当前位置: 仪器信息网 > 行业主题 > >

全氟正丙基乙烯基醚

仪器信息网全氟正丙基乙烯基醚专题为您提供2024年最新全氟正丙基乙烯基醚价格报价、厂家品牌的相关信息, 包括全氟正丙基乙烯基醚参数、型号等,不管是国产,还是进口品牌的全氟正丙基乙烯基醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全氟正丙基乙烯基醚相关的耗材配件、试剂标物,还有全氟正丙基乙烯基醚相关的最新资讯、资料,以及全氟正丙基乙烯基醚相关的解决方案。

全氟正丙基乙烯基醚相关的论坛

  • 【资料】环氧乙烯基酯树脂简介!

    环氧乙烯基酯树脂从20世纪60年代开发以来,在众多工业领域得到推广应用,并逐步被用户接纳、认可,到90年代基本成为国际认可的新型耐蚀材料的代表,其应用范围逐步取代早期的传统耐蚀树脂。随着科研力度的加大更有不少性能及用途独特的乙烯基酯树脂得到推广或被进一步改性。该产品既然性能如此好,那么其性能到底由哪些因素决定?业界很多人不知所以然,为此中国环氧树脂行业协会(www.epoxy-e.cn)专家专门作了介绍。目前环氧乙烯基酯树脂应用量最大、范围最广的要算甲基丙烯酸型双酚A环氧乙烯基酯树脂(国内牌号相当于MFE-2)、甲基丙烯酸酚醛环氧型乙烯基酯树脂(国内牌号相当于W2-1)。在树脂产品中工程上曾对相当的材料及性能进行比较。不同品种的乙烯基酯树脂之间的性能差异较大,一般都是针对不同的使用要求而设计的。比起双酚A反丁烯二酸聚酯树脂来说,同属耐化学树脂的乙烯基酯树脂不但耐化学性优于聚酯,而且各项机械性能及耐热性能也都可能超过聚酯。在成型工艺上乙烯基酯树脂吸取了不饱和聚酯便于固化成型的优点,可以采取同样的交联固化工艺成型,从而显示了乙烯基酯树脂明显的优越性。据中国环氧树脂行业协会(www.epoxy-e.cn)专家介绍,环氧乙烯基酯树脂手糊玻璃钢的机械性能大大超过美国标准局为防腐用板材规定的PSl5-69标准,乙烯基酯树脂玻璃钢不仅具有较好的机械强度而且有较高的高温强度,适于制造高温下操作的防腐设备,已固化的乙烯基酯树脂具有较高的断裂延长率。这是这类树脂优于其他树脂的重要特征之一,这样不仅可以提高玻璃钢层板第一次出现裂纹时的应变量,而且可以显著提高层板的耐冲击能力。由此环氧乙烯基酯树脂以其优良的性能在各行各业中已经得到广泛应用。

