当前位置: 仪器信息网 > 行业主题 > >

顺芷酸喘诺木烯内酯

仪器信息网顺芷酸喘诺木烯内酯专题为您提供2024年最新顺芷酸喘诺木烯内酯价格报价、厂家品牌的相关信息, 包括顺芷酸喘诺木烯内酯参数、型号等,不管是国产,还是进口品牌的顺芷酸喘诺木烯内酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合顺芷酸喘诺木烯内酯相关的耗材配件、试剂标物,还有顺芷酸喘诺木烯内酯相关的最新资讯、资料,以及顺芷酸喘诺木烯内酯相关的解决方案。

顺芷酸喘诺木烯内酯相关的资讯

  • 国家药监局发布《化妆品中脱水穿心莲内酯琥珀酸半酯的测定》化妆品补充检验方法
    近日,根据《化妆品监督管理条例》,国家药监局批准发布了《化妆品中脱水穿心莲内酯琥珀酸半酯的测定》化妆品补充检验方法。本方法规定了化妆品中脱水穿心莲内酯琥珀酸半酯的测定方法,适用于膏霜乳类、液体类、凝胶类、贴膜类化妆品中脱水穿心莲内酯琥珀酸半酯的定性和定量测定。
  • 赛默飞的验“毒”术:教你测定“毒淀粉”中的顺丁烯二酸(酐)
    毒奶粉、瘦肉精、塑化剂&hellip 近年来食品&ldquo 染毒&rdquo 事件频发,食品安全已经成为公众关注的焦点之一。因此,作为食品安全问题源头之一的食品添加剂也渐渐进入消费者视野。今年3月,台湾爆发&ldquo 毒淀粉&rdquo 事件,食物中惊现含有顺丁烯二酸(酐) 的有毒淀粉。作为检测领域的世界领导者,赛默飞世尔科技(以下简称:赛默飞)积极响应,针对顺丁烯二酸酐可水解成马来酸的特性,提出运用离子色谱法测定淀粉中的顺丁烯二酸(酐)的解决方案。 顺丁烯二酸(HO2CCH=CHCO2H),又称&ldquo 马来酸&rdquo ,是饱和二元羧酸,可以用于树脂化学黏合剂原料。在淀粉中加入一定量的顺丁烯二酸,可增加食物的弹性、黏性、外观光亮度、以及保质期。然而,长期超标食用含顺丁烯二酸的食品,将极大程度损伤人体肾脏功能,甚至引发不孕不育。令人担忧的是,食品专家指出,顺丁烯二酸(酐)在食品领域可能存在一定滥用现象,成本的低廉以及效果的显著促使不法商家使用顺丁烯二酸(酐)作为食品添加剂,以谋取暴利。 离子色谱法测定淀粉中的顺丁烯二酸(酐) 顺丁烯二酸与反丁烯二酸(又称&ldquo 富马酸&rdquo )互为几何异构体,其中反丁烯二酸可以作为食品添加剂应用于食品中,主要起酸度调节剂作用,是食品添加剂卫生标准(GB2760-2011)允许添加的食品添加剂。相反,顺丁烯二酸(酐)则并未收入允许添加的食品添加剂目录。对于顺丁烯二酸(酐)在食品领域可能存在的滥用现象,赛默飞推出一种测定淀粉中顺丁烯二酸(酐)的方法,以满足食品安全监测的迫切需求。 顺丁烯二酸酐遇水则水解成马来酸,因此可以通过检测样品中马来酸的含量,得到顺丁烯二酸(酐)的总量。赛默飞针对马来酸作为一种有机酸极易溶于水且呈阴离子状态的特性,运用离子色谱法测定淀粉中顺丁烯二酸(酐)的测定方法。 与我国目前已有毛细管电泳法以及现行国家标准GB/T 23296.21-2009采用的高效液相色谱法等检测方法相比,赛默飞推出的离子色谱法测定淀粉中顺丁烯二酸(酐),不但样品前处理简单、便捷,而且方法稳定,线性范围内相关性好,准确度高,受其他因素干扰小,可以成为检测淀粉中的马来酸的有效手段。 赛默飞验&ldquo 毒&rdquo 术解决食品安全中的添加剂隐患 作为科学服务领域的世界领导者,赛默飞始终积极关注食品安全问题。对于近年来食品添加剂引发的食品安全事故层出不穷,赛默飞采取快速应对方式,在事件发生的第一时间组织分析专家开展检测工作,及时建立和发布相应解决方案。除了&ldquo 毒淀粉&rdquo ,赛默飞对于&ldquo 毒奶粉&rdquo 、塑化剂、瘦肉精等都有着独到的验&ldquo 毒&rdquo 术。 早在&ldquo 毒奶粉&rdquo 事件爆发之时,美国食品和药物管理局就发布过用赛默飞TSQ Quantum LC-MS/MS系统检测婴儿配方乳制品中三聚氰胺和三聚氰酸残留的方法。2007年,美国国家食品安全与技术中心又借助赛默飞的TSQ Quantum Ultra TM三重四级杆液相色谱串联质谱仪,建立了一个新的液相色谱串联质谱方法测定食品中的三聚氰胺。除了提供先进的检测技术,赛默飞还将独有的线样品前处理技术TurboFlow色谱净化和TSQ Quantum LC-MS/MS分析结合,使分析流程得到大大简化和操作自动化。赛默飞三聚氰胺检测方法因此获得了&ldquo 2009荣格食品饮料业技术创新奖&rdquo 。除此之外,赛默飞还针对塑化剂中的邻苯二甲酸二乙基乙酯(DEHP)和邻苯二甲酸二异壬酯(DINP),瘦肉精中的&beta -受体激动剂,以及防霉保鲜剂中的富马酸二甲酯(DMF)等食品添加剂推出了简单易行,分析时间短,且适用于大规模筛选的处理办法。 不止如此,赛默飞立足于整个食品安全的产业链,涵盖仪器设备、试剂以及LIMS实验室信息管理系统的无敌产品组合,为大家提供从农场到实验室到工厂&mdash &mdash 最全面的食品安全解决方案。 了解更多赛默飞食品安全完全解决方案信息,请点击http://www.thermo.com.cn/foodsafety。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 淀粉中顺丁烯二酸和顺丁烯二酸酐高效液相检测方法
    近日台湾被曝&rdquo 毒淀粉&rdquo 事件,即食品中发现含顺丁烯二酸的有毒淀粉。珍珠奶茶、甜不辣、粉圆、板条、鸡排等这些台湾经典美食均中枪。顺丁烯二酸又名马来酸酐,是工业原料,加入淀粉后可增加食物的弹性、黏性及外观光亮度,在食品中属非法添加物,会对人体肾脏造成极大损伤。 天津博纳艾杰尔科技有限公司采用Venusil MP C18液相色谱柱开发了淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的高效液相色谱检测方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的定量检测。 样品制备 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL乙醇-水(5:95,v:v)混合溶液,涡旋2min,超声提取20 min后用乙醇-水混合溶液定容至50 mL,摇匀,8000 r/min离心5 min,取上清液过0.45&mu m尼龙滤膜,待测。 色谱条件 色谱柱:Venusil® MP C18 5&mu m 100Å 4.6× 250mm 流动相:水(磷酸调pH至3.0):乙腈=90:10 波 长:215nm 流 速:1mL/min 柱 温:30℃ 进样量:20ul 色谱图 图1 0.1ug/ml标准溶液色谱图 图2 淀粉空白样品色谱图 图3 10mg/kg淀粉添加样色谱图 订货信息 名称 规格 订货号 Venusil MP C18 5µ m;100Å ;4.6*250 mm VA952505-0 1.5mL样品瓶 短螺纹透明带书写处,100/PK 1109-0519 1.5mL样品瓶盖 100/PK 0915-1819 微孔滤膜(Nylon) 13mm,0.45&mu m,200个/包 AS021345 一次性注射器 2ml无针头,100支/包 LZSQ-2ML 乙腈 4L/瓶,色谱纯 AH015-4
  • 海能仪器对“毒淀粉”中顺丁烯二酸(酐)推出的检测解决方案
    顺丁烯二酸又称马来酸,是一种重要的化工原料,曾经作为酸处理剂,在牙齿保健方面有广泛的应用,另一个方面,顺丁烯二酸作为淀粉处理剂,能有效的提高淀粉的粘度和稳定性,近年来业界发现有少量技术能力较低的企业,为了提高淀粉的性能,在食用淀粉中加入大量的顺丁烯二酸淀粉酯,但是由于技术条件的限制,造成淀粉中大量的顺丁烯二酸残留,从而留下巨大的安全隐患,台湾所谓的&ldquo 毒淀粉&rdquo 事件就由此而发,目前,我国国家标准中仍未将顺丁烯二酸酐列为食品添加剂。 方法简介 由于顺丁烯二酸在水中良好的溶解性(788g/L),其前处理基质组分也不复杂,所以,其前处理提取方式较为简单,另顺丁烯二酸在紫外检测器中具备相应良好响应(其定量限可达250ug/mL),总体说明:此方法前处理操作简单,灵敏度高,稳定性好,适用于淀粉及其制品中顺丁烯二酸(酐)含量的测定。 实验部分 主要仪器与试剂: 仪器:海能LC7000高效液相色谱仪 配置:LC7011二元高压泵 LC7020紫外/可见检测器 LC7031 柱温箱 7725i手动进样器 Hanon-Clarity色谱工作站 试剂:顺丁烯二酸标准品(浓度99.5%以上)、乙腈(色谱纯)、超纯水、磷酸(分析纯) 色谱条件 色谱柱: C18,250 mm × 4.6 mm,5 &mu m 流动相:乙腈-0.1%磷酸溶液(3∶97) 流速:1.0 mL/min 柱温:30 ℃ 进样量:15 &mu L 波长: 215 nm 标样制备: 称取0.05g顺丁烯二酸标准品(精确到0.1mg),用超纯水定容在25mL容量瓶中,得到2mg/mL的标准液 样品前处理 称取5 g样品(精确到0.01 g)于50 mL比色管中(样品磨碎后称取),加入40 mL的超纯水,超声提取12 min后用超纯水定容至50 mL,放入冰箱至-5摄氏度环境中静置5min,放入离心机离心5 min后,用0.45um水滤膜过滤后进样测试。 图例 以下是使用海能LC7000高效液相色谱系统在淀粉中加入顺丁烯二酸标准品测试的结果,谱图中的主峰为顺丁烯二酸,与其他的杂质分离度良好,响应值高,完全适合在实验室中做批量测试应用。
  • 迪马科技推出鱼丸等复杂基质中顺丁烯二酸的检测SPE解决方案
    2013年5月29日,迪马科技发布了使用Platisil ODS C18液相色谱柱开发的《迪马&ldquo 毒淀粉&rdquo 中顺丁烯二酸(酐)检测解决方案》。迪马科技应用实验室在该方法基础上,对市面上销售的鱼丸、火腿肠等含淀粉食品建立了鱼丸、火腿肠等复杂基质中顺丁烯二酸的SPE检测方法。 方法优势 采用固相萃取净化,对复杂样品基质如鱼丸、火腿肠中顺丁烯二酸进行净化,达到除油、除蛋白等杂质的目的,同时提高检测灵敏度,回收率满足检测要求,批次重现性良好。 样品前处理 鱼丸、火腿肠等含淀粉类食品 (1) 取1 g样品,加入10 mL提取液 和1 mL三氯甲烷,振荡提取2 min,8000 rpm下离心2 min,收集上清液; (2) 下层残渣依次用10 mL、10 mL提取液重复提取两次,合并三次提取液,待净化。 *提取液:2%甲酸水溶液 SPE柱净化&mdash &mdash 顺丁烯二酸检测专用柱(Cat.#65814) (1)活 化: 依次加入5 mL甲醇,5 mL 2%甲酸水溶液,流出液弃去; (2)上 样: 将待净化液加入小柱,流出液弃去; (3)淋 洗: 依次加入5 mL 2%甲酸水溶液、5 mL甲醇,流出液弃去; (4)洗 脱: 加入10 mL 5%氨水甲醇溶液洗脱,收集洗脱液; (5)重新溶解: 将洗脱液在45 ℃下减压蒸干,用流动相定容至1 mL,供HPLC分析。 分析条件 色谱柱: Platisil ODS,250 x 4.6 mm,5 &mu m(Cat.# 99503) 流 速: 1.0 mL/min 检测器: UV 214 nm 柱 温: 30℃ 进样量: 20 &mu L 流动相: A:0.1%磷酸水溶液,B:甲醇,A:B=98:2 添加回收结果 含淀粉食品中顺丁烯二酸添加回收结果 目标物 样品基质 添加水平(mg/kg) 回收率(%) 顺丁烯二酸 火腿肠 5.0 87.11 鱼丸 5.0 87.55 图2 火腿肠中顺丁烯二酸(添加水平为 5 mg/kg)色谱图 图3 火腿肠中顺丁烯二酸(空白)色谱图 图4 鱼丸中顺丁烯二酸(添加水平为 5 mg/kg)色谱图 图5 鱼丸中顺丁烯二酸(空白)色谱图 注:淀粉中顺丁烯二酸的检测同样可使用上述方法,经过固相萃取净化后,可提高方法检出限。 鱼丸等复杂基质中顺丁烯二酸的检测SPE解决方案相关产品信息:
  • 月旭科技“毒淀粉”中顺丁烯二酸(酐)的测定方案
    近日,相关媒体报道台湾当地很多经典小吃,如粉圆、黑轮、板条、芋圆、地瓜圆等食品中被检测出含有违法添加物&ldquo 顺丁烯二酸&rdquo 。该物质又称马来酸酐(简称顺酐),主要用于工业粘着剂,若加入食物中可增加食物弹性及保质期,人体吸入后会引起咽炎、喉炎和支气管炎,同时也会对人体肾脏造成极大的损伤。 月旭科技采用Ultimate® AQ-C18液相色谱柱开发了淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐含量的高效液相色谱检测方法。该方法灵敏度高、准确度好且前处理简便,适用于淀粉及其制品中顺丁烯二酸(酐)和顺丁烯二酸酐含量的测定。 样品前处理 准确称取2.50g样品(精确至0.01g)于50mL比色管中(淀粉食品用均质机粉碎后称取),加入50mL体积分数为5%的乙醇水溶液,涡旋5min,超声提取30min后,定容至50mL,摇匀,4000r/min离心5min后,过0.22µ m滤膜进行上机测定。 色谱条件 色谱柱:月旭Ultimate® AQ-C18(5µ m, 4.6× 250mm) 流动相:乙腈:0.1% H3PO4水溶液 = 2:98 流速:1.0mL/min 柱温:30oC 进样量:20µ L 标样浓度:10µ g/ml 检测器:214nm 溶剂空白色谱图 顺丁烯二酸标准品色谱图 不含顺丁烯二酸空白样品色谱图 空白样品加标色谱图 回收率结果考察(n = 5) 订货信息
