当前位置: 仪器信息网 > 行业主题 > >

人淋巴母细胞干扰素

仪器信息网人淋巴母细胞干扰素专题为您提供2024年最新人淋巴母细胞干扰素价格报价、厂家品牌的相关信息, 包括人淋巴母细胞干扰素参数、型号等,不管是国产,还是进口品牌的人淋巴母细胞干扰素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合人淋巴母细胞干扰素相关的耗材配件、试剂标物,还有人淋巴母细胞干扰素相关的最新资讯、资料,以及人淋巴母细胞干扰素相关的解决方案。

人淋巴母细胞干扰素相关的论坛

  • 【转帖】第四种淋巴细胞—NKT细胞

    第四种淋巴细胞—NKT细胞 通常认为,构成机体免疫系统的淋巴细胞有三种细胞系组成,一是由胸腺产生的T细胞,二是由骨髓分化而来的产生抗体的B细胞,三是自然杀伤(NK)细胞。而新近发现存在第四种淋巴细胞—NKT细胞。1. NKT细胞的发现1986年,克隆成功了NKT细胞的特征性抗原受体基因。将其命名为Va14基因,与其他T细胞抗原受体的(TCR)基因不同,有其独特的结构特征。1987年美国国立卫生研究所的Fawlkes与瑞士的Budd分别领导的两个研究小组报告指出,胸腺细胞中的T细胞通常不能表达受体,仅有部分未成熟T细胞选择表达V-β8.2受体。随后的研究证明这种细胞不是T细胞,考虑是NK细胞的受体,这种细胞集团的数量极少,生理意义不明。1994年,这两个研究小组的研究人员发现,他们报道的细胞为同一细胞,从此NKT细胞的研究引起人们的广泛关注。T细胞识别的抗原是蛋白质,而NKT细胞是别的抗原是α-Gal-Cer即所谓的糖脂质,这是该免疫系统与通常的免疫系统重要的不同点。NKT细胞的分化与T细胞不同的是在胸腺形成前的胎生初期6.5日在胸腺外组织分化。NKT细胞与T细胞比较,机能处于不发达状态。T细胞分化为功能不同的Th1和Th2细胞群,Th1细胞产生INFγ及IL-2,引起迟发行过敏症等细胞性炎症。Th2细胞能产生IL-4和IL-10,参与变态反应及抗体产生等体液免疫反应。而NKT细胞不但能分泌Th1和Th2细胞因子,同时还具有与CD8+伤害性T细胞(cytotox-ic Tlymphocyte,CTL)相同的杀伤靶细胞作用。毫无疑问,NKT细胞在免疫调节系统中占有重要位置。NKT细胞与疾病可能有诸多关系,可能与自身免疫性疾病的发病机制、变态反应的调节、抗肿瘤作用、及抑制寄生虫感染等有关。2. NKT细胞的多样性分化NKT细胞具有T细胞和NK细胞细胞两重性质,既能表达Va14/Ja281特定的T细胞受体又能由CD1介导识别脂质抗原。NKT细胞的分化是否依赖胸腺尚有争议。根据其表达TCR等多种表面抗原的不同,提示NKT细胞存在两个以上细胞群。从CD4/8的表达看,可将其分为(1)CD4-NKT细胞,(2)CD8-NKT细胞,(3)CD4和CD8均不能表达的DN-NKT细胞。第一类的全部和第二类的半数是Va14/Ja281-T细胞。3.人类NKT细胞人末梢血中的DN-NKT细胞V区域,可高度表达Va24/JaQ(这与鼠的Va14/Ja281高度相似)及Vβ11(与鼠Vβ18高度相似)。这种TCR的组合表达可见于DN-NKT细胞和CD4+细胞。而未见于CD8+细胞。小鼠的CD1相当于人的CD1d的Va24/JaQ。此外,人末梢血中1~2%的T细胞能表达抑制性受体,即抑制型NK细胞受体(KIR),而Va24/JaQ+细胞则不能表达。它的NK相关分子是CD16、CD56或CD57,Va24/JaQ+细胞异不能表达这些分子。在小鼠中还可以看到Va24/Ja281+T细胞以外的NKT细胞。人类Va24/JaQ+细胞与KIR+T细胞能形成不同的亚群。且具有不同的功能。4. NKT细胞分化的胸腺依赖性这是目前存在争议的问题,可以肯定地说NKT细胞分化过程中胸腺是有作用的。NKT细胞多见于胸腺及脾脏以外的肝脏和骨髓种,胸腺缺损的小鼠与正常小鼠比较,NKT的分化并不少。将出生三日小鼠的胸腺摘除,虽然NKT细胞的分化显著受到抑制,但此时CD8+NKT细胞的分化未受到影响。由此认为CD8+NKT细胞在胸腺外分化的可能。5. NKT细胞产生细胞因子的意义 NKT细胞是指能够表达NKT细胞标志NKT1.1的T细胞,其机能具有T细胞和NKT细胞双重特征。NKT细胞在TCR和NKR介导下,产生大量的IL-4及INFγ,对肿瘤细胞有细胞伤害作用。 NKT细胞能表达T细胞的TCR与NK细胞的NKR-P1两种受体,特别是NKT细胞多数表达Va14TCR,识别CD1抗原,而NKR-P1识别各种糖链。 NKT细胞,特别是CD4-NKT细胞,对TCR刺激可产生大量IL-4及IFNγ,同时具有ThO型细胞因子产生能力。NKT细胞不但产生IL-4的主要细胞,而且强力产生IFNγ。IFNγ参与自身Th1诱导,具有极强的Th1诱导能力,从而是IL-2产生亢进。它同时还具有Th2细胞分化抑制功能。IL-12能诱导NKT细胞产生IFNγ。IL-12对TCR的刺激是IFNγ的产生显著亢进。综上所述,NKT细胞不但是IL-4和IFNγ的强力产生细胞,同时参与Th1/Th2分化的抑制,而这些作用都不是单纯的。 虽然NKT细胞能大量产生细胞因子,但仅在机体内保持这种功能。当初一度认为,NKT细胞只是IL-4的产生细胞,而不是Th2分化的必需细胞。并不认为在CD1缺损的小鼠中NKT细胞的分化和对TCR刺激使IL-4产生减少,且对Th2分化必需的IL-4及IgE的产生没有多大影响。但给小鼠投于α-GalCer可使NKT细胞活化,IL-4的产生诱导Th2的应答。有报告指出,同样投于α-GalCer,可使NKT细胞产生IFNγ而致IgE产生低下。由此可见,NKT细胞能产生IL-4与IFNγ两种功能相反的细胞因子。这种微妙的协调作用可能是NKT机能表达的重要特征。NKT细胞的活化通常伴有T细胞、B细胞及NK细胞的活化,这对NKT细胞活化后的免疫应答有较大影响。

  • 【转帖】microRNA参与I型干扰素产生调控研究取得新成果

    近日,国际著名学术期刊《血液》在线发表了中国科学院上海生命科学研究院/上海交通大学医学院健康科学研究所分子风湿病学研究组的最新研究发现:来自于同一前体的miR-155和miR-155*协同调控浆细胞样树突状细胞(pDC)I型干扰素的产生。  系统性红斑狼疮是一种以T细胞功能缺陷和B细胞过度活化及多种自身抗体产生为特点的自身免疫性疾病。已有的研究表明,I型干扰素的过度产生在系统性红斑狼疮的发病过程中起着十分重要的作用。它通过直接作用于T细胞和B细胞,促进自身免疫反应。因此,如何能够有效调控I型干扰素的产生,对于该自身免疫疾病的治疗有十分重要的意义。  近年来,microRNA作为一种非编码RNA分子,被证明在免疫调节的各个方面均有很重要的作用。因此,在沈南教授的指导下,整合中国科学院上海生命科学研究院健康科学研究所的基础研究力量和上海交通大学附属仁济医院风湿科的临床优势,周海波和黄新芳等深入研究了microRNA 在I型干扰素主要产生细胞——浆细胞样树突状细胞(pDC)中的调控作用。  该研究发现,pDC激活后伴随着大量I型干扰素的产生,miR-155*和miR-155分别在不同的时间被显著诱导。MiR-155*主要在早期被诱导,而miR-155则主要在刺激的后期被诱导。进一步研究表明,miR-155*通过靶向IRAKM,促进I型干扰素的产生,而miR-155通过靶向TAB2,抑制I型干扰素的产生。这些结果表明,它们在pDC活化的不同阶段协同发挥作用。此外,通过对miR-155和miR-155*产生机制的研究,发现pDC自身分泌的I型干扰素以及被激活的KHSRP蛋白可以在转录后水平反向调控miR-155和miR-155*的产生,这一结果解释了来自于同一前体的miR-155*和miR-155却能在不同的时间点被诱导的原因。  该研究不仅揭示了来自于同一前体microRNA和microRNA*的产生,在同一刺激过程中可以被精确调控,从而使它们能够协同调控这一过程,而且阐明了新的有效调控I型干扰素产生的机制,为系统性红斑狼疮疾病的的治疗提供了新的理论依据和潜在靶点。  该项工作得到国家科技部、国家自然科学基金和上海市科委的经费支持。

  • 【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    【第三届原创参赛】啤酒酵母细胞自溶技术破壁研究

