当前位置: 仪器信息网 > 行业主题 > >

丙烷三甲酸的混合物

仪器信息网丙烷三甲酸的混合物专题为您提供2024年最新丙烷三甲酸的混合物价格报价、厂家品牌的相关信息, 包括丙烷三甲酸的混合物参数、型号等,不管是国产,还是进口品牌的丙烷三甲酸的混合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙烷三甲酸的混合物相关的耗材配件、试剂标物,还有丙烷三甲酸的混合物相关的最新资讯、资料,以及丙烷三甲酸的混合物相关的解决方案。

丙烷三甲酸的混合物相关的资讯

  • 青岛能源所提出混合物组分分离及结构确证的新方法
    混合物组分分离及结构确证一直是分析化学面临的重要任务。近日,中国科学院青岛生物能源与过程研究所公共实验室黄少华等利用核磁共振(nmr)技术在该领域取得了新进展,提出了一种全新的能够同时实现组分分离和结构确证的简易通行分析方法,相关成果于9月4日在线发表于《德国应用化学》( angewandtechemie)。 传统混合物组分分离及结构确证方法通常利用色谱学工具与波谱学工具进行联用,比如gc-ms、hplc-ms、hplc-nmr等。近年来,nmr方法学家们开发了一种被称之为&ldquo 核磁共振中色谱技术&rdquo 的dosy技术,能够无需进行实际色谱分离就能同时实现混合物组分分离及结构确证,大幅节约了分析时间与成本。但是,纯dosy技术需要在&ldquo 虚拟色谱固定相&rdquo 辅助下,才能在实际应用中显示出其优势。 黄少华带领的研究小组经过两年时间的摸索,发现了一种适用于dosy技术的通用&ldquo 虚拟色谱固定相&rdquo &mdash &mdash 聚二甲基硅氧烷(pdms)。该物质结构简单、成本低廉,并且其nmr信号接近于tms,不干扰其它分析物的信号,是天然的理想&ldquo 虚拟色谱固定相&rdquo ,可广泛应用于分析化学的各个领域。研究表明,pdms拥有强大的分离能力,所分离的化合物类型基本包括了大部分有机化合物类型。例如,pdms能够轻松基线分离氘代氯仿中的苯、萘和蒽混合物,并且能够同时得到每个组分的nmr信号。这些特点使得基于pdms的dosy技术具有重要的理论研究意义和实际应用价值。 在此基础上,合成化学家们可以用该技术部分代替tlc技术,实时跟踪目标化合物,了解化合物的组成与结构信息,而无需进行大量的分离提纯工作。同时,还可利用此技术部分代替经典色谱工具对复杂混合物进行分析,节约大量分析时间和成本。 上述研究得到了国家自然科学基金项目支持。   氘代氯仿溶液(0.6 mL)中苯(5 mg)、萘(5 mg)和蒽(5 mg)的1H DOSY(600 MHz)谱图。左图为溶液中没有添加PDMS的DOSY谱图;右图为溶液中添加PDMS的DOSY谱图。实验温度:298K。
  • 【瑞士步琦】通过SFC-50对香豆素混合物进行分离纯化
    通过 SFC-50对香豆素混合物进行分离纯化SFC应用”香豆素是一类具有广泛生物活性的天然产物,它们在医药、香料、染料和分析领域都有广泛的应用。香豆素及其衍生物因其抗肿瘤、降血压、抗菌等多方面的活性以及良好的光学特性而受到关注。在医药领域,香豆素被用于治疗多种疾病,如抗凝血药物华法令和新双香豆素。在香料领域,香豆素类衍生物用于洗涤剂、塑料制品等作为增香剂和定香剂。在染料领域,香豆素荧光染料因其高荧光效率和大的 Stokes 位移而受到重视。在分析领域,香豆素类荧光因其荧光量子产率高、Stokes 位移大、光稳定性好等优点,被用于荧光传感器分子设计。1简介香豆素混合物的分离挑战主要为色谱柱的选择:不同的色谱柱材料和粒径会影响分离效果。选择合适的色谱柱对于提高分离效率和分辨率至关重要。除此之外,传统的液相色谱分离可能涉及大量有机溶剂的使用,这不仅增加了成本,还可能对环境造成影响。本文提供一种通过超临界流体色谱(SFC)对香豆素混合物进行分离纯化的思路,快速筛选合适色谱柱的同时,由于采用大量 CO2 作为流动相,降低溶剂成本的同时也对环境保护做出贡献。2实验材料▲ 香豆素 7(C-7)5mg:吡喃香豆素(角型),一种通常存在于自然界中的激光染料,它的衍生物用于医药和化学,也可用作 OLED 的掺杂材料。▲ 香豆素 334(C-334)5mg:吡喃香豆素(角型),一种通常存在于自然界中的激光染料,合成半胱氨酸选择性荧光探针或pH指示荧光探针的起始原料。▲ 香豆素 4621(C-4621)50mg:自然界中发现的“简单”香豆素,合成抗凝血剂、抗炎剂和抗氧化超氧化物清除剂的前体。3实验设备Sepiatec SFC-50色谱柱:Dio,10x250mm,5umSilica,10x250mm,5umPEI,10x250mm,5umC18 ,10x250mm,5umCBD,10x250mm,5um2-EP,10x250mm,5um4实验条件分别将样品加载到 6 根不同色谱柱下,并在 20mL/min,柱温箱 40℃;背压 150bar 条件下运行,得到分离图谱如下:通过图谱不难看出,三个香豆素类化合物在 2-EP 色谱柱中分离表现最好。之后通过对改性剂进行调整,通过优化方法来改善分离度。最终确认方法条件:色谱柱:2-EP,10x250mm,5um流速:20ml/min柱温:40℃背压:150bar改性剂:15%甲醇等度洗脱5结论通过 Sepiatec SFC-50 快速筛选适合分离香豆素混合物的色谱柱与改性剂条件。15% 的甲醇用量相较于传统色谱法,极大降低有机试剂使用成本,并为后续大量制备打下基础。
  • 缉毒演习:鉴知手持拉曼光谱仪检测毒品混合物
    在缉毒现场,往往会遇到一些可疑粉末,手持拉曼可以帮助缉毒警察对这些粉末进行快速鉴定,提供处置依据。但普通手持拉曼往往难以正确检出实际毒品,这是因为毒贩常在毒品中添加小苏打、淀粉、葡萄糖等稀释剂,降低了毒品纯度,且稀释剂会干扰拉曼检测结果。因此,只有具备混合物分析功能的高灵敏度手持拉曼,才能准确识别隐藏在稀释剂中的毒品。 经过十余年的技术积累,鉴知手持拉曼具备了强大的混合物分析功能,可以准确识别混合物中的毒品。我们以对乙酰氨基酚作为模拟毒品,小苏打、淀粉作为稀释剂,配置了两种混合毒品模拟物,对鉴知RS1500手持拉曼的混合物分析功能进行验证。毒品模拟物1为80%小苏打+20%对乙酰氨基酚的混合物;毒品模拟物2为小苏打、淀粉、对乙酰氨基酚的1:1:1混合物。 1 、毒品模拟物1的检测 使用RS1500检测毒品模拟物1,混合物分析结果显示小苏打占80.8%,对乙酰氨基酚占19.2%,与混合比例一致,证明RS1500具有较高的灵敏度,其混合物分析算法可以识别出隐藏在稀释剂中的低含量“毒品”。 2 、毒品模拟物2的检测 使用RS1500检测毒品模拟物2,检测结果报出了小苏打、淀粉和对乙酰氨基酚,准确识别出了三种混合物中的“毒品”,证明鉴知手持拉曼具备优秀的混合物识别能力。 由于混合物中多种物质的拉曼信号互相叠加,不具备混合物分析功能的拉曼设备无法检出实际样品中的毒品,甚至无法报出检测结果。不同于普通拉曼,RS1500具备强大的混合物识别算法,结合多年的毒品数据库积累,可以从稀释剂中准确识别出低含量的毒品,满足实际缉毒需求。鉴知手持拉曼已经在多地部署,并取得了良好的使用反馈,例如助力合肥海关查获一类管制精神活性药三唑仑(点击查看)。 我们还使用鉴知RS1000手持拉曼检测了上述毒品模拟物,检测结果与RS1500的结果一致,均可以识别混合物中的“毒品”。 相较于RS1000,RS1500采用1064nm激光波长,抗荧光干扰能力强,在检测芬太尼类物质、含色素掺杂的毒品等强荧光物质时更具优势,同时具备强大的穿透包装能力,可以实现多种半透明及不透明包装内样品的无损检测。往期回顾● 鉴知拉曼与红外设备助力芬太尼的现场快速检测● 鉴知技术1064手持拉曼穿透多种包装的检测合集 欢迎在平台留言或直接联系我们,了解仪器参数和演示申请。
  • 中山大学在重要工业混合物分离纯化方面取得重要突破
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/0efb0394-27e8-4a6b-b92a-cc01c6e37729.jpg" title=" tpxw2017-06-23-10.jpg" / /p p style=" text-align: center " 图. 控制不同柔性客体分子选择性吸附的策略 /p p   在国家自然科学基金项目(项目编号:21225105,21290173,21473260)等资助下,中山大学张杰鹏教授、陈小明院士及其他合作者在重要工业混合物分离纯化方面取得进展,相关研究成果于2017年6月16日以“Controlling guest conformation for efficient purification of butadiene”(控制客体分子构象实现丁二烯的高效分离)为题在线发表在Science上。 /p p   为了使产品或原料达到足够高的纯度,工业界需要花费大量时间与成本对混合物进行分离。对于分子量相似的碳氢化合物,绝大多数多孔材料选择性吸附极性更大、分子更小和具有配位能力的烯烃。因此,通常需要经过耗能较高的萃取分馏过程将1,3-丁二烯从丁烷、丁烯和异丁烯等其他C4碳氢混合物中分离,目前很难利用多孔材料优先分离得到1,3-丁二烯。该研究团队发现常温常压下将C4碳氢化合物的混合物通过亲水性多孔配位聚合物MAF-23填充的固定床吸附装置后,只有1,3-丁二烯的构象发生转变,且构象转变导致很大的构象弯曲能量损失,从而大大减弱与MAF-23的吸附。该团队利用C4碳氢化合物的柔性差别和构象变化引起的能量损失以及由此导致的与多孔材料的吸附性差别,实现了温和条件下选择性达99.5%的1,3-丁二烯的高效纯化,避免了常规蒸馏和吸附纯化过程中因加热而产生的丁二烯自聚问题,实现了反常且最优的C4碳氢化合物吸附分离顺序。 /p p   该团队致力于配位聚合物多孔材料的设计、合成、气体吸附和相关机理研究,近年来取得了系列进展,发展了多种提高二氧化碳捕获效率的策略,实现了常压、烟道气和大气环境中的多个吸附量记录 提出了利用气—固反应机理对多孔框架进行精确修饰的策略,设计合成了兼具拟铜蛋白氧气活化中心和易氧化有机配体的新型多孔配位聚合物MAF-42,可以将材料的吸附选择性改变四个数量级,适于天然气中提纯乙烷和甲烷 提出了“亲水孔道捕获疏水分子”的概念,利用超微孔表面精确排列的氢键受体高效结合极性较低的乙烷分子而非极性较大的乙烯分子,并据此合成了新型多孔配位聚合物MAF-49。常温常压下,将乙烯/乙烷混合物通过MAF-49填充的固定床吸附装置后,乙烷被选择性吸附保留,流出的乙烯纯度很容易超过99.99%。 /p