  • 【转帖】乙烯基单体改性水性聚氨酯的研究

    乙烯基单体改性水性聚氨酯的研究关键字:乙烯,单体,聚氨酯,研究 0引言 聚氨酯具有突出的力学性能,但水性聚氨酯的耐水性、耐化学品性等性能有待提高,而乙烯基树脂具有较好的耐水性、耐化学品性等,因此,聚氨酯和乙烯基树脂两者的有机结合,可使材料的力学性能有显著提高。本文采用种子聚合的方法,用甲基丙烯酸甲酯和苯乙烯对聚氨酯进行共混接枝改性,并用红外光谱分析了聚氨酯及改性聚氨酯中的微相分离和氢键,揭示结构与性能的关系。 1实验部分 1.1原料 甲苯二异氰酸酯(TDI):上海化学试剂厂 聚醚多元醇(PPG):上海高桥石化三厂 二羟甲基丙酸(DMPA):国产 三乙胺(TEA):广州化学试剂厂 乙二胺(EDA):广州化学试剂厂 苯乙烯(St):广州化学试剂厂 N-甲基-2-吡咯烷酮(NMP):Nacalal.TesqueInc 甲基丙烯酸甲酯(MMA):广州化学试剂厂。 1.2水溶性聚氨酯树脂(PUR)分散体的合成 将聚醚多元醇装入配有温度计、搅拌器的250mL三口烧瓶中,在120℃,660Pa真空下脱气脱水2h。通入氮气并加入计量好的甲苯二异氰酸酯于65℃左右反应1.5h左右,用正丁胺滴定法判断反应终点。加入溶有适量DMPA的NMP反应1.5h左右。降温至40℃,加入TEA和适量NMP溶剂,反应40min。降温并向体系中加入去离子水,然后加入TEA扩链。制得呈微蓝光的水乳液。 1.3甲基丙烯酸甲酯(MMA)改性 取一定量的PUR分散体、MMA和溶有引发剂的水溶液,加入三口烧瓶中,升温到65℃,反应2.5h,然后补加一定量的引发剂水溶液并升温至75℃,反应0.5h。 1.4苯乙烯(St)改性 过程同1.3甲基丙烯酸甲酯改性。 1.5性能测试 1.5.1分散体黏度测试 用NDJ-79型旋转式黏度计,测得各分散体在(25±1)℃下的黏度。 1.5.2拉伸强度测试 将制备好的聚氨酯乳液胶膜用80×4型的裁剪刀裁好,放在真空干燥器中真空干燥24h,然后在XLL-100A型拉力试验机上测定其拉伸强度及延伸率。延伸率的计算公式如下: E=(L2-L1)/L1×100% 式中:E——延伸率/%,L1——试样的原长,L2——试样断裂时的拉伸长度,拉伸速度为室温下300mm/min。 1.5.3粘接强度的测定试片采用PVC薄片,尺寸为100mm×25mm,粘合部分为12.5mm×25mm,表面先用砂纸打磨,再用工业丙酮处理表面污物,粘合的试片在接触压力下于45℃热烘48h,然后在室温下真空干燥24h,用XLL-100A型拉力试验机测定T型剥离强度,室温下拉伸速率为100mm/min。1.5.4吸水率的测定 把样品膜在真空下干燥24h,室温测定样品膜的质量,然后把样品膜浸泡于室温下的去离子水中,24h后再称其质量,两者的质量差即为吸水率(Ω)。其计算公式如下: Ω=(m2-m1)/m1×100% 式中:Ω——样品膜的吸水率,m1——样品膜的原来质量,m2——样品膜浸泡后的质量。 1.5.5FTIR实验 实验装置为PERKIN-ELMER-1700红外光谱仪,扫描方式,噪音过滤。红外样品的制备是将样品制成薄膜,在60℃下真空除水。实验数据由仪器上的微机处理。 2结果与讨论 2.1甲基丙烯酸甲酯共混接枝改性的影响MMA改性水性分散体的配方及性能见表1。 表1 MMA改性水性PU分散体的配方及性能 由表1可见,随着MMA用量的增加,分散体的黏度呈现下降趋势。根据内乳化聚合机理分析:MMA含量的增加能更有效地抑制离子化作用,这一作用使得一些键卷曲,分散粒子膨胀,分散颗粒单位面积的离子数目减少,使体系的黏度下降。 由表1还可看出,在固含量基本不变的情况下,用MMA改性水性PU能较大程度地降低体系的黏度。这意味着可以通过用MMA改性的方法来提高水性PU的固含量,同时保证体系稳定。MMA改性PU对膜的机械性能影响见表2。 表2 MMA改性PU对膜的机械性能的影响注:-因脆性太大,无法成膜。 1—拉伸强度 2—延伸率图1MMA/PU的比值与膜的拉伸强度和延伸率的关系 图2MMA/PU的比值与T型剥离强度和吸水率的关系 1—T型剥离强度 2—吸水率 图1和图2表明,由于PMMA本身有较强的粘附性能,与水的亲合能力比PU材料低,硬度比PU材料大,用MMA对PU进行改性处理后,膜的拉伸强度、T型剥离强度以及吸水率都得到明显的改善。制品膜的延伸率随着MMA的用量增加而降低。2.2苯乙烯共混接枝改性的影响 St改性水性PU分散体的配方及性能见表3。 