当前位置: 仪器信息网 > 行业主题 > >

蒽二硼酸二频哪酯

仪器信息网蒽二硼酸二频哪酯专题为您提供2024年最新蒽二硼酸二频哪酯价格报价、厂家品牌的相关信息, 包括蒽二硼酸二频哪酯参数、型号等,不管是国产,还是进口品牌的蒽二硼酸二频哪酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蒽二硼酸二频哪酯相关的耗材配件、试剂标物,还有蒽二硼酸二频哪酯相关的最新资讯、资料,以及蒽二硼酸二频哪酯相关的解决方案。

蒽二硼酸二频哪酯相关的资讯

  • “硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目获国家技术发明二等奖
    1月18日,中共中央、国务院在北京隆重召开2012年度国家科学技术奖励大会。胡锦涛、习近平等党和国家领导人出席奖励大会并为获奖人员颁奖。山东大学晶体材料研究所王继扬教授完成的“硼酸盐激光自倍频晶体和小功率绿光激光器件商品化制备技术及应用”项目荣获国家技术发明二等奖。此外,山东大学作为合作单位获得一项国家科技进步二等奖。   王继扬教授及其课题组在国家自然科学基金和“973”专项支持下,在蒋民华院士学术思想指导下,坚持复合功能晶体研究,与中科院理化所许祖彦院士课题组合作,突破传统思想,发现硼酸钙氧盐类晶体的最大有效非线性系数在非主平面方向。他通过对多种硼酸钙氧盐晶体生长和激光特性的筛选研究,发现硼酸钙氧钇钕晶体综合性能优良,具有实用化前景,通过产学研结合实现了激光自倍频晶体元件和激光自倍频绿光器件模组的商品化生产,根据市场需求开发了多种产品,并已获得广泛应用,在国际上首次实现了激光自倍频晶体及其器件的商品化,开辟了激光自倍频晶体与器件应用的商品化领域,创造了具有特色和优势的小功率绿光全固态激光器新品种,发展了激光自倍频功能复合模型,丰富了功能晶体学科,是复合功能晶体研究领域的重大突破。
  • 赛默飞发布食品样品中硼砂(硼酸)的检测方案
    2015年2月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布食品样品中硼砂(硼酸)的检测方案。一些不良商贩在食品中非法添加硼砂或硼酸,以起到增筋、保水、改良口感和防腐等作用。硼摄入量过高会表现毒性,可致脑组织氧消耗受抑制,酶活力丧失活性。国家食品整治办于2008年将硼酸、硼砂列为禁用添加剂第一批,明令严格监查食品中硼违法添加等行为。 目前食品中硼的检测的方法主要有比色法、ICP-OES法和ICP-MS(www.thermo.com.cn/Category226.html)法等,其中比色法操作非常繁琐,而ICP-OES法和ICP-MS则是总硼测试的良好解决方案。动植物体中的硼往往存在多种形态(主要有水溶游离态、半束缚态和束缚态),而外源性添加硼酸则主要以游离态存在,因此对于游离态的硼酸准确则更有意义。离子色谱柱的分离机理使其容易保留游离态的硼,因此在ICP-OES或ICP-MS前端增加分离单元可以准确样品中的游离硼。赛默飞发布食品样品中硼酸的检测方法,采用ICS-900基础型离子色谱仪配备IonPac ICE-Borate排斥色谱柱,在等度淋洗条件下即可良好保留游离态硼酸,而络合态硼酸不干扰测定。利用电感耦合等离子光谱仪作为检测手段则可大大增强检测的选择性,排除了食品中常见有机酸对于硼酸的干扰,具有较好的检测效果。ICS-900 基础型离子色谱系统产品详情:http://www.thermo.com.cn/Product6477.html iCAP 7000系列电感耦合等离子体光谱仪产品详情:http://www.thermo.com.cn/Product6694.html 下载应用纪要:离子色谱-电感耦合等离子体光谱联用检测食品样品中硼砂(硼酸)http://www.thermo.com.cn/Resources/201501/1616106789.pdf ----------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 宁波海产品牌陷“硼酸门” 检测方推翻结论致歉
    中新网宁波5月26日电 5月13日,网友微博爆料称,“宁波知名品牌陆龙海蜇头被江东工商局查出硼酸超标”。5月24日,第三方当事检测机构中普检测技术服务(宁波)有限公司(简称“中普检测”)在当地媒体上发布一份《致陆龙兄弟的道歉声明》,推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。中普检测称:在判定上出现了失误,错误理解了标准。   根据“陆龙兄弟”官方网站的介绍,该公司是产销量、企业规模、纳税额等经济指标均排名业内第一的中国海产领军品牌,1978年由多名陈姓兄弟共同创建成立,现已发展成为中国最大的“海产食品全品类一站式供应商”。   资料显示,硼酸俗称硼砂,可增加食品韧性、脆度以及改善食品保水性、保存性,但毒理学实验表明,硼酸在人体内有积存性,会引起食欲减退、消化不良、抑制营养素的吸收,且硼酸具有较高毒性,摄入1~3克可致中毒,成人20克、小儿5克可致死亡。   2008年以来,全国打击违法添加非食用物质和滥用食品添加剂专项整治领导小组陆续发布了5批《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》,硼酸与硼砂名列其中。   宁波江东工商分局工作人员此前接受记者采访时称,当时共抽取了15个品牌的87个批次产品,其中,江东欧尚超市抽选的样本陆龙海蜇头被检出含有硼酸。该工作人员表示,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。   中普检测是负责此次陆龙海蜇检测的机构。据“中普检测”官网介绍,该公司成立于2006年5月,是"一家公正、独立、专业的第三方检验、测试、认证公司"。3年前,“中普检测”开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测负责人李伟告诉记者,检测报告是今年1月15日出具的。根据该公司工作流程,报告会在第一时间送达企业。此后一段时间,“陆龙兄弟”并没就报告提出疑义。李伟称,4月份“陆龙兄弟”与他们进行了沟通,称检测报告的结果认定有问题。   5月14日,陆龙兄弟官方微博针对此事发文《陆龙海产致社会各界的一封信》中解释,检出硼酸系原料本身自带,属不可抗的客观因素。   李伟介绍,后来工商部门也督促他们作出解释,而“陆龙兄弟”在多次沟通中也要求作出解释,“双方沟通得挺好”。   5月24日,中普检测在当地媒体上推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。   李伟接受记者采访时表示,公司做了3年的食品检测,以前从来没有出现过误判。他认为,这份检测报告是“中普检测”在判定上出现了失误,错误理解了标准,报告的判断依据为:SC/T3210-2001中实际表述为:“不允许使用硼酸或硼砂作防腐剂”,并非“不得检出”。   在“中普检测”发出《致陆龙兄弟的道歉声明》后,记者来到“陆龙兄弟”采访。公司前台称领导都不在公司,边上一位被其称为陈副主任的办公室工作人员称,企业现在没有什么好回复的,这件事很明显,各方面舆论、微博都讲得很清楚。陈副主任让记者有事找戴总,称对方可以代表“陆龙兄弟”发言。   此后,记者拨通了戴总的电话。不过,对方却表示自己并非“陆龙兄弟”的工作人员,也是媒体人,只是对这个事情比较了解,并不能代表“陆龙兄弟”作出回应。
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • ECHA开展有关环草啶和硼酸的新统一分类和标签公众意见征询
    2013年5月14日消息,欧洲化学品管理局(ECHA)邀请利益相关方提交有关环草啶(lenacil)和硼酸(boric acid)的统一分类和标签(harmonised classification and labelling,CLH)新提案的评论意见。公众咨询为期45天,将于2013年6月28日结束。   有关环草啶的CLH提案由比利时提交。环草啶是一种除草剂,目前并没有统一分类和标签。卷宗提交者计划对该物质的环境危害进行分类。   有关硼酸的CLH提案由波兰提交。硼酸已有统一分类,卷宗提交者拟议修订生殖毒性分类,即移除生育影响分类,降低发育毒性分类。ECHA提醒相关方正在进行的有关其他两种硼酸盐的公众咨询(截至6月14日),卷宗提交者(荷兰)拟议为其发育和生殖毒性制定比硼酸更为严格的分类。   在45天的咨询阶段,收到的评议意见将会定期公布在ECHA网站上。   表格一 拟议的统一分类和标签以及物质使用范例。 物质名称 EC号 CAS号 拟议统一分类和标签 使用范例 环草啶(ISO);3-环己基-1,5,6,7-四氢环戊嘧啶-2,4-(3H)二酮 218-499-0 2164-08-1 对水生环境有危害 对水生环境的危害未分类 作为一种除草剂 硼酸 233-139-2 10043-35-3 生殖毒性 硼酸被用于许多行业和专业应用,被添加在消费品中。 硼酸在杀菌剂中被用作活性物质,被添加到化肥中被用作一种植物微量元素。   *请注意使用信息不会影响分类和标签,这完全基于一种物质的内在属性。使用范例是从CLH报告中复制而来。
  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。   该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。   其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。   然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。   RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 宁波硼酸门认定被推翻 工商称对检测报告无核实义务
