当前位置: 仪器信息网 > 行业主题 > >

正十一烷基环已烷

仪器信息网正十一烷基环已烷专题为您提供2024年最新正十一烷基环已烷价格报价、厂家品牌的相关信息, 包括正十一烷基环已烷参数、型号等,不管是国产,还是进口品牌的正十一烷基环已烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合正十一烷基环已烷相关的耗材配件、试剂标物,还有正十一烷基环已烷相关的最新资讯、资料,以及正十一烷基环已烷相关的解决方案。

正十一烷基环已烷相关的论坛

  • 正十一烷偏低

    截过kB -tvoc柱子后,进1微克的甲醇中的九种voc,液体进样和热解析进样得出的结果都是正十一烷偏低,怎么解决?

  • tvoc测试正十一烷出峰问题

    用的是peg-20m规格 30m*0.32mm*1um。仪器是岛津gc-2010pro 进样口200. 色谱柱:50保持10min。检测器:200。标液是9种物质,没有单标,不知道我定性准不准确,正十一烷没有出峰。

  • 正十一烷用吹进tenax管后浓度低

    正十一烷用吹进tenax管后浓度低

    做标曲时,6ug浓度的正十一烷吹进tenax管后,做出来的浓度很低,请大神指导一下。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2018/12/201812110922196680_5272_3422153_3.png[/img]