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • 欧委会将成立专家小组对化学物质混合物进行评估
    5月31日,欧盟委员会宣布采取行动研究不同化学物质组合的混合物引起的潜在影响。委员会指出日常生活中接触到各种化学物质组成的混合物可能对人体构成的健康危险非单一化学物质可比拟的。欧委会在2月份发布的报告中,总结了化学物质“混合效应”的现状问题:   1、特定的情况下,化学物质可能联合反应,影响毒性的整体水平   2、普通行为模式的化学物质会联合反应产生的组合效应可能高于单一成分产生反应   3、尚无充分的证据表明如果混合物中的单一成分在安全线下,混合物是否在安全阀值内   4、中高剂量水平下联合反应较为明显   5、化学物质混合物组合多不胜数,对人类和环境健康的影响难以逐一确定,考虑设定优先进行风险评估的混合物清单(priority mixtures)   6、对化学物质混合物的评估缺乏暴露数据,目前紧紧掌握了少量化学物质的作用方式信息。   欧盟法规严格限制可用于食品、饮用水、空气和产品生产中的特定化学物质的含量,然后对这些化学品组合产生的混合效应却鲜有研究。当前欧盟立法的一个状况是一门法规通常只针对一个特定的领域,比如植物保护产品、农药、化妆品、药品、兽药等。在不同产品中的同一种(类)化学物质成分受不同的立法监管,这就为协调并使风险评估一致性构成了障碍。   欧委会提出的新方法,将识别一批需要优先评估的混合物,确保这批物质在欧盟不同法规风险评估要求上的一致性,弥补科学数据鸿沟。这个方法论主要与化学物质组合作用的行为方式、暴露数据,将研究控制在可进行正确评估的程度上。从这个方法论出发采取的行动必须基于减少、改善和取代脊椎动物实验的原则。为了推动化学物质累积效应的评估,委员会做了以下承诺:   1、成立一个特别专家小组,小组成员由来自欧洲化学品管理署(ECHA)、欧盟环境署(EEA)、欧盟食品安全署(EFSA)的代表组成,咋欧盟不同的法律条文下综合评价需优先进行风险评估的混合物的对人体和环境暴露的健康风险   2、2014年6月编制出科学技术指引,促进“需优先评估混合物”风险评估方法的一致性   3、帮助理解化学混合物是如何暴露于人类和自然环境的。这个需要从欧盟法规数据监管或者通过欧盟基金支持进行相关研究计划并构建化学监管收据收集的平台   4、增加其他知识空白领域的研究途径,诸如化学物质的组合作用形式、分“类”组物质研究、交叉参照法的应用   5、推动全球范围内化学物质混合效应研究方法的一致性和科学性   详情参见:   http://europa.eu/rapid/pressReleasesAction.do?reference=IP/12/541&format=HTML&aged=0&language=EN&guiLanguage=en
  • 欧盟拟禁止混合物中添加苯汞化合物
    2012年1月13日欧盟发布通报,欧盟委员会拟修订欧洲议会和理事会关于化学品注册、授权和限制的法规(EC) No 1907/2006(REACH)附件XVII的委员会法规草案。 该法规草案提议禁止五种作为物质或在混合物中的苯汞化合物(在第4点中标示),以及含有一种或多种这些物质的物品或其零部件的生产、使用和投放市场。 如果混合物或物品或其任何零部件中的含汞量按重量计算不超过0.01%,上述涉及混合物和物品的规定就不适用。
  • 使用UPLC-荧光/质谱法分析2-AB标记的多聚糖混合物
    王 芸 沃特世科技(上海)有限公司 蛋白质糖基化是生命系统非常重要的翻译后修饰之一,在免疫识别,蛋白分泌,信号转导等生命过程中发挥了重要作用。与蛋白相连的多聚糖是这些功能的重要载体,特别是对于单克隆抗体药物,多聚糖部分对药物的生物活性有着重要的影响。因此,发展分离效率高,检测灵敏度好的糖基化分析方法对单克隆抗体药物分析具有十分重要的意义。 针对糖基化分析中的种种困难,沃特世公司开发了亲水作用色谱法,以及荧光-质谱结合检测的分析方法。ACQUITY UPLC® 系统配合荧光检测器(FLR)以及多聚糖分析专用(GST )色谱柱,比HPLC方法有更高的分离度。多聚糖分析专用色谱柱装填了1.7&mu m的酰胺吸附剂,可在HILIC模式下有效分离荧光标记的多聚糖。UPLC® 配合荧光检测器分析多聚糖可以获得很高的分离度和定量准确性,特别是对于位置异构体以及有共流出的小峰分析;而质谱检测为糖链鉴定提供了更多的结构信息。通过与标准糖链保留时间的比较,该流程能实现高通量的多聚糖定性定量,满足药物分析的多种需求。 一、色谱条件与标记后的多聚糖样品的分离 可通过HILIC方法,有效分离2-AB标记的多聚糖混合物。对于方法优化,使用更缓的窄梯度,可有效提高保留时间上相临近的多聚糖峰之间的分离度;对于其它的参数,如流速、缓冲液浓度、流动相pH及柱温等,一般也需要进行优化。图1示例使用优化后的HILIC色谱条件后,复杂的2-AB标记的IgG多聚糖混合物得到了很好的分离,包括E1/ E2与F1/ F2。实验所用梯度洗脱时间为45分钟,包括色谱柱清洗和再平衡步骤。一般来说,一个样品的总分析时间在1小时内。因此,与使用3.0-&mu m填料的HPLC方法相比,使用1.7-&mu m填料的UPLC色谱方法,不但分离效果更好,而且运行时间更短。实验中使用2.1 x150 mm色谱柱。图1(B)中甘露糖5(峰C)与甘露糖6(峰H)可与邻近多聚糖峰成功分离,解决了共流出的问题。 二、2-AB标记的多聚糖定量及结构鉴定 由于多聚糖在HILIC 模式下能实现基线分离,各种异构体,例如末端唾液酸的位置异构,都能得到很好的分离。因此,在荧光检测器下的峰面积积分能对各种糖链进行定量分析。而从MS谱图来看,多聚糖样品中高甘露糖糖型所占比例较高,而复合型及杂合型糖链也都能够得到鉴定。各种带有神经氨酸的糖链也都能得到鉴定,表明该方法能够适合各种多聚糖复合物的分析。除了分子量,我们还能通过MS/MS谱图进一步确认多聚糖的结构。 2-AB标记的IgG多聚糖混合物的分析结果充分说明沃特世提供了成熟的聚糖分析方案,且相应色谱柱的质量控制采用了2-AB标记的IgG多聚糖混合物进行。ACQUITYUPLC系统显著缩短了分析时间,将常规HPLC上需要2个小时甚至3个小时的分离梯度缩短到1小时。 此外沃特世提供UPLC-FLR-MS的整体解决方案可以十分有效的对多聚糖进行分析,除提供分子量信息外,还可以进行糖结构推导,大大降低了生物药物研发工作中糖基化分析的难度。 实验流程: 一、2-AB 标记糖链 使用GlycoPro le试剂盒,Prozyme公司 使用试剂盒进行2-AB 标记糖链时,除以下步骤,按照该公司的说明操作即可。 1.使用50&mu l的标记反应液 2. 65度反应4-5小时 3.将样品按步骤4处理除掉过量的标记试剂 使用Sigma公司试剂 1. 配制3 0% 的醋酸D M S O 溶液( 3 0 &mu l 冰醋酸,700ulDMSO) 2.按照20:1(v/w)的比例配制2-AB 溶液 (如需要20mg 2-AB,则用400&mu l 30% 的醋酸DMSO溶液配制) 3.以16.7:1(v/w)的比例将2-AB溶液与氰基硼氢化钠混合配制标记反应液 4.将所得糖链用50&mu l标记反应液溶解,65度震荡反映4-5小时 5 .将反应液按步骤4处理除去过量的标记试剂 二、使用MassPrep亲水作用样品处理板除去过量的标记试剂 所需溶液: MiniQ 纯水,90% 乙腈 ACN,10 mM 醋酸铵Tris,20% ACN 1.样品处理板活化,向样品处理板加入200&mu l MiniQ纯水,再加入 200&mu l 90% ACN,重复 90% ACN 2.吸取 50&mu l 标记溶液,加入 450&mu l ACN( 如有沉淀,请勿离心,以免降低糖链回收率),由于板上每孔体积为200&mu l,可以将样品分为四份加入 3.将样品加入处理板,设定真空度为低(压力 250-500 mmHg),以保证样品与HILIC基质有充分时间相互作用;如果溶液在板上没有移动,可适当增加真空度 4.用 90% ACN清洗处理板两次 5.换用样品收集板,用200&mu l 10 mM 醋酸铵Tris, 20%ACN洗脱,洗脱液转移至1ml 离心管 6.冷冻干燥标记后糖链溶液冻干后的样品复溶于20&mu l50% ACN中,超声5 min 后转入UPLC采样瓶,进样5&mu l。 参考文献 (1) Martin Gilar, Ying-Qing Yu, Joomi Ahn, and Hongwei Xie.Analysis of Glycopeptide Glycoforms in Monoclonal Antibody TrypticDigest using a UPLC HILIC Column (2) Hongwei Xie, Weibin Chen, Martin Gilar, St John Skiltonand Jeffery R. Mazzeo. Separation and Characterization of N-linkedGlycopeptides on Hemagglutinins In A Recombinant Influenza Vaccine (3) Joomi Ahn,Ying Qing Yu and Martin Gila.r UPLC亲水相互作用色谱(HILIC)-荧光检测法分析2-AB标记的多聚糖
