当前位置: 仪器信息网 > 行业主题 > >

枸橼酸哌嗪一水合物

仪器信息网枸橼酸哌嗪一水合物专题为您提供2024年最新枸橼酸哌嗪一水合物价格报价、厂家品牌的相关信息, 包括枸橼酸哌嗪一水合物参数、型号等,不管是国产,还是进口品牌的枸橼酸哌嗪一水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合枸橼酸哌嗪一水合物相关的耗材配件、试剂标物,还有枸橼酸哌嗪一水合物相关的最新资讯、资料,以及枸橼酸哌嗪一水合物相关的解决方案。

枸橼酸哌嗪一水合物相关的论坛

  • 部分水合物标准如何进行定量分析?

    用户如果购买了氯唑青霉素钠水合物(氯唑西林钠,邻氯青霉素钠) 标准品,进行定性分析时没有问题,但是里面没有明确是一水化合物还是二水化合物等,只是 氯唑青霉素钠xH2O,如题,这个标准品配成溶液后如何进行定量分析?

  • 醋酸铀-枸橼酸铅双染色问题

    做TEM切片,要用醋酸铀-枸橼酸铅双染色,不知道具体怎么配置,需要注意些什么,染色过程听说很容易污染,怎么避免,第一次做想的到一些前辈的经验指导,多谢!!

  • 迪马产品有奖问答11.22(已完结)———枸橼酸喷托维林片

    迪马产品有奖问答11.22(已完结)———枸橼酸喷托维林片

    10,抽取5个版友);中奖名单:dyd3183621(注册ID:dyd3183621)WUYUWUQIU(注册ID:wulin321)zgx3025(注册ID:v2844608)捌道巴拉巴巴巴(注册ID:v3082413)牛一牛(注册ID:v2700892)http://ng1.17img.cn/bbsfiles/images/2016/11/201611221514_01_1610895_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/11/201611221514_02_1610895_3.jpg【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================枸橼酸喷托维林片方法:HPLC基质:药品应用编号:101511化合物:枸橼酸喷托维林固定相:Diamonsil C18(2)色谱柱/前处理小柱:Diamonsil C18(2) 5u 150 x 4.6mm样品前处理:【有关物质】 取本品细粉适量(约相当于枸橼酸喷托维林50 mg),置50 ml量瓶中,加流动相适量,超声5 min,振摇使枸橼酸喷托维林溶解用流动相稀释至刻度,摇匀,滤过,取续滤液作为供试品溶液;精密量取1 ml,置100 ml量瓶中,用流动相稀释至刻度,摇匀,作为对照溶液。 【含量测定】 取本品20片,精密称定,研细,精密称取适量(约相当于枸橼酸喷托维林25 mg),置100 ml量瓶中,加流动相适量,超声5 min,振摇使枸橼酸喷托维林溶解,用流动相稀释至刻度,摇匀,滤过,测定。色谱条件:检测波长:UV 215 nm 流动相:水(取三乙胺10 ml,用水稀释至1000 ml,用磷酸调节p H至3.0)-甲醇(45:55) 洗脱方式:等度 进样量:20 ul文章出处:P525关键字:枸橼酸喷托维林,2010版中国药典,HPLC,含量测定,钻石二代,Diamonsil C18(2),2010版中国药典,HPLC,含量测定,钻石二代,Diamonsil C18(2)谱图:http://www.dikma.com.cn/Public/Uploads/images/juyuansuanpentuoweilin-1.GIFhttp://www.dikma.com.cn/Public/Uploads/images/juyuansuanpentuoweilin-2.GIFhttp://www.dikma.com.cn/Public/Uploads/images/juyuansuanpentuoweilin-3.GIF