    中新网宁波5月28日电 今年1月,浙江宁波市工商局江东分局在超市抽查陆龙兄弟海蜇产品,通过第三方检测机构检测,产品被检测出含有硼酸,3月份,该案件被移交宁波市公安局江东分局。5月24日,中普检测技术服务(宁波)有限公司(简称中普检测)发布一份《致陆龙兄弟的道歉声明》,推翻此前陆蜇不合格的认定,转而认定其合格。对此,宁波市工商局江东分局副局长张建刚表示,工商部门此前所说硼酸“不得检出”的结论是根据检测机构的检测报告做出的,而对检测报告工商部门没有核实的义务。   中普检测是负责此次陆龙海蜇检测的机构。据中普检测官网介绍,该公司成立于2006年5月,是“一家公正、独立、专业的第三方检验、测试、认证公司”。3年前,中普检测开始涉足食品检测。   “我们是受江东工商委托对产品进行检测。”中普检测质量部经理李伟告诉记者,检测报告是今年1月15日出具的,送检的陆龙兄弟海蜇被检测出硼酸含量为5.9mg/kg,报告第一时间送达企业。   宁波市工商局江东分局工作人员此前接受记者采访时称,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。3月份工商部门将此案移交给公安,等待进一步的调查结果。   5月24日,中普检测在诸媒体发表《致陆龙兄弟的道歉声明》,称陆龙产品检出的5.9mg/kg硼酸系本底含量,推翻了此前送检陆龙海蜇不合格的结论。据李伟介绍,新结论是在陆龙兄弟提供了诸多证据的基础上做出,中普检测并没有进行重新检测。   作为此次检测的委托方,宁波市工商局江东分局副局长张建刚表示,工商部门对检测报告没有核实的义务,检测结果由检测机构来认定,工商部门主要负责三项工作:确认检测机构是否有资质 跟被抽检人有没有利益关系 检测程序是否合法。   宁波市工商局江东分局提供的材料称,依据《食品安全法》第五十九条:“食品检验实行食品检验机构与检验人负责制。食品检验报告应当加盖食品检验机构公章,并有检验人的签名或者盖章。食品检验机构和检验人对出具的食品检验报告负责”。   “在法律上,我们不存在任何责任。”张建刚称,工商部门此前所说,硼酸不得检出的结论是根据检测机构的检测报告得出。   据介绍,宁波市工商局江东分局过去只对海蜇进行一般检测,今年开始才增加了硼酸检测项目。   针对中普检测推翻检测结论公开致歉一事,宁波市工商局江东分局在给记者的书面回复称,“这个事情我们始终是严格依法按程序办理的。根据检测报告,海蜇被检出硼酸,为了消费者的食品安全和国家的相关规定,我们依法移送公安部门,由公安部门对硼酸的来源进行侦查。在公安部门确认非人为添加的情况下,退回工商部门,由工商部门依法按程序作出处理。”
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 博纳艾杰尔提供食品中邻苯二甲酸酯检测相关方法
    日前,台湾在食品添加物起云剂中违法加入有害健康的邻苯二甲酸酯类物质(其中包括邻苯二甲酸二甲酯)。导致多家知名饮料及食品污染,并且流入市面。 邻苯二甲酸酯(DEHP)是一种被广泛使用的增塑剂,用DEHP代替棕榈油配制的有毒起云剂能产生和乳化剂相似的增稠效果。但是,DEHP作为塑化剂并不属于食品香料原料,DEHP不仅不能被添加在食物中,甚至不允许使用在食品包装上。DEHP的作用类似于人工荷尔蒙,会损害男性生殖能力并促使女性性早熟,长期大量摄取会导致肝癌。由于幼儿正处于内分泌系统生殖系统发育期,DEHP对幼儿带来的潜在危害会更大。 对于食品中邻苯二甲酸酯的检测,主要使用方法国标GB/T21911-2008《食品中邻苯二甲酸酯的测定》。此标准适用于食品中16种邻苯二甲酸酯类物质。含油脂样品中各邻苯二甲酸酯化合物的检出限为1.5mg/kg,不含油脂样品中各邻苯二甲酸酯化合物的检出限为0.05mg/kg。 GB/T 21911-2008的原理是:各类食品提取、净化后经气相色谱-质谱联用仪进行测定。采用特征选择离子监测扫描模式(SIM),以碎片的丰度比定性,标准样品定量离子外标法定量进行检测。不含油脂类物质采用正己烷提取,含油脂类物质采用乙酸乙酯、环己烷提取,凝胶渗透色谱(GPC)净化,GC-MS分析。 针对饮料中的邻苯二甲酸酯的检测,如果用有机溶剂以液液萃取的方法提取,容易造成不同样品的测试结果不稳定的问题。博纳艾杰尔可以提供固相萃取的方法解决这一问题,采用Cleanert PEP玻璃固相萃取柱对饮料中的邻苯二甲酸酯进行固相萃取富集,然后可以用液相色谱或者GC/MS进行检测。 可提供相关产品包括 邻苯二甲酸酯标准品 Cleanert PEP玻璃管SPE前处理小柱(完全解决传统塑料SPE小柱本身带有邻苯二甲酸酯的问题,更低本底) 气相柱DA-5MS(用于国标GC-MS检测) Venusil ASB-C18(用于HPLC检测) 邻苯二甲酸酯检测服务 关于博纳艾杰尔更多请访问www.agela.com.cn 客服电话400-606-8099
  • 帕纳科与XRF Scientific合作推出熔融机新品
    帕纳科公司是思百吉集团下属的X射线分析技术公司,而XRF Scientific公司是材料表征领域的样品制备专家。近日,帕纳科与XRF Scientific两家公司结成了XRF样品制备领域的OEM战略联盟。在此协议下,由Steve Prossor领导的XRF Scientific子公司Automated Fusion Technology公司将向帕纳科公司提供样品制备设备。   Pittcon2010上首次发布的Eagon 2 全自动台式双样品熔融系统,是此项合作签署后经过12个多月的技术和商业讨论后的成功成果,“在纵观所有的熔融技术之后,我们更加清楚的看到,与XRF Scientific公司一起,我们可以把最安全、实用,功能齐全、强大的自动化熔融设备推向市场:the Eagon 2是一种高性能、低成本的解决方案。”帕纳科公司XRF产品经理Simon Milner先生说到。此合作协议包括:合作双方互相发展和共享知识产权,合作推出的仪器设备将在2010年初开始生产。   在低熔融硼酸锂盐存在情况下,熔融或溶解一个样品将阻止测量过程中的一些不利,如:矿物学的,晶粒尺寸或方向的影响,当制备一种助熔剂或硼酸锂盐玻璃时,不必使其熔融即可产生均匀的样品。这是一个用在采矿工业的特殊方法,其使拥有丰富矿产资源的澳大利亚成为相关公司的天堂。   截止2009年6月30日,XRF Scientific公司12个月的营业额达1710万澳元时,其净收入达200万澳元,与前一年相比,公司的收入增长了14% 而截止12月31日的6个月内,公司的收入急速下降了36%,只有660万澳元 此次下降抹去了公司的净利润,公司的净利润下降了82%,只有27万澳元。在今年的开端,XRF Scientific公司没有债务并且在银行拥有450万澳元的现金。另外,大量新推出的仪器设备,以及采矿工业市场的复苏,预示着2010年将有一个很好的前景,XRF Scientific公司的常务董事,Terry Sweet先生评论到。
  • 博纳艾杰尔不同基质食品中邻苯二甲酸酯的检测的系统解决方案
    随着现代食品工业的发展,人们为了增加食品的风味、改善色泽和延长货架期等,采用了多种现代食品加工技术,但是不幸的是,由于种种原因,在某些食品加工过程中使用了危害人们健康的物质,比如最近出现的食品中添加&ldquo 塑化剂&rdquo 邻苯二甲酸酯类物质。 以往,由于人们对邻苯二甲酸酯类的安全性认识不足,多种食品都涉嫌&ldquo 被添加&rdquo 。博纳艾杰尔科技根据不同食品基质的具体情况,开发了一系列的检测方案,以供大家参考。 相关产品或技术咨询请拨打400-606-8099或E-mail至service@agela.com.cn 博纳艾杰尔网站www.agela.com.cn 1.水性样品 此类样品包括瓶装纯净水、矿泉水,茶、果汁和功能饮料等;某些可水溶解的固体样品。可以先制成水溶液,然后全部作为待处理液,如无脂糖果。推荐前处理柱为Cleanert DEHP (500mg/6mL)。 样品处理:取10mL样品,进行固相萃取富集处理 固相萃取方法: 活化:5mL甲醇、5mL水 上样:10mL水性样品 淋洗:5mL5%甲醇水,真空抽干20min。 洗脱:5mL甲醇 检测:将洗脱液用氮气吹干后,以1mL甲醇定容,然后用液相色谱法检测。 说明:此法多适用于配套液相色谱检测,当样品中邻苯二甲酸酯类的含量较低时,需要采用固相萃取富集才能检测的情况。 一般来说,对于此类样品,可以采用正己烷液液萃取的办法,用GC/MS(灵敏度较高)直接检测。 2.低脂液体样品 此类样品包含液态奶制品、果酱、糖浆等。推荐前处理产品为Cleanert MAS-PAE管。 样品处理:向玻璃离心管中加入2mL样品,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 3.低脂固体食品 此类样品包括奶粉、饼干、糕点、果冻、奶糖等,推荐产品为Cleanert MAS-PAE管。 样品处理:取1g已制成粉末状的样品,2mL水,加入到Cleanert MAS-PAE离心管中,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 4.高脂样品 此类样品包括植物油脂、动物油脂、奶酪、动物组织性食品等,推荐前处理柱为Cleanert PAE。 4.1 动植物油脂样品的处理 取0.2g样品,用1mL正己烷溶解,作为待净化液。 固相萃取方法: 活化:5mL正己烷 上样:全部待净化液 淋洗:7mL正己烷 洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。 40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡 3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL玻璃样品瓶中,作为待 检液。 检测:GC/MS检测。 4.2其他样品的处理 取样品0.5g,以5mL正己烷于密封玻璃瓶中超声提取,然后以4000rpm转速,离心5min,取上清液作为待净化液。若样品中含有水,视情况加入适量无水硫酸钠后,再进行上述操作。 固相萃取方法: 活化:5mL正己烷 上样:全部待净化液 淋洗:3mL正己烷 洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。 40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡 3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。 检测:GC/MS检测。 5.复杂样品 此类样品多为油水混合态,同时添加有多种风味物质,成分比较复杂,包括方便面调味包,酱油、醋、用来调味的其它酱汁等。