当前位置: 仪器信息网 > 行业主题 > >

碳酸钾倍半水合物

仪器信息网碳酸钾倍半水合物专题为您提供2024年最新碳酸钾倍半水合物价格报价、厂家品牌的相关信息, 包括碳酸钾倍半水合物参数、型号等,不管是国产,还是进口品牌的碳酸钾倍半水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳酸钾倍半水合物相关的耗材配件、试剂标物,还有碳酸钾倍半水合物相关的最新资讯、资料,以及碳酸钾倍半水合物相关的解决方案。

碳酸钾倍半水合物相关的论坛

  • 【分享】介绍碳酸钾

    基本信息   中文名称: 碳酸钾;钾碱;无水碳酸钾;珍珠灰;粗碳酸钾;碳酸钾,钾碱  英文名称: Carbonic acid, dipotassium salt;Potassium carbonate;potassium carbonate;carbonate de potassium;carbonate of potash;dipotassium carbonate;kalium carbonicum;kaliumcarbonat  名字拼音:tansuanjia  分子式 K2CO3  分子量 138.19  CAS 登录号 584-08-7  EINECS 登录号 209-529-3  密度 2.43 g/cm3  熔点 891 ℃  水溶性 1120 G/L (20 ℃)

  • 【原创大赛】脱碳液中碳酸钾、碳酸氢钾测定法

    【原创大赛】脱碳液中碳酸钾、碳酸氢钾测定法

    脱碳液中碳酸钾、碳酸氢钾测定法适用范围  本方法适用于CO2脱除系统贫碳酸盐溶液中碳酸钾、碳酸氢钾的测定。2 方法概要  自动电位滴定法,以无水甲醇为溶剂,用甘露醇消除溶液中硼酸盐的影响,然后用盐酸标准溶液进行滴定,自动电位滴定仪根据pH值变化情况自动识别各化学计量点。3 试剂及材料3.1 盐酸标准溶液:C(HCl)=0.5mol/L3.2 无水甲醇:分析纯3.3 甘露醇水溶液:100mL水中含有13g甘露醇4 仪器及设备4.1 自动电位滴定仪:定量管分度0.01mL(带pH计,250mL滴定杯)4.2 分析天平4.3 50mL量筒4.4 平顶加液器:1mL~60mL5 试验步骤5.1 向滴定杯中加入约2.5g样品,称准至0.1mg。5.2 用量筒向滴定杯中加入15mL甘露醇水溶液。5.3 开始滴定之前,用量筒或平顶加液器再向滴定杯中加入40mL无水甲醇。5.4 将滴定杯放在滴定台上,调整滴定装置高度,使pH电极磨砂部分能够浸没在样品溶液中但不会影响搅拌系统,插入电极,输入样品重量,点击自动电位滴定仪分析软件“开始”按钮,用盐酸标准溶液(3.1)对样品进行滴定至方法结束,分析仪自动记录第一化学计量点消耗标准溶液体积为V1,第二化学计量点对应消耗标准溶液体积为V2。分析结束,检查分析曲线和各滴定化学计量点对应滴定体积无异常。5.5 输入钒含量,进行数据再处理后读取分析结果。典型碳酸钾、碳酸氢钾滴定曲线如下:[img=,657,326]http://ng1.17img.cn/bbsfiles/images/2017/09/201709032123_01_2166779_3.png[/img][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2017/09/201709032123_02_2166779_3.png[/img]7 精密度7.1 重复性同一实验室、同一操作员用同一试验方法与仪器,对同一试样重复做两次试验,所得结果差值不大于其算术平均值的5%。8 结果报告分析结果保留两位小数,取单样分析结果作为报告值。

