当前位置: 仪器信息网 > 行业主题 > >

间氨基苯甲酰胺基

仪器信息网间氨基苯甲酰胺基专题为您提供2024年最新间氨基苯甲酰胺基价格报价、厂家品牌的相关信息, 包括间氨基苯甲酰胺基参数、型号等,不管是国产,还是进口品牌的间氨基苯甲酰胺基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合间氨基苯甲酰胺基相关的耗材配件、试剂标物,还有间氨基苯甲酰胺基相关的最新资讯、资料,以及间氨基苯甲酰胺基相关的解决方案。

间氨基苯甲酰胺基相关的资讯

  • 偶氮甲酰胺(增筋剂)尚无检测标准无法处罚
    中国人在自己的餐桌上又一次普及了化学知识,我们从奶粉里知道了三聚氰胺,从红心鸭蛋时知道了苏丹红,从地沟油中知道了黄曲霉素,从白酒中知道了塑化剂,现在我们又从面粉中知道了偶氮甲酰胺,俗称增筋剂。   自从一个多月前,星巴克、赛百味等国际餐饮连锁品牌被曝食物含有偶氮甲酰胺后,中粮、古船、中裕等多款知名品牌面粉被曝含有面粉增筋剂&ldquo 偶氮甲酰胺&rdquo ,而这种增筋剂被认为有潜在的致癌风险,在欧盟、澳大利亚、新加坡和日本,偶氮甲酰胺和三聚氰胺、苏丹红一样都被列为非法添加物。   对此,中粮方面表示:偶氮甲酰胺作为面粉处理剂,允许作为食品添加剂在中国使用,我司下属面粉加工企业在&ldquo 香雪&rdquo 面包粉产品中使用该食品添加剂,添加量均在国家标准允许范围内,添加过程严格控制,无超量添加情况。   &ldquo 中国允许限量使用却没有检测标准,也没列入检测项目,因此很多小企业都在过量使用偶氮甲酰胺,还不标注。&rdquo 著名食品安全专家、国际食品包装协会秘书长董金狮告诉时代周报记者。   偶氮甲酰胺究竟是什么物质?它究竟对人体有没有危害?为何在美国和中国可以合法使用,在欧洲却被认为是非法添加剂?   隐秘增筋剂有致癌风险   &ldquo 偶氮甲酰胺真的安全吗?我以后还敢买面包吗?&rdquo 在时代周报记者采访过程中,多名消费者反复询问。   据了解,偶氮甲酰胺是一种黄色至橘红色结晶性粉末,也被称为AC发泡剂,具有漂白和氧化双重作用,是一种速效面粉增筋剂,也适用于塑料发泡。   而中投顾问食品行业研究员向健军告诉时代周报记者,小麦粉常见的添加剂有三大类:增白剂、品质改良剂和营养强化剂,当前引起社会广泛关注的偶氮甲酰胺也是其中的一种。   偶氮甲酰胺能使面粉筋度增加,提高面团气体保留量,增加烘焙制品弹性和韧性,改善面团的可操作性和调理性,因此成为面粉添加剂界的新宠。目前比较普遍使用的增筋剂有两种,一种是偶氮甲酰胺,反应速度属于快速的增筋剂 另一种是维生素C型增筋剂,反应速度属于中速。   尽管在中国被广泛使用,但是关于偶氮甲酰胺安全性问题的争论,却一直没有停过。   世界卫生组织食品添加剂联合专家委员会于1966年对偶氮二甲酰胺作出了评估,结论就是&ldquo 很安全&rdquo ,并给出安全剂量为0-45毫克/千克。   中国也参照了这一标准,《食品安全国家标准&mdash 食品添加剂使用标准》中规定,偶氮甲酰胺属于面粉处理剂,只允许使用小麦粉中添加,最大使用量是0.045克/千克,但没有规定偶氮甲酰胺的检测方法。   但是,随着科学技术的发展,半个多世纪之前的标准已经显得落后。近年来,学界认为,偶氮甲酰胺存在致癌嫌疑:偶氮甲酰胺水解后产生氨基脲,而实验证实氨基脲有潜在的动物致癌性。   由于氨基脲的潜在致癌性,能够产生氨基脲代谢物的兽药呋喃西林已经被欧盟禁止使用,同样能够产生氨基脲的面粉处理剂偶氮甲酰胺也被欧盟禁用多年。2005年,欧洲食品安全委员会调查发现,氨基脲很可能从广口瓶盖的塑料垫圈儿中迁移到食品当中,于是又禁止在食品包装中使用偶氮甲酰胺。   国家粮食局标准质量中心原高级工程师谢华民曾对媒体表示,&ldquo 即使是儿童使用的塑料地垫里,法国等国也不允许生产商添加这一成分。而我们却可以随意添加到每天食用的主食里。&rdquo   在台湾并没有对偶氮甲酰胺有相应的禁令,但出于安全考虑,台湾食品行业普遍选择了用中速、但相对更可靠的维生素C型增筋剂。   成本低廉成泛滥内因   事实上,面粉中使用的偶氮甲酰胺并不是&ldquo 刚需&rdquo ,主要是为了满足人们口感方面的需求,添加其可以提高面粉的筋度,在制作中可以降低断损率,卖相好,吃起来口感好。   面粉按照筋度来分有三种,即高筋粉、低筋粉和中筋粉,面粉厂对小麦的原料挑选非常精细,针对小麦的不同种类、产地等因素制成高筋粉、低筋粉和中筋粉。为使面包筋度高、有嚼劲,应使用高筋小麦粉,但使用高筋小麦粉每吨成本高出普通小麦粉600元左右。   &ldquo 国家规定其最大使用量为0.045g/kg,而偶氮甲酰胺的价格在38元/千克左右,因此添加其占据的成本较小,但是带给消费者的口感大不一样。&rdquo 向建军表示。   全国工商联烘焙业公会副秘书长单志明也表示,完全可以通过添加食盐、增加醒发时间达到增加面团筋度的效果。   由此看来,偶氮甲酰胺的使用纯粹是企业为了&ldquo 省钱&rdquo 又&ldquo 省力&rdquo 才选择的。   但是,&ldquo 我们只是引进了别人的产品和标准,但在检测环节处于真空状态,因此很多企业都在使用偶氮甲酰胺,但你不知道他用没用,也不知道他用了多少,因此安全性无从谈起。&rdquo 董金狮告诉记者。   此前,北京粮食集团(京粮集团)古船食品有限公司品研部经理李巍也曾对媒体直言,希望国家能严格控制偶氮甲酰胺的使用,&ldquo 很多不正规的小企业、小作坊,他们如何使用无人监管。现在最重要的是没有检测方法。他们使用了,我们不用,他们的产品口感、外观上都会比我们好,这样就会导致我们的市场竞争力降低。&rdquo   据了解,美国是目前批准使用添加剂最多的国家,有3000多种,但是美国会对添加剂做详细标注,并提示其可能存在的风险,由消费者选择要不要购买 欧盟等国家对添加剂则严格得多,欧盟立法采用&ldquo 预警原则&rdquo ,还规定所有食品添加剂必须置于永久观察,随着使用条件的变化及新科技信息的出现,要对食品添加剂进行重新评估。   我国目前批准使用的食品添加剂有23类约2400种,但是既没有像美国一样严格检测标准、工具和方法,也没有如欧盟一般加强准入门槛。   &ldquo 除了用而不标之外,还有企业标而不用,为了节约成本,有的企业使用了更劣质的物质,但是却标成偶氮甲酰胺,反正都查不出。&rdquo 董金狮对记者表达着担忧。   因此,谢华民认为,面粉增筋剂和之前的面粉增白剂一样,都不是食品的必要添加物,却长时间被使用在老百姓的日常饮食之中,因此应该禁止在食品中使用偶氮甲酰胺。   复合型添加剂之祸   对于偶氮甲酰胺的安全性,很多中国专家还是表示认可,中国农业大学[微博]食品科学与营养工程学院教授、食品毒理学专家景浩表示,虽然欧盟提供了很多资料,但只能证明偶氮甲酰胺对动物的毒性,美国等允许使用的国家认为,这些资料是不足以作为禁用偶氮甲酰胺的明确证据的。   一位不愿具名的专家对时代周报记者表示,食品添加剂和药品不同,前者不要求做人体试验,因此更要慎重使用。   事实上,很多曾经被认为对人体无害而被广泛使用的物质,最终都被证明是危险的。比如溴酸钾,溴酸钾在100年前开始在美国用于面包烘焙,由于成本低廉,溴酸钾在世界范围内被广泛应用。   然而随着检测技术和设备的进步,大量实验表明溴酸钾是一种毒害基因的致癌物质,可导致动物的肾脏、甲状腺及其它组织发生癌变。   1992年,联合国[微博]粮农组织和世界卫生组织食品添加剂联合专业委员会的第39号报告中指出,使用溴酸钾作为面粉处理剂是不恰当的,并且撤消了先前自1989年以来60ppm的添加限量 2005年7月1日中国全面禁止溴酸钾在面粉中使用。   而后偶氮甲酰胺才作为溴酸钾的替代品,而广泛用于面粉行业。   类似这样的事情还有很多,过氧化苯甲酰(BPO)作为面粉增白剂也在全世界范围内被广泛使用,但目前包括中国在内的大部分国家也都禁止使用过氧化苯甲酰。   奥美定,在上世纪90年代,也曾作为无毒、环保、低排异性的新人造脂肪被整形界大量使用,但后来证明其注入到人体内后,会分解产生剧毒,毒害神经系统,损伤肾脏,世界卫生组织已将这种物质列为可疑致癌物之一。   除此之外,不同添加剂叠加、混合使用的潜在危机也慢慢浮出水面。   《食品添加剂》的作者、韶关学院英东食品科学与工程学院彭珊珊教授告诉时代周报记者,尽管国家对每种合法食品添加剂的含量都有规定,但这种安全性是基于单一毒理实验得出的,也就是说动物实验中,都是测试某一种单一添加剂,得出是否安全以及安全的临界值。   但是目前几乎在每一种包装食品中,都同时有多种添加剂存在,比如防腐剂、增稠剂、甜味剂、色素等,就算每一种都在安全范围内,但是谁也不知道这么多种添加剂叠加使用,总量会超标多少,谁也不知道这些添加剂相互作用,会有什么后果。添加剂叠加标准目前还是个空白,这方面的具体规定亟待出台。
  • 传赛百味添加偶氮二甲酰胺或为偶氮甲酰胺
    网上疯传的&ldquo 赛百味:食物中含鞋底成分&rdquo ,让正在赛百味啃三明治的张先生有点食不知味。   美国一个知名美食博客的博主曝光了赛百味的三明治面包中有Azodicarbonamide(国内媒体将其翻译为偶氮二甲酰胺)这一成分,在被CNN(美国有线电视新闻网)曝光后,赛百味承认在北美出售的食物中的确含有这种化学物质。CNN还称,市面上大部分连锁,包括麦当劳、星巴克出售的面包都含有此成分。   赛百味中国总部马上联系了第三方检测机构,就供应商提供的面包做了检测。赛百味中国官网发布信息显示,此次检测并未发现偶氮二甲酰胺。接着赛百味也在中国区官网上公布了供应商的名单。   昨天记者向多位食品工业专家咨询,他们纷纷表示头一次听说&ldquo 偶氮二甲酰胺&rdquo 这个化学式。   偶氮二甲酰胺,这个听起来有点拗口的化学名词到底是什么?为什么要将它添加到面包中?   网传赛百味添加的偶氮二甲酰胺 原始报道实指偶氮甲酰胺   偶氮二甲酰胺,是一种工业泡沫塑料发泡剂,通常用作瑜伽垫、橡胶鞋底或者人工皮革等,以增加产品的弹性。它是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。   偶氮二甲酰胺既然不溶于水,如何添加到面包中呢?   记者在查看了CNN的原始报道后发现,CNN报道中提到的Azodicarbonamide,缩写为ADA,实为偶氮甲酰胺。这是一种面粉增筋剂,具有漂白和氧化双重作用,其自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧。在欧盟和澳大利亚,偶氮甲酰胺被禁止使用在食品工业,也有部分国家(包括中国)是允许将其作为添加剂用在食品工业中的。   面包配方对口感影响很大   张先生回忆这些年吃赛百味的经历,发现面包的确有在悄悄变化。&ldquo 前几年,面包坯很扎实,很有嚼劲,现在感觉越来越蓬松了,有时服务员在切面包,如果刀子不够锋利,面包还会被压成一团,是不是就是因为添加了东西啊?&rdquo 张先生好奇。   赛百味浙江地区总代理虞予说:&ldquo 我们的面包全部由总部委托国内一家基层供应商生产,面包的成分、配比也严格按照总部要求执行,之所以顾客会觉得面包口感变了,是因为我们的配方变了。&rdquo 在美国,由于肥胖的人群较多,面包中的小麦粉、植物性原料的比例时常在变,于是国内面包的大小、克数、口感也就跟着变了。有时吃起来偏甜,有时吃起来口感更蓬松。   添加剂是面包配方的一部分   CNN原始报道中,美国面包协会称,在过去美国FDA(食品药品监督管理局)曾指出,少量且恰当地使用ADA作为面团的改良剂,可以使面包更好地成型,能改善面包的质量。   在我国,卫生部公布的《食品添加剂使用标准》(GB2760-2011)中明文指出,偶氮甲酰胺可用于小麦粉,最大使用量为0.045g/kg。   在面粉熟化处理的过程中,添加偶氮甲酰胺能氧化小麦粉中的半胱氨酸,从而使面粉筋度增加,提高面包气体保留量,增加烘焙制品的弹性和韧性。   简单来说,被作为面粉改良剂添加的偶氮甲酰胺主要是让面粉的延展性、加工性能变得更好。&ldquo 加强面筋蛋白的组织结构,使其形成更好的网络结构,改良形态的同时,也能增加面包的嚼劲和延长面包的保质期。&rdquo 中国计量学院标准化学院食品安全标准化研究所的杨勇教授说。