  • Nicolet iN10 MX 红外成像显微镜可获得超快速可靠的混合物分析
    Madison, WI., (2008年8月19日) &mdash &mdash 作为服务科学领域的全球领导者,赛默飞世尔科技宣布,其最新推出的赛默科技Nicolet iN10 MX红外成像显微镜能使分析工作者在显微尺度下于复杂结构和随机混合物中快速鉴定各种化学物质及其分布。专为超快速数据获取而设计的新型Nicolet iN10 MX 红外成像显微镜,能提供快速准确的材料分析,从法庭科学直至高科技的聚合物材料。 与OMNIC Picta 软件配套使用的Nicolet iN10 MX 红外成像显微镜提供全新的用户体验,只需鼠标点击几次,即可引导操作者完成从样品装载到最终报告的整个分析过程。此系统的高度整合设计将机器视觉和光谱鉴定技术有机的结合起来,极大地方便了数据获取和样品分析。 高效的光学效率使得系统可获得高散射能力样品的化学图像,比如纸张和固体制剂,从而使得Nicolet iN10 MX 红外成像显微镜成为伪造检测强有力的工具。 为获取最佳的数据,此系统最多可装备三个检测器。一个室温检测器无需液氮即可进行&ldquo 对准就拍&rdquo 式分析,与高效的插入式ATR物镜配合使用,使得Nicolet iN10 MX红外成像显微镜像常规的红外分光光度计一样快捷易用。为提高检测灵敏度并获得最小样品的数据,可使用单元素MCT检测器。作为可选配件的阵列检测器使得此红外成像显微镜以更快的数据采集速度来获得大尺寸图像,分析5mm× 5mm样品只需5分钟。另外,系统的Micro-ATR所获图像的空间分辨率优于3微米。 由于难以通过认证,红外显微镜在管制环境中的应用一直受到限制。只有Nicolet iN10 MX红外成像显微镜可在反射,透射和ATR测试模式下进行验证,因此简化了仪器的认证过程。这为红外显微镜在高度管制环境中的应用创造了良好的机会。 想要了解更多赛默科技Nicolet iN10 MX红外成像显微镜的详细信息,请拨打电话800-810-5118, 400-650-5118, E-mail至sales.china@thermofisher.com或登录www.thermo.com/FT-IR。 Thermo Scientific 是服务科学领域全球领导者赛默飞世尔科技的一部分。 关于Thermo Fisher Scientific(赛默飞世尔科技) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermo.com.cn
  • Nicolet iN10 MX红外成像显微镜可获得超快速可靠的混合物分析
    Madison, WI., (2008年8月19日) &mdash &mdash 作为服务科学领域的全球领导者,赛默飞世尔科技宣布,其最新推出的Nicolet iN10 MX红外成像显微镜能使分析工作者在显微尺度下于复杂结构和随机混合物中快速鉴定各种化学物质及其分布。专为超快速数据获取而设计的新型Nicolet iN10 MX 红外成像显微镜,能提供快速准确的材料分析,从法庭科学直至高科技的聚合物材料。 与OMNIC Picta 软件配套使用的Nicolet iN10 MX 红外成像显微镜提供全新的用户体验,只需鼠标点击几次,即可引导操作者完成从样品装载到最终报告的整个分析过程。此系统的高度整合设计将机器视觉和光谱鉴定技术有机的结合起来,极大地方便了数据获取和样品分析。 高效的光学效率使得系统可获得高散射能力样品的化学图像,比如纸张和固体制剂,从而使得Nicolet iN10 MX 红外成像显微镜成为伪造检测强有力的工具。 为获取最佳的数据,此系统最多可装备三个检测器。一个室温检测器无需液氮即可进行&ldquo 对准就拍&rdquo 式分析,与高效的插入式ATR物镜配合使用,使得Nicolet iN10 MX红外成像显微镜像常规的红外分光光度计一样快捷易用。为提高检测灵敏度并获得最小样品的数据,可使用单元素MCT检测器。作为可选配件的阵列检测器使得此红外成像显微镜以更快的数据采集速度来获得大尺寸图像,分析5mm× 5mm样品只需5分钟。另外,系统的Micro-ATR所获图像的空间分辨率优于3微米。 由于难以通过认证,红外显微镜在管制环境中的应用一直受到限制。只有Nicolet iN10 MX红外成像显微镜可在反射,透射和ATR测试模式下进行验证,因此简化了仪器的认证过程。这为红外显微镜在高度管制环境中的应用创造了良好的机会。 想要了解更多赛默科技Nicolet iN10 MX红外成像显微镜的详细信息,请拨打电话800-810-5118, 400-650-5118, E-mail至sales.china@thermofisher.com 或登录www.thermo.com/FT-IR。 Thermo Scientific是服务科学领域全球领导者赛默飞世尔科技的一部分。 ---------------------------------------------------------------------------------- 关于赛默飞世尔科技(Thermo Fisher Scientific) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermo.com.cn
  • 塑料回收或迎新突破!新催化剂可混合分解塑料,不产生温室气体
    塑料垃圾是我们这个时代最紧迫的环境问题之一,对不同类型的塑料垃圾进行分类使回收变得棘手。而现在,麻省理工学院(MIT)的工程师们已经开发出一种有效的新催化剂,它可以将混合塑料分解成丙烷,然后丙烷可以作为燃料燃烧或用于制造新的塑料。塑料在我们的现代世界中无处不在,这意味着大量的塑料最终会进入环境,而且令人担忧的是,似乎很少有地方不受影响。现在,从南极到北极,从海底到珠穆朗玛峰顶,都可以发现塑料,而且正在沿着食物链向上移动,以至于现在我们的身体里也能找到塑料。塑料有非常强的碳键,这使它们在使用过程中具有弹性和可靠性,但回收起来却非常麻烦。更糟糕的是,不同类型的塑料需要不同的回收方法,使其难以分类和大规模回收。但MIT的研究小组现在提出了一种新技术,可以处理混合在一起的多种塑料,并将它们转化为丙烷,而丙烷本身有很多用途。解决问题的关键是一种催化剂,它由一种叫做沸石的多孔晶体组成,里面塞满了钴纳米颗粒。研究人员指出,其他催化剂会在不可预测的地方打破碳键,产生不同的最终产品时,而新的催化剂只会在一个特定的、可重复的位置打破碳键。这个位置意味着它基本上切断了丙烷分子,留下剩下的碳氢化合物链,准备反复进行这个过程。这适用于多种类型的塑料,包括最常用的塑料,如聚乙烯(PET)和聚丙烯(PP)。在对现实世界的混合塑料样品进行的测试中,研究小组发现,该工艺可以将大约80%的塑料转化为丙烷,而不产生甲烷作为副产品。甲烷是仅次于二氧化碳(CO2)的第二大人为制造温室气体。由此产生的丙烷可以直接作为一种相对低影响的燃料,或者作为原料在一个部分封闭的循环系统中制造新的塑料。而最重要的是,催化剂的成分(沸石、钴和氢气)相对便宜且容易获得。这项研究成果已于近期发表在了《JACS Au》杂志上。尽管这项研究很吸引人,但研究人员表示,未来的工作将需要关注该技术如何在现实世界的塑料回收流中应用,以及胶水和标签等污染物如何影响该技术。
  • 多肽药物质控丨当混合多肽遇见蛋白质测序仪