  • CNS_01.301_碳酸钾

    CNS_01.301_碳酸钾

    [size=18px]张燕芳[/size][align=center][/align][align=center][font='calibri light'][size=29px][color=#000000]碳酸钾的应用及其研究进展[/color][/size][/font][/align][align=left][font='calibri'][size=13px]摘要:钾盐的使用已有很长的历史。土壤中钾的存在对碳水化合物、蛋白质的形成及其在植物体内的运动发挥着重要作用。碳酸钾是重要的基本无机化工、医药、轻工原料之一,主要用于光学玻璃、[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=6695553&ss_c=ssc.citiao.link][font='calibri'][size=13px]电焊条[/size][/font][/url][font='calibri'][size=13px]、[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=57299&ss_c=ssc.citiao.link][font='calibri'][size=13px]电子管[/size][/font][/url][font='calibri'][size=13px]、电视[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=139941&ss_c=ssc.citiao.link][font='calibri'][size=13px]显像管[/size][/font][/url][font='calibri'][size=13px]、灯泡、印染、染料、油墨、照相药品、[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=378899&ss_c=ssc.citiao.link][font='calibri'][size=13px]泡花碱[/size][/font][/url][font='calibri'][size=13px]、聚酯、炸药、电镀、制革、陶瓷、建材、水晶、钾肥皂及药物的生产。可用作气体[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=141237&ss_c=ssc.citiao.link][font='calibri'][size=13px]吸附剂[/size][/font][/url][font='calibri'][size=13px],[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=7650032&ss_c=ssc.citiao.link][font='calibri'][size=13px]干粉灭火剂[/size][/font][/url][font='calibri'][size=13px],橡胶防老剂。还用于脱除化肥合成气中二氧化碳。也可用作含钾肥料。随着高新技术的不断开发,碳酸钾在洗涤助剂和味精、食品等领域的应用也日趋扩大。碳酸钾[/size][/font][font='calibri'][size=13px]在食品加工中,主要用于改善色泽和提升风味,[/size][/font][font='calibri'][size=13px]如[/size][/font][font='calibri'][size=13px]在制造面条、馄饨时适量加入,可赋予产品以特有的风味、色泽和韧性。但起不到膨松剂的作用。碳酸钠有膨松剂的功能,同时提高食品的弹性和延展性[/size][/font][font='calibri'][size=13px]因此[/size][/font][font='calibri'][size=13px]常与碳酸钠等并用[/size][/font][font='calibri'][size=13px]。这[/size][/font][font='calibri'][size=13px]两种物质都是显碱性,不过碳酸钾的碱性比碳酸钠略强一点,是因为钾的元素活泼性比钠高一点。碱性越强,溶液的[/size][/font][font='calibri'][size=13px]p[/size][/font][font='calibri'][size=13px]H[/size][/font][font='calibri'][size=13px]值就越高。相同浓度溶液的[/size][/font][font='calibri'][size=13px]p[/size][/font][font='calibri'][size=13px]H[/size][/font][font='calibri'][size=13px]值,碳酸钾比碳酸钠高。[/size][/font][font='calibri'][size=13px]本文主要就碳酸钾的理化性质,使用标准及其发展现状与前景进行论述。[/size][/font][/align][align=left][font='calibri'][size=16px]关键词:碳酸钾、理化性质、应用、研究进展[/size][/font][/align][align=left][font='times new roman'][size=16px]Abstract: The use of potassium has a long his[/size][/font][font='times new roman'][size=16px]tory. The presence of potassium in soil plays an important role in the formation of carbohydrates and proteins and their movement in plants. Potassium carbonate is one of the important basic inorganic chemical, pharmaceutical, light industry raw materials,[/size][/font][font='times new roman'][size=16px] mainly used in the production of optical glass, welding rod, electron tube, television picture tube, bulb, printing and dyeing, dye, ink, photographic drugs, bao-flower alkali, polyester, explosives, electroplating, tanning, ceramics, building materials, [/size][/font][font='times new roman'][size=16px]crystal, potassium fertilizer soap and drugs. Can be used as a gas adsorbent, dry powder fire extinguishing agent, rubber aging agent. It is also used to remove carbon dioxide from chemical fertilizer syngas. Can also be used as potash fertilizer. With the[/size][/font][font='times new roman'][size=16px] development of high and new [/size][/font][font='times new roman'][size=16px]technology, the application of potassium carbonate in washing agent, monosodium glutamate, food and other fields is expanding.In food processing, potassium carbonate is mainly used to improve color and flavor. For example, when[/size][/font][font='times new roman'][size=16px] adding proper amount to noodles and wontons, it can give products a unique flavor, color and toughness. But it does not function as a leavening agent. Sodium carbonate acts as a leavening agent and increases the elasticity and malleability of foods, so it[/size][/font][font='times new roman'][size=16px] is often used with sodium carbonate and others. Both substances are remarkably basic, although potassium carbonate is slightly more basic than sodium carbonate because potassium is a little more reactive than sodium. The more basic the solution, the highe[/size][/font][font='times new roman'][size=16px]r the pH. Potassium carbonate has a higher pH than sodium carbonate of the same concentration. This paper mainly discusses the physical and chemical properties, application standard, development status and prospect of potassium carbonate.[/size][/font][/align][align=left][font='times new roman'][size=16px]Key words: potass[/size][/font][font='times new roman'][size=16px]ium carbonate, physical and chemical properties, application, research progress[/size][/font][/align][align=left][font='calibri light'][size=21px]1 [/size][/font][font='calibri light'][size=21px]碳酸钾的简介[/size][/font][/align][font='calibri'][size=16px]碳酸钾,化学式为[/size][/font][font='calibri'][size=16px]K[/size][/font][font='calibri'][size=16px]2[/size][/font][font='calibri'][size=16px]CO[/size][/font][font='calibri'][size=16px]3[/size][/font][font='calibri'][size=16px],呈无色结晶或白色颗粒状[/size][/font][font='calibri'][size=16px][1][/size][/font][font='calibri'][size=16px],[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=214359&ss_c=ssc.citiao.link][font='calibri'][size=16px]相对分子量[/size][/font][/url][font='calibri'][size=16px]138.21[/size][/font][font='calibri'][size=16px],[/size][/font][font='calibri'][size=16px]密度[/size][/font][font='calibri'][size=16px]2.428g/cm3[/size][/font][font='calibri'][size=16px],熔点[/size][/font][font='calibri'][size=16px]891[/size][/font][font='calibri'][size=16px]℃,热稳定性高,加热至[/size][/font][font='calibri'][size=16px]1000[/size][/font][font='calibri'][size=16px]℃也不分解[/size][/font][font='calibri'][size=16px],[/size][/font][font='calibri'][size=16px]沸点时分解。溶于水,水溶液呈碱性,不溶于乙醇、丙酮和乙醚。在空气中极易潮解,可用作干燥剂,暴露在空气中能吸收二氧化碳和水分,转变为[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=446004&ss_c=ssc.citiao.link][font='calibri'][size=16px]碳酸氢钾[/size][/font][/url][font='calibri'][size=16px],应密封[/size][/font][font='calibri'][size=16px]包装。水合物有一水物、二水物、三水物。碳酸钾水溶液呈碱性。与氯气作用生成氯化钾,与二氧化硫作用而成焦硫酸钾。[/size][/font][font='calibri'][size=16px]600[/size][/font][font='calibri'][size=16px]℃时与硫酸钡反应[/size][/font][font='calibri'][size=16px]5 min[/size][/font][font='calibri'][size=16px],有[/size][/font][font='calibri'][size=16px]22.5%[/size][/font][font='calibri'][size=16px]的硫酸钾形成。如果用硫酸铅代替硫酸钡,有[/size][/font][font='calibri'][size=16px]40.9%[/size][/font][font='calibri'][size=16px]的硫酸钾形成。工作人员应做好防护,若不慎触及眼睛,应立即用大量流动清水冲洗。工作环境应具有良好的通风条件[/size][/font][font='calibri'][size=16px]。[/size][/font][font='calibri'][size=16px]相对其他水合物,[/size][/font][font='calibri'][size=16px]K[/size][/font][font='calibri'][size=16px]2[/size][/font][font='calibri'][size=16px]CO[/size][/font][font='calibri'][size=16px]3[/size][/font][font='calibri'][size=16px]在脱水与水合过程中具有很好的可逆性,并且价格低廉、熔点与潮解点合适、不具有强腐蚀性和毒性、反应过程中体积变化小[/size][/font][font='calibri'][size=16px][2][/size][/font][font='calibri'][size=16px]。碳酸钾基本参数见表1。[/size][/font][align=center][font='times new roman'][size=16px]表[/size][/font][font='times new roman'][size=16px]1 K2CO3[/size][/font][font='times new roman'][size=16px]的基本参数[/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042152232881_8334_1608728_3.jpeg[/img][/align][align=left][font='calibri light'][size=21px][color=#333333]2[/color][/size][/font][font='calibri light'][size=21px][color=#333333] [/color][/size][/font][font='calibri light'][size=21px][color=#333333]制备方法[/color][/size][/font][/align][align=left][font='calibri light'][size=18px][color=#333333]2.1 [/color][/size][/font][font='calibri light'][size=18px][color=#333333]电解法[/color][/size][/font][/align][font='times new roman'][size=16px]将氯化钾电解后得到的氢氧化钾溶液,在碳化塔中以二氧化碳碳化。经多效蒸发器蒸发、过滤得碳酸氢钾,再经煅烧制得产品。此法因原料易得、钾利用率高、无三废产生而得到广泛应用,但耗电较多。其反应[/size][/font][font='times new roman'][size=16px]式如下:[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]2KCl + 2 H[/size][/font][font='times new roman'][size=16px]2O [/size][/font][font='times new roman'][size=16px]→[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]2KOH + Cl2↑+ H2 [/size][/font][font='times new roman'][size=16px]2KOH + CO2 → K2CO3 + H2O [/size][/font][font='times new roman'][size=16px]K2CO3+ CO2 + H2O → 2 KHCO3 [/size][/font][font='times new roman'][size=16px]2KHCO3 → K2CO3 + CO2↑+ H2O[/size][/font][font='calibri light'][size=18px]2.2 [/size][/font][font='calibri light'][size=18px]离子交换法[/size][/font][font='times new roman'][size=16px]离子交换法是以碳酸氢铵和氯化钾为原料,利用阳离子交换树脂对钾、铵离子吸附性很近的特点,使碳酸氢铵和氯化钾精制液中的钾铵离子通过阳离子树脂进行离子交换,而分别得到碳酸氢钾溶液和氯化铵溶液,交换反应简单表示如下:[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]KR[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px]NH4HCO3[/size][/font][font='times new roman'][size=16px]→[/size][/font][font='times new roman'][size=16px] NH4R[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px]KHCO3 [/size][/font][font='times new roman'][size=16px]NH4R[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px]KCl[/size][/font][font='times new roman'][size=16px]→[/size][/font][font='times new roman'][size=16px] KR[/size][/font][font='times new roman'][size=16px]+[/size][/font][font='times new roman'][size=16px]NH4Cl [/size][/font][font='times new roman'][size=16px]式中[/size][/font][font='times new roman'][size=16px] R [/size][/font][font='times new roman'][size=16px]为树脂高分子骨架部分。[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]该法主要特点是交换完成液碳酸氢钾溶液纯度高,原料碳酸氢铵成本低,工艺方法成熟,可连续性操作,项目投资少;原材料利用率较高,单耗氯化钾([/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]折[/size][/font][font='times new roman'][size=16px]100[/size][/font][font='times new roman'][size=16px]%)[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]和碳酸氢铵([/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]以实物计)[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]最好水平分别为[/size][/font][font='times new roman'][size=16px]1.22t [/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]1.5t[/size][/font][font='times new roman'][size=16px]。主要缺点是交换完成液浓度较低,蒸发成本高,单耗原煤[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]~[/size][/font][font='times new roman'][size=16px]4t[/size][/font][font='times new roman'][size=16px];生产过程产生的氯化铵溶液随废水排放,不仅浪费资源而且污染环境,回收可作为生产氯化铵的原料,经[/size][/font][font='times new roman'][size=16px]蒸发浓缩等工序可制氯化铵,由于氯化铵生产蒸发能耗较高,设备腐蚀问题难以解决,使氯化铵生产受到限制,从而也制约碳酸钾的发展。山西文通钾盐集团有限公司采用离子交换法生产,解决了上述难题,降低了成本,在氯化铵回收上取得重大突破,实现了闭路循环,无水排放,现碳酸钾年生产能力为[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]万[/size][/font][font='times new roman'][size=16px] t[/size][/font][font='times new roman'][size=16px],并正在实施[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]新增年产[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]万[/size][/font][font='times new roman'][size=16px] t [/size][/font][font='times new roman'][size=16px]碳酸钾技术改造[/size][/font][font='times new roman'][size=16px]项目,是目前国内最大的碳酸钾生产企业[/size][/font][font='times new roman'][size=16px][3][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='calibri light'][size=18px]2.3 [/size][/font][font='calibri light'][size=18px]草木灰法[/size][/font][font='times new roman'][size=16px]草木灰法是最古老的方法,即从各种植物壳[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]如棉籽壳、茶子壳、桐子壳、葵花子壳[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]烧成的草木灰中提取。草木灰中含有碳酸钾、硫酸钾、氯化钾等可溶性盐,用沉淀、过滤的方法可加以分离。此法由于产品质量低、不经济,且受原料来源限制而很少采用。草木灰法的主要缺点是原料来源的限制,[/size][/font][font='times new roman'][size=16px]使得该法不宜大规模生产,但秸秆燃烧发电厂的建立使得草木灰法生产碳酸钾的原料问题迎刃而解,且与其他方法相比草木灰法生产碳酸钾还有原料价格低、能耗低、不发生化学反应、无污染、工艺简单等优点[/size][/font][font='times new roman'][size=16px][4][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='calibri light'][size=21px]3 [/size][/font][font='calibri light'][size=21px]应用[/size][/font][font='times new roman'][size=16px]碳酸钾[/size][/font][font='times new roman'][size=16px]主要用于食品中作[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=129767&ss_c=ssc.citiao.link][font='times new roman'][size=16px]膨松剂[/size][/font][/url][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]碱性剂和面团改良剂,且可抑制面条发酸,可用于面制食品,按生产需要适量使用[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]我国《食品添加剂使用卫生标准》[/size][/font][font='times new roman'][size=16px](GB2760-2014)[/size][/font][font='times new roman'][size=16px]规定:可在面制食品中按生产需要适量使用。通常在制造面条、馄饨时适量加入,可赋予产品以特有的风味、色泽和韧性[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]常与[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=2453310&ss_c=ssc.citiao.link][font='times new roman'][size=16px]碳酸钠[/size][/font][/url][font='times new roman'][size=16px]等并用[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]碳酸钾可用于玻璃、印染、肥皂、搪瓷、制备钾盐、[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=31554&ss_c=ssc.citiao.link][font='times new roman'][size=16px]合成氨[/size][/font][/url][font='times new roman'][size=16px]脱羰,也用于彩色电视机工业[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]生产光学玻璃,可提高玻璃透明度、强度和折光系数[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]此外,还可以[/size][/font][font='times new roman'][size=16px]用于分析试剂。如高纯分析[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=327688&ss_c=ssc.citiao.link][font='times new roman'][size=16px]发射光谱分析[/size][/font][/url][font='times new roman'][size=16px]等。[/size][/font][font='times new roman'][size=16px]在陈红燕等[/size][/font][font='times new roman'][size=16px][5][/size][/font][font='times new roman'][size=16px]的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url][/size][/font][font='times new roman'][size=16px] - [/size][/font][font='times new roman'][size=16px]质谱法测定水产品中五氯苯酚及其钠盐实验中,碳酸钾作为净化和标准液衍生的试剂。[/size][/font][font='times new roman'][size=16px]也可用于硅酸盐和不溶性[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]硫酸盐的[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=300945&ss_c=ssc.citiao.link][font='times new roman'][size=16px]助熔剂[/size][/font][/url][font='times new roman'][size=16px],有机液体的吸水剂及电镀、化肥、照相行业。[/size][/font][font='times new roman'][size=16px]在[/size][/font][font='times new roman'][size=16px]化学实验中[/size][/font][font='times new roman'][size=16px]可[/size][/font][font='times new roman'][size=16px]做[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=646951&ss_c=ssc.citiao.link][font='times new roman'][size=16px]干燥剂[/size][/font][/url][font='times new roman'][size=16px]。其吸水能力中等,能形成带两个[/size][/font][url=https://baike.sogou.com/lemma/ShowInnerLink.htm?lemmaId=262682&ss_c=ssc.citiao.link][font='times new roman'][size=16px]结晶水[/size][/font][/url][font='times new roman'][size=16px]的碳[/size][/font][font='times new roman'][size=16px]酸钾[/size][/font][font='times new roman'][size=16px](K[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]CO[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px][/size][/font][font='times new roman'][size=16px]2H[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]O[/size][/font][font='times new roman'][size=16px]),但是与水作用较慢。适用于干燥醇、酯等中性有机物以及一般的碱性有机物如胺、生物碱等。但不能作为酸类、酚类或其他[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]酸性物质的干燥剂。[/size][/font][font='calibri light'][size=18px]3.1 [/size][/font][font='calibri light'][size=18px]碳酸钾在面条中的应用[/size][/font][font='calibri light'][size=16px]3.1.1 [/size][/font][font='calibri light'][size=16px]碳酸钾用量对面团、[/size][/font][font='calibri light'][size=16px]PH[/size][/font][font='calibri light'][size=16px]的影响[/size][/font][font='times new roman'][size=16px]K[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]CO[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]使面团变色机理[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]主要是使面团[/size][/font][font='times new roman'][size=16px]pH[/size][/font][font='times new roman'][size=16px]值升高[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]碱性增强[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]当[/size][/font][font='times new roman'][size=16px]pH[/size][/font][font='times new roman'][size=16px]值达到一定高度时[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]能使面粉中的类黄酮物质游离出来而呈色。当[/size][/font][font='times new roman'][size=16px] pH[/size][/font][font='times new roman'][size=16px]值适当时呈黄色[/size][/font][font='times new roman'][size=16px] ,pH[/size][/font][font='times new roman'][size=16px]值过高会使类黄酮物质与面团中铁离子结合呈黄绿色或绿色[/size][/font][font='times new roman'][size=16px][6][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='calibri light'][size=16px]3.1.2 K2CO3[/size][/font][font='calibri light'][size=16px]用量对面粉糊化粘度的影响[/size][/font][font='times new roman'][size=16px]K[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]CO[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]加入可提高面粉糊化开始温度[/size][/font][font='times new roman'][size=16px] 3- 9[/size][/font][font='times new roman'][size=16px]℃[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]这可能是加入[/size][/font][font='times new roman'][size=16px] K[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]CO[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]限制淀粉、蛋白质的吸水膨胀[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]抑制[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]α[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]淀粉酶活力[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]因而推迟了糊化开始温度。最大粘度反映了[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]α[/size][/font][font='times new roman'][size=16px]- [/size][/font][font='times new roman'][size=16px]淀粉酶活性度[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]与小麦二次加工性关系密切。[/size][/font][font='times new roman'][size=16px]K[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]CO[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]可显著地提高最大粘度[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]使面粉悬浮液呈碱性[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]限制[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]α[/size][/font][font='times new roman'][size=16px]- [/size][/font][font='times new roman'][size=16px]淀粉酶等酶活性[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]降低[/size][/font][font='times new roman'][size=16px]了酶水解淀粉、蛋白质等速率。[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]因而使溶液中大分子物质残留多[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]粘度增大。作为面条的面粉[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]最大粘度高的较好。最大粘度低[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]酶活性过强[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]面团发粘[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]对面条制造不利[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]制品表面粗糙[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]品质差。特二粉空白的最大粘度为[/size][/font][font='times new roman'][size=16px] 240B. U. ,[/size][/font][font='times new roman'][size=16px]酶活性较高[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]加入[/size][/font][font='times new roman'][size=16px] K[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]CO[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]后[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]使最大粘度升高为[/size][/font][font='times new roman'][size=16px] 360- 1270B.U. ,[/size][/font][font='times new roman'][size=16px]限制了酶活性[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]因而当选用适合用量时[/size][/font][font='times new roman'][size=16px] ,[/size][/font][font='times new roman'][size=16px]对制面条有利。[/size][/font][font='times new roman'][size=16px] [/size][/font][font='calibri light'][size=18px]3.2 [/size][/font][font='calibri light'][size=18px]碳酸钾在果酒降酸中的应用[/size][/font][font='times new roman'][size=16px]冯倩[/size][/font][font='times new roman'][size=16px][7][/size][/font][font='times new roman'][size=16px]等的实验中利用碳酸钾对果酒的制作工艺进行了优化。分别用碳酸钙和碳酸钾对凤梨酒、葡萄酒、青梅酒和蜜桃[/size][/font][font='times new roman'][size=16px]酒这[/size][/font][font='times new roman'][size=16px] 4 [/size][/font][font='times new roman'][size=16px]种酒降酸到国家标准(凤梨酒的国家降酸标准值≤[/size][/font][font='times new roman'][size=16px] 15 g/L[/size][/font][font='times new roman'][size=16px];葡萄酒国家降酸标准是≤[/size][/font][font='times new roman'][size=16px]9 g/L[/size][/font][font='times new roman'][size=16px],青梅酒的降酸标准是≤[/size][/font][font='times new roman'][size=16px] 6 g/L[/size][/font][font='times new roman'][size=16px];蜜桃酒果酒的滴定酸在[/size][/font][font='times new roman'][size=16px] 4[/size][/font][font='times new roman'][size=16px]~[/size][/font][font='times new roman'][size=16px]9 g/L[/size][/font][font='times new roman'][size=16px])。通过酸值达到标准时所消耗碳酸钙和碳酸钾的量,降酸幅度取平均值进行比较。通过表[/size][/font][font='times new roman'][size=16px] 2[/size][/font][font='times new roman'][size=16px]、表[/size][/font][font='times new roman'][size=16px] 3 [/size][/font][font='times new roman'][size=16px]可以看出,在凤梨酒中碳酸钙降酸效果好,在葡萄酒、青梅酒和蜜桃酒中碳酸钾的降酸效果相对好一些。在降酸的过程中,这[/size][/font][font='times new roman'][size=16px] 4 [/size][/font][font='times new roman'][size=16px]种酒的颜色基本没有发生改变,在反应过程中碳酸钾全部溶于酒中并产生了大量气泡,而碳酸钙参与反应则有沉淀产生。[/size][/font][align=center][font='calibri'][size=16px][color=#231f20]表[/color][/size][/font][font='calibri'][size=16px][color=#231f20]2 [/color][/size][/font][font='calibri'][size=16px][color=#231f20]碳酸钙对[/color][/size][/font][font='calibri'][size=16px][color=#231f20]4[/color][/size][/font][font='calibri'][size=16px][color=#231f20]种果酒的降酸情况[/color][/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042152233887_3934_1608728_3.jpeg[/img][/align][align=center][font='calibri'][size=16px][color=#231f20]表[/color][/size][/font][font='calibri'][size=16px][color=#231f20]3 [/color][/size][/font][font='calibri'][size=16px][color=#231f20]碳酸钾对[/color][/size][/font][font='calibri'][size=16px][color=#231f20]4[/color][/size][/font][font='calibri'][size=16px][color=#231f20]种果酒的降酸情况[/color][/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042152235018_2564_1608728_3.jpeg[/img][/align][align=left][/align][align=left][font='calibri light'][size=18px][color=#333333]3.3 [/color][/size][/font][font='calibri light'][size=18px][color=#333333]碳酸钾在菠菜中的应用[/color][/size][/font][/align][font='times new roman'][size=16px]碳酸钾可作为酸度调节剂应用于菠菜中改变其品质。程玲玲[/size][/font][font='times new roman'][size=16px][8][/size][/font][font='times new roman'][size=16px]的实验中表明,碳酸钾主要通过抑制菠菜生湿面[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]PPO[/size][/font][font='times new roman'][size=16px]活性和叶绿素[/size][/font][font='times new roman'][size=16px]a[/size][/font][font='times new roman'][size=16px]的降解,从而显著降低了([/size][/font][font='times new roman'][size=16px]P0.05[/size][/font][font='times new roman'][size=16px])生湿面的[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]ΔE* (0-24h)[/size][/font][font='times new roman'][size=16px]。游离酚结果表明,仅有柠檬酸可以显著增加菠菜生湿面游离酚含量。对菠菜生湿面的品质分析可知,碳酸钾作为酸度调节剂可以增大菠菜生湿面的蒸煮损失。加入碳酸钾增加了菠菜生湿面的硬度、拉断力和咀嚼性,而柠檬酸对菠菜生湿面的品质有负面影响。因此,在实际生产中可以通过添加一定量的碳酸钾抑制菠菜生湿面的褐变,但添加量过多可能会对面条蒸煮品质产生负面影响。[/size][/font][align=center][font='times new roman'][size=16px]表[/size][/font][font='times new roman'][size=16px]4 [/size][/font][font='times new roman'][size=16px]酸度调节剂对菠菜生湿面品质的影响[/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042152236766_4558_1608728_3.png[/img][/align][align=left][font='calibri light'][size=21px][color=#333333]4 [/color][/size][/font][font='calibri light'][size=21px][color=#333333]碳酸钾的限量、检测、及标准[/color][/size][/font][/align][align=left][font='calibri light'][size=18px][color=#333333]4.1 [/color][/size][/font][font='calibri light'][size=18px][color=#333333]限量[/color][/size][/font][/align][align=left][font='times new roman'][size=16px]GB/T17685-2016[/size][/font][font='times new roman'][size=16px]中规定碳酸钾在淡炼乳、甜炼乳、稀奶油中用量为[/size][/font][font='times new roman'][size=16px]:[/size][/font][font='times new roman'][size=16px]单用[/size][/font][font='times new roman'][size=16px]2g/[/size][/font][font='times new roman'][size=16px]㎏,与其他稳定剂合用时[/size][/font][font='times new roman'][size=16px]3g/kg[/size][/font][font='times new roman'][size=16px]奶粉中[/size][/font][font='times new roman'][size=16px]5g/kg[/size][/font][font='times new roman'][size=16px](单用或与其他稳定剂使用);稀奶油粉中为[/size][/font][font='times new roman'][size=16px]5g/kg[/size][/font][font='times new roman'][size=16px](单用或与其他稳定剂使用)。[/size][/font][/align][align=center][font='times new roman'][size=16px]表[/size][/font][font='times new roman'][size=16px]5 GB 25588[/size][/font][font='times new roman'][size=16px]—[/size][/font][font='times new roman'][size=16px]2010[/size][/font][font='times new roman'][size=16px]《食品安全国家标准[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]食品添加剂[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]碳酸钾》理化指标和检验方法[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042152237947_4401_1608728_3.jpeg[/img][/align][align=left][font='calibri light'][size=18px][color=#333333]4.2 [/color][/size][/font][font='calibri light'][size=18px][color=#333333]检测[/color][/size][/font][/align][align=left][font='times new roman'][size=16px]碳酸钾的检测方法参照[/size][/font][font='times new roman'][size=16px]GB/T25588-2010[/size][/font][font='times new roman'][size=16px][9][/size][/font][font='times new roman'][size=16px]。[/size][/font][/align][align=left][font='calibri light'][size=18px][color=#333333]4.3 [/color][/size][/font][font='calibri light'][size=18px][color=#333333]标准[/color][/size][/font][/align][align=left][font='times new roman'][size=16px]食品添加剂碳酸钾的质量标准为:碳酸钾纯含量要达到[/size][/font][font='times new roman'][size=16px]99%[/size][/font][font='times new roman'][size=16px]以上,但是砷([/size][/font][font='times new roman'][size=16px]As[/size][/font][font='times new roman'][size=16px])要≤[/size][/font][font='times new roman'][size=16px]0.0003%[/size][/font][font='times new roman'][size=16px]、重金属([/size][/font][font='times new roman'][size=16px]Pb[/size][/font][font='times new roman'][size=16px])≤[/size][/font][font='times new roman'][size=16px]0.00[/size][/font][font='times new roman'][size=16px]2%[/size][/font][font='times new roman'][size=16px]、铅≤[/size][/font][font='times new roman'][size=16px]0.001%[/size][/font][font='times new roman'][size=16px]、无水物≤[/size][/font][font='times new roman'][size=16px]1%[/size][/font][font='times new roman'][size=16px]、水化合物在[/size][/font][font='times new roman'][size=16px]10%-16.5%[/size][/font][font='times new roman'][size=16px]之间,不溶物试验呈阴性。[/size][/font][/align][align=left][font='times new roman'][size=16px]食品添加剂碳酸钾使用标准为:因为碳酸钾属于食品助剂,在最终制成食品前会被分解或除去,而且这是一种公认的安全物质,因此在用于面制食品时,按量添加即可[/size][/font][font='times new roman'][size=16px][10][/size][/font][font='times new roman'][size=16px]。[/size][/font][/align][align=left][font='calibri light'][size=21px][color=#333333]5 [/color][/size][/font][font='calibri light'][size=21px][color=#333333]国内外研究进展[/color][/size][/font][/align][align=left][font='calibri light'][size=18px][color=#333333]5.1[/color][/size][/font][font='calibri light'][size=18px][color=#333333]国内研究进展[/color][/size][/font][/align][align=left][font='times new roman'][size=16px]我国碳酸钾未来增长主要在轻质碳酸钾领域。随着科技的快速发展轻质碳酸钾在农药食品医药中的高端应用,需求还会有一个快速增长。随着我国生活水平的提高,高品质的食品添加剂需求会高速增加,从而带来碳酸钾需求快速增长。中国轻质碳酸钾主要应用在制造农药、食品和医药等领域。[/size][/font][font='times new roman'][size=16px]2018[/size][/font][font='times new roman'][size=16px]年消费量分别[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]占总消费量的[/size][/font][font='times new roman'][size=16px]37.43[/size][/font][font='times new roman'][size=16px]%[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]14.07 [/size][/font][font='times new roman'][size=16px]%[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]12.11[/size][/font][font='times new roman'][size=16px]%[/size][/font][font='times new roman'][size=16px][11][/size][/font][font='times new roman'][size=16px]。其中医药级的碳酸钾产品性能较高,[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]其次是食品级碳酸钾,除重质碳酸钾的应用领域同样适合轻质碳酸钾外,轻质碳[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]酸钾由于其多孔结构堆积,密度小,特别适合医药食品农药日用等[/size][/font][font='times new roman'][size=16px]领域。表现出[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]反应时间短、产品收率高、生产效率高等优点。现在这些领域整体碳酸钾消费比例还较低,未来应加大市场开发力度。随着生产成本的进一步降低,碳酸钾作为无氯钾的可能性越来越大。在多种经济作物高中档蔬菜等生产中有很大的潜在市场。[/size][/font][font='times new roman'][size=16px] [/size][/font][/align][align=left][font='times new roman'][size=16px]我国成都化工厂从美国引进年产[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]万[/size][/font][font='times new roman'][size=16px] t [/size][/font][font='times new roman'][size=16px]氢氧化钾([/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]可产[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px].[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]万[/size][/font][font='times new roman'][size=16px] t [/size][/font][font='times new roman'][size=16px]碳酸钾)[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]的离子膜电解装置,并采用日本流化床碳化干燥技术,于[/size][/font][font='times new roman'][size=16px]1990[/size][/font][font='times new roman'][size=16px]年正式投产,[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]标志着我国酸钾生产技术达到世界先进水平,是我国碳酸钾发展史上的一个里碑。[/size][/font][font='times new roman'][size=16px] [/size][/font][/align][align=left][font='times new roman'][size=16px]食[/size][/font][font='times new roman'][size=16px]品添加剂碳酸钾替代食用纯碱,能减少人类钠盐的摄取,并[/size][/font][font='times new roman'][size=16px]补充人体必需的钾元素,长期使用可软化血管,降低心脑血管疾病、延缓衰老,已广泛用[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]于碗面、糕点等高档食品。在生产过程中对人体有害的砷、铅等指标严格控制,产品质量即可达到食品添加剂碳酸钾标准[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]具备食用碳酸钾生产许可证的企业主要有成都化工股份有限公司、山西文通钾盐集团有限公司。随着人类社会老龄化、保健化时代的到来,食用碳酸钾需求将持续增长,前景十分明朗。[/size][/font][font='times new roman'][size=16px] [/size][/font][/align][align=left][font='times new roman'][size=16px]碳酸钾因为无对土壤和作物有害的氯根,而其碳酸根分解还对土壤疏松[/size][/font][font='times new roman'][size=16px]作[/size][/font][font='times new roman'][size=16px]用,也是植物光合作用的原料,其钾离子是作物必不可少的[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]种元素之[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]一,可以改善农产品的品质,提高含糖量和抗倒伏能力,使农作物增产提质[/size][/font][font='times new roman'][size=16px][12][/size][/font][font='times new roman'][size=16px]。农作物补钾工程势在必行,可由于价格太高[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]承受不起[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]但经有关科研机构研究[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]使用于水果、蔬菜等经济作物增产提质效果非常明显,前景看好。降低碳酸钾生产成本,扩大碳酸钾在农业方面的使用量[/size][/font][font='times new roman'][size=16px]将会成为未来研究的发展趋势[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px] [/size][/font][/align][align=left][font='times new roman'][size=16px]由于碳酸钾吸湿性较大,吸湿后易结块,而粉状碳酸钾流动性差,为方便贮存、运输和使用[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]山西文通钾盐集团公司研制开发成功了粒状碳酸钾生产技术,生产的粒状碳酸钾产品填补了国内碳酸钾行业的空白,提高了碳酸钾产品技术含量和附加值[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]增强了产[/size][/font][font='times new roman'][size=16px]品市场竞争能力。[/size][/font][/align][align=center][font='calibri'][size=16px][color=#231f20]表[/color][/size][/font][font='calibri'][size=16px][color=#231f20]6 [/color][/size][/font][font='calibri'][size=16px][color=#231f20]中国碳酸钾消费领域分析[/color][/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042152238905_9235_1608728_3.jpeg[/img][/align][align=left][/align][align=left][font='calibri light'][size=18px][color=#333333]5.2 [/color][/size][/font][font='calibri light'][size=18px][color=#333333]国外研究进展[/color][/size][/font][/align][align=left][font='times new roman'][size=16px]国外[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]碳酸钾主要是由矿物原料生产的[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]较普遍的方法是从氯化钾制碳酸钾,也就是碳化由电解氯化钾所得到的苛性钾溶液。美国主要是以氯化钾为原料,采用电解法生产碳酸钾。[/size][/font][font='times new roman'][size=16px]1965[/size][/font][font='times new roman'][size=16px]年美国苛性钾需用量为[/size][/font][font='times new roman'][size=16px]155000[/size][/font][font='times new roman'][size=16px]短吨,有[/size][/font][font='times new roman'][size=16px]23%[/size][/font][font='times new roman'][size=16px]用来制造碳酸钾[/size][/font][font='times new roman'][size=16px] 1975[/size][/font][font='times new roman'][size=16px]年美国苛性钾需用量为[/size][/font][font='times new roman'][size=16px]185000[/size][/font][font='times new roman'][size=16px]短吨,[/size][/font][font='times new roman'][size=16px]28%[/size][/font][font='times new roman'][size=16px]用来制造碳酸钾。预计今后苛性钾有较高的增长速度,碳酸钾是苛性钾的主要消费者。苏联是以综合加工霞石来生产碳酸钾的,郎在制得氧化铝、水泥的同时可得到能加工制成碳酸钾和碳酸钠混合溶液,再进一步制成碳酸钾。少量的碳酸钾是从盐湖中提取的。日本[/size][/font][font='times new roman'][size=16px]无钾矿资源,氯化钾依赖于进口[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]硫酸钾也是由氯化钾作原料生产的。碳酸钾主要由氯化钾作原料采用电解法制得。日本[/size][/font][font='times new roman'][size=16px]1967[/size][/font][font='times new roman'][size=16px]年苛性钾产量是[/size][/font][font='times new roman'][size=16px]64056[/size][/font][font='times new roman'][size=16px]吨[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]用于碳酸钾及其它钾盐生产的苛性钾占[/size][/font][font='times new roman'][size=16px]63%[/size][/font][font='times new roman'][size=16px]。印度没有任何的天然钾矿资源,所需钾盐一直依赖进口。仅有一个用意大利的方法生产碳酸钾的工厂。许多国家[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]如德意志民主共和国、捷克斯洛伐克、波兰、意大利等都有以酒糟炭[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]糖浆状酒糟蒸千和焦化的产物[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]作原料进行碳酸钾的生产[/size][/font][font='times new roman'][size=16px][13][/size][/font][font='times new roman'][size=16px]。此法在目前尚具有一定的意义。综上分析,无论国内还是国外,碳酸钾都将具有良好的发展前景。[/size][/font][/align][align=left][font='times new roman'][size=21px]参考文献:[/size][/font][/align][align=left][1] [font='times new roman']苏星瑶[/font][font='times new roman'].[/font][font='times new roman']碳酸钾晶体结构及性质研究进展及展望[/font][font='times new roman'][J].[/font][font='times new roman']科技通报[/font][font='times new roman'],2017,33(09):1-7+20.[/font][/align][align=left][2] [font='times new roman']邹德全[/font][font='times new roman'],[/font][font='times new roman']岳向吉[/font][font='times new roman'],[/font][font='times new roman']何天一[/font][font='times new roman'],[/font][font='times new roman']巴德纯[/font][font='times new roman'],[/font][font='times new roman']郝英男[/font][font='times new roman'].[/font][font='times new roman']碳酸钾热化学储能研究现状与进展[/font][font='times new roman'][J].[/font][font='times new roman']化工新型材料[/font][font='times new roman'],2020,48(S1):7-10.[/font][/align][align=left][3] [font='times new roman']李刚[/font][font='times new roman'],[/font][font='times new roman']张廷福[/font][font='times new roman'].[/font][font='times new roman']我国碳酸钾技术进展[/font][font='times new roman'][J].[/font][font='times new roman']无机盐工业[/font][font='times new roman'],2000(01):21-22+27.[/font][/align][align=left][4] [font='times new roman']闫皙[/font][font='times new roman'],[/font][font='times new roman']张少红[/font][font='times new roman'],[/font][font='times new roman']田月娜[/font][font='times new roman'],[/font][font='times new roman']李文亚[/font][font='times new roman'].[/font][font='times new roman']对从草木灰中提取碳酸钾问题的探讨[/font][font='times new roman'][J].[/font][font='times new roman']河北企业[/font][font='times new roman'],2011(01):89-90.[/font][/align][align=left][5] [font='times new roman']陈红燕[/font][font='times new roman'],[/font][font='times new roman']成强[/font][font='times new roman'],[/font][font='times new roman']吴红军[/font][font='times new roman'].[/font][font='times new roman'][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url][/font][font='times new roman']-[/font][font='times new roman']质谱法测定水产品中五氯苯酚及其钠盐[/font][font='times new roman'][J].[/font][font='times new roman']吉林农业[/font][font='times new roman'],20[/font][font='times new roman']10(11):49-50.[/font][/align][align=left][6] [font='times new roman']董育红[/font][font='times new roman'],[/font][font='times new roman']吴冰[/font][font='times new roman'].[/font][font='times new roman']碳酸钾对面条品质改良作用的研究[/font][font='times new roman'][J].[/font][font='times new roman']食品工业[/font][font='times new roman'],1996(05):13-14.[/font][/align][align=left][7] [font='times new roman']冯倩[/font][font='times new roman'],[/font][font='times new roman']张燕[/font][font='times new roman'],[/font][font='times new roman']赵轶男[/font][font='times new roman'].[/font][font='times new roman']发酵果酒降酸工艺优化[/font][font='times new roman'][J].[/font][font='times new roman']酿酒科技[/font][font='times new roman'],2021(02):27-31.[/font][/align][align=left][8] [font='times new roman']程玲玲[/font][font='times new roman'],[/font][font='times new roman']朱科学[/font][font='times new roman'],[/font][font='times new roman']郭晓娜[/font][font='times new roman'].[/font][font='times new roman']酸度调节剂对菠菜生湿面褐变及品质的影响[/font][font='times new roman'][J/OL].[/font][font='times new roman']中国粮油学报[/font][font='times new roman']:1-10[2021-07-25].http://kns.cnki.net/kcms/detail/11.2864.TS.20210603.1533.058.html.[/font][/align][align=left][9] [font='times new roman']GB 25588-2010, [/font][font='times new roman']食品安全国家标准 食品添加剂 碳酸钾[/font][font='times new roman'][s].[/s][/font][/align][align=left][10] [font='times new roman']杨裴[/font][font='times new roman'],[/font][font='times new roman']王妍[/font][font='times new roman'],[/font][font='times new roman']李光明[/font][font='times new roman'].[/font][font='times new roman']食品添加剂碳酸盐国家标准介绍[/font][font='times new roman'][J].[/font][font='times new roman']无机盐工业[/font][font='times new roman'],2015,47(02):62.[/font][/align][align=left][11] [font='times new roman']杨斌[/font][font='times new roman'],[/font][font='times new roman']韩秋燕[/font][font='times new roman'].[/font][font='times new roman']我国碳酸钾与碳酸氢钾市场及应用领域分析[/font][font='times new roman'][J].[/font][font='times new roman']中国石油和化工经济分析[/font][font='times new roman'],2019(12):46-48.[/font][/align][align=left][12] [font='times new roman']陈旭君[/font][font='times new roman'],[/font][font='times new roman']金丽娟[/font][font='times new roman'].[/font][font='times new roman']浅析碳酸钾及碳酸氢钾应用领域发展趋势[/font][font='times new roman'][J].[/font][font='times new roman']化工管理[/font][font='times new roman'],2020(02):1-2.[/font][/align][align=left][13] [font='times new roman']王洪记[/font][font='times new roman'].[/font][font='times new roman']碳酸钾工业发展近况[/font][font='times new roman'][J].[/font][font='times new roman']沈阳化工[/font][font='times new roman'],2000(03):160-162.[/font][/align]

