当前位置: 仪器信息网 > 行业主题 > >

苯甲酸酯的聚合物

仪器信息网苯甲酸酯的聚合物专题为您提供2024年最新苯甲酸酯的聚合物价格报价、厂家品牌的相关信息, 包括苯甲酸酯的聚合物参数、型号等,不管是国产,还是进口品牌的苯甲酸酯的聚合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苯甲酸酯的聚合物相关的耗材配件、试剂标物,还有苯甲酸酯的聚合物相关的最新资讯、资料,以及苯甲酸酯的聚合物相关的解决方案。

苯甲酸酯的聚合物相关的论坛

  • 【求助】聚合物的制样方法

    请问有些聚合物用热压法会粘到金属板上或一些聚合物膜上,粒子很硬,用溴化钾可以吗?还是有其他什么更好的方法介绍?或用什么膜压片?如要用涂抹法用什么溶剂??如PA66,聚对苯二甲酸乙二醇酯?

  • [讨论]有没有用MALDI ToF测试聚合物的朋友?

    常用什么matrix,溶剂,最高测过多少Da?可交流一些经验。我们常用1,8,9-蒽三酚;2,5-二羟基苯甲酸。THF,DMF作溶剂。聚合物最高不超过10,000Da,超过6000Da分辨率已经不好了。

  • 综述对羟基苯甲酸的用途

    对羟基苯甲酸是用途广泛的有机合成原料,特别是其酯类,包括对羟基苯甲酸甲酯(尼泊金甲)、乙酯(尼泊金乙)、丙酯、丁酯、异丙酯、异丁酯,可做食品添加剂,用于酱油、醋、清凉饮料(汽水除外)、果品调味剂、水果及蔬菜、腌制品等,还广泛用于食品、化妆品、医药的防腐、防霉剂和杀菌剂等方面。对羟基苯甲酸也用作染料、农药的中间体。在农药中用于合成有机磷杀虫剂GYAP、CYP;在染料工业中用于合成热敏染料的显色剂;还可用于彩色胶片及合成油溶性成色剂“538”及尼龙12中用作增塑剂的生产原料。另外,还用于液晶聚合物和塑料。  作防腐剂、杀菌剂。药理实验表明,对小鼠的眼镜蛇中毒有明显的保护作用。本品可抑制霉菌的生长,与乙醇、丙醇、丁醇等醇类反应生成的各种酯类,是优良的防腐剂。本品还可用于染色、有机合成工业等领域作防腐剂、杀虫剂。

