当前位置: 仪器信息网 > 行业主题 > >

血管紧张素转化酶

仪器信息网血管紧张素转化酶专题为您提供2024年最新血管紧张素转化酶价格报价、厂家品牌的相关信息, 包括血管紧张素转化酶参数、型号等,不管是国产,还是进口品牌的血管紧张素转化酶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合血管紧张素转化酶相关的耗材配件、试剂标物,还有血管紧张素转化酶相关的最新资讯、资料,以及血管紧张素转化酶相关的解决方案。

血管紧张素转化酶相关的资讯

  • 冷冻电镜解析高血压药物设计的关键蛋白结构
    冷冻电镜(cryo-EM)解析了一种帮助调节血压的蛋白质,即血管紧张素转换酶(ACE)的详细结构。这些结构提供了迄今为止对ACE的最全面的看法,将有助于改善心脏病的药物设计。这项工作是由开普敦大学(UCT)的研究人员与英国同步辐射光源"DIAMOND"的电子生物成像中心(eBIC)合作完成的。研究人员在《EMBO Journal》上发表了他们的研究结果("冷冻电镜揭示了血管紧张素I转化酶的异构化和二聚化机制")。ACE会产生激素血管紧张素II,使血管收缩并提高血压。高血压是心脏病和中风的主要风险因素。与以前的方法相比,冷冻电镜使研究人员能够在更多的功能相关状态下观察到ACE。他们的工作为其生物功能和潜在的药物结合特性提供了关键性的见解。ACE蛋白的一个副本(即单体形式)是由两个结构相似但功能不同的结构域连接而成的。二聚体化(即两个ACE单体的相互作用)发生在一个小的表面空腔附近,改变了对ACE功能至关重要的核心氨基酸的构象。研究人员提出,这种二聚体化可能像一个 "关闭开关",触发蛋白质核心的变化,并可能抑制它。如果能设计出一种类似药物的分子在腔内结合并引起同样的效果,它就能提供一种新的手段来使该酶失活。目前,许多ACE抑制剂在临床上可用于治疗高血压。但这些抑制剂非选择性地针对两个ACE结构域,并因此会在一些患者中引发副作用。开普敦大学教授、该研究的主要研究者Edward Sturrock博士解释说:“了解这些新发现的ACE结构和动态至关重要,这可能针对结构域选择性抑制剂的设计提供新的结合位点,进而规避副作用。”ACE蛋白在Sturrock的实验室生产,在UCT的电子显微镜单元(EMU)进行成像前的准备,并在之后转运到eBIC,在Titan Krios上进行冷冻电镜成像。图像处理在南非的CSIR高性能计算中心(CHPC)和EMU进行。“即使有高分辨率的成像,ACE的独特形状、小分子量和高度动态等特征也带来了许多挑战。"该研究的共同作者之一Jeremy Woodward博士解释道。该研究的第一作者Lizelle Lubbe博士解释说:"最近开发的冷冻电镜图像处理方法对解析这些结构至关重要。"我们必须通过广泛的分类来计算分离图像,这一过程相当于' 数字纯化' ,因为生化方法无法分离ACE的单体和二聚体形式。然后,我们可以将三维细化的重点依次放在结构的不同部分,从而解析这两种ACE结构"。该研究的发现独特地揭示了ACE的高度动态特征,以及其不同结构域之间发生二聚体化和交流的机制--这可能启发治疗心脏病的新药。DIAMOND科学组组长克里斯-尼克林博士说:“我们对非洲的杰出科学家团队利用eBIC先进的冷冻电镜取得的这项研究结果感到高兴。世界迫切需要针对致命的心脏病和其他慢性健康状况的可持续解决方案。我们非常高兴的是,这项研究的结构见解可以为改进抗高血压药物设计铺平道路。”相关文献:Cryo-EM Structures of a Key Hypertension Protein to Aid Drug DesignCryo-EM揭示了血管紧张素I转化酶的异构化和二聚化的机制高血压(高血压)是心血管疾病的一个主要风险因素,而心血管疾病是全世界死亡的主要原因。血管紧张素I转化酶(sACE)的体细胞异构体在血压调节中起着关键作用,因此ACE抑制剂被广泛用于治疗高血压和心血管疾病。我们目前对sACE结构、动力学、功能和抑制作用的理解是有限的,因为截短的、最小的糖基化形式的sACE通常被用于X射线晶体学和分子动力学模拟。在这里,我们首次报告了全长的、糖基化的、可溶性的sACE(sACES1211)的冷冻电镜结构。这个高度灵活的apo酶的单体和二聚体形式都是由一个数据集重建的。单体sACES1211的N端和C端结构分别在3.7和4.1Å被解析,而负责二聚体形成的相互作用的N端结构则在3.8Å被解析。此外,观察到两个结构域都处于开放构象,这对设计sACE调节剂有意义。参考资料:"Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization"
  • 产业链人士:集成电路封装设备供应紧张 包括晶圆切片设备
    4月14日消息,据英文媒体报道,在去年下半年8英寸晶圆厂产能紧张时,相关媒体曾提到,芯片厂商对8英寸晶圆制造设备需求旺盛,但供应紧张,无法满足需求,导致芯片制造商转而关注二手设备。而英文媒体最新的报道显示,芯片行业的设备紧张,已由晶圆代工扩展到了封装领域。英文媒体是援引产业链人士的透露,报道集成电路封装设备供应紧张的。这一产业链的消息人士表示,包括抛光研磨设备、晶圆切割设备在内的封装设备,目前供应紧张,交货周期已有延长。在芯片代工商普遍满负荷运行,汽车芯片、智能手机处理器供不应求的情况下,封装厂商的订单预计也会相当强劲,如果因为设备供应紧张而影响到生产事宜,可能就会影响到部分芯片的出货,加剧部分领域的芯片供应紧张。
  • 我国发现禽流感标志物 研究结果获盛赞
    浙江大学和中国医学科学院联合研究团队的最新研究发现,血浆中的一种蛋白质&mdash &mdash 血管紧张素II与禽流感患者疾病的严重程度和病死率高度相关,从而可以作为禽流感重症化的生物标志物。相关成果发表在5月6日出版的《自然· 通讯》杂志上。   浙江大学医学院附属第一医院传染病诊治国家重点实验室感染性基本诊治协同创新中心主任李兰娟院士、中国医学科学院基础医学研究所蒋澄宇教授、中国疾病预防控制中心高福院士和他们的研究团队发现,感染H7N9禽流感的患者,血浆中血管紧张素II的水平高于健康人或猪流感患者。并且,血管紧张素II的指标越高,患者的病毒载量也越高、疾病进展越快、死亡率也越高。同时,基于血管紧张素II预测病死率,其效果和其他常见临床参数相比更好。   据介绍,课题组共收集了来自杭州、上海和南京等地的47例H7N9禽流感确诊患者的血浆,检测其中的血管紧张素II和病毒载量,并结合患者的临床信息,对数据进行统计学分析。研究发现,死亡患者的血管紧张素II水平持续上升。&ldquo 这一特征在发病后第二周表现尤为明显。&rdquo 李兰娟说,&ldquo 对于重症患者,这一指标会越来越高。而轻症患者的指标在第二周就会下降。&rdquo 进一步研究还发现,与血液中的氧合水平等指标相比,血管紧张素II的预测准确度更高,敏感性和特异性分别为87.5%和68%。   此次研究首次揭示了单个蛋白与H7N9感染的严重程度之间的关系,从而可以预测疾病的严重程度、发展过程和结局。这将为未来可能爆发的禽流感提供新的管理途径。此前,临床上一直缺乏这样的生物标志物。   研究团队还发现,被H5N1禽流感病毒感染的小鼠在血管紧张素II水平增加的同时,血管紧张素转化酶2(ACE2)则减少。而ACE2会让血管紧张素II失活。如果给小鼠注射人类ACE2,就可改善被H5N1病毒感染的小鼠的疾病症状,降低血管紧张素II水平。研究团队相信,ACE2可能对治疗禽流感有潜在功效。   《自然· 通讯》执行主编印格致(Ed Gerstner)说,中国研究者近年来在国际上发表的科研成果数量大幅增加,水平也显着提升。一个重大的变化是,中国科研工作者不再一味追逐西方的科研方向,而开始更多地研究与自身相关的独特的问题。本次发表的研究成果就是一个优秀的例子,它针对的问题与中国和亚洲人民密切相关。截至今年4月末,中国的H7N9禽流感患者达421例,病死率超过30%。   印格致认为,在政府的大力资助下,中国近年来在基础科学和应用科学研究领域都取得了令人欣喜的快速发展。这次发表的研究成果是科研院所合作攻关取得的。&ldquo 随着世界一流研究设施的不断建立和科研人员的成长,以及每天从中国的医院中收集的大量、高质量的临床数据,像这样的科学发现只是一个开始。&rdquo 印格致说。
  • 【瑞士步琦】“血压上来了,降压药安全吗?”快来看看近红外如何快速检测降压药!
    近红外如何快速检测降压药高血压是最常见的慢性病,也是心脑血管疾病的最主要危险因素。常见的治疗高血压药物主要分成以下六类:钙离子拮抗剂的地平、血管紧张素转化酶抑制剂的普利、血管紧张素受体拮抗剂的沙坦、噻嗪类利尿剂、β受体阻滞剂的洛尔和其它类。其中普利类药物是通过阻止血管紧张素Ⅰ转化为血管紧张素Ⅱ,从而阻断了血管紧张素Ⅱ所导致的血管收缩、水钠潴留、血压升高等作用。在降低血压的同时,还能降低血糖,因此普利类药物适用于合并治疗糖尿病。且根据血药浓度半衰期的时间长短,又可分为急性降压和常规降压。具有代表性的卡托普利(Captopril)就属于前者,而雷米普利(Ramipril)属于后者。上述药物除了包含用于降低血压的有效成分外,出于赋形、充当载体以及提高稳定性的考虑,通常会与辅料进行混合后进行制剂。常见的卡托普利和雷米普利类药物都是片剂,只不过外形有所区别。传统检测药品中有效成分的方法,先将片剂经过粉碎、溶解、过滤等一系列前处理后,采用高效液相色谱(HPLC)的分析方法进行分离定量。尽管该方法结果准确,但由于需要破坏样品,预处理步骤繁琐,分析时间较长等因素,只能对药品进行抽检。而近红外光谱分析具有无损、快速、绿色的特点,能够减少试剂的消耗,提高检测效率。下面介绍使用近红外分析两种降压药活性成分的应用案例。 1应用实例药品规格:160mg 苜蓿草形卡托普利片剂,有效成分 25mg80mg 长方形雷米普利片剂,有效成分 2.5mg对两种片剂建模的样品来自于模拟生产的中试实验,所有样品均采用和实际生产相同的方式进行加工处理,为了使得模型更加稳健,所用建模药品的有效成分涵盖了标称含量的75 % - 125 %,使用定制化形状的30盘位固体漫透射测量附件,采集样品在11520 – 6000 cm-1处的近红外光谱,每个样品扫描三次。▲25mg 卡托普利片剂模型▲2.5mg 雷米普利片剂模型根据上述两种片剂所建模型散点图表明,近红外方法对这两种药物的有效成分检测结果与标准的 HPLC 方法结果相近,且具有良好的线性关系。下列表格分别展示了两个模型对实际样品预测结果和 HPLC 结果的对比。两种方法检测 25mg 卡托普利片剂结果对比:25mg 卡托普利NIR(mg)HPLC(mg)相对误差(%)125.60525.5230.32226.06125.7391.25326.09525.9590.52425.98725.8050.71526.08426.2780.74625.54325.4320.44均值--0.66两种方法检测 2.5mg 雷米普利片剂结果对比:2.5mg 雷米普利NIR(mg)HPLC(mg)相对误差(%)12.822.800.7122.472.490.8032.512.500.4042.802.810.3652.812.800.3662.512.520.40均值--0.50上述结果表明近红外在分析以上两种降压药中的有效成分时,能够做到和标准色谱方法接近的结果,同时省去了繁琐预处理步骤以降低成本,改善药品质量控制能力来提升生产效率,具有巨大的经济潜力。上述所采用的定制化片剂外形漫透射附件是步琦傅里叶近红外光谱仪 NIRFlex N500 系列中的一款。其模块化设计的固体、液体、光纤探头等测量池和可拆卸更换的测量附件,具有多种搭配方式,无论是片剂、胶囊、粉末、液体,都有相应的测量方案满足您的需要。详细信息与资料请通过以下方式与我们取得联系,也可关注微信公众号,了解更多产品的应用信息及活动。
  • 岛津全自动样品前处理设备 助您轻松、安全完成新冠治疗药物监测
    共同战疫 迄今为止,新型冠状病毒仍在全球范围蔓延。人体感染新冠病毒后会出现诸如发热、咳嗽、咽喉痛、乏力等症状,尤其是新冠引发的肺部炎症(简称COVID-19)及其并发症,会导致患者极高的死亡率。基于此,如何实现新冠患者血液样本的安全检测已成为医疗工作者亟需解决的问题。 01 病毒致病机理研究介绍 新冠病毒是一种单链RNA包膜病毒,通过刺突(S)蛋白与宿主细胞的血管紧张素转化酶2(ACE2)受体结合,从而进入宿主细胞。TMPRSS2蛋白酶可以协助病毒的入侵。进入细胞后,病毒基因释放,编码合成病毒复制酶和转录酶;随后通过依赖RNA的RNA聚合酶(RdRp)完成RNA复制和转录;进而合成结构蛋白,最终完成病毒颗粒的组装和释放。病毒生命周期的这些过程为药物治疗提供了靶点。有潜力的药物靶标包括非结构蛋白(洛匹那韦/利托那韦、瑞德西韦、法匹拉韦等)、病毒入侵途径(氯喹/羟氯喹、阿比朵尔)以及免疫调节途径(靶向IL-6的药物)。 图片来源于:James M. Sanders, et al., (2020). Pharmacologic Treatments forCoronavirus Disease 2019 (COVID-19). JAMA, DOI:10.1001/jama.2020.6019 02 抗病毒药物TDM监测意义 由于目前并无新冠治疗的特效药,上述授权和\或非授权药物在临床应用及评价时会遇到:①有报道的COVID-19治疗药物均属于超说明书使用,临床给药剂量、频率及患者在多器官功能受损情况下,药物的毒副作用、相互作用等信息不明晰;体内药物浓度监测可以为临床医生提供积极的参考,因此需求迫切;②新冠病毒传染性极强,体内药物浓度评价必然会接触到如咽拭子、血浆、血清、组织等患者样本,如果采样后还需要进行人工前处理如沉淀、萃取等净化步骤,相应医护人员的暴露和感染风险会进一步加剧。因此,尽可能的减少人工操作、减少样品分析次数、增加样品监测通量、增加监测方法的适用性(即一次进样分析涵盖尽可能多的目标待测物);成为当前最为行之有效的方法。 03 岛津全自动TDM监测方案介绍 岛津公司开发了一种采用岛津全自动在线前处理设备CLAM-2030和LC-MS/MS联用系统,内标法同时监测人血浆中瑞德西韦、洛匹那韦/利托那韦、法匹拉韦及其代谢物、阿奇霉素、羟氯喹、去乙基氯喹、氯喹等9种治疗COVID-19药物浓度的方法。 监测药物名称及MRM参数 CLAM-2030是一款全自动前处理系统,只需简单放置采血管或其他样品管,系统就会自动完成对血样或其他样品的前处理,然后自动输送至LC-MS /MS进行分析,实现前处理与上机分析的无缝集成,并且能够精密控制分析结果的重现性。 采用CLAM-2030与三重四极杆液质联用系统系统,考察了血浆基质中9种化合物的检测限、线性、重复性;结果如下所示: 04 结论 结果表明,血浆基质中,9种化合物的灵敏度、线性范围、重复性均完全满足临床监测需求,可以很好的实现全自动化、流程化、高通量监测,使得监测新冠治疗药物的过程变得更加安全和高效。 CLAM-2030系统能够最大限度地减少分析人员接触生物样本机会,降低生物感染的风险。目前,全球已有众多研究者选择岛津全自动在线前处理设备CLAM-2030和LC-MS/MS联用系统来进行血药浓度监测。相信他们的选择,也是您的选择! 撰稿:杨乐
  • Cell|AI工具能预测冠状病毒变异 助力新药研发
    瑞士科学家研制出一种新型人工智能(AI)工具,可以预测包括新冠病毒在内的冠状病毒未来变种,有望促进下一代抗体疗法及疫苗的研发,为制定公共卫生政策提供重要参考。相关研究刊发于最新一期《细胞》杂志。为了创建这一新型AI工具,苏黎世联邦理工学院团队,在实验室产生了大约100万个新冠病毒刺突蛋白变种,它们携带不同的突变和突变组合。刺突蛋白会与人类细胞上的血管紧张素转化酶2(ACE2)蛋白相互作用以感染人类,疫苗接种、感染或抗体疗法获得的抗体通过阻断这一机制发挥作用。新冠病毒变体内的许多突变发生在该区域,这使病毒能够逃避免疫系统并继续传播。通过进行高通量实验及测序,研究人员确定了这些变种如何与ACE2蛋白和现有抗体疗法相互作用,揭示了单个潜在的变种可以感染人类细胞的程度,以及它们可以逃避抗体的程度。随后,研究人员利用收集的数据训练机器学习模型,这些模型能够识别复杂的模式——只给出一种新变体的DNA序列,就可以准确预测它能否与ACE2结合以感染和逃避中和抗体。最终机器学习模型可以用来预测数百亿种理论上可能的变体,包括单突变和组合突变,远远超过实验室测试的百万种。研究人员表示,新方法有助于开发下一代抗体疗法,目前科学家们已经研制出了一些抗体,该方法可以确定哪些抗体具有最广泛的活性,也有望促进下一代新冠肺炎疫苗的开发。
  • 1716万!复旦大学附属中山医院检验科外送检测项目
    一、项目基本情况1.项目编号:0613-246133050222项目名称:检验科外送检测项目包件1预算金额:260.000000 万元(人民币)最高限价(如有):260.000000 万元(人民币)采购需求:主要提供锌元素、反T3、胃泌素、24小时尿游离皮质醇、游离睾酮、苯巴比妥、茶碱、α1抗胰蛋白酶、血管紧张素转化酶、碳酸锂、乙肝分型及耐药等检测。合同履行期限:合同履行期限:一年。本项目采取一次招标三年沿用、分三个年度分别签订合同的方式实施。本项目( 不接受 )联合体投标。2.项目编号:0613-246133050223项目名称:检验科外送检测项目包件2预算金额:256.000000 万元(人民币)最高限价(如有):256.000000 万元(人民币)采购需求:主要提供骨髓细胞染色体核型分析、BCR-ABL1融合基因分型(定性)、PML-RARα融合基因定量检测(RQ-PCR)、IGVH基因突变检测、外周血染色体核型分析、封闭抗体(BA)、精液果糖、抗精子抗体(AsAb)、抗子宫内膜抗体、Y染色体微缺失(AZF)检测、α-地贫点突变基因检测、β-地贫点突变基因检测、UGT1A1(伊立替康)检测等。合同履行期限:合同履行期限:一年。本项目采取一次招标三年沿用、分三个年度分别签订合同的方式实施。本项目( 不接受 )联合体投标。3.项目编号:0613-246133050224项目名称:检验科外送检测项目包件3预算金额:1200.000000 万元(人民币)最高限价(如有):1200.000000 万元(人民币)采购需求:主要提供糖尿病风险评估检测、肠道健康风险评估检测、心血管疾病风险评估检测、氨基酸检测、脂肪酸检测、胆汁酸检测、全基因组分析、遗传性肿瘤113基因检测、肿瘤全景523基因检测(ctDNA)、循环肿瘤细胞检测、血浆肺癌相关12基因检测、血浆肠癌相关14基因检测、肿瘤精准用药70基因检测(血液)等检测。合同履行期限:合同履行期限:一年。本项目采取一次招标三年沿用、分三个年度分别签订合同的方式实施。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月17日 至 2024年01月23日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:上海市普陀区长寿路285号恒达大厦16楼1606室方式:现场购买或汇款购买,建议汇款购买,在汇款附言中注明:“246133050224标书款”,请购标人在“获取招标文件期间内”将汇款凭证、开票信息、联系方式,通过电子邮件方式提交至shengxm@shbid.com。售价:¥800.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:复旦大学附属中山医院     地址:上海市枫林路180号        联系方式:杨婷婷021-64041990      2.采购代理机构信息名 称:上海机电设备招标有限公司            地 址:上海市普陀区长寿路285号恒达大厦16楼1606室            联系方式:盛晓敏、孙瑞强,021-32557729、32557738,电子邮箱:shengxm@shbid.com            3.项目联系方式项目联系人:盛晓敏电 话:  021-32557729
  • 我国科学家发现新冠肺炎治疗新策略
    从德尔塔到奥密克戎,新冠病毒不断变异,全球疫情高位流行,感染人数持续攀升。目前,虽然新冠疫苗可以极大地防止病毒传播,但它们无法治疗感染病毒的患者。为了治疗新冠肺炎患者,科学家在药物研发上付出了巨大努力,但迄今为止,能够治疗新冠肺炎的药物仍然很少。同时,“尽管一些中和抗体和小分子抑制剂正在被研发,但其安全性和有效性存在不确定性。因此,我们迫切需要探索治疗新冠肺炎的新策略。”1月6日,中国医学科学院基础医学研究所黄波教授告诉科技日报记者。经过10个多月的努力,黄波、中国医学科学院医学实验动物研究所秦川教授等研究团队有了新发现。相关研究成果在线发表于国际知名免疫学学术期刊《细胞与分子免疫学》。“我们改造出一种细胞微颗粒,它富含氧化型胆固醇和血管紧张素转化酶2(ACE2)。微颗粒表面的ACE2与新冠病毒结合后,能够协助肺泡巨噬细胞吞噬更多的新冠病毒。”黄波说。为了防御病原菌入侵,在人体肺泡表面的液体层定居着免疫细胞,特别是具有吞噬功能的巨噬细胞,其占比达95%以上,医学上称之为肺泡巨噬细胞。这些巨噬细胞可以吞噬吸入空气中所包含的颗粒和微生物,维持肺泡的干净。巨噬细胞根据接受的刺激信号的不同,可以变化为促炎的M1型巨噬细胞,或者是抑制炎症的M2型巨噬细胞。黄波团队以往的研究显示,M1型巨噬细胞内小体囊腔偏酸,有助于新冠病毒遗传物质RNA核酸,突破内小体的限制,进入细胞浆,从而启动病毒复制程序。与之相反,M2型巨噬细胞内小体囊腔偏碱,抑制新冠病毒核酸从病毒颗粒成分中分离,使得病毒潴留在内小体的囊腔中,并最终递送至溶酶体(细胞内的垃圾处理站),从而将病毒降解。基于此,研究人员把细胞微颗粒(一种来自细胞膜的细胞外囊泡,平均直径在500 nm,已用于临床)进行改造,使其富含氧化型胆固醇和ACE2。微颗粒表面的ACE2与新冠病毒结合,可以协助肺泡巨噬细胞吞噬更多的病毒。与此同时,微颗粒携带的氧化型胆固醇抑制内小体质子泵,使其囊腔偏碱,能够抑制新冠病毒核酸从病毒颗粒成分中分离,从而被递送到溶酶体降解。此外,微颗粒治疗新冠肺炎小鼠结果显示,小鼠体内不仅病毒载量下降,相关炎症因子也明显受到抑制。黄波表示,微颗粒作为一种新型生物载体,已应用于临床,安全性较高。它结合新冠病毒,使其靶向递送到巨噬细胞被降解,且抑制巨噬细胞炎症反应,有望成为新冠治疗新策略。