  • 【原创】天然气水合物

    打开能源的“牢笼”在冰的天然气水合物矿床中,可以发现大量的天然气,但是将这些天然气开采出来却是一个严峻的挑战。一万亿立方英尺 (tcf) 有多大? 尽管我们知道这个体积非常大,但是要想像其具体的大小将会相当困难。这里有一种方法。假定我们站在足球场或橄榄球球场一端的球门附近。在另一端俯视球场,设想一条长度为 30 倍球场长度的直线。(这一距离大概为 3 公里(约 1.9 英里)或相当于 3500 步。)现在右转 90 度,然后按照该方向设想一条相同距离的直线。最后,直视前方,设想一条长度相同并且垂直于地面向天空方向延伸的直线。那么,这个立方体的三条边所包含的体积就大约为一万亿立方英尺!平均而言,地球上的每人每月大约消费七万亿立方英尺天然气! 燃烧的冰地球上的人使用天然气(甲烷,CH4)这种矿物燃料提供日常所用能源的 45%。目前,每年的天然气燃烧量约为 2.4 万亿立方米(85 万亿立方英尺)。不幸的是,按照这一速度,我们所发现的地球天然气储量只能使用 60 年。这意味着按照目前所知的情况,对于今天正在上高中的学生而言,他们的子孙就没有可用的天然气了。对于这一暗淡的前景也有一些好的消息。看起来还有另外一个天然气资源的世界,足以满足我们当前以及将来 2000 年的能源需求。这完全可以惠及我们子子孙孙!不幸的是,我们还没有找到开采这一天然气的经济方式。我们目前正在研究。 这些特殊的天然气储量称为天然气水合物,它们由其甲烷(天然气)分子中类似小鸟笼一样的冰结构构成。基本的水合单元是中空的水分子晶体,其中包含一个天然气单分子。这些晶体以紧密的网格结构相互联接在一起。如果这些天然气水合物的联接程度紧密上几倍,那么它们看起来将更象是冰。但是其属性和冰不同:它们在适当的条件下可以燃烧!这是 21 世纪一个相当热门的话题。全球天然气水合物的储量丰富,因此有些国家已经开始研究和探索计划,致力于理解水合物的行为、确定其精确储量并开发可行的开采方法。日本、印度、美国、加拿大、挪威和俄罗斯等国家都在进行天然气水合物的勘测。 天然气水合物是一个晶体结构。这一天然气水合物的每个单元小室都包含 46 个水分子,构成两个较小的十二面体和 6 个较大的十四面体。天然气水合物只能承载较小的气体分子,例如甲烷和乙烷。在常温常压(STP)下,一体积的饱和甲烷水合物将包含 189 体积的甲烷气体。天然气水合物这么大的气体储量意味着重要的天然气来源。

  • 天然气水合物的研究、调查现状

    [font=黑体][color=black]天然气水合物的研究、调查现状[/color][/font][align=left][font=黑体][color=black]1.[/color][/font][font=黑体][color=black]天然气水合物的研究[/color][/font][/align][align=left][font=宋体][color=black]近年来,我国对管辖海域做大量的地震勘查资料分析得出,在冲绳海槽的边坡、南海的北部陆坡、西沙海槽和西沙群岛南坡等处发现了海底天然气水合物存在的似海底地震反射层(BSR)标志。[/color][/font][/align][align=left][font=宋体][color=black]自1999年始,广州海洋地质调查局在我国海域南海北部西沙海槽区开展海洋天然气水合物前期试验性调查。完成三条高分辩率地震测线共543.3km。2000年9-11月,广州海洋地质调查局"探宝号"和"海洋四号"调查船在西沙海槽继续开展天然气水含物的调查。共完成高分辩率多道地震1593.39km、多波束海底地形测量703.5km、地球化学采样20个、孔隙水样品18个、气态烃传感器现场快速测定样品33个。获得突破性进展。研究表明:地震剖面上具明显似海底反射界面(BSR)和振幅空白带。"BSR"界面一般位于海底以下300-700m,最浅处约180m。振幅空白带或弱振幅带厚度约80-600m,"BSR"分布面积约2400km'。根据ODP184航次1144钻井资料揭示,在南海海域东沙群岛东南地区,l百万年以来沉积速率在每百万年400-1200m之间,莺歌海盆地中中新世以来沉积速度很大。资料表明:南海北部和西部陆坡的沉积速率和已发现有丰富天然气水合物资源的美国东海岸外布莱克海台地区类似。南海海域水含物可能赋存的有利部位是:北部陆坡区、西部走滑剪切带、东部板块聚合边缘及南部台槽区。本区具有增生楔型双BSR、槽缘斜坡型BSR、台地型BSR及盆缘斜坡型BSR等四种类型的水合物地震标志BSR构型。从地球化学研究发现南海北部陆坡区和南沙海域,经常存在临震前的卫星热红外增温异常,其温度较周围海域升高5-6℃,特别是南海北部陆坡区,从琼东南开始,经东沙群岛,直到台湾西南一带,多次重复出现增温异常,它可能与海底的天然气水会物及油气有关。[/color][/font][/align][align=left][font=宋体][color=black]综合资料表明:南海陆坡和陆隆区应有丰富的天然气水合物矿藏,估算其总资源量达643.5-772.2亿吨油当量,大约相当于我国陆上和近海石油天然气总资源量的1/2。[/color][/font][/align][align=left][font=黑体][color=black]2 [/color][/font][font=黑体][color=black]有关天然气水合物的现状调查[/color][/font][/align][align=left][font=宋体][color=black]西沙海槽位于南海北部陆坡区的新生代被动大陆边缘型沉积盆地。新生代最大沉积厚度超过7000m,具断裂活跃。水深大于400m。基于应用国家863研究项目"深水多道高分辨率地震技术"而获得了可靠的天然气水合物存在地震标志:1)在西沙海槽盆北部斜坡和南部台地深度200-700m发现强BSR显示,在部分测线可见到明显的BSR与地层斜交现象。2)振幅异常,BSR上方出现弱振幅或振幅空白带,以层状和块状分布,[/color][/font][font=宋体]厚度80-450m。3)BSR波形与海底反射波相比,出现明显的反极性。4)BSR之上的振幅空白带具有明显的速度增大的变化趋势。资料表明:南海北部西沙海槽天然气水合物存在面积大,是一个有利的天然气水合物远景区。[/font][/align][align=left][font=宋体][color=black]2001[/color][/font][font=宋体][color=black]年,中国地质调查局在财政部的支持下,广州海洋地质调查局继续在南海北部海域进行天然气水合物资源的调查与研究,计划在东沙群岛附近海域开展高分辨率多道地震调查3500km,在西沙海槽区进行沉积物取样及配套的地球化学异常探测35个站位及其他多波束海底地形探测、海底电视摄像与浅层剖面测量等。另据我国台大海洋所及台湾中油公司资料,在台西南增生楔,水深500-2000m处广泛存在BSR,其面积2×104km[sup]2[/sup]。并在台东南海底发现大面积分布的白色天然气水合物赋存区。[/color][/font][/align][font=黑体][color=black]3.[/color][/font][font=黑体][color=black]天然气水合物的意见与建议[/color][/font][align=left][font=宋体][color=black]鉴于天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,其调查研究成果日新月异,故及时了解、收集、交流这方面的情况、勘探方法及成果尤为重要,为赶超国际天然气水合物调查、研究水平,促进我国天然气水会物的调查、勘探与开发事业,为我国经济的持续发展做出新贡献,建议每两年召开一次全国性的"天然气水合物调查动态、勘探方法和成果研讨会"。[/color][/font][/align][align=left][font=宋体][color=black]我国南海广阔的陆坡及东海部分陆坡具有形成天然气水含物的地质条件,建议尽快开展这两个海区的天然气水含物的调查研究工作,为我国国民经济可持续发展提供新能源。[/color][/font][/align][align=left][font=宋体][color=black]天然气水合物的开采方法目前主要在热激化法、减压法和注人剂法三种。开发的最大难点是保证井底稳定,使甲烷气不泄漏、不引发温室效应。针对这一问题,日本提出了"分子控制"开采方案。天然气水合物矿藏的最终确定必须通过钻探,其难度比常规海上油气钻探要大得多,一方面是水太深,另一方面由于天然气水合物遇减压会迅速分解,极易造成井喷。日益增多的成果表明,由自然或人为因素所引起温压变化,均可使水合物分解,造成海底滑坡、生物灭亡和气候变暖等环境灾害。因而研究天然气水合物的钻采方法已迫在眉捷,建议尽快开展室内外天然气水合物钻采方法的研究工作。[/color][/font][/align]