  • 【原创大赛】固相萃取-气相色谱-质谱联用法检测植物油中2-十二烷基环丁酮和2-十四烷基环丁酮

    【原创大赛】固相萃取-气相色谱-质谱联用法检测植物油中2-十二烷基环丁酮和2-十四烷基环丁酮

    摘 要:建立固相萃取-气相色谱- 质谱联用(solid phase extraction with gas chromatography-mass spectrometry,SPE-GC-MS)法测定植物油中2-十二烷基环丁酮和2-十四烷基环丁酮。对影响分析物萃取效率的诸因素如洗脱溶剂等进行详细考察和优化。最佳萃取条件为0.5 g样品与5 mL乙腈混匀,经ProElut Silica (500 mg/3mL)固相萃取柱净化后,以GC-MS 进行测定,该方法对2-十二烷基环丁酮和2-十四烷基环丁酮的检出限为10μg/kg,线性范围为0.01~0.5μg/mL,线性相关系数分别为0.99938和0.99977,相对标准偏差(relative standard deviation,RSD)(n=3)小于6%。该方法成功应用于植物油中2-十二烷基环丁酮和2-十四烷基环丁酮的分析,加标回收的回收率为78%~91%。关键词:固相萃取;气相色谱-质谱;2-十二烷基环丁酮;2-十四烷基环丁酮;植物油 食品辐照作为对物质或食品进行加工处理的新型保藏技术,在国际上已逐渐被认可,但是在商业化应用、国际贸易以及辐照食品的市场监管方面,迫切需要有辐照食品鉴定检测方法。 经辐照后,在含脂食品中会产生特异性辐解产物2-烷基环丁酮(2-Alkylcyclobutanones ,2-ACBs),它是含脂辐照食品的特异性辐解产物,在未辐照的含脂食品中,至今还从未检测到此类化合物。在1990年, 2-ACBs 类化合物可作为检测含脂辐照食品的标志性化合物, 首次被报道,随后依据该结论制定了欧盟标准EN1785和GB\T 21926-2008 。2-ACBs由食品中的游离脂肪酸或甘油三酸酯的羰基氧失去一个电子,再经由重排过程生成,其过程如图1所示。http://ng1.17img.cn/bbsfiles/images/2015/07/201507091523_554630_2452211_3.png图1 经辐照后游离的脂肪酸转化为2-ACBs的示意图 在大多数食品中,棕榈酸、硬脂酸、油酸、亚油酸是主要的脂肪酸,而棕榈酸和硬脂酸是其中含量最高的饱和脂肪酸,其辐解物2-十二烷基环丁酮(2-dodecylcyclobutanone,2-DCB)和2-十四烷基环丁酮(2-tetradecylcyclobutanone,2-TCB)相对于其它2-ACBs较为稳定,因此一般作为检测含脂辐照食品的主要标志性化合物。目前对含脂辐照食品大多采用佛罗里硅土柱进行净化,但是该法的应用范围有限。本实验拟通过优化固相萃取(solidphase extraction,SPE)条件,采用气相色谱-质谱联用(gas chromatography-massspectrometry,GC-MS)技术测定植物油中2-十二烷基环丁酮和2-十四烷基环丁酮,为进一步缩短2-ACBs 萃取和分离时间、减少溶剂使用量、提高检测灵敏度以及扩大方法应用范围提供基础数据和理论依据。1 材料与方法1.1 材料、试剂与仪器GCMS-QP2010 气相色谱-质谱联用仪 日本岛津公司;DM-5MS 毛细管柱(30 m×0.25 mm,0.25 μm)迪马公司;XH-C 涡旋混合器 江苏金坛市盛威实验仪器;80-1 高速离心机 河南省予华仪器;OSB-2100 旋转蒸发仪 上海爱朗仪器有限公司;12孔固相萃取装置 迪马公司; ProElut Silica(500 mg/3mL)固相萃取柱 迪马公司。HSC-12B 氮吹仪天津市威仪科技发展有限公司;丙酮、二氯甲烷、乙酸乙酯乙腈、甲基叔丁基醚、正己烷(均为色谱纯)迪马公司。实验所用的植物油均购自当地市场。1.2 方法1.2.1 标准贮备液的制备称取一定量标准品,溶于正己烷溶剂中,配制成浓度为0.5 mg/mL的标准贮备液。再配制成质量浓度系列为0.01μg/mL、0.02μg/mL、0.05μg/mL、0.1μg/mL、0.2μg/mL、0.5μg/mL的标准工作溶液,备用。1.2.2 仪器分析条件气相色谱条件:色谱柱为DM-5MS (30.0m×250μm,0.25μm);载气He(99.995%);恒流,柱流速1.0mL/min;不分流,进样量1μL,进样口温度为260℃;起始温度80℃(保持1min),以15℃/min的速度升至150℃,再以8℃/min升温至200℃,再以20℃/min升温至260℃(保持5min)。质谱条件:EI源,离子源200℃,溶剂延迟为3min,选择离子监测模式(SIM),选择监测离子(m/z):69、84、98、112、125。1.2.3 样品的提取称取0.5 g样品于10 mL带塞试管中,加入5 mL乙腈,涡旋混合2 min,超声提取2 min,4000 rpm下离心2min,取上清液;下层油脂再用5 mL乙腈重复上述步骤,合并两次上清液。将得到的上清液在50℃下,氮吹近干,再慢慢挥干,再向氮吹瓶中加入2.5 mL正己烷复溶,待净化。1.2.4 样品的净化依次用5 mL甲基叔丁基醚,5mL正己烷缓慢通过ProElut Silica固相萃取柱,以达到润湿小柱,活化填料,除去干扰杂质的目的;再将1.2.3节方法制得的待净化液转移到ProElut Silica固相萃取柱中,流出液弃去;然后用5 mL正己烷淋洗,弃去流出液;再用10 mL甲基叔丁基醚:正己烷(1:99V:V)洗脱,用旋转蒸发瓶接收,直至洗脱液完全自然滴出。在50 ℃下,将收集到的洗脱液氮吹浓缩,然后用正己烷定容至1 mL后供GC-MS分析。2 结果与分析在固相萃取操作中,影响分析物峰面积的主要固相萃取因素有洗脱剂、洗脱体积、洗脱速率和上样速率。为了获得最佳分析结果,需要对其进行优化。2.1固相萃取条件的确定2.1.1 提取溶剂的选择2-十二烷基环丁酮(2-DCB)和2-十四烷基环丁酮(2-TCB)与脂肪酸的结构及其类似,故能溶于极性和中等极性的试剂中。分别用丙酮、二氯甲烷、甲基叔丁基醚、乙酸乙酯作为2-DCB 和2-TCB的提取溶剂。实验结果表明乙腈提取效果较好,再加以涡旋振荡后结合超声提高回收率。2.1.2 固相萃取柱的选择对于油脂类样品,采用固相萃取柱进行样品净化是必不可少的步骤。结合相应参考文献,本实验采用了硅胶、PSA、Florisil、Alumina等填料的固相萃取柱,结果表明对于植物油,硅胶柱相对于其他填料的固相萃取柱来说,2-DCB 和2-TCB回收率较高,添加回收率达到了80%-120%,满足分析检测的要求,且达到很好的净化效果。如图2所示http://ng1.17img.cn/bbsfiles/images/2015/07/201507091524_554631_2452211_3.pngA:标准品;B:空白样品;C:添加标品的样品图2 植物油空白样品及其添加样品的总离子流图2.1.3 淋洗曲线的建立固相萃取技术最重要的目的在于通过固相萃取柱将目标化合物与主要干扰物分开,从而实现净化的目的。在此过程中应非常注意选择合适的洗脱溶剂。样品处理过程是先用正己烷将其中的中性化合物除去,参照Horvarovich 等报道,用硅胶柱分离样品中的2-DCB和2-TCB,选用弱极性的甲基叔丁基醚(methyl-t-butyl ether,TBME)/正己烷(V/V)混合溶剂将稍强极性的2-DCB 和2-TCB洗脱下来。由于样品基质与文献不一样,淋洗液与洗脱液的选择也会不一样。因次需要考察正己烷以及其与甲基叔丁基醚不同比列的混合液作为洗脱液时2-DCB和2-TCB的回收率。选用5根ProElut Silica固相萃取柱,取0%、0.5%、1%、2%、5%不同浓度的甲基叔丁基醚:正己烷(V/