根据样品中的脂肪含量,对于高脂样品推荐前处理柱为Cleanert PAE-C柱,对于低脂样品推荐使用Cleanert MAS-PAEc管。 5.1 以Cleanert PAE-C柱进行样品处理,以方便面调味包为例: 取0.5g样品,加入5mL正己烷,涡旋振荡3min后,再加入500mg无水硫酸钠,涡旋振荡3min后,以4000rpm转速,离心5min,取全部上清液作为待净化液。 固相萃取方法: 活化:5mL正己烷 上样:全部待净化液 淋洗:3mL正己烷 洗脱:3mL乙酸乙酯:正己烷:甲苯(50:40:10,v/v),洗脱2次,合并洗脱液。 40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡 3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。 检测:GC/MS检测。 5.2 以Cleanert MAS-PAEc管进行样品前处理,以酱油为例 样品处理:向Cleanert MAS-PAE离心管中加入2mL样品,然后加入4mL乙腈:甲苯(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAEc填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 附件一: 高效液相色谱法检测15种邻苯二甲酸酯的含量 色谱柱:Agela Venusil XBP C18-L ,4.6× 250mm,5µ m,150Å (订货号:VX952505-L) 流动相:A:水,B:甲醇:乙腈=50:50 Time/min A/% B/% 0 60 40 2 50 50 10 40 6012 30 70 20 30 70 31 0 100 40 0 100 40.01 60 40 流 速:1.0 mL/min 波 长:242 nm 进样量:5 µ L(100ppm),50µ L(10ppm) 样 品:15种邻苯二甲酸酯 浓 度:100 ppm(正己烷),10 ppm(40%流动相A) 溶 剂:正己烷 /40%流动相A 柱 温:30℃ 图1 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:10ppm) (邻苯二甲酸二甲酯DMP,邻苯二甲酸二乙酯DEP,邻苯二甲酸二正丁酯DBP,邻苯二甲酸二辛酯DEHP,邻苯二甲酸丁苄酯BBP,邻苯二甲酸二(2-乙基己基)酯DEHP,邻苯二甲酸二(2-甲氧基)乙酯DMEP,邻苯二甲酸二丁氧基乙酯DBEP,邻苯二甲酸二戊酯DPP,邻苯二甲酸二(4-甲基-2-戊基)酯BMPP,邻苯二甲酸二乙氧基乙基酯DEEP,邻苯二甲酸二环己酯DCHP,邻苯二甲酸二异丁酯DIBP,邻苯二甲酸二己酯DNP,邻苯二甲酸二壬酯DINP) 结论:Agela Venusil XBP C18-L色谱柱能够较好的分离15种邻苯二甲酸酯类物质,分离度较好,完全满足LC检测15种邻苯二甲酸酯类物质的含量。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件二 气质联用法检测15种邻苯二甲酸酯 仪器:Agilent 7890/5975 GC/MS 色谱条件: 色谱柱:DA-5MS 30m*0.25mm*0.25&mu m 进样口:250℃,不分流进样 程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min) 进样量:1&mu L 流速:1 mL/min 质谱条件: 接口温度:280℃ 电离方式:EI 电离能量:70eV 溶剂延迟:7min 监测方式:SIM模式,监测离子见下表 序号 保留时间/min 中文名称 英文缩写 SIM离子 1 8.265 邻苯二甲酸二甲酯 DMP 163、77 2 9.135 邻苯二甲酸二乙酯 DEP 149、177 3 10.888 邻苯二甲酸二异丁酯 DIBP 149、223 4 11.637 邻苯二甲酸二丁酯 DBP 149、223 5 11.979 邻苯二甲酸二(2-甲氧基)乙酯 DMEP 59、149、193 612.72邻苯二甲酸二(4-甲基-2-戊基)酯 BMPP 149、251 7 13.044 邻苯二甲酸二(2-乙氧基)乙酯 DEEP 45、72 8 13.41 邻苯二甲酸二戊酯 DPP 149、237 9 15.552 邻苯二甲酸二己酯 DHXP 104、149、76 10 15.694邻苯二甲酸丁基苄基酯 BBP149、91 11 17.153 邻苯二甲酸二(2-丁氧基)乙酯 DBEP 149、223 12 17.81 邻苯二甲酸二环己酯 DCHP 149、167 13 18.056 邻苯二甲酸二(2-乙基)己酯 DEHP 149、167 14 20.444 邻苯二甲酸二正辛酯 DNOP 149、279 15 22.98 邻苯二甲酸二壬酯 DNP 57、149、71 结论:Agela DA-5ms气相色谱柱能够很好的分离15种邻苯二甲酸酯类物质,完全满足15种邻苯二甲酸酯类物质的几十ppb级含量的定量测定。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件三 牛奶中15种邻苯二甲酸酯的添加回收率 按正文第2项方法进行某种牛奶的添加回收率实验,得到的数据如下: 表1、某种牛奶中添加15种邻苯二甲酸酯(在样品中的浓度为50&mu g/L)的回收率结果列表 序号 保留时间/min
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • Nature、Science! mK极低温纳米精度位移台在二维材料、石墨烯等领域的前沿应用进展
    nature:二维磁性材料的磁结构与相关特性研究关键词:二维铁磁材料;低温纳米精度位移台;反铁磁态;二次谐波 近年来,二维磁性材料在国际上成为备受关注的研究热点。近日,中国与美国的研究团队合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。同时,研究团队发现双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量的提升,比常规铁磁界面产生的二次谐波更是高出十个数量。利用这一强烈的二次谐波信号,团队成功揭示双层三碘化铬的原胞层堆叠结构的对称性。图一 双层三碘化铬的二次谐波光学显微图 运用光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性是此实验的关键。团队利用自主研发搭建的无液氦可变温强磁场显微光学扫描成像系统,完成了关键数据的探测。值得指出的是,该无液氦可变温强磁场显微光学扫描成像系统采用德国attocube公司的低温强磁场纳米精度位移台和低温扫描台来实现样品的位移和扫描。德国attocube公司是上著名的端环境纳米精度位移器制造商。公司已为全科学家生产了4000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和纳米精度扫描器。图二 attocube低温强磁场位移器、扫描器attocube低温位移台技术特点如下:参考文献:Sun, Z., Yi, Y., Song, T. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019). nature:石墨烯摩尔超晶格可调超导特性研究关键词:石墨烯 超晶格 高温超导高温超导性机制是凝聚态物理领域世纪性的课题。这种超导性被认为会在以Hubbard模型描述的掺杂莫特缘体中出现。近期,美国和中国的国际科研团队合作在nature上报道了在ABC-三层石墨烯(TLG)以及六方氮化硼(hBN)摩尔超晶格中发现可调超导性特征。研究人员通过施加垂直位移场,发现ABC-TLG/hBN超晶格在20K的温度下表现出莫特缘态。进一步通过冷却操作发现,在温度低于1K时,该异质结的超导特特性开始出现。通过进一步调控垂直位移场,研究人员还成功实现了超导体-莫特缘体-金属相的转变。 图1.德国attocube公司低温mK纳米旋转台电学输运工作的测量是在进行仔细的信号筛选后,本底温度为40mK的稀释制冷机内进行的。值得指出的是,样品的面内测量需要保证样品方向与磁场方向平行,这必须要求能够在低温(40mK)环境下实现良好且工作的旋转台来移动样品,确保样品与磁场方向平行。实验中使用了德国attocube公司的mK纳米精度旋转台(如图1所示)。Attocube公司可提供水平和竖直方向的旋转台,使样品与单轴线管的超导磁场方向的夹角调整为任意角度。通过电学输运结果,证实了样品中存在超导体-莫特缘体-金属相的转变(结果如图2所示),为三层石墨烯/氮化硼的超晶格超导理论模型(Habbard model)以及与之相关的反常超导性质和新奇电子态的研究提供了模型系统。 图2. ABC-TLG/hBN的超导性图左低温双轴旋转台;图右下:石墨烯/氮化硼异质节的超导性测量测试结果,样品通过attocube的mK适用旋转台旋转后方向与磁场方向平行参考文献:Guorui CHEN et al, Signatures of tunable superconductivity in a trilayer graphene moiré superlattice, Nature, 572, 215-219 (2019) nature:分数量子霍尔效应区的非线性光学研究关键词:量子霍尔效应 四波混频 化激元设计光学光子之间的强相互作用是量子科学的一项重要挑战。来自瑞士苏黎世联邦理工学院(Institute of Quantum Electronics, ETH Zürich, Zürich,)的研究团队在光学腔中嵌入一个二维电子系统的时间分辨四波混频实验,证明当电子初始处于分数量子霍尔态时,化激元间的相互作用会显著增强。此外,激子-电子相互作用导致化子-化激元的生成,还对增强系统非线性光学响应发挥重要作用。该研究有助于促进强相互作用光子系统的实现。值得指出的是,该实验在温度低于100mK的环境下进行,使用德国attocube公司的低温mK环境纳米精度位移台来实现物镜的移动和聚焦。参考文献:Knüppel, P., Ravets, S., Kroner, M. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019). Science:NV center在加压凝聚态系统中的量子传感研究关键词:NV色心 量子传感器压力引起的影响包括平面内部性质变化与量子力学相转变。由于高压仪器内产生巨大的压力梯度,例如金刚石腔,常用的光谱测量技术受到限制。为了解决这一难题,巴黎十一大学,香港中文大学和加州伯克利大学的研究团队研发了一款新型纳米尺度传感器。研究者把量子自旋缺陷集成到金刚石压腔中来探测端压力和温度下的微小信号,这样空间分辨率不会受到衍射限限制。为此加州伯克利大学团队采用了德国attocube公司的与光学平台高度集成的闭循环低温恒温器- attoDRY800来进行试验,其中包含了attocube公司的低温纳米精度位移台,以此来实现快速并且控制金刚石压强的移动以及测量实验。参考文献:[1] S. Hsieh et al., Science, Vol. 366, Issue 6471, pp. 1349-1354 (2019) [2] M. Lesik, et al., Science, Vol. 366, Issue 6471, pp. 1359-1362 (2019)[3] K. Yau Yip et al., Science, Vol. 366, Issue 6471, pp. 1355-1359 (2019)