  • 时间紧张 某单位单一采购进口基因测序产品
    p   近日,因产品生产厂家单一,采购时间紧张以及其上级单位均采购该品牌基因测序设备,某单位申请采用单一来源方式采购DNA实验室仪器设备项目,预算金额约389.4万元。 /p p    strong 附:有关专业人员论证意见[ span style=" text-decoration: underline " a href=" http://www.ccgp.gov.cn/cggg/dfgg/dylygg/201504/t20150427_5230559.htm" 原文链接 /a /span ] /strong /p p   有关专业人员经过认真严谨的评审,出具以下论证意见: /p p   法医DNA检验技术是一项高新技术,目前主要仪器设备需采购ABI 3500xl基因测序仪及配套ABI基因扩增仪,该仪器具有以下优势: /p p   1、ABI 3500xl基因测序仪代表了美国Life Technologies公司(原美国AB公司)在其行业领先的毛细管电泳(CE)系列产品线中的最新进展,而毛细管电泳(CE)系统向来被公认为具有最高水平的数据质量和可靠性,灵敏度可以达到单个碱基的分辨率 目前国内所有公安系统的DNA实验室均采购的是美国Life Technologies公司提供的基因测序仪系统,用于检案分析以及DNA数据库建设。 /p p   2、该基因测序仪的核心之一就是承载核酸片段分离、检测的毛细管 因此毛细管的质量好坏就决定一次分析的成功与否,是否获得了正确的结果 美国Life Technologies公司生产的与ABI 3500xl基因分析仪匹配的24道毛细管,符合测序的最严格质量要求,如每个毛细管必须均一,直径为50um,目前国内没有同类厂家或产品可以达到上述要求。 /p p   3、其次,DNA测序和片段分析,还需要均匀分布在毛细管中的一个高分子材料,形成一定具有均一孔径大小的也具有高度导电性的网筛状结构,使得核酸的大小片段在高压电场作用下依据速度的不同从而得到分离,上述高分子材料目前商用的为POP-4(聚二甲基丙烯酰胺),以及用于DNA变性为单链的HI-DI高纯度甲酰胺、正负极的电泳缓冲液,都需要具有极高的纯度与对其中含有的阴阳离子的控制、PH的要求等,确保在如此细的毛细管内既要分布均匀、且不能含有杂质干扰荧光的检测,同时又要避免堵塞毛细管,其高纯度的纯化技术目前国内厂家无法达到。 /p p   综上所述,此次采购需要单一来源采购美国Life Technologies公司 ABI 3500xl基因测序仪及配套ABI基因扩增仪。 /p
  • 国产抗新冠病毒的广谱单抗 可应对各种变异株
    8月19日,记者从中科院微生物研究所获悉,来自该所等单位的研究人员合作研发出一种能够靶向多种冠状病毒入侵受体ACE2的阻断型单克隆抗体h11B11。该抗体能够有效预防和治疗新型冠状病毒及其突变株感染宿主细胞及模式动物,并在非人灵长类动物中展现出良好安全性。同时,作为新冠肺炎病毒入侵宿主的受体的拮抗剂,该抗体表现出优越的广谱性和中和活性,可应对目前流行的各种变异株。相关成果在线发表于《自然通讯》杂志。新型冠状病毒变异株不断出现,且传播速度越来越快。这给新冠病毒的预防控制带来了巨大挑战,亟需研发出可以应对病毒各种变异株的有效疗法。中和抗体疗法已被证明有效,但变异株的出现,则单一位点的单抗必然失效,广谱中和抗体的研发必须提上日程。幸运的是,近日我国科学家已经成果分离出一株人源化的基因工程单克隆抗体(h11B11),该抗体针对人血管紧张素转化酶 2 (ACE2) 受体。所谓单克隆抗体,是一种免疫球蛋白分子,属于生物药物。新冠肺炎疫情暴发后,靶向病毒表面蛋白的单克隆中和抗体成为潜在的有效治疗新冠肺炎的手段,它通过与新冠病毒结合,抑制病毒的活性,保护细胞免受侵害。相比小分子药物,单抗药物机理清晰,对靶点的选择性高、特异性强。好的单抗药物可以高效率击中靶点,减少副作用。该研究成果对新冠肺炎病毒的抗体治疗,尤其针对目前多种变异株具有重大临床应用价值。经过多种冠状病毒的假病毒和真病毒中和评价,该抗体被证实对新冠病毒及其突变株病毒均具很好的抑制活性。同时,该抗体与微生物研究所早期开发的新冠治疗性抗体CB6联合使用能协同提高中和活性。CB6治疗性抗体是一款靶向新冠肺炎病毒S蛋白RBD的抗体,由微生物研究所高福院士团队和严景华研究员团队联合研发,目前已在美国、欧盟、印度等国家获得紧急使用授权。华中科技大学生命学院杜艳芸博士、中国科学院微生物研究所博士后史瑞、北京大学张莹博士为论文的共同第一作者;中国疾病预防控制中心谭文杰研究员、中国食品药品检定研究院王佑春研究员、华中科技大学生命学院王晨辉教授和中国科学院微生物研究所严景华为本文共同通讯作者。
  • Science:自然界存在与新冠病毒密切相关的病毒
    英国《自然》杂志的预印本平台“研究广场”日前登载的一项研究显示,在老挝北部某些洞穴中栖息的菊头蝠所携带的冠状病毒与新冠病毒具有共同关键特征,这表明自然界存在与新冠病毒密切相关的病毒。 在这项新研究中,法国巴斯德研究所和老挝大学的研究人员于2020年7月至2021年1月间在老挝北部石灰岩“岩溶地带”捕获了46种共计645只蝙蝠,并就这些蝙蝠携带的冠状病毒是否与新冠病毒相似展开采样研究。  研究者发现,新冠病毒刺突蛋白的受体结合域(RBD)通过与人类细胞受体“血管紧张素转化酶2(ACE2)”结合来侵入人体。自然界存在的蝙蝠冠状病毒能否与人类细胞受体ACE2结合,该病毒有无与新冠病毒类似的RBD,是判断蝙蝠冠状病毒能否跨物种传播的重要依据。  论文显示,科研人员从栖息于老挝北部某些洞穴的上述菊头蝠身上采集了样本,并在这些样本中发现了3种与新冠病毒RBD高度相似的蝙蝠冠状病毒。研究人员指出,代号为BANAL-52、BANAL-103和BANAL-236的病毒是“迄今已知的与新冠病毒最接近的”蝙蝠冠状病毒。其中BANAL-236病毒具有与新冠病毒几乎相同的RBD。论文作者之一、巴斯德研究所病原体探索领域的负责人马克艾利奥特说,这3种蝙蝠冠状病毒可能是新冠病毒的源头,并可能构成直接传播给人类的实质风险。  此前曾有西方媒体称,RaTG13冠状病毒最接近新冠病毒。但新研究表明,与在云南发现的蝙蝠冠状病毒RaTG13相比,上述菊头蝠所携带的这3种冠状病毒的RBD与新冠病毒更为接近。英国格拉斯哥大学病毒研究中心病毒基因组学负责人戴维罗伯逊教授此前接受新华社记者采访时表示,“RaTG13冠状病毒最接近新冠病毒”这种说法容易误导人,因为自然界中有很多冠状病毒在传播,还有很多冠状病毒未被采样,在已知冠状病毒中这两者关系比较接近,其实它们之间有几十年的进化距离。  未参与巴斯德研究所和老挝大学上述研究的澳大利亚悉尼大学病毒学研究人员爱德华霍姆斯指出,持续采集样本是了解病毒起源的唯一途径。这项研究强调自然界存在的蝙蝠冠状病毒极易感染人类,这是未来面临的明确风险。
  • 又一品规卡托普利片通过仿制药一致性评价!
    p style=" text-align: justify text-indent: 2em " 天士力:全资子公司药品卡托普利片通过仿制药一致性评价,卡托普利片主要用于治疗高血压和心力衰竭,为国家基本药物,并进入国家医保目录(甲类)。 /p p style=" text-align: justify text-indent: 2em " 卡托普利(Captopril)是一种血管紧张素转化酶抑制剂(ACEI),被应用于治疗高血压和某些类型的充血性心力衰竭。作为第一种ACEI类药物,由于其新的作用机制和革命性的开发过程,卡托普利被认为是一个药物治疗上的突破。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 400px height: 181px " src=" https://img1.17img.cn/17img/images/202011/uepic/e9c3537e-3835-4021-9fa1-6e437851b3a8.jpg" title=" 开博通.jpg" alt=" 开博通.jpg" width=" 400" vspace=" 0" height=" 181" border=" 0" / /p p style=" text-align: justify text-indent: 2em " 卡托普利的原研药是由百时美施贵宝公司(Bristol-Myers Squibb)生产,商品名为开博通(Capoten)。 /p p style=" text-align: justify text-indent: 2em " 截至该品规通过前,规格为25mg/片的卡托普利已有13个厂家通过一致性评价。 /p
  • 冷冻电镜首个新冠病毒蛋白结构解析发布:传染性为何强?
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " & nbsp 2020年2月15日,美国卫生总署(NIH)与美国得克萨斯大学奥斯汀分校Jason S. McLellan研究组合作在预印本平台bioRxiv上发表论文:Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation( span style=" text-indent: 2em color: rgb(127, 127, 127) " DOI: 10.1101/2020.02.11.944462 /span ),报道了新冠病毒(2019-nCoV)S蛋白的首个冷冻电镜结构,利用冷冻电镜技术分析了新型冠状病毒表面S蛋白的近原子结构。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 206px " src=" https://img1.17img.cn/17img/images/202002/uepic/29be9fbf-7286-475f-807a-ea01b409b72a.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 206" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" color: rgb(127, 127, 127) " (注:预印本网站bioRxiv的所有论文未经同行评议, bioRxiv在所有2019-nCoV相关论文页面增加了突出字体说明(上图黄底黑字):“bioRxiv收到了许多关于2019年ncov冠状病毒的新论文。提醒一下:这些是没有经过同行评审的初步报告。他们不应被视为结论性的,指导临床实践/健康相关的行为,或在新闻媒体中作为既定信息进行报道。”) /span /p p style=" text-indent: 2em " 作者通过生物物理以及结构方面的证据发现,新冠病毒的S蛋白结合人体ACE2(宿主细胞受体血管紧张素转化酶2)的亲和力要远高于SARS-CoV的S蛋白,或解释了新型冠状病毒传染性很强的主要原因。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 322px " src=" https://img1.17img.cn/17img/images/202002/uepic/4ad16a73-5442-4584-899c-bca9a93d4e04.jpg" title=" 2.png" alt=" 2.png" width=" 450" height=" 322" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " & nbsp 预融合构象 /span span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 中的2019-nCoV S结构 /span /p p style=" text-indent: 2em " 新型冠状病毒(2019-nCov)的爆发代表了一种流行病威胁,已宣布为国际关注的突发公共卫生事件。CoV突刺(S)糖蛋白是疫苗、治疗性抗体和诊断方法的关键靶标。此前的大量研究均基于2019-nCoV突刺蛋白的预测结构或相关病毒(如SARS)的突刺蛋白的已知结构展开。为促进医学对策(MCM)的开发,论文中确定了预融合构象中的2019-nCoV S蛋白三聚体冷冻电镜结构,为3.5埃分辨率。三聚体的主要状态为三个受体结合结构域(RBD)之一向上旋转为受体可及构象。同时,生物物理和结构证据表明, 2019-nCoV S以比SARS-CoV S更高的亲和力结合ACE2(宿主细胞受体血管紧张素转化酶2)。此外,作者测试了几种已发布的SARS-CoV RBD特异性单克隆抗体,发现它们与nCoV-2019没有明显的结合。这表明两种病毒RBD之间的抗体交叉反应性可能受到限制。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 200px " src=" https://img1.17img.cn/17img/images/202002/uepic/96b62197-7abe-467b-b461-e70a6a2a6f3f.jpg" title=" 3.png" alt=" 3.png" width=" 450" height=" 200" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 2019-nCoV S.和SARS /span span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " -CoV S.之间的结构比较(A) /span /p p style=" text-indent: 2em " span style=" text-align: center text-indent: 0em color: rgb(0, 0, 0) " 新型冠状病毒利用高度糖基化的同源三聚体S蛋白进入宿主细胞。S蛋白经历结构变化将病毒融合进入宿主细胞的细胞膜。此过程包括病毒的S1亚基结合到宿主细胞受体上,引发三聚体不稳定性的发生,进而造成S1亚基脱落S2亚基形成高度稳定的融合后结构。 /span /p p style=" text-indent: 2em " 通过该结构分析,作者发现S1亚基中的RBD经历铰链类似运动,此移动特点与SARS-CoV以及MERS-CoV均非常相似,但新型管冠状病毒中则RBD结构则更靠近三聚体的中央部位,其S蛋白中3个RBP中的1个会向上螺旋突出从而让S蛋白形成能够轻易与宿主受体ACE2结合的空间构象。这也说明,新型冠状病毒引发病毒的机制虽然与其他的冠状病毒科的病毒机制异曲同工,但传染性更强。 /p p style=" text-indent: 2em " 论文受到业界的广泛关注,研究中,John Ludes-Meyers博士对细胞转染给予很大帮助,德克萨斯大学奥斯汀分校Sauer结构生物学实验室的Aguang Dai博士在显微镜对准方面做了大量工作。 /p p style=" text-indent: 2em " 论文链接: a href=" https://www.instrument.com.cn/download/shtml/932743.shtml" target=" _self" style=" color: rgb(127, 127, 127) text-decoration: underline " span style=" color: rgb(127, 127, 127) " https://www.instrument.com.cn/download/shtml/932743.shtml /span /a /p
  • 徕卡共聚焦助力类器官模型开展新冠病毒治疗研究
    张觉超《Cell》杂志发表每一台徕卡设备都有它独特的定位,我们要做的就是保证其经得起时间的考验,发挥它们应有的价值。今天,给大家带来的是徕卡客户用共聚焦产品SP5在《Cell》杂志上发表的题为“Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2”的研究论文[1]。关注COVID-19研究热点的同时给大家介绍一下徕卡显微镜对高端研究体系建立的助益。 进入2020年,科研人员们火力全开,为尽早开发出“解药”而争分夺秒。另一方面,国际主流期刊不吝篇幅地报导科研工作者们的最新研究进展。学术顶级期刊《Cell》于4月24日刊发了一篇由三个科研团队(瑞典卡罗琳斯卡学院、西班牙巴塞罗那理工学院和奥地利科学院)的科学家们联合发表的研究论文,研究指出,hrsACE2(重组可溶性人源血管紧张素转化酶2)能有效抑制COVID-19病毒对宿主细胞的感染(图1)。值得注意的是,该研究使用的hrsACE2蛋白作为一种治疗急性呼吸窘迫综合征(ARDS)的药物,已经通过了I期和II期的临床试验[2,3],后续临床转化指日可待。图1 论文图文摘要[1]介绍研究结果之前,让我们先了解一下这篇论文使用的研究体系,作者是在一种工程化组织——类器官(Organoid)中开展的研究。类器官是由多能干细胞或特定器官来源的祖细胞在体外培养条件下分化形成的器官样组织[4]。目前,科研工作者已成功实现对肠道、肝脏、肾脏、大脑等许多组织的类器官培养,并将其运用到疾病模型建立、药物筛选、药物安全性评价和类器官移植等相关研究中(图2)。可以说,类器官算是在学术界“小有名气”的高端研究体系了,其相关研究的文章不乏大牛之作。2017年,类器官体系还被《Nature Method》杂志评选为2017年度技术[5]。我们今天关注的研究中就利用了人源血管类器官和肾脏类器官(图1)。图2 类器官制备和应用前景简图[4]知识点:类器官的必备特性[4] (1) 必须包含原器官特异性的细胞;(2) 必须表现出原器官一些特有的功能;(3) 必须形成与原器官相似的结构。 言归正传,我们看看今天这篇《Cell》论文是如何“养成”的。由于COVID-19病毒与2003年SARS病毒存在一定的相似性,科学家们很快找到COVID-19病毒在宿主细胞表面的关键受体ACE2(与SARS病毒受体相同)。作为“ACE2是SARS病毒刺突蛋白(Spikeprotein)受体”的发现团队,本文的作者们长期关注ACE2蛋白的功能以及相关药物的研究动向,第一时间想到了用临床级hrsACE2阻断COVID-19病毒表面刺突与宿主ACE2蛋白结合从而抑制其感染能力(图1)。研究思路清晰后,实验在团队协作下快速推进,在分离和鉴定COVID-19病毒后,作者先通过实验确定hrsACE2能特异性的抑制COVID-19病毒对细胞株的感染(图3)。图3 hrsACE2抑制COVID-19病毒的细胞感染能力[1] 在鼠源重组可溶性ACE2(mrsACE2)处理组为阴性结果的衬托下,细胞实验完美收官,结果喜人。为了进一步验证hrsACE2在组织内的作用,作者选用了类器官研究体系检测了hrsACE2蛋白对病毒二次感染能力的影响。血管类器官(图4)和肾脏类器官(图5)中的结果显示hrsACE2能有效抑制COVID-19病毒对类器官的感染。其中,精美清晰的类器官标志分子共聚焦检测图片和红线高亮的统计学差异也足以打动《Cell》的主编和审稿人。图4 hrsACE2抑制COVID-19病毒感染血管类器官[1]图5 hrsACE2抑制COVID-19病毒感染肾脏类器官[1] 恭喜客户的研究论文行云流水般刊稿。不得不提,这篇文章从2月分离得到毒株到4月文章《Cell》见刊,笔者对研究组的工作效率真是佩服到“orz”。 感叹该研究团队飞一般工作效率之余,让我们关注一下作者使用的共聚焦产品——徕卡SP5,真可谓老骥伏枥,志在千里!SP5的上市时间可以追溯到2005年,时至今日,我们正在经历SP8(2012年上市)的时代,即将迎来徕卡共聚焦新品STELLARIS的时代(敬请密切关注徕卡近期产品发布信息)。然而,每一年在高水平期刊发表的大作中,仍能看到SP5共聚焦“助攻”高端研究的佳作。足以看出徕卡产品的稳定性受到高端研究体系的青睐。图6 徕卡共聚焦光谱成像研发历史 徕卡在共聚焦领域的研发生产,历史悠久,各种创新设计不胜枚举(图6)。早在1998年,徕卡革命性地使用了棱镜分光来替代滤片分光,带领共聚焦成像跨入了光谱时代;2002将万能的声光可调分光器AOBS引入共聚焦,取代传统的二向色镜;2008年又再次开创性地将白激光引入共聚焦领域。白激光、AOBS及棱镜分光三者的完美结合,使得共聚焦成像在光谱维度上同时实现了激发、分光以及发射三方面的完全自由。2018推出的DIVE多光子系统,通过创新的4Tune设计,首次实现多光子NDD外置检测器的光谱自由,再一次带领多光子成像进入了光谱时代。 徕卡创新的脚步从未停止,那么徕卡共聚焦人下一个攻克的 “成像自由”会是哪个维度?徕卡又会带领共聚焦成像进入一个什么时代呢?敬请期待! 神秘共聚焦新品:STELLARIS图7 徕卡共聚焦新品STELLARIS 参考资料:[1] Vanessa M, Hyesoo K, Patricia P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181: 1–9[2] Haschke M, Schuster M, Marko P, et al. Pharmacokinetics and Pharmacodynamics of Recombinant Human Angiotensin-Converting Enzyme 2 in Healthy Human Subjects. Clinical Pharmacokinetics, 2013, 52(9):783-792.[3] Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Critical Care, 2017, 21(1):234.[4] Lancaster MA, Knoblich JA. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 2014, 345(6194):283-283.[5] Method of the Year 2017: Organoids. Nature Methods, 2018, 15(1):1-1.