    维权声明:本文为gl19860312原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。 本实验室主要工作就是:微生物发酵与代谢调控 、蛋白的分离纯化 、生物材料的研发与生产( 化妆品 、面膜、人工血管 、人工骨................)http://ng1.17img.cn/bbsfiles/images/2010/12/201012061858_264950_2019107_3.jpg啤酒酵母细胞自溶技术破壁研究摘要:研究了PH、温度、食盐浓度三个因素对啤酒酵母细胞破壁的影响,确定出最佳的自溶法破壁条件 。进而为分离啤酒废酵母中的有效活性成分奠定了基础。关键词:啤酒酵母;破壁;自溶The Research of Autolysis on the Beer Yeast Cells wallAbstract:This paper researched the condition of autolysis on the waste yeast cells wall with three factors (pH 、Temperature 、Salt density) and determined the best condition based on autolysis. And build basis for separating the activity forms from beer waste yeasts.Key words: The beer yeast; Breaking Cells wall; Autolysis引言啤酒酵母(S.csrsviside)属于真菌门酵母属,多数为单细胞微生物,细胞呈圆形或卵圆形,革兰氏染色呈阳性G+。啤酒酵母细胞是由细胞壁、细胞膜、液泡、颗粒和线粒体等部分组成,细胞年幼的时候细胞壁很薄,所以不明显;细胞年老时,细胞壁较厚。啤酒酵母细胞内不但含有丰富的蛋白质、维生素、葡聚糖及甘露聚糖等营养及保健成分,可作为食用单细胞蛋白,此外还含有辅酶I、细胞色素,卵磷脂、RNA,,这些物质或其降解产物及衍生物如氨基酸制剂和核苷酸及核酸制剂等在生物化学、医药及保健食品中最有重要的作用。由于啤酒废酵母价格便宜,因此可利用啤酒废酵母来提取、制备这些物质。啤酒废酵母(waste brewer's yeast)是啤酒生产的副产物,是指啤酒酿造后沉降的酵母泥,主要是由大量的弱细胞和死细胞组成。在啤酒生产过程中,每生产 100吨啤酒大约有1-1.5吨废酵母 (以干重计)产生。传统的处理方法,是弃置不用或作为饲料处理,直接排放到河流湖泊中,将造成环境污染,同时也是对财富的浪费;因其具有坚韧的细胞壁和特有的酵母臭,适口性差,不易消化和吸收,故烘干作为饲料用的经济效益不高。充分利用啤酒废酵母可以有效地减轻污染,实现资源的二次转化,也可产生巨大的经济效益,如开发酵母抽提物。 为了增加酵母抽提物产量国内外同行做出不同努力,开展了有些研究。目前关于啤酒酵母破壁的研究很多,大体可归纳为:化学破壁(酸解、碱解)、物理破壁(液体剪 切、固体剪切等)、生物破壁(酶解、自溶)。其中,化学破壁不仅会造成一些营养成分的破坏,而且为有效成分的提取增加困难;物理破壁虽然方法简单、成本低,能完好保存营养成分,但其破壁效果较差;生物破壁中的酶解法会增加提取成本,故均不能大规模广泛的应用。而采用自溶法进行细胞破壁是一种简便易行的操作过程,通过确定啤酒酵母细胞最适合的自溶条件,可以建立一套利用酵母细胞生产酵母抽提物的工艺和方法,旨在为啤酒酵母的综合利用寻求一种新的方法,为工业化生产提供理论基础和实践指导。1.4实验方法 工艺流程 啤酒废酵母(保藏)—— 活化、两次斜面培养—— 接种、平板划线——摇瓶培养——取对数期的酵母细胞——做稀释梯度——做影响因素(温度、食盐浓度、pH并固定时间60分钟)的实验-——做正交试验——镜检(血球计数法)——计算啤酒酵母细胞的破碎率——得到自溶的最佳工艺参数1.5啤酒废酵母自溶条件的确定酵母自溶的实质是酵母细胞内的蛋白质在自身蛋白酶的作用下,降解为游离的氨基酸,那么,一切影响酶促反应的因素均影响酵母细胞的自溶,如自溶温度、食盐浓度、pH值、自溶时间等。自溶法是以存在酶活性的新鲜活酵母为原料,利用酵母细胞本身的酶系,在一定条件下,将酵母体内的糖类物质、蛋白质和核酸分解为还原糖、氨基酸、肤类、核昔酸等小分子物质并从酵母细胞内抽提出来的一种方法。利用自溶法生产的酵母抽提物,蛋白质分解率高,游离氨基酸含量高,风味好,成本较低,但呈味核昔酸含量低.目前,欧美及我国所生产的酵母抽提物绝大部分都是采用这种方法。[font=仿宋_GB2

  • CAR-T细胞治疗B细胞淋巴瘤存在的问题及应对策略

    【序号】:1【作者】: 郭逸君周琛张凡【题名】:CAR-T细胞治疗B细胞淋巴瘤存在的问题及应对策略【期刊】:药物生物技术. 【年、卷、期、起止页码】:2022,29(01)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XXGP-2cCnxHFvyQzX46SmBpJzxoU8YSnqdPFG62NrF4M&uniplatform=NZKPT

  • 重组细胞因子分类及应用概述

    一、细胞因子的概念细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有 非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢 等。二、细胞因子的命名细胞因子按其来源可分为:由单个核吞噬细胞产生的细胞因子称为单核因子(monokine);由淋巴细胞产生的细胞因子称为淋巴因子 (lymphokine)等。按其作用可分为干扰素、集落刺激因子、肿瘤坏死因子、生长因子和趋化因子等。部分由不同细胞分泌的细胞因子,其基因及编码蛋 白与结构清楚者,在免疫调节、造血和炎症中发挥重要作用,又称为白细胞介素(interleukin,IL)。也可以依据结构或者其受体结构分类,我们的 趋化因子目前没有受体产品。三、细胞因子的特征1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。四、细胞因子的分类1、白细胞介素(interleukin,IL-s)最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。2、干扰素(interferon,IFN)最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。3、肿瘤坏死因子超家族(tumor necrosis factor,TNF)1975年发现的一种能使肿瘤发生出血坏死的物质。4、集落刺激因子(colony-stimulating factor,CSF)指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、 GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素 (TPO)等。5、趋化因子(chemokine)主要功能是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入特定的淋巴器官和组织以及感染发生的部位。根据趋化因子近N端半胱氨酸(Cys)的位置、排列方式和数量,可分为CC、CXC、C、CX3C四个亚家族。6生长因子(growth factor,GF)生长因子(GF)是具有刺激细胞生长作用的细胞因子。五、细胞因子的生物学活性1.介导自然免疫、参与抗肿瘤和抗感染2.调节T、B细胞活化、生长和分化,介导细胞免疫和体液免疫3.刺激造血生成、刺激骨髓祖细胞生长和分化为各种成熟血细胞4.在炎症、感染和内毒素血症中的作用5.在超敏反应和自身免疫病中的作用6.细胞因子通过激活其相应受体(CKR),导致细胞的增殖与分化或分泌某种蛋白质。六、四种蛋白表达体系比较表达细胞优点缺点原核E. coli繁殖快、成本低、产量高遗传背景及基因表达调控机制清楚易于大规模培养,成本低廉蛋白常为包涵体,纯化困难无糖基化(分泌蛋白,细胞膜上蛋白不可用),生物活性不定无翻译后修饰,内毒素含量高酵母Pichia使用简单,表达量高,His-tag便于纯化,一定的翻译后加工可进行糖基化修饰,操作简单,适合大规模生产可诱导表达,也可分泌表达,产物便于纯化有时会出现蛋白切割问题糖基化不能满足要求昆虫High-5产量高 ,翻译后加工与哺乳动物相似对于部分有毒性或较难表达蛋白有优势无内毒素污染蛋白活性不如哺乳动物适合表达激酶等定位于细胞内的真核蛋白哺乳CHO HEK293完善的翻译后加工,活性接近天然蛋白周期长、技术要求高表达产量低

  • 【原创大赛】微流控芯片中的酵母细胞

    【原创大赛】微流控芯片中的酵母细胞

    http://ng1.17img.cn/bbsfiles/images/2011/12/201112312345_343455_1705310_3.jpg拍摄时间:2011年8月样品名称:微流控芯片中的酵母细胞所使用的显微镜:倒置显微镜以及数码相机的生产厂家和型号:北京奥特伟业光学仪器有限公司 奥特三目倒置生物显微镜 BDS200物镜及目镜放大倍数:10×10照明方式:明场

  • 【金秋计划】半夏泻心汤通过调节淋巴平滑肌细胞收缩和能量代谢促进胃淋巴泵送

    [size=15px][color=#595959]近年来,[b]淋巴脉管系统[/b]和淋巴运输在胃肠道疾病中的作用受到越来越多的研究关注,淋巴[/color][/size][b][size=15px][color=#595959]畸形[/color][/size][/b][size=15px][color=#595959]和淋巴结重塑已被认为是许多胃肠道疾病的标志。此外,胃肠道淋巴引流受损和[b]淋巴淤滞[/b]会阻碍大分子、死细胞和病原体离开肠道的清除,从而加剧感染并延迟[/color][/size][b][size=15px][color=#595959]免疫[/color][/size][/b][size=15px][color=#595959]反应。[/color][/size] [size=15px][color=#595959]近年来,肠道和肠系膜淋巴管在肠道疾病,特别是炎症性肠病(IBD)中的作用已被广泛研究。然而,对[b]胃淋巴管(GLVs)[/b]的研究一直落后于胃肠学本身的发展。虽然最早对[b]胃淋巴泵(GLP)[/b]的可视化研究可以追溯到Nagata和Guth在1984年的报告,但在随后的40年里,关于GLP在胃疾病中的作用以及针对GLP的药物的报道很少。[/color][/size] [b][size=15px][color=#595959]半夏泻心汤(BXD)[/color][/size][/b][size=15px][color=#595959]出自《伤寒论》,在现代医学实践中被广泛应用于治疗各种肠胃疾病,对[b]应激性胃溃疡(SIGU)[/b]等多种胃肠道疾病有明确的治疗效果,但对胃淋巴泵(GLP)的影响尚不清楚。[/color][/size] [size=15px][color=#595959]阐明GLP在SIGU和BXD治疗中的作用,探讨GLP调控的分子机制。 [/color][/size] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]对SIGU大鼠模型进行体内GLP显像,评价淋巴动力学参数。采集胃窦组织及血清进行宏观、组织病理学及溃疡参数分析。收集胃淋巴管(GLV)组织进行RNA-Seq检测。从RNA-Seq结果中筛选差异表达基因(DEGs)并用于转录组学分析。采用qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]和WB检测关键DEGs及其衍生蛋白。 [/color][/size] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]SIGU大鼠GLP明显受到抑制。[b]BXD能恢复GLP,改善胃淋巴淤积,减轻溃疡损害[/b]。GLV转录组分析显示,上调的DEGs集中在[b]平滑肌收缩信号通路[/b],下调的DEGs集中在能量代谢通路,尤其是脂肪酸降解通路,说明BXD可以促进淋巴平滑肌收缩,调节能量代谢,减少脂肪酸降解。这些机制最有可能的目标是驱动GLP的[b]淋巴平滑肌细胞(LSMCs)[/b]。qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]和WB对关键基因和蛋白水平的评估进一步验证了这一推测。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size] [color=#3573b9]结论[/color][b][size=15px][color=#595959][/color][/size][/b][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#595959][/color][/size][/font] [b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][font=&][size=16px][color=#232323][/color][/size][/font][b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][font=&][size=16px][color=#232323][/color][/size][/font][size=15px][color=#595959][font=&][/font][font=&][/font][/color][/size][b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][/b][font=&][size=16px][color=#232323][/color][/size][/font][b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959]BXD通过激[/color][/size][/b][size=15px][color=#595959][b]活平滑肌收缩信号通路,恢复能量供应,调节能量代谢程序,减少脂肪酸降解,有效回收GLP,减轻胃内炎症细胞因子和代谢废物的积累[/b],是其治疗SIGU的重要作用机制。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][font=&][size=16px][color=#232323][/color][/size][/font][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size]

  • 【转帖】Nature:转基因酵母细胞制造出能互相交流的“生物电路”