  • 【培训】食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
  • 【培训】要开班啦——食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测
    培训班简介中国仪器仪表学会食品质量安全检测仪器与技术应用分会推出新国标检测技术相关培训。培训班每期招收10人,首期培训课程《食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测》目前正在征集报名!适合对象:1.油脂、乳制品、肉制品等食品生产加工企业检验技术人员;2.各级食品安全监管部门及检测机构技术人员; 3. 高校及科研院所等机构从事食品污染物相关研究的科研人员; 4.其他相关行业意向本次培训班的机构及个人主办单位:中国仪器仪表学会食品质量安全检测仪器与技术应用分会协办单位:天津阿尔塔科技有限公司培训基地:中粮集团营养健康研究院 费用说明培训费:课程a 3500元/人(含食宿),时间: 2天课程b 3000元/人(含食宿),时间:2天课程a 依据新颁布国家食品安全标准gb5009.191-2016课程b 依据美国油脂化学协会aocs official method cd 29a-13课程a与课程b分期举办,培训结束后颁发由中国仪器仪表学会出具的培训合格证书培训地点:中粮营养健康研究院食品质量与安全中心(北京市昌平区北七家镇未来科技城南区四路)培训内容:课程a:食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法(食品安全国家标准 gb5009.191-2016)* gc-ms基本原理及应用* 3-氯丙醇酯、2-氯丙醇酯检测方法专题讲解* 演示实验* 实际操作课程b:食品中3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测(aocs official method cd 29a-13)* 3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯检测方法专题讲解* 演示实验* 实际操作报名方式:如您对培训感兴趣,请填写《培训申请表》,加盖单位章扫描发送到, marketing@altascientific.com, 我们的工作人员会联系您,以便安排培训时间。联系人:姜平月电话:15620189828/022-65378550qq: 2850791078培训要点氯丙醇酯是氯丙醇类化合物与脂肪酸的酯化物,食品中3-氯丙醇酯的检出量较高,其次为2-氯丙醇酯。缩水甘油酯是脂肪酸与缩水甘油的酯化物,与氯丙醇酯的形成机理相似。3-氯丙醇酯与缩水甘油酯已成为全球关注的植物油新型污染物。目前对3-氯丙醇酯、2-氯丙醇酯及缩水甘油酯的检测国际上还没有统一的标准,采用较多的为aocs的标准。而国内近期刚刚颁布了gb 5009.191-2016,对食品中氯丙醇酯含量的测定做了详细的说明,而缩水甘油酯尚没有检测标准。3-氯丙醇及2-氯丙醇检测方法:方法一:国标gb 5009.191-2016方法采用甲醇钠/甲醇作为水解剂,将氯丙醇酯水解成氯丙醇,利用硅藻土小柱进行净化,再用七氟丁酰基咪唑作为衍生试剂,最后采用gc-ms测定。该方法用时较短。方法二:基于aocs official method cd 29a-13方法采用甲醇/硫酸作为水解剂,将氯丙醇酯水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率,且成本低。缩水甘油酯检测方法:基于aocs official method cd29a-13方法:在酸性条件下使缩水甘油酯解环,采用甲醇/硫酸作为水解剂,水解成氯丙醇,采用液液萃取的方法进行净化提取,再用苯基硼酸作为衍生试剂衍生,最后采用gc-ms测定。该方法具有较好的稳定性,精密度、重复性及回收率。附件培训申请表姓名:单位(及邮编):地址:手机:传真:email:您还希望接受哪一类主题的培训?我们将尽力安排相关课程
  • 见“微”知著——默克发布Erenna单分子免疫检测平台新品
    p    strong 仪器信息网 /strong 2016年4月12日,默克在北京举办生命科学新产品发布会,来自各科研院所、高校等的100余位代表出席会议。 /p p style=" text-align: center " img title=" IMG_14321.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/6aa4a5bb-e0b7-4ea0-a1f2-39382acc0e42.jpg" / /p p style=" text-align: center " strong 光影开场秀 /strong /p p   “见微 至臻 致远”,本次新品发布会继续传承默克生命科学的创新风格,以一段创意无限的光影开场秀拉开序幕。在光与影的殿堂里,默克将科学与艺术完美融合,诠释了以“匠人”之心打造的两款生命科学研究工具:Erenna单分子免疫检测平台和CellASIC ONIX2 微流控活细胞实时分析系统。 /p p style=" text-align: center " img title=" IMG_14541.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/6808f359-8e28-4449-8732-1a08c11f4840.jpg" / /p p style=" text-align: center " strong 默克生命科学市场部总监郭鸣霏先生致开幕辞 /strong /p p   默克生命科学市场部总监郭鸣霏先生在致辞中介绍到,Erenna,原是深海中的一种水母,在几千米的海底发出荧光,照亮深海海底未知的世界。本次默克发布的单分子免疫检测平台的名字也叫Erenna,Erenna(水母)潜在的含义与默克相关产品在蛋白质组学领域的探索潜能不谋而合。 /p p   从上世纪40年代开始,随着免疫组化等经典蛋白检测技术的发展,蛋白作为生物标志物的价值逐渐被人们所重视。尽管免疫组化、ELISA、Luminex等蛋白检测技术已经实现了数以千计的蛋白生物标志物的检测,但蛋白生物标志物的开发速度仍显缓慢:年均仅有1-2个新的生物标志物进入实际的临床应用。据统计,在400000多种已知的人类蛋白中,约有300000种因为表达丰度过低而无法实现传统方法的检测。在现有技术可以检测的约100000种蛋白中,大多数又无法在健康个体的样本检测到,而仅仅出现在特定的疾病时期。大量蛋白生物标志物的重要功能,如同海平面下的冰山,无法被现有技术准确界定。不论临床还是基础研究,蛋白生物标志物的应用都拥有可观的发展前景,但现有技术的瓶颈极大限制了蛋白生物标志物的发展。 /p p style=" text-align: center " img title=" IMG_14741.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/5b125750-dbfb-46c2-a10f-e28972e8fbeb.jpg" / /p p style=" text-align: center " strong 默克高级科学家、Erenna单分子免疫检测平台资深专家Ali Vahedi先生 /strong /p p   2015年,默克密理博收购 a title=" " href=" http://www.instrument.com.cn/news/20160413/188581.shtml" target=" _self" strong 单分子检测技术(SMC sup TM /sup ) /strong /a 。而今天发布的Erenna单分子免疫检测平台也是收购之后发布的首款具有里程碑意义的产品。 /p p   据默克高级科学家、Erenna单分子免疫检测平台资深专家Ali Vahedi介绍,Erenna采用专利的“爱里斑”单分子检测技术(Single Molecular Counting ,SMC sup TM /sup ),突破了蛋白检测的极限,将生物标志物检测提升到飞摩尔级别。相较于传统免疫检测技术,SMC sup TM /sup 技术的信噪比有了很显著的改善,使得在一个系统里可以同时检测低表达和高表达的蛋白靶标,可以用于揭示疾病相关生物标志物的微小变化,并可创领生物标志的新发现。 /p p   检测事件(DE),事件光子含量(EP),以及总光子含量(TP),三套检测数据得到三条标准曲线,外加专有的算法,Erenna可以实现高灵敏度、大动态范围的检测。此外,Erenna单分子免疫检测平台还可以根据不同的实验条件灵活选择孵育形式。据介绍,由于Erenna平台卓越的单分子检测能力以及磁珠的低背景,基于磁珠的孵育形式比使用同样抗体的ELISA灵敏度提高大约1000倍。而基于96孔板板底的孵育形式大约比同等抗体条件的ELISA灵敏度也能提高50-100倍,同时试剂成本低于ELISA。 /p p style=" text-align: center " img title=" IMG_15351.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/ab2ad927-41e4-47d2-a2d0-bb13d622c373.jpg" / /p p style=" text-align: center " strong 默克全球产品经理Victor Koong先生 /strong /p p   本次发布会中,默克还介绍了另一款新产品:CellASIC ONIX2 微流控活细胞实时分析系统,这是CellASIC ONIX的升级产品。 /p p   据默克全球产品经理Victor Koong介绍,目前,细胞培养技术的发展还存在一些问题,如传统培养体系体积较大,快速更换培养基比较困难;静态培养与在体培养差异较大;成像状态下很难控制细胞的生长环境等。而CellASIC ONIX2 微流控活细胞实时分析系统可以实现活细胞成像时的细胞生长环境精细调控,包括气体、温度、培养基和试剂的快速切换,长时程、免操作实验条件的程序化控制等,从而使细胞保持良好的生长状态。 /p p   采用芯片培养板上的微流控设计,CellASIC ONIX2具备高精度活细胞成像与多功能分析的系统特征,可同时进行四个独立的加药实验,适用于所有倒置显微镜。 /p p   据介绍,CellASIC ONIX2在控制演进过程的自噬、活细胞成像过程中的自动化免疫染色等研究中具有很好的应用前景。目前,顶级科研机构的超过60篇顶尖文献已经使用了该系统。 /p p style=" text-align: center " img title=" IMG_14431.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/4756031b-b60f-4bed-98d5-28f829bfc6e1.jpg" / /p p style=" text-align: center " strong 发布会现场 /strong /p p style=" text-align: center " img title=" IMG_15261.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/c61746a7-bde2-490e-919a-c11a2f59459c.jpg" / /p p style=" text-align: center " strong 瑞士巴塞尔大学医学院医学博士& amp 公共健康硕士 David Conen先生 /strong /p p   在新品发布会的过程中,瑞士巴塞尔大学医学院医学博士& amp 公共健康硕士David & nbsp Conen先生还专门分享了心血管疾病生物标志物研究的新进展。 br/ /p p   此外,新品发布会之后,默克还组织了成像流式高峰论坛,与行业专家共同探讨最新的研究进展。 br/ /p
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售 中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP) Dimethyl phthalate (DMP) 131-11-3 邻苯二甲酸二乙酯(DEP) Diethyl phthalate(DEP) 84-66-2 邻苯二甲酸二异丁酯(DIBP) Phthalic acid, bis-iso-butyl ester 84-69-5 邻苯二甲酸二丁酯(DBP) Di-n-butyl phthalate 84-74-2 邻苯二甲酸双(2-甲氧基乙)酯(DMEP) Phthalic acid, bis-methylglycol ester 117-82-8 邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester 146-50-9 邻苯二甲酸双-2-乙氧基乙酯 Phthalic acid, bis-2-ethoxyethyl ester 605-54-9 邻苯二甲酸二戊酯(DPP) Diamyl phthalate 131-18-0 邻苯二甲酸二正己酯(DNHP) Dihexyl phthalate 84-75-3 邻苯二甲酸丁苄酯(BBP) Benzyl butyl phthalate 85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP) Phthalic acid,bis-butoxyethyl ester 117-83-9 邻苯二甲酸二环己酯(DCHP) Dicyclohexyl phthalate 84-61-7 邻苯二甲酸二(2-乙基)己酯(DEHP) Di(2-ethyl hexyl) phthalate (DEHP) 117-81-7 邻苯二甲酸二苯酯 Diphenyl phthalate 84-62-8 邻苯二甲酸二正辛酯(DNOP) Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯 Phthalic acid, bis-nonyl ester 84-76-4 相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • 9th International Conference on Mercury
    9th International Conference on Mercury as a Global Pollutant A conference where the mercury concerns of the developed and developing worlds will meet Guizhou's Great Hall of the People, Guiyang, China June 7-12, 2009 Sponsorship levels overview All amounts are denoted in Chinese Renminbi. Exhibition booths and display tables are reserved for conference sponsors. The Conference Organizing Committee retains the right to deny or accept sponsorship. Platinum - 70 000 RMB or greater &bull Your organization's logo in the conference announcements, on the special sessions banners and in the special sessions correspondences. &bull Your organization's logo in the conference program and on the website. &bull Choice of a specific sub-event or international speaker to sponsor. &bull Exhibition booth in the venue's Exhibition hall: o a 6 x 3 meters fully furnished booth (** If you have any special needs please let us know) &bull Free registration for three delegates. Gold - 35 000 to 69 999 RMB &bull Your organization's logo in the conference announcements, on the special sessions banners and in the special sessions correspondences. &bull Your organization's logo in the conference program and on the website. &bull Exhibition booth in the venue's Exhibition Hall: o A 4 x 3 meters furnished booth &bull Free registration for two delegates. Silver - 15 000 to 34 999 RMB &bull Your organization's logo in the conference announcements. &bull Your organization's logo in the conference program and on the website. &bull Exhibition booth in the venue's Exhibition Hall: o A 2 x 3 meters: basic furniture &bull Free registration for one delegate. Bronze - Specific event sponsoring e.g. Monday - 20 000 RMB, Tuesday - 18 000 RMB &bull Exclusive sponsorship for one event &bull Promotional speech during the sponsored event. &bull Special mention in the conference proceedings. Iron - Specific item sponsoring e.g. Speaker's gifts, notepads, conference bags or free drinks for social gatherings. &bull Your organization's logo on the item. &bull Special mention in the conference proceedings.