  • 复旦中山检验升级RAAS激素质谱检测方法,助力原醛症精准诊疗
    复旦大学附属中山医院检验科郭玮教授团队开发了三合一肾素-血管紧张素-醛固酮系统(Renin-angiotensin-aldosterone system,RAAS)激素质谱检测方法,有效简化了RAAS激素的检测流程,在保证检测准确性的前提下显著降低成本,具有重要的临床应用价值。该成果发表于国际期刊《Journal of Chromatography B》 [1] ,受到业内广泛关注。RAAS激素检测的临床意义RAAS由一系列激素及相应酶组成,在调节人体血压、水、电解质平衡,维持人体内环境稳定中发挥重要作用。其中肾素作为一种酶直接催化血管紧张素原向血管紧张素I转化,临床中常用的肾素活性即为血管紧张素I的生成速率。RAAS激素水平的变化对多种高血压综合征具有关键的指示作用,尤其是原发性醛固酮增多症(也被称为原醛)。原醛是由肾上腺皮质肿瘤或增生等病变引起的醛固酮自主分泌过多,导致潴钠排钾和体液容量扩张的一种综合征,也是临床上最常见的继发性高血压病因之一。原醛在新诊断高血压中的发生率超过4.0%,在难治性高血压人群中占比更高达17-23% [2] 。图1 肾素-血管紧张素-醛固酮系统原醛患者多以高血压起病,而普通降压药物往往效果不佳,手术或盐皮质激素受体拮抗剂药物才是原醛患者的有效治疗方式。此外,原醛诊断和治疗的延误会增加高血压靶器官并发症的发生风险,研究发现过量醛固酮会增加代谢综合征和心脏重塑风险。因此,对高血压特别是难治性高血压及新诊断高血压人群进行RAAS激素筛查,对高血压精准诊疗有着现实的指导意义,国内外原醛的诊疗指南均将RAAS激素的检测作为重要的筛查、诊断和定位手段 [2] 。精益求精——从逐一击破到一网打尽中山医院检验科利用质谱平台的高敏感性和高特异性,分别开发了血浆醛固酮、肾素活性(即检测血管紧张素I的生成速率)、血管紧张素II的质谱检测方法,在实际应用中得到临床广泛好评,但是上述三种激素的分开检测导致了较高的检测成本和繁琐的工作流程。为了优化RAAS激素检测,中山医院质谱团队利用多种酶抑制剂共同作用,升级开发了三合一RAAS激素检测方法。该方法只需经过一次样本前处理,便可同时准确定量检测醛固酮、肾素活性和血管紧张素II。三合一RAAS激素检测三合一RAAS激素检测方法采用离子源正负离子切换模式,同时兼顾了三种不同类型化合物的不同电离模式,从而获得较优响应。该检测方法具有以下优势:更经济:减少固相萃取板的用量,减少操作人员数量,直接降低耗材和人员成本。更方便:检测三种激素只需一次样品前处理,简化操作流程,也减少了样本用量。更快速:仪器检测一个样本只需5 mins,同时得到醛固酮、肾素活性和血管紧张素II的检测结果,提高了分析通量。更稳定:全新设计的孵育体系,确保实验结果的准确性。三种激素同时检测,简化流程,减少了人为影响因素,有利于方法的稳定性。图2 血管紧张素I、血管紧张素II和醛固酮色谱图复旦大学附属中山医院检验科遵循以患者为中心,以临床需求为导向的原则,依托LC-MS(液相色谱-质谱)技术平台,在类固醇激素、儿茶酚胺类激素、治疗药物监测等检测项目的研发与临床转化上,取得了大量的实践经验和成果。本实验室的RAAS激素质谱检测是实验室自建方法(Laboratory developed tests, LDT)的典型代表。LDT项目具有极高的灵活性,并且具有自我更新迭代的巨大优势。在临床不断增加的新需求面前,LDT作为常规商品化检测项目的有益补充,发挥着越来越重要的作用。中山质谱团队将一如既往地利用好质谱LDT的诸多优势,精益求精,不断创新,致力于让临床在准确结果前满意,患者从技术创新中受益。
  • 徕卡电镜解决方案 —— 让病毒无所遁形
    徕卡显微系统 应用专家 肖丽国2020年,似乎来得更艰难一点。从去年12月份开始,新冠肺炎疫情(COVID-19)就像龙卷风一样席卷全球,当前已在217个国家地区蔓延,全球确诊超2402万例,死亡破82万例。新冠肺炎疫情构成大流行的威胁“已经变得非常真实”。WHO Coronavirus Disease (COVID-19) Overview数据来源:World Health Organization,Date by 2:44pm CEST, 27 August 2020疫情之下,奔跑在一线的有我们的白衣天使,也有争分夺秒的科研人员。而在整个疫情的防控防治过程中,电镜技术,让病毒无所遁形。 负染色技术—鉴定病毒形态为什么是冠状病毒?电镜给了一个很重要的指标:病毒形态。1月6日,中国疾病预防控制中心通过对临床患者分离毒株样品进行电镜负染色,发现了病毒的存在,且形状与冠状病毒相似,直径80-120nm,表面有皇冠一样的突起,这就给我们一个很重要的方向指示。随后,根据核酸序列比对以及其他鉴定方法,宣布新型冠状病毒肺炎疫情爆发。图片来源:中国疾病预防控制中心负染色技术可以鉴别病毒形态、纯度和浓度负染技术流程简单,检测速度快。一般几分钟就可以完成。载网要求:1、载网亲水:商业化载网表面有油脂,悬液样品铺不开2、碳膜载网:促进样品颗粒均匀分布徕卡高真空镀膜仪,一机两用:镀膜+辉光放电EM ACE系列镀膜仪(Leica EM ACE200)EM ACE系列镀膜仪(Leica EM ACE200)负染技术—徕卡解决方案冷冻电镜技术—指导药物和疫苗设计新冠病毒表面的S蛋白,是侵染宿主的关键蛋白,与SARS病毒S蛋白一样,都将宿主细胞表面的“血管紧张素转化酶2(ACE2)”作为侵入细胞的关键受体。了解S蛋白的结构,弄清楚S蛋白与ACE2的作用方式,是药物开发和疫苗设计的重点。2月15日,德克萨斯大学奥斯汀分校McLellan团队获得了新冠病毒S蛋白三维结构,分辨率达3.5埃,确定了该S蛋白是由S1和S2组成的三聚体。RBD是受体结合区域,存在多种构象状态。与SARS病毒S蛋白比较,两者是不同的,但整体上仍具有较高的相似度。随后,作者又分别分析了两个病毒S蛋白与ACE2的亲和力,新冠病毒S蛋白与ACE2的KD(平衡解离常数)是14.7nM,SARS病毒S蛋白与ACE2的KD是324.8nM,KD越高,亲和力越低,暗示着新冠病毒的传染性要高于SARS病毒。3月1日,华盛顿大学David Veesler团队根据S蛋白存在多种构象,重构了3.0埃的close构象,以及3.3埃的打开单个SB区的三聚体。结果表明,新冠病毒S胞外区表现为一个16nm长的三聚体,三角形截面,与SARS病毒S蛋白非常相似。很多序列是保守的,设计针对这一结构功能的抗体,可能会交叉反应中和这两种病毒以及其他相似的冠状病毒。同时还发现S1和S2边界处存在四个氨基酸残基插入,从而引入了新的蛋白酶切位点。这就可能会增强病毒的可传播性,更加科学地解释了新冠病毒传染力强的问题。 2月19日,西湖大学周强教授团队获得了ACE2的全长三维结构,同时解析了S蛋白RBD和ACE2的复合物三维结构,看清楚了它们的相互作用方式,这一步正式揭开了新冠病毒入侵人体细胞的神秘面纱。“S蛋白像一座桥横跨在ACE2表面,又像病毒的一只手,紧紧抓住ACE2,打开细胞大门”。了解了锁的结构,接下来,就可以有针对性地设计钥匙,设计药物和指导疫苗的研发。技术流程与负染类似,但是样品最终要经过投入冷冻,在低温电镜下进行观察。徕卡的EM GP2,就是一款专业的投入冷冻仪,通过对样品的单边或双边的平行吸附,实现样品的快速均匀冷冻。包括生物样品,工业溶剂、悬浊液、乳浊液、胶体样品等。冷冻电镜技术—徕卡解决方案结果展示:样品:蛋白观察方式:cryo TEM样品:病毒观察方式:cryo TEM样品:纤维观察方式:cryo TEM样品:细菌观察方式:cryo TEM电镜是微生物研究中不可或缺的工具,病原体的确定毋庸置疑在传染病防控中占有先驱地位,而电镜检查是确定病毒颗粒的金标准。电镜研究,制样先行。如果您想了解更多关于电镜制样与病原体研究的内容,请与我们联系吧!
  • 安捷伦科技公司授出心血管代谢疾病转化研究基金
    安捷伦科技公司授出心血管代谢疾病转化研究基金美国杜克大学 Christopher Newgard 博士的团队采用安捷伦平台对疾病机制展开深入研究 2014 年 1 月 13 日,北京 — 安捷伦科技公司(纽约证交所代码:A)今日宣布向新成立的美国杜克大学分子生理学研究所(DMPI)授予研究基金。DMPI 研究团队目前正在使用安捷伦的整合生物学解决方案深入研究主要慢性疾病(如,心血管疾病)的代谢和生理学机制。 DMPI 团队的负责人是 Christopher Newgard 博士,他在美国杜克大学医学院药理学和癌症生物学系担任教授,同时担任 Sarah W. Stedman 营养及代谢研究中心和分子生理学研究所的主任。 Newgard 博士说:“杜克分子生理学研究所致力于将强大的基因组学、表观基因组学、转录组学和代谢组学平台与计算生物学、临床转化医学和基础科学经验相融合,以深入研究心血管代谢疾病的机制,我们衷心感谢安捷伦在研究方面给予的支持,并且十分期待与他们的进一步合作,推进心血管疾病和未确诊代谢疾病的深入研究。” Newgard 博士的生物学通路研究以 Agilent GC/MS、三重四极杆 LC/MS 和四极杆飞行时间 LC/MS 系统,以及带化学工作站功能的 MassHunter 工作站等软件为基础,辅以 Agilent-Fiehn GC/MS 代谢组学 RTL 谱库和使用 METLIN 个人代谢物数据库和谱库的 MassHunter 定性软件。安捷伦的 GeneSpring GX 软件、Mass Profiler Pro 和 Pathway Architect 将在数据集成和通路导向解析方面发挥重要作用。 “我们很高兴能够为杜克大学 Newgard 博士和他的团队在开创性转化医学研究领域提供支持,”目前正在与该团队紧密协作的安捷伦“组学应用”主管 Steve Fischer 说道,“他们将拥有整合不同“组学数据”的强大功能,深入研究复杂疾病机制并查明之前不为人知的疾病表型通路。此外,我们的解决方案还将帮助他们更快速地了解心血管代谢疾病的复杂过程,从而更快速地开发治疗方案。” “我们在将整合方案应用于解决心血管代谢疾病之类的重要健康问题方面拥有强大的技术基础,”安捷伦整合生物学总监 Leo Bonilla 补充道,“所以,我们非常期待能够为 Newgard 博士在杜克进行的开创性研究提供进一步支持。”关于安捷伦科技公司的大学事务 安捷伦在支持全球高等教育和研究方面发挥着积极作用。要了解有关最新研究合作、研究工具、教育支持、顶尖大学人才招募和慈善机构的详细信息,请访问:安捷伦大学事务。关于安捷伦整合生物学解决方案 安捷伦科技公司为研究者们提供了涵盖所有四门主要“组学”学科的分析产品。这些组合式硬件/软件和信息学解决方案正在推动新一代生物学通路的多组学研究,并且获得了与药物响应、耐药性、诊断标志物和基础疾病/毒理学途径相关的重要信息。有关安捷伦整合生物学解决方案整套产品的更多信息,请访问 http://biology.chem.agilent.com。关于安捷伦科技公司 安捷伦科技公司(NYSE:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后电子测量公司名字为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 中国首个PCSK9抑制剂安进瑞百安获批
    p   8月8日,安进中国宣布,瑞百安& reg (英文名Repatha& reg ,通用名依洛尤单抗evolocumab)注射液已于7月31日获得国家药品监督管理局(原国家食品药品监督管理总局)批准,成为首个在中国获批用于治疗成人或12岁以上青少年纯合子型家族性高胆固醇血症(HoFH)的PCSK9抑制剂。前蛋白转化酶枯草溶菌素/Kexin 9型(PCSK9)通过与低密度脂蛋白(LDL)受体(LDLR)结合,降低肝脏从血液中清除低密度脂蛋白胆固醇(LDL-C)的能力。瑞百安& reg 通过抑制PCSK9与LDLR的结合,增加了能够清除血液中LDL的LDLR的数目,从而降低LDL-C水平。 /p p   瑞百安& reg (依洛尤单抗)可与饮食疗法和其他降低密度脂蛋白(LDL)的治疗(如他汀类药物、依折麦布、LDL分离术)合用,以进一步降低低密度脂蛋白胆固醇(LDL-C)水平。LDL-C升高被确认为是心血管疾病(CVD)的重要风险因素,。 /p p   纯合子型家族性高胆固醇血症是一种常染色体(共)显性遗传病,是一种罕见病。其临床表现主要为患者从出生就处于高血清LDL-C水平暴露状态,因此动脉粥样硬化性心血管疾病(ASCVD)风险明显增高。若不接受适当治疗,可在儿童及青年期发生心绞痛或心肌梗死,并于20-30岁之前死亡。其它临床症状还表现为皮肤/腱黄色瘤、脂性角膜弓等。 /p p   中华医学会心血管病学分会主任委员,复旦大学附属中山医院葛均波院士表示:“纯合子型家族性高胆固醇血症的发病率约为1/16万~1/100万。由于HoFH患者LDL-C水平高于常人数倍且现有治疗方式较为局限,大多数患者无法有效控制LDL-C水平以避免心血管事件。依洛尤单抗可通过抑制PCSK9来显著降低LDL-C水平,它在中国的获批对HoFH患者来说是宝贵的及时雨,为他们带来了延续生命与提升生活质量的希望。” /p p   临床研究数据显示,瑞百安& reg 能够显著降低HoFH患者通过饮食和调脂药物治疗仍无法降低的LDL-C水平。较安慰剂相比(治疗12周时),瑞百安& reg 降低HoFH患者LDL-C等线水平达31%,其显著的疗效和良好的安全性在对HoFH患者长期治疗的研究中(1年)也再次得到证实。 /p p   安进亚太区负责人兼总经理温陈佩茜女士表示:“作为首个在中国获批的PCSK9抑制剂,瑞百安& reg 为纯合子型家族性高胆固醇血症这一罕见疾病的患者带来生命的希望,这使我们感到振奋和欣喜。我们将继续投入重疾和慢性病领域,以更高效的方式将创新药物引入中国市场,践行安进服务患者的使命,助力健康中国建设。” /p p   瑞百安& reg 此前已获得欧盟委员会(EC)、美国食品药品监督管理局(FDA)等机构的批准,在欧盟、美国、澳大利亚、日本等60多个国家和地区上市。 /p p    span style=" color: rgb(255, 0, 0) " strong 关于瑞百安& reg (evolocumab依洛尤单抗) /strong /span /p p   瑞百安& reg (英文名Repatha& reg ,通用名 依洛尤单抗evolocumab)是一种人单克隆免疫球蛋白G2(IgG2),针对人前蛋白转化酶枯草溶菌素kexin 9型(PCSK9)。瑞百安& reg 与PCSK9结合,抑制循环PCSK9与低密度脂蛋白(LDL)受体(LDLR)的结合,从而阻止PCSK9介导的LDLR降解,使得LDLR可重新循环回至肝细胞表面。通过抑制PCSK9与LDLR的结合,瑞百安& reg 增加了能够清除血液中的LDL的LDLR的数量,从而降低LDL-C水平。 /p p   瑞百安& reg 已在超过60个国家和地区获批,包括美国、日本、加拿大以及欧盟所有28个成员国。在其他国家的申请目前正在进行中。 /p p & nbsp /p
  • 《科技日报》:为什么麦乐鸡让我们如此紧张?