  • 毒淀粉马来酸-顺丁烯二酸检测解决方案
    阅读清晰版请下载:毒淀粉马来酸-顺丁烯二酸检测解决方案.pdf 关键词: 毒淀粉 马来酸-顺丁烯二酸 检测 解决方案 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 迪马“毒淀粉”中顺丁烯二酸(酐)检测解决方案
    近日,台湾“毒淀粉”事件愈演愈烈,广大民众陷入“毒食”恐慌。所谓“毒淀粉”,主要是指在淀粉中添加了顺丁烯二酸酐。顺丁烯二酸酐(Maleic anhydride)简称马来酸酐或失水苹果酸酐,遇水即水解成顺丁烯二酸(又称马来酸)。加入淀粉后可增加食物的弹性、黏性及外观光亮度,但会对人体肾脏造成极大损伤。目前,我国国家标准GB 2760-2011未将顺丁烯二酸酐列为食品添加剂。方法优势 我国现有的国家标准GB/T 23296.21-2009采用高效液相色谱及内标法对食品模拟物中顺丁烯二酸及顺丁烯二酸酐进行分离与测定,但关于淀粉及淀粉制品中顺丁烯二酸酐的检测尚未见报道。2012年,浙江省质量技术监督检测研究院采用迪马科技Platisil ODS C18液相色谱柱开发了基于高效液相色谱(HPLC)测定淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的批量检测。样品前处理 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL体积分数5%的乙醇水溶液,涡旋2 min,超声提取10 min后用提取液定容至50 mL,摇匀,12000 r/min离心5 min后,过膜上机测定。色谱条件色谱柱:Platisil ODS C18,250 mm × 4.6 mm,5 μm (Cat.#:99503)流动相:甲醇-1‰磷酸溶液(2∶98)流速:1.0 mL/min柱温:30 ℃进样量:15 μL检测器:UV 214 nm 色谱柱的选择 参考标准GB 25544-2010及有关马来酸的文献报道,为减少目标物出峰时间附近物质的干扰,延长其色谱保留时间,本方法采用Platisil ODS C18色谱柱,与普通ODS C18柱相比,该色谱柱可以纯水为流动相。 顺丁烯二酸标准品色谱图含顺丁烯二酸阴性样品加标的谱图 添加回收结果 回收率 88%~89%(添加水平:10、50、100 mg/kg) 相对标准偏差(n=5) 定量下限 5.0 mg/kg * 以上数据来源于高效液相色谱法测定淀粉及淀粉制品中的顺丁烯二酸与顺丁烯二酸酐总含量,分析测试学报,2012,31(8),1013-1016 “毒淀粉”中顺丁烯二酸(酐)检测解决方案相关产品信息: 货号 名称 规格 样品前处理 37177 针头式过滤器 Nylon 13 mm,0.22 μm 100/pk 37180 针头式过滤器 Nylon 13 mm,0.45 μm 100/pk 色谱柱及保护柱 99503 耐100%纯水流动相反相液相色谱柱Platisil ODS C18 250 × 4.6 mm, 5 μm 标准品 46672 顺丁烯二酸酐[108-31-6] 1 g 46671 顺丁烯二酸[110-16-7] 1 g HPLC溶剂 缓冲盐 离子对试剂 50102 甲醇 HPLC级 4 L 50108 无水乙醇 HPLC级 4 L 50133 磷酸 HPLC级 50 mL 通用色谱产品 52401B 瓶架/蓝色 50 孔 52401A 瓶架/白色 50孔 5323 样品瓶(棕色/螺纹 2 mL, 100/pk 5325 样品瓶盖/含垫(已经组装) 100/pk H80465 HPLC 进样针 25 μL
  • 【飞诺美色谱】罕见遗传性疾病的救星——寡核苷酸药物
    新冠疫情促使mRNA技术快速发展的同时也使人们开始高度关注核酸药物这一领域。核酸药物包括反义核酸(ASO)、小干扰RNA(siRNA)、微小RNA(miRNA)、小激活RNA(saRNA)、信使RNA(mRNA)、适配体(aptamer)、核酶(ribozyme)、抗体核酸偶联药物(ARC)等,是基因治疗的一种形式。除mRNA药物外,其他几种核酸药物,基本上都是由100个以内的核糖核苷酸或脱氧核糖核苷酸单链或双链组成,所以也称为寡核苷酸药物。与mRNA药物编码产生目的蛋白不同的是,寡核苷酸药物主要是通过碱基互补配对原则与DNA、mRNA或者pre-mRNA配对,通过基因沉默、非编码RNA抑制、基因激活等一系列机制来调节基因表达。已上市寡核苷酸药物化学结构(Nature reviews drug discovery)寡核苷酸药物对比于小分子药物及蛋白药物,具有多方面的优势,首先可根据目标靶点设计碱基序列,靶点明确、特异性强;其次寡核苷酸药物从转录后水平进行治疗,可选择的靶点丰富,特别是能覆盖蛋白质不可成药的靶点以及开发由基因缺陷导致的遗传性疾病的相关靶点;另外寡核苷酸药物由于序列短,可采用化学合成方法,完成目标序列的装配,并结合生物学测试筛选有效序列,能够避免盲目开发,节省研发时间。但是寡核苷酸药物在研发中也面临着诸多挑战。寡核苷酸在细胞外稳定性低,易被核酸酶降解,加上分子量及负电荷的因素,难以进入细胞,因此在研发过程中,使其保持稳定的结构以及能够有效递送的传递载体是主要考虑的两个因素。寡核苷酸核酸分子的改造主要包括磷酸骨架,碱基以及糖环的修饰,在改造中需要考虑多个因素,包括稳定性、药代动力学、碱基配对的亲和力等,最重要的是能够保留被功能酶及功能蛋白所识别的功能。因此,在前期研发过程中,需要对寡核苷酸进行精确的结构表征及定量。丹纳赫生命科学旗下SCIEX 的高分辨质谱ZenoTOF&trade 7600系统具有一系列对寡核苷酸进行分析的方案,可进行寡核苷酸的分子量分析并进行杂质检测,可对寡核苷酸进行碱基序列鉴定。由于Zeno TOF 7600具有EAD和CID两种互补的碰撞模式,不但能产生丰富的离子碎片信息,还会保留完整的核酸低丰度修饰信息。寡核苷酸分子量及碱基序列的检测高分辨质谱ZenoTOF&trade 7600系统另外,高分辨质谱ZenoTOF&trade 7600系统还能实现对寡核苷酸的定量分析,线性范围可达 5 ng/mL – 10000 ng/mL,可以完成寡核苷酸药物在研发阶段的药代及多种代谢产物同时鉴定及定量分析。在研发阶段,对于采用同一种仪器进行鉴定及定量,可避免定量方法转移时造成的方法优化时间浪费,可帮助用户加快研发进度。艾杰尔-飞诺美寡核苷酸定量分析前处理试剂盒高分辨质谱对寡核苷酸进行定量分析在寡核苷酸药物种类中,反义寡核苷酸由于是单链,分子量小,递送较其他寡核苷酸容易,且反义寡核苷酸功能多样,可上调或下调基因表达,成为研发罕见遗传性疾病药物中最关注的种类。为了帮助研究人员开发这类针对罕见遗传性疾病患者的ASO疗法,FDA还发布了指导这类ASO疗法非临床检测的指南。在已上市的寡核苷酸药物中,大部分都是用于治疗罕见遗传性疾病的反义寡核苷酸药物,特别是杜氏型肌营养不良,已经上市了针对不同基因位点的四款产品。药品名治疗疾病药物种类上市时间Fomivirsen巨细胞病毒视网膜炎反义寡核苷酸1998.8(已退市)Pegaptanib年龄相关性黄斑变性核酸适配子2004.12Mipomersen纯合性家族性高胆固醇血症(hoFH)反义寡核苷酸2013.1(已退市)Defibrotide肝静脉闭塞反义寡核苷酸2016.3Eteplirsen杜氏型肌营养不良(DMD基因外显子51)反义寡核苷酸2016.9Nusinersen脊髓性肌萎缩症 (SMN2基因外显子7)反义寡核苷酸2016.12Patisiran遗传性甲状旁腺素淀粉样变性小干扰RNA2018.8Inotersen遗传性甲状旁腺素淀粉样变性反义寡核苷酸2018.10Waylivra家族性乳糜微粒血症综合征反义寡核苷酸2019.5Givosiran急性肝卟啉症小干扰RNA2019.11Golodirsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2019.12Viltolarsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2020Lumasiran原发性高草酸尿症I型小干扰RNA2020Inclisiran成人高胆固醇血症及混合性血脂异常小干扰RNA2020Casimersen杜氏型肌营养不良(DMD基因外显子45)反义寡核苷酸2021.2.25已上市的寡核苷酸药物(根据网上资料整理)由此可见,对罕见病的诊断也非常重要,很多罕见遗传病是由几十甚至上百种突变引起的,而且不同区域的患者可能存在不同的基因变异位点,NGS是现在进行高通量基因检测的重要手段。丹纳赫生命科学旗下Integrated DNA Technologies(IDT)公司(中文名称:埃德特)是全球领先的NGS试剂供应商,其外显子捕获产品Exome Research Panel V2特别适合进行遗传性疾病的全外显子组测序,助力遗传性疾病的诊断。V2由 415,115 条单独合成且经过质控检验的 xGen Lockdown 探针组成。探针组跨越人基因组的 34 Mb 目标区域(19,433 个基因),并且覆盖 39 Mb 的探针空间(即由探针覆盖的基因组区域)。探针是使用全新的“捕获感知”(capture-aware) 算法进行设计的,并进行了专有的脱靶分析,确保实现完整的设计覆盖度。探针组中的所有探针均严格按照 ISO 13485 标准进行生产。每条探针均经过质谱法和双定量测量检验,确保探针的质量及在探针库中具有适当的代表性。IDT Exome Research Panel试剂盒
  • 挪威将限制消费品中的全氟辛酸
    挪威近日宣布将限制消费品中的全氟辛酸化合物(perfluorinated compound ,PFOA)。生效日期将根据产品属性从2014年6月开始生效。   2013年6月28日,挪威环保局宣布了一项消费品中PFOA及其盐类和酯类的国家禁令。限制令适用于固体和液体产品,也包括纺织品。   PFOA被用于一系列消费品。它可被用于制造含氟聚合物,转而用于防水夹克。还可被用于制造地板蜡、蜡纸以及电线中的绝缘体。   该公告修订了《挪威产品法》第2-32节。禁令的生效日期根据产品属性从2014年6月1日开始。   新法律的重点图表格一所示:   表格一 管辖范围 法规 物质 范围 要求 生效日期 挪威 产品法规第2-32节“含有全氟辛酸铵的消费品” PFOA及其盐类和酯类 纯物质 混合物 ≤10毫克/千克 2014年6月1日 2016年1月1日 (半导体的粘合剂以及胶卷、相纸或屏幕的摄影涂层) 纺织品 地毯 表面有涂层的消费品 ≤1.0微克/平方米 2014年6月1日 消费品 ≤0.1% 2014年6月1日 2016年1月1日 (半导体中的箔或磁带) 豁免 食品包装和食品接触材料 医疗设备 2014年6月1日之前销售的消费品备用零件
  • 广西标准化协会《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》等3项团体标准通过专家审定
    2023年4月28日,广西标准化协会在南宁组织专家对由广西环境科学学会提出,广西壮族自治区生态环境监测中心、广电计量检测(南宁)有限公司、广西新桂环保科技集团有限公司、广西润测检测技术有限公司、广西壮族自治区分析测试研究中心等单位共同起草的团体标准《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》,广西壮族自治区生态环境监测中心、广西新桂环保科技集团有限公司、广电计量检测(南宁)有限公司、广西润测检测技术有限公司、广西壮族自治区分析测试研究中心等单位共同起草的团体标准《水质 8种喹诺酮类抗生素的测定 高效液相色谱-串联质谱法》《水质 7种青霉素的测定 高效液相色谱-串联质谱法》进行了审定。(审定会现场)来自广西产品质量检验研究院、广西标准技术研究院、广西大学化学化工学院、广西分析测试协会、广西博测检测技术服务有限公司等单位专家在听取标准起草单位对标准起草情况的汇报后,对标准进行了逐条逐款认真审定,一致认为《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》等3项团体标准是在深入调研,广泛收集整理水质抗生素的测定相关资料,结合试验方法验证的基础上制定,所采用的技术路线正确,内容完整,具有科学性、先进性和可操作性。《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》等3项团体标准的发布实施,为测定水环境中各类抗生素残留量提供快速、灵敏、准确的分析方法,有效提高水质中抗生素的测定效率,对完善水质污染检测标准体系建设,促进环境保护具有重要的意义,专家一致同意通过审定。(审定会现场)广西标准化协会谢宏昭会长/高级工程师、广西环境科学学会谢佳凝副秘书长、广西自治区生态环境监测中心黄宁高级工程师、王锦工程师、广电计量检测(南宁)有限公司韦革主任、梁丽霞副主任、农汉榜有机主管、广西新桂环保科技集团有限公司陈德翼高级工程师等起草小组成员参加了此次团体标准审定。
  • 东西分析推出液相色谱检测淀粉中顺丁烯二酸检测方法