    Nature:转基因酵母细胞制造出能互相交流的“生物电路”生物电路, 转基因, Nature, 酵母, 细胞典和西班牙科学家使用转基因酵母细胞制造出了能够互相交流的“生物电路”,未来,科学家有望使用人体细胞构建出更复杂的系统,来检测人体健康状况。相关研究发表在12月9日出版的Nature杂志上。作为欧盟“分子计算机”项目的一部分,瑞典哥德堡大学和西班牙巴塞罗那庞培法布拉大学的科学家在哥德堡大学施特芬·霍曼教授的领导下进行了该项研究。哥德堡大学细胞和分子生物学系肯塔罗·弗瑞卡瓦表示,尽管经过重新编程的细胞不能像真正的计算机做同样的工作,但该研究为使用这样的细胞建立复杂的系统铺平了道路。未来人体健康状况有望通过这种“分子对分子”的交流系统来探测,将疾病消灭在萌芽阶段;或者将其作为生物传感器来探测污染物,分解环境中的有毒物质等。合成生物学是一个方兴未艾的研究领域,其中的一个应用是设计出自然界中不存在的生物系统。例如,研究人员已经成功地使用转基因细胞构建出许多不同的人工连接装置,诸如电路断路器、振荡器和传感器等。尽管这些人工连接器具有很大的潜力,但迄今为止还存在很多技术限制,主要原因是,分处不同细胞中的人工系统很少能按科学家的期望来工作,因此影响了最终结果。

  • 【分享】干扰素生物学活性测定法

    本法系依据干扰素可以保护人羊膜细胞(WISH)免受水泡性口炎病毒(VSV)破坏的作用,用结晶紫对存活的WISH细胞染色,于波长570nm处测定其吸光度,可得到干扰素对WISH细胞的保护效应曲线,以此测定干扰素生物学活性。试剂 (1)MEM或RPMI 1640 培养液取MEM或RPMI 1640培养基粉末1袋(规格为1L),加水溶解并稀释至1000ml,加青霉素105IU和链霉素105IU,再加碳酸氢钠2.1g,溶解后,混匀,除菌过滤,4℃保存。(2)完全培养液量取新生牛血清10ml,加MEM或RPMI 1640培养液90ml。4℃保存。(3)测定培养液量取新生牛血清7ml,加MEM或RPMI 1640培养液93ml。4℃保存。(4)攻毒培养液量取新生牛血清3ml,加MEM或RPMI 1640培养液97ml。4℃保存。(5)消化液取乙二胺四乙酸二钠0.2g、氯化钠8.0g、氯化钾0.2g、磷酸氢二钠1.152g、磷酸二氢钾0.2g,加水溶解并稀释至1000ml,经121℃15分钟灭菌。(6)染色液取结晶紫50mg,加无水乙醇20ml溶解后,加水稀释至100ml,即得。(7)脱色液取无水乙醇50ml、乙酸0.1ml,加水稀释至100ml。(8)PBS取氯化钠8.0g、氯化钾0.20g、磷酸氢二钠1.44g、磷酸二氢钾0.24g,加水溶解并稀释至1000ml,经121℃15分钟灭菌。标准品溶液的制备 取人干扰素生物学活性测定的国家标准品,按说明书复溶后,用测定培养液稀释至每1ml含1000IU。在96孔细胞培养板中,做4倍系列稀释,共8个稀释度,每个稀释度做2孔。在无菌条件下操作。

  • 【转帖】阿凡达的触须?酵母细胞“生物电路”研制成功

    《科技日报》报道据美国物理学家组织网12月15日(北京时间)报道,瑞典和西班牙科学家使用转基因酵母细胞制造出了能够互相交流的“生物电路”,未来,科学家有望使用人体细胞构建出更复杂的系统,来检测人体健康状况。相关研究发表在12月9日出版的《自然》杂志上。  作为欧盟“分子计算机”项目的一部分,瑞典哥德堡大学和西班牙巴塞罗那庞培法布拉大学的科学家在哥德堡大学施特芬·霍曼教授的领导下进行了该项研究。  哥德堡大学细胞和分子生物学系肯塔罗·弗瑞卡瓦表示,尽管经过重新编程的细胞不能像真正的计算机做同样的工作,但该研究为使用这样的细胞建立复杂的系统铺平了道路。未来人体健康状况有望通过这种“分子对分子”的交流系统来探测,将疾病消灭在萌芽阶段;或者将其作为生物传感器来探测污染物,分解环境中的有毒物质等。  合成生物学是一个方兴未艾的研究领域,其中的一个应用是设计出自然界中不存在的生物系统。例如,研究人员已经成功地使用转基因细胞构建出许多不同的人工连接装置,诸如电路断路器、振荡器和传感器等。尽管这些人工连接器具有很大的潜力,但迄今为止还存在很多技术限制,主要原因是,分处不同细胞中的人工系统很少能按科学家的期望来工作,因此影响了最终结果。  该研究团队使用酵母细胞制造出了合成电路,细胞之间可通过基因调控进行连接。他们对这些酵母细胞进行了基因修改,使它们能够基于设定的标准来感应周遭环境,并通过分泌出分子向其它酵母细胞发送信号。因此,这些不同的细胞能像乐高玩具的积木块一样连接在一起,产生更复杂的电路。与使用一种转基因酵母细胞制成的结构相比,这种由不同转基因酵母细胞组成的结构能完成更复杂的“电子功能”。   尽管迄今世界上还没有一台真正意义上的生物计算机,但许多实验室都在以极大热情追逐这个梦想。在如何实现生物计算这个根本问题上众口异词,以有机分子元件代替目前的半导体逻辑、存储元件便是其中之一。用酵母细胞制成“生物电路”当然是一种有益尝试,不过今天来判断其前景还为时太早。也许现有方案将来都派不上用场,最终脱颖而出的却是基于某种新材料的全新设计。完成这一伟大工程即使跨越到下个世纪,也不能算长。

  • FDA批准Gazyva用于治疗慢性淋巴细胞性白血病

    美国食品药品监督管理局(FDA)近日批准了Gazyva(obinutuzumab)与苯丁酸氮芥联用治疗初治型慢性淋巴细胞白血病(CLL)患者。CLL是一种缓慢加重的渐进性血液与骨髓系统疾病。根据美国国家癌症研究所估计,今年将有15680名美国人被确诊患有该疾病,4580人因CLL死亡。Gazyva有助于免疫系统的某些细胞攻击癌细胞,并且需要与另一种CLL治疗药物——苯丁酸氮芥合用。在对重症CLL患者的治疗过程中,Gazyva在安全性和有效性方面表现出显著改善,此外,FDA还授予此药优先审查和孤儿药地位。FDA药物评价研究中心血液/肿瘤部门主管,Richard Pazdur博士说:“FDA对Gazyva的批准意味着对CLL患者疗法的重要补充,同时也反映了突破性疗法认定的优势,此项认定使我们与企业共同合作,加快重要新药物的开发、评估和上市。”此次批准是基于一项涉及356名受试者的随机、开放性、多中心临床研究,评估了Gazyva-苯丁酸氮芥联用组和苯丁酸氮芥单用组的药效。结果表明,联用组患者的无进展生存期得到显著提高(23个月vs11.1个月)。联用组患者的最常见不良反应包括输液反应、白细胞减少(中性粒细胞减少症)、血小板水平降低(血小板减少症)、红细胞数目降低(贫血)、肌肉和骨骼疼痛、发热等。Gazyva的说明书中含有黑框警告,提示Gazyva与乙肝病毒的再活化及一种罕见病有关,该罕见病(进行性多灶性白质脑病)能损伤大脑白质中覆盖和保护神经的物质,这是此类药物(包括其它单克隆抗体)共有的已知风险。Gazyva由罗氏子公司基因泰克上市销售。转自:http://www.hfoom.com/industry/20131106/376.html

  • 分析人,你VC了吗?

    维生素C在大家心目中,应该是常见化学试剂,也是我们在医院常用的药。但它还有抗氧化、防癌、防贫血等,希望大家平时支持吃点,健康我们化学人!把相关功效摘抄,贴在下面:胶原蛋白的合成  胶原蛋白的合成需要维生素C参加,所以VC缺乏 食用富含维生素C的食物可防晒,胶原蛋白不能正常合成,导致细胞连接障碍。人体由细胞组成,细胞靠细胞间质把它们联系起来,细胞间质的关键成分是胶原蛋白。胶原蛋白占身体蛋白质的1/3,生成结缔组织,构成身体骨架。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑,并且有助于人体创伤的愈合。 治疗坏血病  血管壁的强度和VC有很大关系。微血管是所有血管中最细小的,管壁可能只有一个细胞的厚度,其强度、弹性是由负责连接细胞具有胶泥作用的胶原蛋白所决定。当体内VC不足,微血管容易破裂,血液流到邻近组织。这种情况在皮肤表面发生,则产生淤血、紫癍;在体内发生则引起疼痛和关节涨痛。严重情况在胃、肠道、鼻、肾脏及骨膜下面均可有出血现象,乃至死亡。 预防牙龈萎缩、出血  健康的牙床紧紧包住每一颗牙齿。牙龈是软组织,当缺乏蛋白质、钙、VC时易产生牙龈萎缩、出血。   维生素C 略带酸性,作为微量营养素被摄入体内,经体内溶解、消化,其酸碱性对人体的影响是微乎其微的,所以不必过份在意它的酸碱性。安利维生素C有助巩固细胞组织,有助于胶原蛋白的合成,能强健骨骼及牙齿,还可预防牙龈出血,长期服用对牙齿、牙龈无害而且有益。 预防动脉硬化  可促进胆固醇的排泄,防止胆固醇在动脉内壁沉积,甚至可以使沉积的粥样斑块溶解。 抗氧化剂  可以保护其它抗氧化剂,如维生素A、维生素E、不饱和脂肪酸,防止自由基对人体的伤害。治疗贫血  使难以吸收利用的三价铁还原成二价铁,促进肠道对铁的吸收,提高肝脏对铁的利用率,有助于治疗缺铁性贫血。 防癌  丰富的胶原蛋白有助于防止癌细胞的扩散;VC的抗氧化作用可以抵御自由基对细胞的伤害防止细胞的变异;阻断亚硝酸盐和仲胺形成强致癌物亚硝胺。曾有人对因癌症死亡病人解剖发现病人体内的VC含量几乎为零。 保护细胞、解毒,保护肝脏  在人的生命活动中,保证细胞的完整性和代谢的正常进行至关重要。为此,谷胱甘肽和酶起着重要作用。   谷胱甘肽是由谷氨酸、胱氨酸和甘氨酸组成的短肽,在体内有氧化还原作用。它有两种存在形式,即氧化型和还原型,还原型对保证细胞膜的完整性起重要作用。VC是一种强抗氧化剂,其本身被氧化,而使氧化型谷胱甘肽还原为还原型谷胱甘肽,从而发挥抗氧化作用。   酶是生化反应的催化剂,有些酶需要有自由的巯基(-SH)才能保持活性。VC能够使双硫键(-S-S)还原为-SH,从而提高相关酶的活性,发挥抗氧化的作用。   从以上可知,只要VC充足,则VC、谷胱甘肽、-SH形成有力的抗氧化组合拳,清除自由基,阻止脂类过氧化及某些化学物质的毒害作用,保护肝脏的解毒能力和细胞的正常代谢。 提高人体的免疫力  白细胞含有丰富的VC,当机体感染时白细胞内的VC急剧减少。VC可增强中性粒细胞的趋化性和变形能力,提高杀菌能力。   促进淋巴母细胞的生成,提高机体对外来和恶变细胞的识别和杀灭。   参与免疫球蛋白的合成。   提高CI补体酯酶活性,增加补体CI的产生。   促进干扰素的产生,干扰病毒mRNA的转录,抑制病毒的增生。 提高机体的应急能力  人体受到异常的刺激,如剧痛、寒冷、缺氧、精神强刺激,会引发抵御异常刺激的紧张状态。该状态伴有一系列身体,包括交感神经兴奋、肾上腺髓质和皮质激素分泌增多。肾上腺髓质所分泌的肾上腺素和去甲肾上腺素是有酪氨酸转化而来,在此过程需要VC的参与。