表3 St改性水性PU分散体的配方及性能注:St/PU为固含量比 表3显示:用St对PU改性对体系黏度的影响与用MMA改性PU的影响相同。这也证明了应用内乳化机理解释该现象的合理性。 值得注意的是,用MMA和St分别对PU分散体改性,均在乙烯基单体/PU的比值为0.5的时候,观察到分散体的黏度出现一个较大的值,这可能是由于乙烯基单体与PU水分散体在种子聚合的条件下,提高了粒子的粒径和分散性。因为粒子表面存在着—COOH和三乙胺中和后形成的盐基离子对存在,并且由于总表面积增大,使原来包埋在分散体颗粒内部的盐基分布到分散体颗粒的表面,导致分散体颗粒和水的缔合作用增强,使自由水减少,从而使黏度升高。当乙烯基单体用量多到一定程度时,分散体颗粒粒子表面的盐基离子对数量相对单位表面积减少较多,而且乙烯基单体的极性相对PU较低,其含量的增加会使分散体粒子与水的缔合作用减弱,同时由于粒径增大,黏度下降。 1—拉伸强度 2—延伸率图3 St/PU的比值与拉伸强度和延伸率的关系 1—T型剥离强度 2—吸水率图4St/PU的比值与膜的T型剥离强度和吸水率的关系 从图3和图4可见,用St对PU改性和用MMA对PU改性的影响大致相同,不同的是用St对PU改性在St/PU为0.6和0.8之间时,拉伸强度和T型剥离强度都出现一个最大值,然后减小。这是由于当St用量较小时,接枝-共混的共聚组成在同步互穿网络中起内增塑剂的作用,固化收缩诱发产生的内应力能较低[6],使强度提高 随着用量的增大,根据Gnaffith理论,如St、MMA一类的刚性分散相在结构上存在缺陷,而且分布不均匀,在受到应力时,起应力集中剂的作用,产生大量的小裂纹及剪切带,使强度降低。然而在用MMA改性时未出现这种现象,可能的原因是MMA中的羰基的存在使它与PU之间的界面相容性好,降低了应力集中作用。2.3红外光谱分析 对MMA改性、St改性和未改性的样品进行FTIR分析,谱图如图5、6、7所示。 图5 未改性膜的红外光谱 图6 MMA改性膜的红外光谱 图7 St改性膜的红外光谱 本文主要研究3个特征谱带,即VNH、VCO、VO吸收带,VNH的吸收峰在3460cm-1处,氢键化的VNH-B约在3310cm-1左右而且为反式结构,VCO的吸收峰在1660~1780cm-1处,氢键化约在1724cm-1而且为无序区的氢键化 1000~1110cm-1处吸收峰属于C—O—C的伸缩振动(VO),氢键化约在1050cm-1处,2856~2960cm-1处的峰归属于VCH(对称和反对称)。 从以上3个谱图上可以看出,在3300cm-1左右处有强的吸收峰,而在3460cm-1处几乎看不到吸收峰存在,这说明脲基上的NH已几乎完全氢键化。St改性的谱图在3306cm-1处的氢键化吸收峰相对于PU来说向波数低的方向移动,在图6的红外图谱中也看到了同样的现象,这说明在改性材料中—NH—形成的氢键作用力比PU更大。其原因可能是:St和MMA的分子极性与脲基的极性相去甚远,相对于脲键而言,与聚醚软段的极性更接近,并且由于St和MMA在聚氨酯软段上接枝,“埋没”大量的醚氧键和软段微区中的部分羰基,St和MMA的加入将导致—NH—与—O—之间形成的氢键数目相对减少,因为—NH—与—O—之间形成的氢键要弱于—NH—与—CO—之间形成的氢键,所以导致吸收峰向低波数移动。 另外还可以看到,在1724cm-1左右处有一明显的吸收峰,说明硬段相溶有一定数量的软段,这表明乙烯基聚合物与PU中的硬段链有一定的相容性,使得PU硬段有序程度降低。这种有序程度的降低,反映了PU与乙烯基聚合物之间形成了化学键能,提高了它们之间的相容性与共混程度。3结语 采用种子聚合的方法,乙烯基单体改性水性聚氨酯能提高水性PU的力学性能、降低吸水率。改性后的水性聚氨酯材料中均存在着氢键行为,其中甲基丙烯酸甲酯的氢键作用强,有较好的相容性,苯乙烯的氢键作用小,相分离程度最大。 涂料附着力不理想,本文就此问题进行了研究,分析了影响附着力的因素,并提出了相应的解决方法。 目前,关于树脂在金属表面附着的原理很多。如机械咬合粘接理论、静电理论、吸附理论、扩散理论、酸碱使用理论和化学键理论等[1]。总的说,附着力是机械连接、静电吸引和化学键合共同作用的结果。附着力强度是润湿程度、两表面的相对表面力学能和润湿动力学的函数,在附着力的定义上,附着力应该是指涂装金属暴露在高湿环境或溶液中的附着力,俗称湿附着力,即指将涂装金属置于介质环境后,表现出来的附着力,目前通用的一些测定涂层附着力的方法,大多测试的是干涂层体系的数值,本实验所描述的附着力数值是用划圈法所测定的干涂层数值。