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 岛津EPMA超轻元素分析之(二)| 浙大学者解决超轻元素Be的微区定量
    超轻元素Be 浙江大学饶灿教授团队利用岛津电子探针EPMA-1720H对各种铍矿物进行原位分析,探索定量分析的理想条件,精准分析了羟硅铍石、硅铍石和绿柱石等铍矿物。铍的电子探针精确分析不仅可以深入了解铍的赋存形式,发展铍的成矿理论,也有利于系统认识铍的矿物地球化学性质,相关研究成果发表在《科学通报》上。 超级金属-铍 铍是一种“战略关键金属”,被誉为“超级金属”、 “尖端金属”、 “空间金属”、 “核子堆保护神”,铍在国防和尖端科技中的应用具有不可替代的地位。地学研究领域,铍的准确定量测试对矿物工艺学研究、矿床成因解释、矿产资源评价以及地质过程的推演具有极其重要的意义。 铍测试的难点铍的研究和利用都具有重要的现实意义,但其原位精确地电子探针分析一直是地球科学领域的难题。 1、高次线的干扰“对于常见的铍矿物如绿柱石和硅铍石或羟硅铍石,Si 元素的高次线可能对 Be 的 Kα 线有干扰”; 2、特征X射线峰位偏移“相对于金属铍(峰位 11.4 nm),其它铍矿物的峰位均出现了不同程度右移现象,其中铍的硅酸盐和氧化物的峰位均在 12.0 nm 左右,而铍的硼酸盐矿物(Hambergite 和孟宪民石)的峰位右移较小,在 11.6 nm 左右。” 3、受基体吸收影响很大“绿柱石(13.96 wt.% BeO)、孟宪民石(4.30 wt.% BeO)、羟硅铍石(42.00wt.% BeO)、 Hambergite (53.00 wt.% BeO)、 Bromellite (100.00 wt.% BeO)对应的峰位强度分别为 350 cps、 480 cps、700 cps、2300 cps 和1100 cps,而金属铍的峰强最高,为70350cps。” 解决方案岛津电子探针EPMA-1720H 1、测试的过程选择PHA过滤高次线的干扰影响; 2、分别确定铍矿物中 Be 的特征峰位、合适的背景扣除(BG+和BG-),尽可能选择相同或相似的铍矿物标样; 3、根据需要延长测试时间50-100 s 之间。由于基体效应对超轻元素测试的影响很大,选择配置52.5°高位特征X射线取出角,以及具有高灵敏度的全聚焦晶体的电子探针EPMA仪器,可以保证高精度的测试。 结 论1.优化了铍的最佳分析条件:加速电压为 12 kV、无水铍矿物的分析束流为 100-200 nA、含水铍矿物的分析束流为 50-100 nA、需要选择PHA过滤高次线的干扰; 2.使用上述条件,定量分析了几类主要铍矿物,包括羟硅铍石、硅铍石和绿柱石,均获得了很好的测试结果; 3.同时探讨了铍定量分析的技术问题,如铍的特征 X 射线峰形较平坦、强度不高和发生右移等现象。 用户声音 我国本身铍资源较为匮乏,对外依存度达到80%以上。自然界已发现的含铍矿物约120余种,如绿柱石、磷铍钙石、硅铍石等。Be作为一种超轻元素,由于其特征能量弱、易吸收等原因,其微区原位定量测试非常困难。岛津电子探针的分辨率和灵敏度很高,常规元素的峰形都非常尖锐,对于超轻元素能够很好地检出,这也给含铍矿物的测试带来了很大的机遇和挑战。2019年年底,饶教授在昆明举行的岛津电子探针用户会上,专门就这方面的分析做了报告分享,引起了与会者的关注和热烈讨论。浙江大学饶灿教授 参考文献吴润秋, 饶灿, 王琪. 关键金属铍的电子探针分析[J].科学通报. DOI:10.1360/TB-2020-0082。 撰稿人:赵同新、崔会杰
  • Py-Screener系统使用中常见问题及其解决方案之一“脏”
    岛津Py-Screener系统是专门为应对欧盟RoHS法规中限制使用的有害有机物筛查而设计。岛津Py-Screener系统作为欧盟RoHS 2.0 新增邻苯二甲酸酯检测国际分析标准制定者,有其独特的特点和优势。该系统基于EGA/PY-3030D + GCMS-QP2020 NX,无需购买昂贵的前处理设备、避免有毒有害溶剂的使用;无需对样品进行相关的粉碎、萃取、浓缩、定容等繁琐、复杂、费时的前处理工作,只需剪刀等少量日常工具即可完成相关样品的测试及定量分析,从而使您从容轻松应对邻苯二甲酸筛查分析,大大节约时间、经费。Py-Screener在实际应用中,因样品的高污染性及高频进样测试,该系统不可避免的出现一些问题,归纳一下,主要可以概括为三类“脏”、“堵”、“漏”。以下就让我们来对常见问题之一“脏”相关的现象,判断及解决方案进行讲解。这里的“脏”正式一点的说法是“污染”,系统是否污染可以按照下面的方法判断。首先,在测试用户的样品前需要按照以下要求分析空杯、标样。接下来,判断标样分析的结果,以确认系统是否污染?当编号“2”:邻苯二甲酸酯标准样品(0mg/kg)结果不满足要求时,需考虑以下三种污染情况。1、 热裂解石英管、热裂解针、玻璃衬管(分流)污染。如果是该种情况,一般可以参照编号1:空杯的检测结果辅助判定,因为热裂解石英管、热裂解针、玻璃衬管(分流)污染的情况下,一般空杯测试也会有同样的检出。解决方案:更换热裂解石英管、热裂解针、玻璃衬管(分流)。2、取样工具的污染。标样0、100、1000mg/kg都需有专用镊子和取样器,如果混用将出现交叉污染的情况,另外取样用的垫板也需要建立分区,避免不同浓度的标样残留影响结果。解决方案:清洁工具、重新规范取样。3、样品杯、石英棉污染。解决方案:清洁并更换样品杯及石英棉。当样品编号3:邻苯二甲酸酯标准样品(100mg/kg)结果不满足要求时,主要考虑离子源与色谱柱的污染。可以参照调谐文件中检测器电压、透镜电压等参数确定是否需要清洗离子源。另外,可以检查DBP拖尾因子状态来判定色谱柱的状态。在保存测试数据的文件夹中,打开对应文件,若显示“上”,为不合格(见下图),此时需对色谱柱进行维护或更换。以上就是针对污染情况常见的处理方式,相信一定会给大家带来帮助,减少仪器的停机时间,提高工作效率。当然,这些只是最常见的污染点,还有一些污染会出现在进样口组件,管路等位置,这些位置的维护建议联系岛津工程师上门处理。Py-screener系统作为RoHS检测中重要的测试设备,系统维护、保养对测试结果的准确性尤为重要。为避免测试结果错误导致生产损失,大家一定要养成良好的仪器使用习惯。更多的学习内容请持续关注岛津售后LabTotal官方公众号。
  • Py-Screener的进阶玩法
    随着欧盟RoHS 2.0指令执行,相信各位小伙伴们对岛津Py-Screener和Twin Line MS系统在邻苯二甲酸酯检测的便捷性和配置的灵活性留下深刻印象。 Py-Screener之入门玩法 01 RoHS指令之限定物质 Py-Screener之进阶玩法 01 六溴环十二烷 六溴环十二烷(Hexabromocyclodo-decane,HBCDD)是一种高含溴量的脂环族添加型高效阻燃剂,与多溴二苯醚、四溴双酚A合称为世界三大阻燃剂,被广泛应用于电子电气产品中。因其高毒性、易于生物累积的特性,早在1997年,欧盟就将HBCDD归于重点管控物质。2013年,联合国《关于持久性有机污染物的斯德哥尔摩公约》宣布在全球范围内禁止生产和使用HBCDD。近年来,世界各国对于安全、环保要求日趋严格,欧盟、挪威等国家已经颁布了相关技术法规和限量标准。 HBCDD与邻苯二甲酸酯、多溴联苯和多溴二苯醚相同,也采用EGA/PY-3030D的热脱附功能分析,能够省去溶剂提取的步骤。 02 磷酸酯类阻燃剂 近年来,有机磷酸酯类阻燃剂(OPEs)凭借其品种丰富,价格低廉,与高聚物相容性好等优势,作为溴代阻燃剂的替代品被广泛使用 。目前常用的OPEs类阻燃剂约20多种,其中芳香基、卤素取代的磷酸酯类主要作为塑料消费品、纺织品、电子设备以及建筑、装修材料的阻燃添加剂。欧盟REACH法规,美国密歇根州、加利福尼亚州、缅因州、夏威夷州、纽约州法令以及日本《家用产品有害物质控制法》112法均对OPEs的限量提出明确要求,限量一般为0.1%(1000 ppm)。OPEs亦与邻苯二甲酸酯、多溴联苯和多溴二苯醚一样,也采用EGA/PY-3030D的热脱附功能分析,能够省去溶剂提取的步骤。 03 红磷阻燃剂 红磷阻燃剂以红磷为代表,是一种紫红或略带棕色的无定形粉末,为有机无卤阻燃剂,具有优良的热稳定性,不挥发性,不产生腐蚀性气体,阻燃效果好,电绝缘性佳等特点。在使用过程中没有毒性危险,添加量少,不溶解,熔点高等优点。 但因其自身颜色必须为红色或者配合黑色、加工特性比较差、与树脂的相容性不太好、加工制作的材料力学性能有限、生产过程中的“恶臭”的味道使得其很难在高档材料中得以推广。部分厂家对电子电气产品中的红磷阻燃剂的含量仍有要求,以便寻求合适的存放地点和使用方法。红磷的沸点较高,需采用EGA/PY-3030D的Single shot单步裂解模式。经过优化,选取550℃作为红磷分析的条件。 更多详细信息请致电岛津。