    在多肽类药物的生产质控中,氨基酸序列的测定是必不可少的检测项目。对于常规组成单一的合成多肽药物来说,氨基酸序列的分析较为简单,可通过Edman降解法或质谱法进行测定,其中Edman降解法被认为更加直接可靠。但对于组成复杂的混合多肽药物来说,比如,醋酸格拉替雷(Glatiramer acetate,简写为GA),由于多肽组成形式复杂多变,可能具有超过一万亿个不同序列的独特多肽,如果对每种多肽成分的氨基酸序列进行精确测定,似乎既不可能,其实也无必要,我们需要考虑新的方法对混合多肽进行整体表征。 n 快速了解醋酸格拉替雷醋酸格拉替雷是一种人工合成的多肽类制剂,由Glu(谷氨酸)、Ala(丙氨酸)、Tyr(酪氨酸)和Lys(赖氨酸)四种氨基酸随机聚合而成,原研药由以色列药厂TEVA研发制造(商品名Copaxone),于1996年获美国FDA核准用于治疗多发性硬化症(MS),其2020年全球销售额达到13.37亿美元,2021年7月,TEVA的“醋酸格拉替雷注射液”在中国的上市申请获得受理。多发性硬化症是一种常见的以中枢神经系统炎性脱髓鞘为主要特征的自身免疫性疾病,临床表现包括视物模糊,感觉、运动异常,智能、情感等高级功能障碍,在中青年人群中多发,且有较高致残率。醋酸格拉替雷被认为是通过改变造成MS发病机制的免疫过程而起作用的,其疗效与耐受性在临床上获得了十足的肯定。 醋酸格拉替雷是一种由Tyr、Lys、Glu、Ala随机聚合而成的多肽混合物(CAS号:147245-92-9) 醋酸格拉替雷的第一个仿制药Glatopa (由Sandoz 公司和 Momenta公司共同开发)于2015年上市,由于原研药的专利到期,未来将有更多的仿制药上市。 n 醋酸格拉替雷的合成与质量评估在醋酸格拉替雷的生产过程中,通过聚合及解聚反应,可以将其分子量控制在一个较窄的范围(平均分子量4700~11000 Da)。生产工艺的改变以及所用试剂的变化都有可能使药物的组分比例发生变化。利用Edman降解法,通过监测N端每一个循环的4种氨基酸的组成比例以及变化趋势,可以对药品质量进行评估。 岛津解决方案 l 蛋白质测序仪对醋酸格拉替雷进行质量评价的原理Edman降解法是进行N端氨基酸序列分析的经典方法,岛津以其为原理设计的全自动蛋白质测序仪(以下简称PPSQ),由液相系统和可执行自动化Edman降解反应的主机组成,将氨基酸从多肽链的N端依次切割下来,通过色谱的保留时间判定氨基酸种类,结果直接可靠。PPSQ除了对N端氨基酸序列进行定性分析外,利用液相色谱稳定的定量能力,还可以对多肽特定循环氨基酸的摩尔生成量及组成比例进行定量分析。 岛津在售蛋白质测序仪PPSQ-51/53A Edman降解反应图解 l 样品前处理取适量稀释后的样品加入经聚凝胺处理的玻璃纤维膜上,干燥后安装到PPSQ反应器上进行分析。实验仅作示例,共测试了3个批次的原研药Copaxone以及4个批次的某在研仿制药,每个批次测试N端前6个循环。 反应器构造图 l 实验结果 1)N端氨基酸组成定性分析醋酸格拉替雷原研药每个循环均检测到Glu、Ala、Tyr、Lys等4种氨基酸,这与药品由Glu、Ala、Tyr、Lys等4种氨基酸随机聚合而来,结果一致。 醋酸格拉替雷原研药Copaxone与某在研仿制药N端氨基酸分析色谱图示例(1-6循环)(黑色:原研药Copaxone;红色:某在研仿制药;DTT、DMPTU、DPTU为试剂峰) 2)各循环中每种氨基酸的相对摩尔含量的分析根据仪器自动生成的氨基酸生成量,计算每种氨基酸的摩尔含量,例如,Glu的相对摩尔含量为: 根据氨基酸的相对摩尔含量,绘制各循环中各氨基酸生成量的趋势图,如下。 醋酸格拉替雷Copaxone 与某在研仿制药N端前6个循环相对氨基酸水平分析(纵坐标:相对摩尔含量;横坐标:循环数) 3)原研药与某在研仿制药的比较从趋势图来看,仿制药各循环氨基酸生成量趋势,与原研药整体相似,但GA仿制药-批次1的Glu的相对含量略低,GA仿制药-批次4的各循环Tyr的相对含量略高,批次1中Glu的偏低与批次4中Tyr的偏高是否正常,需要对原研药进行多批次实验,以判断是否超出正常范围。GA仿制药-批次2及GA仿制药-批次3的Tyr生成量趋势与其他样品有明显不同,提示仿制药生产工艺可能存在与原研不同的地方。 结 语通过醋酸格拉替雷N端各氨基酸生成量的趋势变化的分析比较,可为仿制药的开发及生产质控提供参考,醋酸格拉替雷N端相对氨基酸水平分析亦可作为醋酸格拉替雷仿制药与原研药一致性评价的依据。这也为我们今后分析类似混合蛋白或多肽药物提供了参考思路。 参考文献:J. Andersona, C. Bell, et al., Demonstration of equivalence of a generic glatiramer acetate (Glatopa™ ), Journal of the Neurological Sciences 359 (2015) 24–34 撰稿人:顿俊玲 *本文内容非商业广告,仅供专业人士参考。
  • 便携离子阱质谱仪现场快速鉴定混合毒品研究取得新进展
    p   近日,中国科学院大连化学物理研究所快速分析与检测研究组研究员李海洋和侯可勇团队与云南警官学院毒品分析及禁毒技术公安部重点实验室合作,研制了一种可以快速同时检出易挥发和难挥发毒品混合物的离子阱质谱仪,该仪器对于芬太尼类等难挥发毒品的检测灵敏度达到了50pg,相关研究成果以全文的形式发表于《美国分析化学》(Anal.Chem,2019)杂志上。 /p p   打击毒品滥用长期以来一直是全球重点关注问题。近年来,制毒者为了提升毒品的“快感”,同时降低毒品的成本,经常将多种毒品进行混合,配置成混合药效新型毒品,这类不同毒品相互掺杂促进药效的混合毒品危害性很大。2017年,北美地区因吸食毒品过量造成的死亡人数超过5000人,其中大部分是因为吸食海洛因中掺入了廉价芬太尼毒品所致。2017年,我国云南省临近金三角地区缴获毒品达到89.2吨,严峻的禁毒形势对毒品现场快速识别技术提出了更高的要求,但是目前传统的检测仪器包括光谱、色质联用、免疫反应等无法适用于现场快速、准确检测的要求。 /p p   研究人员一直致力于发展基于真空紫外灯和丙酮辅助光化学电离-热解析的便携式离子阱质谱仪(Anal.Chem,2019)。由于各类毒品沸点差异较大,混合毒品检测中难挥发毒品灵敏度低,而易挥发毒品出峰时间短,导致混合毒品全成分检测难度较大。为解决该问题,该研究设计了一种新型光闪热解析系统,3s内可将解析池内焦点附近的毒品加热至290℃,实现了难挥发性毒品的快速汽化。相比于过去,该仪器对难挥发毒品那可汀的检测灵敏度提高了60倍以上。此外,该设计中还加入了脉冲吹扫装置,可以将热解析池内挥发出来的难挥发和易挥发样品在20ms内同时吹入质谱,减小了因为连续气流传输而造成的进样损失,样品的利用率提高了5倍以上。沸点差异达到300℃的10种毒品混合物通过光闪热解析结合脉冲吹扫进样后,可实现样品同时检测,且分析时间仅为3s。 /p p   该离子阱质谱仪在示范应用阶段曾多次深入云南禁毒一线,不断根据现场试验的结果对仪器进行细节的改进,先后在玉溪市青龙场检查站、德宏州木康边防检查站、腾冲市、保山市、墨江市等地点进行了实地应用,成功对现场缴获的疑似鸦片、大麻、芬太尼胶囊等混合毒品进行了准确的鉴定,离子阱质谱仪毒品检测指认的毒品达到37种。 /p p   该研究得到国家自然科学基金、大连化物所自主部署基金等的支持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/5705bfd7-d628-47fa-9a7a-1bfa2a9fd172.jpg" title=" 0820-1.jpg" alt=" 0820-1.jpg" / /p p br/ /p
  • GB/T 5750.8 《生活饮用水标准检验方法》配套混标上架
    2020年国家卫生健康委员会提出GB 5749—2006《生活饮用水卫生标准》修订立项计划,并获国家标准化管理委员会批准。2021年7月12日,在全国标准信息服务平台公开征求意见,同时,GB/T 5750-2006《生活饮用水标准检验方法》也发生了有很大变化。相比GB/T 5750.8-2006,新版修订内容包括:*对原有28个指标进行了修订。修订指标包括四氯化碳、1,2 二氯乙烷、1,1,1-三氯乙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯(顺、反)、三氯乙烯、四氯乙烯、丙烯酰胺、邻苯二甲酸二(2-乙基已基)酯、微囊藻毒素、环氧氯丙烷、苯、甲苯、二甲苯(邻、间、对)、乙苯、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯、四氯苯、苯乙烯、六氯丁二烯。*纳入27个新指标。新增加指标包括1,1-二氯乙烷、1,2-二氯丙烷、1,3-二氯丙烷、2,2-二氯丙烷、1,1,2-三氯乙烷、1,2,3-三氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,2-二溴-3-氯丙烷、1,1-二氯丙烯、1,2-二氧丙烯(顺、反)、1,2-二溴乙烯、1,2-二溴乙烷、1,2,4-三甲苯、1,3,5-三甲苯,丙苯、4-甲基异丙苯、丁苯、五氯苯、2-氯甲苯、4-氯甲苯、1,3-二氯苯、溴苯、异丁基苯、萘、叔丁基苯、二苯胺。*共增加7个检验方法。1、生活饮用水中环氧氯丙烷检验方法—气相色谱质谱法2、生活饮用水中55种挥发性有机物(VOC) 检验方法—吹扫捕集/气相色谱质谱法3、生活饮用水中5种微囊藻毒素的测定方法—液相色谱串联质谱联用法4、生活饮用水中丙烯酰胺的测定方法—液相色谱串联质谱联用法5、生活饮用水中11种挥发性有机物的检验方法—顶空气相色谱法6、生活饮用水中27种卤代烃的检验方法—顶空气相色谱法7、生活饮用水中二苯胺的检验方法—高效液相色谱法阿尔塔科技紧跟新标准步伐推出配套标准品系列产品,针对基础不同实验室满足多样需求。新建型实验室可以选择标准混标完整套装,助力实验室展开全面的扩项工作;具有一定实验基础的实验室可以选择新增指标的标准品补充包;需要兼顾新标准和各地饮用水地标的客户可以选择阿尔塔混标定制服务。更多产品需求欢迎来电咨询。标准配套部分混标:更多产品信息请联系对应业务员获取!