  • 求助,枸橼酸离子含量检测

    药典中枸橼酸离子含量检测给出了2种液相色谱方法的检测,我们一直采用法二离子色谱法,现在研究方法三,具体方法如下:1.1.1 色谱条件紫外检测器;十八烷基硅烷键合硅胶填充色谱柱;柱温40℃;流速1.0ml/min1.1.2 流动相:为18.2mmol/L磷酸盐缓冲液,0.1%异丙醇溶液(pH2.0-2.5);紫外检测波长:210nm。1.1.3 系统适用性:取5.0mmol/L枸橼酸离子溶液20ul,注入色谱柱,拖尾因子按枸橼酸离子色谱峰测定应为0.95-1.40。1.1.4 枸橼酸对照品溶液的制备枸橼酸对照品溶液(5.0mmol/L、10.0mmol/L、15.0mmol/L):用分析天平精密称取经减压干燥至恒重的枸橼酸钠(C6H5Na3O7.2H2O)0.735g,置100ml量瓶中,用水溶解并稀释至刻度,用移液管精密量取5.0ml、10.0ml、15.0ml,分别置25ml量瓶中,用水稀释至刻度,摇匀,即得5.0mmol/L、10.0mmol/L、15.0mmol/L枸橼酸离子对照品溶液。1.1.5 供试品制备人纤维蛋白原:精密量取供试品1ml,加1.5%磺基水杨酸4.0ml,混匀,室温静置2小时以上,以每分钟3000转离心10分钟,取上清液,即得。1.1.6 分别依次取各对照品溶液20ul,供试品溶液20ul,分别进行色谱分析。1.1.7 采用外标法进行计算。以各对照品溶液的枸橼酸离子浓度对峰面积作直线回归求得回归方程,计算出供试品溶液中枸橼酸钠含量C(mmol/L),再乘以供试品稀释倍数(n)计算出供试品枸橼酸离子含量(mmol/L)。公式计算: 供试品枸橼酸含量(mmol/L)= C×n式中 C为供试品溶液中枸橼酸离子含量n为供试品稀释倍数对于流动相的配置不知道该怎么配置合适,之前做过一次,方法是:磷酸二氢钾2.48g ,用水混匀,加0.1%异丙醇1ml,定容至1L。做出来的图杂峰很多,不知道哪里有问题有做过的老师,可以给点意见及建议吗?

  • 【求助】求助枸橼酸(柠檬酸)红外的制作方法

    我用溴化钾压片 做出了的图谱和规定标准图谱不一致 而且透光率很低(25%左右) 压成的片白茫茫的 什么都看不到然后觉得柠檬酸很吸潮就把和溴化钾研磨好后 在快速干燥仪里烘一会 再拿出来 等放冷再压片 结果还是白茫茫的 透光率同样很低(35%左右) 后又改进方法 先将枸橼酸在快速干燥仪中烘一会 然后与溴化钾混合压片 结果透光率还是很低(35%左右)还有一点 我们公司购买的枸橼酸的颗粒较大 估计和食用白糖差不多麻烦各位老师和同仁给点意见吧 如有做过的 能否将压片的心得分享一下 感激不尽 谢谢各位了

  • 乌梅中枸橼酸的检测-Diamonsil C18(2015药典)

    方法:HPLC基质:药品应用编号:103724化合物:枸橼酸固定相:Diamonsil C18色谱柱/前处理小柱:Diamonsil C18, 250 x 4.6mm样品前处理:对照品:浓度为500ug/ml,溶剂为水。供试品:乌梅粉碎,取0.2g加水50mL,加热回流1小时,冷却离心取上清。色谱条件:色谱柱: Diamonsil C18 250 * 4.6 mm,5 μm(Cat#:99903) 流动相: 0.5%磷酸二氢铵:乙腈=97:3(磷酸调节ph=3.0) 流速: 1.0 mL/min 柱温: 30 ℃ 检测器: 210nm 进样量: 对照品:10uL 样品:5uL文章出处:天津应用实验室关键字:乌梅、枸橼酸、Diamonsil C18、2015药典、HPLC摘要:Diamonsil C18检测乌梅中枸橼酸。谱图:http://www.dikma.com.cn/u/image/2016/01/13/1452665091372655.pnghttp://www.dikma.com.cn/u/image/2016/01/13/1452665094139293.png

  • 乌梅中枸橼酸的检测-Platisil ODS(2015药典)

    方法:HPLC基质:药品应用编号:103723化合物:枸橼酸固定相:Platisil ODS色谱柱/前处理小柱:Platisil ODS 5u 250 x 4.6 mm样品前处理:对照品:浓度为500ug/ml,溶剂为水。供试品:乌梅粉碎,取0.2g加水50mL,加热回流1小时,冷却离心取上清。色谱条件:色谱柱: Platisil ODS 250*4.6 mm,5 μm(Cat#:99503) 流动相: 0.5%磷酸二氢铵:乙腈=97:3(磷酸调节ph=3.0) 流速: 1.0 mL/min 柱温: 30 ℃ 检测器: 210nm 进样量: 对照品:10uL 样品:5uL文章出处:天津应用实验室关键字:乌梅、枸橼酸、Platisil ODS、2015药典、HPLC摘要:Platisil ODS检测乌梅中枸橼酸。谱图:http://www.dikma.com.cn/u/image/2016/01/13/1452664619597582.pnghttp://www.dikma.com.cn/u/image/2016/01/13/1452664624664625.png

  • 水合物中的水

    [color=#444444]质谱可以打出水合物中的水吗,[color=#444444]比如五水合物质谱上最大的峰是含水的还是不含水的呀,真心求问。[/color][/color]

  • 脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    脱毛剂含量测定——巯基乙酸钙盐三水合物与碘反应原理是什么?

