size][size=16px]SCLC[/size][size=16px]起源于肺神经内分泌细胞。[/size][size=16px]Kalari[/size][size=16px]等[/size][font='times new roman'][sup][size=16px][3][/size][/sup][/font][size=16px]发现[/size][size=16px]SCLC[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]甲基化图谱提示神经内分泌细胞存在分化缺陷,甲基化基因作为转录因子在神经元分化过程中显著富集。他们推测[/size][size=16px]SCLC[/size][size=16px]的起源可能有两种机制:一是启动子甲基化导致细胞分化过程中关键转录因子的缺失;二是[/size][size=16px]DNA[/size][size=16px]甲基化导致相应结合位点区域的功能失活使起源细胞向恶性状态发展。二者共同促进神经内分泌细胞分化缺陷,增强肿瘤干细胞向其转化的能力。由此可见,[/size][size=16px]DNA[/size][size=16px]甲基[/size][size=16px]化通过[/size][size=16px]影响[/size][size=16px]SCLC[/size][size=16px]神经内分泌特性来影响[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]1[/size][size=20px].2 [/size][size=20px]DNA[/size][size=20px]甲基化可筛选早期[/size][size=20px]SCLC[/size][size=16px]肺癌的发展是一个多步骤的过程,其中包括[/size][size=16px]DNA[/size][size=16px]状态的改变。肿瘤相关基因启动子高甲基化是一种常见的改变,常与抑癌基因失活相关,由于其稳定性好,易于在组织和体液中检测,可作为癌症检测和监测的候选生物标志物[/size][font='times new roman'][sup][size=16px][4][/size][/sup][/font][size=16px]。有研究者利用[/size][size=16px]DNA[/size][size=16px]甲基[/size][size=16px]化板通过[/size][size=16px]血液活检的方式对肺癌男性患者进行早期筛选,发现[/size][size=16px] RAS[/size][size=16px]相关区域家族[/size][size=16px]1A[/size][size=16px]基因[/size][size=16px](Ras association domain family 1A gene, RASSF1A)[/size][size=16px]对[/size][size=16px]SCLC[/size][size=16px]的敏感性为[/size][size=16px]75%[/size][size=16px],特异性为[/size][size=16px]88%[/size][size=16px]。基于此,异常的[/size][size=16px]DNA[/size][size=16px]启动子甲基[/size][size=16px]化可能[/size][size=16px]是一个有价值的早期[/size][size=16px]SCLC[/size][size=16px]微创检测方法,可以提高患者的依从性、降低医疗成本并有助于癌症分型和预后[/size][font='times new roman'][sup][size=16px][5][/size][/sup][/font][size=16px]。但这项研究只针对男性,研究成果是否可以应用于所有人群仍需进一步验证[/size][size=20px]1.3 [/size][size=20px]DNA[/size][size=20px]甲基化与[/size][size=20px]SCLC[/size][size=20px]耐药相关[/size][size=16px]H3[/size][size=16px]赖氨酸[/size][size=16px]27[/size][size=16px]三[/size][size=16px]甲基化[/size][size=16px](H3K27me3) [/size][size=16px]与多药耐药有关,它由[/size][size=16px]ZEST[/size][size=16px]同源增强子[/size][size=16px]2(EZH2)[/size][size=16px]催化,二者在[/size][size=16px]SCLC[/size][size=16px]组织和多药耐药的[/size][size=16px]SCLC[/size][size=16px]细胞中的表达水平明显升高。长链非编码[/size][size=16px]RNA (lncRNA) HOX[/size][size=16px]转录本反义[/size][size=16px]RNA (HOTAIR)[/size][size=16px]可以预测肿瘤进展。[/size][size=16px]HOTAIR[/size][size=16px]通过下调耐药[/size][size=16px]SCLC[/size][size=16px]中[/size][size=16px]DNMT1[/size][size=16px]和[/size][size=16px]DNMT3b[/size][size=16px]的表达来调节[/size][size=16px]HOXA1[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]甲基化。