自己在家制作的面包放置一段时间以后就容易变塌,也更容易掉渣,跟没有添加偶氮甲酰胺有一定的关系。   关于发泡剂的说法,杨教授表示,发泡并不是我们直接联想到的蓬松。&ldquo 一般在遇到蛋液的时候,才需要添加发泡剂。&rdquo 偶氮甲酰胺与面粉作用,主要是让面粉完成了快速氧化的过程。   食品工业少不了添加剂   本报曾对白吐司用到的添加剂做过调查,发现其中一个样本使用了12种食品添加剂。   面包粉中常见的添加剂有磷酸氢二钠、单硬脂酸甘油酯、羟丙基淀粉、羟丙基二淀粉磷酸酯、磷酸酯双淀粉等,以及食用香精。   面包改良剂中常见的添加剂有醋酸酯淀粉、单、双甘油脂肪酸酯、双乙酰酒石酸单双甘油酯、维生素C、谷朊粉等。   此外还有&alpha -淀粉酶、半纤维素酶等各种酶制剂。   它们中的有一些可以锁住吐司中的水分,有一些使面包变大变蓬变松软,有一些使吐司内部的质地更均匀,烤制后表皮的色泽更好看,还有一些能防止面包老化。它们中的许多都是被复合使用的,才能达到最理想的效果。   为什么外面买的面包总比自家做的面包保鲜度更持久,口感更好,这都是添加剂在起作用。使用几种以及使用哪些种类,各厂家会有自己的做法。但不管来自哪种原料,前提条件是种类和用量都要符合国标规定。   杨教授说,如果把面包中添加的盐写成氯化钠,而恰巧你对氯化钠又不熟悉,是不是也会认为这是一种不好的添加剂?&ldquo 只要没有超标,在国家规定的使用范围内,使用添加剂都是合法、正常的。&rdquo 食品企业有自律性,质检部门也会定期检查、抽查,完全没有必要对食品添加剂过度恐慌。   偶氮甲酰胺,英文简称ADA,是一种黄色至橘红色结晶性粉末。ADA具有漂白和氧化双重作用,是一种速效面粉增筋剂。本品自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧,此时面粉蛋白质中氨基酸的硫氢基被氧化成二硫键,使蛋白质链相互联结而构成立体网状结构,改善面团的弹性、韧性、均匀性,使生产出的面制品具有较大的体积和较好的组织结构。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。   偶氮甲酰胺是对面粉增白增筋和促进成熟作用以提高烘焙制品品质的一类食品添加剂。过去人们大量使用溴酸钾,目前已被世界卫生组织和FDA认定具有较强致癌性,欧美早已禁用。ADA是当今国际上风行和公认的可安全用于食品的面粉改良剂。是溴酸钾的理想替代品。   偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。
  • 赛默飞发布测定面粉中偶氮甲酰胺含量的解决方案
    2014年4月10日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布HPLC 法测定面粉中偶氮甲酰胺含量的解决方案。该方法与其他方法相比,操作简便易行,重现性与线性均能达到要求。 偶氮甲酰胺(ADA)作为食品添加剂在面粉及其制品中广泛使用,其主要目的是用来增加面筋,改善面团流变学特性和机械加工性能、借以增加面粉质量。ADA在180℃~ 220℃温度下,半小时左右即可生成氨基脲,一种与硝基呋喃类代谢产物一致的化合物。因此,建立一种测定面粉中ADA 含量的方法,从源头控制ADA 加入量,对加强卫生监督,保障人们的身体健康具有重要的现实意义。 赛默飞使用Thermo Scientific Dionex UltiMate 3000 DGLC 双三元液相色谱系统,第一时间建立了面粉中偶氮甲酰胺含量的检测方案,采用氨基柱分离,紫外检测器分析,取得了较好的分析结果,适用于该类样品的快速检测。 下载应用文章请点击:http://www.thermo.com.cn/Resources/201404/913551843.pdf 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 泡沫拼图垫释放甲酰胺 影响儿童健康
    几乎是幼儿必备用品的泡沫塑料拼图地垫近日在比利时和法国遭遇禁售,原因是这种地垫会释放一种有毒物质甲酰胺,给儿童健康带来伤害。而记者在实体店和淘宝网上都看到,这种拼图地垫国内一直火热销售。   拼图垫伤眼睛和皮肤   比利时负责消费者权益保护的气候与能源部长日前宣布,因为几乎所有的泡沫塑料拼图地垫都会释放包括甲酰胺(jiǎ xiān àn)在内的有毒物质,因此在比利时实行禁售。该国影响较大的“购物测试”协会一项调查显示,儿童常用的塑料地垫在生产过程中使用了一种名叫甲酰胺的物质使之柔软,如果被吸入或者吞咽会造成伤害,同时对眼睛和皮肤也有损害。继比利时之后,法国也宣布将泡沫塑料拼图地垫暂停销售三个月。   消费者不知哪些无毒   “在地垫上学爬行学的快。”刚刚给自己七个月的宝宝买了地垫的魏女士告诉记者,她身边的妈妈们差不多都给宝宝买了地垫,有的是拼图式的,有的是一整块的,“卖家告诉我这是进口的,无毒无味。”多位妈妈都表示购买地垫最先考虑的因素是材质是否环保,然而什么样的地垫环保却不太清楚,只能听卖家介绍。记者在淘宝上看到,目前销售的儿童塑料地垫有EVA和PE两种材质,价格从几块钱到几百元都有,一般拼图地垫多为EVA材质,整块地垫多是PE材质。几乎所有的产品都称自己“无毒无味”。记者向一位淘宝卖家询问他店里的产品是否含有甲酰胺,这位店家则表示不知道甲酰胺是何物。   我国尚无鉴定标准   记者了解到,目前我国还没有制定这类产品的鉴定标准,所以对国内市场的影响还无法做出评估。国际食品包装协会秘书长、塑料专家董金狮告诉晨报记者,世界各国生产的泡沫塑料拼图地垫所含成本基本类似,因此比利时和法国停售的做法也应该引起中国父母的注意,尽量让孩子少用。据他介绍,在泡沫塑料制品中使用甲酰胺有两个作用,一是使塑料发泡,量越大塑料越轻,生产成本也就越低,二是增加塑料产品的柔韧性,使其不容易断裂。他表示,这种东西是致癌物质,需要控制使用量,因为目前国内外对泡沫塑料制品的相关规定中都未对甲酰胺的使用量进行约束,所以一些生产厂家从自身利益出发加大了使用量,应该引起相关管理部门的重视。   -提醒   有味一定有毒   董金狮表示,已经购买了的塑料地垫要在通风处进行充分晾晒,使其中含有的有毒物质得到充分挥发。他建议消费者到大商场超市购买此类产品,买之前先闻一下味道,“虽然没味的不一定无毒,但有味的一定有毒。”
  • 【百家论坛】直播回顾:食品添加剂-偶氮甲酰胺和香兰素类新标解读
    去年9月份,中国食品安全标准与监测评估司发布了2021年第8号公告,批准发布包含 gb 5009.283-2021《食品安全国家标准 食品中偶氮甲酰胺的测定》和gb 5009.284-2021 《食品安全国家标准 食品中香兰素、甲基香兰素、乙基香兰素和香豆素的测定》等17项食品安全国家标准和1项修改单的公告。 偶氮甲酰胺和香兰素类分别是国抽小麦粉和婴幼儿配方食品中必测的指标。偶氮甲酰胺(亦称“偶氮二甲酰胺”,英文缩写ada),主要作为氧化剂(oxidizing agent)用在小麦粉中;在面团加工过程中,可提高面筋蛋白质质量,改善面团体系的流变学特性和耐机械加工性能,在烘焙业则提高面包发酵烘焙特性 (俗称更筋道, 发得大且产品口感好) 。另外,近期市场监管总局通报了多美滋婴幼儿食品有限公司进口的、arla foods amba akafa(原产国:丹麦)生产的宝贝与我蓝曦婴儿配方奶粉0-6月龄1段(2020年9月29日生产、保质期至2023年9月29日),其中香兰素检测值不符合食品安全国家标准规定。那么如何对这些添加剂进行准确的检测,我们邀请了厦门海关技术中心的徐敦明博士5月13日就这两个新国标进行详细解读,消除大家的疑惑。徐敦明 博士厦门海关技术中心研究员硕士生导师,厦门市第十批拔尖人才,受聘第二届食品安全国家标准审评委员会委员。长期从事食品安全研究与检测、食品安全科普。主持参与35项国家及省部级科技项目,主持参与28项国家标准、行业标准的制修订。获各类科技进步奖17项、省标准贡献奖4项。 直播回顾 5.13直播回放—食品添加剂-偶氮甲酰胺和香兰素类新标-gb 5009.283/284-2021 理解与解读📔课程1:gb2760-2014介绍📔课程2:gb5009.283-2021偶氮甲酰胺的测定📘课程3:gb5009.284-2021香兰素|甲基香兰素|乙基香兰素|香豆素的测定 (观看回放,请点击以下链接↓▼↓▼↓) https://live.polyv.cn/watch/3054100首先,徐老师对gb 2760《食品安全国家标准 食品添加剂使用标准》进行了解读,重点分享了去年发布的修订征求意见稿的内容,还对经常困扰大家的添加剂“带入原则”和本底应用问题进行了解读。接着重点讲解gb 5009.283-2021和gb 5009.284-2021 检测过程中的关键控制点和注意事项等。gb 5009.283-2021 gb 5009.284-2021感谢徐老师的精彩讲解,直播间的小伙伴们纷纷点赞get 到新标的检测要点。如果还有疑问的同学可以在本条公众号下留言。感谢大家的参与,持续关注我们,下期再见哟~ 答疑解惑 问丙二醇即是水分保持剂有限量要求,又是香料没有限量要求,我们该如何判定?答:丙二醇作为香料使用时,要具体看应用在何种食品上。问亚硝酸盐,什么时候按照防腐剂,什么时候按照污染物判定?答:对于食品中亚硝酸盐检测结果的判定,检验机构要依据具体情况分别使用不同的标准(公告)进行判定:亚硝酸盐作为食品污染物需要加以控制的食品类别,依据gb 2762-2017进行判定;在肉制品加工制品中亚硝酸盐作为食品添加剂使用,依据gb 2760-2014进行判定;餐饮加工肉制品,适用原卫生部(2012年第10号)公告,禁止使用。问肉制品加工制品中亚硝酸盐作为食品添加剂使用,依据gb 2760-2014进行判定;这时候需要计入防腐剂最大使用比例计算吗?答:按照codex stan 192-1995《食品添加剂通用法典标准》(2015年最新修订)、gb 2760-2014《食品添加剂使用标准》的要求,“亚硝酸钠”具有“护色剂、防腐剂”的功能。gb 7718-2011《预包装食品标签通则》规定,企业可选择标注“食品添加剂的功能类别名称及具体名称”或“食品添加剂的具体名称”,肉制品加工企业在使用“亚硝酸钠”时,可选择在终端产品上标注“亚硝酸钠”或“护色剂(亚硝酸钠)”或“防腐剂(亚硝酸钠)”。具体按如下进行判定:1、肉制品加工企业终端产品上明确标注“亚硝酸钠”或“护色剂(亚硝酸钠)”的,应将亚硝酸盐的检测结果按“护色剂”判定,不需要计入“防腐剂各自用量占其最da使用量比例之和”。2、肉制品加工企业终端产品上明确标注“防腐剂(亚硝酸钠)”的,应将亚硝酸盐“残留量”占“最大使用量”的比例,计入“防腐剂各自用量占其最大使用量比例之和”。
  • 欧盟禁止进口含二甲基甲酰胺的鞋和家具
    据波兰媒体报道,自今年5月1日起,欧盟将禁止进口含有二甲基甲酰胺(DMF)的鞋和家具产品。欧盟称该物质吸收潮湿空气后会引发过敏反应。外界认为此举主要针对中国。
  • 全新上线!曼哈格氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)
    今日,曼哈格和博莱克联合研发生产的蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)隆重推出。本次推出的3套kit是建立在高效液相色谱质谱平台上,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。检测试剂盒检测指标▣ 20种蛋白质氨基酸Asparagine天冬酰胺proline脯氨酸Histidine组氨酸Tyrosine酪氨酸Serine丝氨酸Methionine甲硫氨酸Glycine甘氨酸Lysine赖氨酸Glutamine谷氨酰胺Valine缬氨酸Arginine精氨酸Isoleucine异亮氨酸Aspartic acid天冬氨酸Leucine亮氨酸Glutamic acid谷氨酸Phenylalanine苯丙氨酸Threonine苏氨酸Tryptophan色氨酸Alanine丙氨酸Cysteine半胱氨酸▣ 12种神经递质Norepinephrine去甲肾上腺素γ-Aminobutyricacid4-氨基丁酸Metanephrine甲氧基肾上腺素Octopamine章鱼胺Epinephrine肾上腺素Tyramine酪胺Dopamine多巴胺Agmatine胍丁胺Serotonin5-羟色胺Methoxytyramine甲氧酩胺Tryptamine色胺Histamine组胺▣ 6种儿茶酚胺Normetanephrine甲氧基去甲肾上腺素Epinephrine肾上腺素Norepinephrine去甲肾上腺素Dopamine多巴胺Metanephrine甲氧基肾上腺素Methoxytyramine甲氧酪胺产品优势