  • ECHO发布伊斯埃欧气体混合设备新品
    气体混合设备用于在校准程序中对气体混合物进行高精度控制,并制备用于工业或实验室用途的气体混合物。各种气体的精确稀释使用户能够获得最准确的混合气体,以适合用于各种场合。用户只需设置所需气体的目标输出浓度即可。实际浓度基于流量检测的混合过程中的真实显示。 n 原理各种气体传感器与高精度质量流量控制器和精密的软件相结合,可将气体混合物从100%降至1ppm。 n 用途l 气体混合物对传感器校准;l 个人气体监测仪的校准;l 校准排放监测仪;l 工业和实验室用混合气体;l 用于生物技术,药学,化学和生物实验。 n 优点l 混合非腐蚀性和腐蚀性气体,例如:l SO2,NO,NO2,CL2,H2S等;l 1-4个通道道;l 高精度和可重复性;l 供选台式或便携式;l 从100%到ppm的混合物;l 认证: 气体流量测量实验室通过ISO / IEC 17025认证。 n 技术规格l 精度: 满量程的+/- 1%,包括在15至25°C和0.7至4 bar的线性度;满量程的+/- 2%,包括0至50°C和0.3至10 bar的线性度;特殊校准可提供在特定温度和压力下满量程精度的+/- 1%;l 重现性:±0.25%f.s. (按要求±0.15%f.s.); l 反应时间:300毫秒;l 流量范围:0至10 sccm至0至50 slpm;规定的流量范围是在760 mm Hg和21°C下的等效氮气流量。 l 平均反应时间:2秒 l 气压:最(佳)2 bar,最(大) 34 bar;创新点:用户只需设置所需气体的目标输出浓度即可 各种气体的精确稀释使用户能够获得最准确的混合气体 伊斯埃欧气体混合设备
  • ECHO发布伊斯埃欧气体混合设备新品
    气体混合设备用于在校准程序中对气体混合物进行高精度控制,并制备用于工业或实验室用途的气体混合物。各种气体的精确稀释使用户能够获得最准确的混合气体,以适合用于各种场合。用户只需设置所需气体的目标输出浓度即可。实际浓度基于流量检测的混合过程中的真实显示。 n 原理各种气体传感器与高精度质量流量控制器和精密的软件相结合,可将气体混合物从100%降至1ppm。 n 用途l 气体混合物对传感器校准;l 个人气体监测仪的校准;l 校准排放监测仪;l 工业和实验室用混合气体;l 用于生物技术,药学,化学和生物实验。 n 优点l 混合非腐蚀性和腐蚀性气体,例如:l SO2,NO,NO2,CL2,H2S等;l 1-4个通道道;l 高精度和可重复性;l 供选台式或便携式;l 从100%到ppm的混合物;l 认证: 气体流量测量实验室通过ISO / IEC 17025认证。 n 技术规格l 精度: 满量程的+/- 1%,包括在15至25°C和0.7至4 bar的线性度;满量程的+/- 2%,包括0至50°C和0.3至10 bar的线性度;特殊校准可提供在特定温度和压力下满量程精度的+/- 1%;l 重现性:±0.25%f.s. (按要求±0.15%f.s.); l 反应时间:300毫秒;l 流量范围:0至10 sccm至0至50 slpm;规定的流量范围是在760 mm Hg和21°C下的等效氮气流量。 l 平均反应时间:2秒 l 气压:最(佳)2 bar,最(大) 34 bar;创新点:用户只需设置所需气体的目标输出浓度即可 各种气体的精确稀释使用户能够获得最准确的混合气体 伊斯埃欧气体混合设备
  • 华东师大吴鹏团队成功创制高效丙烷脱氢催化新材料
    近日,华东师范大学化学与分子工程学院吴鹏教授团队在分子筛孔道限域金属催化剂高效催化丙烷脱氢领域取得重要进展。面向丙烷脱氢制丙烯这一重要工业反应对高活性、高选择性和高稳定性贵金属催化剂的实际需求,课题组创制了超大微孔硅锗沸石孔道内限域锚定铂(Pt)团簇催化剂,利用沸石骨架金属与Pt的强相互作用,实现了丙烷脱氢高选择性制丙烯反应的长周期运行。2023年6月12日,研究成果以《Germanium-enriched double-four membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation》为题在线发表于Nature Catalysis上。丙烯是化学工业中最重要的烯烃之一,用于生产多种大宗化学品,包括聚丙烯、丙烯腈、丙烯酸、丙酮和环氧丙烷等。广泛用于丙烷脱氢制丙烯的铂基催化剂面临着制造成本高、容易团聚烧结和高温下催化性能快速失活等诸多问题。因此开发兼具理想催化活性、高选择性及长期耐久性的新型催化剂具有重要的学术和应用价值。吴鹏教授团队开发了一种UTL型硅锗沸石孔道限域的Pt亚纳米团簇型金属催化剂,巧妙利用UTL型分子筛中特殊的富锗双四元环结构(d4r)诱导锚定客体Pt,形成特异性限域于14元环孔道内的亚纳米Pt团簇,构建的主客体双金属结构Pt4-Ge2-d4r@UTL催化剂极大地提升了丙烷脱氢的催化性能,并具有高活性、高丙烯选择性和高耐久性,极具工业应用前景。Pt4-Ge2-d4r@UTL催化丙烷脱氢反应的性能课题组以热/水热结构稳定的Ge-UTL为载体,H2PtCl6为Pt源,采用湿法浸渍制备得到催化剂Pt@Ge-UTL。该催化剂在500oC的反应温度下获得了超过54%的丙烷稳定转化率,99%以上的丙烯选择性。催化剂在不同的丙烷分压,空速以及反应温度下持续稳定催化4200小时。为了满足工业应用需要,课题组还评价了纯丙烷进料、580oC/600oC高温条件下长时间的丙烷脱氢性能,结果表明催化剂具有工业应用前景。亚纳米Pt团簇在UTL孔道内的落位课题组利用积分差分相位衬度成像扫描透射电子显微镜,证实了亚纳米级的Pt团簇特异性地落位在UTL的14元环孔道内,表明Pt在UTL孔道中占据了特定位置,这与14元环孔道具有较大孔尺寸以及骨架Ge在双四元环结构单元的局部富集有关。Pt和Ge的化学状态和配位环境的表征原位XAFS研究表明,最优催化剂Pt-A-2h(31)-R中的Pt物种价态介于0-1之间,线性组合拟合给出了Pt的平均价态为0.576。该催化剂拥有几乎可以忽略的Pt-Pt键散射路径贡献,说明高Ge含量的样品中Pt的尺寸极小(Pt-Pt键配位数大约为3)。重要的是,可以明显观察到位于2.93 Å位置的Ge-O-Pt键的散射路径,且强度很高,证明了Pt是通过Pt-O-Ge键的形式锚定在Ge-UTL沸石上。此外,没有观察到Ge-Ge键的散射路径信号,表明骨架Ge未被还原,仍为原子分散的骨架Ge位点。Ge原子在载体和催化剂中的位置采用19F MAS NMR技术对双四元环结构中的元素组成进行了表征,确认了各种组成的双四元环所占比例并计算出了双四元环结构中Ge含量占整个UTL晶体中Ge含量的95 %左右,表明经酸处理稳固后,样品中的Ge主要位于双四元环结构单元。确定了Pt的定向锚定和落位是通过与双四元环结构中的骨架Ge的化学相互作用来实现的。证明了一种全新的活性位点Pt4-Ge2-d4r@UTL的形成,其可以高效催化丙烷脱氢制取丙烯。丙烷脱氢过程的理论计算结果DFT理论计算和微观动力学模拟结果表明Pt4-Ge2-d4r@UTL结构的计算活化能接近实验值,且远低于Pt(111)的活化能。这归因于Pt4-Ge2-d4r@UTL结构可以有效降低第一步脱氢的能垒,这是整个PDH反应的速率决定步骤,从而提高丙烷脱氢反应速率。吴鹏教授课题组长期聚焦于新型沸石分子筛催化材料的设计及环境友好石油化学化工过程的研究。华东师大化学与分子工程学院博士后马跃为论文的第一作者,华东师大化学与分子工程学院吴鹏教授、徐浩教授、关业军教授,以及中国石油大学(北京)宋卫余教授、内蒙古大学张江威研究员、阿卜杜拉国王科技大学韩宇教授为共同通讯作者。合作单位包括石油科学研究院、崇明生态研究院、重庆大学、中国石油大学(北京)、内蒙古大学、华南理工大学以及阿卜杜拉国王科技大学。
  • 高效混合 一键搞定丨MTV3000多管涡旋混合仪新品上市
    在科研的道路上,每一步都很重要MTV3000多管涡旋混合仪您的前处理“加速器”让实验前处理变得简单快捷作为一款理想的可以进行大批量样品处理的混合设备,主要用于快速、均匀地批量混合各种液体,一次最多可处理66个样品(2mL EP管)。多种不同规格海绵架子以适配不同规格的容器。通量高、应用范围广、操作简单✔ 7寸彩色触摸屏控制,实时显示当前运行的速度、剩余时间等✔ 预约启动,循环设置,多段不同速度及时间运行,可根据应用需要设置不同的方法✔ 三种运行模式,满足不同性状样品✔ 通量高,最多可同时处理66个样品✔ 可选配100mL、50mL、15mL等多种规格样品架,以满足不同应用,样品架可定制应用领域食品农兽残、致病菌检测等样品提取、溶液快速混匀等食品理化检测溶液混匀、提取等生物实验室:蛋白质溶液混合、细胞培养实验中,用于混合培养基、细胞悬浮液等化学实验:用于混合试剂、催化剂等应用标准举例◆《中华人民共和国药典(2020年版)》2341农药残留量测定法 第五法 药材及饮片(植物类)中禁用农药多残留测定法◆GB23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱法-质谱联用法◆GB23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气质联用法◆GB23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法 ◆GB 31613.1-2021 食品安全国家标准 牛可食性组织中氨丙啉残留量测定 液相色谱-串联质谱法和高效液相色谱 ◆GB 31613.2-2021食品安全国家标准 猪、鸡可食性组织中泰万菌素和 3-乙酰泰乐菌素残留量的测定液相色谱-串联质谱法◆GB 31656.1-2021 食品安全国家标准 水产品中甲苯咪唑及代谢物残留量的测定 高效液相色谱法 ◆GB 31656.11-2021 食品安全国家标准 水产品中土霉素、四环素、金霉素和多西环素残留量的测定 ◆GB 5009.208-2016 食品安全国家标准 食品中生物胺的测定
  • 阿尔塔科技推出51种农药混合标准溶液
    主要用途:此标准溶液完全符合国标《食品中农药最大残留限量》(GB2763-2014)的要求,其中的51种农药均在农业部规定的70多种例行监测农残中,可用于同时分析蔬菜水果中51种农业部例行监测的农残的定性与定量。该产品已应用到SCIEX发布的"51种农药检测软件库和方法包 "中,是例行监测解决方案必备品!订货号1ST27019-10M 产品名51种农药混合标准溶液规格10ppm浓度10ug/ml溶剂甲醇包装??1ml/支成分如下:产品号产品名称英文名称CAS#1ST21058多菌灵Carbendazim10605-21-71ST20297啶虫脒Acetamiprid135410-20-71ST20298吡丙醚Imidacloprid138261-41-31ST20001毒死蜱Chlorpyrifos2921-88-21ST20350噻虫嗪Thiamethoxam153719-23-41ST21145烯酰吗啉Dimethomorph110488-70-51ST21189苯醚甲环唑Difenonazole119446-68-31ST21226腐霉利Procymidone32809-16-8????1ST20305氟虫腈Fipronil120068-37-31ST20438三唑磷Triazophos24017-47-81ST20155丙溴磷Profenofos41198-08-71ST22249二甲戊灵Pendimethalin40487-42-11ST20271克百威Carbofuran1563-66-2??1ST20170?辛硫磷Phoxim14816-18-3??1ST21164异菌脲Iprodione36734-19-7?1ST20182敌百虫Trichlorphon52-68-61ST21247咪鲜胺Prochloraz67747-09-51ST20348氟啶脲Chlorfluazuron71422-67-81ST25000阿维菌素Abamectin71751-41-21ST20167氧乐果Omethoate1113-02-61ST20345除虫脲Diflubenzuron35367-38-51ST20127甲基异柳磷Isofenphos-methyl?99675-03-31ST20097敌敌畏Dichlorvos62-73-71ST20093甲胺磷Methamidophos10265-92-61ST20449灭多威Methomyl16752-77-51ST20144乙酰甲胺磷Acephate30560-19-11ST21161嘧霉胺Pyrimethanil???53112-28-01ST20277甲萘威Carbaryl63-25-21ST20273涕灭威亚砜Aldicarb-sulfoxid?1646-87-31ST20375涕灭威Aldicarb116-06-31ST20098乐果Dimethoate60-51-51ST202593-羟基-呋喃丹 3-羟基克百威Carbofuran-3-hydroxy16655-82-61ST20266涕灭威砜 涕灭氧威Aldicarb sulfone1646-88-41ST20124甲拌磷Phorate298-02-21ST20140甲基对硫磷Parathion-methyl298-00-01ST20111杀螟硫磷Fenitrothion 122-14-51ST20065倍硫磷Fenthion55-38-91ST20173水胺硫磷Isocarbophos24353-61-5??1ST20434对硫磷Parathion56-38-21ST21202三唑酮Triadimefon43121-43-3?1ST20094二嗪磷Diazinon333-41-51ST20349灭幼脲Chlorobenzuron Chlorbenzuron57160-47-11ST20189亚胺硫磷Phosmet732-11-61ST20168马拉硫磷Malathion121-75-5?1ST20406哒螨灵Pyridaben96489-71-31ST20172伏杀硫磷Phosalone2310-17-0??1ST21157嘧菌酯Azoxystrobin131860-33-81ST20288甲氨基阿维菌素苯甲酸盐Emamectin Benzoate155569-91-81ST20222甲氰菊酯Fenpropathrin39515-41-81ST20210联苯菊酯Bifenthrin82657-04-31ST20396虫螨腈Chlorfenapyr122453-73-0附:SCIEX——蔬菜水果中51种农业部例行监测农残的LC-MS/MS分析方法Figure 1. 韭菜基质中0.01 mg/kg农药的色谱图51种农药:多菌灵、啶虫脒、吡虫啉、毒死蜱、噻虫嗪、烯酰吗啉、苯醚甲环唑、腐霉利、氟虫腈、三唑磷、丙溴磷、二甲戊灵、克百威、辛硫磷、异菌脲、敌百虫、咪鲜胺、氟啶脲、阿维菌素、氧乐果、除虫脲、甲基异柳磷、敌敌畏、甲胺磷、灭多威、乙酰甲胺磷、嘧霉胺、甲萘威、涕灭威亚砜、涕灭威、乐果、3-羟基克百威、涕灭威砜、甲拌磷、甲基对硫磷、杀螟硫磷、倍硫磷、水胺硫磷、对硫磷、三唑酮、二嗪磷、灭幼脲、亚胺硫磷、马拉硫磷、哒螨灵、伏杀硫磷、嘧菌酯、甲氨基阿维菌素苯甲酸盐、虫螨腈、甲氰菊酯、联苯菊酯
  • 实例解析:如何防止混合溶剂“碰撞”导致的样品损失?