研究表明,在[/size][size=16px]SCLC[/size][size=16px]细胞系中,敲除[/size][size=16px]HOTAIR[/size][size=16px]基因可显著降低[/size][size=16px]H3K27me3[/size][size=16px]和[/size][size=16px]EZH2[/size][size=16px]水平,且二者通过[/size][size=16px]HOTAIR[/size][size=16px]来影响[/size][size=16px]HOXA1 DNA[/size][size=16px]甲基化,[/size][size=16px]H3K27me3[/size][size=16px]很可能是[/size][size=16px]SCLC[/size][size=16px]化疗耐药的潜在治疗靶点[/size][font='times new roman'][sup][size=16px][6][/size][/sup][/font][size=16px]。位于人端粒酶逆转录酶[/size][size=16px](HTERT)[/size][size=16px]启动子区的表观遗传学改变是癌症中最常见的非编码基因组修饰之一。[/size][size=16px]HTERT[/size][size=16px]上调可促进[/size][size=16px]SCLC[/size][size=16px]细胞系的增殖和迁移,其启动子区经辐射诱导后的高度甲基化可上调其下游效应因子[/size][size=16px]EZH2[/size][size=16px]的表达从而使[/size][size=16px]SCLC[/size][size=16px]具有放射抗性[/size][font='times new roman'][sup][size=16px][7][/size][/sup][/font][size=16px]。胞质三核苷酸修复外切酶[/size][size=16px]1(TREX1)[/size][size=16px]是一种高效的[/size][size=16px]3[/size][size=16px]’[/size][size=16px]→[/size][size=16px] 5[/size][size=16px]’[/size][size=16px]胞质外切酶,能迅速降解双链和单链[/size][size=16px]DNA([/size][size=16px]双链和单链[/size][size=16px]DNA)[/size][font='times new roman'][sup][size=16px][8][/size][/sup][/font][size=16px]。[/size][size=16px]SCLC[/size][size=16px]细胞系在[/size][size=16px]CCLE[/size][size=16px]中具有最高的[/size][size=16px]TREX1[/size][size=16px]甲基化和最低的[/size][size=16px]TREX1[/size][size=16px]表达,低[/size][size=16px]TREX1[/size][size=16px]可增加[/size][size=16px]SCLC[/size][size=16px]对[/size][size=16px]Aurora[/size][size=16px]激酶抑制剂治疗的敏感性,可作为[/size][size=16px]SCLC[/size][size=16px]新的分子标记或靶点[/size][font='times new roman'][sup][size=16px][9][/size][/sup][/font][size=16px]。[/size][size=16px]Y[/size][size=16px]样染色体基因([/size][size=16px]Chromo-domain Y like[/size][size=16px],[/size][size=16px]CDYL[/size][size=16px])是一种新型表观遗传因子,调控神经系统的神经元发育。[/size][size=16px]CDYL[/size][size=16px]通过调控[/size][size=16px]CDKN1C[/size][size=16px]启动子[/size][size=16px]H3K27[/size][size=16px]三[/size][size=16px]甲基化来促进[/size][size=16px]SCLC[/size][size=16px]化疗耐药,且其表达水平与患者临床分期相关,可用于预测[/size][size=16px]SCLC[/size][size=16px]患者的疾病进展和预后,为[/size][size=16px]SCLC[/size][size=16px]临床诊治提供了一个新的分子靶点[/size][font='times new roman'][sup][size=16px][10][/size][/sup][/font][size=16px]。[/size][size=16px]综上,[/size][size=16px]DNA[/size][size=16px]甲基化在[/size][size=16px]SCLC[/size][size=16px]中水平较高,甲基化分析可以区分[/size][size=16px]SCLC[/size][size=16px]亚型,阐明[/size][size=16px]SCLC[/size][size=16px]发病及耐药机制,发现癌症的特异性生物标志物,有助于[/size][size=16px]SCLC[/size][size=16px]早期诊断及判断预后。[/size]