  • 干扰素抗病毒谜团解开 有助开发治疗慢性乙肝新药

    中国科技网讯 尽管医学界早在上世纪五十年代就发现和证实了“干扰素”的抗病毒作用,但它究竟是如何发挥作用的具体机制,仍是不解之谜。复旦大学近日发布消息,专家已解开其中谜团。 据透露,该校上海医学院基础医学院教育部、卫生部医学分子病毒学重点实验室主任袁正宏课题组研究发现,“干扰素-a”通过促使细胞分泌的“外体”所携带的具有抗病毒作用的蛋白和核酸等分子,在细胞间传递后发挥抗病毒作用的新机制。该发现对今后开发治疗慢性乙肝和其它病毒感染性疾病的新药有重大意义。该成果7月7日已在线发表在国际权威期刊《自然·免疫学》上。 干扰素是一组有多种功能的活性蛋白质,具有广泛的抗病毒作用。肝脏中的肝细胞是乙肝病毒活动、复制的唯一场所;而肝脏中的非实质细胞则连接、支撑肝细胞。“外体”是一种由细胞主动分泌出的微囊结构。“外体”在细胞间的通讯中发挥重要作用,在不同条件下,对于肿瘤发生、发展起到或促进或抑制的作用。课题组研究发现,在肝脏中,肝非实质细胞中的肝窦内皮细胞和巨噬细胞会分泌“外体”,在“干扰素-a”的诱导下,通过特定方式转运到易受到病毒感染的肝细胞中后,“外体”会“拼命”抵抗或清除乙肝病毒感染。 研究人员称,在应对病的变异、耐药性方面,这些存在于“外体”中的抗病毒分子好比“免疫军工厂”制造出的一种“火力十足”的“先进武器”,迫使病毒无法变异或产生耐药性。由此,“干扰素-a”诱导细胞分泌的“外体”,具有广谱、高效的抗病毒作用。该课题组已将有关“干扰素-a”处理细胞分泌“外体”用于抗病毒治疗的项目申请国家专利,相关的临床前研究工作也在进行中。(孙国根 记者 王春) 《科技日报》(2013-7-12 一版)

  • ODC1在弥漫大B细胞淋巴瘤治疗中的意义

    [font='times new roman'][size=21px]ODC1[/size][/font][font='times new roman'][size=21px]在[/size][/font][font='times new roman'][size=21px]弥漫大[/size][/font][font='times new roman'][size=21px]B[/size][/font][font='times new roman'][size=21px]细胞淋巴瘤[/size][/font][font='times new roman'][size=21px]治疗中的意义[/size][/font][font='times new roman'][size=16px][color=#000000]进入二十一世纪以来,淋巴瘤的发病率逐年上升,现已跻身十大最常见的肿瘤之列。据[/color][/size][/font][font='times new roman'][size=16px][color=#000000]2020[/color][/size][/font][font='times new roman'][size=16px][color=#000000]年全球癌症报告统计,淋巴瘤新发病例约[/color][/size][/font][font='times new roman'][size=16px][color=#000000]63[/color][/size][/font][font='times new roman'][size=16px][color=#000000]万,约占所有新发癌症病例的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]3.2[/color][/size][/font][font='times new roman'][size=16px][color=#000000]%,死亡病例约[/color][/size][/font][font='times new roman'][size=16px][color=#000000]28[/color][/size][/font][font='times new roman'][size=16px][color=#000000]万,约占癌症总死亡人数的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]2.8[/color][/size][/font][font='times new roman'][size=16px][color=#000000]%。其中弥漫大[/color][/size][/font][font='times new roman'][size=16px][color=#000000]B[/color][/size][/font][font='times new roman'][size=16px][color=#000000]细胞淋巴瘤([/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000])约占所有非霍奇金淋巴瘤的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]30%[/color][/size][/font][font='times new roman'][size=16px][color=#000000],是最常见的病理亚型。因其起病具有一定的隐匿性且缺乏快速有效的早期筛查手段,故大多数病例确诊时已为晚期,多伴有远处转移,大约[/color][/size][/font][font='times new roman'][size=16px][color=#000000]60%[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的患者可通过[/color][/size][/font][font='times new roman'][size=16px][color=#000000]R-CHOP[/color][/size][/font][font='times new roman'][size=16px][color=#000000]([/color][/size][/font][font='times new roman'][size=16px][color=#000000]利妥昔单[/color][/size][/font][font='times new roman'][size=16px][color=#000000]抗、环磷酰胺、阿霉素、长春新[/color][/size][/font][font='times new roman'][size=16px][color=#000000]碱和泼尼[/color][/size][/font][font='times new roman'][size=16px][color=#000000]松)免疫化疗治愈,而复发难治性[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]仍是淋巴瘤治疗领域的一大棘手问题。临床上,患者通常表现为无痛性进行性淋巴结肿大[/color][/size][/font][font='times new roman'][size=16px][color=#000000]伴结外[/color][/size][/font][font='times new roman'][size=16px][color=#000000]侵犯表现,一旦确诊,即需积极治疗。传统的化疗和放疗均因作用位点的选择性低而易产生严重的毒副反应,不仅给患者带来生理和心理上的极大痛苦,也往往是治疗失败的主要原因之一。在过去的二十年里,人们对其在流行病学、预后因素和生物学异质性等方面的研究有了跨越式的进展,随着对[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]疾病本质理解的逐步深入,以分子事件为基础的更为细化的分类标准蓬勃发展,免疫治疗和[/color][/size][/font][font='times new roman'][size=16px][color=#000000]靶向[/color][/size][/font][font='times new roman'][size=16px][color=#000000]治疗药物也层出不穷。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]2016[/color][/size][/font][font='times new roman'][size=16px][color=#000000]年,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]WHO[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在淋巴造血系统肿瘤的分类中提出了“双打击淋巴瘤”的概念,为临床工作中的危险分层、预后判断和治疗方案的选择提供了更坚实的依据。尽管在分子机制方面的研究取得了长足的进步,但仍有大约[/color][/size][/font][font='times new roman'][size=16px][color=#000000]40%[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的临床治疗效果仍然不尽如人意,因此,为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]探寻更多的治疗靶点并研制高效低毒的靶[/color][/size][/font][font='times new roman'][size=16px][color=#000000]向药物[/color][/size][/font][font='times new roman'][size=16px][color=#000000]已成为科学研究中亟待解决的关键问题。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]基因包括[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC2[/color][/size][/font][font='times new roman'][size=16px][color=#000000],[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]定位于[/color][/size][/font][font='times new roman'][size=16px][color=#000000]2p25.1[/color][/size][/font][font='times new roman'][size=16px][color=#000000],普遍存在于生物体内,是主要的功能基因。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]基因编码的蛋白产物是多胺生物合成的关键酶,通过[/color][/size][/font][font='times new roman'][size=16px][color=#000000]介[/color][/size][/font][font='times new roman'][size=16px][color=#000000]导鸟氨酸生成腐胺促进多胺的合成。腐胺、精[/color][/size][/font][font='times new roman'][size=16px][color=#000000]脒[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和精胺总称为多胺,至今已被发现[/color][/size][/font][font='times new roman'][size=16px][color=#000000]340[/color][/size][/font][font='times new roman'][size=16px][color=#000000]余年,是生物体生命活动的重要物质,生物学作用极为广泛,并与肿瘤的发生发展密切相关。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]过度表达可引起细胞内腐胺水平升高从而抑制甲基汞诱导的线粒体功能障碍相关细胞凋亡。另有相关报道,由甲基汞引起的线粒体功能障碍和活性氧([/color][/size][/font][font='times new roman'][size=16px][color=#000000]ROS[/color][/size][/font][font='times new roman'][size=16px][color=#000000])生成也可被[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和腐胺的表达升高所抑制。这些结果表明,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的过度表达可能通过增加细胞内腐胺水平途径抑制线粒体[/color][/size][/font][font='times new roman'][size=16px][color=#000000]介[/color][/size][/font][font='times new roman'][size=16px][color=#000000]导的细胞凋亡。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Bachmann[/color][/size][/font][font='times new roman'][size=16px][color=#000000]等的研究发现,生物体细胞内存在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MYC-ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]轴,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]调节[/color][/size][/font][font='times new roman'][size=16px][color=#000000]RNA[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的转录和翻译、核糖体功能、蛋白[/color][/size][/font][font='times new roman'][size=16px][color=#000000]酶体降解、生物钟和免疫等功能是由[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MYC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]基因调控的。大量的研究结果表明,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在大肠癌、乳腺癌、胃癌、肺癌等癌细胞中的表达量均显著高于相应的癌[/color][/size][/font][font='times new roman'][size=16px][color=#000000]旁正常[/color][/size][/font][font='times new roman'][size=16px][color=#000000]组织。本实验室前期利用公共数据库分析了[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]33[/color][/size][/font][font='times new roman'][size=16px][color=#000000]种肿瘤类型、各种癌细胞系和正常组织中的表达,结果:[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在包括[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在内的许多肿瘤类型和细胞系中呈[/color][/size][/font][font='times new roman'][size=16px][color=#000000]高表达[/color][/size][/font][font='times new roman'][size=16px][color=#000000]状态,说明[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的恶性发生发展中发挥着重要作用,因此本研究对[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]中的生物学功能和分子机制进行了初步探索,旨在为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]诊治提供新思路,为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的治疗以及改善患者预后提供有力的临床前研究依据。[/color][/size][/font]