  • 【金秋计划】白藜芦醇-盐酸巴马汀共晶水合物的制备、晶体结构及溶解性研究

    植物源性多酚由于具有预防和治疗多种疾病的特性,在制药、化工和食品工业等领域引起广泛关注[1-2]。白藜芦醇(resveratrol,图1)是一种天然多酚,存在于葡萄皮、蔓越莓、可可等植物中,具有抗氧化、抗炎、保护心脏和抗癌等生物活性[3-4]。此外,白藜芦醇对阿尔茨海默病、帕金森病和癫痫等神经系统疾病也有神经保护作用[5-6]。该化合物在自然界中以反式和顺式2种异构体的形式存在,但反式异构体更丰富,生物活性更高[7]。然而,白藜芦醇较低的水溶性、生物利用度限制了其在人体中的吸收和生物利用有效性[8]。 药物共晶是活性药物成分和共晶形成物按一定化学计量比在非共价键相互作用下自组装而成的固体结晶材料[9-10],共晶中存在的氢键或其他非共价作用,会改变原药物晶体的结构,通过降低晶格能、提高溶剂的亲和力,从而改善药物在共晶中的溶解度[11]。因此,药物共晶技术成为解决药物生物利用度低的新途径、新领域。通过药物共晶技术提高药物生物利用度是今后药物开发新的研究方向。近年来,白藜芦醇共晶和多晶型用于提高其溶解度和生物利用度已有报道,如氨基苯甲酰胺[12]、异烟肼与烟酰胺[13]、乙烯基二吡啶[14]等共晶。不同共晶之间白藜芦醇的构象和分子堆积是灵活的,且白藜芦醇共晶的物理化学性质与其晶体堆积模式密切相关。基于共晶策略优势,利用高水溶性生物活性药物增强白藜芦醇的溶解度和生物利用度,同时有助于发挥2种药物在抗炎、抗病毒功效等方面协同作用,如白藜芦醇-金刚烷胺盐酸盐共晶[15]。 盐酸巴马汀(palmatine chloride,PCl,图1)又名黄藤素,是一类典型的异喹啉生物碱,主要存在于黄柏、黄连、三棵针、南天竹等天然中草药植物中[16-17]。PCl易溶于热水,具有抗菌、抗炎、抗病毒与抗肿瘤等药用价值,在临床上常用于治疗妇科炎症、菌痢、肠炎、呼吸道和泌尿道感染以及眼结膜炎等症状[16,18-19]。PCl结构中含有1个季铵盐阳离子与氯离子(Cl?),其中Cl?是一类潜在的氢键受体,不仅空间位阻小,还具有良好的空间适应性和几何延展性,可以同时接纳多个氢键给体,与氨基、羧基、羟基等官能团可形成较强的电荷辅助氢键[20-21],利用含Cl?的PCl作为共晶形成物为药物共晶开发提供了新的思路。本课题组前期系统研究了PCl作为共形成物与外消旋橙皮素的药物共晶多晶型,2种共晶均存在O-HCl?氢键相互作用,对温度、湿度和光表现出很高的稳定性,共晶的形成降低了盐酸巴马汀的溶解度,提高了橙皮素的溶解度。同时,在纯水中实现了盐酸巴马汀的缓释和增强橙皮素的释放[22]。本实验基于Cl?与羟基之间易形成O-HCl?氢键作用,研究了白藜芦醇与PCl的共结晶。采用溶剂悬浮法成功制备了一种新的白藜芦醇-盐酸巴马汀共晶水合物(RES-2PClH2O),利用单晶X射线衍射、粉末X射线衍射和傅里叶红外光谱对其结构进行表征,并利用差示扫描量热、动态水蒸汽吸附、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析等对共晶水合物的稳定性、溶解度及溶出速率等进行了考察。 图片 1 仪器与材料 Smart Lab SE型粉末X射线衍射仪,日本理学公司;Super Nova CCD型单晶X射线衍射仪,美国安捷伦科技有限公司;DSC 214 Nevio型差示扫描量热仪、TG 209 F3型热重分析仪,德国耐驰仪器制造有限公司;Intrinsic Plus型动态水蒸汽吸附仪,英国Surface Measurement Systems公司;LC-20AD型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url],日本岛津仪器有限公司;Nicolet iS 50型衰减全反射傅里叶红外光谱仪,美国赛默飞世尔科技公司;LHH-150SD型综合药品稳定性试验箱,上海一恒科学仪器有限公司;RC806ADK型溶出度测试仪,天津市天大天发科技有限公司;SHH-100GD-2型药品强光照射试验箱,重庆市永生实验仪器厂。 盐酸巴马汀三水合物(PCl3H2O)、白藜芦醇,质量分数均为97%,购自大连美仑生物技术有限公司;甲醇为色谱纯,购自上海泰坦科技股份有限公司;磷酸为色谱纯,购自上海阿拉丁试剂有限公司。其他试剂均为分析纯,购自国药集团药业股份有限公司。 2 方法与结果 2.1 样品的制备 2.1.1 白藜芦醇-盐酸巴马汀单晶的制备 取白藜芦醇(22.8 mg,0.1 mmol)与PCl3H2O(44.2 mg,0.1 mmol)混合均匀后加入20 mL甲醇溶液,加热搅拌至完全溶解后滤过。将溶液放于避光环境下缓慢蒸发,2~3 d后有橘红色块状晶体析出,即为白藜芦醇-盐酸巴马汀单晶。 2.1.2 RES-2PClH2O共晶水合物的制备 取白藜芦醇(114.0 mg,0.5 mmol)与盐酸巴马汀三水合物(442.0 mg,1 mmol)混合均匀后加入10 mL的甲醇溶液,在室温条件下密封搅拌48 h后滤过。将固体放于自然条件下干燥即可得到RES-2PClH2O共晶水合物。 2.2 固态表征 2.2.1 单晶X射线衍射(single crystal X-ray diffraction,SC-XRD) 利用Super Nova CCD单晶衍射仪测试待测样品,在100 K条件下收集晶体参数,入射光束为Cu-Kα射线(λ=0.154 184 nm),利用CrysAlisPro程序进行经验吸收校正[23]。采用SHELX程序对晶体结构进行直接法求解,通过全矩阵最小二乘方法对F2进行精修[24-25]。非氢原子在无约束位移参数下进行各向异性细化,氢原子则放置在合适的几何位置上。单晶结构解析表明,RES-2PClH2O为单斜晶系,P21/c空间群,在晶体结构中含有2个PCl分子、1个白藜芦醇分子与1个水分子。如图2所示,白藜芦醇结构中的3个酚羟基均参与了氢键的形成,其中2个酚羟基与2个Cl?形成O-HCl?氢键作用,而另1个酚羟基则与水分子形成O-HO氢键作用。水分子又同时与2个Cl?形成O-HCl?氢键作用。白藜芦醇分子、水分子与Cl?间通过上述的多种氢键作用相连接,形成了一维链状结构。形成的链与链间通过不同白藜芦醇分子间的C-HO作用相连接,进而形成二维层状结构(图3)。在分子间弱作用力下,层与层之进而形成堆积结构(图4)。RES-2PClH2O共晶水合物的晶体学数据见表1,共晶水合物中氢键的参数见表2。 图片 图片 图片 图片 2.2.2 粉末X射线衍射(powder X-ray diffraction,PXRD) 将待测样粉末均匀铺满样品槽后开始测量。入射光束为Cu-Kα射线,工作电压为40 kV,工作电流为15 mA,2θ范围取5°~45°,步长0.02°。如图5所示,RES-2PClH2O的PXRD谱图与白藜芦醇、PCl3H2O 2种原料药均不同,在10.6°、13.1°、14.0°、14.5°、16.2°、21.5°、26.7°、28.2°等处出现新的特征峰,且图谱中并未显现PCl3H2O在9.7°、17.8°等处的特征峰,表明所制备的产物形成了新的晶相。此外,RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 图片 2.2.3 衰减全反射傅里叶变换红外光谱(attenuated total reflection fourier transform infrared spectroscopy,ATR-FTIR) 将待测样均匀铺于iD7 ATR附件上,扫描次数为32,分辨率为4 cm?1,波长范围为550~4 000 cm?1。如图6所示,RES-2PClH2O与PCl3H2O的图谱中均存在有水分子的伸缩振动峰,与单晶结构中存在的水分子相对应。在PCl3H2O中,水分子的伸缩振动峰为3 602~3 227 cm?1,而共晶水合物中水分子的伸缩振动峰为3 292 cm?1。在形成强分子间氢键时,-OH伸缩振动峰会发生红移(100~693 cm?1)[26-27]。白藜芦醇中-OH的伸缩振动峰在3 200 cm?1左右,而共晶水合物中-OH的伸缩振动峰显著红移至在3 002 cm?1,表明白藜芦醇和PCl3H2O分子间具有较强的氢键相互作用。同时,在形成共晶水合物后,白藜芦醇中-OH的弯曲振动峰从1 145 cm?1偏移至1 170 cm?1,归因于白藜芦醇上的-OH同PCl、水分子间均存在较强的氢键作用。 图片 2.2.4 差示扫描量热/热重分析(differential scanning calorimetry/thermal gravity analysis,DSC/ TGA) 称取适量白藜芦醇、PCl3H2O、RES- 2PClH2O分别放于铝制坩埚中,密封、扎孔后进行DSC测试。以同样的空坩埚作为参比,将其放置于仪器中预热、平衡至读数稳定后,将待测样品放于空坩埚中进行TGA测试,温度范围为30~300 ℃,升温速率10 K/min,通氮气作为保护气,体积流量为40 mL/min。如图7-a所示,白藜芦醇在268.1 ℃处有1个吸热熔融峰,PCl3H2O在204.2 ℃处出现吸热熔融峰。RES-2PClH2O在136℃附近存在1个宽的脱水吸热峰,在230.5 ℃附近存在熔融吸热峰。共晶水合物的熔点介于2个原料药之间,是不同于原料药的新晶型。由TGA图谱(图7-b)可知,白藜芦醇在30~150 ℃没有明显质量变化,PCl3H2O在105 ℃失重比为11.3%。相较于2原料药,RES-2PClH2O在136 ℃附近的失重比为2.8%,与其理论的失水质量比(2.8%)一致,进一步证实共晶水合物结构中存在1个水分子。 图片 2.3 物理稳定性研究 2.3.1 稳定性分析 根据《中国药典》2020年版药物稳定性试验,评价温度、湿度、光照等环境参数对所制备共晶水合物物理稳定性的影响。将RES- 2PClH2O分别储存于烘箱、湿稳定性箱及光稳定箱中,放置10 d后取出进行PXRD表征。如图8所示,在60 ℃,90%相对湿度(RH),或4 500 lx条件下储存10 d后,RES-2PClH2O的PXRD图谱保持不变,说明所制备共晶水合物在恶劣的储存条件下未发生晶型的变化,具有物理稳定性。 图片 2.3.2 动态水蒸汽吸附(dynamic vapor sorption,DVS)分析 称取适量待测样品置于动态水蒸气吸附仪中,设定温度为25 ℃,在体积流量为200 mL/min氮气下测量,模式选择为0~95%~0相对湿度吸附、脱附水蒸汽全循环,步长5%,平衡标准为粉体质量变化(dm/dt)≤0.002%/min。如图9-a所示,PCl3H2O吸湿量随着相对湿度增加而逐步增大。相比于PCl3H2O,白藜芦醇、RES-2PClH2O吸湿量基本不变,说明白藜芦醇可有效减少PCl3H2O吸湿量。根据局部放大图(图9-b),在95%相对湿度下,RES-2PClH2O共晶水合物吸湿量仅为0.16%,吸湿性极低。此外,共晶水合物的吸附与脱附曲线基本重合,表明在吸附过程中仅存在物理吸附水,共晶水合物未发生任何固态变化,具有良好的吸湿稳定性。 图片 2.4 体外溶出度研究 2.4.1 色谱条件 白藜芦醇、PCl的色谱分析采用Kristl等建立的方法[28]及《中国药典》2020年版一部黄藤素含量测定,并进行适当修改。色谱柱为中谱蓝XR-C18柱(150 mm×4.6 mm,5 μm),采用双波长模式,白藜芦醇的吸收波长306 nm,PCl的吸收波长345 nm,体积流量1 mL/min,进样量5 μL,柱温30 ℃,流动相为甲醇-0.2%磷酸水溶液(50∶50),洗脱方式为等度洗脱。 2.4.2 对照品储备液的制备 精密量取250 mg白藜芦醇置于50 mL量瓶中,甲醇定容,摇匀即得5 mg/mL白藜芦醇对照品储备液,同法制备5 mg/mL PCl3H2O对照品储备液。 2.4.3 线性关系考察 采用甲醇将“2.4.2”项下对照储备液分别稀释成5、10、20、50、100、200、500 μg/mL系列对照品溶液,按照“2.4.1”项下色谱条件测定各质量浓度(C)的峰面积(A)。方法学结果表明,PCl的线性回归方程为A=23 744 C+22 055,R2=1.000 0,结果表明PCl在10~500 μg/mL线性关系良好。白藜芦醇的线性回归方程为A=42 114 C?161.8,r=1.000 0,结果表明白藜芦醇在5~100 μg/mL线性关系良好。 2.4.4 供试品溶液的制备 精密量取5 mg RES-2PClH2O至50 mL量瓶中,甲醇定容,摇匀即得RES-2PClH2O供试品溶液。 2.4.5 专属性考察 取稀释后的对照品溶液、供试品溶液,分别按上述色谱条件进样,结果见图10,供试品溶液中白藜芦醇与PCl出峰时间与对照品溶液一致,分离度大于1.5,峰形良好,表明该色谱条件适用性良好。 图片 2.4.6 平衡溶解度实验 选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为缓冲介质[15,29],称取过量待测样品加入少量介质溶液,得到过饱和溶液。37 ℃振荡48 h,取上层液0.45 μm滤膜滤过,纯水稀释后利用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]测量其质量浓度,得到待测样品的饱和平衡溶解度,平行样为3组。实验结束后,收集未溶解的残留固体,室温干燥后进行PXRD表征。结果如表3所示,在纯水中,白藜芦醇的溶解度为(55.100±0.669)μg/mL,PCl3H2O的溶解度(24.130±0.670)mg/mL。与之相比较,白藜芦醇、PCl3H2O在pH 4.5缓冲液中的溶解度基本不变。值得注意的是,共晶水合物中白藜芦醇溶解度在2种介质中均显著提高,尤其在pH 4.5缓冲液中,共晶水合物中白藜芦醇溶解度提高约10倍。而共晶水合物中PCl溶解度在2种介质中均显著降低,在pH 4.5缓冲液中,溶解度降低到(1.760±0.015)mg/mL。上述结果均表明通过白藜芦醇与PCl形成共晶策略极大提高了白藜芦醇溶解度,同时降低了PCl溶解度。此外,溶解度测定后将未溶解的固体残渣收集后进行PXRD表征,图谱结果表明2种介质处理后的残渣与RES-2PClH2O的PXRD图谱基本吻合(图11),未发现明显的相变。 图片 图片 2.4.7 溶出速率评估 实验在RC806ADK溶出测试仪上进行,采用小杯桨法,桨转速为75 r/min,温度为37 ℃。选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为溶出介质,溶出介质体积为250 mL。精密称取100 mg的RES-2PClH2O粉末,86.5 mg的PCl3H2O粉末以及22.3 mg的白藜芦醇粉末,待介质温度稳定后往介质投料。设置不同时间点进行取样,每次取样1 mL后随即补充1 mL缓冲液。所有样品溶液均过0.45 μm膜后,使用HPLC测量其质量浓度,平行样为3组。如图12-a可知,在2种介质中,白藜芦醇原料药释放缓慢,4 h后最大累积释放仅约45%;形成共晶水合物后,RES-2PClH2O中白藜芦醇在纯水与pH 4.5缓冲液中的溶出行为基本一致,溶出速率均增加,溶出释放量较白藜芦醇原料药显著提高,在1 h附近达到最大值,分别为82.26%与83.43%。与白藜芦醇溶出不同的是,PCl3H2O在2种介质中5 min内几乎完全溶解,共晶水合物中PCl的溶出速率较PCl3H2O有效减缓,1 h后达到最大累积释放量(图12-b)。 图片 综合上述溶出结果表明,相比于白藜芦醇原料药,通过与PCl3H2O形成共晶水合物,可有效促进白藜芦醇的溶出、同时延缓PCl的释放。 3 讨论 将水溶性较高的药物与难溶性药物形成药物-药物共晶,有利于平衡两者的溶解度[11]。利用水溶性较好的PCl[(24.13±0.67)mg/mL]与难溶性白藜芦醇[(55.100±0.669)μg/mL]通过分子间相互作用形成共晶,有望优化两者溶解度和溶出速率。本研究采用溶剂悬浮法成功制备了新的RES- 2PClH2O共晶水合物。RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 DSC测试结果显示,RES-2PClH2O的熔点介于2个原料药之间,进一步证实该共晶水合物是不同于原料药的新晶型。通过单晶结构分析,该共晶水合物存在O-HCl?氢键作用且含有水分子。白藜芦醇上的2个羟基与2个Cl?形成O-HCl?氢键,而水分子通过O-HO与O-HCl?的氢键作用分别与白藜芦醇、PCl相连并形成一维链状结构。链与链间又通过C-HO作用形成二维层状结构,层与层之间通过分子间弱作用力进而形成堆积结构。 TGA表征结果显示,RES-2PClH2O实际失水质量与理论失水质量相一致,进一步证实该共晶水合物结构中存在1个水分子。ATR-FTIR显示,RES-2PClH2O中,水分子伸缩振动峰和白藜芦醇的-OH伸缩振动峰、弯曲振动峰均发生了明显偏移,表明白藜芦醇中的-OH与PCl、水分子间均存在较强的氢键作用,2原料药间发生了相互作用。 药物稳定性测试证实,RES-2PClH2O在高温、高湿或强光照射等恶劣条件下长期储存具有较好的物理稳定性,与非吸湿性白藜芦醇共结晶后,PCl的抗湿稳定性得到显著提高。为研究PCl对白藜芦醇溶解度影响,评估了共晶水合物在纯水与醋酸/醋酸钠缓冲液介质中的平衡溶解度,并与原料药溶解度对比分析。结果显示,可溶性PCl与不溶性白藜芦醇共结晶同时影响了2种药物的溶解性能。在所制备的共晶水合物中,白藜芦醇溶解度明显提高、PCl溶解度显著降低。 为探究RES-2PClH2O共晶水合物形成后白藜芦醇、PCl溶出速率变化,对比在纯水与pH 4.5缓冲液2种介质中共晶水合物与原料药的溶出速率。溶出结果表明PCl作为白藜芦醇共晶形成的共形成物,显著促进白藜芦醇的释放同时延缓PCl的释放。本研究阐明了PCl作为白藜芦醇药物共晶形成物的可行性,为利用共结晶技术开发白藜芦醇药物共晶提供新的借鉴。

  • 脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    巯基乙酸钙盐三水合物 CAS号:5793-98-6 分子式:C2H8CaO5S 分子量 184 结构式http://ng1.17img.cn/bbsfiles/images/2017/10/2016042817011772_01_1490617_3.png 《化妆品安全技术规范》(2015年版)当中,3.9巯基乙酸第三法——化学滴定法的反应方程如下:https://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_670059_1490617_3.png 原理是https://ng1.17img.cn/bbsfiles/images/2016/04/201604281715_591808_1490617_3.png 该方法的适用范围中这样描述:本方法适用于脱毛类、烫发类和其他发用类化妆品中巯基乙酸及其盐类和酯类含量的测定。客户委托了一款产品,要求按照巯基乙酸钙含量出报告,含量计算公式中有一个系数0.184,描述是1mmol碘溶液相当于巯基乙酸钙的克数,这样显然其指的巯基乙酸钙不是CAS:814-71-1 分子式C4H6CaO4S2(分子量222.3),不知道巯基乙酸钙盐三水合物是否依然按照上述原理与碘反应。 求高手指教,前辈指点!谢谢

  • 水合物中的水

    [color=#444444]质谱可以打出水合物中的水吗,[color=#444444]比如五水合物质谱上最大的峰是含水的还是不含水的呀,真心求问。[/color][/color]

  • 【求助】气相出口居然还会形成水合物?