  • 聚合物的分类

    按来源分类按来源可把高分子分成天然高分子和合成高分子两大类。按性能分类可把高分子分成塑料、橡胶和纤维三大类。塑料按其热熔性能又可分为热塑性塑料(如聚乙烯、聚氯乙烯等)和热固性塑料(如酚醛树脂、环氧树脂、不饱和聚酯树脂等)两大类。前者为线型结构的高分子,受热时可以软化和流动,可以反复多次塑化成型,次品和废品可以回收利用,再加工成产品。后者为体型结构的高分子,一经成型便发生固化,不能再加热软化,不能反复加工成型,因此,次品和废品没有回收利用的价值。塑料的共同特点是有较好的机械强度(尤其是体形结构的高分子),作结构材料使用。纤维又可分为天然纤维和化学纤维。后者又可分为人造纤维(如粘胶纤维、醋酸纤维等)和合成纤维(如尼龙、涤纶等)。人造纤维是用天然高分子(如短棉绒、竹、木、毛发等)经化学加工处理、抽丝而成的。合成纤维是用低分子原料合成的。纤维的特点是能抽丝成型,有较好的强度和挠曲性能,作纺织材料使用。橡胶包括天然橡胶和合成橡胶。橡胶的特点是具有良好的高弹性能,作弹性材料使用。按用途分类可分为通用高分子,工程材料高分子,功能高分子,仿生高分子,医用高分子,高分子药物,高分子试剂,高分子催化剂和生物高分子等。塑料中的“四烯”(聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯),纤维中的“四纶”(锦纶、涤纶、腈纶和维纶),橡胶中的“四胶”(丁苯橡胶、顺丁橡胶、异戊橡胶和乙丙橡胶)都是用途很广的高分子材料,为通用高分子。工程塑料是指具有特种性能(如耐高温、耐辐射等)的高分子材料。如聚甲醛、聚碳酸酯、聚砚、聚酰亚胺、聚芳醚、聚芳酰胺和含氟高分子、含硼高分子等都是较成熟的品种,已广泛用作工程材料。离子交换树脂、感光性高分子、高分子试剂和高分子催化剂等都属功能高分子。医用高分子、药用高分子在医药上和生理卫生上都有特殊要求,也可以看作是功能高分子。按主链结构分类可分为碳链高分子、杂链高分子、元素有机高分子和无机高分子四大类。碳链高分子的主链是由碳原子联结而成的。杂链高分子的主链除碳原子外,还含有氧、氮、硫等其他元素,如:如聚酯、聚酰胺、纤维素等。易水解。元素有机高分子主链由碳和氧、氮、硫等以外其他元素的原子组成,如硅、铝、钛、硼等元素,但侧基是有机基团,如聚硅氧烷等。无机高分子是主链和侧链基团均由无机元素或基团构成的。天然无机高分子如云母、水晶等,合成无机高分子如玻璃。高分子化合物的系统命名比较复杂,实际上很少使用,习惯上天然高分子常用俗名。合成高分子则通常按制备方法及原料名称来命名,如用加聚反应制得的高聚物,往往是在原料名称前面加个“聚”字来命名。例如,氯乙烯的聚合物称为聚氯乙烯,苯乙烯的聚合物称为聚苯乙烯等。如用缩聚反应制得的高聚物,则大多数是在简化后的原料名称后面加上“树脂”二字来命名。例如,酚醛树脂、环氧树脂等。加聚物在未制成制品前也常有“树脂”来称呼。例如,聚氯乙烯树脂,聚乙烯树脂等。此外,在商业上常给高分子物质以商品名称。例如,聚己内酰胺纤维称为尼龙-6,聚对苯二甲酸乙二酯纤维称为涤纶,聚丙烯腈纤维称为腈纶等。

  • 聚合物基质色谱柱的优缺点

    聚合物基质的色谱柱大家有接触过吗?聚合物填料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,优点:PH值为1~14均可使用。相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效。缺点:相对硅胶基质填料,色谱柱柱效较低。

  • 【转帖】八聚合物物质入REACH黑名单其中包含PVC添加剂 !

    欧盟委员会近期提名15种化学物质获列化学品REACH法规“黑名单”,其中有8种属于聚合物生产常用化学品。  首批高度关注化学品REACH法规“黑名单”里包括备受关注的化学品,包括过去60年里在多种聚合物产品生产部门最常使用的增塑剂DEHP,DEHP的禁用预示着工业生产中许多常用的物质将濒临淘汰。  被提名对聚合物工业有影响的化学物质如下:   DEHP,DBP&BBP――用于PVC和其它聚合树脂生产的邻苯二甲酸酯增塑剂  HBCDD――用于聚苯乙烯生产的阻燃剂  MDA――用于在聚氨酯生产中MDI制造  SCCPs――用于橡胶、油漆、密封剂和胶粘剂生产的阻燃剂  三丁基氧化锡――用于船舶防污漆生产的杀菌剂  首批REACH“黑名单”强调了聚合物生产商和聚合物产品使用者务必遵循REACH法规的执行。此批“黑名单”将于月底前公布。一经生效,企业将对所有产品里含这些物质超过0.1%重的禁止使用。消费者可直接向供应商或零售商咨询这些物质含量信息,厂商或零售商需在45天内给予回复。  长远看来,这些化学物质的使用将在权威方案的执行过程中被逐步淘汰。特殊情况下,如作为中间体等使用的物质可另行声请。和REACH法规中其它部分不同的是,对被禁用的化学品吨位未作规定,而这正是很多公司尚未察觉到的。

  • 如何手工制备聚合物AFM观察样品,急!!!!