    巯基乙酸钙盐三水合物 CAS号:5793-98-6 分子式:C2H8CaO5S 分子量 184 结构式http://ng1.17img.cn/bbsfiles/images/2017/10/2016042817011772_01_1490617_3.png 《化妆品安全技术规范》(2015年版)当中,3.9巯基乙酸第三法——化学滴定法的反应方程如下:https://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_670059_1490617_3.png 原理是https://ng1.17img.cn/bbsfiles/images/2016/04/201604281715_591808_1490617_3.png 该方法的适用范围中这样描述:本方法适用于脱毛类、烫发类和其他发用类化妆品中巯基乙酸及其盐类和酯类含量的测定。客户委托了一款产品,要求按照巯基乙酸钙含量出报告,含量计算公式中有一个系数0.184,描述是1mmol碘溶液相当于巯基乙酸钙的克数,这样显然其指的巯基乙酸钙不是CAS:814-71-1 分子式C4H6CaO4S2(分子量222.3),不知道巯基乙酸钙盐三水合物是否依然按照上述原理与碘反应。 求高手指教,前辈指点!谢谢

  • 天然气水合物的研究、调查现状

    [font=黑体][color=black]天然气水合物的研究、调查现状[/color][/font][align=left][font=黑体][color=black]1.[/color][/font][font=黑体][color=black]天然气水合物的研究[/color][/font][/align][align=left][font=宋体][color=black]近年来,我国对管辖海域做大量的地震勘查资料分析得出,在冲绳海槽的边坡、南海的北部陆坡、西沙海槽和西沙群岛南坡等处发现了海底天然气水合物存在的似海底地震反射层(BSR)标志。[/color][/font][/align][align=left][font=宋体][color=black]自1999年始,广州海洋地质调查局在我国海域南海北部西沙海槽区开展海洋天然气水合物前期试验性调查。完成三条高分辩率地震测线共543.3km。2000年9-11月,广州海洋地质调查局"探宝号"和"海洋四号"调查船在西沙海槽继续开展天然气水含物的调查。共完成高分辩率多道地震1593.39km、多波束海底地形测量703.5km、地球化学采样20个、孔隙水样品18个、气态烃传感器现场快速测定样品33个。获得突破性进展。研究表明:地震剖面上具明显似海底反射界面(BSR)和振幅空白带。"BSR"界面一般位于海底以下300-700m,最浅处约180m。振幅空白带或弱振幅带厚度约80-600m,"BSR"分布面积约2400km'。根据ODP184航次1144钻井资料揭示,在南海海域东沙群岛东南地区,l百万年以来沉积速率在每百万年400-1200m之间,莺歌海盆地中中新世以来沉积速度很大。资料表明:南海北部和西部陆坡的沉积速率和已发现有丰富天然气水合物资源的美国东海岸外布莱克海台地区类似。南海海域水含物可能赋存的有利部位是:北部陆坡区、西部走滑剪切带、东部板块聚合边缘及南部台槽区。本区具有增生楔型双BSR、槽缘斜坡型BSR、台地型BSR及盆缘斜坡型BSR等四种类型的水合物地震标志BSR构型。从地球化学研究发现南海北部陆坡区和南沙海域,经常存在临震前的卫星热红外增温异常,其温度较周围海域升高5-6℃,特别是南海北部陆坡区,从琼东南开始,经东沙群岛,直到台湾西南一带,多次重复出现增温异常,它可能与海底的天然气水会物及油气有关。[/color][/font][/align][align=left][font=宋体][color=black]综合资料表明:南海陆坡和陆隆区应有丰富的天然气水合物矿藏,估算其总资源量达643.5-772.2亿吨油当量,大约相当于我国陆上和近海石油天然气总资源量的1/2。[/color][/font][/align][align=left][font=黑体][color=black]2 [/color][/font][font=黑体][color=black]有关天然气水合物的现状调查[/color][/font][/align][align=left][font=宋体][color=black]西沙海槽位于南海北部陆坡区的新生代被动大陆边缘型沉积盆地。新生代最大沉积厚度超过7000m,具断裂活跃。水深大于400m。基于应用国家863研究项目"深水多道高分辨率地震技术"而获得了可靠的天然气水合物存在地震标志:1)在西沙海槽盆北部斜坡和南部台地深度200-700m发现强BSR显示,在部分测线可见到明显的BSR与地层斜交现象。