  • 【概念知识6】什么叫烷基锂试剂

    烷基锂试剂alkyl lithium reagent  锂的烷基衍生物 。包括正丁基锂 、甲基锂 、苯基锂等。它们常用作试剂,其中以正丁基锂溶液最常用。烷基锂能对羰基化合物进行加成反应,还能对活泼氢进行置换反应,以及卤素-锂交换反应 ,其反应性能比一般格氏试剂 要广泛而且多样化。它与多种金属有机物形成的金属锂衍生物广泛用于有机合成。甲基锂和甲基亚铜在醚类溶液中组成二甲基铜锂(CH3) 2CuLi,是一个极其重要的甲基化试剂,它对不饱和的或芳香族的卤素化合物都能进行甲基置换卤素的反应。锂与三甲基氯硅烷反应生成的(CH3) 3SiLi是重要的硅化试剂 ,对保护烯醇或羟基有多种用途。  正丁基锂可从氯丁烷与金属锂在戊烷或其他液体烷烃中反应制得。甲基锂、苯基锂等可从相应的卤代烃来制备,现做现用,其活性同格利雅试剂相似。甲基锂在溶液中为四聚体,常需要加N,N,N′,N′-四甲基乙二胺来解聚活化。

  • 检测工业异辛烷(烷基化油)

    各位有过检测工业异辛烷(烷基化油)的大神吗,想问一下用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测的时候如何做方法呢,现在主要是检测C4C5和C6组分,用什么东西做标样来进行标定呢,方法是面积归一法。望大神指点。

  • 亚甲蓝测烷基磺酸钠

    想用亚甲基蓝法测水溶液中的烷基磺酸盐,比如辛烷磺酸钠,不带苯环的磺酸盐,做过一次基本成比例,但R2估计只有1个9,后面重复就不成比例了,一会大一会小,有人知道这个标准到底适不适用不带苯环的烷基磺酸钠,求告知!