  • 欧盟拟禁止销售使用部分化学物质
    据香港贸发局经济研究官网消息,欧洲化学品管理局修订《化学品注册、评估、授权和限制(REACH)法规》,其中,附件XIV列出了已被或将被禁止在欧盟使用或销售的物质清单。具体包括以下22种化学物质:   1.两种来自煤焦油的物质:蒽油及焦油   2.七种铅物质:四氧化三铅、氧化铅、三碱式硫酸铅、氧化铅与硫酸铅的复合物、矽酸铅、烧绿石锑铅黄、碱式乙酸铅   3.四种硼物质:硼酸、无水四硼酸二钠、三氧化二硼、水合七氧四硼酸二钠   4.七种邻苯二甲酸盐:邻苯二甲酸二异戊酯、邻苯二甲酸二-C6-8-支链庚酯(富C7)、邻苯二甲酸二(C7-11支链与直链)烷基酯、支链与直链的邻苯二甲酸二戊酯、邻苯二甲酸二(2-甲氧基乙)酯、邻苯二甲酸正戊基异戊基酯、邻苯二甲酸二戊酯   5.支链和直链-4-壬基酚   6.溴丙烷。   (中国WTO/TBT国家通报咨询中心供稿)
  • 博纳艾杰尔Venusil系列产品积分换礼活动开始啦
    各位新老用户,我们的Venusil产品系列自投入市场以来,深受广大用户喜爱,获得各方面好评,为了答谢各产品使用者,自2010年7月7日开始,购买Venusil系列任意产品,打开包装后您将有机会获得我们的积分卡片,根据卡片上的分值拨打客服400-606-8099 ,即可获得免费礼品一份。 开盒见礼,盒盒有礼!只要一个电话,精美礼品就送到家,先买先得,活动期限截止到2010年12月12日。还等什么,赶快行动吧! 第一批礼品(50积分即可领取): 杭州天堂伞 Esprit 品牌浴巾 关于Venusil 系列液相色谱柱 Venusil高效液相色谱柱使用高纯球形硅胶微粒,采用博纳艾杰尔的新型表面改性技术和独特的键合工艺制备而成,在选择性、稳定性、通用性等方面均表现出卓越的性能。 Venusil系列色谱柱提供全系列键合相的选择,包括C18、C8,C3,C4,C1,NH2,CN,Diol、硅胶、苯基、五氟苯基、阳离子交换、阴离子交换,氨基酸分析专用柱(AA)和多环芳烃分析专用柱(PAH)等。
  • 【喜讯】耐优生物EN108全自动文库制备系统荣获二类医疗器械注册证,开启全新篇章!
    近日,耐优生物核心产品EN108全自动文库制备系统成功获得二类医疗器械注册证书(注册证编号:浙械注准20232221894),标志着该产品已完全符合国家相关法规要求,可以作为医疗器械正式上市销售,同时这也是耐优生物在推动创新和技术卓越道路上的一项重大突破。EN108全自动文库制备系统的优势EN108 全自动文库制备系统是一款集合了移液模组、磁力纯化模组、振荡模组、PCR模组,热孵育模组和制冷模组的全自动移液工作站,可用于DNA、RNA样本的高通量测序文库制备,适用于肿瘤早筛早诊、遗传病筛查诊断、病原微生物检测、NIPT检测、DNA司法鉴定和农业分子育种等多个领域。PART01高度自动化无需人工值守,自动完成文库构建/靶向捕获全流程,减少人为错误,提高实验的准确性和可重复性。PART02处理效率高一次性可同时完成32个样本文库制备,提高文库制备效率,缩短实验时间。PART03灵活性高 可拓展性强适配不同品牌及不同测序类型的文库构建试剂盒,可根据需求进行定制化服务。PART04安全系数高 操作便捷友好配置防滴液模组,标配滤芯枪头,内置HEPA和灭菌紫外灯。流程设置基于Android系统,无需程序语言,操作简单。随着生命科学研究的不断深入和应用领域的不断拓展,对生物技术相关自动化设备的需求也在日益增长。在生物医药和临床诊断等方向,EN108全自动文库制备系统可以为科研人员提供更加便捷、高效、可靠的文库制备解决方案,为基因检测、疾病诊断、癌症研究、无创检测、新药研发等人类健康事业提供强有力的支持。
  • 博纳艾杰尔发布高效液相色谱法检测15种邻苯二甲酸酯的含量
    色谱条件:   色谱柱:Venusil XBP C18-L ,4.6×250mm,5µ m,150Å (订货号:VX952505-L)   流动相:A:水,B:甲醇:乙腈=50:50     样 品:15种邻苯二甲酸酯   溶 剂:40%流动相A   浓 度:25ppm,10ppm,5ppm,2ppm,0.5ppm   流 速:1.0 mL/min   波 长:242 nm   进样量:20µ L   柱 温:30℃      图1 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:25ppm)     图2 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:10ppm)     图3 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:5ppm)     图4 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:2ppm)     图5 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:0.5ppm)   (邻苯二甲酸二甲酯DMP,邻苯二甲酸二乙酯DEP,邻苯二甲酸二正丁酯DBP,邻苯二甲酸二辛酯DEHP,邻苯二甲酸丁苄酯BBP,邻苯二甲酸二(2-乙基己基)酯DEHP,邻苯二甲酸二(2-甲氧基)乙酯DMEP,邻苯二甲酸二丁氧基乙酯DBEP,邻苯二甲酸二戊酯DPP,邻苯二甲酸二(4-甲基-2-戊基)酯BMPP,邻苯二甲酸二乙氧基乙基酯DEEP,邻苯二甲酸二环己酯DCHP,邻苯二甲酸二异丁酯DIBP,邻苯二甲酸二己酯DNP,邻苯二甲酸二壬酯DINP)   结论:   1、 Venusil XBP C18-L色谱柱能够较好的分离15种邻苯二甲酸酯类物质,分离度较好,完全满足LC检测15种邻苯二甲酸酯类物质的含量。   2、 Venusil XBP C18-L色谱柱检测15种邻苯二甲酸酯的最低检出限为0.5ppm。   关于更多检测方法请登录博纳艾杰尔网站www.agela.com   E-mail:service@agela.com.cn   客服热线400-606-8099
  • Nano Energy | 工程热物理所在微纳材料热电性能测量研究方面取得进展