    HYSYS模拟低温分离器,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口居然还会形成水合物,怎么办啊?这是用HYSYS模拟现场集输的问题。流程为天然气和乙二醇混合,节流,进低温分离器,节流前后无水合物形成,但分离后,由于乙二醇被分走了,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口温度又低,水合物公用工具显示的水合物形成的温度和压力都在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]物流的温度和压力范围内,经换热器仍然是这个效果,人家总不能形成水合物还往外输吧?但是水露点和烃露点又都很低小于-10度。请高手给点思路,希望您不要惜字如金啊,有什么想法都可以说的!

  • 天然气水合物勘查开发产业化面临的挑战和建议

    [align=center]天然气水合物勘查开发产业化面临的挑战和建议[/align][align=center][size=15px]吴能友 叶建良 许振强 谢文卫 梁金强 王宏斌 刘昌岭 [/size][/align][align=center][size=15px] 胡高伟 孙治雷 [/size][size=15px]李彦龙 黄丽 [/size][/align][size=14px]1.天然气水合物勘查开发工程国家工程研究中心,中国地质调查局广州海洋地质调查局;[/size][align=center][size=14px]2.自然资源部天然气水合物重点实验室,中国地质调查局青岛海洋地质研究所[/size][size=15px][/size][/align][size=15px]能源安全是关系到国家经济社会发展的全局性、战略性问题。发展清洁能源,是改善能源结构、保[/size][size=15px]障能源安全、推进生态文明建设的重要任务。天然气水合物(俗称“可燃冰”)是一种由水和气体分子(主要是甲烷)在低温高压下形成的似冰状的固态结晶物质,是21世纪最有潜力的清洁替代能源。自1961年苏联首次在西西伯利亚麦索亚哈油气田的冻土层中发现自然界产出的天然气水合物以来,全球累计发现超过230个天然气水合物赋存区,广泛分布在水深大于300m的深海沉积物和陆地永久冻土带中。据估计,天然气水合物中的甲烷资源量约为2.0×10[size=12px]16[/size]m3(Kvenvolden,1988),其含碳量约为当前已探明化石燃料(煤、石油和天然气)总量的两倍。因此,加快推进天然气水合物勘查开发产业化进程,对保障国家能源安全供应、改善能源生产和消费结构、推动绿色可持续发展具有极其重大的现实意义。[/size]01国内外研究现状和发展趋势[size=15px]目前,全球已有30余个国家和地区开展天然气水合物研究。中国、美国、日本、韩国和印度等国制[/size][size=15px]定了国家级天然气水合物研究开发计划,美国、日本等率先启动开发技术研究,并于2002年开始在陆域和海域进行多次试验性开采,取得了重要进展。[/size][size=15px]纵观世界各国天然气水合物勘查开发研究勘查历程(图1),大致可归纳为三个阶段。第一阶段[/size][size=15px](1961—1980年),主要目标是证实天然气水合物在自然界中存在,美国布莱克海台、加拿大麦肯齐三角洲的天然气水合物就是在这一时期发现的。第一阶段研究认为,全球天然气水合物蕴含的甲烷总量在10[size=12px]17[/size]~10[size=12px]18[/size]m3量级(表1)。这一惊人数据给全球天然气水合物作为潜在能源资源调查研究注入了一针强心剂。第二阶段(1980—2002年),开展了以圈定分布范围、评估资源潜力、确定有利区和预测资源量远景为主要目的的天然气水合物调查研究。该阶段,随着调查程度的逐渐深入和资源量评估技术的不断进步,全球天然气水合物所含的天然气资源量预测结果降低至10[size=12px]14[/size]~10[size=12px]16[/size]m3量级,但数据差异很大(表1)。第三阶段(2002年至今),天然气水合物高效开采方法研究成为热点,国际天然气水合物研发态势从勘查阶段转入勘查试采一体化阶段。2002年,加拿大主导在Mallik5L—38井进行储层降压和加热分解测试,证明水合物储层具有一定的可流动性,单纯依靠热激发很难实现天然气水合物的高效生产。目前,中国、美国、日本、印度、韩国是天然气水合物勘查与试采领域最活跃的国家。[/size][align=center][size=15px][img]https://img.antpedia.com/instrument-library/attachments/wxpic/b1/db/eb1dbd7333b27ced746350e5fd63e438.png[/img][/size][/align][align=center][size=14px]图1 国内外天然气水合物资源勘查开发历程[/size][/align][align=center][size=14px]表1 全球陆地永久冻土带和海洋中的天然气水合物资源量[/size][/align][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/f5/3d4f5d650651c92996cc9731f194eda2.png[/img][/align][size=15px]总的看来,天然气水合物资源量巨大,但其资源品位差、赋存沉积物聚集程度弱,现有技术条件下[/size][size=15px]的资源经济可采性差(吴能友等,2017)。近年来,国内外在天然气水合物开采方法与技术的室内实验模拟、数值模拟、现场试采等方面,都取得了重要的进展。基于对天然气水合物储层孔渗特征、技术可采难度的认识,国际学术界普遍认为,砂质天然气水合物储层应该是试采的优选目标,其处于天然气水合物资源金字塔的顶端(图2)。因此,日本在2013年和2017年的海域天然气水合物试采也都将试采站位锁定在海底砂质沉积物中。前期印度、韩国的天然气水合物钻探航次也将寻找砂层型水合物作为重点目标,以期为后续的试采提供可选站位。我国在早期天然气水合物钻探航次和室内研究中,也大多瞄准赋存于砂层沉积物中的天然气水合物。[/size][align=center][size=15px][img]https://img.antpedia.com/instrument-library/attachments/wxpic/59/76/4597680e28410e6a296005b34bde9882.png[/img][/size][/align][align=center][size=14px]图2 天然气水合物资源金字塔[/size][/align][size=15px]然而,全球天然气水合物总量的90%以上赋存于海底泥质粉砂或粉砂质泥沉积物中。2017年,我国[/size][size=15px]在南海北部陆坡开展的泥质粉砂型天然气水合物试采获得了成功(Lietal.,2018),证明赋存于海底黏土质粉砂中的沉积物也具备技术可采性,从而扭转了国际水合物研究界的常规认识。这是我国天然气水合物勘查开发研究从跟跑到领跑的重要标志。然而,无论是我国首次海域天然气水合物试采,还是国外历次水合物试采,均处于科学试验阶段,要真正实现产业化还有很多关键技术需要解决。2020年,我国采用水平井实现第二轮水合物试采,连续稳定产气30d,累计产气86.14×10[size=12px]4[/size]m3(叶建良等,2020)。一方面,进一步证实泥质粉砂水合物储层开采具可行性;另一方面,充分说明水平井等新技术应用对提高天然气水合物产能至关重要。[/size][size=15px]在我国天然气水合物试采成功后,美国加大资金投入开展墨西哥湾天然气水合物资源调查,并计划[/size][size=15px]在阿拉斯加北坡开展长周期试采。美国能源部甲烷水合物咨询委员会在致美国能源部部长的信中写道:“尽管美国在天然气水合物相关技术领域处于领先地位,但正面临着来自中国、日本、印度的挑战。”日本致力于实现天然气水合物的商业开采,但许多技术问题尚待解决,正积极寻求与其他国家合作,提出了在2023—2027年实现商业化开发的目标。印度联合美国、日本在印度洋开展资源调查工作,计划实施试采。美国康菲石油公司和雪佛龙公司、英国石油公司、日本石油天然气和金属公司、韩国国家石油公司和天然气公司以及印度石油和天然气公司等能源企业参与热情也空前高涨。由此可见,在天然气水合物勘查开发这一领域的国际竞争日趋激烈,产业化进程将进一步加快。[/size][size=15px]总体上,国际天然气水合物勘查开发呈现出以下趋势。一是纷纷制定天然气水合物开发计划。从国[/size][size=15px]家能源安全、国家经济安全、战略科技创新等角度出发,中国、美国、日本、印度、韩国等国家制定了国家级天然气水合物勘查开发计划,加大投入、加快推进。二是从主要国家天然气水合物产业化进程看,已从资源勘查发现向试采技术攻关、产业化开发转变。特别是,在我国海域两轮试采成功的引领下,进一步加强技术攻关和试采准备。[/size]02[font=微软雅黑, sans-serif]天然气水合物试采面临的产能困局[/font][size=15px]实现天然气水合物产业化,大致可分为理论研究与模拟试验、探索性试采、试验性试采、生产性试采、[/size][size=15px]商业开采五个阶段。在各国天然气水合物勘探开发国家计划的支持下,迄今已在加拿大北部麦肯齐三角洲外缘的Mallik(2002年,2007—2008年)、阿拉斯加北部陆坡的IgnikSikumi(2012年)、中国祁连山木里盆地(2011年,2016年)(王平康等,2019)三个陆地冻土区和日本东南沿海的Nankai海槽(2013年,2017年)、中国南海神狐(2017年,2020年)两个海域成功实施了多次试采(表1)。[/size][size=15px]2002年、2007年、2008年在加拿大Mallik冻土区采用了加热法和降压法进行开采试验,但是由于[/size][size=15px]效率低和出砂问题被迫中止。2012年,在美国阿拉斯加北坡运用降压法和CO[size=12px]2[/size]置换法进行开采试验,同样效率不高(Boswelletal.,2017)。2013年、2017年日本在南海海槽进行了开采试验。2013年,日本在南海海槽首次实施天然气水合物试采,维持了6d因出砂问题而被迫中止;2017年,实施第二次试采,第一口井再次因出砂问题而停产,第二口井产气24d,产气量约20×10[size=12px]4[/size]m[size=12px]3[/size],两口井的产量都未获有效提高(Yamamotoetal.,2019),表明生产技术仍有待改进。2017年、2020年我国在南海神狐海域进行了开采试验。2017年,针对开采难度最大的泥质粉砂储层,在主动关井的情况下,试采连续稳产60d,累计产气量30.90×10[size=12px]4[/size]m[size=12px]3[/size],创造了连续产气时长和产气总量两项世界纪录,试采取得了圆满成功(Lietal.,2018);2020年,攻克了深海浅软地层水平井钻采核心技术难题,连续稳定产气30d,累计产气86.14×10[size=12px]4[/size]m[size=12px]3[/size],创造了累计产气总量和日均产气量两项新的世界纪录(叶建良等,2020),提高了产气规模,实现了从“探索性试采”向“试验性试采”的重大跨越,向产业化迈出了极为关键的一步。[/size][size=15px]目前,我国已将天然气水合物产业化开采作为攻关目标。天然气水合物能否满足产业化标准,一方[/size][size=15px]面取决于天然气价格,另一方面取决于产能。这里,我们仅从技术层面考虑提高天然气水合物产能,采用固定产能作为天然气水合物产业化的门槛产能标准。天然气水合物产业化开采产能门槛值应该不是一个确定的数值,随着低成本开发技术的发展而能够逐渐降低。国内外研究文献普遍采用的冻土区天然气水合物产业化开采产能门槛值是3.0×10[size=12px]5[/size]m[size=12px]3[/size]/d,海域天然气水合物产业化开采产能门槛值为5.0×10[size=12px]5[/size]m[size=12px]3[/size]/d(Huangetal.,2015)。图3对比了当前已有天然气水合物试采日均产能结果与上述产能门槛值之间的关系(吴能友等,2020)。由图可见,当前陆域天然气水合物试采最高日均产能约为产业化开采产能门槛值的1/138,海域天然气水合物试采最高日均产能约为产业化开采产能门槛值的1/17。因此,目前天然气水合物开采产能距离产业化开采产能门槛值仍然有2~3个数量级的差距,海域天然气水合物试采日均产能普遍高于陆地永久冻土带试采日均产能1~2个数量级。[/size][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c0/61/0c0612ef00f7d45e957709c1ae9abdfa.png[/img][/align][align=center][size=14px]图3 已有天然气水合物试采日均产能与产业化门槛产能值之间关系[/size][/align]03我国天然气水合物产业化面临的工程科学与技术问题[size=15px]我国南海天然气水合物资源极为丰富。从勘查角度而言,南海天然气水合物赋存类型多样,成矿地[/size][size=15px]质条件复杂,勘查难度较大,现有的勘查技术水平无法满足高精度探测和及时、准确获取原位参数的需求,制约了资源高效勘探及精细评价。从开发角度来说,天然气水合物储层中甲烷存在固—液—气三相。在开采过程中将发生甲烷的复杂相态变化,决定了其开采方案将不同于常规油气田。研究分析不到位,天然气水合物产能提升的路径选择和开采效果将受到影响,严重时可导致工程地质灾害及环境安全问题。[/size][size=15px]当然,天然气水合物作为一个新兴矿种,勘查开发产业化很大程度上还涉及市场和政策制度保障因素。[/size][size=15px]但是,从工程科学与技术角度出发,我们亟须针对不同成因类型、不同储层类型的天然气水合物开展精细勘探及原位探测,深化储层认识,优化开采理论,加大开采工程化理论研究、工程技术和装备攻关力度,构建天然气水合物开采安全保障技术体系,建立智能化环境监测及评价体系,促进天然气水合物勘查开发产业化进程。[/size][size=15px]3.1 高精度勘探及储层原位探测技术亟待加强[/size][size=15px]目前,天然气水合物主要发现于陆域冻土区和海洋深水沉积物中,其中海洋集中了世界上99%的天[/size][size=15px]然气水合物资源。天然气水合物的稳定存在需要特殊的温压条件,其在海洋中具有水深大、埋藏浅、垂向多层分布、横向变化大等特点,造成高精度勘探和储层原位探测的难度大幅度增大。[/size][size=15px]当前,海域天然气水合物勘查技术的精度及水平,距产业化开发的需求仍有一定差距,关键技术难[/size][size=15px]题体现在三个方面。①矿体成像精度不够、精细刻画难。常规的地震勘探系统纵、横向分辨率有限,不能完全满足矿体精细刻画的需求,现有的近海底高精度探测装备技术体系有待完善,矿体高精度勘探技术水平有待提升。②储层原位探测存在瓶颈。现有的取样钻具难以实现高保真天然气水合物取样,地面测试设备尚不健全,无法准确获取原位温压条件下储层物性参数,严重影响了资源量计算精度。③保压取样钻具、随钻测井等关键核心技术和装备仍受制于人。因此,亟须大力推进高精度探测、储层原位探测、随钻测井、保温保压取样与带压测试等方向的关键技术自主研发,实现天然气水合物矿体精细刻画和原位探测取样及测试,为产业化提供资源保障。[/size][size=15px]3.2 储层渗流规律、产能调控关键技术研究亟待深化[/size][size=15px]摸清储层物性演化、多相流体运移规律、固液作用以及储层中天然气水合物相态变化等关键开发规律,[/size][size=15px]是提高天然气水合物开采产能的重要因素。以上关键地质规律的探索,离不开降压开采储层多孔介质中气—水两相渗流规律、天然气水合物相变机制及多相流运移等方面的储层实验模拟研究。[/size][size=15px]当前,天然气水合物实验与模拟的仪器和技术水平尚不能支撑高效、经济的开发,主要体现在四个[/size][size=15px]方面。①未固结特低渗透率储层产能评价存在技术瓶颈。泥质粉砂型天然气水合物属于特低渗透率储层,针对这类储层的模拟技术国外鲜有经验可循,且现有产能评价软件没有相关模型算法,无法开展准确的产能模拟。②天然气水合物储层渗流能力改善方法和手段有待探索。天然气水合物分解后,储层气、液、固存在运移不畅难题,泥质粉砂储层多相流运移机理不明,目前无法有效改善储层渗流能力,极大制约了天然气水合物的开采效率。③天然气水合物开发产能调控难,天然气水合物开采效率与生产机制匹配度有待提高。④天然气水合物开发井眼轨迹与产能关系有待深入研究。因此,亟须针对不同储层类型的天然气水合物,结合应力、温度、压力、饱和度等多场耦合机制研究,开展关键实验模拟技术探索,在厘清未固结泥质粉砂型复杂渗流特征、研究泥质粉砂储层多相流运移技术等基础上,更有针对性地研发适合我国天然气水合物储层特点的改造技术。[/size][size=15px]3.3 开发钻完井、储层改造、防砂技术亟待突破[/size][size=15px]天然气水合物储层埋藏浅、未固结、温度低,地质“甜点”横向展布和纵向分布非均质性强。首次[/size][size=15px]试采中采用的直井井型实现了探索性试采,第二轮试采采用单井水平井技术大幅度提高了产能,实现了试验性试采,但要进一步提高产气规模、实现经济高效开采,安全高效钻完井、储层增产改造、完井防砂、人工举升和流动保障等面临巨大挑战。[/size][size=15px]当前,亟须解决的关键技术问题包括四个方面。①需探索采用对接井、多分支井、群井等国际空白[/size][size=15px]工艺井型,增加井眼与储层的接触面积,进一步提高产气规模。井型结构对产能的影响研究表明,采用垂直井进行开采,选择恰当的降压方案、井眼类型或井壁厚度等都能一定程度上提升产能,但不足以有量级的突破。从短期现场试采和长期数值模拟结果来看,单一垂直井降压很难满足产业化开采需求。以水平井和多分支井为代表的复杂结构井在未来水合物产业化进程中将有不可替代的作用。水平井能扩大水合物分解面积,但受成本、技术难度限制,超长井段水平井仍然存在困难。以多分支井为代表的复杂结构井被认为是实现水合物产能提升的关键(图4)(吴能友等,2020)。为了充分发挥多井协同效应,并在短期内快速达到产业化开采产能的目标,日本天然气水合物联盟MH21提出了多井簇群井开采方案,其基本思路是:基于同一个钻井平台,利用井簇形式将整个储层进行分片区控制,每组井簇包含一定数量的垂直井井眼并控制一定的储层范围,多井同步降压。目前,特殊工艺井建井地层垂向造斜空间有限、承压能力低,管柱摩阻大,井眼极限延伸距离有限,仍需进一步深化定向井技术工艺和配套工具研究。[/size][size=15px]针对实际天然气水合物储层,应优化多井簇群井开采方法,发展多井型井网开发模式和大型“井工厂”作业模式,在增大网络化降压通道的同时,辅以适当的加热和储层改造,通过建立海底井工厂,实现天然气水合物资源的高效、安全开发利用。此外,针对存在深层天然气的水合物储层,可形成深层油气—浅层水合物一体化开发技术。但需注意的是,在大力发展海底井工厂等集成作业模式,提高生产效率的同时,必须要兼顾环境友好及经济性。②储层改造技术是增加产气通道、提高通道导流能力、提高低渗非均质地层产能的重要手段,但目前该技术面临地层未胶结成岩、泥质含量高、塑性强、储层改造机理不明确等问题,改造后难以维持通道导流的能力,亟须开展增产机理和储层改造工艺研究。③天然气水合物储层砂粒径小、地层未胶结易垮塌,实际开采面临出砂易堵塞气流通道、出砂机理不明确、防砂精度要求高等技术难点,需进一步开展砂粒径小、地层未胶结易垮塌的天然气水合物储层出砂机理研究,建立完井防砂技术体系,确保长周期、大产量稳定生产。④天然气水合物开采过程中三相运移规律复杂,容易发生井筒积液和沉砂;同时,伴随天然气水合物二次生成和冰的生成,需进一步开展开发过程中井筒和地层三相运移规律研究,形成大规模产气条件下的排水采气关键技术体系。因此,需进一步加大特殊井型工艺和配套设备研究,加强深水浅软未固结储层增产、防砂、流动保障等技术攻关。[/size][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/32/0b/a320bdcf5e03048b891d5da040acdaaa.png[/img][/align][align=center][size=14px]图4 多井簇群井开采天然气水合物概念图[/size][/align][size=15px]3.4 开采安全保障技术体系亟待构建[/size][size=15px]南海天然气水合物储层埋藏浅、固结弱、聚集程度差,天然气水合物开采过程中储层强度降低、地[/size][size=15px]层应力扰动加剧、地层物质持续亏空,可能会诱发泥砂产出、井壁失稳、海底沉降、井筒堵塞等一系列潜在风险,对天然气水合物安全开采带来了极大挑战(吴能友等,2021;Wuetal.,2021)。如果开采过程中控制不当,甲烷释放到海水甚至至大气中,将引起海洋酸化、全球变化等环境问题。随着未来天然气水合物开采周期的延长、规模的扩大,上述环境风险的发生概率进一步增大,将威胁生产安全和环境安全。[/size][size=15px]目前,天然气水合物开采安全风险演化模式研究极为零散,没有形成系统性的认识,未来水合物资[/size][size=15px]源的规模化开发面临极大的不确定性,亟须构建针对突出地质、工程和环境风险的安全保障技术体系。主要技术难点体现在三个方面。[/size][size=15px](1)与常规成岩储层相比,南海天然气水合物储层开采过程中,安全风险最大的独特性体现在水合[/size][size=15px]物分解过程中储层存在蠕变,储层的微观孔隙结构、宏观应变位移都具有极强的时变性,而微观结构、宏观位移则直接影响了地层泥砂迁移、井壁垮塌和海底沉降的发生和发展(吴能友等,2021)。因此,无论是构建海洋天然气水合物开采的泥砂迁移规律预测模型,还是构建井筒失稳和海底沉降规律预测模型,都必须以厘清海洋天然气水合物储层的蠕变特性为前提。因此,构建泥砂产出调控、井壁垮塌控制和海底非均匀沉降控制方法的难点,是必须时刻考虑天然气水合物地层的蠕变效应,随时修正调控/控制方法,做到对安全风险的动态闭环调控。[/size][size=15px](2)泥砂产出、井壁垮塌都会导致固相颗粒大规模侵入生产井筒,给井底工作设备造成巨大的压力。[/size][size=15px]砂沉导致井筒被埋,使试采安全受到直接威胁。然而,对于海洋天然气水合物开采而言,不仅面临上述泥砂磨损、堵塞的挑战,还面临二次水合物生成导致的“冰堵”风险,且泥堵和冰堵之间存在显著的耦合效应。从地层流入井筒的泥砂原本就是赋存天然气水合物的介质,一旦井底温度压力条件满足二次形成水合物的条件,这些产出的泥砂将为水合物的二次聚集提供附着点,极大地增加了水合物开采引起井底堵塞的风险(Wuetal.,2021)。因此,厘清泥砂与二次水合物堵塞之间的耦合关系,对于制定合理的水合物开采井底防堵、解堵方法至关重要。[/size][size=15px](3)环境保护技术体系有待完善,监测技术难以实现对天然气水合物开发前、中、后期储层—海底—[/size][size=15px]海水—大气全方位、长周期、大范围、实时立体的监测。现有的无缆绳通讯数据传输技术受海况影响大,监测精度及长期稳定运行难以保证。海底监测组网技术不成熟,难以实现开采区域范围内的阶梯分布和有效覆盖,监测数据无法实时传输。因此,研发监测技术装备,建立“井下、海底、水体、大气”四位一体的智能化环境监测体系,确保开发过程中环境安全极为重要。[/size]04结论和建议[size=15px]国际天然气水合物研发态势从勘查阶段转入勘查试采一体化阶段。我国经过20年的不懈努力,已经[/size][size=15px]比较系统地建立了天然气水合物勘查开发理论、技术和装备体系,积累了深厚的技术储备、创新平台、软硬件条件、人才队伍等基础,为推进天然气水合物资源勘查开发产业化进程提供了重要保障。但从勘查评价、实验模拟、工程开发、安全保障工程技术与装备角度分析,仍有不少问题。实现天然气水合物安全高效开发是一项极为复杂的系统性工程,涉及理论、技术、装备等众多方面,制约天然气水合物高效开发之根本,是关键技术尚未突破,尤其是高精度勘查、储层产能模拟、开发工程技术、安全保障和环境防护等技术亟待攻关。为此,提出以下建议。[/size][size=15px](1)瞄准天然气水合物产业化推进中的重大技术难题,突破关键核心技术和重大装备等瓶颈制约。[/size][size=15px]①要加大南海天然气水合物资源调查力度,开展南海区域性资源调查评价,查明资源家底;开展重点海域普查,落实资源量;开展重点目标区详查,明确地质储量,为推进产业化奠定坚实的资源基础。②要开展不同类型天然气水合物试采,研发适应不同类型特点的试采工艺和技术装备;开展重点靶区试采,建立适合我国资源特点的开发技术体系。③要把加强安全保障和环境保护放在突出位置,围绕安全和环境保护进一步完善理论技术方法体系,为安全可控的资源开发创造条件;持续开展环境调查与监测,获取海洋环境参数,评价天然气水合物环境效应;加强环境保护与安全生产技术研发,实现天然气水合物绿色开发。④将南海神狐先导试验区打造成高质量发展样板,加快建设天然气水合物勘查开采先导试验区。[/size][size=15px](2)围绕天然气水合物产业化目标,加强多科学交叉、多尺度融合,充分利用天然气水合物勘查开[/size][size=15px]发工程国家工程研究中心和自然资源部天然气水合物重点实验室等科技创新平台,着眼加快重大科技成果的工程化和产业化,为各类创新主体开展技术成熟化、工程化放大和可靠性验证等提供基础条件,促进提高科技成果转化能力和转化效益。①海洋天然气水合物开采增产理论和技术的实验模拟、数值模拟和研究要向“更宏观”和“更微观”的两极发展,揭示目前中尺度模拟无法发现的新机理;研究手段要从“多尺度”向“跨尺度”联动,带动基础理论的发展和开发技术的进步。②要加强天然气水合物开发学科体系建设。学科体系建设是培养后备人才,保证海洋天然气水合物开发研究“后继有人”的必然要求。天然气水合物开发学科体系包括天然气水合物开发地质学(储层基础物性与精细刻画、开采目标优选与产能潜力评价、开发地球物理学、开发工程地质风险理论)、天然气水合物开发工程学(开发工程地质风险调控技术、储层多相渗流理论基础、增产理论与技术、海工装备开发)和下游学科(集输、储运、利用等)。③要特别重视现场开采调控技术对地质—工程—环境一体化的需求升级。在开采过程中,地质条件和环境因素共同制约了水合物开采效率的“天花板”。我们既要实现多快好省开采水合物及其伴生气的工程目标,又要注意可能承受不了工程折腾太“凶”的地质条件限制,更要关注悬在公众心中的一把“利剑”的环境风险。长期开采条件下的工程地质风险预测技术、安全保障技术与环境监测技术装备的研发势在必行,要从室内模拟→多尺度预测→原位监测→开采风险预警→一体化调控方案,建立完整的研究链条。[/size][size=15px](3)提升产学研用协同创新的效能,深化体制机制改革和创新。①探索建立以知识、技术、数据为[/size][size=15px]生产要素,由市场评价贡献、按贡献决定报酬的机制,激发科技人员推动技术创新和科技成果转化的积极性、主动性和创造性。②以建立国家战略科技力量为目标,坚持合作开放,充分发挥国内外优势力量,联合高校、科研院所、企业,组建多学科交叉的协同创新团队,构建协同创新体系,共同推进天然气水合物勘查开发产业化。③要推进天然气水合物勘查开发科技成果快速、有效转化,实现核心技术与装备的国产化、工程化。[/size]