  • n-丙基乙二胺(PSA)C18对醛内有吸附作用吗?

    今天使用150mg 无水硫酸镁/50mgN-丙基乙二胺/50mgC18吸附剂(上述三种成分混合在一起,是购买某公司的净化柱产品)对香精样品进行净化处理,发现其中紫苏醛的回收率只有80%左右,比不使用吸附剂的回收率低很多,难道N-丙基乙二胺(PSA)/C18 对其有吸附作用? 该吸附剂的工作原理是什么呢?

  • 【分享】加拿大政府采取行动确保软质乙烯基玩具及儿童护理产品安全

    加拿大政府采取行动确保软质乙烯基玩具及儿童护理产品安全发布时间:2009-6-29 2009年6月19日,据加拿大卫生部消息,加拿大卫生部部长Leona Aglukkaq近日宣布加拿大政府正拟议一项防止在软质塑料玩具和儿童护理产品中使用6种化学物质(邻苯二甲酸盐)的规定,同时法规也拟议限制消费品的铅含量。 法规涉及的儿童软质乙烯基玩具和儿童护理产品包括某些挤压或充气玩具、玩具娃娃、动物角色玩具、乙烯围巾等。据悉,邻苯二甲酸盐是一类用于制造乙烯塑料的常用化学物质,也被称为聚氯乙烯或PVC。 此外,拟议的含铅消费品(与嘴接触)条例将对所有受影响的产品制定被认为目前最严格的铅含量90毫克/千克限量,涉及产品如下:3岁以下儿童使用的玩具、运动器材中的管口(比如呼吸管)、吹奏乐器的管口、奶嘴、出牙嚼器、橡皮奶头、塑料饮料吸管及饮水杯。来源: 深圳市出入境检验检疫协会