    如何手工制备聚合物AFM观察样品,急!!!!本实验室刚买一台AFM,可是如何应用它来观察注射成型的聚合物样品?有人说在低温切成平面,可是实在找不到地方去切,没有办法实现。也有人说用打磨和抛光的方法,可是具体操作大家都不清楚,各位大虾如果谁知道的话,请执教,谢谢!

  • 【求助】请问这样的聚合物能做透射吗

    大家好!我想请问一个问题,我看一个聚合物的聚合结构,该聚合物是聚甲基丙烯酸酯类的,结构里面含有苯环,我做了切片和染色后,还是一点东西都看不到,只看到一层膜,请问这样的物质能通过透射看结构吗?可以的话是要用特殊的染色剂吗?谢谢大家!

  • 聚合物分析

    求专门的聚合物分析的样品前处理技术和分析方法我要分析的是聚合物的小分子添加剂,残单,和一些低聚物的杂质。目前不会配置裂解色谱,只有Agilent6890和1100

  • 醛的聚合物

    想问一下各位老师有没有遇到过醛的聚合物,要怎么判断这些聚合物呢。醛的聚合物特征离子是不是都是醛的特征离子。

  • 利用紫外分光光度计测量苯乙烯中聚合物含量

    最近建立ASTMD D2121测试方法,测量苯乙烯聚合物含量,按照流程配制聚苯乙烯,但是建立标准曲线时,实测结果都是显示负数,试了好几次,不知道哪里出问题了,UV新买的,测量其他的的产品都没问题,难道是苯乙烯聚合反应没成功,请教各位大侠帮忙分析一下 ,小弟拜谢!

  • 聚合物刷及其接枝方法

    [align=center][font='times new roman'][size=16px]聚合物刷[/size][/font][font='times new roman'][size=16px]及其[/size][/font][font='times new roman'][size=16px]接枝方法[/size][/font][/align] 聚合物刷是由聚合物链组成的超薄聚合物涂层,其一端拴在材料基底上,具有较高的接枝密度和厚度,呈现刷型构象。聚合物刷修饰改性是当前最有效的材料改性技术之一。其优势在于既可以保留材料的原有理化性质,同时由于聚合物刷自身可控的化学结构、密度和厚度,又可以赋予材料其它优异的性能,比如摩擦力、粘附力、生物相容性、润湿性和亲疏水性等。根据聚合物刷链所连接的基底类型,聚合物刷可形成一维(1D)、二维(2D)和三维(3D)聚合物刷(图1)。目前,聚合物刷型材料已大量应用于组织工程、生物医学、分离科学等领域。 [align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408191733098007_7856_5389809_3.jpeg[/img][/align][align=center][size=13px]图[/size][size=13px]1 [/size][size=13px]聚合物刷的类型[/size][/align][align=center][size=13px]Fig.[/size][size=13px] [/size][size=13px]1 Types[/size][size=13px] of polymer brushes[/size][/align][align=center] [/align][align=center][font='times new roman'][size=16px]聚合物刷的接枝方法[/size][/font][/align] 聚合物刷的接枝方法主要包括“Grafting to”、“Grafting through”和“Grafting from”法(图2)。 [align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408191733099453_2127_5389809_3.png[/img][/align][align=center][size=13px]图[/size][size=13px]2[/size][size=13px] [/size][size=13px]聚合物刷的接枝策略[/size][size=13px]:[/size][size=13px]([/size][size=13px]A[/size][size=13px])[/size][size=13px]“grafting-to”[/size][size=13px] [/size][size=13px]([/size][size=13px]B[/size][size=13px])[/size][size=13px]“grafting-from”[/size][size=13px] [/size][size=13px]([/size][size=13px]C[/size][size=13px])[/size][size=13px]“grafting-[/size][/align][align=center][size=13px]through”[/size][font='times new roman'][sup][size=13px][54][/size][/sup][/font][/align][align=center][size=13px]Fig.[/size][size=13px] [/size][size=13px]2[/size][size=13px] The grafting strategy of polymer brushes[/size][size=13px]:[/size][size=13px] [/size][size=13px](A) “grafting-to”[/size][size=13px] [/size][size=13px] [/size][size=13px]([/size][size=13px]B) “grafting-from”[/size][size=13px] [/size][size=13px] [/size][size=13px]([/size][size=13px]C) “grafting-through”[/size][/align]“Grafting to”是通过将已合成的聚合物与材料表面互补基团进行反应进而得到聚合物刷材料的接枝方法,这种方法的优点是可以在反应之前对所合成的聚合物进行全面精确的表征,可以制备具有明确分子量和分子量分布的聚合物,是制备聚合物刷的传统方法,但是该法的缺点是随着反应的进行,由于聚合物自身空间位阻的影响,会导致接枝率降低以及聚合物刷层的密度和厚度不均匀等问题。虽然通过加大聚合物的投料量可以提高接枝率,但是这也会导致反应后处理变得困难,因此“Grafting to”法应用相对较少。 “Grafting through”是基于材料表面附着的单体基团,与溶液中生成的聚合链进行共聚合的一种接枝方法,通常是溶液中的聚合物链先开始生长,然后在此过程中,表面附着单体基团也参与聚合,最终形成聚合物刷层。该方法的优点在于改变了聚合反应期间溶液中单体浓度总是大于材料表面附近单体浓度的问题,一定程度上解决了长链更长、短链更短的问题,从而可获得低分散性和高接枝密度的聚合物刷。其缺点在于该法的接枝机理尚未完全明确,有待进一步的研究。 “Grafting from”是将引发剂固定于材料表面,之后原位生成聚合物刷的方法,也叫做表面引发聚合法。该方法的优点在于可以很好地控制聚合物刷的密度、厚度和结构,缺点在于需要先将引发剂固定于材料表面以及表征存在一定的难度。“Grafting from”法克服了“Grafting to”和“Grafting through”法共同的空间位阻问题,因此当前材料表面接枝聚合物刷应用最为广泛的是“Grafting from”法。