    之前聊过关于不同沸点的单一溶剂在蒸发过程可能产生的暴沸以及浓缩过程中可能产生的暴沸都可以用Dri-Pure技术解决。最糟糕的混合溶剂“碰撞”问题是否也能解决呢?1、“容易碰撞”的溶剂类型下面列举的一些“容易碰撞”的溶剂类型,看看是否你也遇到过:● 极易挥发的溶剂;● 含有可溶性气体的溶液(e.g.一水合氨);● 两种溶剂混合,容易蒸发的溶剂密度更大(倒置);● 两种溶剂的密度非常接近,但溶液可能不能很好地混合;● 溶剂或溶剂混合物中有导致碰撞的溶质(e.g.HPLC馏分);● 干燥后的化合物会在溶液表层形成覆盖物的溶液。 典型例子一个典型的例子是二氯甲烷(又称DCM)和甲醇。由于DCM的密度更大但比甲醇更容易蒸发,这意味着DCM会下沉到底部但理论上应该先沸腾,我们称之为倒置。这种混合溶液特别容易发生碰撞,底部溶剂暴沸会导致样品飞溅。(即使是完全混溶的溶剂,在高离心力下也能发生一些分离)2、如何解决溶剂暴沸?通过使用GeneVac系统,你完全不需要担心这些,只需要选择相应的溶剂类型,一键开启。 GeneVac S3 HT GeneVac 4.0 EZ-2实例说明——DCM和甲醇例如:有一个混合溶液(离心后)在1cm DCM的顶部分离出1cm甲醇,在500g离心力作用下,管中1cm深的甲醇受到压力比表面高出近400mbar(比重为0.79)。 我们设定从25℃开始,压力先下降到550mbar,而DCM的沸点是25℃,如果不是因为上面的甲醇,DCM现在就可以蒸发了。但因为有Dri-Pure技术存在,即使腔体内的气压是550mbar,DCM实际上受到的压强是950mbar,所以还无法沸腾。因此,压力继续下降到160mbar时,甲醇的沸点是25℃,所以甲醇开始在表面沸腾。当下降到150mbar时,DCM将受到总压力为550mbar开始沸腾。此时甲醇层可能已经变浅了,所以实际上400mbar的压力差会由于甲醇的蒸发一直在减少,但是蒸发会带走热量,所以整个溶液也会冷却一点,降低温度从而进一步延迟DCM沸腾的时间。 未采用Dri-Pure 防暴沸技术 Dri-Pure 防暴沸的效果确切的数字在不同的情况下会有所不同,但需要注意的是,仍然存在一个节点会有大量的甲醇层,但它下面的DCM想要开始沸腾。另外,机器内置Sample Guard功能会通过红外探温器来探测支架和样品温度,防止温度过高引起溶剂沸腾,并且不直接接触样品,避免样品的污染与损坏。 3、GeneVac助力加速研发效率 GeneVac 4.0 EZ-2系列以及S3 HT系列真空离心浓缩仪搭载特有的Dri-Pure技术,能够轻松解决高低沸点溶剂,不管是单一溶剂还是混合溶剂都有出色的表现。并且提供高通量的溶剂处理能力,同时处理上百个到上千个样品,缩短研发周期。 同时,有上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等。一台好的溶剂蒸发工作站可以帮助您加速前期研发的效率,很大程度上保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,并且,该系列还具备更多高端功能,详细可拨打热线400-006-9696或者点击填写表单进行咨询。
  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。   首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。   一.早期使用的气相色谱固定液   气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。   马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。   后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。   1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。   为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。   在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。 表1 McReynolds 固定液表   说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶   McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。   McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。   后来Hawkes推荐的较常用的气液色谱固定液有下列一些:   (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)   (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 (含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。   他还推荐了最常用的 6 种气相色谱固定液如下表2。 表2 最常用的6种气相色谱固定液   自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。   有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。   二、硅氧烷是现时气相色谱固定液的主体   尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。   (一)热稳定性好的固定液   目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。   (1)耐高温聚二甲基硅氧烷   有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。   前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。   (2)使用交联的聚硅氧烷固定液提高其热稳定性   在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。   (a)引入乙烯基   早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。   (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合   1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。   (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性   在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1: 图1 硅氧烷/硅亚芳基共聚物结构   其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。 表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据   (4) 在聚硅氧烷链中引入硼烷提高热稳定性   在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。   Dexsil有三个品种及其结构和极性如下表4: 表4 三个品种Dexsil的结构及极性   HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2: 图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图   色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m   载气:氦,18 mL/min, 在 35下测定   拄温:30-430 ℃,程序升温,10℃/min   检测器温度:FID 450 ℃   三、极性固定液   小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。 图3 使用DB-17ms分析22种杀虫剂的色谱图   另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱) 图4 DB-1701 分离22种杀虫剂的色谱图   各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。 表5 五类典型气相色谱固定液的使用情况   四、选择性固定液   选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。   第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。 表6 ASTEK公司的9种环糊精衍生物毛细管商品柱   五、近年商品柱所使用的新固定液   近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。   室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。 表7 几种商品离子液体固定相的极性(Supelco公司)   *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性   小结:   气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)   (作者:北京理工大学傅若农教授)
  • GB 5009.271-2016 食品中邻苯二甲酸酯的测定标准解读
    本标准代替gb/t21911—2008《食品中邻苯二甲酸酯的测定》和sn/t3147—2012《出口食品中邻苯二甲酸酯的测定》。 本标准与gb/t21911—2008 相比,主要变化如下: ● 标准名称修改为“食品安全国家标准 食品中邻苯二甲酸酯的测定”; ● 增加了邻苯二甲酸二烯丙酯和邻苯二甲酸二异壬酯两种目标化合物; ● 增加了同位素内标法定量作为第一法。 新国标对应的标准品是17 种混标+1 种dinp 单标的形式: ●e.1 邻苯二甲酸二异壬酯(dinp)标准溶液(1.0μg/ml)的总离子流色谱图(外标法)见图e.1。图 e.1 邻苯二甲酸二异壬酯(dinp)标准溶液(1.0μg/ml)的总离子流色谱图(外标法) ●e.2 17种邻苯二甲酸酯标准溶液(0.12μg/ml)的总离子流色谱图(外标法)见图e.2。图 e.2 17种邻苯二甲酸酯标准溶液(0.12μg/ml)的总离子流色谱图(外标法) dnp 和dinp 的解读: ● cas 84-76-4 邻苯二甲酸二壬酯(dnp 单峰); ● cas 28553-12-0 是邻苯二甲酸二异壬酯(dinp)一类同分异构体的混合物,此物质适宜做标准品; ●cas 68515-48-0 是邻苯二甲酸酯的混合物,含有三类同分异构体: 邻苯二甲酸二异辛酯(diop), 邻苯二甲酸二异壬酯(dinp), 邻苯二甲酸二癸酯(didp),其中主要成分是dinp。 推荐标准品:
  • 欧罗拉发布欧罗拉混合精斑DNA前处理工作站(差异裂解法)VERSA1100新品