2)振幅异常,BSR上方出现弱振幅或振幅空白带,以层状和块状分布,[/color][/font][font=宋体]厚度80-450m。3)BSR波形与海底反射波相比,出现明显的反极性。4)BSR之上的振幅空白带具有明显的速度增大的变化趋势。资料表明:南海北部西沙海槽天然气水合物存在面积大,是一个有利的天然气水合物远景区。[/font][/align][align=left][font=宋体][color=black]2001[/color][/font][font=宋体][color=black]年,中国地质调查局在财政部的支持下,广州海洋地质调查局继续在南海北部海域进行天然气水合物资源的调查与研究,计划在东沙群岛附近海域开展高分辨率多道地震调查3500km,在西沙海槽区进行沉积物取样及配套的地球化学异常探测35个站位及其他多波束海底地形探测、海底电视摄像与浅层剖面测量等。另据我国台大海洋所及台湾中油公司资料,在台西南增生楔,水深500-2000m处广泛存在BSR,其面积2×104km[sup]2[/sup]。并在台东南海底发现大面积分布的白色天然气水合物赋存区。[/color][/font][/align][font=黑体][color=black]3.[/color][/font][font=黑体][color=black]天然气水合物的意见与建议[/color][/font][align=left][font=宋体][color=black]鉴于天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,其调查研究成果日新月异,故及时了解、收集、交流这方面的情况、勘探方法及成果尤为重要,为赶超国际天然气水合物调查、研究水平,促进我国天然气水会物的调查、勘探与开发事业,为我国经济的持续发展做出新贡献,建议每两年召开一次全国性的"天然气水合物调查动态、勘探方法和成果研讨会"。[/color][/font][/align][align=left][font=宋体][color=black]我国南海广阔的陆坡及东海部分陆坡具有形成天然气水含物的地质条件,建议尽快开展这两个海区的天然气水含物的调查研究工作,为我国国民经济可持续发展提供新能源。[/color][/font][/align][align=left][font=宋体][color=black]天然气水合物的开采方法目前主要在热激化法、减压法和注人剂法三种。开发的最大难点是保证井底稳定,使甲烷气不泄漏、不引发温室效应。针对这一问题,日本提出了"分子控制"开采方案。天然气水合物矿藏的最终确定必须通过钻探,其难度比常规海上油气钻探要大得多,一方面是水太深,另一方面由于天然气水合物遇减压会迅速分解,极易造成井喷。日益增多的成果表明,由自然或人为因素所引起温压变化,均可使水合物分解,造成海底滑坡、生物灭亡和气候变暖等环境灾害。因而研究天然气水合物的钻采方法已迫在眉捷,建议尽快开展室内外天然气水合物钻采方法的研究工作。[/color][/font][/align]

  • 乌梅中枸橼酸的检测-Diamonsil PLUS-A C18(2015药典)

    乌梅中枸橼酸的检测-Diamonsil PLUS-A C18(2015药典)

    http://ng1.17img.cn/bbsfiles/images/2016/08/201608161301_605125_1610895_3.jpg方法:HPLC基质:药品应用编号:103725化合物:枸橼酸色谱柱/前处理小柱:Diamonsil Plus 5 μm C18-A , 250 x 4.6 mm样品前处理:对照品:500ug/ml,溶剂:水。供试品:乌梅粉碎,取0.2g加水50mL,加热回流1小时,冷却离心取上清。色谱条件:色谱柱: Diamonsil PLUS-A C18 250*4.6 mm,5 μm(Cat#:99406) 流动相: 0.5%磷酸二氢铵:乙腈=97:3(磷酸调节ph=3.0) 流速: 1.0 mL/min 柱温: 30 ℃ 检测器: 210nm 进样量: 对照品:10uL 样品:5uL文章出处:天津应用实验室关键字:乌梅、枸橼酸、Diamonsil PLUS-A C18、2015药典、HPLC摘要:Diamonsil PLUS-A C18检测乌梅中枸橼酸。谱图:http://www.dikma.com.cn/u/image/2016/01/13/1452665342776336.pnghttp://www.dikma.com.cn/u/image/2016/01/13/1452665345794495.png

  • 离子色谱的枸橼酸的峰形求助!!