  • 求教环氧乙烷和环氧丙烷限度问题

    求教环氧乙烷和环氧丙烷限度问题

    在做原料中环氧乙烷和环氧丙烷的检验方法,遇到了限度问题,想请教一下,一方面,在2020版药典四部,所有对环氧乙烷进行检验的方法里限度都是0.0001%(1ppm)另一方面,在ICH M7(R1)中的第26页,恰好以环氧乙烷为例演示了限度值是怎么计算的,就是以CPDB查询到的TD50来计算限度,最后计算结果是21.3微克/人/天,如下面的图,这样不就是对应原料限度是21.3ppm吗?所以,我应该以1ppm还是21.3ppm为限度呢?环氧丙烷按照ICH的方法,根据TD50计算是74.4ppm,药典四部有两个品种做环氧丙烷,限度分别是0.0005%和0.001%,环氧丙烷做的比较少。但是都比按TD50计算的结果小很多。欧洲药典中曲克芦丁有检环氧乙烷,限度也是1ppm,所以这个1ppm是出自哪里呢?是否应该按1ppm来作为限度呢?有帖子说05版药典残留溶剂附录中对环氧乙烷有限度规定,但现在的2020版或2015版中都没有查到,是否因为环氧乙烷是基因毒性杂质,所以没有在残留溶剂里面见到了,而ICH M7是对基因毒性杂质进行说明的。所以究竟以1ppm还是以21.3ppm做限度呢?[img=,650,899]https://ng1.17img.cn/bbsfiles/images/2021/03/202103081021496056_5338_2789522_3.jpg!w650x899.jpg[/img]

  • GB/T 14204-93水质烷基汞和GB/T17132-1997环境甲基汞

    求助:要做水质烷基汞和环境甲基汞的测定,感觉无从下手,求助各位!1.检出限如何做?是在多大的取样量条件下的检出限?2.标准上没有曲线序列,求推荐。3.如果用毛细管柱,求推荐仪器条件感觉问题好多,又说不上具体的,就感觉无从下手!望各位指导指导!!!万分感谢!

  • 求问原料药的环氧乙烷和环氧丙烷限度问题

    求问原料药的环氧乙烷和环氧丙烷限度问题

    在做原料中环氧乙烷和环氧丙烷的检验方法,遇到了限度问题,想请教一下,一方面,在2020版药典四部,所有对环氧乙烷进行检验的方法里限度都是0.0001%(1ppm)另一方面,在ICH M7(R1)中的第26页,恰好以环氧乙烷为例演示了限度值是怎么计算的,就是以CPDB查询到的TD50来计算限度,最后计算结果是21.3微克/人/天,如下面的图,这样不就是对应原料限度是21.3ppm吗?所以,我应该以1ppm还是21.3ppm为限度呢?环氧丙烷按照ICH的方法,根据TD50计算是74.4ppm,药典四部有两个品种做环氧丙烷,限度分别是0.0005%和0.001%,环氧丙烷做的比较少。但是都比按TD50计算的结果小很多。欧洲药典中曲克芦丁有检环氧乙烷,限度也是1ppm,所以这个1ppm是出自哪里呢?是否应该按1ppm来作为限度呢?有帖子说05版药典残留溶剂附录中对环氧乙烷有限度规定,但现在的2020版或2015版中都没有查到,是否因为环氧乙烷是基因毒性杂质,所以没有在残留溶剂里面见到了,而ICH M7是对基因毒性杂质进行说明的。所以究竟以1ppm还是以21.3ppm做限度呢?[img=,650,899]https://ng1.17img.cn/bbsfiles/images/2021/03/202103081023028972_9260_2789522_3.jpg!w650x899.jpg[/img]

  • 【分享】十一种常用的现代中药新剂型【仅供参考】

    中药新剂型的研究和发展极为迅速,随着制药工业和新药开发的不断进展,我国中药制剂水平已从传统经验型逐步上升到科学制药水平,现代制药设备的引进和新技术的应用,使一批现代中药新剂型显现。 1滴丸剂 滴丸剂系指药材提取物与基质用适宜方法混匀后,滴入不相混溶的冷凝液中,收缩冷凝而制成的制剂。滴丸剂是在中药丸剂基础上发展起来的,具有传统丸剂所没有的多种特点。如天津天士力生产的复方丹参滴丸已为人们所熟悉,该滴丸由丹参、三七、冰片组成,临床上广泛用于冠心病、心绞痛的预防、治疗和急救。复方丹参滴丸中主要成分的研究与质量控制,目前已达到分子水平,减少了冰片用量,并由口服改为舌下含服,从而大大减少了对胃肠道的刺激。因为滴丸是在骤冷条件下形成的固体分散体,可提高难溶性药物的生物利用度,使药物以极微小的晶粒存在,因而具有表面积大,溶出速度快的特点。复方丹参滴丸舌下含服经舌粘膜吸收,直接进入血循环,3分钟起效,可迅速缓解心绞痛,解除心前区疼痛、胸闷等症状。临床资料表明,在冠心病的长期治疗中,复方丹参滴丸可更有效地减少缺血发生次数,尤其是缩短心电图ST段下移的持续时间.且无头痛、头胀等副作用,为一种治疗冠心病ST段改变的有效药物。