  • 十二甲基环六硅氧烷

    最近进了个样品,固相微萃取进的样。有点脏。就用乙醇进了下空白针。结果发现,除了之前带的杂质外还有一个十二甲基环六硅氧烷峰。不知道是什么,有没有可能是柱流失?柱子是HP-5MS。

  • 【原创】固相萃取(SPE)应用实例汇集(14)---每天一例

    [font=黑体]尿液中的滥用药物残留多次洗脱固相萃取净化方法[/font]1. 样品预处理3mL尿液,加入4.5mL,0.1mol/L的磷酸钾缓冲液(pH6.0),调整pH值至6.3-6.3,加入β-葡萄糖苷酸酶,50℃水解2小时。2. Bond Elut Certify SPE净化a. 活化:2mL甲醇,2mL水和2mL 0.1mol/L的磷酸钾缓冲液(pH6.0)分别预淋洗SPE柱床;b. 上样:磷酸钾缓冲液液面与吸附剂平面水平时,立即上样;c. 淋洗:用2mL 1mol/L乙酸淋洗,随后以200mL/sec的速度通空气吹扫柱床3min;d. 洗脱:● 酸性和中性药物用2mL氯仿/丙酮( 3:1,v/v)洗脱,接收洗脱液1;● 然后用2mL甲醇淋洗SPE柱,并再一次通空气干燥3min;● 碱性药物用2mL含有2%的氨水的乙酸乙酯/二氯甲烷/ 2-丙醇(5:4:1,v/v)溶液进行洗脱,收集洗脱液2;e. 洗脱液1经氮吹干燥,残留物中加入100μL甲醇重新溶解,然后用4.5mL0.1mol/L的磷酸钾缓冲液(pH6.0)稀释;3. Bond Elut Certify II SPE 净化a. 活化:2mL甲醇,2mL水和2mL 0.1mol/L磷酸钾缓冲液(pH6.0)分别预淋洗SPE柱床;b. 上样:处理后的洗脱液1,直接载入活化好的SPE柱;c. 淋洗:用2mL 0.1mol/L的磷酸盐缓冲液淋洗柱床;d. 以200mL/sec的速度通空气吹扫柱床3min;e. 洗脱,中性物质用2mL乙酸乙酯/丙酮(4 :1)或氯仿/丙酮( 3:1)洗脱,酸性物质用2 mL甲醇洗脱,分别收集洗脱液3和4;4. 检测● 碱性药物洗脱液 经氮吹干燥后,用100μL甲醇和重氮甲烷的香精油溶液进行衍生化处理,放置10min后,氮吹干燥,然后用100μl乙酸乙酯溶解,进行GC-MS EI分析。● 中性药物洗脱液2经氮吹干燥,用100μL甲醇/水(1:1,v:v)重新溶解,进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析;● 酸性药物洗脱液3经氮吹干燥,用100μL的Methelute溶剂(苯基-3-甲基氢氧化铵)重新溶解,进行GC-MS PCI检测;5. 样品成分非类固醇消炎止痛药卡布洛芬,clanobutin,扶他林,二氟尼酸,依尔替酸,依他尼酸,非诺洛芬,氟芬那酸,氟比洛芬,氟尼辛葡甲胺,呋塞米,吲哚美辛,吲哚洛芬,苯酮苯丙酸,痛立克,甲氯灭酸,甲灭酸,萘普生,舒林酸苯噻丙酸,托芬那辛,托麦汀,维达洛芬,佐美酸皮质类固醇类药物强的松,氢化可的松,氟米松,氟美松,加强龙,醋酸曲安奈德,脱氧皮质酮甲酯化或者重氮甲烷衍生化后通过GC-MS/MS检测的中性和酸性药物乙醇和乙二醇类麦酚生 ,美索巴莫,愈创蓝油烃,心得安乙二醇代谢物苯二氮平类安定,去甲羟基安定,硝基安定,羟基安定巴比妥类戊巴比妥,戊巴比妥代谢物,苯巴比通 ,异戊巴比妥其它药物苯坐卡因,普罗林坦内酰胺代谢物 ,杀鼠灵,安体舒通利尿剂双氯非那胺,bendroflumethazide ,环戊氯噻嗪,喹乙唑酮,氯噻酮,氯噻,甲氯噻嗪,美托拉腙Pyrazolidindiones苯基丁氮酮,ketasone ,羟基保泰松,γ-羟基苯基丁氮酮黄嘌呤类咖啡因,茶碱 ,可可碱 ,1,7-二甲基黄嘌呤,羟乙基茶碱,己酮可可碱其它杂环类药物丙基安替比林,美芬妥英,苯妥英,甲乙哌酮本方法中使用的SPE柱:Bond Elut Certify(130mg, 3mL,PN.12102051)和Bond Elut Certify II(200mg, 3mL, PN.12102080)。

  • 【原创大赛】DNA甲基化

    [size=20px]1 DNA[/size][size=20px]甲基化[/size][size=16px]DNA[/size][size=16px]甲基化是指在[/size][size=16px]DNA[/size][size=16px]甲基转移酶([/size][size=16px]DNA methyltransferase[/size][size=16px],[/size][size=16px]DNMT[/size][size=16px])的催化作用下,[/size][size=16px]DNA[/size][size=16px]双螺旋的胞嘧啶核苷酸嘧啶环的第[/size][size=16px]5[/size][size=16px]位碳原子甲基化,并与其[/size][size=16px]3[/size][font='等线'][size=16px]'[/size][/font][size=16px]端鸟嘌呤形成甲基化的胞嘧啶[/size][size=16px]-[/size][size=16px]鸟嘌呤二核苷酸[/size][size=16px](Cytosine -phosphoric acid-Guanine, CpG)[/size][size=16px]。