  • 日立高新推出测定维C银翘片中对乙酰氨基酚和马来酸氯苯那敏的数据
    2013年6月18日,香港卫生署呼吁市民不应购买或服用一种标示为&ldquo 维C银翘片&rdquo 的口服产品。涉事药品含有两种未标示及已被禁用的西药成分非那西丁和氨基比林。但在产品包装标示的成份,包括国家药监局允许添加的维生素C、对乙酰氨基酚及马来酸氯苯那敏却并未被验出,也就是说涉事药品根本就没有维C银翘片应有的成分和药效。  维C银翘片作为常见的感冒药,其中的对乙酰氨基酚有解热镇痛作用,马来酸氯苯那敏主要用于鼻炎、皮肤黏膜过敏及缓解流泪、打喷嚏、流涕等感冒症状。除此以外,在感冒药中常见的成分还有起解热镇痛的乙柳酰胺。在次日立高新将分别介绍使用常规液相和超高速液相对感冒药中的常见成分对乙酰氨基酚、马来酸氯苯那敏、乙柳酰胺的同时测定,详细信息请参考:http://www.instrument.com.cn/netshow/SH102446/newsolution.asp?id=1304&ref=4.app.3.0  关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱   亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。   丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.      图1. Venusil HILIC 比传统正相色谱柱更稳定   样 品:VB1, VB6, VC, VB2   老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm      色谱柱: Atlantis C18 4.6×250mm,5μm   流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇   流 速: 1ml/min   柱 温: 25℃   检 测: UV 210nm      色谱柱:Venusil HILIC 4.6×250mm,5μm   流动相: A: 0.1%TFA水溶液,   B: 乙腈,   A:B=75:25   流 速: 1 mL/min   温 度: 25℃   检 测: UV 210 nm   图2. Venusil HILIC与C18分离井冈霉素对比色谱图   图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。   丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。      图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比   样品:葡萄糖标准品(购至Sigma)   检测:ELSD   色谱柱:4.6×250mm,5μm   色谱条件:乙腈/水(80:20),1mL/min,30℃   图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。   腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。      图4. 地西他滨有关物质分析色谱图   Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,   UV@244nm,室温 Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 关于新标准纤维级聚己内酰胺(PA6)切片试验方法,您所不知道的那些事
    己内酰胺(PA6)是重要的有机化工原料之一,主要用途是通过聚合生成聚酰胺切片(通常叫尼龙-6切片),可进一步加工成锦纶纤维、工程塑料、塑料薄膜。其中PA 纤维主要用于服装、装饰、地毯丝、帘子线、工业用布、渔网等;极少量用于热熔胶、精细化学品和制药等。2020年5月1号正式实施GB/T 38138-2019纤维级聚己内酰胺(PA6)切片试验方法。本标准适用于以己内酰胺为原料生产的纤维级聚己内酰胺(PA6)切片,其他差别化、功能性纤维级聚己内酰胺(PA6)切片可参照选用。标准中涉及到含水率、二氧化钛含量、氨基含量、羧基含量等指标测定,使用的方法是电位滴定法、卡尔费休法、分光光度法。01氨基和羟基的测定 - 电位滴定法1.1 为什么测端氨基和羧基?切片检测端羧基和端氨基可以计算高分子的平均分子量、可以反馈出在聚合时用什么进行封端氨基、可以反映出抗氧化能力及染色难易程度。1.2 标准方法解读标准中新增了A法-三氟乙醇体系,即将试样溶解在88%三氟乙醇溶液中,用盐酸-乙醇标准溶液进行电位滴定,滴定到等当点结束即得氨基含量。继续使用氢氧化钾-乙醇标准溶液进行滴定,滴定到两个等当点结束,以第二个等当点的体积计算羧基含量。B法是间甲酚-异丙醇体系,将试样溶解在间甲酚和异丙醇混合液中,用盐酸-乙醇标准溶液进行电位滴定。1.3 梅特勒托利多电位滴定仪的解决方案选择梅特勒托利多超越系列电位滴定仪,只需OneClick™ 一键启动,即可实现滴定分析。OneClick™ 一键滴定,即插即用和方法数据库。• 带 StatusLight™ (状态指示灯)的触摸屏终端• 触摸屏和 PC 软件的双通道控制模式实现更安全可靠的滴定• 扩展容量法或库仑法卡尔费休水分测定• 扩展 pH 和电导率的同时测量和滴定T7电位滴定仪+InMotion自动进样器02含水率的测定-卡尔费休法2.1 为什么测含水率?含水率的测定也是切片质量的重要指标,含水率在特定范围是为了保证纤维质量均匀提高结晶度、软化点。2.2 标准方法解读将试样在特定条件下加热,挥发出的水蒸气由干燥的氮气装入载有已平衡好的无水甲醇的滴定杯中吸收,用卡尔费休水分仪测定含水量。2.3 梅特勒托利多卡尔费休水分仪的解决方案根据含水量范围,选择梅特勒托利多卡尔费休容量法 V30S或库仑法 C30S加卡式炉 InMotion KF的方法进行测定,温度控制在 175±5℃,加热炉温度最高可达280℃,内置流量计可在操作面板轻松查看实际载气流速。InMotion™ KF• 一体式螺旋盖• 节省空间的设计• 数字式气体流量控制• 状态指示灯C30S+InMotion KFV30S+InMotion KF03二氧化钛含量-分光光度法3.1 为什么测二氧化钛含量?钛白粉消光剂的添加可对化学纤维的消光起作用,而且对纤维聚合物性能、机器磨损程度、过滤组件使用周期、纺丝的断头率、纤维的物料机械性能产生影响,因此二氧化钛的含量分析也是检测的重要指标。3.2 标准方法解读试样在加热条件下,用浓硫酸和适量过氧化氢消解,以四价离子状态存在的钛,在强酸溶液中过氧化氢形成络合物。用分光光度计在 410nm波长处测定其吸光度,计算二氧化钛含量。3.3 梅特勒托利多紫外可见分光光度计的解决方案UV7 超越系列仪器有效优化了分光光度计的工作流程,FastTrack™ 技术实现了快速可靠的测量。赖以信任的分光光度计性能结合了直观有效的 OneClick™ 操作。• 快速简单• 出色的性能• 紧凑的模块化结构• 直接测量和专用方法UV7紫外可见分光光度计与此同时,我们还可以选择梅特勒托利多的天平进行称重分析和 DSC 差示扫描量热仪进行熔点分析,为您提供纤维级聚己内酰胺纺织切片的综合专业的解决方案。
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 太及时了!坛墨质检狙击“妖蛾子”应急防治用药标准品目录来了!
    为持续推进草地贪夜蛾防治并遏制大面积暴发成灾,努力夺取小康之年粮食和农业丰收,农业农村部于2020年2月20日正式发布【2020】1号文件《2020年全国草地贪夜蛾防控预案》。 3月25日,农业农村部专家工作组赴河南、重庆、四川、贵州、陕西等5省(市)调研,重点调查小麦条锈病和草地贪夜蛾发生情况,督促落实监测防控措施并针对存在问题研究对策。 3月26日,国务院总理李克强签署第725号国务院令,公布《农作物病虫害防治条例》,自2020年5月1日起施行;另据农业农村部4月7日消息,相关部委负责人就《条例》举行记者会。跨山越海,草地贪夜蛾“四大神通” 草地贪夜蛾2016年从美洲扩散到非洲,2018年5月扩散到南亚(印度),2018年11月扩散到东南亚(缅甸),2019年1月,被发现侵入中国(云南)。能吃。偏好禾本科作物,一只成虫一顿可吃下自身体重鲜叶,堪称“玉米克星“。能生。无滞育现象,在理想温度(28℃)下,30天左右即可完成一个世代。能飞。借助气流一夜能飞100公里,雌虫产卵前可飞500公里,约上海到合肥的距离。抗药。对传统有机磷类农药、有机氯类农药以及拟除虫菊酯类农药均具有较高的抗性基因变异率,难实现对虫害的扑灭防治。2020年全国草地贪夜蛾防控预案 针对2020年我国草地贪夜蛾暴发成灾的严峻形势,农业农村部日前发布草地贪夜蛾防控预案,将全国防治区域分为周年繁殖区、迁飞过渡区、重点防范区;并采取优化关键技术措施,因地制宜地通过理化诱控、生物生态控制、应急化学防治、完善应急防治药剂推荐目录、加大农药市场监督抽查力度等综合措施,强化统防统治和联防联控,及时控制害虫扩散危害。 应急防治用药推荐名单01、单剂(8 种)甲氨基阿维菌素苯甲酸盐、茚虫威、四氯虫酰胺、氯虫苯甲酰胺、虱螨脲、虫螨腈、乙基多杀菌素、氟苯虫酰胺。 02、生物制剂(6 种)甘蓝夜蛾核型多角体病毒、苏云金杆菌、金龟子绿僵菌、球孢白僵菌、短稳杆菌、草地贪夜蛾性引诱剂。03、复配制剂(14 种)甲氨基阿维菌素苯甲酸盐茚虫威、甲氨基阿维菌素苯甲酸盐氟铃脲、甲氨基阿维菌素苯甲酸盐高效氯氟氰菊酯、甲氨基阿维菌素苯甲酸盐虫螨腈、甲氨基阿维菌素苯甲酸盐虱螨脲、甲氨基阿维菌素苯甲酸盐虫酰肼、氯虫苯甲酰胺高效氯氟氰菊酯、除虫脲高效氯氟氰菊酯、氟铃脲茚虫威、甲氨基阿维菌素苯甲酸盐甲氧虫酰肼、氯虫苯甲酰胺阿维菌素、甲氨基阿维菌素苯甲酸盐杀铃脲、氟苯虫酰胺甲氨基阿维菌素苯甲酸盐、甲氧虫酰肼茚虫威。(本推荐名单有效时间截止到2021年12月31日)坛墨质检 配套标准品目录 为加强病虫害防治,保障国家粮食安全,坛墨质检根据农业农村部于2020年2月20日正式发布【2020】1号文件《2020年全国草地贪夜蛾防控预案》,严格按照相关国家标准要求,及时推出草地贪夜蛾防控预案应急防治用药配套标准品目录。详情咨询联系方式北方地区王宏姝:13671388957南方地区汪丽红:13501101929
  • 中国化学试剂工业协会印发2023年第二批中国化学试剂工业协会团体标准《化学试剂 气相色谱用对照品 N,N-二甲基甲酰胺》等14项团体标准项目
    各有关单位: 按照《中国化学试剂工业协会团体标准管理办法(2021 年修订版)》(中试协字〔2021〕 63 号)的要求,现予批准印发中国化学试剂工业协会 2023 年第二批团体标准《化学试剂 气相色谱用对照品 N,N-二甲基甲酰胺》等 14 项团体标准。请起草单位抓紧落实和实施项目计划,在标准制定过程中加强与有关方面的协调,广泛听取意见,保证标准质量和水平,按时完成团体标准制定任务。标准项目计划执行过程中有关问题,请及时与中试协团标委办公室联系。联系方式:联系人:朱传俊电话:18526778029中试协团标办公室邮箱:hxsjtbw@163.com中国化学试剂工业协会2023年8月16日文件66 2023年印发第二批14项团体标准制定计划通知.pdf
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。
  • 赛默飞发布同时测定水体中的四种酰胺的解决方案