    最近,美国爆出麦当劳出售的麦乐鸡中含有两种化学成分——玩具泥胶的“聚二甲基硅氧烷”和从石油中提取的“特丁基对苯二酚”。这一消息被国内各大媒体报道之后,引起轩然大波。   最新的消息是,国家药监局已介入,监测麦乐鸡中这两种成分的含量是否超标。但这并未能平息舆论的喧嚣。   一样的麦乐鸡,不一样的反应   尽管麦当劳中国公司已经发布“无害声明”,国家药监局也宣布介入调查、监测,然而恐慌仍在蔓延,新浪网开展的相关调查显示,近7成网友不相信麦乐鸡中的化学成分对人体无害。   “我的孩子经常吵着吃麦当劳,麦乐鸡也常买。现在发现有这些莫名其妙的东西,不知道会怎么样。其实平时不让她吃这些东西,但总是拗不过孩子。”北京的成女士告诉记者,她的女儿今年7岁,和周围的很多小朋友一样,对这些“垃圾食品”情有独钟。“我们都关注着进展,不知道是不是另一个三聚氰胺。”成女士忧心忡忡地说。   但出人意料的是,在消息源产生地美国,人们对这一消息却表现得很平静,媒体对此事的报道也不多,彭博新闻社只是在7月6日发表了一篇题为《麦当劳中国表示麦乐鸡无害》的新闻,还被归在财经新闻里头。   记者采访了两位在美留学的博士生。他们分别在普度大学和明尼苏达大学学习,其中一个学的还是传播学专业,对记者采访的第一反应是:“如果不是听你说,我都不知道。”他们表示,未曾在当地媒体看到相关报道。   三聚氰胺事件之后的“风声鹤唳”   当然,安全性仍是国内消费者关心的首要问题。   中国农业大学食品科学与营养工程学院院长罗云波在接受本报记者采访时表示:“聚二甲基硅氧烷和特丁基对苯二酚都可以用作食品添加剂,如果麦当劳的用量在国家标准范围内就没问题,现在主要还是要等国家药监局的评测结果。”   就在昨天,国家药监局就“麦乐鸡事件”召开专家论证会。与会专家也认为,根据国家相关标准,这两种物质允许使用在食品中,关键是具体含量是否超标。   但有观点认为,中国的食品安全标准低于发达国家标准,监测的标准低,项目也少,标准未必代表安全。但罗云波则认为:“以我对目前国家标准的理解,‘麦乐鸡’事件不存在标准偏低的问题。”   “三聚氰胺事件之后,中国老百姓对于食品安全的关注已经到了风声鹤唳的地步。”罗云波说,这就不难理解为什么一旦出现食品安全方面的问题,往往会引发大规模的恐慌。   “信息不对称”易造成恐慌   罗云波认为,在食品安全知识的普及上中国与欧美国家有很大的差距。   “这一差距导致我们的判断力较弱。比如对食品添加剂的认识,很多人受媒体宣传的误导,以为只要是食品添加剂就是坏的,盲目追捧标注‘不含任何添加剂’的商品。事实并不如此,有些食品不含添加剂的后果也许更加严重。”他说。   记者了解到,今年全国“两会”期间,全国政协委员茅玉麟曾提出制定《国家食品安全科学普及专项应急预案》的提案,包括培养科普信息员等,在应对食品安全应急事件时,向普通百姓普及相关科普知识。   全国人大代表、雨润集团董事局主席祝义材也建议,加大食品科普推广力度,解决因大众食品安全知识匮乏造成的“信息不对称”。他认为,食品企业应多参与其中,以提高食品行业的透明度。   “只有让更多人了解食品安全知识,才能避免因为食品安全问题引发的恐慌。”罗云波说,实际上,重大的食品安全事件在美国也时有发生,2006年大肠杆菌污染菠菜事件造成美国26个州受影响,200余人染病,3人死亡。2009年,沙门氏菌污染花生酱事件造成多人染病,1000多种商品被召回。“但是这些食品安全事件并没有引发大规模的恐慌,一个很重要的原因是,民众知道发生了什么、知道接下来如何应对,相比之下我们这方面做得很不够。”罗云波说。
  • "战疫"成果不仅立地而且顶天
    p & nbsp & nbsp 随着武汉“解封”,“战疫”主战场由国内转向国外,人们的目光更多转向了复工复产。 /p p br/ /p p & nbsp & nbsp 而作为一家科技产业媒体,从疫情爆发至今,仪器信息网对于涉及“抗疫”的产业科技动态也做了全方位报道,尤其是那些让人目不暇接的病毒检测手段及相应产品的问世。 br/ /p p br/ /p p & nbsp & nbsp 记得很多科研工作者都讲过一句话,做科研要“立地顶天”。立地,指研究成果要满足国家的需求,要将科研成果应用到产品中,服务社会。顶天,指作基础研究时,要处在国际最前沿。 /p p br/ /p p & nbsp & nbsp 科技部有关负责人在2月15日的一次新闻发布会上也强调,“面对当前疫情,科技人员从总体上来讲,要关注打赢防疫攻坚战,要做好在疫情过程当中对病人的救治工作。同时,在救治过程当中,对救治经验进行记录,进行总结,形成报告论文也是必要的”。 /p p br/ /p p & nbsp & nbsp 本文试图对“抗疫”第一阶段,中国科学家所取得的一些具有里程碑意义的基础性科研成果做一个简要梳理。这些成果都已公开发表。 br/ /p p br/ /p p & nbsp & nbsp 提到发表论文,就绕不开中国疾病预防控制中心的高福院士。1月24日,高福院士领衔的团队在《新英格兰医学杂志》发表篇题为“A Novel Coronavirus from Patients with Pneumonia in China,2019”的文章。文中首次报道了2019-nCoV是感染人类的冠状病毒家族中的第7个成员。 /p p br/ /p p & nbsp & nbsp 几天以后,1月30日,《柳叶刀》发表了由中国疾控中心谭文杰、山东第一医科大学史卫峰等人完成的工作“Genomic characterisation and epidemiology of 2019 novel coronavirus:implications for virus origins and receptor binding”。论文发现新型冠状病毒进入人类细胞所使用的分子“通道”,即人类的受体,可能也与SARS病毒相同,都是血管紧张素转化酶2(ACE2),不过,作用过程不完全相似。 /p p br/ /p p & nbsp & nbsp 2月3日,国际顶尖学术期刊Nature杂志同日上线两篇中国科研团队的关于新型冠状病毒的研究论文,这也是Nature杂志首次发表新型冠状病毒研究论文。 br/ /p p br/ /p p & nbsp & nbsp 复旦大学公共卫生学院张永振团队的文章标题为“A new coronavirus associated with human respiratory disease in China”。该研究主要发表了新型冠状病毒的基因组序列,它也为后续一系列核酸检测试剂盒的开发提供了先决条件。 /p p br/ /p p & nbsp & nbsp 中科院武汉病毒研究所石正丽团队的文章标题为“A pneumonia outbreak associated with a new coronavirus of probable bat origin”。该文章的重要结论是,蝙蝠可能是新型冠状病毒的来源。在石正丽团队的Nature论文之前,也有将病毒自然宿主指向蝙蝠的研究,但石正丽团队是首次全球顶刊评审后通过的结论。 /p p br/ /p p & nbsp & nbsp 不过,虽然自然宿主主要指向了蝙蝠,但中间宿主是谁依然还有争议。香港大学教授管轶、华南农业大学教授沈永义、广东省生物资源应用研究所研究员陈金平等把目光投向了被走私最多的野生哺乳动物——穿山甲。不过这方面的研究尚无一个较为明确的定论。考虑到正是中间宿主为病毒提供了变异进化和接触人类的机会,只有隔绝了中间宿主,才算真正隔离了传染源。所以,这一方向的研究进展值得我们密切关注。 /p p br/ /p p & nbsp & nbsp 时间来到2月28日,钟南山、李兰娟等近40位专家联合在《新英格兰医学杂志》发表了题为“Clinical Characteristics of Coronavirus Disease 2019 in China”一文。该研究基于迄今为止最大规模的样本分析(1099个病例),得出结论,近一半的新冠患者在入院时可能尚未出现发热,最长潜伏期24天(潜伏期中位数4天)。这些结论基本上刷新了当时对新冠病毒的认知,对抗击新冠病毒带来了新的参考。 /p p br/ /p p & nbsp & nbsp 结构生物学领域则在3月份闪耀出“集群光芒”,中国学者“CNS”三箭齐发。 br/ /p p br/ /p p & nbsp & nbsp 3月4日,西湖大学周强实验室在《Science》杂志发布论文《Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2》,成功解析出细胞表面受体ACE2全长蛋白与新冠病毒RBD的复合物的电镜结构。 /p p br/ /p p & nbsp & nbsp 3月25日,中国科学院微生物研究所严景华及齐建勋共同通讯在《Cell》在线发表题为“Structural and functional basis of SARS-CoV-2 entry by using human ACE2”的研究论文,该研究利用免疫染色和流式细胞仪检测,确定S1 CTD(SARS-CoV-2-CTD)为SARS-CoV-2中与hACE2受体相互作用的关键区域。 /p p br/ /p p & nbsp & nbsp 3月30日,《自然》期刊以“Accelerated Article Preview”方式在线发表了题为“Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor”的研究论文,该成果来自清华大学生命学院王新泉课题组和医学院张林琦课题组的联合攻关。他们利用X射线衍射技术,解析了新型冠状病毒(2019-nCoV)表面刺突糖蛋白受体结合区(receptor-binding domain,RBD)与人受体ACE2蛋白复合物的晶体结构,准确定位出新冠病毒RBD和受体ACE2的相互作用位点。 /p p br/ /p p & nbsp & nbsp 这三项成果采用了不同的分析测试技术,互为支持、互为补充,为我们揭秘病毒进入人体的那一刻,同时也为治疗性抗体药物开发以及疫苗的设计奠定了坚实的基础。 br/ /p p strong br/ /strong /p p strong 附记 /strong br/ /p p & nbsp & nbsp 也许是接受了SARS的教训,面对新冠病毒,中国这次在确定病原体、对病毒进行分离、基因测序和发现病毒受体等工作方面均走在了世界的前列,也就是“顶天”工作也做得非常出色。 br/ /p p br/ /p p & nbsp & nbsp 展望未来,只要新冠病毒不自动消失的话,与其相关的科研工作的热度可能将在相当长的一段时间内持续。而新冠疫苗及其防治药物的相关研究将很可能会成为下一波重磅级论文中的主角。 /p p br/ /p p & nbsp & nbsp 就在4月9日,上海科技大学饶子和/杨海涛团队联合中科院上海药物所蒋华良团队以及清华大学、军事医学科学院、中科院武汉病毒所等单位的研究人员合作在Nature杂志在线发表了题为“Structure of Mpro from COVID-19 virus and discovery of its inhibitors”的论文,率先在国际上成功解析新型冠状病毒又一关键靶点—主蛋白酶的高分辨率三维空间结构,并筛选出对新冠病毒的潜在药物。我们期待这次筛选出来的“老药”要比瑞德西韦有更好的表现。 /p p br/ /p p & nbsp & nbsp 全球范围内的“新冠”科研竞赛也许将更趋白热化! /p
  • 西湖大学郭天南等首次揭示新冠患者蛋白质分子病理全景图
    近日,西湖大学生命科学学院郭天南课题组与合作团队(华中科技大学同济医学院附属协和医院胡豫、夏家红、聂秀团队)在Cell在线发表了题为“Multi-organ Proteomic Landscape of COVID-19 Autopsies”的最新研究论文,报道了2020年初因新冠肺炎去世的患者体内多器官组织样本中蛋白质分子病理全景图。相当于他们将医生在显微镜下看到的人体感染新冠后细胞组织的改变放大了数万倍,达到蛋白质分子层面,“看”清楚是哪些分子的改变导致人体器官的病变和衰竭。  这是在全球范围内第一次从蛋白质分子水平上,对新冠病毒感染人体后多个关键器官做出的响应进行了详细和系统的分析,为临床工作者和研究人员制定治疗方案、开发新的药物及治疗方法提供了线索和依据。  论文原文链接:https://www.cell.com/cell/fulltext/S0092-8674(21)00004-0  感染新冠病毒后,5336个蛋白质分子发生改变  大量临床诊疗和研究显示,新冠病人的肺部等器官产生了损伤。但此前大多数与新冠相关的基础研究,是在实验室里利用基于病毒感染的细胞系模型来推测病毒对人体各器官造成的影响,缺乏对新冠肺炎重症患者多器官损伤的病理学观察表型背后的分子水平研究,这样就很难深刻认识新冠致死的机理,并进一步针对患者进行精准的干预治疗。  西湖大学郭天南团队及其合作者收集了19例新冠去世患者的肺、脾、肝、心脏、肾脏、甲状腺和睾丸等七种器官的(图1)组织样本。通过镜下的病理学检查,可以发现这些病人的肺部出现弥漫性肺泡损伤,肺纤维化,中性粒细胞浸润及血栓形成等病理改变,脾脏白髓萎缩,肝脏发生脂肪化生和部分病例出现梗死,心脏发生心肌水肿及间质淋巴细胞浸润现象,肾脏发现急性肾小管损伤。  图1. 新冠病人多器官样本采集和镜下病理学检查  之后,分子层面的研究开始了。基于高压循环技术(PCT)及TMT标记结合鸟枪法蛋白质组技术的质谱数据采样以及组学数据分析,研究团队鉴定了11394个人源蛋白质分子,绘制出新冠危重症死亡患者的多器官蛋白分子全景图(图2)。与非新冠患者的对照组织样本比较,5336个蛋白质发生了改变(图3)。  图2. 新冠病人多器官蛋白质组定量示意图  图3. 新冠病人死亡患者多器官蛋白分子病理全景图  其中,在人体七类器官组织中,脾脏红髓里未鉴定到明显改变的蛋白,而肝脏里改变的蛋白数量最多(N=1970),这意味着新冠肺炎致死患者中肝脏受到的损伤可能比较大。  对新冠病毒进入人体的“罪魁祸首”ACE2蛋白(病毒受体血管紧张素转化酶2,人体内调解血压的一个蛋白),研究团队发现它的数量在新冠病人各类器官中与非新冠病人并无显著差别。而另一个蛋白,即帮助病毒进入细胞相关的组织蛋白酶L(CTSL),在新冠病人肺部却明显增多(图4)。这提示ACE2的表达水平并没有在新冠致死患者中出现改变,仅仅是新冠病毒进入人体的一个通道,CTSL却可能是阻断病毒入侵的潜在治疗靶点。  除了肺部,肝肾也出现纤维化先兆  图4. 病毒侵入人体后多器官高炎症状态及组织损伤相关特异性分子变化示意图。其中红/绿框黑字分别表示明显上/下调的蛋白,红/绿框白字表示明显激活/抑制的通路,白框表示未定量或未失调的蛋白。  研究团队进一步对多种器官的生理功能、病理形态与蛋白质组学进行系统比较研究(图4),发现了多个肺部蛋白出现改变,包括与病毒增殖相关、参与肺纤维化病理过程及降解病毒限制因子的蛋白。蛋白组学同时显示,肺部和脾脏表现出以免疫检查点蛋白的上调及T细胞富集蛋白的下调为分子特征的适应性免疫反应抑制,且脾脏的T,B等淋巴细胞减少也印证了该分子特征。  从临床病理学来看,虽然只有肺部发生了实质性的纤维化病变,但蛋白组学结果(图3,4)显示,在肝脏、肾脏等器官也观察到组织纤维化的先兆,提示对已恢复健康的危重症新冠病人而言,需要对“多器官纤维化”这一可能出现的后遗症进行预防和采取提前干预。  研究团队中的临床合作者在2020年5月曾第一次报告新冠病毒感染死亡患者的睾丸存在生精小管损伤,Leydig细胞减少和轻度淋巴细胞炎症等病理改变。但这些都只停留在“宏观”层面,究竟是哪些分子的改变导致了这些损伤?郭天南实验室找到了新冠患者的睾丸组织中发生明显改变的10个蛋白,它们的功能与胆固醇合成抑制、精子活性降低和Leydig细胞特异标记物减少紧密相关(图5)。其中Leydig细胞与男性雄性激素合成及分泌紧密相关,提示男性新冠患者的生育能力可能受到影响。  当然,这些研究是基于新冠死亡患者的组织样本,在轻症及重症患者中是否会出现同样变化,以及这样的变化是否可逆,还需要进一步研究。  图5. 新冠去世患者睾丸间隙Leydig细胞相对减少,组织内明显下调的蛋白及相关通路示意图。  西湖大学郭天南特聘研究员、武汉协和医院胡豫教授、夏家红教授和西湖大学朱怡副研究员为该研究论文的共同通讯作者。武汉协和医院聂秀教授、郭天南课题组博士生钱鎏佳和孙瑞、协和医院黄博和董小川、郭天南课题组科研助理肖琦,以及西湖欧米(杭州)生物科技有限公司的张秋实为共同第一作者。研究团队介绍:郭天南,2006年毕业于华中科技大学同济医学院临床医学七年制,同时获得武汉大学生物科学双学位。2007-2008年曾在新加坡国立肿瘤中心从事医学研究工作。2012年获得新加坡南洋理工大学博士学位。2012-2017在瑞士苏黎世联邦理工大学Ruedi Aebersold教授实验室从事博士后研究。2017年初至七月在澳大利亚悉尼大学儿童医学研究所ProCan任Scientific Director,肿瘤蛋白质组Group Leader,悉尼大学医学院兼聘高级讲师。2017年8月加入浙江西湖高等研究院(西湖大学前身)任特聘研究员。实验室主页:Guomics Laboratory of Proteomic Big Data