[/size][size=16px]DNA[/size][size=16px]低甲基[/size][size=16px]化增加[/size][size=16px]染色体不稳定性[/size][size=16px],[/size][size=16px]启动子[/size][size=16px]CpG[/size][size=16px]岛局部高甲基化可使其下游基因[/size][size=16px]([/size][size=16px]包括抑癌基因[/size][size=16px])[/size][size=16px]失活从而发挥致癌作用。与[/size][size=16px]TCGA (The Cancer Genome Atlas)[/size][size=16px]数据库中其他癌种相比,[/size][size=16px]SCLC[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]启动子甲基化水平是最高的[/size][font='times new roman'][size=16px][1][/size][/font][size=16px],它与[/size][size=16px]SCLC[/size][size=16px]神经内分泌特性关系密切,影响[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]1.1 DNA[/size][size=20px]甲基化定义[/size][size=20px]SCLC[/size][size=20px]不同亚型且影响[/size][size=20px]SCLC[/size][size=20px]神经内分泌特性[/size][size=16px]Poirier[/size][size=16px]等[/size][font='times new roman'][size=16px][1][/size][/font][size=16px]发现甲基化与基因表达相关并能区分原发性[/size][size=16px]SCLC[/size][size=16px]亚型。[/size][size=16px]M1[/size][size=16px]、[/size][size=16px]M2[/size][size=16px]和[/size][size=16px]SQ-P[/size][size=16px]是[/size][size=16px]SCLC[/size][size=16px]三个亚型,它们具有不同的甲基化模式和基因表达,[/size][size=16px]SQ-P[/size][size=16px]甲基化频率明显低于[/size][size=16px]M1[/size][size=16px]和[/size][size=16px]M2[/size][size=16px]。但这种分型与[/size][size=16px]SCLC[/size][size=16px]临床预后无关。随后,[/size][size=16px]Saito Yuichi [/size][font='times new roman'][size=16px][2][/size][/font][size=16px]等发现了甲基化模式和预后均不同的两种[/size][size=16px]SCLC[/size][size=16px]类型[/size][size=16px]:[/size][size=16px]一类是[/size][size=16px]CpG[/size][size=16px]岛甲基化表型[/size][size=16px](CpG island methylator phenotype, CIMP)[/size][size=16px]整体高而预后差的聚类[/size][size=16px]1 (SCLC CIMP)[/size][size=16px],另一类是[/size][size=16px]CIMP[/size][size=16px]低而预后较好的聚类[/size][size=16px]2 (non-CIMP)[/size][size=16px]。他们证明了甲基化水平的升高与预后不良有关,[/size][size=16px]SCLC CIMP[/size][size=16px]可能是手术治疗的预后指标。因此,我们可以利用[/size][size=16px]DNA[/size][size=16px]甲基化及基因表达分析定义[/size][size=16px]SCLC[/size][size=16px]亚型并进一步预测[/size][size=16px]SCLC[/size][size=16px]临床预后。[/size][size=16px]SCLC[/size][size=16px]起源于肺神经内分泌细胞。[/size][size=16px]Kalari[/size][size=16px]等[/size][font='times new roman'][size=16px][3][/size][/font][size=16px]发现[/size][size=16px]SCLC[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]甲基化图谱提示神经内分泌细胞存在分化缺陷,甲基化基因作为转录因子在神经元分化过程中显著富集。