  • 【讨论】请教关于水合物的结构

    [size=4][color=#00008B]最近做硝酸盐水合物的XRD,发现本应含两个结晶水,得到的谱图是含六个结晶水的,有没有这种可能,因为有其他非水小分子存在,将两个结晶水的物质重新结晶成六个结晶"水"的结构。麻烦遇到相似情况的给我辅导一下,万分感激![/color][/size]

  • 【谱图】水合物DSC图谱鉴别

    【谱图】水合物DSC图谱鉴别

    [img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007061023_228948_1165844_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007061024_228949_1165844_3.jpg[/img]根据以上图谱可以得出什么结论?据称第一个图是八水合物,第二个是九水物,八水物含水量为22%,九水物含水量为24%。如果含水量有区别可不可以根据DSC得出这是两种不同的晶型?

  • 部分水合物标准如何进行定量分析?

    用户如果购买了氯唑青霉素钠水合物(氯唑西林钠,邻氯青霉素钠) 标准品,进行定性分析时没有问题,但是里面没有明确是一水化合物还是二水化合物等,只是 氯唑青霉素钠xH2O,如题,这个标准品配成溶液后如何进行定量分析?

  • 请问测甲醛用的酚试剂到底是3-甲基-2-苯并噻唑酮腙盐酸盐还是其水合物

    98.0%(HPLC)(T) 分子式(M.F.) / 分子量(M.W.) C8H9N3S·HCl / 215.70 CAS编码 4338-98-1 相关CAS编码 149022-15-1,38894-11-0 第一个是别名 (英文)MBTH Hydrochloride Hydrate 别名 (英文)Sawicki's Reagent Hydrate 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐水合物 中文别名3-甲基-2-苯并噻唑啉腙盐酸盐水合物 第二个是别名 (英文)MBTH Hydrochloride 别名 (英文)Sawicki's Reagent 中文名3-甲基-2-苯并噻唑啉酮腙盐酸盐 中文别名MBTH盐酸盐 中文别名Sawicki's试剂