  • 【讨论】支化聚合物的分子量可用什么仪器测?

    是一种支化聚合物,可溶于水、醇等极性溶剂,重复单元大概是-(CH2-CH2-NH)n-(仲胺基上的活泼H可使聚合物支链化,甚至可能生成超支化聚合物),分子量应在10万以下。请问,用什么仪器能测得分子量?

  • 【金秋计划】+ 聚合物基质色谱柱优缺点?

    问题描述: 聚苯乙烯-二乙烯苯柱耐高温、耐酸碱、但有关这方面的文献很少,但对于他的分离效能我一直心里没底,我的问题有三:1、分离效果与ODS比较,是相当呢,还是更胜一筹,或是更差?2、我原以为它是整体柱,但看过资料后发现也是颗粒的比如5μm,请问该类型的柱是否符合速率理论、是不是粒径越小分离效果会几何级的增加?3、问什么没有1.7μm的这种柱出现呢? 解答: 聚合物基质色谱柱的优点你已经提到了,它的缺点有:对小分子分离的柱效相对硅胶基质色谱柱要低,表面衍生化修饰也没有在硅胶表面丰富,机械强度低耐压性不好,还有碰到某些有机溶剂会溶胀等。 聚合物基质柱当然也符合速率理论!它柱效低主要是因为分析物在聚合物固定相中的传质速度比在硅胶表面固定相中慢很多。不过粒径越小柱效几何级增加的规律还是有的。1.7μm的硅胶基质填料也是最近几年才商品化,1.7μm的聚合物基质没出来也正常,或许永远都不出来了,因为聚合物耐压差,粒径做这么小,它根本承受不了这个高压吧,但愿以后会有能抗高压的聚合物填料研究出来。