    2014年9月16 日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布了HPLC 法同时测定水体中四种酰胺:甲酰胺、N,N- 二甲基甲酰胺、N,N- 二甲基乙酰胺和丙烯酰胺的解决方案。N,N-二甲基甲酰胺和N,N- 二甲基乙酰胺,毒性相对较小,但是因其作为重要的化工原料和性能优良的溶剂,广泛应用于医药、电子、燃料等行业,其废水排放量大,不容忽视;丙烯酰胺, 又称丙毒, 是一种水溶性的神经性毒物,国际癌症研究机构(IARC)将其列为二类致癌物;而对于水体中的甲酰胺的检测目前尚不完善。因此,建立一种快速、准确地测定水体中四种酰胺的方法,对保护环境,保障人们的身体健康具有重要的现实意义。 赛默飞使用Thermo ScientificTM DionexTM UltiMateTM 3000RS 四元系统,以乙腈和水作为流动相,在5 min 内即可完成环境水体中甲酰胺、丙烯酰胺等四种典型的酰胺类化合物的测定,是一种快速、灵敏、简便、准确测定水体中酰胺类化合物的方法。下载应用文章请点击:http://www.instrument.com.cn/netshow/SH100650/down_477105.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 欧盟委员会公布丙稀酰胺检测建议
    近日,欧盟委员会公布了精密检测食品中丙烯酰胺含量的建议。丙烯酰胺是一种致癌和有遗传性的毒性物质,由糖和一种叫做天冬酰胺酸(asparagine)的氨基酸在高温烹煮后产生,作为美拉德反应(Maillard reaction,)而闻名,常见于棕色的油炸和烘烤食品中。   自从2002年发现油炸和烘焙食品中丙烯酰胺含量严重超标后,CIAA(欧盟食品及饮料工业联合会)已设立了toolbox的手段以减少食品中丙烯酰胺的含量。   欧盟委员会意识到了对会员国进行检测的重要性,并要求会员国及时向欧洲食品安全局(EFSA)提供风险信息,时间为每年的6月1日,从2011年6月1日开始。   上个月公布的数据显示,某些类别中丙烯酰胺含量有所下降,如薯片、速溶咖啡、咖啡及替代产品等,大麦和菊苣中的含量则偏高。   新的欧盟委员会建议中表示,应该采用2007年公布的丙烯酰胺条例333/2007,并设定了样品中的最低值。会员国应该对一下10个类别的产品进行检测:   l 即食薯条   l 薯条   l 家常菜种预熟的薯条和土豆产品   l l 早餐谷类食品   l 饼干、薄脆饼干、脆皮面包   l 咖啡和咖啡替代品   l 婴儿食品(非谷物加工类)   l 婴幼儿谷类加工食品   l 其他产品
  • 纤维级聚己内酰胺(PA6)切片黏度的测定方法
    聚酰胺(polyamide)俗称尼龙,是指分子主链上含有重复酰胺单元—[NHCO]—的热塑性聚酯,是现代社会非常常见的高分子材料之一。 聚酰胺拥有优异的性能,具有一定的抗冲击强度和拉伸强度,并且耐磨性、耐化学药品性和耐溶剂性都较为优异。主要被用于制作合成纤维,其良好的性能使得聚酰胺纤维耐磨性高于其他所有纤维,比棉花耐磨性高10倍,比羊毛高20倍,在混纺织物中稍加入一些聚酰胺纤维,即可大大提高制品耐磨性。目前市场上较为常见的聚酰胺有:聚己二酰己二胺(PA66)、聚己内酰胺(PA6)、聚 ω-氨基十一酰(PA11)、聚十二内酰胺(PA12),其中PA6更常用于合成纤维领域。对于尼龙纤维产品的质量控制来说,黏度是一项非常关键的指标,黏度的大小会直接影响到尼龙的各项物理性能,例如强度和韧性,GB/T 38138中对纤维级聚己内酰胺切片黏度测量给出了具体的实验方法,采用96%的浓硫酸溶解样品,再通过辅助设备测试PA6切片的相对黏度。在实验过程中用浓硫酸作为溶剂,在移液、配液、溶解样品及排废液等环节中实验人员都会有接触浓硫酸的风险。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率及高安全性的要求,现在已普遍采用自动化乌氏粘度仪的方法去测定聚以内酰胺的黏度。以杭州卓祥科技有限公司的AVM系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程AVM系列全自动乌氏粘度仪可实现全自动进样、全自动测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差,最多可以实验连续测试24个样品。4. 测试结果:AVM系列全自动乌氏粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化黏度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。 AVM系列全自动乌氏粘度仪,无需手动进样、无需手动测量、无需手动清洗、无需人员看管,更高效、更稳定、更经济、更安全。
  • 潘东宁/唐惠儒合作揭示天冬酰胺可促进脂肪细胞产热和糖酵解
    棕色和米色脂肪是一类特殊的“产热脂肪”,能够将代谢底物氧化产生的能量转化为热能,是哺乳动物及人类新生儿在寒冷环境下维持体温的重要手段之一,在进化上具有重大意义。近年来,肥胖、糖尿病等代谢性疾病日益流行,能量过剩是此类疾病的共同特征。产热脂肪具有高代谢活性和可诱导性,同时参与维持机体的能量代谢稳态,因而受到人们的关注,产热功能的调节机制和激活信号成为重要的研究课题。糖和脂肪酸是产热脂肪的两大“燃料”,其代谢途径及信号通路已有大量报道。然而,氨基酸是否能作为代谢底物或信号分子调节产热脂肪的功能,目前尚知之甚少。2021年10月27日,复旦大学潘东宁课题组和唐惠儒课题组合作在EMBO Journal上发表了题为 Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues的研究成果。该研究发现,天冬酰胺通过激活mTORC1信号通路,启动脂肪组织产热和糖酵解,促进白色脂肪米色化,从而提高小鼠对寒冷环境的耐受能力,在肥胖情况下改善胰岛素敏感性、缓解体重增长。天冬酰胺(Asparagine, Asn)属于非必需氨基酸。哺乳动物细胞广泛表达天冬酰胺合成酶(Asparagine synthetase, ASNS),该酶以天冬氨酸为底物,由谷氨酰胺提供氨基,合成天冬酰胺。白血病母细胞(leukemic blasts)缺乏Asns表达,无法合成天冬酰胺,依赖外源摄取。因此,临床上使用天冬酰胺酶(asparaginase, ASNase)作为急性淋巴细胞性白血病的治疗手段,通过清除循环中的天冬酰胺,使白血病细胞由于缺乏天冬酰胺而凋亡。值得注意的是,接受该疗法的患者中,分别有20%和67%出现了高血糖和高血脂。此外,循环中天冬酰胺的水平与代谢综合征、肥胖的发生呈负相关。这些现象引起了本文作者的关注:天冬酰胺是否能影响全身能量代谢?为了探究这一问题,作者改变小鼠循环中天冬酰胺的水平,观察代谢和产热指标的变化。实验发现,在饮水中添加天冬酰胺,提高循环天冬酰胺水平,小鼠在4℃冷暴露时的体温维持能力显著提高,白色脂肪中出现更多米色化细胞;全身耗氧量、产热量均显著增加。另一方面,给予天冬酰胺酶,清除循环中的天冬酰胺,则出现相反的表型。在使用高脂饮食诱导肥胖的同时,给小鼠饮水中添加天冬酰胺,天冬酰胺组肥胖小鼠对β3肾上腺素受体激动剂反应敏感,体重增长减缓,血清胰岛素和血脂水平下降,糖耐量改善。这说明,天冬酰胺确实能促进脂肪组织产热、改善全身能量代谢。天冬酰胺发挥上述作用的机制是什么呢?作者采用代谢组学与同位素标记-靶向代谢流分析手段,发现添加天冬酰胺后,细胞内糖酵解中间产物(果糖-6-磷酸,果糖-1,6-二磷酸)显著增加。与之一致地,糖酵解关键酶(己糖激酶HK2、磷酸果糖激酶PFKL、丙酮酸激酶PKM)蛋白水平显著上调。进一步研究发现,天冬酰胺可激活mTORC1信号通路,上调4E-BP1和S6K的磷酸化水平,从而促进糖酵解关键酶的翻译;天冬酰胺对产热的激活作用,则依赖于mTORC1对Pgc1α的诱导。本研究首次报道了天冬酰胺对脂肪组织产热和糖酵解的激活作用,发现口服补充天冬酰胺能有效改善全身代谢、缓解肥胖进程。这一研究成果完善了我们对氨基酸调节产热脂肪功能的认识,并为利用天冬酰胺作为营养补充来预防和缓解肥胖提供了实验基础。复旦大学基础医学院博士生徐英江和施亭为本文共同第一作者,基础医学院潘东宁研究员和生命科学学院、人类表型组研究院唐惠儒教授为本文共同通讯作者。
  • 日立全自动氨基酸分析仪测定生物胺
    生物胺(biogenic amine,BA)是一类具有生物活性、含氨基的脂肪族或杂环类低分子化合物,对动植物和微生物活性细胞有重要的生理作用。适量的生物胺有助于人体正常的生理功能,但是过量的生物胺会使人体中毒,其潜在毒性而引发的食品安全问题引起越来越广泛的重视,食品中生物胺的检测也成为评价食品品质的一个重要指标。日立超高速全自动氨基酸分析仪LA8080,采用日立独家的双柱技术使氨基酸的分析进入一个超高速全自动分析的时代。同时,LA8080也可用于生物胺的全自动分析,LA8080自动进行衍生,无需复杂的手动衍生,提供标准分析和快速分析两种分析方法。 PH色谱柱标准分析PH 60mm色谱柱是LA8080的标配色谱柱,可以在30min内分离26种氨基酸,且分离度大于1.2,如果LA8080用户同时有生物胺测定的需求,可以不用增加或者更换任何硬件配置,即可实现生物胺分析。七种生物胺分离度良好PH色谱柱快速分析如果需要更快的分析速度,提高分析速率,也可选择快速分析法,仅需35min即可实现7种生物胺的分离。35min内就可实现七种生物胺的分离分析,并且分离度良好。 日立超高速全自动氨基酸分析仪LA8080,不仅可以实现氨基酸的超高速全自动分析,同时也可以用于生物胺的全自动分析,为用户带来更多的便利和解决方案。
  • 中粮古船等多款面粉含致癌物 且无法检测
    2月中旬,赛百味美国被曝光面包制品中含有一种名为偶氮甲酰胺(ADA)的工业发泡剂,引发媒体关注,该成分同样添加于鞋底当中。而就在不久之前,赛百味还被美国第一夫人米歇尔称赞为&ldquo 每一项食物内容符合最高营养标准&rdquo 。赛百味中国声明称,中国市场食品中并不含有这一成分。之后星巴克中国承认,在华出售面包制品中含有偶氮甲酰胺成分,但表示这一食品添加剂符合中国食品添加剂使用标准。   偶氮甲酰胺是否有毒害?能否添加到食品中?我们目前平时食用的食品中是否含有这一成分?国家粮食局标准质量中心原高级工程师谢华民告诉记者,虽然&ldquo 偶氮甲酰胺&rdquo 的毒性目前无法精确测定,但偶氮类化学物质都具有一定的致癌性。国家虽定有安全剂量标准,但偶氮甲酰胺在使用中无法检测具体用量 此外,化学物质对人体健康的影响其实具有累积效应。   国内多款面粉添加增筋剂   目前,偶氮甲酰胺作为面粉处理剂,允许被作为食品添加剂使用。国内多款面粉的配料表中,就标明含有这一成分。   国内最新修订版的《食品添加剂使用标准》里,其中标注&ldquo 偶氮甲酰胺&rdquo 的功能是面粉处理剂,允许作为食品添加剂在中国使用,使用范围是小麦粉,最大使用量为0.045g/kg。   资料显示,偶氮甲酰胺最初的用途是添加在塑料制品之中以增强其韧性。在致癌物质溴酸钾被禁止使用之后,作为其替代品添加到面粉之中。   在欧盟,偶氮甲酰胺因怀疑其对人体致癌而被禁止用于食品添加,&ldquo 即使是儿童使用的塑料地垫里,法国等国也不允许生产商添加这一成分。而我们却可以随意添加到每天食用的主食里。&rdquo 国家粮食局标准质量中心原高级工程师谢华民说。   在中粮集团的在线食品销售网站我买网上,记者看到,一款中粮面业出品的名为&ldquo 香雪面粉&rdquo 的配料表里,直接标明内含有偶氮甲酰胺成分。而在北京的一家超市内,一款维维集团出品的&ldquo 维维面粉&rdquo 里,偶氮甲酰胺也是添加剂配料之一。   记者在中粮我买网随机查询其在线出售的二十款面包粉中,配料表中标明含有这一成分的共有五款。在北京一家大型超市里,记者看到,货架上出售的十余款面粉中,标明含有偶氮甲酰胺成分的有三种,分别是名为古船金牌面包粉、中粮香雪面包粉以及中裕小麦粉。   在京东商城上,记者看到,一款面包粉的介绍中特别标明本产品不含偶氮甲酰胺,请消费者放心购买。   据记者不完全统计,淘宝上有约三十家网店销售偶氮甲酰胺这一添加剂,每千克价格在40-55元左右。一位来自河南郑州的淘宝商家表示,&ldquo 偶氮甲酰胺主要用做面粉改良剂和面包口感的改良剂,可以提高面粉的筋度,目前使用得很广泛,很好用。