  • 【资料】危化物品大全--液体

    危险货物编号 名 称 别 名 UN号第1项、低闪点液体(1)31001 汽油[闪点<-18℃]   1203,125731002 正戊烷 戊烷 126531002 2-甲基丁烷 异戊烷 126531003 环戊烷   114631004 环己烷 六氢化苯 114531005 己烷及其异构体,如:   120831005 正己烷 己烷 120831005 2-甲基戊烷 异己烷 120831005 2,2-二甲基丁烷 新己烷  31005 2,3-二甲基丁烷 二异丙基 245731005 己烷异构体混合物    31006 1-戊烯   110831006 2-戊烯    31007 异戊烯,如:   237131007 2-甲基-1-丁烯   245931007 3-甲基-1-丁烯 α-异戊烯 256131007 2-甲基-2-丁烯 β-异戊烯 246031008 环戊烯   224631009 1-己烯 丁基乙烯 237031009 2-己烯    31010 己烯异构体,如:    31010 异己烯   228831010 2,3-二甲基-1-丁烯    31010 2,3-二甲基-2-丁烯 四甲基乙烯  31010 2-甲基-1-戊烯    31010 2-甲基-2-戊烯    31010 3-甲基-1-戊烯    31010 3-甲基-2-戊烯    31010 4-甲基-1-戊烯    31010 4-甲基-2-戊烯    31010 2-乙基-1-丁烯    31011 异庚烯   228731012 2-甲基-1,3-丁二烯[抑制了的] 异戊间二烯 121831013 2-氯-1,3-丁二烯[抑制了的]   199131014 己二烯,如:   245831014 1,3-己二烯   245831014 1,4-己二烯   245831014 1,5-己二烯   245831014 2,4-己二烯   245831015 甲基戊二烯   246131016 二环庚二烯 2,5-降冰片二烯 225131017 2-丁炔 巴豆炔 二甲基乙炔 114431018 1-戊炔 丙基乙炔  31019 1-氯丙烷 氯(正)丙烷 丙基氯 127831020 2-氯丙烷 氯异丙烷 异丙基氯 2356危险货物编号 名 称 别 名 UN号第1项、低闪点液体(2)31021 2-氯丙烯 异丙烯基氯 245631021 3-氯丙烯 烯丙基氯 α-氯丙烯 110031022 乙醛   108931023 异丁醛   204531024 丙烯醛[抑制了的] 烯丙醛 109231025 丙酮 二甲(基)酮 109031026 乙醚 二乙(基)醚 115531027 正丙醚 二(正)丙醚 238431027 异丙醚 二异丙(基)醚 115931028 甲基丙基醚 甲丙醚 261231028 乙基丙基醚 乙丙醚 261531029 乙烯基乙醚[抑制了的] 乙基乙烯醚 130231029   乙氧基乙烯  31030 二乙烯基醚[抑制了的] 乙烯基醚 116731031 二甲氧基甲烷 甲撑二甲醚 二甲醇缩甲醛 甲缩醛 123431031 1,1-二甲氧基乙烷 二甲醇缩乙醛 乙醛缩二甲醇 237731031 二乙氧基甲烷 甲醛缩二乙醇 二乙醇缩甲醛 237331031 1,1-二乙氧基乙烷 乙叉二乙基醚 二乙醇缩乙醛 乙缩醛 108831032 1,2-环氧丙烷[抑制了的] 氧化丙烯 甲基环氧乙烷 128031033 甲硫醚 二甲硫 116431034 乙硫醇 硫氢乙烷 巯基乙烷 236331035 正丙硫醇 硫代正丙醇 1-巯基丙烷 240231036 2-丁基硫醇 仲丁硫醇 122831036 叔丁基硫醇 叔丁硫醇 122831037 甲酸甲酯   124331038 甲酸乙酯   119031039 亚硝酸乙酯醇溶液   119431040 呋喃 氧杂茂 238931041 2-甲基呋喃   230131042 四氢呋喃 氧杂环戊烷 205631043 四氢吡喃 氧己环  31044 甲胺水溶液 氨基甲烷水溶液 123531045 乙胺水溶液[浓度50%~70%] 氨基乙烷水溶液 227031046 二乙胺   115431047 1-氨基丙烷 正丙胺 127731047 2-氨基丙烷 异丙胺 122131048 3-氨基丙烯 烯丙胺 233431049 四甲基硅烷 四甲基硅 274931050 二硫化碳   113131051 锆[悬浮于易燃液体中的]   130831052 环氧乙烷和氧化丙烯混合物[含环氧乙烷≤30%] 氧化乙烯和氧化丙烯混合物 2983危险货物编号 名 称 别 名 UN号第2项、中闪点液体(1)32001 汽油[-18℃≤闪点<23℃]   1203,125732002 石油醚 石油精 127132003 石油原油 原油 1267,125532004 石脑油 溶剂油 1256,255332005 3-甲基戊烷   120832006 正庚烷   120632007 庚烷异构体   120632007 2-甲基己烷   120632007 3-甲基己烷   120632007 2,2-二甲基戊烷   120632007 2,3-二甲基戊烷   120632007 2,4-二甲基戊烷 二异丙基甲烷 120632007 3,3-二甲基戊烷 2,2-二乙基丙烷 120632007 3-乙基戊烷   120632007 2,2,3-三甲基丁烷   120632008 正辛烷   126232009 辛烷异构体   126232009 异辛烷   126232009 2,2,3-三甲基戊烷   126232009 2,2,4-三甲基戊烷   126232009 2,3,4-三甲基戊烷   126232009 2,2-二甲基己烷   126232009 2,3-二甲基己烷   126232009 2,4-二甲基己烷   126232009 3,3-二甲基己烷   126232009 3,4-二甲基己烷   126232009 2-甲基庚烷   126232009 3-甲基庚烷   126232009 4-甲基庚烷   126232009 3-乙基己烷   126232009 2-甲基-3-乙基戊烷   126232010 2,2,4-三甲基己烷    32010 2,2,5-三甲基己烷    32011 环戊烷衍生物    32011 甲基环戊烷   229832011 乙基环戊烷    32011 1,1-二甲基环戊烷    32011 1,2-二甲基环戊烷    32011 1,3-二甲基环戊烷    32011 正丙基环戊烷    32012 环己烷衍生物    32012 甲基环己烷 六氢(化)甲苯;环己基甲烷 2296,226332012 1,1-二甲基环己烷    32012 1,2-二甲基环己烷   226332012 1,3-二甲基环己烷   226332012 1,4-二甲基环己烷   226332012 叔丁基环己烷 特丁基环己烷;环己基叔丁烷 226332013 环庚烷   224132014 3-甲基-1-丁烯 异丙基乙烯 256132015 1-庚烯 正庚烯;正戊基乙烯 227832015 2-庚烯    32015 3-庚烯