  • CNS_01.307_碳酸氢钾

    [size=18px]龙思如[/size][align=center][size=20px]2021[/size][size=20px]年[/size][size=20px]7[/size][size=20px]月[/size][size=20px]25[/size][size=20px]日[/size][/align][align=center][/align][align=center][font='times new roman'][size=21px]碳酸氢钾[/size][/font][/align][font='黑体'][size=18px]摘要:[/size][/font][font='times new roman'][size=16px]受烘焙、食品添加剂及畜牧业等应用的驱动,预计未来碳酸氢钾的需求量会保持持续增长。国内碳酸氢钾主要消费领域是食品领域,[/size][/font][font='times new roman'][size=16px]2018[/size][/font][font='times new roman'][size=16px]年消费量[/size][/font][font='times new roman'][size=16px]0.27[/size][/font][font='times new roman'][size=16px]万吨,占我国总消费量的[/size][/font][font='times new roman'][size=16px]32.45[/size][/font][font='times new roman'][size=16px]%,预计[/size][/font][font='times new roman'][size=16px]2023[/size][/font][font='times new roman'][size=16px]年消费量将达到[/size][/font][font='times new roman'][size=16px]0.15[/size][/font][font='times new roman'][size=16px]万吨,占总消费量的[/size][/font][font='times new roman'][size=16px]38.70[/size][/font][font='times new roman'][size=16px]%。而食品添加剂主要是烘焙领域、酸度调节剂领域代替碳酸氢钠的使用,其次是农业化肥、畜牧业、纸浆处理、灭火器等。[/size][/font][font='times new roman'][size=18px]关键词[/size][/font][font='times new roman'][size=18px]:[/size][/font][font='times new roman'][size=16px]碳酸氢钾[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]食品添加剂[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]膨松剂[/size][/font][font='times new roman'][size=16px] [/size][/font]1、 [font='times new roman'][size=16px]碳酸氢钾简介[/size][/font][font='times new roman'][size=16px]碳酸氢钾,英文名称为[/size][/font][font='times new roman'][size=16px]Potassiumbicarbonate[/size][/font][font='times new roman'][size=16px],中文别名为重碳酸钾,[/size][/font][font='times new roman'][size=16px]CAS[/size][/font][font='times new roman'][size=16px]号为[/size][/font][font='times new roman'][size=16px]298-14-6[/size][/font][font='times new roman'][size=16px],分子式为[/size][/font][font='times new roman'][size=16px]KHCO3[/size][/font][font='times new roman'][size=16px],分子量为[/size][/font][font='times new roman'][size=16px]100.114[/size][/font][font='times new roman'][size=16px],用作生产碳酸钾、醋酸钾、亚砷酸钾等的原料,亦用于医药、食品、灭火剂等行业。[/size][/font][font='times new roman'][size=16px]还可作为酸度调节剂、优质水溶性肥料。化学膨松剂以及各类需添加膨松剂的食品等,[/size][/font][font='times new roman'][size=16px]本文主要讨论碳酸氢钾在食品添加剂——膨松剂中的应用。[/size][/font][font='times new roman'][size=16px]全球碳酸氢钾产能基本保持稳定,[/size][/font][font='times new roman'][size=16px]2010-2013[/size][/font][font='times new roman'][size=16px]年间产量持续增长,[/size][/font][font='times new roman'][size=16px]2014-2018[/size][/font][font='times new roman'][size=16px]年,受到在烘焙、食品添加剂及畜牧业等方面的应用的驱动,需求快速上升,预计未来几年仍然保持快速增长的趋势。[/size][/font]2、 [font='times new roman'][size=16px]碳酸氢钾[/size][/font][font='times new roman'][size=16px]理化性质[/size][/font][font='times new roman'][size=16px]食品级碳酸氢钾是一种众所周知的商品,有许多用途,如用于发酵粉、在不含酒精饮料中作泡腾盐、灭火剂以及各种各样的药物用途,如处理过量酸度。目前,大批量得到的碳酸氢钾是很细的晶体或附聚物,它呈不规则形状,表面粗糙,填充和流动性差,容易造成粉尘和结块问题。近来提出用食品级碳酸氢钾作为治疗骨质疏松症或高血压的活[/size][/font][font='times new roman'][size=16px]性成分。[/size][/font][table][tr][td][font='宋体'][size=16px]密度[/size][/font][/td][td][font='宋体'][size=16px]2.428g/cm3[/size][/font][/td][/tr][tr][td][font='宋体'][size=16px]闪点[/size][/font][/td][td][font='宋体'][size=16px]111[/size][/font][font='宋体'][size=16px]℃[/size][/font][/td][/tr][tr][td][font='宋体'][size=16px]外观[/size][/font][/td][td][font='宋体'][size=16px]白色结晶性粉末[/size][/font][/td][/tr][tr][td][font='宋体'][size=16px]熔点[/size][/font][/td][td][font='宋体'][size=16px]891[/size][/font][font='宋体'][size=16px]℃[/size][/font][/td][/tr][tr][td][font='宋体'][size=16px]PSA[/size][/font][/td][td][font='宋体'][size=16px]63.19000[/size][/font][/td][/tr][tr][td][font='宋体'][size=16px]溶解性[/size][/font][/td][td][font='宋体'][size=16px]易溶于水,水溶液呈碱性,不溶于乙醇、丙酮和乙醚[/size][/font][/td][/tr][/table][align=center][font='times new roman'][size=16px]表[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]:碳酸氢钾理化性质表[/size][/font][/align][table][tr][td=9,1][align=center][font='宋体'][size=16px]碳酸[/size][/font][font='宋体'][size=16px]氢[/size][/font][font='宋体'][size=16px]钾在水中的溶解度[/size][/font][/align][/td][/tr][tr][td][font='宋体'][size=16px]温度[/size][/font][/td][td][font='宋体'][size=16px]0[/size][/font][/td][td][font='宋体'][size=16px]10[/size][/font][/td][td][font='宋体'][size=16px]20[/size][/font][/td][td][font='宋体'][size=16px]30[/size][/font][/td][td][font='宋体'][size=16px]40[/size][/font][/td][td][font='宋体'][size=16px]60[/size][/font][/td][td][font='宋体'][size=16px]80[/size][/font][/td][td][font='宋体'][size=16px]100[/size][/font][/td][/tr][tr][td][font='宋体'][size=16px]溶解度[/size][/font][/td][td][font='宋体'][size=16px]107.0[/size][/font][/td][td][font='宋体'][size=16px]109.0[/size][/font][/td][td][font='宋体'][size=16px]110.0[/size][/font][/td][td][font='宋体'][size=16px]114.0[/size][/font][/td][td][font='宋体'][size=16px]117.0[/size][/font][/td][td][font='宋体'][size=16px]126.0[/size][/font][/td][td][font='宋体'][size=16px]139.0[/size][/font][/td][td][font='宋体'][size=16px]156.0[/size][/font][/td][/tr][/table][align=center][font='times new roman'][size=16px]表[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]:碳酸氢钾溶解度[/size][/font][/align][align=left]3、 [font='times new roman'][size=16px]碳酸氢钾的[/size][/font][font='times new roman'][size=16px]制备[/size][/font][font='times new roman'][size=16px]方法[/size][/font][/align][font='times new roman'][size=16px]化学方法制备碳酸氢钾[/size][/font][font='times new roman'][size=16px]:[/size][/font][font='times new roman'][size=16px]第[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]步,取碱液废水[/size][/font][font='times new roman'][size=16px]5.0kg[/size][/font][font='times new roman'][size=16px],其[/size][/font][font='times new roman'][size=16px]K+[/size][/font][font='times new roman'][size=16px]浓度为[/size][/font][font='times new roman'][size=16px]251.6mg/L([/size][/font][font='times new roman'][size=16px]以[/size][/font][font='times new roman'][size=16px]K2O[/size][/font][font='times new roman'][size=16px]计[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]Na+[/size][/font][font='times new roman'][size=16px]浓度[/size][/font][font='times new roman'][size=16px]180.0mg/L([/size][/font][font='times new roman'][size=16px]以[/size][/font][font='times new roman'][size=16px]Na2O[/size][/font][font='times new roman'][size=16px]计[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]SiO32-[/size][/font][font='times new roman'][size=16px]浓度[/size][/font][font='times new roman'][size=16px]30.5mg/L([/size][/font][font='times new roman'][size=16px]以[/size][/font][font='times new roman'][size=16px]SiO2[/size][/font][font='times new roman'][size=16px]计[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]AlO2-[/size][/font][font='times new roman'][size=16px]浓度在[/size][/font][font='times new roman'][size=16px]18.2mg/L([/size][/font][font='times new roman'][size=16px]以[/size][/font][font='times new roman'][size=16px]Al2O3[/size][/font][font='times new roman'][size=16px]计[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]。在一个大气压[/size][/font][font='times new roman'][size=16px](1.0atm[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]101.3kPa)[/size][/font][font='times new roman'][size=16px]下,经磁力搅拌,通入[/size][/font][font='times new roman'][size=16px]CO2[/size][/font][font='times new roman'][size=16px]气体酸化碱液废水,待碱液废水[/size][/font][font='times new roman'][size=16px]pH[/size][/font][font='times new roman'][size=16px]值达[/size][/font][font='times new roman'][size=16px]7.8-8.2[/size][/font][font='times new roman'][size=16px],出现由[/size][/font][font='times new roman'][size=16px]Si[/size][/font][font='times new roman'][size=16px]杂质沉淀和[/size][/font][font='times new roman'][size=16px]Al[/size][/font][font='times new roman'][size=16px]杂质沉淀构成的白色沉淀,抽滤、洗涤,弃去白色沉淀,获得滤液[/size][/font][font='times new roman'][size=16px]A[/size][/font][font='times new roman'][size=16px];[/size][/font][font='times new roman'][size=16px]第[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]步,滤液[/size][/font][font='times new roman'][size=16px]A[/size][/font][font='times new roman'][size=16px]采用常压蒸发浓缩工艺,蒸发温度约[/size][/font][font='times new roman'][size=16px]100[/size][/font][font='times new roman'][size=16px]℃,滤液[/size][/font][font='times new roman'][size=16px]A[/size][/font][font='times new roman'][size=16px]密度从[/size][/font][font='times new roman'][size=16px]1.05[/size][/font][font='times new roman'][size=16px]g/cm3[/size][/font][font='times new roman'][size=16px]变至[/size][/font][font='times new roman'][size=16px]1.28g/cm3[/size][/font][font='times new roman'][size=16px],待温度将至室温,体系在室温下结晶[/size][/font][font='times new roman'][size=16px]2.0h[/size][/font][font='times new roman'][size=16px],出现大量白色晶体,即为含有结晶水的[/size][/font][font='times new roman'][size=16px]Na2CO3[/size][/font][font='times new roman'][size=16px]晶体;分离得到含有结晶水的[/size][/font][font='times new roman'][size=16px]Na2CO3[/size][/font][font='times new roman'][size=16px]晶体和滤液[/size][/font][font='times new roman'][size=16px]B[/size][/font][font='times new roman'][size=16px],对含有结晶水的[/size][/font][font='times new roman'][size=16px]Na2CO3[/size][/font][font='times new roman'][size=16px]晶体煅烧,煅烧温度[/size][/font][font='times new roman'][size=16px]300[/size][/font][font='times new roman'][size=16px]℃,时间[/size][/font][font='times new roman'][size=16px]2.0h[/size][/font][font='times new roman'][size=16px],获得[/size][/font][font='times new roman'][size=16px]Na2CO3[/size][/font][font='times new roman'][size=16px]产品[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]纯度[/size][/font][font='times new roman'][size=16px]99.9[/size][/font][font='times new roman'][size=16px]%,达到分析纯要求[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px];[/size][/font][font='times new roman'][size=16px]第[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]步,将滤液[/size][/font][font='times new roman'][size=16px]B[/size][/font][font='times new roman'][size=16px]置于高压釜中,加入高压[/size][/font][font='times new roman'][size=16px]CO2[/size][/font][font='times new roman'][size=16px],控制滤液[/size][/font][font='times new roman'][size=16px]B[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]pH[/size][/font][font='times new roman'][size=16px]值在[/size][/font][font='times new roman'][size=16px]7.0[/size][/font][font='times new roman'][size=16px],平衡压力[/size][/font][font='times new roman'][size=16px]P[/size][/font][font='times new roman'][size=16px]=[/size][/font][font='times new roman'][size=16px]0.3MPa[/size][/font][font='times new roman'][size=16px],结晶时间为[/size][/font][font='times new roman'][size=16px]2.0h[/size][/font][font='times new roman'][size=16px],此时,在[/size][/font][font='times new roman'][size=16px]K-Na-HCO3-[/size][/font][font='times new roman'][size=16px]溶液体系中亦出现晶体沉淀,分析结果,该晶体是[/size][/font][font='times new roman'][size=16px]KHCO3[/size][/font][font='times new roman'][size=16px][/size][/font][font='times new roman'][size=16px]xH2[/size][/font][font='times new roman'][size=16px]O(x[/size][/font][font='times new roman'][size=16px]=[/size][/font][font='times new roman'][size=16px]0.5-1.0)[/size][/font][font='times new roman'][size=16px],分离、冷水洗涤,即获得精制[/size][/font][font='times new roman'][size=16px]KHCO3[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]第[/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px]步,将上步骤得到的[/size][/font][font='times new roman'][size=16px]K-Na-HCO3-[/size][/font][font='times new roman'][size=16px]溶液进一步在常压下[/size][/font][font='times new roman'][size=16px]90[/size][/font][font='times new roman'][size=16px]℃蒸发,获得结晶物亦为[/size][/font][font='times new roman'][size=16px]KHCO3[/size][/font][font='times new roman'][size=16px]结晶水合物;过滤分离、冷水洗涤,亦可获得[/size][/font][font='times new roman'][size=16px]KHCO3[/size][/font][font='times new roman'][size=16px]晶体和滤液[/size][/font][font='times new roman'][size=16px]C[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]第[/size][/font][font='times new roman'][size=16px]5[/size][/font][font='times new roman'][size=16px]步,将第[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]步和第[/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px]步得到的精制[/size][/font][font='times new roman'][size=16px]KHCO3[/size][/font][font='times new roman'][size=16px]合并,[/size][/font][font='times new roman'][size=16px]80[/size][/font][font='times new roman'][size=16px]℃下真空干燥[/size][/font][font='times new roman'][size=16px]6h[/size][/font][font='times new roman'][size=16px],获得食品级[/size][/font][font='times new roman'][size=16px]KHCO3[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]第[/size][/font][font='times new roman'][size=16px]6[/size][/font][font='times new roman'][size=16px]步,将滤液[/size][/font][font='times new roman'][size=16px]C[/size][/font][font='times new roman'][size=16px]与第[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]步、第[/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px]步的洗涤液混合加入下一轮的[/size][/font][font='times new roman'][size=16px]5.0kg[/size][/font][font='times new roman'][size=16px]碱液废水,进行重复上述操作工艺,循环五次,计算产物[/size][/font][font='times new roman'][size=16px]KHCO3[/size][/font][font='times new roman'][size=16px]与[/size][/font][font='times new roman'][size=16px]25.0kg[/size][/font][font='times new roman'][size=16px]原废水碱液中的钾总量比照,收率为[/size][/font][font='times new roman'][size=16px]90.5[/size][/font][font='times new roman'][size=16px]%。[/size][/font][font='times new roman'][size=16px]超[/size][/font][font='times new roman'][size=16px]细碳酸氢钾粉体的制备[/size][/font][font='times new roman'][size=16px]称取一定量的碳酸氢钾溶质[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]以水为溶剂[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]配置碳酸氢钾水溶液。将无水乙醇置于冰箱中[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]冷冻[/size][/font][font='times new roman'][size=16px]24h,[/size][/font][font='times new roman'][size=16px]在高速搅拌和冰水浴条件下[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]将碳酸氢钾溶液加入到无水乙醇析出剂中[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]真空抽滤与分离沉淀物[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]并用无水乙醇洗涤数次[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]将沉淀物在[/size][/font][font='times new roman'][size=16px]45[/size][/font][font='times new roman'][size=16px]℃条件下真空干燥[/size][/font][font='times new roman'][size=16px]12h,[/size][/font][font='times new roman'][size=16px]得到白色碳酸氢钾超细粉体。[/size][/font][font='times new roman'][size=16px]二氧化碳制备碳酸氢钾的方法[/size][/font][font='times new roman'][size=16px]本发明公开了一种利用二氧化碳制备氟化钙与碳酸氢钾的方法[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]属于磷化工技术领域[/size][/font][font='times new roman'][size=16px].[/size][/font][font='times new roman'][size=16px]该方法步骤如下[/size][/font][font='times new roman'][size=16px]:(1)[/size][/font][font='times new roman'][size=16px]将氟硅酸钾与含钾化合物反应得到粗氟化钾溶液和二氧化硅[/size][/font][font='times new roman'][size=16px] (2)[/size][/font][font='times new roman'][size=16px]在粗氟化钾溶液中加入氟硅酸调整[/size][/font][font='times new roman'][size=16px]pH[/size][/font][font='times new roman'][size=16px]得到[/size][/font][font='times new roman'][size=16px]氟化钾溶液和二氧化硅氟硅酸钾固体[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]二氧化硅氟硅酸钾固体返回到步骤[/size][/font][font='times new roman'][size=16px](1) (3)[/size][/font][font='times new roman'][size=16px]用二氧化碳将氢氧化钙乳液进行酸化得到碳酸氢钙溶液[/size][/font][font='times new roman'][size=16px] (4)[/size][/font][font='times new roman'][size=16px]将氟化钾溶液与碳酸氢钙溶液进行反应得到氟化钙产品[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]滤液处理后得到碳酸氢钾产品[/size][/font][font='times new roman'][size=16px] (5)[/size][/font][font='times new roman'][size=16px]碳酸氢钾母液经干燥[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]煅烧得到碳酸钾[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]返回到步骤[/size][/font][font='times new roman'][size=16px](1).[/size][/font][font='times new roman'][size=16px]仅氢氧化钙和少量的含钾化合物就能够将副产磷酸氟钾化合物与氟硅酸和合成氨副产二氧化碳加工成高价值的氟化钙[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]碳酸氢钾和二氧化硅[/size][/font][font='times new roman'][size=16px].[/size][/font][align=left]4、 [font='times new roman'][size=16px]碳酸氢钾的应用[/size][/font][/align][font='times new roman'][size=16px]碳酸钾是钾盐行业中主要用于化工、医药、轻工和食品等行业的基本原料之一,主要用于生产食品和医药、化肥[/size][/font][font='times new roman'][size=16px]和农药、石油和天然气、建材(特种水泥)、电子和玻璃、橡胶和钢铁冶炼等。碳酸氢钾则主要用于烘焙、食品添加剂及畜牧业等方面。随着科技的不断进步,碳酸钾、碳酸氢钾在应用领域发生不断变化,这就要求除了产品化学指标必须达到相应的标准之外,其物理性能也应满足不同市场领域的需求。[/size][/font][font='times new roman'][size=16px]同时碳酸氢钾也可以[/size][/font][font='times new roman'][size=16px]用作生产碳酸钾、醋酸钾、亚砷酸钾等的原料,亦用于医药、食品、灭火剂等行业。作酸度调节剂和化学膨松剂,例如医用缓冲液,酿酒添加剂,在加碳酸饮料中有少量添加起到改善口味的作用。我国规定可用于各类需添加膨松剂的食品,按生产需要适量使用[/size][/font][font='times new roman'][size=16px]。是生产碳酸钾、醋酸钾、亚砷酸钾的原料。可作石油和化学品之灭火剂作为机场专用干粉灭火剂,灭火效果是碳酸氢钠的两倍。也可用于医药、焙粉。作酸度调节剂和化学膨松剂,[/size][/font][font='times new roman'][size=16px]我国规定可用于各类需添加膨松剂的食品,按生产需要适量使用。[/size][/font][font='times new roman'][size=16px]2.[/size][/font][font='times new roman'][size=16px]补充钾,用于治疗低钾症。[/size][/font][font='times new roman'][size=16px]3.[/size][/font][font='times new roman'][size=16px]用作碱性剂、膨松剂、营养增补剂、赋形剂及pH调节剂。可用作加工助剂[/size][/font][font='times new roman'][size=16px];[/size][/font][font='times new roman'][size=16px]可用于软饮料、焙烧食品等。[/size][/font][font='times new roman'][size=16px]4.[/size][/font][font='times new roman'][size=16px]用作分析试剂。发泡剂。农业上:用作土壤酸性改良剂。由于具有抗虫和抗菌(如叶片白霉病、苹果黑星病)作用,也是一种有机农业中允许使用的农药。[/size][/font][font='times new roman'][size=16px]我国碳酸氢钾未来增长主要在[/size][/font][font='times new roman'][size=16px]轻质碳酸钾领域,随着科技的快速发展,轻质碳酸钾在农药、食品、医药中的高端应用需求还会有一个快速增长。随着我国生活水平的提高,高品质的食品添加剂需求会高速增加,从而带来碳酸氢钾需求快速增长。接下来以其作为膨松剂为例对其进行详细的介绍。[/size][/font][align=left]5、 [font='times new roman'][size=16px]膨松剂的简介[/size][/font][/align][font='times new roman'][size=16px]膨松剂([/size][/font][font='times new roman'][size=16px]Leaveningagents[/size][/font][font='times new roman'][size=16px])指食品加工中添加于生产焙烤食品的主要原料小麦粉中,并在加工过程中受热分解,产生气体,使面坯起发,形成致密多孔组织,从而使制品具有膨松、柔软或酥脆的一类物质。通常应用于糕点、饼干、面包、馒头等以小麦粉为主的焙烤食品制作过程中[/size][/font][font='times new roman'][size=16px],产生气体,使面胚起发,形成致密多孔组织,从而使制品具有膨松、柔软或酥脆咸的一类物质。它可有碱性膨松剂和复合膨松剂两类。前者主要是碳酸氢钠产生二氧化碳,使面胚起发。酸性物质尚可中和在产生二氧化碳过程中所形成的碱性盐,以及调节二氧化碳产生的速度。而淀粉等则具有有利于膨松剂保存,调节气体产生速度,使气泡分布均匀等作用。[/size][/font][font='times new roman'][size=16px]膨松剂的种类:[/size][/font][font='times new roman'][size=16px]膨松剂可分为无机膨松剂、有机膨松剂和生物膨松剂三大类。有机膨松剂如葡萄糖酸[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]δ[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]内酯。生物膨松剂如酵母等。无机膨松剂,又称化学膨松剂,包括碱性膨松剂如碳酸氢钠(钾)、碳酸氢铵、轻[/size][/font][font='times new roman'][size=16px]质碳酸钙等,酸性膨松剂如硫酸铝钾、硫酸铝铵、磷酸氢钙和酒石酸氢钾等,以及复合膨松剂。无机膨松剂应具有下列性质:①较低的使用量能产生较多量的气体;②在冷面团里气体产生慢,而在加热时则能均匀持续产生多量气体;③分解产物不影响产品的风味、色泽等食用品质[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]复合膨松剂的配方很多,且依具体食品生产需要而有所不同。通常按所用酸[/size][/font][font='times new roman'][size=16px]性物质的不同可有产气快慢之别。例如其所用酸性物质为有机酸、磷酸氢钙等,产气反应较快,而使用硫酸铝钾,硫酸铝铵等则反应较慢,通常需要在高温时发生作用。使用复合膨松剂时对产气快慢的选择相当重要。例如在[/size][/font][font='times new roman'][size=16px]生产蛋糕时,若使用产气快的膨松剂太多,则在焙烤初期很快膨胀,此时蛋糕组织尚未凝结,到后期蛋糕易塌陷且质地粗糙不匀。与此相反,使用产气慢的膨松剂太多,焙烤初期蛋糕膨胀太慢,待蛋糕组织凝结后,部分膨松剂尚未释放出二氧化碳气体,致使蛋糕体积增长不大,失去膨松剂的意义。研究表明,膨松剂中铝的吸收对人体健康不利,因而人们正在研究减少硫酸铝钾和硫酸铝铵等在食品生产中的应用,并探索用新的物质和方法取代其应用,尤其是取代我国人民在长期习以为食的油条中的应用。[/size][/font][align=left]6、 [font='times new roman'][size=16px]碳酸氢钾用作膨松剂时的危害[/size][/font][/align][font='times new roman'][size=16px]中国食品工业协会副秘书长、马铃薯食品[/size][/font][font='times new roman'][size=16px]专业委员会会长王薇在接受本报记者采访时表示,中国休闲膨化食品在大中城市主要超市的经营比重上升到[/size][/font][font='times new roman'][size=16px]10%[/size][/font][font='times new roman'][size=16px]以上,销售额上升到[/size][/font][font='times new roman'][size=16px]5%[/size][/font][font='times new roman'][size=16px]以上。以马铃薯薯条为例,过去[/size][/font][font='times new roman'][size=16px]5[/size][/font][font='times new roman'][size=16px]年,我国的马铃薯薯条消费总量增长了[/size][/font][font='times new roman'][size=16px]40%[/size][/font][font='times new roman'][size=16px],预计在未来[/size][/font][font='times new roman'][size=16px]5[/size][/font][font='times new roman'][size=16px]年中我国的薯条消费总量仍将增长[/size][/font][font='times new roman'][size=16px]20%[/size][/font][font='times new roman'][size=16px]。休闲膨化食品在得到消费者喜爱的同时,还时常遇到食品安全问题,生产企业应加大科技开发力度,进行扎实可靠的基础研究,采用先进高效的工艺设备,选用更加安全可靠的原料、配方、工艺、包装。针对膨化食品引发的安全问题,更大范围推广使用挤压膨化技术、微波膨化技术、烘焙膨化技术,积极[/size][/font][font='times new roman'][size=16px]研发尝试低温膨化技术、超声膨化技术等工艺,以实现在生产工艺过程中最大程度排除危害人体健康因素。消费者对休闲膨化食品的需求趋向功能化和时尚化,时尚体现求新求变,而功能性趋向营养、健康。国外一些知名的休闲食品厂商大力宣传休闲膨化食品可以成为健康平衡膳食的一部分,低热量、低脂肪、低糖的休闲膨化食品是今后新产品开发的方向。[/size][/font][font='times new roman'][size=16px]消费者在选购膨化食品时,应尽可能去产品质量较有保障的正规商场购买,同时要看清产品上是否有[/size][/font][font='times new roman'][size=16px]“[/size][/font][font='times new roman'][size=16px]QS[/size][/font][font='times new roman'][size=16px]”[/size][/font][font='times new roman'][size=16px]标记;购买时要注意产品的标识,仔细看配料表,了解产品的主要成分和食品添加剂的使用情况,特别要注意查看产品的生产日期和保质期,尽量购买近期生产的产品;要避免购买促销玩具与食品直接混装的产品,因为国家规定严禁在食品包装中混装直接接触食品的非食品物品。[/size][/font][font='times new roman'][size=16px]存储方法贮存在通风、干燥的仓库中。不宜在货棚或露天存放。应注意防潮[/size][/font][font='times new roman'][size=16px];[/size][/font][font='times new roman'][size=16px]运输装卸时,应防雨淋,保证干燥、包装不受损害和污染。不可与酸类共贮混运[/size][/font][font='times new roman'][size=16px];[/size][/font][font='times new roman'][size=16px]失火时,可用水、沙土和各种灭[/size][/font][font='times new roman'][size=16px]火器扑救。[/size][/font][align=left]7、 [font='times new roman'][size=16px]碳酸氢钾的检测方法及使用限量[/size][/font][/align][font='times new roman'][size=16px]检测方法(滴定法):[/size][/font][font='times new roman'][size=16px]取本品[/size][/font][font='times new roman'][size=16px]2g[/size][/font][font='times new roman'][size=16px],精密称定,加水[/size][/font][font='times new roman'][size=16px]100ml[/size][/font][font='times new roman'][size=16px]使溶解,加甲基红[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]溴甲酚绿混合指示液[/size][/font][font='times new roman'][size=16px]10[/size][/font][font='times new roman'][size=16px]滴,用盐酸滴定液([/size][/font][font='times new roman'][size=16px]1.0mol/L[/size][/font][font='times new roman'][size=16px])滴定至溶液由绿色转变为紫红色,煮沸[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]分钟,冷却至室温,继续滴定至溶液由绿色转变为暗紫色,并将滴定的结果用空白试验校正每[/size][/font][font='times new roman'][size=16px]1ml[/size][/font][font='times new roman'][size=16px]盐酸滴定液([/size][/font][font='times new roman'][size=16px]1.0mol/L[/size][/font][font='times new roman'][size=16px])相当于[/size][/font][font='times new roman'][size=16px]100.1mg[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]KHCO3[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]使用限量[/size][/font][font='times new roman'][size=16px]:[/size][/font][font='times new roman'][size=16px]低倍浓缩乳、甜炼乳、稀奶油[/size][/font][font='times new roman'][size=16px](2g/kg[/size][/font][font='times new roman'][size=16px]单用,[/size][/font][font='times new roman'][size=16px]3g/kg[/size][/font][font='times new roman'][size=16px]与其他稳定剂合用量,以无水物计[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px];奶粉、稀奶油粉[/size][/font][font='times new roman'][size=16px]5g/kg([/size][/font][font='times new roman'][size=16px]以无水物计[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px];可可粉及含糖可可粉、可可豆粉、可可液块及可可油饼,[/size][/font][font='times new roman'][size=16px]5g/kg([/size][/font][font='times new roman'][size=16px]无脂可可计,以[/size][/font][font='times new roman'][size=16px]K2CO3[/size][/font][font='times new roman'][size=16px]计[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px];果酱和果冻,使[/size][/font][font='times new roman'][size=16px]Ph[/size][/font][font='times new roman'][size=16px]值保持在[/size][/font][font='times new roman'][size=16px]2.8[/size][/font][font='times new roman'][size=16px]~[/size][/font][font='times new roman'][size=16px]3.5[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]GB2760[/size][/font][font='times new roman'][size=16px]—[/size][/font][font='times new roman'][size=16px]1997[/size][/font][font='times new roman'][size=16px]:矿物质饮料[/size][/font][font='times new roman'][size=16px]0.033g/L[/size][/font][font='times new roman'][size=16px];需膨松剂的各类食品,[/size][/font][font='times new roman'][size=16px]GMP[/size][/font][font='times new roman'][size=16px];乳与乳制品按有关规定执行。[/size][/font][font='times new roman'][size=16px]而在[/size][/font][font='times new roman'][size=16px]乳及乳制品([/size][/font][font='times new roman'][size=16px]13.0[/size][/font][font='times new roman'][size=16px]特殊膳食用食品涉及品种除外)[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]巴氏杀菌乳、灭菌乳和调制乳[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]调制乳[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]发酵乳和风味发酵乳[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]风味发酵乳[/size][/font] [font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]乳粉(包括加糖乳粉)[/size][/font][font='times new roman'][size=16px]和奶油粉及其调制产品[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]调制乳粉和调制奶油粉[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]炼乳及其调制产品[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]淡炼乳(原味)[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]调制炼乳(包括加糖炼乳及使用了非乳原料的调制炼乳等)[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]稀奶油(淡奶油)及其类似品[/size][/font] [font='times new roman'][size=16px]适量使用[/size][/font] [font='times new roman'][size=16px]调制稀奶油[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]稀奶油类似品[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]干酪和再制干酪及其类似品[/size][/font][font='times new roman'][size=16px]等食品中均只能依照生产需要适量使用[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]碳酸氢钾食品食品工业用加工助剂[/size][/font][font='times new roman'][size=16px]/[/size][/font][font='times new roman'][size=16px]一般应在制成最后成品之前出去,有规定食品中残留量的除外碳酸氢钾食品酸度调节剂按生产需要适量使用(有特别规定的除外)碳酸氢钾病人用特殊食品酸度调节剂按生产需要适量使用碳酸氢钾婴儿配方食品、较大婴儿和幼儿配方食品酸度调节剂按生产需要适量使用[/size][/font][font='times new roman'][size=16px]。[/size][/font]8、 [font='times new roman'][size=16px]总结:[/size][/font][font='times new roman'][size=16px]碳酸氢钾是一种重要的化工原料,主要用作生产碳酸钾、醋酸钾、亚砷酸钾等,亦用于医药、食品、灭火剂等行业。包括碳酸氢钾在内的钾盐[/size][/font][font='times new roman'][size=16px](K2CO3[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]KCl[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]K2SO4[/size][/font][font='times new roman'][size=16px]等[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]是一种战略物资,在国民经济中的地位至关重要。然而我国可开发水溶性钾盐资源[/size][/font][font='times new roman'][size=16px]矿床甚少,探明储量仅占世界的[/size][/font][font='times new roman'][size=16px]1.06[/size][/font][font='times new roman'][size=16px]%。目前,我国食品级碳酸氢[/size][/font][font='times new roman'][size=16px]钾的对外依存度高达[/size][/font][font='times new roman'][size=16px]70[/size][/font][font='times new roman'][size=16px]%。因此,从碱性工业废水中提取食品级碳酸氢钾,在一定程度上可以缓解我国钾盐短缺的现状。[/size][/font][font='times new roman'][size=16px]近年来食品级碳酸氢钾被广泛用作食品疏松剂和品质改良剂,而且其发展越来越受重视。食品级碳酸氢钾为生产食品级碳酸钾的原料,食品级碳酸氢钾被广泛用于化工、轻工、显像管玻壳、制药、食品、电焊条及有色金属冶金等行业。[/size][/font][align=center][font='times new roman'][size=18px]参考文献:[/size][/font][/align][font='times new roman'][1][/font][font='times new roman'] [/font][font='times new roman']苗世顶[/font][font='times new roman'],[/font][font='times new roman']何帅[/font][font='times new roman'],[/font][font='times new roman']何淑莲[/font][font='times new roman'],[/font][font='times new roman']黄梅[/font][font='times new roman'],[/font][font='times new roman']陈德超[/font][font='times new roman'],&[/font][font='times new roman']丁丽平[/font][font='times new roman']..[/font][font='times new roman']一种从低浓度[/font][font='times new roman']K+[/font][font='times new roman']碱液废水体系提取食品级碳酸氢钾的方法[/font][font='times new roman'].[/font][font='times new roman'][2][/font][font='times new roman'] [/font][font='times new roman']郝建军[/font][font='times new roman'],[/font][font='times new roman']于长海[/font][font='times new roman'],[/font][font='times new roman']王晗[/font][font='times new roman'],[/font][font='times new roman']于洋[/font][font='times new roman'],[/font][font='times new roman']高兴[/font][font='times new roman'],&HAOJian-Jun[/font][font='times new roman']等[/font][font='times new roman'].(2008).[/font][font='times new roman']碳酸氢钾对大豆幼苗光合作用的影响[/font][font='times new roman'].[/font][font='times new roman']植物生理学报[/font][font='times new roman'],44(4),723-725.[/font][font='times new roman'][3][/font][font='times new roman']刘凤勋[/font][font='times new roman'].(2013).[/font][font='times new roman']碳酸氢钾对肉鸡猝死症的影响[/font][font='times new roman'].[/font][font='times new roman']现代畜牧科技[/font][font='times new roman'](8),98-98.[/font][font='times new roman'][4][/font][font='times new roman']溶析结晶法制备高纯度亚微米硫酸钡粒子[/font][font='times new roman'][J].[/font][font='times new roman']王晓辉[/font][font='times new roman'],[/font][font='times new roman']蒋斌波[/font][font='times new roman'],[/font][font='times new roman']陈纪忠[/font][font='times new roman'].[/font][font='times new roman']无机材料学报[/font][font='times new roman'].2005(04)[/font][font='times new roman'][5][/font][font='times new roman']超临界抗溶剂技术在药物微粒化领域的研究进展[/font][font='times new roman'][J].[/font][font='times new roman']陈蓓怡[/font][font='times new roman'],[/font][font='times new roman']于文利[/font][font='times new roman'],[/font][font='times new roman']赵亚平[/font][font='times new roman'].[/font][font='times new roman']现代化工[/font][font='times new roman'].2005(02)[/font][font='times new roman'][6][/font][font='times new roman']冷气溶胶灭火剂用[/font][font='times new roman']NaHCO3/[/font][font='times new roman']白炭黑复合粒子的制备[/font][font='times new roman'][J].[/font][font='times new roman']叶明泉[/font][font='times new roman'],[/font][font='times new roman']韩爱军[/font][font='times new roman'],[/font][font='times new roman']李凤生[/font][font='times new roman'].[/font][font='times new roman']应用化学[/font][font='times new roman'].2004(08)[/font][font='times new roman'][7][/font][font='times new roman']超细磷酸铵盐干粉灭火剂研究[/font][font='times new roman'][J].[/font][font='times new roman']唐聪明[/font][font='times new roman'],[/font][font='times new roman']徐卡秋[/font][font='times new roman'],[/font][font='times new roman']赵春霞[/font][font='times new roman'].[/font][font='times new roman']精细化工[/font][font='times new roman'].2004(05)[/font][font='times new roman']声明:愿意作为资料分享[/font]