  • 新冠疫苗获批在我军使用 陈薇院士团队再次受到全世界瞩目
    p   6月29日,康希诺生物股份公司(康希诺生物)发布公告表示,公司联合开发的重组新型冠状病毒疫苗(腺病毒载体)获得军队特需药品批件。 /p p   公告称,公司与军事科学院军事医学研究院生物工程研究所联合开发的重组新型冠状病毒疫苗(腺病毒载体)Ad5-nCoV已于2020年6月25日获得中央军委后勤保障部卫生局(下称“军委后保部”)颁发的军队特需药品批件,有效期一年。 /p p   Ad5-nCoV疫苗采用基因工程方法构建,以复制缺陷型人5型腺病毒为载体,可表达新型冠狀病毒S抗原,拟用于预防新型冠狀病毒感染引起的疾病。Ad5-nCoV疫苗的I期及II期临床试验已在中国开展,并于2020年6月11日完成II期临床试验揭盲。I期临床试验后,康希诺生物表示Ad5载体COVID-19疫苗接种后28天可耐受,并具有免疫原性。健康成人中,对SARS-CoV-2的体液反应在接种后第28天达到峰值,接种后第14天产生快速的特异性T细胞反应。目前康希诺生物还未公布二期实验结果,在此次公告中,康希诺生物称,临床试验数据证实其具有良好的安全性,及较高的体液免疫及细胞免疫应答水平。总体试验结果表明,Ad5-nCoV具有预防由SARS-CoV-2引起的疾病的潜力。 /p p   公告还提到,根据《中国人民解放军实施〈中华人民共和国药品管理法〉办法》有关规定,Ad5-nCoV现阶段仅限军队内部使用,未经军委后保部批准,不得扩大接种范围。 /p p   康希诺生物股份公司于2009年注册于天津滨海新区,专业从事高质量人用疫苗的研发、生产和商业化,是国内领先的高科技生物制品企业,建立了针对13个疾病领域的16种创新疫苗产品的研发管线,涵盖了对新型冠状病毒肺炎、埃博拉病毒病、结核病、脑膜炎、百白破、带状疱疹等一系列疾病的预防。此前,康希诺生物已与军科院合作研发埃博拉病毒病疫苗Ad5-EBOV,并且取得1类生物制品新药注册证书,也这是我国独立研发、具有完全自主知识产权的创新性重组疫苗产品。 /p p   在此之前的北京时间6月22日,国际顶级学术期刊《科学》在线发表了由中国工程院院士、军事科学院军事医学研究院研究员陈薇领衔的团队发现首个靶向刺突蛋白N端结构域的高效中和单克隆抗体的研究结果。这也是陈院士团队继腺病毒载体重组新冠疫苗在全球率先进入Ⅱ期临床试验后,取得的又一项世界级科研成果。 /p p span style=" font-family: 黑体, SimHei " strong 本网点评: /strong /span /p p span style=" font-family: 黑体, SimHei " & nbsp & nbsp 如果把人体想象成一间房屋,把新冠病毒想象成强盗,那么,ACE2就是这间房屋的‘门把手’,病毒上的S蛋白(也叫刺突蛋白)抓住了它,病毒从而长驱直入闯进人体细胞。因此S蛋白是新冠病毒入侵人体的关键性蛋白。 /span /p p span style=" font-family: 黑体, SimHei " & nbsp & nbsp ACE2全称为血管紧张素转化酶2,是人体内一种参与血压调节的蛋白,在肺、心脏、肾脏和肠道广泛存在。 br/ /span /p p span style=" font-family: 黑体, SimHei " & nbsp & nbsp 刺突即病毒包膜的糖蛋白。根据美国得克萨斯大学奥斯汀分校研究团队的解析结果,新冠病毒S蛋白以三聚体形态存在,每一个单体中约有1300多个氨基酸。同时,新冠病毒的刺突蛋白包括两个结构域,一个是C端结构域(CTD),另一个是N端结构域(NTD)。这两个结构域在一起,一左一右,共同组成了刺突蛋白。而新冠病毒S蛋白的CTD具有受体结合结构域(RBD)的功能,即S蛋白与ACE2相联结的地方。& nbsp br/ /span /p p span style=" font-family: 黑体, SimHei " & nbsp & nbsp 因此,从疫情开始,不管是疫苗还是抗体类药物,甚至很多化学小分子药物的开发方向或者说是靶点大都聚焦在新冠病毒的S蛋白的C端结构域。 br/ /span /p p span style=" font-family: 黑体, SimHei " & nbsp & nbsp 陈薇院士团队的最新科研成果中,却另辟蹊径,选择了S蛋白的N端结合域(NTD)作为新的潜在靶点。经过层层筛选,最后找到了一种被命名为4A8的单抗,它可以有效的结合NTD区域,并且对病毒产生中合作用。已有一些研究表明,如果单独应用靶向RBD的抗体可能会诱导病毒产生抗药性突变,而如果4A8与RBD这两种不同的靶向抗体混合使用的话,就可以有效地避免这一情况的发生。从而也为临床提供了一种高效的“鸡尾酒”疗法的崭新思路(鸡尾酒的含义即是把多种不同药物混合在一起使用)。 br/ /span /p p span style=" font-family: 黑体, SimHei " & nbsp & nbsp 需要指出的是,在这项工作中,西湖大学的冷冻电镜发挥了重要作用,它高精度解析了抗体与刺突蛋白的相互作用界面,为阐明其抗病毒机制提供了关键信息。 /span /p
  • 人冠状病毒广谱抑制剂的研究进展(一)
    人冠状病毒广谱抑制剂的研究进展(一)宋乐天,程玉森,高升华,姜向毅,展鹏*,刘新泳*(山东大学药学院药物化学研究所化学生物学教育重点实验室,山东济南250012)摘要:冠状病毒在全球范围内的三次流行对人类生命健康造成了极大威胁,特别是目前针对新冠疫情仍然缺乏有效的抗病毒药物。冠状病毒广谱抑制剂通过作用于病毒生命周期中的关键靶标或宿主关键因子来抑制病毒感染。本文作者聚焦冠状病毒生命周期中的药物靶点,综述了现有广谱冠状病毒抑制剂的研究进展,以期为研发抗冠状病毒药物提供参考,更好地应对当下及未来的冠状病毒疫情。关键词:冠状病毒 广谱抑制剂 老药新用 药物发现冠状病毒(coronaviruses, CoVs)在自然界中 广泛分布,1947年首次由啮齿类动物体内分离得到,其常在多个宿主间传播,对多种家畜、野生动 物及人类具有潜在威胁[1]。冠状病毒在动物间传播至人类,即形成人冠状病毒HCoV。至今已出现7种对人类具有传染性的冠状病毒,分别为HCoV-229E、HCoV-NL63、HCoV-OC43、HCoV-HKU1、MERS-CoV、SARS-CoV和SARS-CoV-2[2]。常见的人冠状病毒如HCoV-229E和 HCoV-OC43可导致上呼吸道感染、消化道及神经系统症状,不严重且能自愈[3-4],因此在较长时间内未受到重视。2003年暴发的重症急性呼吸综合征(severe acute respiratory syndrome, SARS)疫情造成全球范围内8000多人感染,死亡率为10%左右 2012年暴发的中东呼吸综合征(middle east respiratory syndrome, MERS)死亡率高达39%;而2019年底暴发的新型冠状病毒肺炎(coronavirus disease- 2019, COVID-19)疫情已经导致全球超过1.6亿人感染,350多万人死亡[5],造成了全球公共卫生危机,这促使人类加快对冠状病毒抑制剂的研究,但至今仍缺乏特异性药物或疗法。相比较,广谱抗病毒药物可作用于某一类病毒或某种病毒不同的变异株,具有独特的优势。本文作者聚焦冠状病毒生命周期中的关键靶标,探讨了开发广谱抗冠状病毒药物的思路。1.冠状病毒的基本结构冠状病毒的遗传物质为单正链RNA,可以作为病毒增殖时的遗传物质及复制模板,也能以mRNA的形式参与合成相应的蛋白质,或直接组装入子代病毒颗粒。冠状病毒基因组从5,端开始,前三分之二序列由两个重合的开放阅读框组 成,编码多聚蛋白pplab,其最终转化为16种非 结构蛋白(non-structural protein, nsp),与病毒基 因组转录与复制有关。3,端附近的序列编码冠状 病毒所共有的4种结构蛋白,包括核衣壳蛋白 (nucleocapsid protein, N 蛋白)、刺突糖蛋白 (spike glycoprotein, S 蛋白)、膜蛋白(membrane protein,M蛋白)和高度疏水的包膜蛋白(envelope protein, E 蛋白)(图1)[6] 。2.冠状病毒的生命周期冠状病毒的生命周期包括侵入宿主细胞、基因组复制和结构蛋白合成、子代病毒组装和释放 等基本步骤(图2)。S蛋白介导病毒入侵时,由宿主半胱氨酸组织蛋白酶和跨膜丝氨酸蛋白酶 (transmembrane protease serines 2, TMPRSS2)催化,裂解为S1、S2两个亚单位[7]。S1和S2分别负责病毒与细胞受体结合以及与细胞膜融合,二者协同介导病毒与细胞表面血管紧张素转化酶2 (ACE2)结合,引起S蛋白进一步的空间结构改变,使病毒以脱壳或膜融合方式纳入细胞[8]。相比于SARS-CoV, SARS-CoV-2和宿主细胞膜融合也可有成对碱性氨基酸蛋白酶(PACE,也称 Furin蛋白酶)的参与。其通过选择性水解刺突蛋 白中的氨基酸片段,预活化刺突蛋白以增强其与ACE2的结合力,提高对宿主细胞的侵染能力[9]。病毒侵入后,RNA复制产生子代RNA,并以之为模板合成多聚蛋白,后者在胞浆中受到主蛋白酶(main protease, Mpro或3CLpro)与木瓜样蛋白酶(papain-like protease, PLpro)协同作用,裂解生成功能性蛋白[10]。PLpro除此之外还具有去泛素活性,能在宿主细胞内将蛋白质脱除泛素和类泛素蛋白ISG15 ,以抑制宿主的抗病毒免疫反应[11]。最终,在功能性蛋白的作用下合成子代病毒颗粒的各个组分,装配并释放出胞。Figure 1 The structure of coronaviruses, represented by SARS-CoV-2Figure 2 The life cycle of coronaviruses, represented by SARS-CoV-23.抗冠状病毒药物的主要靶点通过将SARS-CoV-2的基因测序结果与不同的人冠状病毒基因序列对照,可以辨识出一系列 高度保守的序列。这些序列编码各种关键酶或蛋白质,包括S蛋白、主蛋白酶、木瓜样蛋白酶及依 赖RNA的RNA聚合酶(RdRp)等[12]。进一步研究表明,以上酶的活性位点在SARS-CoV-2、SARS-CoV、MERS-CoV乃至其他冠状病毒中保持高度相似[13],因此这些酶都是广谱抗病毒药物研发的重要靶点。同时,病毒增殖的过程中高度依赖宿主细胞的物质、能量与酶,因此靶向宿主细胞中与病毒生命周期密切相关的靶点,也是广谱抗病毒药物开发的重要策略[14]。靶向宿主的广谱冠状病毒抑制剂可充分克服病毒耐药性、突变性与种间差异性,具有较大的发展空间[15]。4.广谱冠状病毒抑制剂本文讨论的冠状病毒广谱抑制剂是针对冠状病毒与宿主的关键靶点开发的抗病毒化合物。现阶段,根据这类化合物靶向的生理过程不同,分别靶向冠状病毒的侵入过程、RNA复制过程、多聚蛋白裂解过程以及宿主靶标… … 下一期将分享靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,以及其对抗击新冠肺炎疫情、预防未来的冠状病毒传播具有的重要意义。 参考文献:[1] BAILEY O T.PAPPENHEIMER A M.CHEEVER F S ,et al. A murine virus (JHM) causing disseminated encephalomyeliti s with extensive destruction of myelin: L Isolation and biological properties of the vinis[J]. J Exp Med, 1949,90(3) :195 -212.[2] YEZ W, YUAN S, YUEN K S, et al. Zoonotic origins of human coronaviruses [ J ]. Int J Biol Sci, 2020,16(10) : 1896 -1897.[3] WEISS S R, NAVAS-MARTIN S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus[ J]. Microbiol Mol Biol Rev,2005,69(4) :635 -664.[4] DE WIT E, VAN DOREMALEN N,FALZARANO D, et al. SARS and MERS: recent insights into emerging coronaviruses [ J ]. Nat Rev Microbiol, 2016,14(Suppl. 1) :523 -524.[5] World Health Organization WHO Coronavirus Disease (COVID-19) Dashboard[EB/OLJ. [2021 -08 -23]. https://covid!9. who. int/.[6] YANG D, LEIBOWITZ J L. The structure and functions of coronavirus genomic 3' and 5' ends[ J]. Virus Res,2015,206:120 -133. [7] LAN J,GE J, YU J, et al. Structure of the SARS- CoV-2 spike receptor-binding domain bound to the ACE2 receptor[ J]. Nature,2020,581(7807) :215 - 220.[8] HAMMING I,TIMENS W,BULTHUIS M L,et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis [ J ]. J Pathol, 2004,203(2) :631 -637.[9] HOFFMANN M, KLEINE-WEBER H, POHLMANN S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells [ J ]. Mol Cell,2020,78 (4) :779 -784.[10] HUANG J, SONG W, HUANG H, et al. Pharmacological therapeutics targeting RNA- dependent RNA polymerase, proteinase and spike protein: from mechanistic studies to clinical trials for CO VID-19 [ J ]. J Clin Med,2020,9(4) :H31.[11] PITSILLOU E, LIANG J, VERVERIS K, et al. Identification of small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papainlike protease: in silico molecular docking studies and in vitro enzymatic activity assay [ J ]. Front Chem, 2020,8:623971.[12] MORSE J S, LALONDE T, XU S, et al. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV [ J]. ChemBioChem, 2020,21(5) :730 -738.[13] COHEN M S. Hydroxychloroquine for the prevention of Co vid-19- searching for evidence [ J ]. N Engl J Med,2020,383(6) :585 -586.[14] 陈思奥.基于宿主的广谱抗病毒药物研究[D].武 汉:武汉工程大学,2019.CHEN S A. Host-based broad-spectrum antiviral drug research [ D ]. Wuhan: Wuhan Institute of Technology ,2019.[15] 罗翔.以宿主为靶标的广谱抗病毒药物设计、合成 与生物活性评价[D].武汉:武汉工程大学,2016.LUO X. Design, synthesis and biological evaluation of broad-spectrum antiviral drug targeting host cell [D]. Wuhan:Wuhan Institute of Technology,2016.