全国各地很多面粉生产商都在使用。至于用量你们可以自己配置。但别超过国内标准就行。&rdquo   该商家同时表示,虽然有些企业不会在配料表标明含有偶氮甲酰胺,但并不意味着没有添加。   欧盟等多国禁止使用增筋剂   世界多国不允许食品中使用偶氮甲酰胺,美国虽未强制禁用,但其有相应的检测标准。   在赛百味美国迅速表示本国出售食品将不再使用该添加剂之后,美国网络关于停止在面粉中添加偶氮甲酰胺的请愿人数已经超过9万人。   资料显示,包括欧盟在内,澳大利亚、新西兰、日本、新加坡等绝大多数国家均不允许在食品中使用偶氮甲酰胺。   各国关于&ldquo 偶氮甲酰胺&rdquo 添加剂的规定   中国   最新修订版的《食品添加剂使用标准》中,标注&ldquo 偶氮甲酰胺&rdquo 的功能是面粉处理剂,允许作为食品添加剂在中国使用,使用范围是小麦粉,最大使用量为0.045g/kg。   日本   禁止在食品中添加偶氮甲酰胺成分。   欧盟   禁止在食品中添加偶氮甲酰胺成分。2005年进一步禁止偶氮甲酰胺在食品包装中使用。2010年,比利时政府要求所有泡沫地垫中禁止使用偶氮甲酰胺。   英国   英国卫生安全局将偶氮甲酰胺视为致呼吸敏感物,认为其在工作场所的存在可能诱发哮喘。含此物质的产品应标注R42标签,即&ldquo 吸入可能造成敏感&rdquo 。   美国   美国偶氮甲酰胺的使用标准是45mg/kg,与我国标准相同。但FDA网站上显示,偶氮甲酰胺的使用范围是面粉漂白和烤制面包,相比我国的使用范围更加明确。   加拿大   加拿大偶氮甲酰胺的使用标准是20mg/kg。   &ldquo 虽然北美地区允许使用该添加剂,但是在面粉添加这一成分时会在成分表中标示该物质含有可能致癌成分。&rdquo 谢华民说。   美国食品安全科普作家&ldquo 云无心&rdquo 对新京报记者表示,在美国,一种食品添加剂或者功能助剂是否可以使用,从其用量标准、如何监测、到后期如何监管,在标准出台前,全部会纳入安全评估制定的决策,是一套完整的评估体系。   国际食品包装协会常务副会长兼秘书长董金狮表示,我国目前对于很多添加剂的使用标准更多借鉴美国和国际卫生组织,但其有相应的监管环节和检测标准,&ldquo 我们只是引进了别人的标准,但却没能引进相应的检测设备和检测方法。&rdquo 尽管国内有标准明确对偶氮甲酰胺使用做出了限制,但在检测环节处于真空状态。   国家药物安全评价监测中心病理学顾问、北京大学医学部公共卫生学院毒理学系教授李寅增则认为,对添加剂,做单一的毒理实验是不够的。因为现代人会同时接触到多种人工添加剂。多种添加剂加在一起,对人到底是有好处,还是有坏处?国内这方面做的毒理实验很少。而国外在这方面的发展非常快。   增筋剂分解物毒性超标90倍   专家表示,偶氮甲酰胺的致癌嫌疑来自其分解物氨基脲,其含量超现有标准90倍。我国尚无相应检测标准和方法。   据外媒报道,世卫组织曾将偶氮甲酰胺与呼吸问题、过敏和哮喘等联系在一起。美国消费者维权团体&ldquo 公共利益科学中心&rdquo 指出,偶氮甲酰胺在烘焙过程中会形成氨基脲和尿烷,而氨基脲会导致老鼠罹患肺癌和血癌,尿烷也会使老鼠致癌。   今年2月,美国公众科学中心(CSPI)敦促美国食品和药物管理局(FDA)参照《德莱尼修正案》,禁止使用对人或动物存在致癌风险的食品添加剂,至少应降低其使用量。CSPI认为赛百味和麦当劳等连锁店应立即停止使用偶氮甲酰胺。   据谢华民介绍,偶氮甲酰胺的致癌嫌疑来自其分解产物氨基脲,而目前禁用的兽药呋喃西林的代谢产物也是氨基脲。   吉林农业大学一份名为《食品添加剂副产物氨基脲的毒理学》的研究报告显示,氨基脲属于中等蓄积毒性物质,具有剂量增加而效果递增的毒性关系,对心脏、肝和肾均有损伤作用,并且具有致突变作用,对雄性小鼠具有生殖毒性。   &ldquo 在我国和世界上绝大多数国家,呋喃西林都是禁用兽药,呋喃西林通过动物代谢会产生氨基脲。在动物源性食品中,氨基脲的含量不得超过0.5ppb。&rdquo 根据欧盟有关资料显示,加入食品中的偶氮甲酰胺,会产生0.1%的氨基脲。目前国内偶氮甲酰胺在食品中使用的上限标准为45ppm(1000ppb=1ppm)。&ldquo 这意味着,45ppm的偶氮甲酰胺就将产生45ppb的氨基脲,是动物源性食品中检出上限的90倍!&rdquo 谢华民认为,在超标90倍的情况下,我国目前并无任何可用于执法的标准检测方法。是否超标使用,几乎全靠企业自律。   上海市食品研究所的周陶忆在其论文中指出,偶氮甲酰胺的水解物氨基脲同时也是禁用兽药呋喃西林的代谢物,而硝基呋喃类药物具有致突变和致癌的作用,偶氮甲酰胺的快速检测方法研究显得十分必要。   &ldquo 我们提倡无添加剂的小麦粉,&rdquo 中国粮食行业协会小麦行业处处长赵奕对媒体表示,&ldquo 然而国内现状是,没有检测方法,也没有相应监测部门。&rdquo   商家:添加增筋剂更好卖   商家为了让面粉好卖口感好,部分会选择添加偶氮甲酰胺。专家表示,其并不是不可或缺的添加剂。   为什么商家要在面粉中加入添筋剂?淘宝出售偶氮甲酰胺的商家对记者表示,普通面粉如果想要筋道,一定需要放置一段时间进行氧化,或者在其中添加食盐和鸡蛋。&ldquo 但这太麻烦了,而且不一定能有偶氮甲酰胺这么好的口感。&rdquo   淘宝上另一家出售偶氮甲酰胺添加剂的天津卖家对记者表示,据他了解,购买增筋剂的多是一些面条加工商。&ldquo 偶氮甲酰胺添加的剂量你们可以自己配置。放得越多,面条的表面就越光滑,断条率低,耐泡耐煮,吃起来更有嚼劲。&rdquo   北京粮食科学研究所副所长王海清认为,偶氮甲酰胺并不是制作面包完全不可或缺的添加剂。&ldquo 偶氮甲酰胺主要起到迅速氧化的作用,而面粉只要放置足够长的时间,也可以自然、充分地氧化。&rdquo   &ldquo 偶氮甲酰胺不是唯一的增筋剂,我们做过测试,它是可以被取代的。&rdquo 谢华民指出,&ldquo 测试表明,盐和鸡蛋就是最好的增筋剂。&rdquo   专家建议食品中禁止使用   最新《食品安全标准》修订稿中,偶氮甲酰胺仍然属于可使用的范围。专家建议禁止在面粉中使用。   国家卫生和计划生育委员会此前在接受媒体采访时表示,为及时评估&ldquo 偶氮甲酰胺&rdquo 的使用风险,根据国际上的相关评估结果,我国食品安全风险评估委员会已将其纳入2013年国家优先评估项目,将按照评估结果,及时研究是否修订食品添加剂&ldquo 偶氮甲酰胺&rdquo 的使用标准。   然而2013年最新的《食品安全标准》修订稿,偶氮甲酰胺仍然属于可使用的范围。   国家食品安全风险评估中心副研究员梁江撰文指出,JECFA(联合国粮农组织和世界卫生组织的食品添加剂联合专家委员会)在1966年就曾对偶氮甲酰胺进行过安全性评估,认为偶氮甲酰胺对动物的经口及经呼吸道的毒性均较低,在体内不易蓄积,可迅速转化为无害的代谢产物并通过尿排泄,且没有发现对实验动物或人群具有生殖发育毒性、遗传毒性和致癌性。   谢华民认为,应该禁止在食品中使用偶氮甲酰胺,&ldquo 面粉增筋剂和之前的面粉增白剂及亚硝酸盐一样,都是显示有毒性,也并非食品的必要添加物,却长时间被使用在老百姓的日常饮食之中。我们进食不是因为食物无毒或者少毒才选择进食。&rdquo   国内小麦粉的标准参考的便是这份1966年的标准。据我国《食品安全法》第四十五条规定,食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠,方可列入允许使用的范围。国务院卫生行政部门应当根据技术必要性和食品安全风险评估结果,及时对食品添加剂的品种、使用范围、用量的标准进行修订。   相关法律人士对记者表示,&ldquo 《食品安全法》作为卫生部标准的上位法,如果随着科技的进步,发现以前不能检测而目前来看存在风险的添加剂,卫生部的新标准作为下位法,应当遵守上位法的规定,进行随时更新。&rdquo   谢华民指出,虽然国际相关机构允许这种可疑致癌物作为食品添加剂使用,但是任何国际组织都不对任何国家的食品安全负责,国际标准仅供参考不能照搬,所以才有这么多国家禁止偶氮甲酰胺作为食品添加剂。欧盟的态度是&ldquo 如果国际标准与欧盟标准相比不能提供高标准人类健康保证,则国际标准只做参考&rdquo 。   中国农业大学食品学院副教授范志红则表示,偶氮类物质可能会影响儿童对于微量元素的吸收。她认为,如果偶氮甲酰胺对面粉行业来说并不是必需品,那么应该禁止该添加剂的使用。
  • 专家:赛百味含发泡剂曝国内食品监管真空
    日前,美国快餐巨头赛百味(Subway)因面包中含有化学添加剂偶氮二甲酰胺(仪器信息网注:即Azodicarbonamide,食品添加剂标准GB 2760-2011中其名称为&ldquo 偶氮甲酰胺&rdquo )而受到广泛关注,国际食品包装协会常务副会长兼秘书长董金狮在接受采访时指出,赛百味(中国)的声明值得注意,中国面制品特别是面包糕点类产品滥用添加剂的问题也很严重,且相关食品监管也存在真空。   赛百味面包含塑料发泡剂   2月6日,美国赛百味公司承认其在北美范围内出售的食物中含有一种名为&ldquo 偶氮二甲酰胺&rdquo 的化学制品,并宣布着手清除其面包中含有的化学物质偶氮二甲酰胺。&ldquo 我们很快就可以把这种化学物从我们的面包里全部换掉。尽管这种化学物经过美国农业部与美国食品暨药物管理局许可,但它日后不会再出现赛百味旗下分店的面包中。&rdquo   偶氮二甲酰胺作为一种食品添加剂具有漂白和氧化双重作用,是一种速效面粉增筋剂,可以对面粉增白增筋并促进成熟,用以提高烘焙制品品质。但近年来有研究表明,尽管偶氮二甲酰胺本身并不致癌,但其在高温分解过程中,可能会产生致癌物氨基脲,而其本身食用过量也会出现气喘和过敏等不良反应。   不过,赛百味(中国)在其官网上声明称,中国区的面包中不存在偶氮二甲酰胺这一成分。而据《中国青年报》报道,麦当劳也回应称&ldquo 偶氮二甲酰胺具有多种商业用途,可以在练习垫等一些泡沫塑料中使用,但这不应该被与它作为食品添加剂的用途混淆。&rdquo   偶氮二甲酰胺非必要添加剂 欧英澳日等禁用   实际上,早在十几年前,各国就对偶氮二甲酰胺的使用问题出现了分化。欧盟很早就已经禁止使用偶氮甲酰胺作为面粉处理剂。在研究人员发现婴儿牛奶和婴儿食品存有潜在高风险,可能迁入偶氮二甲酰胺的代谢致癌物氨基脲后,2005年,欧盟禁止在食品包装中使用偶氮甲酰胺作为发泡剂。此外,因为担心这一化学制剂诱发癌症,英国、新加坡、澳大利亚、日本等国都已禁用。   根据我国《食品添加剂使用标准》GB2760-2011规定,偶氮甲酰胺作为面粉处理剂,使用范围限定在小麦粉,最大使用量为0.045g/kg。这一标准等同于美、巴西等国,而加拿大的使用标准则为20mg/kg。这意味着,包括我国在内的部分国家允许在安全范围内使用偶氮二甲酰胺。   不过,董金狮表示,偶氮二甲酰胺并非必要添加剂,并且完全可以被其他添加剂替换。&ldquo 虽然小苏打的发泡效率不如偶氮二甲酰胺,但小苏打的分解物是无害。&rdquo 他建议食品和餐饮企业尽量不要使用,&ldquo 特别是婴幼儿食品不要使用&rdquo 。   食品监管存在真空 致癌物含量难测   &ldquo 企业的实际添加量很难控制,监管起来有一定困难。&rdquo 董金狮认为,监管不力就无法营造良好的行业环境,甚至可能对守法企业造成伤害。&ldquo 正规企业按照国家标准执行,但那些小企业、不法企业因为缺少监管,擅自超量添加偶氮甲酰胺。这样一来,不法企业所生产的面包等食品就会比守法企业的产品看起来好很多。这对守法企业会造成了较大伤害。&rdquo   此前,北京粮食集团(京粮集团)古船食品有限公司品研部经理李巍也曾在媒体公开表示,希望国家能严格控制偶氮甲酰胺的使用,但是一定要有严格的监管。&ldquo 很多不正规的小企业、小作坊,他们如何使用无人监管。现在最重要的是没有检测方法。他们使用了,我们不用,他们的产品口感、外观上都会比我们好,这样就会导致我们的市场竞争力降低。&rdquo   董金狮指出,尽管《食品添加剂使用标准》对偶氮甲酰胺使用作出了限制,但目前仍没有相关部门对食品中偶氮甲酰胺的含量进行相应检测。另一方面,由于偶氮甲酰胺本身并不致癌,因此,即便生产中偶氮甲酰胺的添加含量符合规定,也无法检测其在食品中产生了多少致癌物氨基脲。