  • 高分子聚合物样品甲苯、THF流动相均无信号峰

    最近别人送来一系列很奇怪的聚合物样品,样品非常粘稠,配制样品时样品能拉丝,说明的确是个高分子聚合物。先是测试了在THF中的溶解性,溶解性能良好,但是进仪器之后,溶剂峰前无信号峰,溶剂峰后有信号峰。考虑可能是溶剂选择不合适。于是开始尝试用甲苯体系做,这个样品在甲苯溶剂中溶解性也很好,但是进了仪器之后出现了同样的问题,溶剂峰前无信号峰,溶剂峰后有一个比较弱的信号峰。想求助下大家是原因造成的,因为做其他样品时没有出现过这种情况,仪器本身是不会有问题的。GPC的检测器是:waters的示差折光指示器

  • 分享:聚合物物理化学手册(三本/PDF格式)(请楼主重新共享)

    分享:聚合物物理化学手册(三本/PDF格式)聚合物物理化学手册(1)聚合物溶液与混合物的性质.pdf(9.57M) 聚合物物理化学手册(2)本体状态下聚合物的性质.pdf(6.44M)聚合物物理化学手册(3)聚合物的红外光谱和核磁共振.pdf(16.09M) PDF(超 星转化过来那类)书籍共三本。请进入www.126.com的邮箱自行下载。该资料由热心网友所共享,请各位不要修改邮箱密码。谢谢!chinacebbs@126.com密码:123456----------------------------------------------------------------------[color=#DC143C]楼主能不能把邮箱重新公布一下,由于本人当时疏忽,忘记下载以至很多朋友不能共享我想如果楼主重新邮箱或者上传上来,在版面上供大家分享会更好![/color]

  • 聚合物基质的液相色谱柱,大家用的多吗?

    CNWSep 系列有三种反相基质,都是键合于PS/DVB(苯乙烯-二乙烯苯)的球型颗粒基质上的。大家用到聚合物基质的液相柱多不多?为什么要选用聚合物基质的呢?聚合物基质的柱效一般会比硅胶基质的略低一点。聚合物基质的优点在哪里呢?

  • 【求助】聚合物核磁

    见有的师兄做聚合物的氢谱,用末端的基团和聚合物的特征基团的积分比算聚合物的分子量。感觉理论上可以,但是聚合物的分子量高,而末端基团积分值有比较小,在图上基本上看不出来,请问这样做的准确率有多高?

  • 胶黏剂-丙烯酸酯聚合物标准

    根据GBT--13553-1996 胶黏剂分类,丙烯酸酯聚合物的编号是531,分在大类5 合成热塑性材料/小类 5.3丙烯酸酯聚合物类/组别 丙烯酸酯聚合物,是否有这一类产品的相关标准?国标/行标等?谢谢