    欧罗拉差异裂解法,DNA前处理工作站,混合精斑前处理工作站differential digestion workstation在法医学实践中,混合斑检材以精阴混合斑最为常见,即精液与阴道分泌液的混合物。Forensic sexual assault cases with mixed samples of semen and epithelial cells are very common.对于此类检材,都必须采用差异裂解法进行精子细胞分离。For such samples, differential digestion method must be used to separate sperm cells. 随着技术改进,结合脱氧核苷酸酶Dnase Ⅰ和改良的碱性裂解液,以及自动化液体工作站平台,即可轻松快速从含有精斑的混合液中获得精子DNA。With the improvement of technology, sperm DNA can be easily and quickly obtained from the sample mixture by combining deoxynucleotidase Dnase I with improved alkaline lysate and automated liquid workstation platform.应用: Application: √ 食品安全检测 _Food safety testing √ 血液/血清中维生素D萃取 Extraction of Vitamin D from Blood/Serum √ 公安药物实验室中滥用检测 _Detection of Toxic Substance Abuse in Public Security Drug Laboratory √ 血液中促进生长剂的检测 _Detection of growth-promoting agents in blood √ 水产品中禁用药物,如孔雀石绿 _Prohibited drugs in aquatic products, such as malachite green √ 药物研发化合物纯化 _Purification of Drug R&D Compounds √ 尿液中异黄酮分离 Detection of Isoflavonoides from urine samples √ 海产品中的黄曲霉素检测 _Detection of Aflatoxin in seafood √ 非挥发或半挥发分析化合物处理 _Treatment of Non-volatile or Semi-volatile Analytical Compounds √ 食品中氯霉素 _Chloramphenicol in Food如何给欧罗拉留言?欢迎点击【一键咨询】,【发送留言】后我们会马上联系您,为您的实验或应用需求推荐合适的仪器配置Applications Genomics • Automated Isolation of Genomic DNA using the MACHEREY- NAGEL NucleoMag® Plant kit by Aurora Biomed’s VERSA 1100 • Automated Isolation of Genomic DNA using the MACHEREY-NAGEL NucleoMag® Blood 200μL kit by Aurora Biomed’s VERSA 1100 • 采用性犯罪试剂盒差异消化方法在VERSA 1100自动化应用 • VERSA™ 1100 GENE在下一代测序(NGS)文库制备自动化的可行性验证 • 全血样品中核酸提取应用报告 • 植物样品中核酸提取应用报告 • Automation of DNA Extraction • PCR Setup • Automation of Reverse Transcriptase PCR • Automation of Real time PCR • Automation ofRNA Sequencing • Automation ofNext Generation Sequencing • Automation of DNA Microarray • Automation of Miniprep • Automation of Sanger Sequencing • Automation of On-Slide (Amplislide) PCR Setup using VERSA™ 110 PCR Setup Workstation • Food Safety Monitoring using VERSA™ 110 NAP Workstation • Hot-Start PCR using VERSA™ 110 PCR Workstation • DNA Isolation from Saliva (Invitek Forensic DNA Isolation Kit) • Nucleic Acid Prep for Avian Flu Viral RNA • β-Actin and Whole Genome Amplification (Sigma & Promega kits) • Genomic DNA Isolation from Blood (Promega) • Automation of Molecular Pathology Applications on the VERSA™ 10 PCR Setup Workstation • Automated System for High Throughput PCR SetupExtraction • 高通量固相萃取&气相色谱-质谱联用方法定量检测吸毒者尿液中甲基苯丙胺和苯丙胺 • HTS Flux Assay Automation • Validation of Automated Liquid Liquid Extraction of 25-hydroxy vitamin D • Automation of Sample Preparation and Introduction into NMR Tubes • Liquid Liquid Extraction of β-carotene • Automation of Protein PurificationGeneral Liquid Handling • High-Density Peptide Array Printing • Specimen Staining for TEM (Array printing) • Automated Slide-Based Assay Setup using VERSA™ 110 Workstation • VERSA™ Spotter Workstation for Solid-Phase Peptide Synthesis • Automated Protein Crystallography Plate Setup using VERSA™ 110如何给欧罗拉留言?欢迎点击【立即咨询】,【发送留言】后我们会马上联系您,为您的实验或应用需求推荐合适的仪器配置创新点:仪器针对法医学实践中的混合检材,尤其是精阴混合斑,采用特殊的差异裂解法进行精子细胞分离。 现混合精斑DNA前处理工作站,将差异裂解法在液体工作站中特色设计为自动化,结合脱氧核苷酸酶DnaseⅠ和改良的碱性裂解液,,即可轻松快速从含有精斑的混合液中获得精子DNA。 现特色模块如实际冷槽,对缓冲液、生物酶、试剂等低温保存,提高提取效率。 典型案例: 加利福尼亚州奥克兰警察局采用我司VERSA1100差异裂解法进行法医分析,并发表了论文证明了他们的成功。论文链接https://www.ncjrs.gov/pdffiles1/nij/grants/242773.pdf 欧罗拉混合精斑DNA前处理工作站(差异裂解法)VERSA1100
  • SK海力士,盯上了混合键合
    SK 海力士突破 HBM 堆叠层数限制,MR-MUF 和混合键合封装两手抓。近日,SK 海力士封装研发副社长李康旭(Kangwook Lee)于 9 月 3 日出席“2024 年异构集成全球峰会”,发表了名为“面向人工智能时代的 HBM 和先进封装技术”的演讲。HBM 是克服 “存储墙”(Memory Walls)的优化解决方案,通过 I/O 并行化能力,使 HBM 成为人工智能系统中用于训练和推断的最高规格动态随机存取存储器(DRAM)。根据应用产品不同,使用的 HBM 数量也不同。随着 HBM 世代发展,在训练和推理人工智能服务器中搭载 HBM 的平均数量也会增加,如近期训练服务器需要 8 个 HBM3E、推理需要 4 - 5 个,长远估算可能分别需要 12 个和 8 个 HBM4/HBM4E 存储器。李康旭表示,SK 海力士计划 2025 年推出 12 层 HBM4 产品,通过自家研发的封装技术,在 HBM 产品的能效和散热性能方面具有优秀的产品竞争力。有趣的是,SK 海力士到 HBM3E 仍是以动态随机存取存储器基础裸片(Base Die),采用 2.5D 系统级封装,到 HBM4 考虑将动态随机存取存储器基础裸片改成逻辑基础裸片(Logic Base Die),使性能和能效获得提升。此外,到了 HBM5 架构可能出现改变,SK 海力士目前正在评估包括 2.5D 和 3D 系统级封装(SiP)在内的各种方案。 SK海力士技术朝两个方向进行:封装MR-MUF和混合键合(Hybrid Bonding)MR-MUF技术由SK海力士多个团队共同开发,该技术能够同时对HBM产品中所有的垂直堆叠芯片进行加热和互联,比堆叠芯片后填充薄膜材料的TC-NCF技术更高效。此外,与TC-NCF技术相比,MR-MUF技术可将有效散热的热虚设凸块数量增加四倍。MR-MUF技术另一个重要特性是采用了一种名为环氧树脂模塑料(EMC, Epoxy Molding Compound)的保护材料,用于填充芯片间的空隙。EMC是一种热固性聚合物,具有卓越的机械性、电气绝缘性及耐热性,能够满足对高环境可靠性和芯片翘曲控制的需求。由于应用了MR-MUF技术,HBM2E的散热性能比上一代HBM2提高了36%。从开发HBM2E开始,MR-MUF技术及随后推出的先进MR-MUF技术的应用,使SK海力士能够生产出业界最高标准的HBM产品。时至2024年,SK海力士已成为首家量产HBM3E的公司,这是最新一代、拥有全球最高标准性能的HBM产品。在应用先进的MR-MUF技术后,与上一代8层HBM3相比,HBM3E在散热性能方面提高了10%,成为人工智能时代炙手可热的存储器产品。SK 海力士的高带宽存储器(HBM)产品采用 MR-MUF 封装技术,具有低压、低温键合和批量热处理的优势,在生产效率和可靠性方面优于热压膜非导电胶(TC-NCF)制程。此外,具有高热导特性的填充空隙材料(Gap-Fill 材料)和高密度金属凸块(在垂直堆叠 HBM 动态随机存取存储器时起连接电路作用的微小鼓包型材料)的形成,在散热方面比 TC-NCF 制程有 36% 的性能优势。 由于堆叠将面临高度限制,目前 SK 海力士不断寻找新方法,在有限高度下装入更多堆叠层数。李康旭指出,公司 8 层 HBM3/HBM3E 使用 MR-MUF 技术;12 层 HBM3/HBM3E 采用先进 MR-MUF 技术;明年下半年准备出货的 12 层 HBM4 同样采用先进 MR-MUF 技术;至于 16 层 HBM4/HBM4E 将同步采用先进 MR-MUF 和混合键合(Hybrid Bonding)两种技术,未来堆叠 20 层以上产品(如 HBM5)则将转向混合键合技术发展。混合键合是一种先进的集成电路封装技术,主要用于实现不同芯片之间的高密度、高性能互联。这种技术的关键特征是通过直接铜对铜的连接方式取代传统的凸点或焊球(bump)互连,从而能够在极小的空间内实现超精细间距的堆叠和封装,达到三维集成的目的。在混合键合工艺中,两个或多个芯片的金属层(通常是铜层)被精密对准并直接压合在一起,形成直接电学接触。为了保证良好的连接效果,需要在芯片表面进行特殊的处理,例如沉积一层薄且均匀的介电材料(如SiO2或SiCN),并在其上制备出微米甚至纳米级别的铜垫和通孔(TSV)。这些铜垫和通孔将芯片内部的电路与外部相连,使得数据传输速度更快、功耗更低,同时极大地提升了芯片的集成度。李康旭指出,SK 海力士正在研发 16 层产品的相关技术,最近确认对 16 层产品可应用先进 MR-MUF 技术的可能性。此外,该公司也强调,从 HBM4E 开始会更强调 “定制化 HBM”,以满足各种客户需求,如提升芯片效率。
  • 向“RNA世界”假说发起挑战,地球首个生命由RNA-DNA混合产生