  • 双(2-氯异丙基)醚

    双(2-氯异丙基)醚和双(1-氯异丙基)醚是一个物质吗?因为双(1-氯异丙基)醚没有写CAS号所以查不到,也搜不到它[img]https://ng1.17img.cn/bbsfiles/images/2020/03/202003091131393926_7679_3974884_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/03/202003091131397330_1037_3974884_3.png[/img]

  • 有做硅油中乙烯基含量的大神么?求现身!

    RT,要测硅油中乙烯基含量,可找到的文献只有涂膜法测已知含量系列样品,然后做标线..... 可是我这只有一个已知含量的(较稀),其它都未知而且还非常粘稠的样子,无从下手啊! 求指点

  • 3-乙烯基吡啶碎片断裂机理

    [color=#444444]大气压化学电离-三重四级杆质谱,3-乙烯基吡啶母离子为106,子离子为77,78,51.[/color][color=#444444]求助子离子碎片的断裂机理,谢谢![/color]

  • 化学试剂--超强酸!

    超强酸,又称超酸。是一种比100%硫酸还强的酸。特别是液体超强酸,HF.SbF5超酸比100%硫酸强1019倍,有严重腐蚀性和严重公害。全氟磺酸树脂(Nafion-H)是现在已知的最强固体超强酸,具有耐热性能好、化学稳定性和机械强度高等特点。一般是将带有磺酸基的全氟乙烯基醚单体与四氟乙烯进行共聚,得到全氟磺酸树脂。由于Nafion-H分子中引入电负性最大的氟原子,产生强大的场效应和诱导效应,从而使其酸性剧增。与液体超强酸相比,用作催化剂时,易于分离,可反复使用。且腐蚀性小,引起公害少,选择性好,容易应用于工业化生产。