    针对近日媒体爆出的台湾毒淀粉事件,东西分析推出&ldquo LC5510 测定淀粉中的顺丁烯二酸&rdquo 的解决方案,可登陆仪器信息网下载资料,下载地址:http://www.instrument.com.cn/netshow/SH100293/down_241900.htm 关于我们:北京东西分析仪器有限公司成立于2002年(其前身是成立于1988年的北京东西电子研究所),到现在已拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,中国分析仪器制造行业著名企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。公司以雄厚的科研技术实力为后盾,以严格的质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的产品。在食品安全、农产品安全、饲料分析检测方面公司有专门的研发中心和分析应用中心,多年的配套解决经验,可为客户提供全套的解决方案和符合国标的分析方法验证,具有广泛的客户群。
  • 2021年诺奖热门:光遗传学背后的科学家们
    光可被细菌、藻类等低等生命和人类等高等动物通过视紫红质系统而感知。20世纪70年代后,几种细菌和藻类通道视紫红质的发现为光控系统的诞生奠定了基础。光遗传学最初由米森伯克于2002年首次实现并于2005年由迪塞罗斯(也译作代塞尔罗斯)和博伊登进一步完善,其应用极大地增强了对大脑功能的理解。 光遗传学可使科学家借助光来精确开闭特异神经元从而达到操纵神经元活性和动物行为的目的。光遗传学技术已被证明是在细胞和系统层面研究健康和病理大脑活性的一个非常强大且有用的工具。文章系统介绍了光遗传学诞生的历史背景、重大事件、发展过程、应用领域及重要价值等。 光对生命具有举足轻重的地位,“万物生长靠太阳”。对大部分植物而言,它们借助光合作用合成营养物质并释放出氧气,而动物则依靠这些营养物质和氧来维持生存。此外,光还可以指导细菌和植物的向光性,控制植物生长和开花时间。 对于人类和其他动物而言,借助光来观察和感知这个 “光明” 世界。该过程由 “眼睛” 完成,称为视觉。大部分视觉健康的人都可通过眼睛清晰地观察到这个世界,看到周围的花花草草和五光十色的世界。那么,我们是如何观察到这些事物的呢?文艺复兴后,人们对光的本质进行探索,从而对光的成像机制有了新认识,自然对视觉形成机制也产生浓厚兴趣。 视紫红质 视觉研究可追溯到18世纪。荷兰科学家列文虎克(Antonie Philips van Leeuwenhoek)借助显微镜观察眼视网膜结构,鉴定出视网膜色素上皮细胞(retinal pigment epithelium,RPE)、视杆细胞和视锥细胞等,并推测这些细胞与视觉形成相关。1851年,德国解剖学和生理学家缪勒(Heinrich Müller,1820—1864)首次报道视网膜视杆细胞显红色这一现象 [1]。遗憾的是,缪勒错误地认为红色由血液造成。尽管如此,缪勒仍被看作视觉生理研究的先驱。缪勒在视觉生物学领域作出诸多贡献,如首次描述视网膜神经胶质细胞,这类细胞也因此获名“缪勒细胞”。 博尔(Franz Boll,1849—1879)是一位德国生理学家,对视觉形成具有浓厚兴趣。1876年11月,博尔也观察到红色视杆细胞,并认定红色源于其含有一类特殊物质,纠正了缪勒早期的错误。博尔还发现视杆细胞的红色受光影响,光照可导致红色褪去,而在暗处又重新恢复,进一步说明红色物质与视觉形成相关。遗憾的是,博尔的早逝(年仅30岁)使研究没有进一步开展。 1877年1月,博尔的同胞、另一位德国著名生理学家屈内(Wilhelm Friedrich Kühne,1837—1900)进一步纠正博尔的不足,认定视网膜感光物质应为紫红色,并创造 “视紫红质(rhodopsin)” 一词。屈内还取得另一项重大发现,即胆酸可使视杆细胞内的视紫红质释放到溶液里,并基于这一原理首次从牛视网膜完成视紫红质的纯化 [2],屈内也因此成为视觉生理领域的奠基人之一(图1)。虽然已确定视紫红质参与视觉形成,但具体分子机制仍不清晰,直到20世纪30年代才有突破。图1 视紫红质的发现 视黄醛循环 1931 年, 美国眼科专家尤德金(Arthur Yudkin,1892—1957)开始对视网膜成分进行分析,发现其含有一种维生素A样物质。其实,人们很早就知道维生素A缺乏可影响视觉形成,最常见的一种疾病叫夜盲症,但对维生素A如何参与视觉却知之甚少。 1932 年, 美国生理学家瓦尔德(George Wald, 1906—1997)来到德国瓦伯格(Otto Heinrich Warburg,1931年诺贝尔生理学或医学奖获得者)实验室开始全面研究视紫红质。瓦尔德首先借助光谱分析法证明青蛙、绵羊、牛等完整视网膜中存在维生素A,接着使用氯仿提纯视紫红质,化学显色反应表明所含物质与维生素A非常相似。 为进一步证实结论,瓦尔德加入瑞士著名科学家卡雷尔(Paul Karrer,1937年诺贝尔化学奖获得者)的实验室,而卡雷尔分离并确定了维生素A的结构。经过3个月研究,瓦尔德最终确定视紫红质中确实含有维生素A,从而表明视紫红质包含两部分:视蛋白(opsin)和维生素A [3]。随后,瓦尔德又加入德国海德堡迈耶霍夫(Otto Fritz Meyerhof,1922年诺贝尔生理学或医学奖获得者)实验室继续开展视觉形成研究。 一次偶然事件为研究带来重大契机!当时正逢假期,许多实验室人员都去度假,恰在此时运抵300只青蛙。实验室助理原本想丢弃,而瓦尔德则主动要求留下来用作实验材料。瓦尔德从青蛙视网膜提取到足够量的视紫红质,进一步分析后惊奇地发现所含的维生素A与卡雷尔所得维生素A尽管大部分性质相似,但仍有些许差异,因此将这种物质重新命名为视网膜色素(retinene)。瓦尔德还发现视网膜色素与维生素A之间可发生转变,并通过后来详细的结构分析确定了两者间的差异,因此视网膜色素更名为视黄醛,而维生素A则称为视黄醇 [4]。 20世纪50年代,瓦尔德和同事经过近20年探索,最终解析出视觉形成的 “视黄醛循环” 机制:静息状态下,视杆细胞内视蛋白与11-顺视黄醛结合形成视紫红质;光线照射可使11-顺视黄醛发生异构化转变为全反式视黄醛,从而与视蛋白分离,这个过程激活视蛋白,启动下游信号转导最终到达大脑视觉中心;全反式视黄醛可被运输到视网膜色素上皮细胞内经过几步化学反应重新生成11-顺视黄醛;11-顺视黄醛回到视杆细胞再次与视蛋白结合形成视紫红质,从而完成一次视觉感知过程(图2)。瓦尔德的发现很好地诠释了视黄醛参与视觉形成的机制,因此他分享了1967年诺贝尔生理学或医学奖。图2 瓦尔德与视黄醛循环 后续研究还揭示了视蛋白作用机制。视蛋白是一种G-蛋白偶联受体(G protein coupled receptor,GPCR)。光通过改变视黄醛结构而激活视蛋白后,可进一步使异三聚体G蛋白激活,从而使磷酸二脂酶活化,催化cGMP水解为5’-GMP而减少cGMP含量;细胞内受cGMP调控的离子通道关闭,导致细胞膜电位出现变化,最终传导至视觉中心而实现光的感知。 从这个过程可以看出,哺乳动物视紫红质的作用机制较为复杂,作为机体视觉感知过程尚可接受,如果将它们应用到其他系统则困难重重,因此有必要寻找更简单的感光系统 [5]。 细菌感光 最初认为只有高等动物才存在视觉系统,但这一观念在20世纪60年代发生改变。1967年,德裔美国生理学家斯托克尼乌斯(Walther Stoeckenius,1921—2013)成为加州大学旧金山分校的教授,重点研究生物膜(如红细胞膜和线粒体膜)结构 [5]。由于生物膜材料获取比较困难,具有电子显微镜背景的斯托克尼乌斯决定用生物化学方法研究盐生盐杆菌(Halobacterium halobium)细胞膜组成。随后两位新同事的到来壮大了实验室的力量。 厄斯特黑尔特(Dieter Oesterhelt,也译作奥斯特黑尔特)是一位训练有素的德国化学家,跟随吕南(Feodor Lynen,1964年诺贝尔生理学或医学奖获得者)获得博士学位,由于学术休假的缘故来到美国;布劳罗克(Allen Blaurock)是一位刚毕业的英国生物物理学家,原来在国王学院威尔金斯(Maurice Wilkin,1962年诺贝尔生理学或医学奖获得者)实验室从事X射线衍射研究 [6]。 厄斯特黑尔特和布劳罗克借助X射线衍射技术观测细菌细胞膜紫色组分时,意外观察到一种清晰的衍射图像,说明其含有一种高度有序的生物分子。厄斯特黑尔特还观察到紫色物质在添加有机溶剂后颜色变黄。此时,布劳罗克回忆起在国王学院研究青蛙视网膜过程中也观察到类似的颜色变化,这一提示促使厄斯特黑尔特大胆假设该物质可能也是视紫红质。为证实这一假说,首先需解答的问题是其含不含视黄醛。 从细菌中寻找视黄醛这一近乎疯狂的想法促使厄斯特黑尔特立即启动验证工作。借鉴青蛙视紫红质的研究方法,厄斯特黑尔特发现细菌的紫色物质具有类似的物理和化学性质,并且还含有视黄醛。基于这些特性,厄斯特黑尔特和斯托克尼乌斯于1971年确定这是一种新型视紫红质,根据来源将其命名为细菌视紫红质(bacteriorhodopsin,BR)(图3)[7]。图3 细菌视紫红质 斯托克尼乌斯经过进一步研究后发现,细菌视紫红质是一种光依赖的离子通道。更大的突破在1975年,英国剑桥大学分子生物学实验室的亨德森(Richard Henderson,2017年诺贝尔化学奖获得者)解析了细菌视紫红质的三维结构,从而对视紫红质的作用有了更深入的认识。 1972年,重组DNA技术的发明为生命科学带来一场革命,同时也积极推动了细菌视紫红质研究的发展。研究人员将细菌视紫红质转入宿主细胞,结果发现光照可引起氢离子外流,从而证明其为一种光控的氢离子通道。1977年,研究人员在细菌中又发现另一种视紫红质——卤视紫红质(halorhodopsin),后续证明其介导氯离子细胞内流 [8]。 一系列的研究表明,即使简单如细菌这样的单细胞生物也存在 “视觉系统”,标志着一个新领域——低等生物视紫红质的诞生,从而促使科学家去寻找其他视紫红质。 藻类趋光 班贝格(Ernst Bamberg)是一位德国生物物理学家,从20世纪70年代开始研究细菌视紫红质的生物学功能,并利用体外实验证实BR是一种光激活氢离子通道。随着基因工程技术的发展和完善,生命科学的研究模式发生根本性改变,膜蛋白研究不再需要繁琐困难的提取过程,只需将外源基因在特定宿主细胞表达即可。 90年代,已加入德国法兰克福马普研究所的班贝格与从美国回来不久的德国电生理学家纳格尔(Georg Nagel)决定合作,共同研究细菌视紫红质在完整细胞中的生物功能。1995年,他们合作将细菌视紫红质基因成功转入非洲爪蟾卵母细胞,进一步精确证实光激活质子泵的电压依赖性 [9]。2001年,他们进一步在非洲爪蟾卵母细胞中证实卤视紫红质是一种氯离子通道(图4)。班贝格与纳格尔的合作一方面建立了视紫红质功能研究平台,另一方面也初显光遗传学雏形,即将外源视紫红质在靶细胞表达。图4 藻类视紫红质 19世纪,绿藻(Chlamydomonas)等藻类就被发现具有向光性和受光调控的特性,但对这些现象背后的原因知之甚少。直到20世纪80年代,大量事实表明藻类也长 “眼睛”,即细胞膜存在感光物质,称为 “光受体”。 80年代初,德国生物物理学家赫格曼(Peter Hegemann)在博士就读期间就决定研究光受体。赫格曼和学生以莱茵衣藻(Chlamydomonas reinhardtii)为材料,借助电生理实验表明光的确可诱导藻类细胞产生电流 [10]。赫格曼决定采用生物化学方法将光受体蛋白纯化后研究其性质。遗憾的是,十余年辛苦努力最终以失败告终。根本原因在于光受体是一种膜蛋白,含量低、稳定性差且异质性高,这些都是蛋白质纯化的大忌。赫格曼不得不转换研究思路来解决这个难题。 2001年,绿藻基因组测序的完成为问题的解决带来转机。赫格曼通过全面搜索和比对绿藻基因组数据库,从中发现两个候选基因与细菌视紫红质具有较高同源性。 为加快研究进程,赫格曼决定寻求合作。他在获悉纳格尔的研究工作后,积极沟通并与其达成合作协议。赫格曼小组负责克隆两种绿藻视紫红质候选基因,并将其送给纳格尔开展功能研究;纳格尔则将基因转入人肾胚细胞HEK293并实现正确表达。功能研究表明,它们的活性均受光调控,并且介导阳离子如钠离子、钙离子等的摄入(图4),因此将其分别命名为通道视紫红质(channelrhodpsin,ChR)1和2 [11-12]。与ChR1相比,ChR2光激活时间更短,且离子通透性更强,因此更适合于研究。更为重要的是,赫格曼还推测这些通道视紫红质不仅可在普通细胞表达,而且也可在神经元中表达并影响电生理活性。这一论断直接催生了光遗传学。 至此,研究人员已经鉴定出三类光控视紫红质,分别是细菌视紫红质(介导氢离子输出)、通道视紫红质(介导阳离子输入)和卤视紫红质(介导氯离子输入)。它们在神经功能研究方面具有何种应用价值呢?这要从神经兴奋说起。 神经兴奋 大脑是神经系统的中枢,是机体最复杂和最神秘的器官。知觉、运动、兴奋、情感、语言、学习和记忆等过程基本都在大脑特异区域完成。大脑由上百亿神经元(亦称神经细胞)构成,这些神经元之间通过特定方式实现彼此间交流,以达到协调控制机体各种行为的目的。神经元活性受电信号影响。 正常情况下,神经元细胞膜内外两侧阴阳离子分布不均匀(这种现象称为极性):膜内钾离子浓度远高于膜外,膜外钠离子浓度又远高于膜内,最终形成一个外正内负的状态。未受刺激时(静息状态),规定膜外电位为0,则哺乳动物神经元膜内电位为负值,约-70mV,称为静息电位;外界刺激可导致离子通道打开,由于离子移动而引起膜两侧离子浓度发生变化,电位差也随之改变。如果-70mV向0方向改变,则称去极化(电位为0意味着内外无离子浓度差距,极化消失);相反,-70mV向更大负值变化则称超极化(意味着离子分布不均匀加剧)。 