  • 天津工生所等通过构建人工酵母细胞合成药用萜类化合物

    萜类化合物是分子式为异戊二烯单位的倍数的烃类及其含氧衍生物,在自然界广泛存在。目前发现的萜类就超过5万多种,其中许多是生物活性成分,如单萜(薄荷醇、芳樟醇)、倍半萜(青蒿素、圆柚酮)、二萜(紫杉醇、丹参酮ⅡA、银杏内酯)、三萜(人参皂苷、三七皂苷、甘草皂甙)、四萜 (胡萝卜素类)、萜类生物碱(石斛碱、龙胆碱、乌头碱和利血平)等。药用植物来源的萜类化合物有巨大的应用潜力和市场前景,尤其是二萜化合物(丹参酮ⅡA、雷公藤内酯醇、芫花酯甲、芫花酯乙、冬凌草甲素、紫杉醇)和三萜化合物(人参皂苷Rh2、人参皂苷Rg3)。目前萜类化合物的生产方法主要有三种:植物提取法、化学合成法和微生物发酵法。萜类化合物在植物中的含量通常很低,植物提取法对野生植物资源易造成严重破坏;化学合成法工艺流程复杂、能耗高、污染大;相比之下,微生物发酵法不受原料的限制、生产过程绿色清洁,具有很大的优势。  合成生物学的发展为实现微生物发酵生产药用萜类有效成分提供了有力的支撑。中科院天津工业生物技术研究所张学礼研究员课题组与中国中医科学院中药研究所黄璐琦研究员课题组合作,结合自身优势,共同开展人工细胞合成药用萜类化合物的研究。目前在萜类化合物的合成途径鉴定、异源基因表达的密码子优化、合成途径的标准化组装、合成途径的精细调控、发酵工艺的优化等方面进行了深入的研究,成功设计开发了一套组合调控酿酒酵母萜类合成途径的功能模块(tHMGR-upc2.1和ERG20-BTS1-SaGGPS)。通过合理搭配,显著提高了人工酵母细胞合成二萜及三萜化合物的能力(如图)。丹参酮ⅡA合成前体次丹参酮二烯(Miltiradiene)的产量达488 mg/L,三萜角鲨烯(Squalene)产量达852 mg/L。  该研究为药用二萜和三萜化合物的生物合成途径解析和异源生物合成提供了坚实的基础。  研究成果已经被Biotechnology & Bioengineering接受发表。该研究获得973项目(2011CBA00806)、中科院百人计划和国家自然科学基金(81072990)的支持。(天津工业生物技术研究所)

  • 干扰素,你了解多少呢?

    据说,干扰素是一种广谱抗病毒剂,并不直接杀伤或抑制病毒。但是,对于多种由病毒引起的疾病来说,好像很有一定的效果。你了解干扰素吗?你的认识有多少?

  • CIK细胞的制备方法

    【背景】CIK是“Cytokine-Induced Killer Cells”的缩写,中文全称为“细胞因子诱导的杀伤细胞”。 CIK是单个核细胞在CD3单抗和多种细胞因子(包括IFN-g, IL-2等)的作用下培养获得的一群以CD3+CD56+细胞为主要效应细胞的异质细胞群, 其既具有T淋巴细胞强大的抗肿瘤活性,又具有NK细胞(自然杀伤细胞)的非MHC(主要组织相容性抗原)限制性肿瘤杀伤能力。CIK细胞具有杀瘤活性高、杀瘤谱广,对正常组织毒性低,体外可高度扩增等特点,是目前临床上广泛使用的过继性免疫治疗细胞。【培养原理】CIK培养用细胞因子和抗体:nCD3激发型单抗:T细胞活化的第一信号来自于T细胞表面的受体,即T细胞抗原受体(T cell antigen receptor, TCR)与APC提呈的抗原的特异性结合,也就是T细胞对抗原的特异性识别。TCR是由2条不同肽链构成的异二聚体,在T细胞表面,其与CD3分子通过非共价键结合,形成TCR/CD3复合体。TCR识别特异性抗原后会引起CD3和T细胞表面的辅助受体CD4或CD8分子的胞浆尾部聚集,进而激活与胞浆尾部相连的酪氨酸激酶(Lck, Fyn和ZAP-70等),促使CD3分子胞浆区的免疫受体酪氨酸活化基序(immunoreceptor tyrosine-based activation motif, ITAM)中的酪氨酸(Y)磷酸化。磷酸化的酪氨酸(pY)进一步磷酸化下游含酪氨酸的蛋白,从而引起激酶活化的级联反应(磷脂酰肌醇途径或MAP激酶途径等),最终通过激活转录因子,使其进入细胞核内,结合于调控T细胞增殖和活化的靶基因(如IL-2和IFN-g等),引起基因的表达和转录,T细胞因而由静止状态转为增殖和活化状态。由上可见,CD3分子在T细胞活化信号的转导中起着极其关键的作用。CD3激发型单抗与T细胞表面CD3分子特异性结合后,可引起CD3分子胞浆区ITAM基序中酪氨酸的磷酸化,进而导致T细胞增殖和活化的下游信号的激活,从而使T细胞增殖和活化。也就是说,CD3激发型单抗能够模拟抗原与TCR/CD3复合物的识别和激活过程,从而引起T细胞的增殖与活化,因此是CIK细胞培养中不可或缺的刺激因素。此外,CD3激发型单抗在选用时一定要注意克隆号。研究表明,仅克隆号为OKT-3的CD3激发型单抗可以刺激所有人的T细胞的增殖,而其它克隆号的CD3激发型单抗仅能刺激一部分人的T细胞。因此,在进行CIK培养时,最好选用OKT-3克隆,以保证每个患者的T细胞均能被激活。nIL-2 (白细胞介素-2)IL-2最初发现时被称为T细胞生长因子(T cell growth factor, TCGF),是引起T细胞增殖最重要的细胞因子。IL-2既是自分泌细胞因子,也是旁分泌细胞因子,其通过与T细胞表面的IL-2受体(IL-2R)的特异性结合而促使T细胞活化,并进入细胞分裂状态。此外,IL-2还可刺激NK细胞的生长并增强其杀伤能力。因此CIK细胞培养中须添加IL-2,以促进T细胞的增殖与活化。nIFN-g (干扰素-g)IFN-g 具有上调外周血淋巴细胞表面IL-2R表达的作用,因此会增强T细胞对IL-2促增殖反应的敏感度和强度。在诱导CIK细胞形成的过程中加入IFN- g ,可降低IL-2的用量。研究发现,IFN-g加入的顺序与CIK的细胞毒活性密切相关。先加入IFN- g,培养24后再加入IL-2,可明显提高CIK的细胞毒活性。nIL-1a(白细胞介素-1a)IL-1a也可以介导外周血淋巴细胞表面上调表达IL-2R。当IL-1a与IFN-g和激发型CD3单抗合用时,可以明显提高CIK 的细胞毒作用。【细胞制备】1.外周血单个核细胞的采集1.1用血细胞分离机采集患者自身的外周血单个核细胞50-100mL;1.2淋巴细胞分离液密度梯度离心法进一步纯化单个核细胞(PBMC);1.3无血清培养液洗涤2次,获得纯度在90%以上的PBMC。2.CIK细胞的培养及鉴定2.1将PBMC按1-2 x 106/ml的浓度悬浮于无血清培养液中,加入1,000 U/ml 的重组人IFN-g,37oC,5%CO2培养箱中培养;2.224h 后加入50ng/ml 的CD3 单克隆抗体和300 U/ml 的重组人IL-2,刺激CIK 细胞的生长和增殖;注:此时也可同时加入100 U/ml的重组人IL-1a。2.3每3天半量换液或扩瓶一次,并补加重组人IL-2 300 U/ml;2.4在培养的第14d,收获CIK细胞。2.5CIK细胞质控:2.9.1台盼蓝染色检测:活细胞应在80%以上;2.9.2流式细胞仪检测细胞表面CD3、CD8、CD56等分子的表达:CD3+CD56+细胞的比例应在20%以上。2.9.3细胞杀伤实验:以CIK细胞为效应细胞,以肿瘤细胞(可为原代肿瘤细胞或肿瘤细胞株)为靶细胞,将效应细胞与靶细胞按10 : 1(数目比) 的比例加入96 孔U 型板中,每孔含靶细胞1 x 104个,终体积为200 ml,设3个复孔。培养4h,然后取培养上清,用乳酸脱氢酶(LDH) 试剂盒检测效应细胞对靶细胞的杀伤率。2.9.4收获细胞前,取少量培养物进行细菌、真菌培养,并检测支原体、衣原体,及内毒素(标准:病原学检测阴性,内毒素5 Eu)。【步骤简图】http://img.dxycdn.com/trademd/upload/userfiles/image/2013/04/B1366873006_small.jpg 【推荐试剂】http://img.dxycdn.com/trademd/upload/userfiles/image/2013/04/B1366873008_small.jpg 注:Animal Free意为无动物成分。无动物成分的重组细胞因子在生产过程中不会有任何动物源性物质,尤其是牛蛋白的混入,使得最终获得的重组人蛋白中不含任何动物成分。这样可避免动物病原体(如疯牛病,克雅氏病等)的污染及外源蛋白引起的机体异种排斥和过敏反应,因此细胞治疗的体外细胞培养过程中最好使用无动物成分的重组细胞因子。【其它相关试剂】 http://img.dxycdn.com/trademd/upload/userfiles/image/2013/04/B1366873009_small.jpg【参考文献】 Li R, Wang C, et al. Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase II clinical study. Cancer Immunol Immunother. 2012; 61:2125-2133