  • 【分享】常用产品正别名对照及分子式

    [无 机 类] 产品名称 别名 分子式 砷酸 正砷酸、原砷酸 H3AsO4• 1/2H2O 二氧化硫 亚硫酸酐 SO2 二氧化碳 碳酸酐、干冰 CO2 氧化汞 三仙丹 HgO 过氧化钡 二氧化钡 BaO2 过氧化镁 二氧化镁 MgO2 三氧化硫 硫酸酐 SO3 过氧化碳酸钠 过碳酸钠 2NaCO3• 3H2O 五氧化二锑 锑酐 Sb2O5 汞 水银 Hg 仲坞酸铵 坞酸铵 5(NH4)2O• 12WO3• 5H2O 亚砷酸钠 偏亚砷酸钠 NaAsO2 磺化钙 结晶碘化钙 CaI2• 6H2O 高氯酸钠 过氯酸钠、过氯酸碱、过氯酸曹达 NaCIO4 氯酸钾 白药粉 KCIO3 砷酸铅 砷酸氢铅、原砷酸铅 PbHSsO 硫化锑 三硫化二锑、硫化亚锑 Sb2S3 活性碳酸钙 胶质碳酸钙、白艳华 CaCO3 碱式碳酸钴 碱式碳酸亚钴 2CoCO3• 3Co(OH)3• xH2O [有 机 类] 产品名称 别名 分子式 六氟丙烯 全氟丙烯 C3F8 溴代正辛烷 辛基溴、1-溴辛烷 C8H17Br 2-溴丙烷 溴代异丙烷 C3H7Br 1-溴-2-氯乙烷 对称溴氯乙烷 C2H4CIBr 氯丁烷 一氯丁烷 C4H9CI 异戊醛 2-甲基丁醛-4、异丙基乙酸 C3H4CI2O 1,3-二氯丙酮 对称二氯丙酮 C3H4CI2O 丙烯醛 败脂醛 C3H4O β-甲基丙烯醛 丁烯醛、巴豆醛、丁烯-2醛 C4H6O 硫代乙酸 硫代醋酸、乙硫羟酸、醋硫酸 C2H4OS 十六酰氯 棕榈酰氯 C16H3CIO 二氯乙酸乙酯 二氯醋酸乙酯 C4C6CI2O2 己二酰氯 氯化己二酰、己二酰二氯 C6H8CI2O2 乙酰胺 醋酸胺 C2H5NO 甲酸甲酯 蚁酸甲酯 C2H4O2 丁二酸酐 玻珀酸酐、琥珀酐 C4H4O3 丙酸酐 丙酐、初馏酸酐 C6H10O3 十八烯酸乙酯 油酸乙酯 C20H38O2 丙酰氯 氯丙酰 C3H5CIO 正丙醚 二正丙醚、丙氧基丙烷 C6H14O 氯丁醇 β,β,β-三氯叔丁醇 1,1,1-三氯-2-甲基丙醇-2 三氯丁原醇、克罗勒吞、 偕三氯特丁醇 C4H7CI3O 氯丙醇 1-氯-2-丙醇、氯异丙醇 C3H7CI3O 仲辛醇 2-辛醇、第二辛醇 C8H8O 三乙二醇 三甘醇、二缩三乙二醇 C6H14O4 二乙二醇二乙醚 二甘醇二乙醚 C8H18O3 1.3-丁二醇 1,3-二羟基丁烷 C4H10O2 叔丁醇 2-甲基-2-丙醇、三甲基甲醇、特丁醇三甲基原醇、第三丁 醇 C4H10O 异丙醇 2-乙基-1-丁醇、二乙基乙醇 C6H14O 乙烯基丁醚 丁基乙烯基醚、丁氧基乙烯 C6H12O 2-甲基咪唑 2-甲基-1,3-氮杂茂 C4H6N2 植酸 肌醇六磷酯、环己六醇六磷酸脂 C6H18O24P6 1,3-丁二烯 乙烯基乙烯 C4H6 乙炔 电石气 C2H2 氯甲烷 一氯甲烷、甲基氯 CH3CI 二氯甲烷 甲叉二氯 CH32CI2 三氯甲烷 氯仿 CHCI3 四氯化碳 四氯甲烷 CCI4 一氟三氯甲烷 氟里昂-11 CCI3F 二氟一氟甲烷 氟里昂-22 CHCIF2 二氟二氯甲烷 氟里昂-12 CCI2F2 三氟三氟乙烷 氟里昂-113 C2CI3F3

  • 【求助】链转移的表征

    在共聚过程中加入了异丁基乙烯基醚单体,现在想知道链自由基是否向这种单体转移了,如何表征?从红外图中能看出来吗?

  • 【分享】常用化工缩略语 英文缩写与中文名称对照表(I-Z)

    超始字母为: I 英文缩写 全称 IEN ● 互贯网络弹性体 IHPN ● 互贯网络均聚物 IIR ● 异丁烯-异戊二烯橡胶 IO ● 离子聚合物 IPA ● 异丙醇 IPN ● 互贯网络聚合物 IPS ● 耐冲击聚苯乙烯 IR ● 异戊二烯橡胶 IVE ● 异丁基乙烯基醚 超始字母为: J 英文缩写 全称 JSF ● 聚乙烯醇缩醛胶 JZ ● 塑胶粘合剂 超始字母为: K 英文缩写 全称 KSG ● 空分硅胶 超始字母为: L 英文缩写 全称 LAS ● 十二烷基苯磺酸钠 LCM ● 液态固化剂 LCP ● 液晶聚合物 LDJ ● 低毒胶粘剂 LDN ● 氯丁胶粘剂 LDPE ● 低密度聚乙烯塑料 LDR ● 氯丁橡胶 LF ● 脲 LGP ● 液化石油气 LHPC ● 低替代度羟丙基纤维素 LIM ● 液体侵渍模塑 LIPN ● 乳胶互贯网络聚合物 LJ ● 接体型氯丁橡胶 LLDPE ● 线性低密聚乙烯 LM ● 低甲氧基果胶 LMDPE ● 线性中密聚乙烯 LMG ● 液态甲烷气 LMWPE ● 低分子量聚乙烯 LN ● 液态氮 LRM ● 液态反应模塑 LRMR ● 增强液体反应模塑 LSR ● 羧基氯丁乳胶

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制