    离子色谱的枸橼酸的峰形求助!!

    [b][size=16px]求助,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],电导检测器,检测枸橼酸峰 峰尾处出现负峰拖尾不对称,怎样解决??求助[/size][/b][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2021/03/202103061441568828_6968_5211350_3.jpg!w690x920.jpg[/img]

  • 【原创】天然气水合物

    打开能源的“牢笼”在冰的天然气水合物矿床中,可以发现大量的天然气,但是将这些天然气开采出来却是一个严峻的挑战。一万亿立方英尺 (tcf) 有多大? 尽管我们知道这个体积非常大,但是要想像其具体的大小将会相当困难。这里有一种方法。假定我们站在足球场或橄榄球球场一端的球门附近。在另一端俯视球场,设想一条长度为 30 倍球场长度的直线。(这一距离大概为 3 公里(约 1.9 英里)或相当于 3500 步。)现在右转 90 度,然后按照该方向设想一条相同距离的直线。最后,直视前方,设想一条长度相同并且垂直于地面向天空方向延伸的直线。那么,这个立方体的三条边所包含的体积就大约为一万亿立方英尺!平均而言,地球上的每人每月大约消费七万亿立方英尺天然气! 燃烧的冰地球上的人使用天然气(甲烷,CH4)这种矿物燃料提供日常所用能源的 45%。目前,每年的天然气燃烧量约为 2.4 万亿立方米(85 万亿立方英尺)。不幸的是,按照这一速度,我们所发现的地球天然气储量只能使用 60 年。这意味着按照目前所知的情况,对于今天正在上高中的学生而言,他们的子孙就没有可用的天然气了。对于这一暗淡的前景也有一些好的消息。看起来还有另外一个天然气资源的世界,足以满足我们当前以及将来 2000 年的能源需求。这完全可以惠及我们子子孙孙!不幸的是,我们还没有找到开采这一天然气的经济方式。我们目前正在研究。 这些特殊的天然气储量称为天然气水合物,它们由其甲烷(天然气)分子中类似小鸟笼一样的冰结构构成。基本的水合单元是中空的水分子晶体,其中包含一个天然气单分子。这些晶体以紧密的网格结构相互联接在一起。如果这些天然气水合物的联接程度紧密上几倍,那么它们看起来将更象是冰。但是其属性和冰不同:它们在适当的条件下可以燃烧!这是 21 世纪一个相当热门的话题。全球天然气水合物的储量丰富,因此有些国家已经开始研究和探索计划,致力于理解水合物的行为、确定其精确储量并开发可行的开采方法。日本、印度、美国、加拿大、挪威和俄罗斯等国家都在进行天然气水合物的勘测。 天然气水合物是一个晶体结构。这一天然气水合物的每个单元小室都包含 46 个水分子,构成两个较小的十二面体和 6 个较大的十四面体。天然气水合物只能承载较小的气体分子,例如甲烷和乙烷。在常温常压(STP)下,一体积的饱和甲烷水合物将包含 189 体积的甲烷气体。天然气水合物这么大的气体储量意味着重要的天然气来源。