  • nature nanotechnology | 新型广谱抗新冠病毒纳米材料取得重要进展
    新型冠状病毒肺炎(COVID-19)的全球大流行已对人类健康和世界经济造成了巨大打击。随着新型变异株病毒接连出现,研发高效且广谱抗新冠突变病毒药物迫在眉睫。8月22日,中国科学院深圳先进技术研究院联合国家纳米科学中心、中国科学院高能物理研究所和中国科学院昆明动物研究所的合作成果-新型广谱抗新冠纳米材料,以“A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination”的题目,发表于纳米领域国际顶级期刊《自然-纳米技术》(nature nanotechnology)。研究团队基于新冠病毒的宿主侵染机制,研发了一种可选择性高效结合新冠病毒刺突蛋白的铜铟磷硫二维纳米材料(CIPS)。CIPS能选择性地高效结合包括德尔塔和奥密克戎在内的多种新冠变异病毒的刺突蛋白(S蛋白),进而阻断新冠病毒侵染宿主细胞。该研究解释了CIPS结合新冠病毒S蛋白的氨基酸位点并阐明了其抗病毒机制,并在细胞、类器官和小鼠动物模型上证实了其抗新冠病毒效果,即CIPS能高效抑制新冠病毒的宿主侵染,并有效缓解新冠病毒感染引起的小鼠肺部炎症,促进病毒的宿主清除。该研究基于“纳米蛋白冠”的原理和性质,设计高效捕获新冠病毒刺突蛋白的新型纳米材料,研究为开发广谱抗新冠病毒药物提供了新的思路和策略。深圳先进院张国芳助理研究员、国家纳米科学中心博士生丛亚林、昆明动物研究所刘丰亮副研究员和广东省疾病预防控制中心、广东省公共卫生研究院孙九峰主任技师为该论文的共同第一作者。国家纳米科学中心陈春英研究员、深圳先进院李洋副研究员、高能物理研究所王黎明特聘青年研究员、深圳先进院李红昌研究员和昆明动物研究所郑永唐研究员为该论文的共同通讯作者。该工作得到了深圳先进院Diana Boraschi教授的鼎力相助,得到国家纳米科学中心赵宇亮研究员、深圳先进院喻学锋研究员、中山大学于鹏副教授、中科院大连化物所王方军研究员及河北师范大学常彦忠教授的大力支持。CIPS具备优异抗病毒疗效,可促进病毒清除新冠病毒如何入侵人体呢?位于新冠病毒表面的S蛋白如同一把“钥匙”,通过该蛋白的受体结合域(RBD)与细胞表面的血管紧张素转化酶 2(ACE2)受体这个“门锁”结合后,能打开细胞的大门,使得病毒入侵宿主细胞。而S蛋白及其RBD结构域这把“钥匙”,就成为治疗性药物、中和抗体及疫苗的主要靶标。随着时间推移,新冠病毒的突变产生了大量变异毒株。这些变异毒株的共同特点是S蛋白存在不同的氨基酸突变位点,以目前最流行的奥密克戎毒株为例,其S蛋白有30余处突变位点,其中RBD区域的突变数量高达15个。氨基酸位点突变可能会影响中和抗体和疫苗的效果。近期研究显示,目前多种针对新冠病毒的中和性抗体对奥密克戎变异毒株效力显著降低。纳米材料作为疫苗、抗体或抗病毒药物的递送载体被广泛研究。但纳米材料也可通过与病毒表面蛋白之间的相互作用,阻断病毒和宿主细胞的有效接触,抑制新冠病毒的宿主侵染,因此具有成为抗病毒药物的潜质。基于此,研究人员从一系列纳米材料中筛选出了具有优异抗新冠病毒性能的二维纳米材料CIPS。其在细胞水平显著抑制了病毒对宿主细胞的侵染,且毒性低,药物安全性选择指数(selectivity index)高,具有优异的成药潜能。利用人呼吸道类器官模型,确认了CIPS抗病毒有效性,证实其能够降低呼吸道上皮组织受新冠病毒侵染而引发的上皮损伤。最后,利用小鼠新冠病毒侵染模型验证了CIPS的抗新冠效果,其在充当预防性和治疗性药物时,均可显著降低新冠病毒对肺组织的侵染,抑制新冠病毒引起的肺部炎症。目前已发现的新冠病毒变异毒株超1000种,其中Alpha、Beta、Gamma、Delta、Omicron由于其明显致病性和广泛传播性,被世界卫生组织(WHO)定义为 “需要关注”的变异毒株(VOC,variant of concern)。当前使用的疫苗和中和抗体对VOC的有效性尚存在争议,多项研究已证实部分中和抗体对Omicron无效。研究团队发现CIPS能选择性、高效地结合新冠病毒以及4种VOC变异株(Alpha、Beta、Delta、Omicron)S蛋白,与RBD结构域发生相互作用,既能改变RBD的结构,又能竞争性结合其ACE2受体的结合区域,导致S蛋白这把“钥匙”无法识别宿主细胞受体的“门锁”,从而能够广谱地抑制新冠病毒及变异株入侵宿主细胞。由于CIPS与新冠病毒的高亲和性是其抗病毒基础,阐明两者结合的界面结构非常必要。因此,研究人员利用大连相干光源生物质谱实验站赖氨酸反应性分析表征技术和分子动力学模拟,表征了CIPS与新冠病毒及突变株的S蛋白RBD结构域的结合位点,揭示了CIPS抗病毒的分子机制,为后续CIPS的药用开发奠定了理论基础。在细胞、类器官和小鼠动物模型上的实验表明,CIPS结合新冠病毒后,不仅能够高效地抑制病毒对宿主细胞的侵染,还可促进巨噬细胞对病毒的清除。巨噬细胞是机体免疫系统中发挥重要功能的效应细胞,能够高效清除外源入侵物。CIPS作为外源物质,在肺部能被巨噬细胞识别、捕获并降解。同时,CIPS作为一种可降解二维纳米材料,能够充当“胶水”或“陷阱”,特异性粘附新冠病毒表面的刺突蛋白,捕获并附着病毒颗粒形成病毒-CIPS复合物,引起巨噬细胞对病毒-CIPS复合物的摄取、降解和清除,诱发后续抗病毒免疫反应,提高抗病毒效率。安全有效,具有良好生物相容性良好的生物相容性是纳米材料安全应用于生物医学领域的前提。为了进一步评估CIPS的生物安全性,研究人员基于电感耦合等离子体质谱(ICP-MS),研究了CIPS在小鼠体内吸收、分布、代谢、排泄的生理过程,并联合同步辐射软X射线透射成像(Nano-CT)、X射线荧光成像(XRF)、X射线吸收谱学(XAFS)等技术,在单细胞和组织水平上观察了CIPS的细胞和组织摄取、吸收、分布、降解与代谢、排泄等行为,表明通过鼻滴给药的CIPS能够在7天内从小鼠肺部快速代谢,代谢产物可通过尿液排出体外。此外,CIPS极少进入血液及其他内脏组织,未观察到对各组织器官的损伤,且未见诱发血液毒性及系统性免疫毒性。以上结果表明CIPS是一种安全高效、具有良好生物相容性和生物可降解性的纳米材料。综上所述,该研究开发了一种对新冠病毒及多种突变株具有广谱抗病毒活性的纳米材料,在细胞、人呼吸道类器官和动物水平中均证明了其优异的抗病毒疗效。新冠病毒的持续变异,降低了现有药物及疫苗的有效性,本研究有望为现今急需的广谱抗新冠药物研发提供新策略。CIPS纳米材料的生物可降解性及生物安全性,表明其是一种具有良好转化与应用价值的纳米材料,但距离成为真正的上市药物还需要经过一系列的临床试验检验。此外,CIPS纳米材料对新冠病毒的高亲和力,也具有用作去污剂和表面涂层材料的潜质,以抑制新冠病毒的传播。该研究涉及纳米生物学、微生物和免疫学、材料科学、分析化学、计算机科学等多学科交叉合作,揭示了CIPS纳米材料和病毒的作用位点,明确了其抗病毒分子机制,是相关团队继2021年分别发表于《自然—纳米技术》有关纳米蛋白冠介导的生物功能(Nature Nanotechnology, 2021, 16, 708-716)、纳米精准靶向细胞内蛋白研究(Nature Nanotechnology, 2021, 16, 1150-1160)以及发表于《科学》的抗新冠化学药物(Science, 2021, 371, 1374-1378)后,再次利用纳米材料蛋白冠性质,靶向病毒目标蛋白,开发纳米核心药物的又一成果。该工作得到北京同步辐射装置建制化科研平台、上海光源、合肥国家同步辐射实验室、大连相干光源等大力协助;得到国家重点研发计划、国家自然科学基金、中科院、广东省及深圳市等项目的资助。论文链接:https://www.nature.com/articles/s41565-022-01177-2研究配图:图1. CIPS能够有效抑制新冠病毒及其变异株对宿主细胞、人呼吸道类器官及小鼠肺部的侵染,缓解新冠病毒诱导的肺部炎症;CIPS通过占据刺突蛋白RBD区域与宿主ACE2受体的结合位点,实现抗病毒功能。图2. CIPS能够被巨噬细胞降解,且在小鼠模型中CIPS可促进小鼠肺部巨噬细胞对新冠病毒的清除及CIPS抗病毒机制示意图。
  • “转化”的力量——赛默飞基因分析业务中国副总裁张焱博士访谈
    2003年,美国国立卫生研究院(National Institutes of Health, NIH)提出了&ldquo 转化医学(translational medicine, TM)&rdquo 的概念,并在短短几年内投入了大量的资金,成立了50多个转化医学中心。以康奈尔大学医学院&ldquo 临床和转化医学科学中心&rdquo 为例,该中心于2007年获得了NIH近五千万美元的资助后创立。这大大促进了基础医学成果向临床及生物医药健康产业的发展。许多欧洲国家也做了很多类似的努力和投入。   转化医学的典型含义是将基础研究的成果转化到为实际患者提供真正的治疗手段,强调的是从实验室到病床旁的联接,这通常被称为&ldquo 从实验台到病床旁&rdquo 。   在我国,转化医学也被逐步提上日程,并成为医学领域的重要发展方向之一。2011年11月,国家发布《&ldquo 十二五&rdquo 生物技术发展规划》,其中将基因治疗与个体化诊疗技术列为核心关键技术发展重点。而日前有400余位代表出席的&lsquo Life 2014转化医学高峰论坛&rsquo ,更使笔者亲身感受到了转化医学在中国的方兴未艾。   基因检测就是典型的转化医学应用。从基因组学角度实现传统医学的转化,将有望使个体化医学用于疾病预防和治疗的不同阶段。   本世纪初,人类基因组草图绘制的完成标志着第一代基因测序技术的成熟,对一个或几个基因的测序开始应用在临床上。第二代基因测序又以更高的通量,更简易,标准化,自动化的操作以及不断降低的测序费用加速拓展着测序应用的广度和深度,在传染病、遗传性疾病的鉴定以及癌症等致命性疾病的靶向治疗中开始发挥越来越重要的作用。   对于像Life Technologies这样的行业品牌,其主要业务之一就是为基因测序提供仪器及耗材,自然不会看不到随着转化医学在中国的发展,其中所蕴含着的巨大的、潜在的市场商机。不过,潜在的机会是一回事,把它变成真正的市场&ldquo 蛋糕&rdquo 则又是另一回事。那么对于中国而言,医学基础研究向临床转化的水平与欧美发达国家相比,究竟处在一个什么样的位置呢?   CLIA认证   &ldquo 在美国和欧洲,转化医学这个市场的发展还是比较超前的,并且也确实给病人带来了非常大的好处。而在中国,它的发展相对而言有些滞后&rdquo ,在采访中,张焱博士非常坦率地指出这一点。   &ldquo 以二代基因测序技术为例,当它在2004、2005年刚刚在美国被推出的时候,它的主要目标市场也是那些以科研为主的大型基因组中心(Genome centers)。向应用市场转化也是后来的事情。&rdquo   在和张博士交谈中,笔者了解到,在这一转化过程中,美国的CLIA管理制度和诸如ACMG这样的教育机构发挥了积极的作用。   CLIA,全称Clinical Laboratory Improvement Amendments(临床检验改进修正案), 是1988年美国国会通过的针对人体临床医疗检测的管理制度,用以管理所有第三方实验室开发的应用于临床的各种检测服务。目前,CLIA标准已获得了美国广泛的认可。不仅被普遍应用于人体临床检测,而且被各大制药公司用于新药研发的临床项目,作为控制数据质量的一个最新的工具。   虽然这些CLIA 实验室不能在市场上直接出售它们各自自主开发的按照CLIA标准建立的检测方法(lab developed test),也就是试剂盒(除非通过美国FDA认证),但是它们可以在自己的实验室范围内为临床提供分子检验服务,这就极大促进了转化医学市场在美国的发展。而中国在这方面则是刚刚起步,刚刚开始做一些试点,未来还有很长的路要走。   &ldquo 在CLIA实验室认证方面,Life Technologies有着丰富的经验,我们期待和中国的客户在这一领域进行合作交流&rdquo ,张焱博士真诚地表示。   复合型人才   在人才培养方面,美国的某些做法也可以值得中方借鉴。譬如:在美国成立有一些像美国分子基因组学院(American College of Molecular Genomics, ACMG)这样的非盈利性教育机构。这些机构主要是由一些经验丰富的遗传基因学顾问(genetics counselors)或者分子遗传学者(molecular geneticists)组成。他们的主要职责之一就是为美国的临床医生们提供一些新兴的分子诊断技术在临床应用方面的指导性培训。同时,通过对他们自己的很多实验研究工作的归纳总结,为某一具体的临床诊断,例如非侵入性的产前检查,制定一套完整的指导方针。这些机构的存在,一方面提升了本行业从业人员的整体业务和学术水平,另一方面对于转化医学市场的发展有很大的促进作用。   笔者注:据张博士介绍,在美国,生物学博士或医学博士毕业后如果选择再进修两年(有点类似于博士后),即可以拿到分子遗传学者的学位。目前,美国大约有二十家左右的医学院可以提供这类学位。   &ldquo 要真正把基因组技术运用到临床上,需要大量跨学科的人才,他们不仅要了解medicine,同时也要了解基因组学。中国需要有自己的遗传基因学顾问来帮助临床医师将所得到的诊断信息,准确而又通俗易懂地解释给病人听。而依靠目前中国的医学教育体系,恐怕还很难做到这一点。&rdquo   谈到中国的临床测序,肯定绕不过张焱博士所提到的无创产前基因检测,毕竟这个是目前基因组测序在临床应用中的成功典范。但是目前中国又有几家医院能够完全掌握此项技术?无创产前检测技术与常规生化检测完全不同,它是分子生物学和生物信息学的结合。完成测序只是第一步,后面的数据分析才是对医院真正的挑战。没有一个医学、生物和IT的复合人才团队,要想完成转化是不可想象的。中国需要摸索出一套自己的人才培养体系。   &ldquo 双刃剑&rdquo   近年来的技术发展使科学家能够在较短时间内,以较低成本测序整个人类基因组,但是这些进步可能是一把&ldquo 双刃剑&rdquo 。尤其是基因测序对现有的某些医疗道德标准的挑战。到目前为止,基本上还没有新的伦理道德标准出现来应对这些特殊的挑战。   &ldquo 我给你举个简单的例子。譬如一个孩子出生后发现了一个罕见疾病。医生可以做一个外显子组测序(EXOME sequencing)去查一查有没有基因突变。那么在寻找的过程中我们可能会发现一些突变,但是却又不知道这些突变的意义。在美国,这种发现被称为偶然发现。在医生还无法解释这些被发现的基因突变的情况下,要不要通知病人?这是一个很大的问题。&rdquo   张博士所举的这个例子也让笔者陷入了深思。在医生自己都无法做出正确解释的情况下,他/她究竟有没有义务告知病人?毕竟,这直接关系到下一步的治疗方案。如果未来随着人们认识的进一步深入,发现当时对这些基因突变的理解并不准确,那么究竟是否要追究医生的责任?相反,如果对患者保持沉默,那么患者的知情权又该如何保证?尤其,当下的中国,医患纠纷已经是屡见不鲜。   张博士告诉笔者,在美国,像ACMG这样的机构的另一个主要职责,就是针对这些争论发布一些指导方针。这些指导方针专门为临床医生们提供如何处理这些情况的建议,从而使医生能够更自如地运用这些分子诊断新技术来帮助病人。   &ldquo 我们公司有时也会收到一些孩子患有罕见疾病的父母的邮件。他们为自己的孩子四处求医,但却无法得到帮助,最后找到我们。实在是可怜天下父母心。我本人是希望未来能有更清晰的指导方针出台,从而可以使更多的患者从基因测序中受益。&rdquo   Ion Torrent的市场策略   聊到基因测序,自然绕不开基因测序仪。提到Life Technologies品牌旗下的基因测序产品,大家首先想到的可能就是它的Ion Torrent台式系列。它主要包括两个型号,分别是Ion PGM和Ion Proton。作为全球测序市场的两大巨头之一,我们一直在小型台式测序仪方面有很强的竞争力,其市场占有率超过了它的老对手illumina。   &ldquo 实际上,这两款仪器背后的原理是一样的,即基于半导体芯片技术。同时整个工作流程也是一样的,包括样品处理、文库建立等等,所有前面的操作是一致的。它们的主要区别就是&mdash &mdash 通量。&rdquo   利用这次访谈机会,笔者向张博士仔细了解了一下公司对这两款仪器不同的市场定位,而张博士也非常耐心地为笔者解惑。   &ldquo Ion PGM是一款小通量基因测序仪,它的测序定位主要是针对那些已经非常明确的基因面板(gene panels),例如与肺癌密切相关的KRAS突变位点和EGFR突变位点。结合前端的AmpliSeq技术,它可以实现快速、小范围测序,大概一个小时就可以得到测序结果。这一点对于治疗癌症过程中的靶向用药非常有用,它可以帮助医生开出最有效的药物。&rdquo   笔者注:据张焱博士透露,目前公司已经在着手为这型仪器申报CFDA认证。   &ldquo 而Ion Proton 则是一款较大通量的基因测序仪器,主要针对像EXOME(大小大概是50Mb)测序这样产生数据量更大的工作。目前Ion Proton 在医学上的最大应用还是我前面提到的非侵入性产前检查(NIPT)。&rdquo   &ldquo 一般意义上,大型仪器更适合于科研方面,譬如一些全基因组测序,而且针对的物种也不仅仅局限于人类,可能是所有物种&rdquo ,张博士补充道。   半导体芯片   说到这里,我们有必要简单介绍一下Ion Torrent技术。Ion Torrent开创了一种全新的半导体芯片测序方法,因此也有人把它戏称为二代半基因测序技术。相较于基于光学成像方法的基因测序技术,Ion Torrent不需要使用荧光标记的碱基试剂,它只用便宜的天然碱基即可。   Ion Torrent的基本原理,简言之就是:在半导体芯片的微孔中固定DNA链,随后依次掺入ACGT。随着每个碱基的掺入,释放出氢离子,由此改变这个小孔里的pH值,这样就会产生一个电信号。微孔底部的传感器检测到电压信号变化后,即刻便从化学信息转变为数字电子信息。这种方法属于直接检测DNA的合成,因为少了CCD 扫描,荧光激发等环节,几秒钟就可检测合成插入的碱基,大大缩短了运行时间。   &ldquo 速度是我们半导体芯片技术的第一个显著优势,这一点对于临床尤为重要。每一位患者都希望能尽快知道自己的检测结果,最好是检测当天就能拿到结果。当初,公司在开发Ion Torrent技术的时候,其实已经把目光瞄准了临床市场。像我们的Ion Proton系统采用PⅠ芯片完成转录组测序仅需数小时。&rdquo   Ion Torrent技术的第二个优势被张焱博士称之为稳健性。由于采用了半导体芯片技术,使得仪器本身的结构很简单,所以它的操作对于环境条件的要求不高。听张博士讲,在美国和欧洲,第三方检测机构的分子检验车上就可以配备了Ion Torrent。而这些检测车在行驶的过程中,基因测序可以照样进行,不受影响。   灵活性,则是Ion Torrent技术的第三个主要优势。   &ldquo 譬如:我们的Ion PGM支持Ion 314、Ion 316和Ion 318测序芯片以及多重文库,从而可以满足不同通量的测序要求。我们的临床客户非常喜欢这款仪器。