他们推测[/size][size=16px]SCLC[/size][size=16px]的起源可能有两种机制:一是启动子甲基化导致细胞分化过程中关键转录因子的缺失;二是[/size][size=16px]DNA[/size][size=16px]甲基化导致相应结合位点区域的功能失活使起源细胞向恶性状态发展。二者共同促进神经内分泌细胞分化缺陷,增强肿瘤干细胞向其转化的能力。由此可见,[/size][size=16px]DNA[/size][size=16px]甲基[/size][size=16px]化通过[/size][size=16px]影响[/size][size=16px]SCLC[/size][size=16px]神经内分泌特性来影响[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]1[/size][size=20px].2 [/size][size=20px]DNA[/size][size=20px]甲基化可筛选早期[/size][size=20px]SCLC[/size][size=16px]肺癌的发展是一个多步骤的过程,其中包括[/size][size=16px]DNA[/size][size=16px]状态的改变。肿瘤相关基因启动子高甲基化是一种常见的改变,常与抑癌基因失活相关,由于其稳定性好,易于在组织和体液中检测,可作为癌症检测和监测的候选生物标志物[/size][font='times new roman'][size=16px][4][/size][/font][size=16px]。有研究者利用[/size][size=16px]DNA[/size][size=16px]甲基[/size][size=16px]化板通过[/size][size=16px]血液活检的方式对肺癌男性患者进行早期筛选,发现[/size][size=16px] RAS[/size][size=16px]相关区域家族[/size][size=16px]1A[/size][size=16px]基因[/size][size=16px](Ras association domain family 1A gene, RASSF1A)[/size][size=16px]对[/size][size=16px]SCLC[/size][size=16px]的敏感性为[/size][size=16px]75%[/size][size=16px],特异性为[/size][size=16px]88%[/size][size=16px]。基于此,异常的[/size][size=16px]DNA[/size][size=16px]启动子甲基[/size][size=16px]化可能[/size][size=16px]是一个有价值的早期[/size][size=16px]SCLC[/size][size=16px]微创检测方法,可以提高患者的依从性、降低医疗成本并有助于癌症分型和预后[/size][font='times new roman'][size=16px][5][/size][/font][size=16px]。但这项研究只针对男性,研究成果是否可以应用于所有人群仍需进一步验证[/size][size=20px]1.3 [/size][size=20px]DNA[/size][size=20px]甲基化与[/size][size=20px]SCLC[/size][size=20px]耐药相关[/size][size=16px]H3[/size][size=16px]赖氨酸[/size][size=16px]27[/size][size=16px]三[/size][size=16px]甲基化[/size][size=16px](H3K27me3) [/size][size=16px]与多药耐药有关,它由[/size][size=16px]ZEST[/size][size=16px]同源增强子[/size][size=16px]2(EZH2)[/size][size=16px]催化,二者在[/size][size=16px]SCLC[/size][size=16px]组织和多药耐药的[/size][size=16px]SCLC[/size][size=16px]细胞中的表达水平明显升高。长链非编码[/size][size=16px]RNA (lncRNA) HOX[/size][size=16px]转录本反义[/size][size=16px]RNA (HOTAIR)[/size][size=16px]可以预测肿瘤进展。[/size][size=16px]HOTAIR[/size][size=16px]通过下调耐药[/size][size=16px]SCLC[/size][size=16px]中[/size][size=16px]DNMT1[/size][size=16px]和[/size][size=16px]DNMT3b[/size][size=16px]的表达来调节[/size][size=16px]HOXA1[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]甲基化。研究表明,在[/size][size=16px]SCLC[/size][size=16px]细胞系中,敲除[/size][size=16px]HOTAIR[/size][size=16px]基因可显著降低[/size][size=16px]H3K27me3[/size][size=16px]和[/size][size=16px]EZH2[/size][size=16px]水平,且二者通过[/size][size=16px]HOTAIR[/size][size=16px]来影响[/size][size=16px]HOXA1 DNA[/size][size=16px]甲基化,[/size][size=16px]H3K27me3[/size][size=16px]很可能是[/size][size=16px]SCLC[/size][size=16px]化疗耐药的潜在治疗靶点[/size][font='times new roman'][size=16px][6][/size][/font][size=16px]。