  • 【求助】二虎食品添加剂-酸度调节剂之柠檬酸

    1 柠檬酸科技名词定义中文名称:柠檬酸 英文名称:citric acid 定义:三羧酸循环中从草酰乙酸与乙酰辅酶A首先合成的三羧酸化合物。 所属学科:生物化学与分子生物学(一级学科);新陈代谢(二级学科) 百科名片柠檬酸是一种重要的有机酸,又名枸橼酸,无色晶体,常含一分子结晶水,无臭,有很强的酸味,易溶于水。其钙盐在冷水中比热水中易溶解,此性质常用来鉴定和分离柠檬酸。结晶时控制适宜的温度可获得无水柠檬酸。在工业,食品业,化妆业等具有极多的用途。理化特性  中文名称: 柠檬酸   英文名称: citric acid   中文名称2: 2-羟基丙烷-1,2,3-三羧酸   英文名称2: 2-hydroxy-1,2,3-propanetricarboxylic acid   CAS No.: 77-92-9 分子式: C6H8O7   分子量: 192.14   外观与性状: 白色结晶粉末,无臭。 柠檬酸分子式熔点(℃): 153   沸点(℃): (分解)   相对密度(水=1): 1.6650   闪点(℃): 100   引燃温度(℃): 1010(粉末)   爆炸上限%(V/V): 8.0(65℃)   离解常数(25℃):Ka1=7.4×10^-4,Ka2=1.7×10^-5,Ka3=4.0×10^-7   溶解性:溶于水、乙醇、丙酮,不溶于乙醚、苯,微溶于 柠檬酸氯仿。水溶液显酸性。   物理性质 :在室温下,柠檬酸为无色半透明晶体或白色颗粒或白色结晶性粉末,无臭、味极酸,在潮湿的空气中微有潮解性。它可以以无水合物或者一水合物的形式存在:柠檬酸从热水中结晶时,生成无水合物;在冷水中结晶则生成一水合物。加热到78 °C时一水合物会分解得到无水合物。在15摄氏度时,柠檬酸也可在无水乙醇中溶解。   柠檬酸结晶形态因结晶条件不同而不同,有无水柠檬酸C6H8O7也有含结晶水的柠檬酸2C6H8O7.H2O、C6H8O7.H2O或C6H8O7.2H2O。   化学性质:从结构上讲柠檬酸是一种三羧酸类化合物,并因此而与其他羧酸有相似的物理和化学性质。加热至175 °C时它会分解产生二氧化碳和水,剩余一些白色晶体。柠檬酸是一种较强的有机酸,有3个H+可以电离;加热可以分解成多种产物,与酸、碱、甘油等发生反应。 编辑本段天然存在  天然柠檬酸在自然界中分布很广,天然的柠檬酸存在于植物如柠檬、柑橘、菠萝等果实和动物的骨骼、肌肉、血液中。人工合成的柠檬酸是用砂糖、糖蜜、淀粉、葡萄等含糖物质发酵而制得的,可分为无水和水合物两种。纯品柠檬酸为无色透明结晶或白色粉末,无臭,有一种诱人