因为医生可以根据当天的门诊量来选择不同通量的芯片,非常灵活。这大大减少了病人等待检测结果的时间。&rdquo   看得出,这又是针对临床客户的实际需求而度身打造的。   值得期待的PⅡ芯片   过去10多年中,随着技术的发展,基因组测序的费用以惊人的速度下降。基因测序市场上的这些重量级&ldquo 玩家&rdquo 都在不约而同地朝着一个目标奋斗&mdash &mdash &ldquo 将全基因组测序价格降至 1000 美元&rdquo 。   千元基因组为何如此重要?  2003年,人类基因组计划宣告完成,它用了13年时间,耗费30亿美元。2007年,DNA双螺旋结构发现者之一的詹姆斯· 沃森成为世界上拥有个人基因组图谱的第一人,&ldquo 破译&rdquo 组用了2个月时间,耗资100万美元。随着技术的进步,测序成本近些年大幅下降,医生们已经开始在患者基因组序列的帮助下进行更好的治疗。但是对于科学家们来说,可能需要测序百万人的基因组,才能真正理解基因对疾病的影响,更好的开发治疗药物,实现个性化医疗的真正突破。要进行如此大规模的测序研究,就需要基因组测序成本降到一千美元以下。   &ldquo 对于Life Technologies品牌而言,这个目标应该在我们即将推出的PⅡ芯片身上实现。它的通量将达到30-60Gb/run,一天之内就可以完成一个人类全基因组测序。而且它将真正实现全基因组测序在单台仪器上价格1000美元的目标。公司在这款芯片上的投入是巨大的,所以我们对它未来的成功没有任何怀疑&rdquo ,张博士的语气中充满着自信。   除了测序本身外,张博士同时强调了前端技术对于基因测序在临床应用中的重要性。   &ldquo Life Technologies品牌在分子生物学方面有着长期的技术积累。我前面提到的AmpliSeq靶向技术就是这种积累在我们产品中的具体体现。这个技术可以帮助用户针对每个选定的目的基因设计引物,生成预选择基因的分析组合,让用户能够创建定制的靶向文库。形象的说就是,这个技术可以让我们把想要测序的基因组里的序列很快地调出来。它对于临床医生是非常有用的。对他们而言,平时做全基因组测序的机会不会很多,也没有必要,而更多的是针对那些治病基因的靶向测序。&rdquo   &ldquo 我们会最大限度地发挥我们的特长,将我们的价值不仅体现在测序上,而且要体现在整个工作流程上。&rdquo   贴近中国市场   从小在北京长大,北大毕业后又远渡重洋,赴美求学、工作多年,张焱博士对于中美两国之间差异的理解有着得天独厚的优势。这一点非常有助于Life Technologies制定符合中国市场特点的中国市场战略。   2012年,Life Technologies与中国领先的分子诊断技术公司达安基因成立体外诊断技术合资公司&mdash &mdash 立菲达安,这应当说是Life Technologies中国市场战略的关键一环。   &ldquo 中美两国市场完全不同。如果你去比较一下中国医生和美国医生针对诸如心血管疾病、癌症等所开的处方,你会发现差别非常大,非常有意思。此外,由于人种差异,中美两国患者的基因突变的频率也有很大不同。有些基因突变在美国可能没必要检测,因为频率很低,但在中国可能就需要检测。&rdquo   很显然,立菲达安的成立可以帮助当时的Life Technologies对中国市场的需求迅速做出反应,可以专门针对中国市场的需要开发检测试剂盒。同时,这些产品未来通过CFDA的审批,可能也会更加便利。   当然,Life Technologies的本土化策略还远远不止这些。笔者从其他渠道了解到,华大基因也在和Life Technologies合作,帮助后者的Ion Proton测序仪进行国产化的运作,以国内民企仪器身份提交医疗器械申请(笔者按:这款仪器应该针对的是无创产前筛查市场)。   不得不承认,Life Technologies在中国市场的运作非常聪明。因地制宜,这种策略可以大大缩短仪器和试剂等的CFDA注册时间,并且可借助华大和达安的现成的无创产前技术力量和试剂生产经验快速拿到这一产品的相关批文。一旦通过CFDA认证,Life Technologies就可以凭借着时间优势快速拓展医院渠道,抢占这一庞大市场的制高点。在这一点上,它的老对手illumina则显得行动有些迟缓。   &ldquo 在服务中国客户方面,我十分自信。除了我们在中国的合作伙伴外,赛默飞(笔者按:2013年,Life Technologies被赛默飞以136亿美元收购)的中国团队加起来将近有四千人,有自己的中国创新中心。在这里,赛默飞还有完整的工厂体系。单是基因分析业务部门的技术支持人员就超过一百人。一句话,我们在中国有一支非常强大的团队,无论是售前还是售后,我们完全有能力承诺为中国客户提供最优质的服务,在最短的时间内帮助他们解决问题。&rdquo   结束语   没有人会怀疑,&ldquo 转化医学&rdquo 的力量将使基因&mdash &mdash 这个揭示人类生命奥秘的学科,孕育出全世界最大、最重要的产业市场之一。根据研究机构BBC Research今年2月的测算,2018年全球的基因测序产品预计达到117亿美元的市场规模。在中国,由于庞大的人口基数,以无创产前筛查为例,假如将来每次检测平均费用能够从现在的2500元左右降到1500元,按照我国每年有2000万怀孕母亲测算,那么单是这一市场的容量就将达到300亿元人民币。   尽管我们现在还无法确定转化医学在中国市场最终爆发的时间点(有人推测最快在2015年),不过我们有理由相信,Life Technologies这种未雨绸缪的全方位布局,会令它在未来与竞争对手的&ldquo 搏弈&rdquo 中,显得更加从容。(主编当班)
  • 再不怕被扎冤枉针!美新型仪器可迅速“照出”血管
    图为美国克里斯蒂医疗控股设计的&ldquo 克里斯蒂血管指示器&rdquo 。(图片来源:《每日邮报》) 如果开启精细模式,图像还会显示出静脉的更多详细信息,甚至可以帮助医护人员发现静脉血管的分岔点等。(图片来源:《每日邮报》) 中国日报网3月27日电(刘宇) 你有没有因为护士找不到血管而被扎&ldquo 冤枉针&rdquo 的经历?一种新仪器的出现可以大大减少你的担忧了。据英国《每日邮报》26日报道,美国的医院正在尝试使用一种新型仪器来帮助护士寻找患者手臂上的血管,原理是借助对人体无害的近红外线。 这种仪器是由位于美国孟菲斯的克里斯蒂医疗控股公司设计的,名为&ldquo 克里斯蒂血管指示器&rdquo (Christie VeinViewer)。它可以检测出血管的位置,并将血管的分布图像实时投射到手臂上,以便让医护人员知道应该在哪里下针。设计公司表示:&ldquo 这或许能让 你免于遭受&lsquo 冤枉针&rsquo 的痛苦。&rdquo 该仪器的工作原理是发射出近红外线,这种光线会被血液中的血红蛋白吸收,然后被周围的组织反射。仪器通过将这些信息进行数字化处理,就可以把血管的位置实时投射在皮肤上。这样一来,患者的血管分布立刻清晰可见。 据了解,这种仪器可以&ldquo 照出&rdquo 深达10毫米的静脉血管。如果开启精细模式,它还会显示出静脉的更多详细信息,甚至可以帮助医护人员发现静脉血管的分岔点等。
  • 【重磅】冷冻电镜Cryo-EM解析出新冠病毒首个S蛋白的近原子分辨率结构
    电镜不仅可以揭示新冠病毒形态、扩增过程及传播途径,同时,使用冷冻电镜解析病毒的刺突糖蛋白(Spike glycoprotein, S蛋白)结构是助力疫苗与抗病毒药物研发的关键所在。2月15日,美国得克萨斯大学奥斯汀分校Jason S. McLellan教授团队和美国国立卫生研究院NIH联合在预印版网站bioRxiv上发表了首篇使用冷冻电镜解析新冠病毒S蛋白的研究文章。Jason Mclellan团队通过冷冻电镜Cryo-EM技术,解析了新冠病毒S蛋白三聚体的3.5埃的近原子分辨率结构,从生物物理及结构生物学的角度加深了我们对新冠病毒的认知。01为何2019-nCoV的传染性如此之强?作者使用了来自赛默飞旗下品牌Thermo Scientific的Titan Krios冷冻电镜,解析了新冠病毒刺突糖蛋白(简称S蛋白)三聚体预融合构象的近原子分辨率结构,其分辨率达3.5埃(10-10 m)。该研究中发现新冠病毒S蛋白三聚体的在多数时候其三个受体结合域(Receptor-binding domains,RBDs)中的一个发生了旋转,使得其更容易与细胞表面的受体相互作用。作者还借助于其他生物物理和负染电镜(Thermo Scientific Talos TEM)技术,发现 2019-nCoV S结合细胞表面受体血管紧缩素转化酶2(angiotensin-converting enzyme 2, ACE2)的亲和力高于SARS-CoV的 S蛋白。这两方面的数据说明了为何2019-nCoV的传染性较其他冠状病毒传染性更强。*新冠病毒S蛋白三聚体预融合构象的近原子分辨率结构作者进一步通过动力学实验检测确认新冠病毒、SARS病毒与宿主细胞受体ACE2亲和力的差异。令人震惊的是,2019-nCoV结合ACE2的亲和力是SARS病毒结合受体亲和力的10-20倍。该研究成果进一步阐释了新冠病毒能够迅速在人际间传播的原因。*新型冠状病毒相对SARS病毒对ACE2具有高亲和性02为何SARS-CoV的抗体对2019-nCoV无效?由于新型冠状病毒与SARS-CoV病毒之间的结构同源性,通过比较,研究者发现了2019-nCoV S蛋白与SARS-CoV S蛋白的结构差异。此外,他们还测试了三种研发用于结合SARS-CoV S蛋白的单克隆抗体,研究发现这些抗体并不能与2019-nCoV S蛋白RBD产生交叉反应,这说明SARS-CoV的抗体并不能用于2019-nCoV, 针对2019-nCoV必须重新设计抗体和疫苗。*2019-nCoV S与SARS-CoV S的结构对比总而言之,此文章利用冷冻电镜技术对新型冠状病毒的S蛋白进行了近原子分辨率的解析,为进一步精确地疫苗设计以及抗病毒药物的研发提供了重要的结构生物学基础,为发展新型冠状病毒的医疗对策提供了技术支持。后续如有相关疫苗或抗病毒药物的研究进展,冷晓镜会持续跟进报道。冷晓镜小课堂Q刺突糖蛋白(简称S蛋白)为何这么重要?冠状病毒的刺突糖蛋白(Spike glycoprotein, S glycoprotein)是Ⅰ型跨膜糖蛋白,也是病毒最大的结构蛋白,其包含了病毒的主要抗原决定簇,能够刺激机体产生中和抗体和介导免疫反应,通常包括由球状的受体结合亚基S1和棒状的融合亚基S2两部分。同时,S蛋白的S1亚基决定了受体细胞的表面受体的特异性,而S2亚基又决定了病毒进入细胞的融合过程的特性,可以说S蛋白的结构对于设计疫苗来产生抗体或者设计药物阻断病毒吸附与侵染具有重要作用。*美国疾病控制中心 (CDC) 创建的新冠病毒立体模型“ 作为冷冻电镜(cryo-EM)技术的开拓者,赛默飞世尔科技一直致力于该技术的研发和普及,在不断推出新产品的同时,还专门与客户合作开发了冷冻电镜免费在线学习工具https://em-learning.com,希望为广大生命科学工作者及相关行业提供更完备更易用的解决方案。目前,赛默飞世尔科技冷冻电镜产品家族包括旗舰级300 kV产品Krios G4,最新推出的200 kV产品Glacios,用于冷冻样品制备的Vitrobot和用于样品筛查的入门级产品Talos L120C G2,以及用于冷冻电子断层扫描(cryo-ET)细胞样品减薄的冷冻聚焦离子束Aquilos 2等。”
  • 【知识科普】心血管生物力学与力学生物学2022年研究进展
    心血管系统是脊椎动物胚胎发育的第一个功能器官系统,其主要功能是运输、控制和维持全身的血流。由于不断暴露在来源于血流量和压力的多种机械力下,心血管系统是最容易受到机械力学刺激的系统之一。在这种情况下,心血管系统中的细胞由于心脏跳动产生的脉动变化以及血流产生的剪切应力等永久地受到力学刺激。一方面,流体剪切应力、血管壁机械牵张力、细胞与细胞之间的胞间力等外力组成了心血管系统的力学刺激。另一方面,心血管细胞力学描述了心血管的细胞或组织弹性的动力学。 心肌组织是由心肌细胞、心脏成纤维细胞、细胞外基质、血管等组成的复杂和高度层次化的组织,其组织结构与心脏的宏观力学和形态特性密切相关。随着心脏从单腔结构演变为多室结构,心脏瓣膜开始控制心脏周期中的单向血流。在此期间,心室肌细胞以纤维的形式排列,在心脏壁内形成复杂的层流模式,赋予了心脏包括各向异性、黏弹性在内的多种力学性能。此外,细胞外基质维持了心脏完整性并支持其功能。心脏间质外基质主要由成纤维细胞样细胞产生和维持,为心肌提供了必要的结构支持,保留了心室的力学特性。血流和基质成分的改变都将在一定程度上影响整个心脏的结构和功能。血管在组织结构较高,特别是大组织和器官结构的产生中发挥着重要作用。所有组织生长需要建立足够的血管结构。血管主要由血管内皮细胞(endothelial cells,ECs)和周围的平滑肌细胞(smooth muscle cells,SMCs)或周细胞组成。这些特殊组分维持了血管的黏弹性、各向异性等力学特性。EC排列在血管的内表面,其在循环和周围组织之间提供选择性结构屏障,调节血管通透性和血流。血管内皮功能可以通过血流速率、血管直径或动脉力学特性变化来评估,这些特性与血管收缩和舒张活动有关。此外,SMCs是构成血管壁组织和维持血管张力的主要细胞成分。血管SMCs在组织发育过程中,不断暴露于脉动牵张力等力学刺激中,这种力学作用至少在一定程度上促进了血管组织成分的发育。心血管结构或可替代性的改变可以对心脏功能、血管收缩和扩张能力产生重要影响。特别是在病理情况下,了解心血管结构和力学特性的变化是阐明心血管疾病发生的必要条件,因为这些特性是正常心血管功能的关键决定因素。2022年,关于心血管的生物力学与力学生物学研究主要集中在心血管组分、结构和功能方面。在生理或病理条件下,对心脏和血管壁的生物力学特性、血管内的血流动力学参数、以及响应力学刺激后的生物学改变进行了广泛研究。此外,在微流体技术、纳米技术和生物成像技术等新技术的应用以及心血管生物力学建模领域也取得了进步。然而,机体自身存在的复杂力学环境导致体内心血管力学生物学相关的研究较少。因此,体内环境中不同力学条件下心血管损伤修复的力学生物学研究是未来重要的研究方向。1 心血管生物力学研究1.1 心脏结构和功能的生物力学特征心脏具有复杂的三维结构,在整体器官水平上的功能来自于细胞亚结构到整个器官的内在结构-功能的协调作用。然而,对人体心脏结构中细胞生物力学特征的研究还处于早期阶段。在最近的报道中,Chen等[1]通过空间维度剖析了心肌细胞的异质性,并明确了心肌细胞和血管细胞的空间和功能分区。该项研究表明心房或心室内存在明显的空间异质性,为心脏不同分区的功能异质性提供了理论基础。心脏的基本功能是收缩功能,由此产生的收缩力是心脏独特的力学特性。心脏收缩是一种复杂的生物力学过程,需要心肌细胞的收缩和松弛协同作用,产生足够的收缩力,将血液推向体循环和肺循环。以往研究更多的关注心脏的形态结构、心室大小和室壁厚度等因素对心脏收缩功能的影响,而缺乏对心脏收缩功能的直接表征。Salgado-Almario等[2]构建了一种新的斑马鱼品系,可用于斑马鱼心脏收缩期和舒张期钙水平的成像。该研究通过将Ca2+水平和心脏收缩功能关联起来,可实现对收缩功能的表征,有利于心力衰竭和心律失常等疾病病理生理学机制的阐明。此外,在心脏周期中,心脏收缩或舒张引起的血液流动与发育中的心脏壁不断地相互作用,从而调节心脏发育的生物力学环境。因此,确定整个心脏壁的力学特性是十分重要的。Liu等[3]在健康的成年绵羊模型中研究了左心室和右心室的生物力学差异,观察到右心室在纵向上比左心室顺应性强,在周向上比左心室硬,这表明不同心室的力学特性对舒张期血液充盈的影响不同。未来的研究应该根据不同室壁的生物力学原理开发对应的特异性治疗方法。值得注意的是,心脏瓣膜是控制心脏血流的重要组成部分,其力学特征对心脏功能和心脏瓣膜疾病的发展都有重要影响。瓣膜的生物力学特征包括瓣膜的弹性和变形能力等。这些特征可以影响瓣膜的开合和阻力,进而影响心脏血液流动和血液循环。因此,揭示心脏瓣膜的生物力学特性具有重要意义。软组织的力学性能是由其复杂、不均匀的组成和结构所驱动的。在一项二尖瓣小叶组织研究中,Lin等[4]开发了一种具有高空间分辨率的无损测量技术,证明了厚度变化可引起二尖瓣异质性的存在。此外,Klyshnikov等[5]利用数值模拟方法分析了主动脉瓣瓣膜移动性对瓣膜瓣叶装置的应力-应变状态和几何形状的影响,从应力-应变状态分布的角度出发,该研究的仿真方法可以优化心脏瓣膜假体的小叶装置几何形状。由此可见,心脏结构和功能的生物力学特征是多方面因素的综合反映,评估和解析心脏的结构和形状有利于对心脏功能作用的阐明。1.2 血管结构和功能的生物力学特征血管包括心脏的血管和周围的血管系统,这些血管的生物力学特征对心脏功能有重要影响。血管结构取决于血管的类型,其功能可分为血流动力学功能和血管功能两部分。血管的弹性和柔韧性可以影响血管的阻力和血液流动速度,从而影响心脏负荷和排血量。此外,血管的厚度和硬度也会影响血压和血液流动的速度。从生物力学和力学生物学角度去解析血管的结构和功能是目前研究的重要方向。在心血管疾病相关药物的开发中,需要精确定位和分离冠状动脉以测量其动态血管张力变化。然而,如何记录离体血管的动态生物力学特性一直困扰着人们。Guo等[6]建立了一种冠状动脉环张力测量的标准化和程序化方案,通过多重肌电图系统监测冠状动脉环沿血管直径的收缩和扩张功能,确保了生理、病理和药物干预后血管张力记录的真实性。ECs和SMCs是血管结构和功能完整性所必需的主要细胞类型。ECs可调节血管张力和血管通透性,而SMCs负责维持正常的血管张力和结构的完整性。ECs可以分泌多种生物活性物质,如一氧化氮、血管紧张素等,对血管张力和血流动力学产生调节作用。ECs还能响应外部力学刺激,如流体剪切应力和压力变化等,从而改变ECs的形态和功能,影响血管壁的生物力学特征。SMCs可以收缩和松弛,调节血管的管径和血管阻力。除细胞因素外,血管的力学性质还受到血管壁中胶原和弹性蛋白的性质、空间排列等因素的影响。这是因为SMCs是高度可塑性的,它能响应细胞外基质(extracellular matrix,ECM)固有的力学信号。最近的一项研究显示,现有的微血管网络在力学刺激的加入或退出时表现出明显的重塑,并且排列程度出现相应的增加或减少。在这个过程中,纵向张力可导致纤维蛋白原纤维的纵向排列[7]。正是这些细胞和细胞外组分赋予了血管的黏弹性、各向异性等力学特性。总体而言,血管的结构和功能是复杂而多样的,涉及到多种生物力学特性的相互作用。研究血管的生物力学特征可以帮助人们更好地理解血管疾病的发生和发展,为疾病的治疗和预防提供科学依据。1.3 心血管疾病与生物力学关系的研究进展心血管疾病是一类常见的疾病,包括动脉粥样硬化、动脉瘤、心肌梗死等。这些疾病的发生和发展与心血管系统的生物力学特性密切相关。在心血管生物力学与力学生物学领域,近年来对心血管疾病与生物力学关系的研究取得了许多进展。1.3.1动脉粥样硬化的生物力学特征研究动脉粥样硬化是一种常见的动脉疾病,其特征为动脉壁上的脂质沉积和炎症反应,导致血管壁逐渐增厚和失去弹性。动脉粥样硬化的发生和发展是一个复杂的过程,涉及多个生物力学因素的相互作用。在动脉粥样硬化中,SMCs从收缩表型转变为合成表型,而影响SMCs表型变化的因素尚未完全阐明。