  • 光片照明(SPIM)显微镜———淋巴管形成机制

    [b]小鼠胚胎初始淋巴管形成的多步机制[/b]Rene′ Ha¨ gerling1,7, Cathrin Pollmann1,7,Martin Andreas1, Christian Schmidt1,Harri Nurmi2, Ralf H Adams3, Kari Alitalo2,Volker Andresen4, Stefan Schulte-Merker5,6and Friedemann Kiefer1,* [i][b]The EMBO Journal[/b][/i] (2013), 1-16在哺乳动物发育过程中,主静脉血管中的一个内部细胞亚群开始表达淋巴管特异基因,进而发育出初级的淋巴结构,被共同命名为淋巴囊。淋巴内皮细胞的出芽,扩展,膨胀被认为是淋巴内皮细胞从主静脉中产生的基础,但是淋巴管形成的确切机制仍然不为人所了解。使用选择性光片照明显微镜Ultramicroscope来观察进行整体免疫染色的小鼠胚胎,我们观察到细胞分辨率的完整的发育中的血管系统。本文中,我们报道了可以被检测到的最早的淋巴内皮细胞松散的连接在主静脉和浅表的脉管丛。下一步的淋巴内皮细胞聚集导致了两个清晰的,未被预先确认的淋巴结构,背部外周纵向淋巴管和腹侧初级胸导管,它们在后期阶段形成了一个与主静脉的直接连接。我们发现血管内皮生长因子C和基质组分CCBE1对于淋巴内皮细胞出芽和迁移是必不可少的。总之,我们提供了一个明显更加细节化的视角和早期淋巴管发育的新颖模型。[img=,591,756]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal1.jpg[/img]图1. 初始淋巴祖细胞从主静脉中产生。(A-D)受精后9.5/9.75(A,C)和10.5(B,D)天小鼠胚胎血管系统的整体染色。PECAM-1优先染动脉、静脉血管中的内源粘蛋白。Prox1识别的淋巴内皮细胞。(A)中框出了胸颈静脉区,淋巴内皮细胞。DA,背主动脉;ISA,节间动脉;PAAs,咽弓动脉。标尺100um。E 图示箭头穿越一对主静脉之一。静脉内皮细胞,蓝色;发育中的心脏,暗绿;浅表静脉丛的位置被标示出来。CCV,一般主静脉;SV,静脉窦;H,心脏;ISV,节间血管。(F)成对CCV和导流入心脏的SV的三维重构。移开一半对称主静脉后的ISVs和生肌刀(M)。蓝色箭头指示静脉血的流动。(G)胸颈静脉区的横切面。DA,ISA和动脉丛标记红色;CV,ISV和sVP标记蓝色。NT,神经管;DRG,背根神经节;iLECs,初始淋巴内皮细胞。(H-K)整体免疫染色胚胎的图片左侧标注的蛋白分布的光学切片的3维重建。E,受精后几天的发育阶段(H,I,K横切面;J矢状切面)。白色箭头,新出现的iLECs;点线,CV的背根。标尺100um。(L-O)在E10.0和E10.25期间出现的最早iLECs的图解。Prox1+细胞,绿色,黄色为细胞核。以绿色表面表明在CCV移开分支中的Prox1表达区。[img=,591,330]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal2.jpg[/img]图2. 淋巴内皮细胞从CV的出芽伴随着细胞和核的形状改变,以及一个蛋白标记开关的表达。(A,B)整体免疫染色胚胎的CCV中左侧标注蛋白的矢状视图。受精后的发育阶段(E);iLECs初始淋巴内皮细胞;头盖处,左;尾部,右。标尺100um。CV的上出口,从鳞状到纺锤状的LEC形状改变(箭头指示CV根中的Prox1+ ECs)。白色箭头,iLECs间极薄的连接;红色箭头,照亮的静脉血管中频繁的发现红细胞(但iLECs中从没有)。(B)也可以看到相应的图解1O。(C)在E10.5阶段,出现的iLECs中的VEGFR-3及其联合受体Nrp2水平被上调,而CV和iLECs中的Lyve-1水平保持不变。***P0.001,NS,不显著。(D,E)随着iLECs的出现核的形状从圆形转变为椭圆形。通过核表面重构描述了CCV内部和外部的Prox1+细胞核以及对球率和椭球率做散点图(E)。标尺100um。(F-H)矢状(F)和横切面(G,H)视图中整体免疫染色小鼠胚胎的CCV内部和外部的Prox1+细胞核表面重构。(F,G)通过热成像赋以伪色标记的Prox1表达强度图,例如,最高强度的表达标记为红色,低强度表达标记为蓝色。(H)通过图像的叠加进行细胞的解剖学定位软件包:Imaris Vantage,标尺100um。[img=,591,785]http://qd-china.com//bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal3.jpg[/img]图3. iLECs在节间血管主要分支的水平上浓缩来形成照亮的外周纵向淋巴管(PLLV)。(A-D)每张图所展示蛋白的整体免疫染色胚胎光学切片的矢状图重构。E,受精后的发育天数;头盖的,左;尾端的,右。(A)在iLECs出现的早期阶段,iLECs以扇形模式分布,从CCV向头部和尾部扩展。虚线,iLECs检测的边界。(A-D)iLECs在节间血管第一侧枝的水平上立即浓缩形成PLLV。长的阴影线指示了CCV和SV的位置;短的阴影线,iLECs浓缩和PLLV形成的区域。(E-H)图解iLECs的位置,在E10.5和E10.7阶段出现在CV的背部。CCV之外的Prox1+iLECs以淡绿色标记,CV内的Prox1+细胞和心肌以深绿色标记。在CCV移开的分支中的Prox1表达域(P1ED)以淡绿色表面显示。浅表静脉丛作为iLECs的一个可能的备选来源,其位置标注为蓝色(G,H)。sVP内的Prox1+内皮细胞被标注为红色。sVP,浅表静脉丛;标尺100um。 [img=,591,846]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal4.jpg[/img]图4. CV和PLLV之间的LECs聚集并形成不断增长的更大的被照亮结构并最终形成原始的胸导管。来自整体免疫染色的小鼠胚胎光学切片的图中标注蛋白的(A-C)矢状图和(D)截面图。(A)箭头指示了位于CV和PLLV之间的LECs快速和不断进行的聚集,这导致了更大照明结构pTD的形成(B-D)。(C,D)浅表淋巴管sLECs开始从PLLV背侧和pTD旁边伸展。PLLV和pTD在pTD头盖端连接到一起。(F-H)图示了导致pTD成形的细胞聚集和浓缩事件。(I)在E11.5阶段,sLECs中的VEGFR-3和它的联合受体Nrp2水平上调,而Lyve-1水平与CV和iLECs相比强烈下调。***P0.001。发育阶段(E);头盖,左,尾端,右。ACV,前主静脉;CCV,一般主静脉;PCV,后主静脉;ISV,节间静脉;PLLV,外周纵向淋巴管;pTD,原始胸导管;sLECs,浅表淋巴结。标尺100um。[img=,591,734]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal5.jpg[/img]图5. 通过最高水平表达的Prox1表征的pTD和CV间新形成的成对的接触点。(A-C)整体免疫染色胚胎的矢状图。新形成中的pTD快速巩固进一个巨大的照明结构,头颅部以U形连接到PLLV(左侧A,B)。CV和pTD间的两个连接表达最高水平的Prox1(箭头)。(B-E)一个总是位于pTD和CV连接间的作为锁骨下动脉的短暂存在的侧枝被星号标记出来。(C)红色箭头:pTD内堆积的红细胞。箭头标注pTD连接端对面的Prox1+细胞。(D,E)通过pTD和CV连接区域的单个平面(光学切片)。(F-H)图示pTD和CV间接触点的发育,接触点处高表达的Prox1+细胞标记为暗绿色和红色的细胞核。标尺100um。[img=,591,963]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal6.jpg[/img]图6. 不同的淋巴内皮细胞群表达不同的标记蛋白组。(A-G)所示发育阶段的免疫染色胚胎的横向冷冻切片。可见的抗原被以每幅图上所标记的相应颜色标记。典型例证标记表达的面板在(I)中汇总。(A)在E10.0阶段的LECs细胞中没有粘蛋白的表达,在E11.0阶段首先被检测到并在E12.0的LECs中变得丰富。注意CV中的Prox1+细胞在所有阶段都是阴性。在E11.5阶段,Nrp2在CV和pTD内中等强度的表达,而CV外的iLECs强烈的表现为阳性。(C)内皮粘蛋白在iLECs中只有短暂的留存。(D)在CV和pTD的Prox1+ ECs中Lyve-1强烈表达,而在展示的sLECs中仅有残留的表达(箭头)。(E)在所有血管结构中,整合蛋白α6有中等程度的表达。(F)在E11.5阶段,神经生长因子Netrin-4在BECs中强烈表达,在CV中很弱的表达,在pTD内中等程度的表达,但在iLECs中(箭头)没有被检测到。(G,H)Unc5B在iLECs(G,箭头)和sLECs(H,箭头)中强烈表达,而在pTD中表达微弱。 (H)来自整体免疫染色的小鼠胚胎的Prox1 (绿) 和Unc5B (蓝)光学切片的矢状重构. (I)在妊娠中期,不同LEC群中标注蛋白的表达。数据来自免疫染色的冷冻切片或整体免疫染色。表示的结构和细胞群: CV, 主静脉 iLECs, 初始LECs (第一轮从CV中出现的纺锤状LE,松散连接的细胞) sLECS, 浅表LECs (从PLLV (背侧)中伸出的LECs) pTD, 初始胸导管. CV*, 对CV背侧Prox1+细胞的表达限制。标尺100um。 [img=,591,781]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal7.jpg[/img]图7. CCBE1缺陷导致的Prox1+细胞从CV分离的失败,并导致初始淋巴结构的快速损失。 (A, B, F, G) 对标注蛋白进行整体免疫染色的野生型(A) 和Ccbe1_/_ (B, F, G)胚胎的3D重构。(A, B)E10.5阶段的矢状图. (B) 在CCBE1-缺陷胚胎中,在CV和初始PLLV中检测到丰富的Prox1+细胞,紧邻浅表静脉丛。与野生型胚胎(A)相比,CCV和PLLV间没有纺锤状的iLECs。 (B, F) Prox1+细胞描绘出CCV和SV的边界, 当非典型的,大的,照明的分支从CV(箭头)中出现。(G) 含大量VEGFR-3+的异形分支从CV(箭头)和ISVs(箭头)中伸展。(C-E)图示野生型(C)和CCBE1-缺陷型(D, E)胚胎中的Prox1+ cells。含大量VEGFR-3+的静脉内皮标注为深蓝色。sVP, 浅表静脉丛。标尺100um。[img=,295,591]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal8.jpg[/img]Figure 8VEGF-C(血管内皮因子C)缺陷的小鼠胚胎中的Prox1+内皮细胞因为不能离开它们起源处的血管从而标记了LECs的静脉来源。E10.75阶段野生型(A, B)和Vegfc_/_型(C-F)胚胎的矢状图3D重构,对标注蛋白做了整体免疫染色。在VEGF-C缺陷胚胎中,Prox1+内皮细胞不能离开静脉血管导致没有出现发育中的淋巴结构。(E, F) 除了CV(箭)中的Prox1+ 细胞, 在腹侧sVP(箭头)处更大的静脉血管中捕获了第二群Prox1t淋巴初始组织 。(G, H) 图示了野生型 (G) 和VEGF-C缺陷型(H)胚胎中的Prox1+细胞。NE, 神经元的Prox1+表达条纹。sVP, 浅表静脉丛。标尺100 um。[img]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal9.jpg[/img]Figure 9. 在iLECs外出和淋巴管形成过程中,CCBE1和VEGF-C协同的相互作用。对E10.5阶段所标注蛋白整体免疫染色的野生型(A-C), Vegfct/_ (D-F), Ccbe1t/_ (G-I) 和 Vegfct/_/Ccbe1t/_ (J-L) 胚胎矢状图的3维重构。CCV和ISVs的根部用虚线标注,Prox1+细胞用箭头标注。与野生型同窝小崽相比,Vegfct/_胚胎(A-C)表现出iLECs从CCV中迁出的下降(D, E)。与之相反,Ccbe1t/_胚胎中,受损的ISVs形成被检测到。而且,不典型的,照亮的分支出现在Prox1+和高水平VEGFR-3表达的主静脉根部(G-I). (J-L) 在复合的杂合胚胎中,这种表型非常夸张地表明了VEGF-C 和CCBE1在淋巴管形成过程中的协同作用。标尺100um。