一般而言,去极化伴随神经元激活,而超极化则意味着神经元抑制,因此通过改变神经元细胞膜内外离子分布可实现精准控制神经元活性的目的。 1979年,美国索尔克研究所著名科学家、DNA双螺旋提出者之一克里克(Francis Crick,1962年诺贝尔生理学或医学奖获得者)在《科学美国人》发表一篇文章 [13],对脑科学未来的发展进行展望。古典神经生物学家通常采用电极刺激大脑特定区域神经元的方式来影响行为,克里克认为这种方法破坏性大且精确性不高,比如无法准确区分不同的神经元,这些因素导致所得结果准确性差。 为此,克里克提出应开发一种精确控制神经元活性的方法,允许研究根据需要只对特定神经元打开或关闭,同时不影响非相关神经元。具有分子生物学背景的克里克进一步指出可以对神经元细胞进行遗传改造,从而使它们可对外界信号(如光刺激)产生精准性应答。这一理念建立了光遗传学的思想雏形。 尽管光控细胞行为的理念已经提出,但真正实现则需要有可行的工具。2002年,这一想法终于首次变为现实。 神经光控 米森伯克(Gero Andreas Miesenböck)是一位奥地利神经科学家,跟随鲁斯曼(James Edward Rothman,2013年诺贝尔生理学或医学奖获得者)开展博士后研究。他主要借助荧光系统来检测神经元内囊泡运输,因而对光产生浓厚兴趣。 1999年,米森伯克建立自己的实验室,开始独立的科研生涯,目光锁定神经生物学。米森伯克对整个神经生物学领域一知半解,可以说有点 “门外汉” 的味道,但是恰恰这个因素反而使他在光遗传学方面首先完成突破,因为他不会受主流观点所羁绊。生命科学研究的基本策略在于首先控制某种因素(干预),然后依据结果确定因果关系,如敲除特定基因后动物出现某种表型异常(如个子变矮),据此可认为该基因参与了某个过程(如肢体发育)。 然而,由于神经系统自身的复杂性,长期以来神经生物学家主要依赖形态观察,而缺乏更多有效的干预手段。米森伯克想改变这一现状,他完全从一个生物学家的视点来看待这个问题,因此想为神经元安装一套感光系统(遗传学操作),然后借助光照(光学)来达到控制神经元的目的 [14]。为尽快实现这一目标,米森伯克邀请鲁斯曼的另一位学生、自己的师弟泽梅尔曼(Boris Valery Zemelman)加入团队,启动光控神经元活性的研究计划(图5)。
  • 舜宇恒平仪器成功参展慕尼黑上海分析生化展
    2010年9月15日—17日,上海舜宇恒平科学仪器有限公司参加了慕尼黑上海分析生化展(Analytica China 2010)。展出了高性能的质谱、色谱、光谱、天平及前处理仪器等,受到了国内外业内人士和客户的关注。     展会上展出了享有盛誉的电子天平系列产品,及技术先进的SHP8400 PMS过程气体质谱分析仪、UV2800双光束紫外分光光度计、UV2400紫外分光光度计、752紫外可见分光光度计、722可见分光光度计、LC1620A液相色谱仪、GC1120气相色谱仪等产品。     公司人员介绍过程气体质谱分析仪     公司人员介绍气相色谱仪   本次展会上舜宇恒平仪器还针对热点应用——农残检测,推出了全面的解决方案。从样品前处理的固相萃取装置、凝胶渗透色谱净化装置,到分析检测的气相色谱仪、气质联用仪,以及可大大提高检测灵敏度的大体积进样系统。      公司人员介绍农残检测解决方案   光临展位的参观者对舜宇恒平仪器的产品表现出了浓厚的兴趣,其中不仅有国内的专业人员,更有来自美国、德国、英国、日本、韩国等众多国家的厂商和用户。公司的专业技术人员向参观者们介绍了仪器的性能、特点,现场多名参观者和行业专家给予舜宇恒平仪器很高的评价。   关于上海舜宇恒平科学仪器有限公司   上海舜宇恒平科学仪器有限公司,是上海市高新技术企业,专业致力于各类科学仪器的研发、制造和销售。公司继获得“上海市著名商标”后,又获得“上海市创新型企业”称号。公司承诺向顾客提供更合适的产品,更广阔的选择空间。现已形成色谱仪器、光谱仪器、质谱仪器、天平仪器等一百多个品种的数字化、智能化产品,建立了与顾客零距离的营销网络,客户遍及海内外。   联系方式:上海舜宇恒平科学仪器有限公司   地址:上海市虹漕路456号8号楼5~6楼   邮编:200233   电话:021-64951010   E-mail:info@hengping.com   http://www.hengping.com
  • 离子液体柱——脂质组学中分离脂肪酸的气相色谱柱
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析 第十二讲:擒魔序曲&mdash &mdash 脂质组学研究中的样品处理 前言   作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。   前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用气相色谱、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的气相色谱方法。 1、基本情况   由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用气相色谱有些困难,逊色于薄层色谱和液相色谱。如果使用气相色谱进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于气相色谱以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常气相色谱用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用气相色谱进行脂质组学研究的基本方法。用气相色谱可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温气相色谱-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。   近年把离子液体用作气相色谱固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161&minus 175) 2、室温离子液体作气相色谱固定相   室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根([PF6]-)、四氟硼酸根([BF4]-)、硝酸根(NO3-)、三氟甲基磺酰亚胺([{CF3SO2}2N]-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作气相色谱固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作气相色谱固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离&alpha -甲基吡啶和&beta -甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作气相色谱固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ([BuMIm][PF6] ) 及相应的氯化物([BuMIm][Cl] )用作气相色谱固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了[BuMIm][PF6]和[BuMIm][Cl]色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作气相色谱固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作气相色谱固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体气相色谱固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490) (1).室温离子液体气相色谱固定相的特点   室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,气相色谱固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到气相色谱固定相,它们非常适应毛细管色谱柱的多方面要求: (a) 蒸汽压低   气相色谱固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足气相色谱固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺([C4mim][NTf2])的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合气相色谱固定相的要求。 表1 [C4mim][NTf2]在不同温度下的蒸汽压 温度/℃ 蒸汽压/P× 102 (Pa) 184.5 1.22(0.92 mmHg柱) 194.42.29(1.72 mmHg柱) 205.5 5.07 (3.8 mmHg柱) 214.4 8.74 (6.6 mmHg柱) 224.4 15.2 (11.4 mmHg柱) 234.4 27.4 (20.5 mmHg柱) 244.3 46.6 (35.0 mmHg柱) (b) 粘度高   室温离子液体的粘度高,适合于气相色谱固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为气相色谱固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。 (c) 湿润性好   要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。 (d)热稳定性好   大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体气相色谱固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220&ndash 250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335&ndash 405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体气相色谱固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。 图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较 (e) 极性高   固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及&pi -电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。 表 2 几种商品离子液体固定相的极性 商品色谱柱 组成 McRynolds 极性(P) 相对极性数(p.N.)* SLB-IL 111 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺 5150 116 SLB-IL 100 1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺4437 100 TCEP 1,2,3-三(2-氰乙氧基)丙烷 4294 94 SLB-IL 82 1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺 3638 82 SLB-IL 76 三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺 3379 76 SLB-IL 69 未知 3126 70 SLB-IL 65 未知 2834 64 SLB-IL 61 1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐 2705 61 SLB-IL 60 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活) 2666 60 SLB-IL 59 1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺 2624 59 SupelcoWax 100%聚乙二醇 2324 52 SPB-5MS 5%二苯基/95%二甲基)硅氧烷 251 6 Equity-1 100%聚二甲基硅氧烷 130 3 *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性 (McRynolds 极性指标是上世纪60年代中期研究建立的一种气相色谱固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691) 几种离子液体色谱柱的结构和性能见表3 表3:几种离子液体色谱柱的结构和性能 3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4 表4 离子液体色谱柱在脂肪酸甲酯分离中应用 1 SLB-IL111 奶油中的脂肪酸 使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体 1 2 SLB-IL 82 和 SLB-IL 100 水藻中的脂肪酸 这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。 