  • 【原创大赛】pH 响应聚合物研究进展

    【原创大赛】pH 响应聚合物研究进展

    [font=宋体] pH [/font][font=宋体]响应聚合物研究进展[/font][font=宋体]1. pH [/font][font=宋体]响应聚合物概述[/font][font=宋体]一般而言,外界 pH 值的变化会导致生物大分子的水溶性或构象发生变化,因此具有类似结构的聚合物也能对环境的 pH 值变化做出相应的响应。该类聚合物具有 pH 响应的关键因素是一般主链上都含有大量对 pH 敏感的基团(弱电解质基团)如羧酸基、氨基、吡啶、咪唑基等。当外界环境的 pH 或离子浓度发生变化时,这些基团可以接受或释放质子来响应外界环境中 pH 的变化[76]。聚合物通过接受或给予质子导致其分子解离程度发生改变,造成聚合物分子的质子化或去质子化平衡发生移动,从而影响聚合物链的溶解性[77-78]。[/font][font=宋体]按照 pH 响应聚合物分子链中含有基团的性质 pH 响应聚合物可分为两大类:弱有机酸类和弱有机碱类[79]。弱有机酸类聚合物(如羧酸基)能在较低的 pH 值时接收质子呈正电性,而 pH 值较高时变成负电性,因为同种电荷间存在相互排斥作用使水与分子链之间的相互作用加强,进而提高了聚合物的亲水性,呈聚电解质状态,如聚甲基丙烯酸(PMAA)等[80-81];弱有机碱类聚合物则一般带有弱有机碱取代基,它能在低 pH 值件下得到质子变成亲水性基团,聚合物链之间因库仑排斥力而展开,而高 pH 条件下则是亲油性的,如聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)、聚乙烯基吡啶等[82-84]。[/font][font=宋体]目前关于 pH 响应聚合物合成的研究不断被报道,其中大部分是利用含有乙烯基的单体为原料进行聚合。常见的聚合方法主要包括:自由基聚合、原子转移自由基聚合(ATRP)、基团转移聚合(GTP)、可逆加成-断裂链转移聚合(RAFT)等。自由基聚合是最常见的聚合方法,聚合产物通常为线性的高分子聚合物,相较于其它方法其合成条件相对简单,通常为一步反应,所得产物多为无规则共聚物。例如,Fan 等人[85]通过自由基聚合制备了一系列具有良好 pH 响应特性的聚合物,在低 pH 条件下,由于质子化叔胺单元的静电相互作用和亲水性,共聚物在水溶液中表现为溶解状态。而在高 pH 条件下,由于烷基上去质子化胺具有较强的疏水性,导致共聚物在水溶液中聚集沉淀。[/font][font=宋体]2 [/font][font=宋体]、pH 响应聚合物在分离富集领域的应用[/font][font=宋体]近年来,pH 响应聚合物在分离富集领域的应用潜力开始被众多研究者关注。基于pH 响应聚合物具有的溶解-沉淀 pH 响应特性,可以将目标物固定或吸附在 pH 响应聚合物上,通过调节环境的 pH 值使其形成共沉淀,实现对目标物的分离纯化。[/font][font=宋体]Bai [/font][font=宋体]等[86]开发了一种具有 pH 响应特性的聚合物,该聚合物是由 pH 反应型单体与糖基反应型单体共聚而成。所得的线性共聚物链与糖蛋白/糖肽样品在弱酸性 pH 条件下在水溶液中形成均相反应混合物,促进了聚合物基体与目标糖蛋白质/糖肽之间的偶联。只需降低体系 pH 值,即可使聚合物糖蛋白质/糖肽迅速自组装从溶液中析出大颗粒的团聚体,从而实现快速高效的样品回收。[/font][font=宋体]Ding[/font][font=宋体]等[87]以丙烯酸类化合物为功能单体通过自由基聚合制备了具有pH响应特性的聚合物,进一步将染料配基 Cibacron Blue 固定到聚合物上,利用 Cibacron Blue 和纤维素酶的亲和性使 pH 响应聚合物与纤维素酶共沉淀,实现了对纤维素酶的分离[/font]