  • 聚丙烯酰胺水解度的测定
    一、背景介绍聚丙烯酰胺(PAM)是一种线型高分子聚合物,在常温下为坚硬的玻璃态固体,产品有胶液、胶乳和白色粉粒、半透明珠粒和薄片等。由于聚丙烯酰胺结构单元中含有酰胺基、易形成氢键、使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物,在石油开采、水处理、纺织、造纸、选矿、医药、农业等行业中具有广泛的应用,有“百业助剂”之称。聚丙烯酰胺在国外应用最多的领域是水处理,国内在此领域的应用正在推广。聚丙烯酰胺在水处理中作为助凝剂与其它絮凝剂配合使用,可以大大降低絮凝剂的使用量,但其水解度过小会导致混凝或助凝效果较差,水解度过大又会增加制作成本,故需要对聚丙烯酰胺的水解度进行检测。 二、方法介绍● 依据标准:GB/T 17514-2008《水处理剂 聚丙烯酰胺》● 测试方法:取样约0.03g置于100mL水中溶解,用盐酸标准溶液滴定至pH为4.1时,即为终点。 三、聚丙烯酰胺水解度的测定(1)仪器及试剂● ZDJ-5B型自动滴定仪● JB-21上搅拌器(选配)● 231-01 pH玻璃电极+232-01参比电极● pH标准缓冲溶液、盐酸标准滴定溶液、基准无水碳酸钠试剂、样品 (2)测试步骤● 对pH电极进行标定,● 将100mL水倒入滴定杯中置于搅拌器上,开启搅拌器。称取约0.03g粉状试样,精确至0.2mg。加入到滴定杯中,使其完全溶解。采用预设终点模式,设置好参数后用盐酸标准溶液滴定溶液滴定至终点。 (3)测试结果图1 水解度滴定曲线 (4)注意事项由于聚丙烯酰胺水解后,随时间的延长而粘度越大,下搅拌难以维持转速,所以本次实验推荐用上搅拌进行测试,需要额外配置上搅拌装置。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 日立:药典明确氨基酸分析检测方法 市场将以15%以上速度增长
    近日,国家药监局发布公告,《中国药典》2020年版第一增补本已编制完成,将于3月12日正式实施,此次增补本,在通则和指导原则部分,对多个分析测定方法进行了新增和修订,在药典四部中,新增了9120氨基酸分析指导原则,并对0713脂肪与脂肪油测定法、0832水分测定法、1421灭菌法、2341农药残留量测定法、2351真菌毒素测定法、9001原料药物与制剂稳定性试验指导原则以及9205药品洁净实验室微生物监测和控制指导原则等做出修订。为了全面了解《中国药典》中分析方法的新进展,促进药物检测检测工作的交流与合作,仪器信息网特别发起“《中国药典》分析方法新进展”主题约稿,欢迎各位行业协会/学会、高校/科研院所的专家老师,以及相关仪器厂商们积极投稿。本文特别邀请日立一起分享,关于氨基酸分析指导原则修订相关内容的解读和解决方案。问题1: 《中国药典》2020年版第一增补本已编制完成,本次增订,对9120氨基酸分析指导原则有哪些方面的更新? 与之前的版本相比,该变化对于制药行业或相关用户会带来哪些影响?目前美国药典、日本药典、欧洲药典等都已经收录了氨基酸分析指导原则,部分药企出口到相应国家的产品也参考这些药典进行氨基酸含量测定或者对原料进行杂质筛查。我国药典也收录了复方氨基酸注射液、多肽类药物和中药等品种都需要采用适宜的氨基酸分析方法进行质控,但之前药典没有收录氨基酸测定指导原则,此次新增氨基酸分析指导原则明确了药典标准的执行过程中如何选择适宜的方法。指导原则要求柱前衍生检测通常使用高效液相色谱仪,柱后衍生法检测一般使用商品化的氨基酸分析仪。指导原则收录了盐酸水解法、碱水解法、氧化水解法、二硫代二乙酸或二硫代二丙酸还原酸水解法、双(1,1-三氟乙酰氧基)碘苯还原酸水解法共计5中样品前处理法。收录了柱前PITC衍生氨基酸测定法、柱前AQC衍生氨基酸测定法、柱前OPA和FMOC衍生氨基酸测定法、柱前DNFB衍生氨基酸测定法、柱后茚三酮衍生氨基酸锂离子交换系统测定法、柱后茚三酮衍生氨基酸钠离子交换系统测定法共计4种柱前衍生法和2种柱后衍生法。按外标法或内标法以峰面积计算样品中的各种氨基酸含量。问题2:新标准实施是否会对相关仪器市场产生拉动?预估市场变化规模有多大?根据相关市场预测,从2020年到2025年,氨基酸分析仪市场每年大概增长10%左右,新的指导原则的实施将有助于药厂明确产品检测方法,有助于产生新的氨基酸分析仪的采购需求,市场需求大概以15%以上的速度增长。2022年日立LA8080高速氨基酸分析仪销售台数实现了超30%大幅增长了,2023年在2022年高速增长的基础上销售台数又实现了双位数增长,同时日立Chromaster全功能氨基酸分析仪销售台数也相应的快速增长。问题3:目前贵公司在氨基酸检测方面有哪些特色的应用方案或仪器产品?具有怎样的技术优势?针对氨基酸检测,日立科学仪器(北京)有限公司可以提供指导原则所列的柱前衍生和柱后衍生两种不同的方案,方便药企和药检所根据实际需求选择。1、日立日立Chromaster高效液相色谱仪柱前衍生法日立Chromaster高效液相色谱仪可以根据用户的实际需求提供灵活的配置:• 10 ml/min双柱塞串联往复泵可以选择40 Mpa或60 Mpa• 紫外可见检测器、荧光检测器、DAD检测器等• 可选配衍生单元进行柱后茚三酮法检测。• 标配第1代700-1500cm的反应盘管衍生技术日立Chromaster全功能氨基酸分析仪以下是使用日立日立Chromaster高效液相色谱仪部分测试示例:1.1、PITC法柱前衍生测氨基酸1.2、依据日本药典测定Val/Ile/Leu样品1.3、测定乙酰半胱氨酸1.4 选配柱后衍生单元后,可以进行柱后茚三酮法测定氨基酸2、日立LA8080高速氨基酸分析仪柱后衍生法日立LA8080高速氨基酸分析仪日立公司也提供LA8080高速氨基酸分析仪测定方法,主要配置:• 1 ml/min双柱塞串联往复半微量泵• 3µm高理论塔板数阳离子交换树脂色谱柱• 全自动色谱柱自行装填程序• 光栅分光检测器• 高压全体积直接进样• 衍生单元提供3种方式可选(第3.5衍生技术灵敏度最高,使用寿命最长):研发于1997年的第2代反应柱研发于2011年第3代TDE2研发于2017年第3.5代TDE3(研发于1962年的第1代700-1500cm反应盘管技术可供对检测结果准确性要求不高的用户选配)日立LA8080高速氨基酸分析仪可选配色谱柱全自动自行装填程序,可实现用户自行装填色谱柱,且柱效可达到原厂色谱柱柱效。以下是使用日立LA8080高速氨基酸分析仪测定样品的示例:2.1、18AA-II复方氨基酸注射中氨基酸测定样品测定难度在于Cys含量非常低,非常考验仪器灵敏度和噪音,LA8080噪音值验收承诺小于25 µV,实测噪音值会比25 µV更小,针对这种含量差异非常大的样品检测对低含量氨基酸检测结果更准确。在前几年的抽检中,在被抽检到的药企中,使用日立LA8080的药企都顺利的通过了抽检,部分抽检未通过的药企重新采购了1-5台日立LA8080。2.2、根据指导原则,部分药企可能会选内标法测定氨基酸,日立LA8080可提供正亮氨酸和正缬氨酸做内标两种方法。2.2.1 正亮氨酸(Nle)做内标正亮氨酸做内标标准分析法仅需要通过调整分析程序即可获得更大分离度正亮氨酸做内标高分离分析法2.2.2 正缬氨酸(Nval)做内标可以在30分钟内实现包含CySO3H/MetSON/Orn/Hypro等氨基酸在内的25种氨基酸分析2.3、指导原则提到“在蛋白质或多肽水解之前,用过氧甲酸氧化样品中的半胱氨酸或胱氨酸和甲硫氨酸,使其转化为稳定的磺基丙氨酸和甲硫氨酸砜,防止半胱氨酸或胱氨酸和甲硫氨酸在水解过程中被破坏”,日立LA8080提供含硫氨基酸测定标准分析和快速分析两种方法。2.3.1 含硫氨基酸标准分析法:2.3.2 含硫酸氨基酸快速分析法:2.4、含丙氨酰谷氨酰胺复方氨基酸注射液的测定,日立LA8080可提供更加多样化的分析方法,仅需调整分析方法即可实现不同目的的测定需求,显示出LA8080洗脱模式的优异性。2.4.1标准60 mm色谱柱的标准分析法2.4.2、标准60 mm色谱柱的快速分析法,仅需要调整分析程序即可2.4.3标准60 mm色谱柱的高分离分析法,仅需要调整分析程序即可2.4.3、80 mm色谱柱的标准高分离分析法2.5、复方氨基酸注射液中氨基酸测定2.6、复方氨基酸注射液中氨基酸测定2.7、脑蛋白水解氨基酸测定2.8、3-氨基丙醇测定2.9、有关物质筛查2.9.1 SST2.9.2 原料如果LA8080色谱柱柱效下降后,可以使用全自动色谱柱装填程序实现一键式自行装填。进口色谱柱对照品图谱自行装填色谱柱对照品图谱通过比较对照品图谱,可以发现LA8080自行装填色谱柱柱效可以达到甚至优于进口色谱柱的柱效。综上,日立公司不仅可以提供指导原则所列柱前衍生法测定方案,也可以提供灵活多样的柱后衍生测定方案,更多的分析示例和方法请联系日立科学仪器(北京)有限公司。
  • 聚丙烯酰胺(PAM)特性粘度及相对分子量的测定方法
    聚丙烯酰胺(PAM)是指由丙烯酰胺单体均聚或与其他单体共聚而成的一类聚合物,通常是由丙烯酰胺单体头尾键接而成,工业也把聚丙烯酰胺分子链中丙烯酰胺单体的含量高于50%的聚合物统称为聚丙烯酰胺。聚丙烯酰胺在常温下为坚硬的玻璃态固体,由于制法不同,产品有白色粉末、半透明珠粒和片状等,具有良好热稳定性。由于聚丙烯酰胺分子侧链存在有酰胺基团,它能以任意比例溶于水,且有很高的反应活性。可以对其进行交联、接枝、改性等,使得聚丙烯酰胺成为水溶性高分子中应用最广泛的聚合物之一,目前广泛应用于石油开采、污水处理、食品加工、农业等领域,被誉为“百业助剂”。石油开采和污水处理是聚丙烯酰胺应用的主要领域:聚丙烯酰胺作为润滑剂、悬浮剂、粘土稳定剂、驱油剂、降失水剂和增稠剂,在钻井、酸化、压裂、堵水、固井及二次采油、三次采油中都有广泛应用,同时聚丙烯酰胺在水处理中也常用于生活污水处理,化工废水,有机化学污水的解决。国标GB/T 17514-2017和GB/T 31246-2014中规定了水处理剂领域中聚丙烯酰胺的质量标准,使用乌氏粘度法测量聚丙烯酰胺的特性黏度及黏均分子量是其中的关键检测内容。这一点在石油的行业标准中也有体现。乌氏粘度法由于它独有的优势被应用于聚丙烯酰胺等材料的质量控制中,但传统的手动黏度测定方法仍存在诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,全自动乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV8000系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗/干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew.Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
  • 本土生产!日立全自动氨基酸分析仪战略国产化
    日立自1952年推出第一代氨基酸分析仪,经过70多年的产品升级迭代,始终保持优异稳定的性能。为了更好地服务中国客户,助力“健康中国”,日立全自动氨基酸分析仪战略国产化!日立国产全自动氨基酸分析仪,由日立仪器(大连)有限公司生产,延用日立特别开发的第3.5代TDE3衍生技术,具有以下优异性能:&bull 日立特别开发的第3.5代TDE3衍生技术,灵敏度比第1代反应盘管(圈)提高4倍&bull 配置 1 mL/min高精度半微量泵,可实现色谱柱自行装填&bull 内置仪器自维护清洗程序&bull 3 μm色谱柱,可节省45%的试剂消耗&bull 采用光栅分光,通道1噪音值低到小于 25 μV&bull 茚三酮衍生试剂及缓冲液分开放置,保质期长达12个月&bull 可使用自行配制的缓冲液,成本降低到进口试剂的1/10符合多项国家级和行业级标准:1、GB 5009.124-2016 食品中氨基酸测定(2023年修订)2、谷氨酰胺的测定,QB/T 5298-2018 小麦低聚肽粉(附录D)3、羟脯氨酸的测定, NY/T 3130-2017 生乳中L-羟脯氨酸的测定(第三法)4、游离氨基酸的测定,GB/T 30987-2020 植物中游离氨基酸的测定5、肽的测定,GB 31645-2018 食品安全国家标准 胶原蛋白肽6、植物源性食品中γ-氨基丁酸的测定(农业行业标准2022年立项)7、食品中γ-氨基丁酸的测定(食品安全国家标准2023年立项)8、食品中牛磺酸的测定9、GB 18246-2019 饲料中氨基酸测定16种氨基酸(Asp、Thr、Ser、Glu、Gly、Ala、Val、Met、Ile、Leu、Tyr、Phe、Lys、His、Arg、Pro)和胱氨酸(Cys)10、GB 15399-2018 饲料中含硫氨基酸测定11、GB 32016-2015 丝绸中氨基酸测定12、NYT 1618 鹿茸中氨基酸测定13、JJG 1064-2011 氨基酸分析仪检定规程14、药典:含Cys复方氨基酸注射液测定自2024年7月1日起,日立全面接收国产全自动氨基酸分析仪的垂询和订单。有采购意向和感兴趣的客户,欢迎扫码登记、预定,我们将有精美礼品赠送。日立科学仪器(北京)有限公司是世界500强日立集团旗下子公司,秉承日立集团的使命、价值观和愿景,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。不断响应中国客户的需求,精益求精,力求成为您分析检测的得力伙伴。