一维:聚二甲基硅氧烷 二维:SLB-IL 82 和 SLB-IL 100 2 3 SLB-IL100 鱼的类脂中反式20碳烯酸顺反异构体的分析 用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57 3 4 SLB-IL111 分离16碳烯酸顺反异构体和其他不饱和脂肪酸 如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。 4 5 SLB-IL111 分离脂肪酸顺反异构体 SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸 5 6 SLB-IL100 牛奶和牛油中的脂肪酸顺反异构体 使用全二维GC,把离子液体柱用作第一维色谱柱 一维:SLB-IL100 二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷 6 7 SLB-IL 100(快速柱) 生物柴油中的脂肪酸甲酯(C1-C28) SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维GC。 7 8 SLB-IL100 分离C18:1, C18:2, 和 C18:3顺反异构体 SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱 8 9 SLB-IL111 SLB-IL100 SLB-IL82 SLB-IL76 SLB-IL61 SLB-IL60 SLB-IL59 评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能 IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开 9 10 SLB-IL59 SLB-IL60 SLB-IL61 SLB-IL76 SLB-IL82 SLB-IL100 SLB-IL111 用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体 除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系 10 11 SLB-IL111 使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸 使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 &mu m)快速分离食用油(例如奶油)中的反式脂肪酸 11 12 SLB-IL111 使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸 在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体 12 表中文献 1 Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat [J].J. Chromatogr.A,2012, 1233:137-146 2 Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography&ndash mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota[J]. J. Chromatogr.A, 2011, 1218:3056-3063 3 Ando Y.Sasaki, GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase[J]. J. Am. Chem. Oil Soc.,2011,88:743-748 4 Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography&ndash mass-spectrometry using ionic-liquid coated capillary column[J]. J.Chromatogr.A 2011,1218: 9384&ndash 9389 5 Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristicsof fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column[J]. J.Chromatogr.A, 2011,1218: 545&ndash 554 6 Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers [J].J. Chromatogr. A, 1217 (2010) 775&ndash 784 7Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase[J]. J. Chromatogr.A, 2009,1216:8992&ndash 8997 8 Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids[J]. Anal. Chem., 2009, 81:5561&ndash 5568 9 Dettmer K, Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters,Anal Bioanal Chem ,2014, 406:4931&ndash 4939 10 Characterisation of capillary ionic liquid columns for gaschromatography&ndash mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, Anal Chim Acta , 2013 803:166&ndash 173 11 Inagaki S,Numata M, Fast GC Analysis of Fatty Acid Methyl Esters Using a Highly Polar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,Chromatographia , 2015,78:291&ndash 295 12 Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography&ndash flame ionisation detector equipped with highly polar ionic liquid capillary column, Food Chemistry , 2014 160:39&ndash 45 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。
  • 舜宇恒平仪器与您相约慕尼黑上海分析生化展
    上海舜宇恒平科学仪器有限公司将于2010年9月15日至9月17日,盛装出席在上海新国际博览中心举行的慕尼黑上海分析生化展(Analytica China),届时将展出享有盛誉的电子天平等产品,还将推出技术先进的过程气体质谱分析仪、双光束紫外分光光度计、液相色谱仪、气相色谱仪及气质联用仪等产品。   SHP8400 PMS过程气体质谱分析仪于2009年6月投放市场,此产品一经推出,即备受关注。该产品是我国首款产业化的对工业和实验室过程气体监控的在线四极杆质谱仪,主要针对生物制药、石油化工、钢铁冶炼等多个生产过程提供实时分析数据,以优化生产工艺,提高生产效率;同时,可以对环境监测中的水污染、空气污染等进行动态、快速分析。   针对热点应用&mdash &mdash 农残检测,舜宇恒平仪器也将在本次展会上推出全面的解决方案,从样品前处理的固相萃取装置、凝胶渗透色谱净化装置,到分析检测的气相色谱仪、气质联用仪,以及可大大提高检测灵敏度的大体积进样系统,我们都能为您提供整套的仪器配置和消耗品,以及相关的应用支持服务。   欢迎广大新老客户莅临参观指导。   展位号:W1 馆1652 关于上海舜宇恒平科学仪器有限公司   上海舜宇恒平科学仪器有限公司,是上海市高新技术企业,专业致力于各类科学仪器的研发、制造和销售。公司继获得&ldquo 上海市著名商标&rdquo 后,又获得&ldquo 上海市创新型企业&rdquo 称号。公司承诺向顾客提供更合适的产品,更广阔的选择空间。现已形成色谱仪器、光谱仪器、质谱仪器、天平仪器等一百多个品种的数字化、智能化产品,建立了与顾客零距离的营销网络,客户遍及海内外。 联系方式:上海舜宇恒平科学仪器有限公司 地址:上海市虹漕路456号8号楼5~6楼 电话:021-64951010 E-mail:info@hengping.com http://www.hengping.com
  • 全自动特性粘度仪在聚己内酯(PCL)材料中的应用
    聚己内酯(PCL)材料是一种以二元醇为引发剂,由己内酯开环聚合而得到的热塑性结晶聚酯。熔点为59~64℃,玻璃化转变温度约为-60~65℃,表现为典型的树脂特性,具有一定刚性和强度,与高分子材料相容性好,可作为改性剂提高其他高聚物的某些性能。聚已内酯(PCL)材料的结构单元由五个非极性亚甲基和一个极性酯基组成,这种结构使得聚己内酯(PCL)材料具有很好的柔韧性和加工型,并且这种结构特点也使其具有良好的生物相容性和可降解性,因而广泛应用于绿色环保材料和医用材料领域之中。根据GB/T 37642-2019标准中规定了聚己内酯(PCL)材料在生产及研发品控中的各项指标及方法,其中乌氏粘度法测定的特性黏度是其核心指标之一。聚己内酯(PCL)材料特性黏度的测定过程中,常使用自动特性粘度仪作为分析仪器,在大幅减轻人员操作负担的同时,更精准、高效的进行实验。IV3000系列全自动特性粘度仪具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚己内酯(PCL)材料等高分子材料化验分析中的常用实验仪器,为聚己内酯(PCL)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV3000系列全自动特性粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列全自动特性粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动特性粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列全自动特性粘度仪可实现自动测试、自动排废液、自动清洗及干燥,告别了粘度管是耗材的时代。
  • 粮油食品中反式脂肪酸的检测分析方法通过验收
    2010年12月6日,由福建省粮油质量监测所承担完成的省科技计划项目“粮油食品中反式脂肪酸的检测分析”通过了省科技厅组织的专家验收。专家组一致认为,该项目研究成果达到国内同类技术的领先水平。   该项目建立了微波辅助合成/萃取-毛细管气相色谱测定反式脂肪酸的分析方法,实现了样品脂肪酸的提取、甲酯化及萃取的同步进行。进行了7种顺反式脂肪酸甲酯的有效分离,并应用于植物黄油等多种粮油食品中反式脂肪酸的分离分析。研制了SPMA-C18毛细管整体柱,建立了脂肪酸的毛细管电色谱(CEC)分析模式,实现了C12,C13,C18:1,C18:2和C18:3等饱和或不饱和型脂肪酸的灵敏分析,为油酯质量检测提供了新方法,具有较好的应用前景。
  • 锘海生物科学亮相“第13届世界制药机械展”取得圆满落幕~
    锘海生物科学亮相“第13届世界制药机械展”取得圆满落幕~2018年的6月20日,在上海新国际博览中心(浦东)我们迎来了第13届P-MEC China,作为中国及亚太地区顶级的制药工程及机械行业盛会,P-MEC China成为了制药工程及机械业内人士展示产品的平台。而我们锘海生物科技公司自然也是在展厅中占有一席之地,向大家展示我们的新产品——NanoAssemble即纳米药物制造系统!我们的两款型号的样机吸引了大家的目光,我们向众多科研人员介绍了NanoAssemble技术并展示了其中一款型号benchtop的操作系统。仪器介绍【Spark】10秒内制备25-250 μL纳米制剂这款产品可以保留珍贵的API和辅料,并且可以获得快速、均一、可重复的结果!【benchtop】1分钟内制备1-20 mL纳米制剂您是否需要有效的调节纳米的尺寸呢?您是否需要得到高度均一的纳米粒呢?这款产品可以帮助您!并且可以合理优化纳米药物的处方范围,优化各级参数即可得到您需要的纳米药物!【Blaze】一次制备10 mL-1 L纳米制剂当您在临床前研究时,做更大的体内研究,如非啮齿类模型、多计量或多途径给药时,这款产品可以让您更轻松!【Scale-up】4.5h内生产24L这款产品是符合cGMP的纳米药物生产仪器,可沿用前期研究设置的产品参数,直接扩大生产!整套产品从科研到生产无缝衔接!并且科研高效的得到均一性超高的纳米粒,平均PDI0.1!