  • 重组细胞因子类药物研究的现状与发展前景

    细胞因子(cytokine)是由免疫细胞及相关细胞产生的一类调节细胞功能的高活性、多功能的多肽分子,不包括免疫球蛋白、补体和一般生理性的细胞产物。细胞因子通常由淋巴细胞、单核巨噬细胞、成纤维细胞、内皮细胞等相关细胞产生,按其功能及与免疫学的关系可分为:⑴具有抗病毒活性的细胞因子,如干扰素(interferon,IFN);⑵具有免疫调节活性的细胞因子,包括白细胞介素(interleukin,IL)类的IL 2、IL 4、IL 5、IL 7、IL 9、IL 10和IL 12,以及β型转化生长因子(transforming growth factor β,TGF β);⑶具有炎症介导活性的细胞因子,包括以肿瘤坏死因子(tumor necrosis factor,TNF)及IL 1、IL 6和IL 8为代表的结构相似的小分子趋化因子;⑷具有造血生长活性的细胞因子,包括IL 3、IL 11、集落刺激因子(colony-stimulating factor,CSF)、促红细胞生成素(erythropoietin,EPO)、干细胞因子(stem cell factor,SCF)和白血病抑制因子(leukemia inhibitory factor,LIF)等。 重组细胞因子是利用基因工程技术生产的细胞因子产品,作为药物用于治疗肿瘤、感染、造血障碍等,可收到良好的疗效。近十多年来,重组细胞因子类药物的研制有较快发展,相关的新药陆续上市。本文重点介绍各类药物的研究进展、不同表达系统的表达水平和基因来源情况,以及各类重组细胞因子的基本特点和适应症。 国内外研究动态和市场现状 目前国内市场上主要的国产重组细胞因子类药物包括乙肝疫苗、IFN、IL 2、G-CSF、重组链激酶(recombinant streptokinase, rSK)、重组表皮生长因子(recombinant endothelial growth factor,rEGF)等15种基因工程药物。组织溶纤原激活剂(tissue plasminogen activator,T-PA)、IL 3、重组人胰岛素、尿激酶等十几种多肽药物正处于临床Ⅱ期试验阶段,单克隆抗体的研制已从实验阶段进入临床阶段。正在开发研究中的项目包括采用新的高效表达系统生产重组凝乳酶等40多种基因工程新药。 在欧美市场上,对现有重组药物进行分子改造而开发的某些第二代基因药物已经上市,如重组新钠素、胞内多肽等。另外,重组细胞因子融合蛋白、人源单克隆抗体、反义核酸,以及基因治疗、新的抗原制备技术、转基因动物生产等,均取得了实质性的进展。国外生物医药的目前发展动向,主要反映在以下几方面。 与血管发生有关的细胞因子 肿瘤血管生长因子(tumor angiogenesis factors,TAF)包括研究较多的血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)、血小板源生长因子(platelet-derived growth factor,PDGF)等,它们促进肿瘤新生微血管的生长。临床研究表明,阻断VEGF受体2(VEGFR 2)和PDGF受体β(PDGFR β)等,可达到通过抗血管生成来治疗肿瘤的目的。1998年,美国科研人员发现两种用于治疗癌症的血管发生抑制因子(即抗血管生长因子)和内皮抑制素,以及一种抗血管生长蛋白,即血管抑制素(vasculostatin),都有较好的疗效。另外,VEGF、FGF和血管生长素(angiopoietin)等能够通过刺激动脉内壁的内皮细胞生长来促进形成新的血管,从而对冠状动脉疾病和局部缺血产生治疗作用。

  • 【转帖】天然疫苗和人工疫苗!

    天然疫苗和人工疫苗 本综述概述了细胞和抗体介导的免疫保护及免疫记忆的基本机制,以此为基础,用抗原在免疫保护中的作用来评估疫苗研究的成功和困难,人类在出生后12~48个月期间,来自母乳和血清的获得性抗体可避免儿童期常见病和其它感染性疾病.基于此事实,形成了这样一种概念:获得性抗体骤减了婴幼儿的各种感染,所以使它们变成了有效的疫苗.如果没有这种被动保护条件下的"天然疫苗",除非婴幼儿在早期有效接种了各种疫苗且免疫系统发育成熟,否则会感染很严重的急性儿科疾病。尽管接种疫苗有可能在预防常见儿科急症上有效,但对于一些看来轻症的儿科感染象胃肠道感染和呼吸道感染,接种的疫苗好像无效,这种看似轻症的感染最终可能激发免疫病理性疾病,哺乳习惯的改变可导致机体和感染之间稳态的破坏,而且从保健水平看,可导致疾病模式的改变,包括不断频发的某种自身免疫病和恶性病. 介绍: 在过去的100年间,对免疫记忆的特性已进行广泛研究,不仅有免疫学家还有临床大夫及大众健康视角。免疫记忆的功能是研究保护性疫苗的基础,有些疫苗对抵御儿童疾病和天花已证明很成功,世界范围内接种了预防天花的病毒疫苗,使天花已经绝迹,然而,仍无有效的疫苗来防御结核、麻疹和寄生虫病(如疟疾、利什曼病和血吸虫病),而且还无疫苗可预防人类免疫缺陷病毒(HIV),登革病毒,呼吸道合胞病毒,EB病毒,巨细胞病毒、轮状病毒、单纯疱疹病毒和乳头状瘤病毒等的感染及御防各种肿瘤。另外,一些抗病毒疫苗,象抗麻疹病毒和腮腺炎病毒的疫苗,一旦病毒入侵,远不能提供完全的保护,这些成功和失败证明我们对免疫记忆的本质还没完全理解,这篇综述提出了以下问题:人工疫苗是通过天然疫苗预测的吗?疫苗的生理平衡是什么?对于免疫性和疫苗的哪些方面是我们未知的? 免疫保护的机制 抗感染的主要机制是非特异性机制(干扰素、补体、天然抗体、自然杀伤细胞、活化的吞噬细胞),还有一些其它的机制,这些非特异防御机制在宿主防御中起重要作用(95%),例如,干扰素受体缺失会使小鼠对病毒感染的敏感性提高好几倍,特异性免疫从系统发生上看是一个相当新的防御系统,是宿主和感染源共同进化的结果。 `抗体和细胞是免疫系统的两部分,它们担负着以下重要任务,B细胞表面的免疫球蛋白受体和分泌的抗体直接识别复合折叠蛋白或糖抗原,保护性抗体通过与毒素结合或促进病原体的溶解使之失去活性,IgM和IgG对血液和淋巴系统中的抗原感染有免疫保护作用,IgA在粘膜防御中起保护作用,IgE激活皮肤和粘膜表面的肥大细胞和嗜碱性粒细胞。而T细胞识别的是由MHC分子递呈在细胞表面的小肽,细胞毒性CD8+T细胞特异性识别细胞自身合成的和MHCⅠ类分子递呈的抗原肽,此路经不仅包括自身肽,还有病毒、胞内寄生菌和肿瘤抗原。吞噬性抗原是在吞噬溶酶体中加工处理后由MHCⅡ类分子递呈,滤泡树突状细胞(DC)将抗原(自身感染的或含有感染的外源抗原或衰变的自身抗原)运送到器官的淋巴组织,因而DC通常在诱导T细胞介导的细胞免疫应答中直接发挥作用。T细胞主动迁移至外周固有组织,T细胞可通过直接接触或通过特异性免疫介质(如干扰素或肿瘤坏死因子)的释放来发挥作用,也可通过募集和活化巨噬细胞非特异性发挥作用。导致急性致死性感染的细胞毒性病毒或细菌一般可由可溶性扩散因子包括T细胞依赖性细胞因子(如γ干扰素和肿瘤坏死因子)和特异性中和抗体,使其得到有效的控制,非细胞毒性病原体通常不直接引起细胞或组织的损害。因而即使它们持续存在,也不会致病,,这种情况下免疫防御是由引起炎症和组织损伤的穿孔素、细胞毒素和释放细胞因子的T细胞介导的。既然免疫系统不能尽早地区分感染是否致细胞病变,那也不能从真正意义上预见它对宿主有益的最终结果,它只是对抗原产生的应答反应。 因而,免疫保护是适度防止各种致细胞损伤的感染和避免过度免疫应答导致组织损伤之间的一个平衡状态。在抗无或弱细胞病变的感染时免疫失衡,出现病理损伤而致疾病的临床例子有:TB,HBV,HCV,或HIV导致的AIDS。以下几项说明T,B淋巴细胞反应是先天的,即:抗原结构,抗原定位,抗原剂量和抗原有效期(其作用在表1中已简略归纳)。1、 通常T,B淋巴细胞应答仅在次级淋巴器官被诱导(如淋巴结,peyer's 片,脾脏) 2、 T细胞对有效剂量,并维持至少3~5天的定居在次级淋巴器官的细胞相关抗原发生应答,停留在次级淋巴器官外的抗原常被免疫忽略,另外,那些定居在初级或次级淋巴器官的抗原(如血清蛋白)可使所有有潜在激活活性的T细胞诱导调亡,这一过程称为阴性选择

  • 【原创】酵母葡聚糖

    β-葡聚糖的活性结构是由葡萄糖单位组成的多聚糖,它们大多数通过β-1,3结合,这是葡萄糖链连接的方式。它能够活化巨噬细胞、嗜中性白血球等,因此能提高白细胞素、细胞分裂素和特殊抗体的含量,全面刺激机体的免疫系统。那么,机体就有更多的准备去抵抗微生物引起的疾病。β-葡聚糖能使受伤机体的淋巴细胞产生细胞因子(IL-1)的能力迅速恢复正常,有效调节机体免疫机能。大量实验表明,β-葡聚糖可促进体内IgM抗体的产生,以提高体液的免疫能力。这种葡聚糖活化的细胞会激发宿主非专一性防御机制,故应用在肿瘤、感染病和治疗创伤方面深受瞩目。经特殊步骤萃取且不含内毒素的β-1,3-葡聚糖在美国FDA已认定是一种安全的物质,可添加在一般食品,许多报导显示老鼠口服酵母β-1,3-葡聚糖,可增加强腹膜细胞抗菌之吞噬作用。酵母葡聚糖是存在于酵母细胞壁中的一种具有增强免疫力活性的多糖——β-葡聚糖。β-葡聚糖广泛存在于各种真菌和植物,如香菇、灵芝、燕麦中,是它们发挥保健作用的主要功效物质。而酵母葡聚糖的免疫增强活性更强,并具有改善血脂、抗辐射、改善肠道功能的作用。