  • 【瑞士步琦】利用SFC系统纯化利多卡因与乙酰氨基酚
    步琦SFC系统纯化利多卡因与乙酰氨基酚SFC应用”1简介药物是一种由化学或生物来源制成的产品,用于人类或动物的医疗治疗,这些药物往往以化学合成的形式来生产。化学合成是一种通常伴随着杂质存在的过程,因为产率很少是 100%。这些杂质可能会对最终产品的疗效、安全性和质量产生重大影响。因此,对药物进行纯化以确保合成化合物的纯度和完整性是至关重要的,药物的纯化可以通过色谱法等多种方法进行。最近,超临界流体色谱(SFC)已经作为一种替代反相液相色谱(RP-HPLC)的方法出现。SFC 使用超临界二氧化碳作为流动相的一部分,这是一种清洁且环保的溶剂,很容易从最终产品中去除。此外,SFC 结合了气相色谱和液相色谱的优点,在提供高分辨率的同时也能以更快的速度分离样品。在 SFC 的方法开发过程中,最大的难点在于没有一种通用的固定相。因此需要在不同的固定相上进行筛选,以确定要分离的样品的最佳选择性。CO2 的低极性溶剂特性允许在色谱柱筛选时同时考虑非极性和强极性的固定相。在确定最佳固定相后,就可以进一步放大到制备规格。在本次应用中,我们会例举利多卡因和乙酰氨基酚的合成案例,利用 SFC 系统来高效去除合成过程中的杂质,获取高纯度目标化合物。在这一过程中,需要先进行合适色谱柱的筛选,再放大至制备色谱的规格。2设备BUCHI Sepmatix 8x SFC 8通道平行色谱系统BUCHI Sepiatec SFC-50 超临界制备色谱系统BUCHI PrepPure 硅胶,5um,250×4.6mm BUCHI PrepPure 二醇基,5um,250×4.6mm BUCHI PrepPure 氨基,5um,250×4.6mm BUCHI PrepPure 2-EP,5um,250×4.6mm HILIC柱,5um,250×4.6mm (Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×4.6mm BUCHI PrepPure CBD,5um,250×4.6mm 氰基柱,5um,250×10mm ,(Dr. Maisch GmbH)BUCHI PrepPure PEI,5um,250×10mm BUCHI PrepPure 氨基,5um,250×10mm3化学品与样品化学品:二氧化碳 (99.9%)甲醇 (≥99%)甲醇溶液中2M的氨溶液甲酸(99%)去离子水为了安全处理,请注意所有相应的MSDS!样品:乙酰氨基酚合成产物利多卡因合成产物4程序设定BUCHI Sepmatix 8x SFC平行色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×4.6mm流速:3mL/min(每根色谱柱)检测:DAD 紫外扫描 200 nm - 600 nm流动相条件:0&minus 0.5min5%B0.5 – 8.0 min5 – 50 % B8.0 – 9.4 min50 % B9.4 – 9.5 min50 – 5 % B9.5 – 10 min5 % B筛选过程完全自动运行,流速设置为 3mL/min 每通道,使用流控单元,平衡每一根色谱柱。样品自动注入(V = 5 μL),并开始平行筛选(运行时间 =10min)。背压调节器设置为 150 bar,柱子加热至 32℃,可按需往改性剂中加入添加剂改善峰型。BUCHI Sepiatec SFC-50超临界制备色谱系统流动相:A= 二氧化碳;B= 甲醇柱尺寸:250×10mm流动相条件:等度运行条件检测:紫外所有 10mm ID 色谱柱都在预设流速下平衡 3 分钟,使用自动进样器上样,并开始运行。背压调节器设置为 150 bar,柱子加热至 40℃,可按需往改性剂中加入添加剂改善峰型。5结果5.1 乙酰氨基酚乙酰氨基酚(下称 AA),也常被称为对乙酰氨基酚,是一种镇痛剂、解热剂和手性药物。它属于非阿片类镇痛剂这一类。在化学上,它可以通过对氨基苯酚(下称 AP)与乙酸酐的反应来合成,在此过程中发生 N-乙酰化(见图1)。为了确定乙酰氨基酚合成产物的最佳纯化分离固定相,首先进行了柱筛选(见图1)。▲ 图 1:顶部:乙酰氨基酚合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI和CBD;运行时间 = 10分钟。图1显示,二醇基和 2-EP 相并未表现出分离度,硅胶相、CBD 相、氰基相和氨基相未显示出理想的分离度,因为它们无法实现基线分离。HILIC 和 PEI 相具有良好的选择性和分辨率,且分辨率始终远高于 1.5(见表1)。1.5 的分辨率意味着可以很好地分离 2 个峰。表1 还显示了洗脱顺序,氰基相显示出相反的洗脱趋势,对氨基苯酚先洗脱,然后是对乙酰氨基酚。筛选结果表明,反应并非百分之百完全,因为产物中仍含有大量对氨基苯酚。▲ 表1:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序选择 PEI 相色谱柱放大至制备规格,因为它具有最高的分辨率(见图2)。根据筛选时的色谱图,我们可以确定 AA 和 AP 在甲醇为 35&minus 40% 之间洗脱。图2(顶部)显示了在 40% 甲醇等度条件下,在10 x 250mm 的PEI 色谱柱上对 AA 进行纯化的情况,结果显示 AA 和 AP 可以非常良好地分离。因此在相同的条件下,可以实施一个堆叠注射方法,用于自动纯化并收集 AA (见图2,底部)。▲ 图2:单次注射(顶部)和堆叠注射(底部)用于AA的纯化;运行条件:流速=30 mL/min, 甲醇= 40 %,温度 = 40 ℃,压力BPR = 150 bar,注射 = 250 µ L,UV波长 = 254 nm;堆叠注射条件:注射次数 = 10,堆叠时间 = 1.8 min,Fractions = 1(基于时间的)。5.2 利多卡因利多卡因(下称 L),化学名为 2-二乙基氨基 -N-(2,6-二甲基苯)乙酰胺,是一种用作局部麻醉剂和抗心律失常药物的药物,它作为钠通道阻断剂起作用。利多卡因可以通过两步合成过程生产(见图3)。第一步中,2,6-二甲基苯胺(下称 X)的氨基组团被酰化 。第二步中,中间产物(下称 IP)通过与二甲胺的亲核取代反应转化为利多卡因。因此,需要进行两步纯化过程。色谱柱筛选的结果如图3所示,筛选过程中,在改性剂甲醇中始终添加 20 毫摩尔氨水作为碱性添加剂。▲ 图 3:顶部:利多卡因合成的反应方程式,底部:Sepmatix 8x SFC 仪器色谱柱筛选IP与利多卡因结果;从左到右:硅胶,氨基,二醇基,氰基,2-EP,HILIC,PEI 和 CBD;运行时间 = 10分钟。从结果来看,所有色谱柱都可用于中间体 IP 的第一步纯化分离,因为都具有基线分离的效果。其中氨基相具有最高的分辨率,且在甲醇比例较低时就能出峰(见图3)。对于第二步利多卡因的纯化,氰基和CBD相无法实现基线分离,而氨基再次表现出最佳的分离度(见表2)。在洗脱顺序上,第一步中间体的纯化出峰顺序都是先 X 再 IP,而第二步的利多卡因的纯化除了硅胶相之外都是先 L 再 IP(见表2)。▲ 表2:样品在不同固定相色谱柱条件下的分辨率值和洗脱顺序最终选择 10 x 250mm 的氨基色谱柱进行制备纯化,因为它的分辨率总是最高的(见表2)。氨基柱筛选结果显示,X 和 IP 出峰时的甲醇比例约为 10 - 19%,L 和 IP 出峰时的甲醇比例约为 11 - 19%。图 4 a) 显示的是甲醇比例为 16% 等度条件下的 IP 的单次纯化分离图谱,图 4 b) 显示的是甲醇比例为 20% 等度条件下的 L 的单次纯化分离图谱。在相同的条件下,可以进行叠层进样分离,分别自动纯化 IP 和 L,并进行馏分收集(见图 4 c) 和 d))。▲ 图4:中间体 IP 的单次进样(a)和叠加进样(c);运行条件:流速 = 20 mL/min,改性剂 = 甲醇 + 20 mM 氨水,改性剂 % = 16 %,温度 = 40 °C,压力 BPR = 150 bar,进样量 = 170 μL,紫外波长 = 254 nm;叠加进样条件:进样次数 = 15,叠加时间 = 0. 75 min, Fractions = 1 (基于时间) 利多卡因L的单次进样 (b) 和叠加进样 (d) 运行条件:流速 =20 mL/min, 改性剂 = 甲醇 + 20mM 氨水, 改性剂 % = 20 %, 温度 = 40 °C 和压力 BPR = 150 bar, 进样 = 170 μL, 紫外波长 = 254 nm 叠加进样条件:进样次数 = 20, 叠加时间 = 0.65 min, Fractions = 1 (基于时间)。6结论在进行有机合成后,由于副反应或转化率未达到 100%,通常仍会存在杂质,这些杂质必须去除,尤其是在药品生产中。在药物合成研发领域,时间与效率至关重要。BUCHI 的 SFC 色谱解决方案为研发人员提供了强大的工具,通过 Sepmatix 8x SFC 色谱柱筛选系统与 Sepiatec SFC-50 制备色谱系统相结合,可快速筛选出合适的色谱柱并线性放大至制备规格。SFC-50 的叠层进样功能,不仅能实现无人值守自动分离,还可显著提高分离效率,从而加快药物合成研发的速度。7参考文献Medikamente & Medizinprodukte (admin.ch) (Status 23.11.2023).https://doi.org/10.1016/j.chroma.2011.09.029https://doi.org/10.1016/j.chroma.2012.06.029https://doi.org/10.1016/j.chroma.2005.03.073https://doi.org/10.1016/j.jpba.2007.08.013.PRACTICAL APPLICATION OF SUPERCRITICAL FLUID CHROMATOGRAPHY FOR PHARMACEUTICAL RESEARCH AND DEVELOPMENT, Vol. 14, M. Hicks and P. Ferguson, 2022 Elsevier Inc.Th. Eicher und H. J. Roth Synthese, Gewinnung und Charakterisierung von Arzneistoffen, Georg Thieme Verlag, Stuttgart (1986).The synthesis of Lidocaine (University of San Diego).Winterfeld, K. – Praktikum der organisch-prä parativen Pharmazeutischen Chemie, 6. Auflage, Steinkopff Verl., Darmstadt (1965).Axel Kleemann, Jürgen Engel, Bernd Kutscher und Dietmar Reichert: Pharmaceutical Substances, 4. Auflage, Georg Thieme Verlag, Stuttgart (2000).