  • 上海书俊仪器设备有限公司代理柏诺超微量分光光度计
    上海书俊仪器设备有限公司代理的柏诺超微量分光光度计已成为现代分子生物实验室常规仪器。常用于核酸,蛋白定量以及细菌生长浓度的定量。 核酸的定量是超微量分光光度计使用频率最高的功能。可以定量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA。核酸的最高吸收峰的吸收波长260 nm。每种核酸的分子构成不一,因此其换算系数不同。定量不同类型的核酸,事先要选择对应的系数。如:1OD 的吸光值分别相当于50μg/ml的dsDNA,37μg/ml的ssDNA,40μg/ml的RNA,30μg/ml的Olig。测试后的吸光值经过上述系数的换算,从而得出相应的样品浓度。测试前,选择正确的程序,输入原液和稀释液的体积,尔后测试空白液和样品液。然而,实验并非一帆风顺。读数不稳定可能是实验者最头痛的问题。灵敏度越高的仪器,表现出的吸光值漂移越大。 上海书俊仪器设备有限公司为您推荐英国超微量蛋白核酸分析仪-柏触 (BioDrop-Touch)。 柏触是新一代紫外可见分光光度计,可实现生命科学应用无与伦比的测量准确度。它与柏池无缝对接,不但为科学家们提供了领先的微量测量技术,而且还可在同一台机器上实现标准比色皿测量。 柏触有单机版和电脑版可选。单机版具有完整的内置软件,通过彩色触摸屏控制。电脑版通过强大的Resolution生命科学软件操控。了解更多Biochrom产品信息请咨询上海书俊仪器设备有限公司产品工程师张凯18001876850
  • 脂肪酸平衡:全民总动员
    “鱼、海洋或水产ω-3脂肪酸的摄入能显著降低亚洲人群Ⅱ型糖尿病的发病风险。”在于日前举行的2012年膳食脂肪酸国际学术研讨会上,浙江大学食品营养系教授李铎介绍了他的最新研究成果。   人体摄入的脂肪酸包括饱和与不饱和两种,饱和脂肪酸很容易摄入过量造成疾病 而不饱和脂肪酸比如ω-6、ω-3等人体不能自身合成,长期缺乏可能会增加一些疾病的发病风险,如糖尿病、高血脂等。   鉴于此,国际营养学会提出了每日膳食脂肪的比例,即饱和脂肪酸、多不饱和脂肪酸、单不饱和脂肪酸等于1∶1∶1。   然而,数据显示,中国居民膳食脂肪酸意识薄弱,摄取严重失衡,摄取量平均值均未达到上述标准。   深海鱼油购买力不足   近日,卫生部发布数据显示,我国现有超过2亿高血压患者、1.2亿肥胖患者、9700万糖尿病患者,共有近3亿慢性病患者,慢性病导致死亡已占我国总死亡人口的85%。   通常认为,吃鱼油补充的DHA、EPA就是ω-3脂肪酸,植物性的ω-3脂肪酸来源主要包括亚麻油、紫苏及海藻油。   据介绍,深海鱼中ω-3脂肪酸的含量明显高于内陆的淡水鱼,因此可以通过吃深海鱼或是服用深海鱼油胶囊来摄取。帝斯曼公司营养产品部的张卫国博士介绍,鱼油有四大方面功能:降甘油三酯、降血压、抗凝血和降低心率。   但业内人士透露,目前国产深海鱼油价格在100粒100~200多元左右。深海鱼油的原料多从国外进口,而后在国内生产包装 也有的在国内生产但是打着进口的旗号 纯进口的价格很贵,并不是很好销售。   “在北京三环以内的药店销售量还可以,一个月能销售出10~20瓶,而在郊区购买力就不行了。深海鱼油多是消费者自己服用或者送给老人,一般不作为礼品。”该业内人士表示。   但也有人吃深海鱼油后效果不明显。专家建议应该长期服用,在吃饭时服用鱼油效果比饭前或饭后都好,而且在连续服用2年后,才会出现心脏病死亡率降低的显著差异。   据专家介绍,不饱和脂肪酸的补充是有比例的,ω-6∶ω-3为4∶1较好,但也要取决于不同生理状况的人群,小孩、成年人与老人的补充是有差别的。   生物发酵可高效获取不饱和脂肪酸   南昌大学生命科学与食品工程学院副院长邓泽元教授在接受记者采访时表示,他们的一项预防动脉粥样硬化多不饱和脂肪酸胶囊研发项目,目前已申报了专利。   “虽然做药物胶囊的厂家很多,但真正科学合理、按照人体健康需要的营养配比,生产多不饱和脂肪酸胶囊剂的厂家并不多。”他说,“现在采用生物工程技术发酵来生产不饱和脂肪酸,一般工厂和科研院所合作来开发,在工艺上主要看厂家,基本都能达到国家相关法律法规的要求。”   谈到国内不饱和脂肪酸的生产,邓泽元表示,嘉吉烯王生物工程公司是全亚洲最大的生产花生四烯酸的厂家,沿海还有很多类似的厂家,有的生产质量会好一点。   “ω-3脂肪酸比较容易获得,除了深海鱼,目前也可从海藻中提取或是利用生物发酵工程技术使用真菌发酵提取。”邓泽元说,“ω-3脂肪酸易氧化,生产时为了防止氧化,会添加抗氧化剂如维生素E,或冲入氮气、低温环境生产。深海鱼油多是国外生产,而国内沿海企业也在生产。”   据相关文献介绍,用微生物发酵生产不饱和脂肪酸,克服了传统的从动植物体内获取过程中气候、产地和生产周期的限制,并具有生产周期短、培养简单和产品质量稳定等特点。   另外,美籍华人、哈佛大学脂肪酸研究中心主任康景轩博士以深入研究ω-3脂肪酸曾两度获得诺贝尔生理学或医学奖提名,他利用基因工程技术首次成功地克隆出世界上第一头能够自身合成鱼油脂肪的猪。   李铎解释,如果转基因食品解禁的话,人们未来就可以吃上与深海鱼肉成分相似的鸡牛羊肉了。   食用油科学摄取讲究多   中国居民每天都会摄入一定量的食用油,因此在食用油中添加不饱和脂肪酸是一个很好的想法。记者从中粮集团获悉,他们推出了福临门DHA藻油食用调和油等产品,其中DHA是ω-3脂肪酸的一种,对人的大脑发育、成长至关重要。   “随着居民生活水平的提高,这类高端、具有特殊营养功能的产品逐步受到老百姓的认可,销量正稳步提升。”中粮集团相关负责人表示。   据介绍,中粮营养健康研究院和中粮工程科技有限公司西安油脂科学研究设计院相关团队,都在从事不饱和脂肪酸的研究。   不过,有人质疑在炒菜时高温会破坏ω-3脂肪酸的营养。对此,西安油脂科学研究设计院相关研究显示,DHA含量相对较低时,在加热及烹调环境中DHA损失率会大大降低,在一般家庭烹调炒菜条件下,其损失率在5%以内,保留率超过95%,完全满足家庭营养需求,但不适宜反复煎炸。   邓泽元表示,这些添加成分的含量可以从产品的营养标签上获知,如果价格低,其含量应该很少。深海鱼油比较贵,如果添加到大众食用的油中,一般量都不高。   “当然有些特殊要求的产品,量可能更合理,添加深海鱼油到食用油中应该是好办法,也是企业宣传的卖点。”邓泽元说,“当温度达到150度以上,ω-3脂肪酸容易被破坏,一般在油中可添加抗氧化剂来减缓其氧化,当然抗氧化剂的添加量应该符合国家GB2760的要求。”   专家还指出,多种植物油交替食用可以避免长期单一食用某种油脂带来的营养失衡。比如富含不饱和脂肪酸的橄榄油和亚麻籽油、耐高温能力更强的花生油等。
  • 百灵威独家提供Ferak Berlin β-丙内酯
    新春伊始,百灵威与德g有名高纯化学品生产商&mdash &mdash Ferak Berlin GmbH签署战略合作协议,百灵威将在中g(包括香港、澳门)dj代理Ferak公司明星产品&beta -丙内酯(&beta -Propiolactone),并全面负责销售、技术应用与支持等各项业务。 在疫苗生产用原、辅料的全球制造商中,s屈y指的是德gFerak Berlin公司。该公司提供的&beta -丙内酯,是专用于预防狂犬病、出血热等灭活类疫苗生产的z佳灭活剂。创立于1954年的Ferak Berlin,主要业务是实验室化学品,外包研发和有机合成产品,尤其是高难度的化合物合成与工艺开发。公司有3个生产基地,产品远销世界40多个g家地区。明星产品&beta -丙内酯(BPL)具有COS by the EDQM、DINISO9001:2008权威认证,易水解、无残留、无危害,可直接作用于病毒或病原物核酸;灭活时间短,效果明显,可大大缩短疫苗的生产周期。因此,自1984年&beta -丙内酯作为狂犬病疫苗灭活剂问世以来,已被世界各g的工厂广泛应用于人和动物疫苗的生产之中,在造福人类的救治活动中发挥了显著的作用。 目前,百灵威已具备提供50万种化学品和数百项专业服务的能力,包括生命科学、药物研发和环境保护等l域。这些产品和服务推动了祖g科技和工业生产的蓬勃发展,创造出了大量的高纯精细产品,对食品安全,净化空气环境,高效药物研发,征服人类顽症以及新能源开发等,正在发挥出j其重要的作用和贡献。
  • 岛津推出猪肉中大环内酯类抗生素的三重四极杆质谱法检测方案