    近日,中国科学院工程热物理研究所储能研发中心在微纳材料的热电性能表征方法方面取得重要进展,为微纳材料热电参数的精确测量和一体化原位表征提供了研究思路。 提高材料的热电性能是学者们一直追求的目标,将材料进行微纳结构化是提高热电性能的重要且有效的方法之一。热电参数(热电优值ZT、热导率k、赛贝克系数S和电导率σ)是评价材料热电性能的关键指标,热电参数的精确表征是高性能材料研发及应用的基础。然而目前商用仪器只能通过热导仪表征材料热导率、赛贝克系数仪测量赛贝克系数及电导率后,通过公式ZT=S2σT/k计算获得热电优值,误差较大。更重要的是商用仪器不适用于微纳材料,而随着微纳结构化处理,由于样品尺度减小带来的测量困难越来越突出。实验室里通过悬浮器件、扫描探针、预置电路等方法分别制样,分开表征微纳材料热导率、赛贝克系数及电导率计算获得ZT,不仅误差大,而且会因为多次制样的微纳结构不同导致错误的ZT计算结果。因此迫切需要开发更准确和精确的原位综合测量方法。 对此,储能研发中心综述了现有的微纳材料热参数和电参数测量方法的适用范围、优缺点以及升级改造为原位综合测量面临的挑战。同时总结了现有微纳材料热电性能综合测量方法的难点及发展趋势,并提出适用于一维纳米管和二维薄膜材料热电性能原位直接一体表征方法的策略: 1)对于传统3ω-T型方法,需在原有的基础上增加测量电极,使用四探针法测量电导率,结合3ω法测量热导率,从而实现热电参数的高精度综合测量。2)对于悬浮式微器件,通过优化电极结构和悬浮处理,可以综合测量纳米线和薄膜的热电参数。值得注意的是,在测量微/纳米结构时需要考虑样品转移的困难。3)结合光学和微电极方法也可以对热电参数进行综合测量。用光学法测量薄膜的面内热导率,用微电极测量薄膜的电导率,通过在薄膜表面形成温差可以测量塞贝克电压,进而实现薄膜面内热电参数的测量。4)热探头与电探针相结合也可以实现一体化测量。通过热探针和电探针同时测量样品的热导率和塞贝克系数,结合外部电路测量电导率。该方法可实现样品法向热电参数的测量。 相关内容以Progress in measurement of thermoelectric properties of micro/nano thermoelectric materials: A critical review为题在Nano Energy (IF=19.069)在线发表。上述工作得到了国家自然科学基金(NO.51976215 & NO.52172249)、中国科学院科学仪器研制项目(YJKYYQ20200017)和中科院轻型动力创新研究院(CXYJJ21-ZD-02)项目的支持。原文链接:https://doi.org/10.1016/j.nanoen.2022.107553 图1 现有微纳材料热电性能测量方法图2 未来可行的微纳材料热电参数原位直接一体表征技术a、b改进的悬浮器件法,c光学与四探针结合法,d改进的扫描显微镜法
  • Science Bulletin科学通报:中国大气二甲胺的全生命周期研究取得进展
    近日,南京信息工程大学胡建林、常运华教授联合中科院生态环境研究中心、复旦大学、上海市环境科学研究院、南京拓服工坊科技有限公司(TOFWERK中国)、北京大学、中科院地球环境研究所等单位在大气有机胺领域取得重要研究进展,相关成果以“Nonagricultural emissions enhance dimethylamine and modulate urban atmospheric nucleation”为题,在中国卓越计划领军期刊Science Bulletin以长文(Article)形式发表。胡建林教授为论文第一通讯作者,常运华教授为第一兼通讯作者。 新粒子生成是指大气中的气态分子通过均相成核形成颗粒物的过程,是颗粒物数浓度的主要来源,对大气云凝结核的形成乃至全球气候变化有重要影响。气态有机胺,尤其是二甲胺被认为是新粒子生成的关键前体物。二甲胺的大气浓度较氨气低2-3个数量级,因而准确观测较有挑战性。此外,传统观点认为有机胺与氨气同源,由农业排放主导。然而在农业缺失的中国城市大气中,也能频繁观测到由硫酸-二甲胺-水三元成核触发的大气新粒子生成事件。那么对于典型城市乃至更大区域尺度上大气而言,二甲胺的时空分布是什么?二甲胺的主要排放源有哪些?非农业二甲胺对粒子数浓度的影响如何?图1. 中国北方和南方大气二甲胺的区域大跨度走航观测 针对上述科学问题,研究团队首先基于搭载有TOFWERK Vocus质子转移反应飞行时间质谱仪(Vocus PTR-TOF)的走航车,对中国大气二甲胺浓度开展了高灵敏度与高时间分辨率的车载移动观测。路线覆盖中国北方(山东东营至江苏南京;图1b)和南方(贵州黔西南至浙江绍兴;图1c)区域以及上海市区(图2a)。区域走航发现中国大气二甲胺浓度呈现东高西低、南高北低的分布格局,其中以农田为主的北方区域大气二甲胺浓度不足南方区域的1/3。在非农村地区,记录到由工业脉冲排放所导致的全球最高大气二甲胺浓度。在高度城市化的上海地区,二甲胺浓度自市中心向外围逐渐降低且与人口密度关联。这些结果表明中国区域和城市内部的大气二甲胺都深受非农业源排放的影响。图2. 上海市环线道路的大气二甲胺走航观测及其与人口密度的关联 其次,研究团队针对潜在的非农业排放源,系统开展了二甲胺源排放测试,确定了各种污染源的排放特征与排放因子(图3)。实验涵盖轻型机动车台架实验、重型卡车实际道路测试、植物箱式排放测试、工厂内外走航监测与城市化粪池系统排放测试等。研究结果表明,森林植物可能存在二甲胺排放,这部分解释了南方亚热带森林区的高浓度二甲胺。需要强调的是,该实验所用的PTR-MS分辨率较低,后期需开展更高精度的植物二甲胺直接排放和通量测试。此外,纺织工厂在印染环节所使用的含胺颜料被确定为重要的二甲胺排放点源。否定了机动车尾气存在高浓度二甲胺,证实了化粪池系统是中国城市特有且极其重要的二甲胺排放源。图3. 二甲胺的非农业源排放机理与源排放测试 最后,研究团队以上海为例,构建起包含居民生活源在内的城市非农业二甲胺排放清单。大气化学传输模型模拟结果表明,居民生活源的二甲胺排放在城市中心能贡献至多78%的大气粒子数浓度(图4)。该研究将外场观测、源排放测试与模型模拟相结合,呈现了中国大气二甲胺的全生命周期,为颗粒物污染防治和气候变化评估提供了有用参考。图4. 居民源二甲胺排放贡献上海城市大气粒子数浓度的模型模拟原文链接Chang et al., Nonagricultural emissions enhance dimethylamine and modulate urban atmospheric nucleation, Science Bulletin 2023, in presshttps://www.sciencedirect.com/science/article/abs/pii/S2095927323003523
  • 金泰光电出席“Light Conference2017”相关报道
    7月17日上午,以Light为平台,由长春光机所与美国罗切斯特大学共同主办的Light Conference 2017在长春光机所隆重开幕。会议邀请了来自美国、英国、法国、德国、加拿大、澳大利亚、新加坡、日本、以色列等13个国家和地区的200余位国内外知名光学专家参会并做学术报告。同时,大会还吸引了300余位专家、学者和企业代表参会。Light Conference2017大会现场 本次大会阵容强大、主题丰富,包括Light Conference主会及12个分会。在为期2天的会议中,来自美国麻省理工学院、斯坦福大学、罗切斯特大学、西北大学、明尼苏达大学、加利福尼亚大学、德克萨斯大学、科罗拉多大学、内布拉斯加大学、弗吉尼亚大学,英国剑桥大学、胡佛汉顿大学、钻石光源有限公司,法国高等电子工程师学校,德国弗莱堡大学、汉诺威激光中心,加拿大谢布鲁克大学,澳大利亚国立大学,新加坡国立大学、南洋理工大学,日本大阪大学、北海道大学、日本理化学研究所,以色列班固利恩大学、特拉维夫大学,北京大学、清华大学、复旦大学等国内外知名科教机构的200余位特邀专家将围绕“微光学、绿色光电材料和器件、地基大口径光学工程、先进超材料和超表面、激光先进制造、X射线光学、飞秒激光与物质相互作用和先进光子学、激光与纳米光子学、低维光电子材料和器件、生物光子学、光学超精密加工与检测技术、空间光学工程”主题做精彩的学术报告。与会专家、学者合影大会主席原科学技术部副部长曹健林 、中科院院士陈星旦上海复旦大学肖力敏老师,长春光机所续志军部分现场照片 北京金泰祁氏光电科技有限公司,专注于高端光谱仪,为高校科研单位提供优秀、精确、先进的科学检测仪器。Light Conference是一个优秀的交流平台,为国内外光学领域的科研人员提供互相对话的机会,金泰光电更是借此契机广交天下朋友,为更多用户带来更优异的科学检测仪器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制