  • 【讨论】枸橼酸离子测定法的讨论

    [align=center][b][font=宋体]附录Ⅶ[/font][font=Times New Roman] H[/font][font=宋体]枸橼酸离子测定法[/font][/b][/align][b][size=3][font=宋体]第一法比色法[/font][/size][/b][size=3][b][font=宋体]枸橼酸钠对照品溶液的制备[/font][/b][font=Times New Roman] [/font][font=宋体]取经减压干燥至恒重的枸橼酸钠([/font][font=Times New Roman]C[sub]6[/sub]H[sub]5[/sub]Na[/font][font=Times New Roman][sub]3[/sub]O[sub]7[/sub][/font][font=宋体][/font][font=Times New Roman]2H[/font][font=Times New Roman][sub]2[/sub]O[/font][font=宋体])[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]6g[/font][font=宋体],精密称定,置[/font][font=Times New Roman]100ml[/font][font=宋体]量瓶中,加水溶解并稀释至刻度,摇匀,精密量取[/font][font=Times New Roman]5ml[/font][font=宋体],置[/font][font=Times New Roman]50ml[/font][font=宋体]量瓶中,用[/font][font=Times New Roman]5%[/font][font=宋体]三氯醋酸稀释至刻度,摇匀,即得。[/font][/size][size=3][b][font=宋体]供试品溶液的制备[/font][/b][font=Times New Roman] [/font][font=宋体]精密量取供试品[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]5ml[/font][font=宋体]与水[/font][font=Times New Roman]4[/font][font=宋体].[/font][font=Times New Roman]5ml[/font][font=宋体],加[/font][font=Times New Roman]10%[/font][font=宋体]三氯醋酸溶液[/font][font=Times New Roman]5ml[/font][font=宋体],混匀,置[/font][font=Times New Roman]60[/font][font=宋体]℃[/font][font=宋体]水浴加热[/font][font=Times New Roman]5[/font][font=宋体]分钟,以每分钟[/font][font=Times New Roman]4000[/font][font=宋体]转离心[/font][font=Times New Roman]20[/font][font=宋体]分钟,取上清液备用。[/font][/size][size=3][b][font=宋体]测定法[/font][/b][font=Times New Roman] [/font][font=宋体]精密量取供试品溶液[/font][font=Times New Roman]1ml[/font][font=宋体],置[/font][font=Times New Roman]25ml[/font][font=宋体]具塞试管中,精密加吡啶[/font][font=Times New Roman]1[/font][font=宋体].[/font][font=Times New Roman]3ml[/font][font=宋体],混匀,再精密加醋酸酐[/font][font=Times New Roman]5[/font][font=宋体].[/font][font=Times New Roman]7ml[/font][font=宋体],立即混匀并置[/font][font=Times New Roman]31[/font][font=宋体]℃±[/font][font=Times New Roman]1[/font][font=宋体]℃[/font][font=宋体]的水浴中,准确放置[/font][font=Times New Roman]35[/font][font=宋体]分钟后,照紫外[/font][font=宋体]-[/font][font=宋体]可见分光光度法(附录Ⅱ[/font][font=Times New Roman] A[/font][font=宋体]),在波长[/font][font=Times New Roman]425nm[/font][font=宋体]处测定吸光度。另精密量取枸橼酸钠对照品溶液[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]25ml[/font][font=宋体]、[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]50ml[/font][font=宋体]、[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]75ml[/font][font=宋体]、[/font][font=Times New Roman]1[/font][font=宋体].[/font][font=Times New Roman]0ml[/font][font=宋体],[/font][font=Times New Roman] [/font][font=宋体]分别置于具塞试管中,各精密加[/font][font=Times New Roman]5%[/font][font=宋体]三氯醋酸溶液[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]75ml[/font][font=宋体]、[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]50ml[/font][font=宋体]、[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]25ml[/font][font=宋体]、[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]00ml[/font][font=宋体](其相对应的枸橼酸离子含量为[/font][font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]5mmol/L[/font][font=宋体]、[/font][font=Times New Roman]1[/font][font=宋体].[/font][font=Times New Roman]0mmol/L[/font][font=宋体]、[/font][font=Times New Roman]1[/font][font=宋体].[/font][font=Times New Roman]5mmol/L [/font][font=宋体]、[/font][font=Times New Roman]2[/font][font=宋体].[/font][font=Times New Roman]0mmol/L[/font][font=宋体]),自“精密加吡啶[/font][font=Times New Roman]1[/font][font=宋体].[/font][font=Times New Roman]3ml[/font][font=宋体]”起,同法操作。[/font][/size][size=3][font=宋体]用对照品溶液枸橼酸离子浓度和对应的吸光度作直线回归,求得回归方程,计算出供试品溶液中的枸橼酸离子含量([/font][font=Times New Roman]mmol/L[/font][font=宋体]),再乘以供试品稀释倍数([/font][font=Times New Roman]20[/font][font=宋体]),即为供试品枸橼酸离子含量([/font][font=Times New Roman]mmol/L[/font][font=宋体])。[/font][/size]

  • 枸橼酸苯海拉明用氰基柱做有关物质主峰分叉

    客户做枸橼酸苯海拉明,用氰基柱做有关物质(按照药典上盐酸苯海拉明的方法),刚开始实验效果很好。用了两天后出现主峰分叉现象,换用之前一根C18(柱效不高)的色谱柱做没有分叉现象。还请大家多多指点,不胜感激!

  • 【求助】气相出口居然还会形成水合物?

    HYSYS模拟低温分离器,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口居然还会形成水合物,怎么办啊?这是用HYSYS模拟现场集输的问题。流程为天然气和乙二醇混合,节流,进低温分离器,节流前后无水合物形成,但分离后,由于乙二醇被分走了,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口温度又低,水合物公用工具显示的水合物形成的温度和压力都在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]物流的温度和压力范围内,经换热器仍然是这个效果,人家总不能形成水合物还往外输吧?但是水露点和烃露点又都很低小于-10度。请高手给点思路,希望您不要惜字如金啊,有什么想法都可以说的!

  • 枸橼酸盐 一般鉴别实验疑惑

    今天手上来了个枸橼酸钠原料,其中的鉴别实验如下:取样品溶液2ml(含枸橼酸2mg),加稀硫酸数滴,加热至沸,加高锰酸钾溶液数滴,振摇紫色褪去,再加溴试液,应出现白色沉淀问题来了,我做了不下20次,均不呈正反应。翻了药店注释,得知高锰酸钾溶液用量不能过多。。我就滴加了2滴高锰酸钾溶液,还是不行,,求解毒啊。。。。。。。。。。。。。。。。。