  • 【原创大赛】火焰原子吸收光谱法测定埃索美拉唑镁二水合物样中Mg的含量

    埃索美拉唑镁(esomeprazole magnesium),化学名(S)-(-)5-甲氧基-2--1H-苯并咪唑镁盐,由瑞典AstraZeneca公司研发,2004年在我国上市。临床主要用于治疗胃酸分泌过多引起的胃溃疡、十二指肠溃疡及反流性食管炎等消化系统疾病。 本文拟采用湿法敞开消解法进行样品前处理,利用火焰原子吸收光谱法测定埃索美拉唑镁二水合物的Mg含量。1 仪器与试剂1.1 仪器与条件美国Perkin Elmer原子吸收光谱仪(型号:AAnalyst 800);镁空心阴极灯(北京有色金属研究总院);石墨炉原子吸收光谱仪测试条件见表1;MS105DU型Mettler Toledo电子天平;Advantage A10 Milli-Q纯水器。表1 原子吸收光谱仪主要测试条件 测定参数 设定值 测定波长 285.2 nm 狭缝宽度 0.7 nm 工作灯电流 6 mA 空气流量 17 L×min-1 乙炔流量 2 L×min-1 1.2 试剂盐酸(MOS级,天津市风船化学试剂科技有限公司);GSB G 62005-90镁标准储备溶液(1000 mg×mL-1,国家钢铁材料测试中心钢铁研究总院,中国);Milli Q超纯水(18.2 MW×cm);50 mg×mL-1的La溶液由光谱纯La2O3(99.99 %,上海试剂厂,上海)配制而成。2 方法与结果2.1 标准工作溶液的配制及测定从镁标准储备溶液(1000 mg×mL-1)移取一定的量,利用2 %盐酸溶液逐级稀释分别配制成浓度为0、0.1、0.3和0.5 mg×mL-1的标准工作溶液(都含有2 mL的La溶液)。按照浓度从稀到浓的顺序,利用火焰原子吸收光谱仪分别测定其吸光度值。仪器自动绘制工作曲线,获得的标准曲线的线性方程为:Y=0.00618+0.01563*X,R=0.99901上式中:Y:代表吸光度; X:代表待测溶液的浓度; R:代表工作曲线的线性系数。2.2 消解法称取0.0500 g左右的样品到玻璃烧杯中,加入3 mL的MOS级HCl,加盖置于电热板上加热消解。样品很快溶解完全,取下、冷却,定容到100 mL容量瓶中,再50倍稀释,同时加入2 mL的La溶液(50mg×mL-1),定容到50 mL容量瓶中待测,同时做样品空白。2.3 测试结果样品前处理完成之后,仪器先预热稳定半小时,再按照仪器的操作规程进行样品的分析。样品分析结果见表4。表4 样品中镁的分析结果及样品加标回收率 样 品 样品中镁的含量(%) 回收率(%) 1 3.44 102.5 2 3.42 101.0 3 3.43 98.9 结论:通过上面的实验结果可以看出:采用直接敞开湿法消解法和火焰原子吸收光谱法测定埃索美拉唑镁中镁的含量,方法简单、准确、灵敏,可用于埃索美拉唑镁原料药有关物质及含量的测定以及质量控制。

  • 【分享】碳酸饮料的危害!!!

    碳酸饮料主要成分包括:碳酸水、柠檬酸等酸性物质、白糖、香料,有些含有咖啡因,人工色素等。除糖类能给人体补充能量外,充气的“碳酸饮料”中几乎不含营养素。 可乐等碳酸型饮料深受大家喜爱,尤其是“年轻一族”和孩子们的喜爱。但健康专家提醒,喝碳酸饮料要讲究个“度”。 过量地喝碳酸饮料,其中的高磷可能会改变人体的钙、磷比例。研究人员还发现,与不过量饮用碳酸饮料的人相比,过量饮用碳酸饮料的人骨折危险会增加大约3倍;而在体力活动剧烈的同时,再过量地饮用碳酸饮料,其骨折的危险也可能增加5倍。 专家提醒,儿童期、青春期是骨骼发育的重要时期。在这个时期,孩子们活动量大。如果食物中高磷低钙的摄入量不均衡,再加上喝过多的碳酸饮料,则要引起足够的重视。因为它不仅对骨峰量可能产生负面影响,还可能会给将来发生骨质疏松症埋下伏笔。 因此,万事都得要有个“度”。一旦超过了这个“度”,再有丰富营养的食物也可能变成有害物或多余物,对人体不利;其次,适时补充一定数量的钙,还可减轻体内钙——磷比例的失调。[编辑本段]碳酸饮料有哪些 (1)实施食品生产许可证管理的碳酸饮料(汽水)类产品是指在一定条件下充入二氧化碳气的饮料,包括碳酸饮料、充气运动饮料等具体品种,不包括由发酵法自身产生二氧化碳气的饮料。成品中二氧化碳的含量(20℃时体积倍数)不低于2.0倍。碳酸饮料主要成分为糖、色素、甜味剂、酸味剂、香料及碳酸水等,一般不含维生素,也不含矿物质。 (2)碳酸饮料(汽水)可分为果汁型、果味型、可乐型、低热量型、其他型等,常见的如:可乐、雪碧、芬达、七喜、美年达等。[编辑本段]碳酸饮料的负面影响 碳酸饮料在一定程度上影响人们的健康,主要的表现如下: 1.对骨骼的影响 磷酸导致骨质疏松 碳酸饮料的成分大部分都含有磷酸,这种磷酸却会潜移默化地影响骨骼,常喝碳酸饮料骨骼健康就会受到威胁。因为人体对各种元素都是有要求的,大量磷酸的摄入就会影响钙的吸收,引起钙、磷比例失调。 一旦钙缺失,对于处在生长过程中的少年儿童身体发育损害非常大。缺钙无疑意味着骨骼发育缓慢、骨质疏松。有资料显示,经常大量喝碳酸饮料的青少年发生骨折的危险是其他青少年的3倍。 骨质疏松是一个世界范围的、越来越引起人们重视的健康问题。随着年龄的增长,人体对钙的吸收率逐渐下降,故中老年人容易发生骨质疏松,特别是老年妇女。有研究显示,长期大量饮用碳酸饮料,特别是奶及奶制品又摄入不足,非常容易引发骨质疏松。这主要是由于大部分碳酸饮料都含有磷酸。大量磷酸的摄入就会影响钙的吸收,引起钙、磷比例失调,从而影响到骨骼和牙齿。由于孕妇在怀孕期间容易缺钙,所以也应该尽量少喝碳酸饮料。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制