位于人端粒酶逆转录酶[/size][size=16px](HTERT)[/size][size=16px]启动子区的表观遗传学改变是癌症中最常见的非编码基因组修饰之一。[/size][size=16px]HTERT[/size][size=16px]上调可促进[/size][size=16px]SCLC[/size][size=16px]细胞系的增殖和迁移,其启动子区经辐射诱导后的高度甲基化可上调其下游效应因子[/size][size=16px]EZH2[/size][size=16px]的表达从而使[/size][size=16px]SCLC[/size][size=16px]具有放射抗性[/size][font='times new roman'][size=16px][7][/size][/font][size=16px]。胞质三核苷酸修复外切酶[/size][size=16px]1(TREX1)[/size][size=16px]是一种高效的[/size][size=16px]3[/size][size=16px]’[/size][size=16px]→[/size][size=16px] 5[/size][size=16px]’[/size][size=16px]胞质外切酶,能迅速降解双链和单链[/size][size=16px]DNA([/size][size=16px]双链和单链[/size][size=16px]DNA)[/size][font='times new roman'][size=16px][8][/size][/font][size=16px]。[/size][size=16px]SCLC[/size][size=16px]细胞系在[/size][size=16px]CCLE[/size][size=16px]中具有最高的[/size][size=16px]TREX1[/size][size=16px]甲基化和最低的[/size][size=16px]TREX1[/size][size=16px]表达,低[/size][size=16px]TREX1[/size][size=16px]可增加[/size][size=16px]SCLC[/size][size=16px]对[/size][size=16px]Aurora[/size][size=16px]激酶抑制剂治疗的敏感性,可作为[/size][size=16px]SCLC[/size][size=16px]新的分子标记或靶点[/size][font='times new roman'][size=16px][9][/size][/font][size=16px]。[/size][size=16px]Y[/size][size=16px]样染色体基因([/size][size=16px]Chromo-domain Y like[/size][size=16px],[/size][size=16px]CDYL[/size][size=16px])是一种新型表观遗传因子,调控神经系统的神经元发育。[/size][size=16px]CDYL[/size][size=16px]通过调控[/size][size=16px]CDKN1C[/size][size=16px]启动子[/size][size=16px]H3K27[/size][size=16px]三[/size][size=16px]甲基化来促进[/size][size=16px]SCLC[/size][size=16px]化疗耐药,且其表达水平与患者临床分期相关,可用于预测[/size][size=16px]SCLC[/size][size=16px]患者的疾病进展和预后,为[/size][size=16px]SCLC[/size][size=16px]临床诊治提供了一个新的分子靶点[/size][font='times new roman'][size=16px][10][/size][/font][size=16px]。[/size][size=16px]综上,[/size][size=16px]DNA[/size][size=16px]甲基化在[/size][size=16px]SCLC[/size][size=16px]中水平较高,甲基化分析可以区分[/size][size=16px]SCLC[/size][size=16px]亚型,阐明[/size][size=16px]SCLC[/size][size=16px]发病及耐药机制,发现癌症的特异性生物标志物,有助于[/size][size=16px]SCLC[/size][size=16px]早期诊断及判断预后。[/size]

  • 聚羟丙基二甲基氯化铵分析求助

    聚羟丙基二甲基氯化铵现在只知道CAS 25988-97-0,为一种聚合物,含量一般50%-60%,现在想用HPLC测一下,安捷伦的1260,试了EXTEND/XDB C18色谱柱,都是没保留,有没有测这类物质推荐的色谱柱和流动相

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制