    DNA示意图。  图片来源:《每日科学》杂志  近日,美国斯克里普斯研究所科学家在化学研究领域核心期刊《德国应用化学》上发表论文称,一种名为苯基磷二酰胺(DAP)的简单化合物在生命出现之前可能就已存在于地球上,它可以通过化学手段将名为脱氧核苷酸的微小DNA结构单元编织在一起,形成原始的DNA链。  该发现指出了DNA与RNA作为相似化学反应的产物一起出现的可能性,而第一批自我复制的分子,即地球上第一批生命的形式,正是这两种分子的混合体。近几十年来,“RNA世界”假说在生命化学领域一直占据主导地位,认为早期生命分子完全基于RNA,而DNA仅在后来作为RNA进化的产物才出现。而本次发现对该假说提出了挑战,进一步解释了地球生命是如何起源的这一古老问题。  一条RNA链可以吸引其他单个RNA结构单元,粘附在RNA链上形成一种镜像链。如果新链可以脱离模板链,并开始通过相同的过程作为模板结合其他新链,那么它就实现了构成生命的自我复制的“壮举”。  然而RNA链可能擅长结合互补链,但却不太擅长与这些链分离。现代生物体产生的酶可迫使RNA(或DNA)双链分开成两条,从而实现复制,但目前尚不清楚在没有酶的世界里如何做到这一点。  该研究资深作者、斯克里普斯研究所化学副教授克里希纳穆尔蒂指出,部分DNA和部分RNA的“嵌合”分子链或解决了这个问题,因为它们可以一种粘性较小的方式结合互补链,从而使它们相对容易分离。  在过去的研究中,科学家们已经发现,简单的核糖核苷酸和脱氧核糖核苷酸(分别是RNA和DNA的构成单元),可能是在早期地球非常相似的化学条件下产生的。有机化合物DAP起到了修饰核糖核苷酸,并将它们串在一起形成第一条RNA链的关键作用。而此次研究表明,在类似条件下,DAP也可以对DNA起到同样作用。  这一发现为更广泛地研究自我复制的DNA-RNA混合物如何在原始地球上进化和传播,构建更完善的现代生物学铺平道路。  RNA真的独自完成了生命起源的关键任务吗?近些年来,大量证据表明RNA和DNA可能几乎同时出现在最初的生命形式中,随后很快,二者又凭借各自的优势和缺陷进行了合理又明确的“分工”:DNA负责遗传信息长期稳定的存储,RNA则负责遗传信息的短期储存和运输,以及制造蛋白质——就像人们今天在细胞中看到的那样。而在“零”的起点上,或许仍是RNA和DNA两个必不可少的因素共同协作,才有了今天地球上的生机勃勃、生命不息。
  • 可用于检测大气中有机污染物的混合材料
    p   混合材料的发展是材料科学的一个新兴领域。研究人员解释说,对这些材料的兴趣源于“将无机成分的稳定性与有机成分的多功能性相结合的成功,将它们混合起来,使两者的性质相结合甚至改善。”她指出。“更重要的是,混合材料可以以凝胶,薄膜,纤维,颗粒或粉末的形式加工。有机和无机组分的组合在生产混合材料方面几乎没有限制,其在医药,微电子,传感器,光学系统,汽车工业和装饰性表面涂料方面具有大量的应用。 /p p   Paula Moriones采用允许合成混合材料的方法(称为溶胶 - 凝胶),这产生具有在环境温度下可控属性的多孔材料,与其他工艺相比节约了成本。这些混合材料的合成导致干凝胶的生成——一种处于脱水状态的凝胶,其内部没有任何液体。 /p p   研究人员证实,凝胶形成时间和所得材料的性质受合成这些材料的条件和有机物的比例的影响。尽管材料总是以纳米尺寸呈现,但是它可以具有更小或不那么小的孔,她指出:“这些材料的应用中,孔径是至关重要的,因为它们可以用来控释药物。 /p p   包括留在里斯本大学(葡萄牙)的Paula Moriones的研究也得出了其他结果。“某些合成材料是高疏水性和排斥水的,这种性质使它们能够用作制药工业中的元素,用于选择性地捕获其表面上的其他材料或保留它们,并在玻璃工业中用作保护涂层。”研究员总结到。 /p
  • 江苏常州检验检疫局成功开发环氧氯丙烷检测技术
    近日,江苏常州检验检疫局危包检测中心技术人员利用先进的高精密仪器GC/MS/MS,成功开发出了环氧氯丙烷的检测技术,其检测低限可达0.1mg/L,能够充分满足相关企业的检测需求,帮助其控制产品质量,应对国外技术壁垒,保障产品顺利出口。   环氧氯丙烷(又称表氯醇)是一种重要的有机化工原料和精细化工产品,用途十分广泛。以它为原料制得的环氧树脂具有黏结性强、耐化学介质腐蚀、化学稳定性好、抗冲击强度高以及介质电性能优异等特点,在涂料、胶黏剂、增强材料和食品接触材料等行业具有广泛的应用。环氧氯丙烷是一种毒性很强的有害物质,其蒸气对眼睛以及呼吸道有强烈刺激性,反复和长时间吸入能引起肺、肝和肾损害 皮肤直接接触液体可致灼伤,如果高浓度吸入还会导致中枢神经系统抑制甚至死亡。   针对环氧氯丙烷的健康危害性,众多国家均对食品接触材料中环氧氯丙烷的含量及迁移量有严格规定,日本和韩国食品接触材料法规明确规定食品模拟物中环氧氯丙烷迁移量不得超过0.5mg/L,欧盟塑料法规(EU)No.10/2011规定相关产品成品中环氧氯丙烷残留量不得超过1mg/Kg。此次常州局开发的新技术,将检测限度精确至0.1mg/L,有效地解决了企业的后顾之忧。
  • 科学家首次在超冷原子分子混合气中实现三原子分子的量子相干合成
    中国科学技术大学潘建伟、赵博等与中国科学院化学研究所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。该研究中,科研人员在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月9日,相关研究成果发表在《自然》(Nature)上。   量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现该目标需要制备大规模的量子纠缠并进行容错计算。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,其能够某些特定问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛应用前景。   超冷分子将为实现量子计算打开了新思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级复杂,通过直接冷却的方法来制备超冷分子十分困难。超冷原子技术的发展为制备超冷分子提供了新途径,可绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到20世纪80年代。激光冷却原子技术的出现使得光合成双原子分子得以快速发展,并在高精度光谱测量中取得了广泛应用。在光合成双原子分子成功后,科研人员开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局教授Paul Julienne等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,无法用来研究三原子分子的合成。随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛应用于超冷化学和量子模拟研究中。   2015年,法国国家科学研究中心教授Olivier Dulieu等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振[Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的观测为合成三原子分子提供了新机遇。但由于原子和分子的Feshbach共振十分复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子成为具有挑战性的问题。   该研究中,合作研究小组首次实现了利用射频场相干合成三原子分子。在实验中,科研人员从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。在钠钾分子的射频损失谱上观测到射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。该工作为量子模拟和超冷化学的研究开辟了新道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题十分复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题是少体物理中的重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,为刻画复杂的三体相互作用势能面提供了重要基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要信息。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省、上海市等的支持。   论文链接
  • 用日立高新场发射电镜SU8220观察碳酸钡和二氧化钛混合颗粒
    左图是BaTiO3多层沉积结构陶瓷电容的原材料BaCO3和TiO2的颗粒混合物的观察例。SE (Upper)图像中可观察到BaCO3和TiO2的电位对比度。SE(Lower)图像中可观察到凸凹感较为强烈的各个颗粒的表面信息。 LABSE图像中,有成分和表面凸凹的混合信息。HABSE图像中,可观察到成分对比度非常鲜明的效果。正是这样的SU8200,可以通过丰富的检测功能来实现多种需求的观察。 而且,使用减速功能在0.3kV的着陆电压下进行观察,通过信号选择,在左图中实现更好的成分对比信息;而在右图中,得到的是凹凸信息丰富的照片。 再放大观察,会发现BaCO3颗粒(左)和TiO2颗粒(右)的表面平整度也由明显的区别。 关于上文中提及的SU8200系列电镜,请参阅:http://www.instrument.com.cn/netshow/SH102446/C182052.htm 关于日立高新技术公司:   日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 核磁共振技术结合色谱-质谱方法助力沸石分子筛催化丙烷芳构化反应机制研究取得突破
    近日,中国科学院精密测量科学与技术创新研究院研究员徐君、邓风科研团队, 在沸石分子筛催化丙烷芳构化反应机制研究方面取得重要进展。该团队利用原位固体核磁共振技术,探索镓(Ga)修饰ZSM-5分子筛(Ga/ZSM-5)催化丙烷转化制芳烃过程,发现环戊烯碳正离子中间体,并实验证实该碳正离子可作为活性“烃池”物种催化丙烷生成轻质芳烃(苯、甲苯、二甲苯)的转化机制。相关研究成果以Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSM-5 Zeolite by Solid-State Nuclear Magnetic Resonance Spectroscopy为题,发表在《德国应用化学》上,并被遴选为Hot Paper。  甲烷、乙烷和丙烷等低碳烷烃在地球上储量丰富,直接将低碳烷烃催化转化为附加值较高的烯烃、芳烃等化工产品,可替代目前依赖于石油的化工生产路线,具有重要的应用价值。Ga修饰的分子筛在丙烷芳构化反应中表现出较高反应活性,丙烷在催化剂上的转化涉及复杂的反应网络,尽管已有较多研究,而对丙烷芳构化反应机理目前尚未有明确认识,在一定程度上阻碍了此反应过程的工业化应用。  研究团队采用原位固体核磁共振技术结合色谱-质谱方法,剖析了Ga/ZSM-5分子筛催化丙烷芳构化反应过程,在间歇与流动反应条件下观察到重要中间体环戊烯碳正离子的生成及转化过程。研究表明,在间歇反应过程中,丙烷芳构化反应为自催化反应,包括初始期、诱导期及结束期三个阶段。反应过程中生成的环戊烯碳正离子可作为“烃池”物种,促进丙烷的转化,从而加速反应进行。在流动反应过程中,12C/13C同位素交换的固体NMR实验进一步揭示了环戊烯碳正离子是高活性的“烃池”物种,可促进丙烷的转化。科研人员基于实验结果构建了Ga/ZSM-5分子筛上丙烷芳构化反应机制,丙烷在分子筛上脱氢形成初始烯烃物种,该过程反应速度较慢。初始烯烃进一步生成环戊烯碳正离子,在接下来的过程中,环戊烯碳正离子自身可以转化为芳烃产物,环戊烯碳正离子能够通过夺取丙烷分子上的氢负离子(hydride)而加速其脱氢过程,进而促进芳烃的生成。该研究揭示了分子筛上丙烷芳构化机制,将为丙烷芳构化反应的工业化应用提供重要指导。  研究工作得到国家自然科学基金、中科院、湖北省科技厅及中科院青年创新促进会的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制