Swiatlowska等[8]发现基质硬度(stiffness)和血流动力学压力(pressure)变化对SMCs表型具有重要影响。在动脉粥样硬化发展过程中,在高血压压力与基质顺应性(matrix compliance)共同的作用下,才会导致SMCs完整的表型转换[8]。提高对冠状动脉微结构力学的认识是开发动脉粥样硬化治疗工具和外科手术的基础。虽然对冠状动脉的被动双轴特性已有广泛的研究,但其区域差异以及组织微观结构与力学之间的关系尚未得到充分的表征。Pineda-Castillo等[9]利用双轴测试、偏振光成像和前室间动脉共聚焦显微镜来描述了猪前室间动脉近端、内侧和远端区域的被动双轴力学特性和微结构特性,为冠状动脉旁路移植术中吻合部位的选择和组织工程化血管移植物的设计提供指导。动脉粥样硬化斑块的破裂是引起患者死亡的主要原因;但目前尚不清楚这种异质的、高度胶原化的斑块组织的破裂机制,以及破裂发生与组织的纤维结构之间的关系。为了研究斑块的非均质结构和力学性质,Crielaard等[10]研制了力学成像管道(见图1)。通过多光子显微镜和数字图像相关分析,这条实验管道能够关联局部主要角度和胶原纤维取向的分散度、断裂行为和纤维斑块组织的应变情况。这为研究人员更好地了解、预测和预防动脉粥样硬化斑块破裂提供了帮助。图1 在拉伸测试过程中斑块组织样本中的破裂起始和扩展[10]除SMCs以外,最近的一项研究揭示了动脉粥样硬化中ECs表面力学性质的变化。Achner等通过基于原子力显微镜的纳米压痕技术发现内皮/皮层僵硬度的增加[11]。事实上,内皮功能障碍在血管硬化中的作用一直是一个重要的研究方向。ECs的可塑性在动脉粥样硬化的进展中起关键作用,暴露于扰动、振荡剪切应力区域的内皮细胞功能障碍是动脉粥样硬化的重要驱动因素[12]。由此可见,未来的研究如能进一步明确ECs和SMCs对血管硬化相关心血管疾病的贡献,则可能为恢复动脉粥样硬化中的血管内皮和平滑肌功能提供重要的靶点。1.3.2动脉瘤的生物力学特征研究主动脉SMCs在维持主动脉机械动态平衡方面起着至关重要的作用。动脉瘤主动脉的SMCs表型受到力学因素的影响,但是主动脉瘤中SMCs的骨架硬度的改变情况缺乏相关的数据。Petit等[13]以附着在不同基质硬度上的动脉瘤或健康SMCs为对象,通过原子力显微镜纳米压痕技术研究了细胞骨架硬度的区域差异性。该研究结果表明,动脉瘤SMCs和正常SMCs的平均硬度分布分别为16、12 kPa;然而,由于原子力显微镜纳米压痕硬度检测值的大量分散,两者之间的差异没有统计学意义。在腹主动脉瘤中,Qian等[14]采用基于超声波镊(ultrasonic tweezer)的微力学系统探究了SMCs的力学特性(见图2)。结果发现,动脉瘤病理发展中细胞骨架的变化改变了SMCs的细胞膜张力,从而调节了它们的力学特性。图2 基于超声波镊的微力学系统检测腹主动脉瘤中SMC的力学特性[14]a使用超声波激发微泡通过整合素结合到PDMS微柱阵列上的SMCs膜上的微力学系统示意图;b基于微柱的力学感受器和单细胞的超声波镊系统示意图二尖瓣主动脉瓣经常与升胸主动脉瘤相关,但目前尚不清楚瓣尖融合模式对生物力学和升胸主动脉瘤微观结构的影响。Xu等[15]通过双向拉伸试验对具有左右瓣尖融合以及右冠窦和无冠窦瓣尖融合的升胸主动脉瘤的力学行为进行了表征。此外,将材料模型与双轴实验数据进行拟合,得到模型参数,并使用组织学和质量分数分析来研究升胸主动脉瘤组织中弹性蛋白和胶原的基本微观结构和干重百分比。其结果发现,两种瓣尖融合模式对双轴加载表现出非线性和各向异性的力学响应;在弹性性能方面,左右瓣尖融合的弹性性能劣化得更严重。由此可见,心血管结构自身生物力学特性的改变可能对动脉瘤的进展有很大影响。然而,主动脉血流动力学对升主动脉瘤动脉壁特性的影响尚不清楚。在最近的一项研究中,McClarty等[16]探究了升主动脉瘤血流动力学与主动脉壁生物力学特性的关系。其结果发现,血管壁的剪切应力与动脉壁黏弹性滞后和分层强度的局部退化有关,血流动力学指标可以提供对主动脉壁完整性的深入了解。因此,从血管自身结构特性以及血流动力学两方面探究动脉瘤的形成机制具有重要意义。1.3.3 心肌梗死的生物力学特性研究心肌梗死是心肌细胞死亡的结果,通常是由于冠状动脉阻塞引起的。心肌梗死可导致心力衰竭并降低射血分数。生物力学研究发现,冠状动脉阻塞会导致心肌的缺血和再灌注损伤,这些过程涉及血流动力学和细胞力学等因素。在体循环过程中,心肌梗死后的血流动力学改变如何参与并诱导心力衰竭的病理进展尚未完全阐明。Wang等[17]采用冠状动脉结扎术建立了Wistar雄性大鼠心肌梗死模型。术后3、6周分别对左心室和外周动脉进行生理和血流动力学检测,计算左心室肌纤维应力,并进行外周血流动力学分析。结果表明,心肌梗死明显损害心功能和外周血流动力学,并改变相应的心壁和外周动脉壁的组织学特性,且随时间延长而恶化。综上所述,心功能障碍和血流动力学损害的相互作用加速了心梗引起的心衰的进展。急性心肌梗死后,左室游离壁发生重塑,包括细胞和细胞外成分的结构和性质的变化,使整个左室游离壁具有不同的模式。心脏的正常功能受到左心室的被动和主动生物力学行为的影响,进行性的心肌结构重构会对左心室的舒缩功能产生不利影响。在这个过程中,左心室游离壁形成纤维性瘢痕。尽管在心肌梗死背景下对左室游离壁被动重构的认识取得了重要进展,但左室游离壁主动属性的异质性重构及其与器官水平左心功能的关系仍未得到充分研究。Mendiola等[18]开发了心肌梗死的高保真有限元啮齿动物计算心脏模型,并通过仿真实验预测梗死区的胶原纤维跨膜方向对心脏功能的影响(见图3)。结果发现,收缩末期梗死区减少的及潜在的周向应变可用于推断梗死区的时变特性信息。这表明对局部被动和主动重构模式的详细描述可以补充和加强传统的左室解剖和功能测量。图3 代表性的啮齿动物心脏计算模型在心肌梗死后不同时间点的短轴和长轴截面显示收缩末期的周向、纵向和径向应变[18]上述研究表明,心脏疾病的发生和发展与心脏结构和功能的生物力学特征密切相关。任何影响心脏收缩和舒张过程的因素,都可能调控心脏的泵血功能和心脏负荷。这些因素可以影响心脏收缩的能力、心肌细胞的代谢和血流动力学参数,从而影响心脏的整体功能和疾病的进展。总之,通过深入研究这些生物力学特征,可以为心血管疾病的诊断和治疗提供重要的理论和实践基础。2 力学生物学在心血管细胞水平上的研究进展2.1 ECs水平上的研究进展细胞的凋亡、通讯和增殖异常等表型变化是心血管疾病的一个重要机制。通过力学生物学的方法,研究人员可以模拟不同的细胞应力环境,探索细胞生长和凋亡的调控机制,并研究细胞在受外界力学刺激作用下的反应。由于ECs直接暴露于血流中,因此ECs表型变化的力学生物学机制一直是心血管领域的研究热点之一。紊乱扰动的血流改变了ECs的形态和细胞骨架,调节了它们的细胞内生化信号和基因表达,从而导致血管ECs表型和功能的改变。在颈动脉结扎产生的动脉粥样硬化模型中,Quan等[24]研究发现,在人和小鼠动脉和ECs的振荡剪切应力暴露区,内皮MST1的磷酸化被明显抑制。该研究揭示,抑制MST1-Cx43轴是振荡剪切应力诱导的内皮功能障碍和动脉粥样硬化的一个基本驱动因素,为治疗动脉粥样硬化提供了一个新的治疗目标。另外一项研究从表观修饰角度探究了剪切应力对ECs功能的影响[20]。Qu等[20]研究显示,层流切应力通过增加内皮细胞CX40的表达而诱导TET1s的表达,从而保护血管内皮屏障,而TET1s过表达则可能是治疗振荡剪切应力诱导的动脉粥样硬化的关键步骤。另一方面,病理性基质硬度可使ECs 获得间充质特征[21]。动脉生成(arteriogenesis)在维持足够的组织血供方面起着关键作用,并且与动脉闭塞性疾病的良好预后相关,但涉及动脉生成的因素尚不完全清楚。Zhang等[22]研究发现,在动脉阻塞性疾病中,KANK4将 VEGFR2偶联到 TALIN-1,从而导致VEGFR2活化和EC增殖的增加。
  • ​北京大学郑乐民教授开发出质谱代谢诊断心衰方法,未来希望用菌群干预治疗心脑血管疾病
    如今,心力衰竭(HF)的治疗依然是一个世界性难题。据统计,全球范围有超 3800 万名患者,严重威胁人类生命健康。心力衰竭并非是一种独立的疾病,而是一种临床综合征,几乎包括心脏病在内的所有心血管疾病最终都可能会发展为心力衰竭。心脏肥大是心力衰竭进展过程中的早期病理症状,也是心力衰竭出现的重要临床提示和危险因素。先前研究发现,肠道菌群代谢物能够影响多种疾病的进程,然而,菌群代谢物在心脏肥大和心力衰竭进程中的作用仍有待探究。因此,从代谢组学的角度探究心脏肥大和心力衰竭病理学过程,对于预防心脏肥大,以及发现心力衰竭发生发展机制和治疗靶点具有重要意义。近期,北京大学心血管研究所及团队研究发现,一种名为三甲基 - 5 - 氨基戊酸(TMAVA)的肠道菌群代谢物,通过丁基甜菜碱羟化酶(BBOX)抑制内源性肉碱的合成,最终加重高脂饮食诱导的心脏肥大,揭示出 TMAVA、BBOX 可能是肠道菌群干预治疗心脏肥大的潜在靶点。目前,相关研究以 “”(肠道微生物群产生三甲基 - 5 - 氨基戊酸减少脂肪酸氧化并加速心脏肥大)为题发表于 Nature Communications 上。“在心血管领域,心力衰竭目前仍难以治愈,这种病症可用的药物很少。另外,全球层面关于肠道菌群代谢和心力衰竭关系的研究较少,如果能通过肠道菌群来治疗心脏肥大及心力衰竭,对于广大患者而言是巨大的福音,其产业化前景也非常广阔。” 教授告诉笔者。在北京师范大学化学系本科毕业后进入中国科学院感光化学所工作。2000 年,他赴美国克利夫兰医院(Cleveland Clinic)攻读临床生物分析化学博士,师从美国国家医学院院士 教授。2007 年,他作为 “985” 引进人才进入北京大学心血管所,先后担任副教授、博士生导师、研究室主任等职务。目前,是北京大学心血管研究所副所长,教育部重点实验室主任助理,曾主持国自然血管重大专项培育基金等 7 项国自然基金,共发表 SCI 文章 114 篇,其中 81 篇 SCI 责任作者,SCI 引用 4030 次,拥有 3 项中国发明专利(第一发明人)。北京大学心血管研究所郑乐民菌群代谢物 TMAVA 具有促进心脏肥大的作用菌群代谢物 TMAVA 具有促进心脏肥大的作用在这项研究中,团队通过对 7 年间随访的 1647 名心力衰竭患者的血浆进行 TMAVA 靶向代谢组学检测,他们发现随着 TMAVA 水平的升高,心脏移植和患者死亡的发生率逐渐升高。接下来,研究人员通过小鼠模型探索 TMAVA 在心脏肥大中的作用与机制。他们在高脂喂食小鼠的基础上进行 TMAVA 干预,发现其心脏肥大和心功能障碍进一步加重,同时还伴随心脏脂质沉积,以及血浆甘油三脂、脂肪酸水平的增加。在高脂喂食小鼠 12 周后,通过脂质组学分析,他们发现小鼠心脏脂质代谢谱的改变,中链和长链脂肪酸在心脏中显着增加。机制层面,研究团队发现 TMAVA 不仅通过 BBOX 抑制内源性肉碱的合成,同时通过肉碱 / 有机阳离子转运体抑制肉碱的摄取,导致血浆和心脏组织中肉碱缺乏,并抑制脂肪酸氧化,进而加重高脂饮食诱导的心脏脂质堆积,导致线粒体结构和功能紊乱。随后,研究团队对 BBOX 敲除小鼠进行高脂饮食,发现小鼠血浆和心脏组织中肉碱水平下降,心脏存在异常的脂质堆积,同时表现出与 TMAVA 刺激相似的心脏肥大表型,这意味着 BBOX 通过抑制肉碱的合成加重心脏肥大,外源性肉碱补充剂可逆转 TMAVA 诱导的心脏肥大。总的来说,这项研究发现了菌群代谢物 TMAVA 通过抑制脂肪酸氧化加重高脂饮食诱导的心脏肥大,揭示了肠道菌群来源的 TMAVA 通过抑制肉碱合成和脂肪酸氧化降低,是心脏肥大发展的关键决定因素,并且TMAVA、BBOX 可能是潜在治疗靶点。已联合创办公司进行技术转化对于将这项研究应用在临床还需要解决的问题,总结了两点:其一,质谱代谢诊断。“所谓诊断方法,就是确定何种人群适合采用这种治疗方式。现阶段,我们正在临床方面建立质谱代谢诊断方法,即把质谱技术作为一种诊断方法应用到心力衰竭领域。” 他解释说。其二,菌群干预治疗。“很多研究已经证实,菌群对于很多疾病的治疗有所帮助,但是菌群治疗还没能进入到心力衰竭和脑卒中等患者基数最为庞大的疾病领域。目前,我们正期待通过合成生物学的方法,对菌群通过基因编辑进行改造,以期能够治疗心力衰竭,这在心力衰竭治疗领域非常具有创新性,应用前景较为广阔。” 他指出。“一方面是诊断,即质谱代谢诊断;一方面是治疗,即菌群干预治疗。这两个方面希望在将来都有机会对接临床应用。” 总结道。关于下一步的研究计划,表示,“针对刚刚提到的诊断和治疗两个层面,我们从 2016 年便开始寻求进行产业合作,就目前而言,诊断层面的产业化正在进行中,而治疗层面还没有开始。我们希望能够通过融资来进一步加速进程,也期望有产业合作来共同推动对于心力衰竭的菌群干预治疗。此外,我们也计划将来成立专门的团队来更加深入地研究菌群对心力衰竭的治疗策略。”第一,诊断方面,现阶段心力衰竭现行的检测方法主要是蛋白诊断。“而这正是这篇研究论文创新性的关键所在,揭示出除了蛋白诊断之外还可以用代谢来诊断心力衰竭,这对产业具有很大的推动作用。” 指出。传统的蛋白诊断基本都采用免疫法,即通过抗体和抗原结合的方法。“而我们揭示的方法是通过质谱代谢,借助分子量以及分子结构进行诊断,所以这种方法的特异性在将来有可能超越免疫法,准确率也可能高出很多。” 他表示。“目前,我们在诊断层面已经初具规模,第一,有科研团队;第二,有合作公司。我们已经和联合开发了一些质谱代谢诊断的方法,同时也在申报相关技术专利。” 说道,在他看来,质谱代谢诊断产业在心血管疾病领域中至关重要。“所以,我们需要继续吸引新的融资,以期能够让质谱代谢诊断快速地实现标准化。” 他补充说。第二,治疗方面,目前针对心力衰竭治疗的研究主要围绕细胞受体。据介绍,导致心力衰竭的机理有很多种,其中,最大的问题是线粒体障碍。“线粒体和能量代谢直接影响心力衰竭,而肠道菌群和线粒体之间是有关联的,所以,肠道菌群代谢物会影响到心脏的线粒体。”在他看来,菌群干预治疗将来会是小分子药物的一个有益补充。“我们接下来希望成立独立的团队来开展菌群干预治疗,这比诊断更为复杂,而且投资量也更大,所以我们想成立新的平台进行菌群的产业转化。” 指出。“综合来讲,诊断需要有治疗的配合,所以这两方面都必不可少,这也是我们想要更多投入的目的:一方面,把质谱代谢诊断推进到心力衰竭领域,目前我们已经开展了一些临床实验;另一方面,用于成立新的平台,通过菌群干预治疗包括心力衰竭与中风在内的各种心血管疾病。” 说道。据介绍,去年团队与联合成立了生物技术平台 —— ,专注于开发类器官平台,比如类心脏、类血管,以及癌症类器官等。对比细胞,类器官更能展示细胞所处的状态与细胞间的相互作用,更能模拟动物。“我们有一些需要在动物身上做的研究现在可以通过类器官实现了。” 他说道,“比如,在研究心力衰竭的时候,通过机器人来控制类心脏器官非常便捷,可以直接通过类器官来进行筛选药物对心脏的毒性。”除了心脑血管疾病,衰老以及代谢系统疾病都是世界性的研究课题,对于三者之间的关联,在看来,“衰老会直接引发心脑血管疾病,代谢系统疾病最终的死亡原因也大多是心脑血管疾病,所以,不论是衰老还是代谢最后都会归咎为心脑血管疾病。除此之外,衰老和器官衰老是两个概念,目前没办法来评估人体某个器官的寿命,我们希望未来能够通过蛋白组学、代谢组学技术来更客观地描述各个器官的寿命。”在看来,现阶段心脑血管疾病领域的代谢组学和蛋白组学实现产业化还需要较长的一段时间。“依照目前的状态,蛋白组学五年之内实现产业化非常难,第一,蛋白组学的定量还存在障碍;第二,蛋白组学的成本还相当的高;第三,蛋白组学较为依赖国外进口设备。” 他表示,“相较之下,代谢组学更有可能实现产业化,从而造福于病人。首先,定量准;其次,成本低;再次,越来越多的仪器公司,包括很多国内仪器公司都在研发用于诊断的质谱代谢仪器,如此一来可以打破欧美的垄断局面,实现质谱仪的本土化。”
  • 赛默飞支持医学科研,促进临床转化
    &mdash &mdash 赛默飞参加&ldquo 2012年中美临床和转化医学国际论坛&rdquo 纪实 中国上海,2012年7月2日 &mdash &mdash 6月29日,&ldquo 2012年中美临床和转化医学国际论坛&rdquo 在上海成功举办。此次论坛由中国工程院(CAE)、中国医学科学院(CAMS)、联合美国国立卫生研究院(NIH)临床研究中心、全球医生组织(GlobalMD)共同主办。全球科学服务的领导者赛默飞世尔科技(以下简称:赛默飞)全程支持并参与了此次论坛,充分展示了赛默飞在转化医学方面的卓越能力。凭借其先进的产品和解决方案,赛默飞帮助全球科研工作者及实验室人员在生物标本库建立、细胞培养与治疗、药代动力学等方面取得了突破性发展。 此次论坛围绕&ldquo 转化医学在代谢疾病、自身免疫疾病、传统医学、心血管疾病、癌症诊治、生物技术产业以及生物标本库建设等领域的发展与实践应用&rdquo 展开热烈的讨论。中国工程院副院长樊代明、上海市副市长沈晓明、中国医学科学院院长曹雪涛、国家卫生部科技教育司司长何维等领导出席开幕式并发表讲话,大会由中国工程院医药卫生学部主任杨胜利主持。来自中国、美国、澳大利亚等国的临床医生、科研人员等500余位代表参加了会议,分享交换了临床转化医学的最新发展信息。 赛默飞密切关注并支持临床转化医学的发展,赛默飞低温设备、高分辨率组合质谱仪LTQ Orbitrap 、LTQ Velos&trade 线性离子阱等丰富产品为临床医学提供了可靠的实验依据,在样本储存、蛋白标记、药物靶标、激素检测等方面成功的为全球用户解决了一个又一个科研难题。此外,赛默飞还是转化医学流程化的倡导者。2011年,赛默飞发布了&ldquo 整体式生物样本库解决方案&rdquo 和&ldquo 用于临床研究领域内分泌药物分析的液相色谱质谱联用(LC-MS)解决方案技术库&rdquo 等整体解决方案,涵盖了转化医学相关领域完整的工作流程,极大的促进了转化医学的发展。 对此,赛默飞大中华区总裁迈世福(Michael Shafer)先生表示:&ldquo 作为服务科学的佼佼者,赛默飞以科学家服务科学家的方式,一直致力于帮助客户将实验室成果向临床应用领域转化,力求在医疗卫生领域作出贡献。公司的发展始终与中国 &lsquo 十二五计划&rsquo 的步伐相一致。赛默飞世尔将继续扩大在中国医疗市场的投入,以精湛技术和先进产品服务于临床转化医学,推进中国社会健康事业的发展!&rdquo 此次论坛,赛默飞还为各位来宾准备了&ldquo 上海之夜&rdquo 欢迎晚宴。赛默飞专业诊断集团亚太区副总裁 Mario Gualano 博士,向各位来宾表示热烈的欢迎,并介绍了公司在中国的快速发展,展现了在转化医学领域的卓越服务能力。此外,会场外搭建的展台也向来宾展示了产品及整体服务能力,吸引不少嘉宾驻足观看、咨询洽谈。 了解更多赛默飞在转化医学方面的解决方案,请浏览:www.thermo.com.cn/ctm 赛默飞专业诊断集团亚太区副总裁Mario Gualano 博士致欢迎词 赛默飞在中美转化医学论坛上的展台 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞中国 赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制