    大环内酯类抗生素(Macrolide antibiotics, MALs)是由放线杆菌或小单孢菌产生的一类抗生素。MALs已经成为全世界需求量和销售速度增长最快的抗生素之一。由于MALs具有广谱抗菌作用,可抵抗革兰氏阳性菌、支原体和部分革兰氏阴性菌,因此被广泛应用于治疗猪、牛、羊、虾及家禽的呼吸性和倡导传染性疾病,或在低剂量下作为饲料添加剂促进动物生长发育。食品中的大环内酯类抗生素残留易引起过敏河携带耐药因子菌株的扩散。和其他兽药一样,大环内酯类药物在动物源性食品中的残留监测与控制已经受到许多国家包括我国政府的高度重视。农业部公告第235号规定,红霉素在动物组织、奶和蛋中的最大残留限量(MRL)为40-200 &mu g/kg;替米考星在动物组织和奶中的MRL为50-l500 &mu g/kg;秦乐菌素在动物组织、奶和蛋中的MRL为50-200 &mu g/kg。 本方案立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8040联用快速测定猪肉中大环内酯类抗生素的方法。8种大环内酯类抗生素在4分钟内得到快速分离和检测。螺旋霉素、替米考星在5- 200 &mu g/L;竹桃霉素、秦乐菌素、北里霉素、红霉素、交沙霉素、罗红霉素在1-500 &mu g/L浓度范围内线性良好,标准曲线的相关系数均在0.9996以上;对5 &mu g/L、20 &mu g/L和200 &mu g/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在1.87%和5.04%以下,系统精密度良好。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法检测猪肉中大环内酯类抗生素&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 方舟子:反式脂肪酸究竟有多可怕
    食用油的安全问题时不时地会成为舆论的热点。前一阵子国内媒体热炒过地沟油,最近又开始热炒“植物奶油”或“氢化油”,说它们富含危害健康的反式脂肪酸,“被专家列入人类食物历史上最大的灾难之一”。并称现在不少欧美国家已经开始对氢化油封杀、叫停,但在国内仍然可以看到普遍使用氢化油的情形。   果真如此吗?在回答这个问题之前,我们需要先知道什么是反式脂肪酸。这个名字听上去就很反面,但其实是根据其分子结构命名的,很中性。脂肪由脂肪酸和甘油结合而成。脂肪酸的样子像一条长长的链条,是由一个个的碳原子串起来的,碳原子上面还有氢原子与之结合。碳原子的化合价是4价,可以跟其他原子形成4个共价键,氢则是1价。在链条中间的碳原子,由于已与两个碳原子相连,最多还可以结合两个氢原子。如果链条上每一个碳原子都尽可能多地与氢原子结合,我们就说这种脂肪酸达到了饱和状态,称之为饱和脂肪酸。动物脂肪和某些植物油(包括椰子油、棕榈油和可可油)的脂肪酸属于饱和脂肪酸。   在饱和状态下,链条中的碳原子彼此是以单键相连的。有的脂肪酸的链条中间的两个碳原子彼此是以双键相连的,这时这两个碳原子都分别只与一个氢原子结合,处于不饱和状态,我们把这种脂肪酸叫做不饱和脂肪酸。这两个以双键相连的碳原子,如果它们的氢原子位于同一侧,叫做顺式,这种脂肪酸就叫顺式脂肪酸。如果它们的氢原子分别位于两侧,就叫做反式脂肪酸。顺式脂肪酸的链在双键的地方打了一个弯,性质不稳定。反式脂肪酸则和饱和脂肪酸一样是直链,比较稳定。   在从前,食用的脂肪主要是动物脂肪,例如黄油、奶油、猪油,它们比较稀少、昂贵。植物油倒是便宜,但是供食用的植物油的脂肪酸基本上都是顺式脂肪酸,它们很不稳定,是液体,而且容易变质,这是由于自由基攻击链条中的双键造成的。20世纪初,德国化学家威廉诺曼想到了一个解决办法,给植物油中的双键提供氢原子,让它们变饱和,这个过程称为氢化,这样制造出来的油就叫氢化油。如果所有的双键都被氢化、饱和了,顺式脂肪酸就变成了饱和脂肪酸。但是通常只有部分双键被饱和,由于工艺的原因,在氢化的工程中剩下的双键两头的碳原子的结构发生了变化,它们的氢原子由顺式变成了反式。这样,氢化油就含有大量的反式脂肪酸。   植物油氢化之后,变成了半固体,性质稳定、不容易变质,可以代替动物脂肪使用,而且价格要便宜得多。从德国、英国开始(而不是像国内某些专家说的,是美国人干的“好事”),氢化油很快地被大规模生产,在食品加工业中获得了广泛应用,被用来制作糕点、调味品和油炸食品。在上世纪60年代,人们已认识到摄入动物脂肪会增加心血管疾病的风险,植物油相对来说比较健康。这个时候,使用氢化植物油取代动物脂肪,被认为不仅经济上合算,而且对健康也更有利。   从上世纪80年代末开始,人们逐渐认识到氢化植物油对健康的危害实际上比动物脂肪还要大。这主要是由于其中的反式脂肪酸引起的,它增加的心血管疾病的风险,比动物脂肪中的饱和脂肪酸还高。衡量心血管疾病的风险的一个标志是血液中胆固醇的含量。胆固醇有两种,一种是“坏”胆固醇(低密度脂蛋白胆固醇),如果它的含量过高,就会慢慢地在动脉管壁沉积下来,形成粥样小瘤,导致动脉硬化。一种是“好”胆固醇(高密度脂蛋白胆固醇),能够防止粥样小瘤的形成。饱和脂肪酸能增加“坏”胆固醇的含量,相应地增加了心血管疾病的风险。而反式脂肪酸除了能增加“坏”胆固醇的含量,同时还能降低“好”胆固醇的含量,相当于双重增加了心血管疾病的风险。顺式脂肪酸则没有这个问题,有的顺式脂肪酸反而能降低心血管疾病的风险。   即使在摄入的量很少时(只占食物热量的1%~3%),反式脂肪酸对心血管疾病的风险仍然很明显。反式脂肪酸可能还有其他方面的危害,但还没有确证。反式脂肪酸除了能给人体提供能量之外,没有营养价值,反而有害,那么就应该尽量减少摄入它,越少越好。世界卫生组织的建议是每天摄入的反式脂肪酸的量不要超过食物热量的1%,大致相当于不要超过2克,吃一份炸薯条就远远超过这个量了(大约含5~6克反式脂肪酸)。所以如果经常吃快餐、糕点、油炸食品、零食的话,是很难不超过这个限量的。一个美国人平均每天摄入的反式脂肪酸的量是5.8克。   在这种情况下,就会考虑是否用政府的力量来限制、禁止反式脂肪酸的使用。但是目前只有丹麦等个别国家和纽约等个别城市采取了行动。一些厂家被迫或自愿改变配方,推出“不含反式脂肪酸”的产品。但是这类产品往往是用动物脂肪或棕榈油等含饱和脂肪酸的植物油来代替氢化植物油,同样对健康有害。“植物奶油”固然不好,天然奶油也最好避免。在反对使用反式脂肪酸的同时,还要提倡使用顺式脂肪酸,才是健康之道。
  • 【新案例】重氮乙酸乙酯微反应连续流新工艺
    重氮乙酸乙酯是重要的合成片段,在有机合成中具有非常重要的作用,主要应用在C-H键的插入反应和不饱和键上的环化反应。 重氮乙酸乙酯在路易斯酸催化剂的存在下,与醛发生的C-H键插入反应具有十分重要的应用价值,因为产物 β-酮酸乙酯是多种原料药的中间体。 重氮乙酸乙酯试剂在加热情况下会引起分解和爆炸,还会自动分解出有毒物质,储存和运输都需要特别注意。 目前重氮乙酸乙酯的生产主要采用间歇釜式滴加工艺,即向釜内反应体系滴入亚硝酸钠水溶液,由于该滴加过程伴随着剧烈的热量释放,若不能及时有效地移走这些热量,将会造成局部飙温,导致产物分解,严重时甚至引起安全事故。 与传统釜式反应器相比,微通道反应器 面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成爆炸。 此外,由于采用连续化操作方式,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免产物分解。 本文将向读者介绍今年6月份常州大学张跃教授研究团队发表在《现代化工》上的“重氮乙酸乙酯的连续合成工艺研究”研究成果。 该研究以甘氨酸乙酯盐酸盐和亚硝酸钠、硫酸为原料,合成重氮乙酸乙酯,采用微通道连续流反应器系统研究重氮乙酸乙酯的连续合成工艺。该工艺提高了产品收率并具有系统结构简单、操作简便、安全性高、易于自动化控制等优点。 研究介绍 一、微通道反应器模块结构通道反应系统由一系列特定的模块以及连接件组成,通过微通道模块、连接配件、物料输送装置的组合,形成适用于本反应的反应器系统。二、实验步骤1. 在室温下,将甘氨酸乙酯盐酸盐溶于定量的水记为原料1。2. 按照物料配比将亚硝酸钠溶于水记为原料2。3. 再按照物料配比将浓硫酸配制成5% 硫酸记为原料3。4. 在进行实验前将原料1和原料3混合在一起记为混合原料,待换热器系统温度稳定后,混合原料与原料2分别通过质量计量泵进入预冷模片,在2股物料分别充分预冷后,进入反应区中进行重氮化反应。5. 产物从出口连续出料,系统运行稳定后取样进行分析检测。反应装置及流程如图2所示。三、反应条件研究 研究者对重氮乙酸乙酯的微通道连续合成工艺多个影响因素进行了考察,探究亚硝酸钠用量、反应温度、酸用量和停留时间对反应的影响,研究过程分别如下图。最终研究者获得了该合成工艺的最佳条件:取用 n(甘氨酸乙酯盐酸盐):n(亚硝酸钠):n(5%硫酸) = 1 : 1.1 : 2,反应停留时间120 s,反应体系温度为10℃,此时收率可达92.8%。结果讨论与小结 研究者成功应用微通道反应器进行重氮乙酸乙酯的合成,大大缩短了反应时间,扩大工艺条件选择区间,实现对重氮化反应的有效控制,增加了安全系数,提高了反应效率并得到较高的收率 从乙酸乙酯的重氮化反应工艺研究过程来看,连续流技术充分发挥了其技术优势 连续流微反应器持液量小、高效的传热传质特点,保证了反应快速平稳的进行及反应安全性 康宁反应器无缝放大的优势为后续工业化应用提供了研究基础 该工艺可以实现重氮乙酸乙酯的连续化生产,为在其它反应中该产物现制现用提供了可能性,降低了储存和运输的安全风险 参考文献[1]岳家委,辜顺林,刘建武,朱佳慧,李孟金,张跃,严生虎.重氮乙酸乙酯的连续合成工艺研究[J].现代化工,2021,41(06):205-208.