  • 流式细胞术详解 13.14章节

    十三.流式细胞术在血液学中的应用 淋巴瘤免疫分型 目前淋巴瘤的分类方法已从LSG的形态学分类逐渐转变为REAL分类法, REAL分类法是以肿瘤发生源为基础的分类方法,在原来的形态学基础上加上免疫学分型后再加以分类,这种分类方法不仅能够推断肿瘤的发生源,对治疗也有指导意义。因此淋巴瘤的免疫分型越来越重要。如同白血病免疫分型一样,淋巴瘤的免疫分型也是利用单克隆抗体检测淋巴瘤细胞的细胞膜和细胞浆抗原,分析其表现型,以了解被测淋巴瘤细胞所属细胞系列及其分化程度。流式细胞仪能对多数的淋巴瘤细胞的细胞膜和细胞浆抗原迅速客观地做出检测,在淋巴瘤的免疫分型中起着不可替代的作用。临床淋巴瘤的免疫分型的检测标本一般是淋巴结、脾脏、胸水、腹水等。在临床淋巴瘤的免疫分型工作中常可遇到以下四种情况:①B细胞系淋巴瘤②T/NK细胞系淋巴瘤③淋巴细胞系以外的造血细胞肿瘤④造血细胞以外的肿瘤。REAL分类淋巴瘤的免疫表型见表12.8。*:弱表达或阴性。BLBL :前B原始淋巴细胞淋巴瘤/白血病; BSLL: B-小淋巴细胞淋巴瘤; LPL:淋巴浆细胞样淋巴瘤; MCL: 斗篷细胞淋巴瘤; FCL:滤泡中心淋巴瘤; MZL: 边缘带B细胞淋巴瘤; SMZL :脾MZL ;HCL:毛细胞白血病; PC:浆细胞瘤;DLBL: B-弥漫性大细胞淋巴瘤; BL: Burkitts淋巴瘤; HBLB:高度B细胞淋巴瘤, Burkitts样; TLB L: 前T原始淋巴细胞淋巴瘤/白血病; TPLL: T幼淋细胞白血病; LGLT:大颗粒淋巴细胞白血病, T细胞型[col

  • 美女陈德容的秘诀 淋巴按摩按出无瑕肌

    淋巴按摩按出无瑕肌  3分钟淋巴按摩按出无瑕肌   只要花3分钟时间的按摩,就可达到完美无瑕肌!!   德容:我在每天晚上例行的脸部肌肤保养中,会多加一道按摩程序,一方面可以促进保养成分吸收,另一方面也为肌肤进行有氧运动,只要这样就可以得到意想不到的好效果喔!   *化妆水按摩,抢救沙漠肌   只要利用保湿度高的化妆水,就能每日进行脸部轻SPA按摩喔!在涂化妆水的同时,进行1分钟按摩,就能让肌肤每天一点一滴地变好。就像是帮肌肤做运动一样,每天适当且持续地唤醒肌肤,就能让肌肤代谢状况逐渐好住。在任何保养程序后,以温热的手掌服贴脸部1分钟,绝对会让保养效果加分!   *促进血液循环,创造明亮肌   ●使用左、右手的中指与无名指指腹,先从脸颊、下巴部分开始。   ●依序从下巴、嘴角及鼻侧,由下往上以画圆方式按摩,并将所有按摩力道往耳珠前方的部位集合。   ●眼周以无名指往太阳穴部位轻轻滑过即可。   ●额头部位,则由上方以画圆方式,往太阳穴集中就可以了。提到按摩对于肌肤的好处,最容易让人联想到的就是促进血液循环,尤其利用活肤按摩霜按摩后,能为脸部肌肤带来健康的亮泽感。也许有人会觉得使用按摩霜好像太油腻,其实透过产品成分及按摩技巧,反而可以调整肌肤油水平衡,带走脸上过氧化的皮脂,同时补给滋润成分,让肌肤比较不容易过度分泌油脂。切记,力道要轻柔而持续,而不是用指尖猛推喔!   *淋巴排毒按摩,拒绝毒素滞留   ●藉由拇指与食指弯曲关节处,轻轻夹捏皮肤进行刺激,能让效果更好。记住,夹捏时不只单纯夹表皮的肉,也要夹捏到骨头筋肉才有效。   ●额头部分眉上方的按摩,也是拇指与食指弯曲,从眉头往眉尾推俊‖往太阳穴方向捏按,力道一定要轻柔,以免过度拉扯肌肤。如果淋巴循环不畅,脸部便容易累积毒素,最常出现水油分泌失调现象,也容易产生角栓与痘痘。排毒的按摩手法与促进血液循环的按摩手法不同,排毒按摩得先确认淋巴结位置,让淋巴循环顺畅才能与毒素说再见。执行淋巴按摩时最好看着镜子进行,明确找到淋巴结,配合按摩手法,才能真正达到排除毒素的按摩目的。

  • 【分享】电磁辐射会加速癌细胞增长

    医学研究证明,长期处于高电磁辐射的环境中,会使血液、淋巴液和细胞原生质发生改变。电磁辐射过度还会影响人体的循环系统、免疫、生殖和代谢功能,严重的还会诱发癌症,并加速人体的癌细胞增长。专家提醒消费者——由于电脑产品具有生产组装过程相对简单,市场需求较大的特点,吸引了很多企业加入电脑的生产行业。目前国家信息技术设备电磁兼容性标准要求在生活环境中使用的电脑产品辐射干扰指标要达到《信息技术设备的无线电骚扰限值和测量方法》中B级限值的要求。非生活环境中使用的电脑产品辐射干扰指标要达到A级限值的要求。抽查结果表明,一些企业在批量生产时产品一致性没有很好的控制,致使被抽样品电磁兼容辐射干扰指标达不到B级限值的要求。辐射干扰是台式电脑工作时向空间发射的一种电磁波干扰。医学研究证明,长期处于高电磁辐射的环境中,会使血液、淋巴液和细胞原生质发生改变。此外,电磁辐射过度会影响人体的循环系统、免疫、生殖和代谢功能,严重的还会诱发癌症,并加速人体的癌细胞增长。这种电磁辐射污染已经成为室内环境污染的新威胁。庭用户要尽量避免把家电摆放得过于集中,以免使自己暴露在超限量辐射的危险之中。特别是一些易产生电磁波的家电,如电脑、电视、冰箱、收音机等,最好不要集中摆放在卧室里。要避免长时间使用家用电器、手机等,还要尽量避免同时启用多种家电。与家电保持安全距离很有必要,距离越远,受电磁波侵害就越小。另外,必须长期处于高电磁辐射环境中工作的人需要多食用胡萝卜、豆芽、西红柿、油菜、海带、卷心菜、瘦肉、动物肝脏等富含维生素A、C和蛋白质的食物,以此加强机体抵抗电磁辐射的能力。

  • 中药的影响免疫功能

    经药理学研究和临床实践证明,有许多中草药具有影响机体免疫功能的作用。如人参、党参、丹参、黄芪、黄连、猪苓、茯苓、当归、鹿茸、何首乌、女贞子等60多味中草药能增加白细胞的数量,增强巨噬细胞的吞噬功能,提高机体诱生干扰素的能力,因而具有增强机体免疫功能的作用,临床上常用人参、黄芪、党参治疗肿瘤、预防感冒、防治小儿哮喘等;而甘遂、雷公藤、生地黄、龙胆草、北沙参等能减少T淋巴细胞的增生医学|教育网搜集整理,能使机体抗体水平降低,因而具有抑制机体免疫功能的作用,临床上常用甘遂、雷公藤、生地黄治疗风湿性关节炎和类风湿性关节炎。另外有些中草药对机体的免疫功能则具有双向作用,如冬虫夏草对单核-巨噬细胞系统呈现明显的增强作用,对体液免疫则具有抑制作用;青蒿素一方面能减少机体的抗体水平,另一方面又能诱生干扰素。

  • 增强光散射分辨率,促进多维流式细胞分析

    多维流式细胞仪可同时进行多参数测量,在特定空间内对细胞群进行分析。若要实现该多维空间的合理使用,每个特定参数需提供额外信息来识别细胞群,并确保其动态范围能够最大限度地加以利用。本研究就白细胞的光信号散射情况进行了详细说明,从而促进了多维流式细胞分析的开展。细胞制备技术的提升对获得高分辨率光散射信号至关重要,可以实现粒细胞、单核细胞、颗粒状和非颗粒状淋巴球的完全分离。对搜集前向散射光的角度进行了改进,以提升白细胞的区分度。尽管正交光散射信号能够区分颗粒状和非颗粒状淋巴细胞,但仍无法利用线性或对数函数的形式将分辨率和动态范围显示出来。而在正交光散射信号中应用多项式函数,则可将白细胞全部以高分辨率显示出来。关联前向和正交光散射信号可实现高分辨率光散射与非线性显示的结合,使细胞群呈现等距分布状态。使用这种方式,可将外周血中性粒细胞、嗜酸细胞、嗜碱粒细胞、单核细胞、颗粒状和非颗粒状淋巴细胞等都显示出来,占据与正交和前向光散射相关的不同位置。出人意料的是,嗜碱粒细胞是处在了颗粒状淋巴和单核细胞附近而非中性和嗜酸性粒细胞。流式细胞术中的人体白细胞光散射特性主要应用于区分淋巴细胞、单核细胞和粒细胞。前向光散射信号与细胞的大小和折光率有关,而正交光散射信号则与细胞的粒度有关。一项对正交光散射信号更进一步的分析显示出了淋巴细胞成分的差异,即非颗粒状淋巴细胞的信号比颗粒状的要低。此外,该方法还显示了白血球的正交光散射信号在不同疾病状态下的变化情况。高分辨率光散射要在最佳角度收集散射参数,并对散射光的收集光路进行优化。改进细胞制备方法对最大限度地实现对细胞群的分离至关重要。改变制备流程可能导致细胞群分辨率的提高或降低。通过光散射,可从测量中排除受损细胞和无核细胞的干扰,从而提高细胞群的分辨率。正交光散射信号的动态范围不允许在相同线性尺度上同时观察淋巴细胞群和中性粒细胞。本研究提供了一种新方法,通过对正交光散射信号进行数字信号处理转换,实现了白细胞群在光散射显示中更加均衡的分布。这种转换提升了淋巴细胞分辨率,实现了细胞的可视化,而动态范围的确定对中性粒细胞的观察也十分重要。因此,重新对细胞群在多维空间进行定位可使细胞群在制备过程中实现完美分离。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制