  • 一些聚合物英文简称

    ABS Acrylonitrile-Butadiene-Styrene(resin) 丙烯腈-丁二烯-苯乙烯树脂 AS Acrylonitrile-Styrene(resin) 丙烯腈-苯乙烯树脂 ASA Acrylic-styrene-acrylonitrile 丙烯酸-苯乙烯-丙烯腈 CA Cellulose Acetate 醋酸纤维素 CAP Cellulose Acetate Propionate 醋酸丙酸纤维素酯 CB Cellulose Butyrate 纤维素酪酸酯 CP Cellulose Propionate 丙酸纤维素酯 CN Collodion wool 硝酸纤维素CTFE Polychlorotrifluoroethylene 聚一氯三氟乙烯 EAA Ethylene Acrylic Acid 乙烯丙烯酸 EAE Ethylene Acrylic Ester copolymer 乙烯-丙烯酸乙酯 共聚物EC Ethyl cellulose 乙基纤维素ECTFE Ethylene-chlorotrifluoroeethylene 乙烯-一氯三氟乙烯共聚合物 EMA Ethylene Methyl Acrylate copolymer 乙烯-甲基丙烯酸酯 共聚物EMAA Ethylene Methacrylic Acid copolymer 乙烯丙烯酸甲酯 共聚物ENBA Ethylene N-Butyl Acrylate copolymer 乙烯-丙烯酸丁酯 共聚物EP Epoxy resin 环氧树脂ETFE Copolymer of ethylene and chlorotetrafluoroethylene 乙烯一氯四氟乙烯共聚物 EVA Ethylene Vinyl Acetate copolymer 乙烯-醋酸乙烯共聚物EVOH Ethylene-Vinyl alcohol copolymer 乙烯-乙烯醇共聚物FEP Fluorinated ethylene-propylene copolymer 氟化乙丙共聚物 HDPE High density Polyethylene 高密度聚乙烯 HDPE High density Polyethylene 高密度聚乙烯 LCP Liquid crystal polyester 液晶聚酯 LCP Liquid crystal polymer 液晶聚合物LDPE Low density Polyethylene 低密度聚乙烯 IONOMER ionomer 离子聚合物 LCP Liquid crystal polyester 液晶聚酯 LDPE Low density Polyethylene 低密度聚乙烯 LLDPE Linear Low density Polyethylene 线性低密度聚乙烯 MBS 甲基丙烯酸甲酯-丁二烯-苯乙烯 共聚物MDPE Medium density Polyethylene 中密度聚乙烯 PA Polyamide 聚酰胺 PA11 Polyamide 11 聚酰胺 11 PA12 Polyamide 12 聚酰胺 12 PA4/6 Polyamide 4/6 聚酰胺4/6 PA6 Polyamide 6 聚酰胺 6 PA6/10 Polyamide 6/10 聚酰胺 6/10 PA6/12 Polyamide 6/12 聚酰胺 6/12 PA6/6 Polyamide 6/6 聚酰胺 6/6 PA6/9 Polyamide 6/9 聚酰胺 6/9 PAI Polyamide-imide 聚酰胺酰亚胺 PBT Polybutylene terephathalate 聚对苯二甲酸二丁酯 PC Polycarbonate 聚碳酸酯 PCL Polyamide-6 layer sheet 聚己内酰胺PCT Polycarbonate hexandimethanol Terephthalate 聚环已醇二乙酯 PE Polyethylene 聚乙烯PEC Polyethylene-Chlorinated 氯化聚乙烯PEG Polyethylene glycol 聚乙二醇PEI Polyethyleneimineimpregnated 聚乙烯亚胺PEO Polyoxyethylenesorbitan 聚氧化乙烯PEEK Polyetheretherketone 聚醚醚酮 PEI Polyetherimide 聚醚酰亚胺 PES Polyethersulfone 聚醚砜 PET Polyethylene terephathalate 聚对苯二甲酸二乙酯 PFA Perfluoroalkoxy 过氟烷氧基 PI Polyimide 聚酰亚胺 PK Polyketone 聚酮 PMMA Polymethylmethacrylic 聚甲基丙烯酸甲酯 (有机玻璃)PMP Polymethylpentene 聚甲基戊烯 Polyolefin -- 聚烯烃 POM Polyoxymethylene 聚甲醛 PP Polypropylene 聚丙烯 PPE Polyphenylene Ether 聚苯醚 PPO Polypropylene Oxide 聚环氧丙烷 PPS Polyphenylene Sulfide 聚苯硫醚 PS Polystyrene 聚苯乙烯 PSF Polysulfone 聚砜 PTFE Polytetrafluorothylene 聚四氟乙烯 PU Polyurethane(TP) 聚氨基甲酸乙酯 PVA Polyvinylalcohol 聚乙烯醇PVB Polyvinylbutyral 聚乙烯醇缩丁醛PVC Polyvinyl Chloride(TP) 聚氯乙烯 PVDC Polyvinyl Dichloride 聚偏氯乙烯 PVDF Polyvin ylidene fluoride 聚偏氟乙烯 PVP Polyvinylpyrrolidone 聚乙烯吡咯烷酮SAN(AS) Styrene-Acrylonitrile 苯乙烯-丙烯腈 SBR Styrene-Butadiene Rubber 苯乙烯-丁二烯橡胶 SMA Styrene Maleic Anhydride 苯乙烯-马來酸酐 TPE Thermoplastic Elastomer (TPE) 热塑性弹性体 TPO Thermoplastic Polyolefin(TPO) 热塑性聚烯烃

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制