  • 沃特世解决方案——乳制品中核苷酸分析
    乳粉中添加尿苷酸(UMP)、胞苷酸(CMP)、腺苷酸(AMP)、鸟苷酸(GMP)、肌苷酸(IMP)等多种核苷酸,用来提高婴儿的免疫调节功能和记忆力。 核苷酸分析目前存在的挑战: 由于核苷酸极性很大,用反相色谱柱很难达到很好的保留和分离,所以为了提高核苷酸的保留往往会尝试离子对色谱方法,离子对色谱方法存在以下问题: 1. 容易起泡,管路中有气泡,影响分析 2. 平衡时间长,延长了分析工作时间 3. 难以清洗,对色谱柱有损伤 4. 易变质,容易堵塞管路,损伤仪器 沃特世公司(Waters® )解决方案: 1. 避免使用离子对试剂,仅需要使用挥发性乙酸铵、乙腈体系 2. 建议使用Oasis® HLB SPE小柱利用通过净化方式进行乳粉样品前处理,提供更洁净的样品,提高灵敏度、延长色谱柱及仪器寿命 3. 使用Amide色谱柱分析,用一般反相流动相保留极性化合物,方法简单快速 实验结果及色谱图 5种核苷酸混合标准品的6针连续进样分析结果 实际样品6针连续进样分析图谱 小结: 本实验采用Waters ACQUITY UPLC® H-Class 系统,BEHTM Amide 1.7&mu m 2.1*100mm色谱柱,对婴幼儿奶粉中的5种核苷酸进行分析方法的开发,实验结果表明: 1.在Waters ACQUITY UPLC H-Class 系统上,采用BEH Amide 1.7&mu m 2.1*100mm色谱柱能迅速分离奶粉中5种核苷酸标准品,且5种化合物的分离度均在3.0以上;对于实际的奶粉样品,5种核苷酸样品及杂质之间的分离度均在1.6以上。 2.该分析方法重现性好。其中,奶粉样品6次连续进样分析结果中,5种核苷酸保留时间RSD值均小于0.12%。 3.Waters ACQUITY UPLC H-Class 系统,具有四元溶剂的Auto&bull Blend PlusTM功能,因此,在该系统上进行方法开发非常灵活、方便,节约了溶剂配置的大量时间,大大提高了实验的效率,从而大幅度的降低了实验的溶剂消耗,降低了实验成本。 产品订购及促销信息: Oasis HLB 6cc/150mg P/N 186003379 XBridge Amide 3.5&mu m4.6*150mm column P/N 186004869 ACQUITY UPLC BEH Amide 1.7&mu m 2.1*100mm P/N 186004801 点击此处下载完整解决方案 联系方式: 叶晓晨 沃特世科技(上海)有限公司市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 新品发布〡 “匠心传承、氨新之选” 岛津氨基酸分析仪重磅上市
    春风拂面,万象更新,这个四月新品缤纷,三款全新的应用分析系统将陆续和大家见面。这三位名门闺秀的看家本领虽不相同,但都流淌着同样的科技基因,带着深厚的中国烙印;她们因倾听中国用户的心声而来,因岛津数百位本土工程师的心血而长;源于海外,生于中国,现已整装待发准备随时奔赴到您的身边。 首先隆重介绍三款新品中风华绝代的大小姐:氨基酸分析仪LC-16AAA,传承岛津液相色谱产品卓越性能的同时,加入氨基酸分析专用设计,帮助您轻松开展各类氨基酸分析。原理小讲堂:氨基酸分析仪是基于阳离子交换柱分离、柱后茚三酮衍生、光度法测定的离子交换色谱法分析系统。该方法1972年获诺贝尔奖,是当今国际国内氨基酸分析的标准方法、仲裁方法。 极致高效的分析速度 45min即可完成一次水解蛋白氨基酸分析(包括分析、清洗)始终如一的优异性能 性能指标全面优于《JJG 1064-2011氨基酸分析仪检定规程》的要求轻松易用的操作软件 完全为氨基酸分析定制的图形化软件,没有经验的用户也能轻松使用安心无忧的一站式服务 下期将为大家介绍性能同样卓越的其他两位新秀,敬请关注。氨基酸分析仪LC-16AAA风华绝代大小姐 敬请期待秀外慧中二小姐敬请期待古灵精怪三小姐
  • 奶制品中三聚氰胺的检测——舜宇恒平仪器
    上海舜宇恒平科学仪器有限公司坚持&ldquo 品质创造信赖,创新引领发展&rdquo 的理念,致力于各类科学仪器的研发、制造和销售。针对&ldquo 三聚氰胺&rdquo 事件,上海舜宇恒平科学仪器有限公司参考国标对检测方法及配制进行优化,为您提供三聚氰胺检测包括分析方法及推荐仪器配置在内的全套解决方案。 仪器与试剂: LC1600高效液相色谱仪(含UV1600紫外-可见检测器1台,P1600高压恒流泵一台);AT-330色谱柱温箱;FA2004分析天平;TGL-16G-A离心机;三聚氰胺标准品(99%);辛烷磺酸钠(色谱纯);磷酸(分析纯)、乙腈(色谱纯)、纯净水(娃哈哈)。 样品前处理: 称取2g酸奶样品与50ml具塞离心管中,加入乙腈:水=50:50混合溶液15ml,充分混匀后超声提取15min。取提取液250ul,加入0.1mol/l盐酸750ul,混匀,以12000r/min离心5min,取上清液,0.22um滤膜过滤,作为HPLC测定溶液。 加标样品同法制备。 色谱条件: 色谱柱:Globalsil C18 5&mu m(ID4.6mm× 250mm) 流动相:乙腈/缓冲盐=15/85(缓冲盐:10mM辛烷磺酸钠水溶液,含0.1%磷酸) 流速:1.0ml/min 波长:240nm 温度:40℃ 进样量:20&mu l 实验结果: 1. 三聚氰胺标准品高效液相色谱图: 图1 三聚氰胺标准品 三聚氰胺标准品浓度为0.569&mu g/ml,进样5次保留时间相对标准偏差(RSD)为0.23%,峰面积RSD为0.57%。 2. 标准曲线: 配置浓度分别为0.142、0.284、0.853、1.422、7.110、14.220&mu g/mL的三聚氰胺标准溶液。将以上6种标准溶液在下述色谱条件下按浓度由低至高进样。 3. 实际样品高效液相色谱图: 图2 空白酸奶样品 图3 加标酸奶样品 4. 检测限及定量限: 依据噪声值,按3倍信噪比,计算其理论检出限,为0.221 mg/kg;按10倍信噪比,计算其定量限,为0.738 mg/kg。 5. 定性定量结果: 样品中的三聚氰胺含量为1.844ug/ml,三次测定RSD为1.37%,加样回收率为87.2%。 本分析方法适用于奶制品中三聚氰胺的检测,具体内容欢迎致电021-64959872进行咨询。
  • 检测工具箱中添加内置工作通道内窥镜的3个原因
    商业航空公司飞机的起飞时间要严格遵守时刻表中的安排。但是,只有在飞机检测如期进行的情况下才能做到这一点,而且要做到这点,首先要为检测团队配备合适的视频内窥镜或管道镜等检测设备。本文将会探究为检测工具箱添加内置工作通道内窥镜的3个原因。使用高度柔性工具快速找回异物碎片在飞机检测过程中,螺母和螺栓之类的小物件可能会随时掉入发动机中。这些不需要的物件通常被称为异物碎片(FOD),而且商业飞机的检测人员需要尽快找回这些异物碎片。使用即需即用的内置工作通道工业内窥镜,可以轻松地找回异物碎片。IPLEX NX工业视频内窥镜的内置工作通道工业内窥镜是一种多功能检测解决方案,其标准配置包含六个使用便捷的抓取工具:鳄口式、套取式、吊兰式、抓取式、磁吸式、挂钩式。如果标配工业内窥镜性能下降,可以迅速换用RVI备份设备飞机发动机对于插入工具来说可谓是恶劣的环境,因为发动机内充满了钢制和陶瓷制的坚硬边缘,而插入工具需要在这种狭窄的空间游走,完成检测工作。现实情况是,您用于检测的标准工业内窥镜会随着时间的推移而受到磨损。使用时间越长,损坏的可能性就越大。如果在检测过程中,工业内窥镜突然发生故障,最坏的情形就是没有备份设备。那么要如何应对这种情况呢?只需要带上内置工作通道工业内窥镜。内置工作通道工业内窥镜通常被视为特殊工具,即一种专用于捡拾异物碎片或检测通道的工具,它们也可以用于标准的工业内窥镜检测。内置工作通道工业内窥镜不仅具有与标准插入工业内窥镜相同的功能,而且通常还会处于更好的状态,因为一般来说检测人员很少使用它。为了降低成本,您甚至可以在常规检测和特殊检测时都使用它。符合人体工程学的要求,可以有效地完成工作飞机检测人员需要在狭窄的地方操控内窥镜,因此他们的设备需尽可能地符合人体工程学的要求。问题是,在使用常规工作通道内窥镜进行检测时,由于参与操作的组件太多,给人的感觉就像是一种平衡表演。为了说明这点,这里为您描述使用常规内窥镜取出异物碎片的情形:检测人员右手拿着抓取工具驱动器。左手控制插入管在检测区域的移动情况。他们还要腾出一只手,操控屏幕,并截取图像。但是,又如何做到呢?检测人员的手不够用。使用了正确的工具,可以显著提高效率和生产率。现代的内置工作通道内窥镜提供了便于检测人员更加舒适地进行操控的功能,IPLEX NX视频内窥镜的内置工作通道内窥镜配备有一个宽大的LCD屏幕,您不仅可以轻松观察屏幕的内容,还可以将屏幕拆下来,将其挂在一个方便操控的地方。这款内置工作通道内窥镜还配备了一个轻巧的遥控器,可使您从舒适的位置控制屏幕。奥林巴斯IPLEX NX视频内窥镜内置工作通道内窥镜符合人体工程学的要求,可舒适地操控设备,从而有助于操作人员集中精力完成检测工作。遥控器也可与驱动器方便地联结在一起。将驱动器和遥控器握在同一只手中,可以快速换用这两个装置,与此同时使用另一只手操控插入管。这种现代化设置有助于减轻手腕疲劳,并提高检查效率。
  • 传20片毒淀粉鸡排可致不孕 网友称媒体断章取义
    中国经济网北京5月30日讯 据媒体报道,台湾近日发现含顺丁烯二酸的有毒淀粉。1名体重60公斤的成年人1年吃下20片含有"毒淀粉"的鸡排,就可能不孕或影响肾脏功能。但上海质监部门表示,这种顺丁烯二酸作为食品添加剂并不在现有监管范围内。网友纷纷表示“很震惊”、“很恐怖”,有网友戏称“这难道是要毁灭人类吗”,但也有细心网友指出媒体在断章取义,原媒体报道中是“连吃十年”,而非大陆媒体所称“1年”。     面对此消息,网络充斥网友们无奈的调侃,网友“黑茶红糖”:“好可怕哟,我也爱吃炸鸡的,不知道是不是已经中毒了,呜呜呜。”网友“无极变速”:“完了,我中午才吃的鸡排饭。肿么办?”网友“空心菜”:“弱弱的问一句,现在戒鸡排还来得及吗?”网友“永远的App”:“可把此鸡排引进到超生超育的地区。”   也有一些网友比较了解顺丁烯二酸的网友,网友“凡人”称:“马来酸(顺丁烯二酸)口服LD50=708 mg/kg,对人体无急性毒性。这种耸人听闻的文章一看就是文盲文科生写的。”还有某食品网站官博发布:“根据欧盟评估,顺丁烯二酸在成人每天每公斤的可耐受量(TDI)为0.5毫克,换算一名60公斤成人,每天可忍受剂量为30毫克。”但这些消息反而引得网友非常迷茫,网友不断质疑:“到底吃了有没有害啊?会不会致不孕这么严重啊?”   值得注意的是,有细心的网友发现,网传的报道与原报道有实际出入,网友“殳忆”称:“又见媒体断章取义,人家原新闻说的是连吃10年会怎样怎样,这位记者直接省成了1年。而且原新闻中的也是猜测,还没有证据。”据中国经济网记者考证,原文如此表述:“一块鸡排或猪排,如果裹上80到100公克的毒淀粉,1年吃20块,连吃10年后,就很有可能会导致不孕、肾病变要终身洗肾,甚至引发癌症。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制