  • 烷基苯的特征离子系列

    质谱解析方面的书中说:烷基苯的特征离子系列为m/z91、77、65、39等,没有明白,为什么是这样的,我是初学者,谢谢指导

  • TVOC中十一烷偏大

    今天做TVOC的检测,前面的物质都有检出,但是不大。到了十一烷就特别大。三个样品全是这样。一般不应该都大或者都小吗?室内空气的十一烷一般来自哪里?如果是新家具的话了,不会产生苯系物那些吗?

  • 十二烷基硫酸钠对聚乙烯吡咯烷酮水溶液黏度特性的影响

    【序号】:9【作者】: 陈杰吴业帆祝梦方云【题名】:十二烷基硫酸钠对聚乙烯吡咯烷酮水溶液黏度特性的影响 【期刊】:日用化学工业. 【年、卷、期、起止页码】:2015,45(07)【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=CHEM201507001&uniplatform=NZKPT&v=xRwMZezfkBQAUPu-7Mj55x7J_-w-u4T5tkD1Ut8_jDlRqc-7N_yi806JbvmeGa3K[/url]

  • 聚乙烯吡咯烷酮与十二烷基甜菜碱相互作用的NMR研究

    【序号】:6【作者】: 黄梦雅张红邹其超【题名】:聚乙烯吡咯烷酮与十二烷基甜菜碱相互作用的NMR研究【期刊】:胶体与聚合物. 【年、卷、期、起止页码】:2018,36(03)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=JTJH201803012&uniplatform=NZKPT&v=Vj1k58XW8tYfoe3DEl9Serspce89iPFQJsn07Z_2aEfGxVExf_4toFR4Zm87JRJC

  • 比较棘手的问题: 正十四烷基硫酸钠氢谱信号太小?

    正十四烷基硫酸钠溶解度很小。今天用氢谱测了一个0.8 mM浓度(分子量316)的溶液,看上去溶液清亮,但做核磁发现是宽峰,裂分都看不清楚。因为后来在激光下观察看到了丁达尔现象,于是怀疑还是有胶体大小的固体颗粒没溶完全。于是又稀释了一倍。匀场调好扫了25次,发现这次裂分是清楚了,但是信号太小了!!峰几乎和基线混在一起,怎么办才好啊,用400M的会好点吗?大家有什么建议吗?氢谱扫多少次合适啊?

  • 十一烷附近杂峰太多怎么办

    做tvoc 重复性和标准曲线发现十一烷附近杂峰太多,每次处理的十一烷数据差异太大怎么办 是哪里的问题?标准曲线也是这个点做不好

  • 有关对中药丸剂标准总制成量的相关疑问

    看了很多中成药丸剂的标准,现行药典上以及以前的标准上很少制定了制剂的总制成量,这是为什么呢?是不是丸剂标准不需要制定制成量?问了很多有经验的也说不出个所以然来,所以想在这里看能不能找到答案?是不是国家有规定丸剂可以不用制成量?具体文献资料出自哪里?

  • 【求助】热解法TVOC时为什么十一烷总是出不来?

    我们做苯系物和TVOC时是用的同样的标液,都是TVOC的!苯系物是用安捷伦7890溶剂解析做的,十一烷会出峰;但用安捷伦6890做TVOC事十一烷总是做不出来。请教各位你们做TVOC时程序升温一共多长时间啊?十一烷出峰吗?大致的出峰时间是多少?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制