  • 【食品安全小课堂】兽药残留检测技术难点——如何做好β -内酰胺类抗生素的检测
    【导语】检测的日常总是充满了各种挑战,为了更好地服务食品检测行业相关用户,岛津科技资讯通现推出“食品安全小课堂”专栏。内容涵盖——食品检测技术难点、方法验证、实验室管理、法规解读等相关内容,我们会不定期更新,敬请期待! 你是否发现有一些兽药无论你怎么用心做,结果都不尽理想?不是峰型差,就是回收率太低。其实很多情况下,这可能不是你的问题,而是兽药本身的化学结构决定的。 今天我们先分析【β-内酰胺类】抗生素图片说到β-内酰胺类抗生素,大家可能没那么快反应过来,但如果我说青霉素类,是不是就秒懂啦。这可是兽残检测界响当当的“黑名单”!β-内酰胺类检测经常出现回收率低、甚至无法出峰的情况,到底是什么原因呢?其实最主要的原因是β-内酰胺类物质的不稳定性导致的。 图1 β-内酰胺类抗生素的基本结构(左:青霉素类、右:头孢菌类)[1] 图1是β-内酰胺类抗生素的基本结构。含有自然界中罕见的β-内酰胺基母核,母核结构中两个稠合环不在一个平面上,β-内酰胺环中羰基和N原子上的未共用电子对不能共轭,既容易受到亲电试剂的攻击,又容易被亲核试剂攻击[1]。因此,该类物质不稳定。有研究表明,β-内酰胺类抗生素对温度、pH、水分都较敏感[2],高温、水分、酸/碱条件都会加速该类物质的降解。 面对如此不安分的β-内酰胺类抗生素,我们该怎么办呢?下面小编给大家支支招。 1、标准品配置和存放▶ 不建议采用纯水、甲醇溶液配置标准品,建议采用50%左右的乙腈/水(V/V)溶液。▶ 配置好的标准储备液(如1000mg/L),放置在棕色瓶中于-18℃保存。建议用小瓶分装,不可反复冻融。▶ 注意一级浓标(1000mg/L)的有效期,推荐有效期为1个月。但具体可以存放多久,需要实验室应进行标准品期间核查后确定。▶ 稀释后的二级标准品储备液及线性用过后不要保存,只使用一次就好。 2、前处理注意事项▶ 麻利——尽可能缩短前处理的时间。▶ 尽量做到避光。▶ 可将耗材提前放置于低温处,必要时也可冰浴,尽量降低前处理过程的温度。 3、上机注意事项▶ 优先该项目上机。▶ 注意设置液相样品盘的温度,可设置为10℃。 以上建议基于小编的检验经验,欢迎大家在评论处讨论和补充哦~ 【食品安全小课堂】下期预告农残检测技术难点——谈谈农残基质效应那些事儿 参考文献[1].刘创基.动物性食品中β-内酰胺类药物及其代谢物检测方法的研究[D].北京化工大学,2010.[2].姜力群,嵇元欣,刘晶锦等.青霉素类抗生素稳定性的影响因素及有关物质测定方法[J].药学进展,2008,32(2).
  • 赛默飞LCMS和GCMS法测定烘焙食物中的丙烯酰胺
    陈冰、秦玉荣 事件回顾:距离3月31日“星巴克致癌”刷屏事件已经过去一个大半个月了,朋友圈消停了,网友们也似乎忘记这件事了。然而赛默飞对待食品安全问题向来严谨。追本溯源,事件的起因是一种叫做丙烯酰胺的物质。那么,丙烯酰胺到底是什么? 丙烯酰胺是食物发生“美拉德反应”时的一个副产物。 咖啡里的丙烯酰胺是在烘焙的过程中产生的。美国癌症学会(ACS)指出,只要一个食物里有淀粉,有氨基酸,经过了高温烹饪,那就会产生微量丙烯酰胺,在油炸和烘焙的食品里尤其容易产生。国际癌症研究机构(IARC)把丙烯酰胺列在了致癌名单里,但没有把那些含丙烯酰胺的食物也一起列上。美国癌症学会的原话是:“目前没有任何一种癌症类型的风险增加,是明确和摄入丙烯酰胺相关的。”所以说,抛开剂量谈毒性就是 不(shua) 靠(liu) 谱(mang)。 可是,由于丙烯酰胺分子量较低,极性较高,且缺乏明显的发色团(共轭双键、三键、苯环)等性质,使得定量分析丙烯酰胺很困难。传统上用于测定丙烯酰胺含量的方法有酶联免疫法、溴化法、紫外分光光度法、气相色谱法等。但这些方法检测线高而且操作复杂。那么,有没有一种方法既简单高效又有很高的灵敏度及准确性?且看赛默飞的液质+气质完美解决方案:LCMSMS篇:TSQ Altis/Quantis 赛默飞最新一代三重四极杆液质系统1.检测条件:色谱柱:Syncronis C18 (100x2.1mm,3μm ) 流动相:水 甲醇;梯度洗脱流速:300 μL/min;进样量:20 μL质谱条件(ESI+): 表1.离子源设置的参数喷雾电压/V4000气化温度/℃350鞘气/arb30辅助气/arb5反吹气/arb0离子传输管温度/℃350碰撞气体(Ar)/mTorr1.5扫描模式SRM表2. SRM模式中的离子对信息化合物母离子(Parent)子离子(Product )碰撞能量(CE)S-Lens 电压 丙烯酰胺72.255.3*117544.55427.455*标记为定量离子 2检测结果在所建立方法下,丙烯酰胺仪器检出限为0.05ppb,线性范围为:0.1ppb-1000ppb。分别如图1、图2所示:图1:0.05ppb丙烯酰胺提取离子质谱图图2:0.1-1000ppb浓度范围内丙烯酰胺线性关系图图3:低浓度0.1-5ppb范围放大图(丙烯酰胺线性关系图)选择高于检出限5倍检出限和20倍检出限,即0.25ppb和1ppb重复进样6针计算RSD值,分别为3.5%和1.9%,重复性很好,结果如图4和图5所示。图4:丙烯酰胺0.25ppb进样6针重复性(3.5%)图5:丙烯酰胺1ppb进样6针重复性(1.9%)接下来请看GCMS篇: Thermo Scientific ISQ 7000单四极杆GC-MS系统1)依据《GB 5009.204-2014》标准,前处理衍生化方法,GCMS采用EI SIM监测模式,监测离子见下表:衍生后化合物EI SIM监测模式2-bromo-propenamide106,133, 150,1522-bromo-13C3-propenamide108,136, 153,155色谱图如下:2)拓展标准,前处理依然采用衍生化方法,由于食品样品基质复杂,干扰严重,采用CI源能消除干扰,提高灵敏度,因此GCMS采用PCI SIM监测模式,监测离子见下表,5ppb标准品提取色谱图见下图:衍生后化合物PCI SIM监测模式2-bromo-propenamide167,1692-bromo-13C3-propenamide170,172已经颁布的食品中丙烯酰胺的检测范围为10-50ppb, 而在PCI SIM模式下,方法检出限为2ppb,线性范围为5-1000ppb,如figure 6:3)拓展标准,由于前处理采用衍生化方法,步骤繁琐,引入误差大,尝试非衍生的前处理方法,GCMS采用EI SIM监测模式,监测离子见下表:化合物EI SIM监测模式Acrylamide71,55, 443C3-acrylamide74,58 方法检出限为5ppb,线性范围为5-500ppb,如figure 3: 4)拓展标准,由于前处理采用衍生化方法,步骤繁琐,引入误差大,尝试非衍生的前处理方法,GCMS采用NCI SIM监测模式,监测离子见下表:化合物NCI SIM监测模式Acrylamide703C3-acrylamide73 方法检出限为2ppb,线性范围为2-500ppb,如figure 4:另外,由于CI源具有高度选择性,可以降低基质干扰提高灵敏度,下图为未衍生化的薯条样品EI SIM和NCI SIM的谱图比对,图中可见,NCI模式下,基线噪音很低,化合物的响应很高,大大提高了灵敏度。针对食品中丙烯酰胺分析,Thermo Scientific ISQ 7000单四极杆GC-MS系统提供各完美解决方案。Thermo Scientific ISQ 7000 优势:1. 具有NeverVent技术,真空锁(VPI)和V-Lock技术可以同时实现不泄真空换离子源(以及EI/CI的切换)和不泄真空换色谱柱功能,业界唯一技术2. 专利的PPINICI技术,单次进样实现不同保留时间和不同扫描时间内正负离子切换,业界唯一技术3. 电子流量同时控制 两种 CI 反应气,分析过程中反应气流速可调 ,业界唯一技术4. “S”型离子通道设计,有效消除中性噪音,提高信噪比和灵敏度,业界唯一技术5. 独一无二的双灯丝设计,灯丝朝向相同的方向以提高性能并受到电子透镜的保护6. ExtractaBrite 离子源和高性能AEI源具备高效的分析物电离能力和高聚焦的离子束,降低了仪器检出限,并确保更高的稳定性以防止可能的污染。
  • 赛百味否认使用发泡剂 星巴克称部分使用
    美国快餐巨头赛百味近日承认其在北美范围内出售的食物中含有一种名为&ldquo 偶氮二甲酰胺&rdquo 的化学制品,并宣布停用此成分。尽管赛百味中国声明公司未使用该种物质,但业内专家对其声明却提出了质疑。   据外媒报道,赛百味已于美国时间2月6日自主宣布停用偶氮二甲酰胺。偶氮二甲酰胺通常拿来作为橡胶鞋底和瑜伽垫的原料。据业内人士介绍,偶氮二甲酰胺具有氧化和漂白的效果,通常添加在面粉中作为增筋剂,加强面筋的弹性与韧性。   食品专家董金狮表示,实际上,偶氮二甲酰胺是化学发泡剂中的一种,它本身不致癌,但其在高温分解过程中,可能会产生致癌物氨基脲。新加坡、澳洲、日本等国都已禁用该物质。欧盟很早就禁止偶氮甲酰胺作为面粉处理剂使用,2005年又禁止其作为发泡剂在食品包装中使用。但在美国、巴西、加拿大以及中国,则允许其在安全范围内使用。   赛百味中国在其官网上发声明称:&ldquo 中国区的面包不存在偶氮二甲酰胺这一成分。&rdquo 此外,其亚太地区食品供应的两个中国生产商均声明表示:&ldquo 赛百味中国、赛百味新加坡和赛百味马来西亚等地的食品中不含偶氮二甲酰胺,食用安全。&rdquo   董金狮认为,在中国、美国同样都允许使用偶氮二甲酰胺作为食品添加剂的情况下,赛百味美国公司使用了该物质,而中国公司声明根本未使用,显然难以让中国消费者信服。   麦当劳、星巴克销售的面包中也被指含有这种成分。对此,麦当劳中国公司昨天发声明表示:在中国的面包未含有&ldquo 偶氮二甲酰胺&rdquo 。星巴克则表示,其在中国门店内销售的部分糕点中使用的小麦粉原料,含有这一添加剂。此添加剂成分完全符合中国相关食品安全法律法规。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制