  • 【求助】枸橼酸的红外图谱问题

    【求助】枸橼酸的红外图谱问题

    我是用溴化钾压片做枸橼酸红外图谱,有时能做出标准图谱,有时候却有不行。现在我也摸到点规律,空气湿度大时就不行,如下雨天,但过了几天天放晴了就又行了,应该是跟水份有关。我想那个高人帮解一下谱,看看是什么问题[img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007301507_233246_1645512_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007301510_233247_1645512_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007301510_233248_1645512_3.jpg[/img]

  • 【讨论】请教关于水合物的结构

    [size=4][color=#00008B]最近做硝酸盐水合物的XRD,发现本应含两个结晶水,得到的谱图是含六个结晶水的,有没有这种可能,因为有其他非水小分子存在,将两个结晶水的物质重新结晶成六个结晶"水"的结构。麻烦遇到相似情况的给我辅导一下,万分感激![/color][/size]

  • 67.4 补肾壮阳药中枸橼酸西地那非的含量测定

    67.4 补肾壮阳药中枸橼酸西地那非的含量测定

    【作者】 雷灼雨; 罗萍; 周渝南;【Author】 Lei Zhuoyu,Luo Ping,Zhou Yu’nan(Chongqing Institute for Drug Control,Chongqing,China 400015)【机构】 重庆市药品检验所; 重庆市药品检验所 重庆; 400015; 重庆; 400015;【摘要】 目的:建立测定补肾壮阳药中枸橼酸西地那非含量的方法。方法:采用反相高效液相色谱法,DiamonsilC18柱(150mm×4.6mm,5μm),0.05mol/L磷酸(三乙胺调pH至3.0±0.1)-甲醇-乙腈(55∶25∶20)为流动相,流速1.0mL/min。结果:其工作曲线的线性范围为0.04~1.00μg/mL,相关系数r=0.9995,平均回收率为96.3%(n =6)。结论:所建立的方法准确、可靠,可应用于检测补肾壮阳药中枸橼酸西地那非的含量。 更多还原http://ng1.17img.cn/bbsfiles/images/2012/08/201208271548_386446_2379123_3.jpg

  • 求助~急~中国药典3018枸橼酸根离子含量测定

    求助~急~中国药典3018枸橼酸根离子含量测定

    [font=&]中国药典2015版四部3018中枸橼酸离子含量检测第三法,具体方法如下:[/font][font=&]1.1.1 色谱条件[/font][font=&]紫外检测器;十八烷基硅烷键合硅胶填充色谱柱(C18);柱温40℃;流速1.0ml/min[/font][font=&]1.1.2 流动相:为18.2mmol/L磷酸盐缓冲液,0.1%异丙醇溶液(pH2.0-2.5);紫外检测波长:210nm。[/font][font=&]1.1.3 系统适用性:[/font][font=&]取5.0mmol/L枸橼酸离子溶液20ul,注入色谱柱,拖尾因子按枸橼酸[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]峰测定应为0.95-1.40。[/font][font=&]1.1.4 枸橼酸对照品溶液的制备[/font][font=&]枸橼酸对照品溶液(5.0mmol/L、10.0mmol/L、15.0mmol/L):用分析天平精密称取经减压干燥至恒重的枸橼酸钠(C6H5Na3O7.2H2O)0.735g,置100ml量瓶中,用水溶解并稀释至刻度,用移液管精密量取5.0ml、10.0ml、15.0ml,分别置25ml量瓶中,用水稀释至刻度,摇匀,即得5.0mmol/L、10.0mmol/L、15.0mmol/L枸橼酸离子对照品溶液。[/font][font=&]1.1.5 供试品[/font]血液透析液:含钾钙钠镁阳离子、氯离子、碳酸氢根离子和枸橼酸根离子。1.1.6 分别依次取各对照品溶液20ul,供试品溶液20ul,分别进行色谱分析。目前遇到的问题是就是流动相的配制,药典中给出的规定流动相原文就是[b]18.2mmol/L磷酸盐缓冲液,0.1%异丙醇溶液(pH2.0-2.5),[/b]但是尝试了几种流动相均不理想,溶剂峰旁边会连着一个非常大的杂峰,样品峰面积非常小,与对照品峰面积差距很大。排除法检测,发现应该是碳酸氢根的存在对检测存在干扰,如果在样品中去掉碳酸氢根,用这几种流动相都可以做出与对照峰类似的样品峰,只有一种流动相就是不加磷酸盐,只磷酸+硫酸+异丙醇,能很好的测出枸橼酸,但是这种流动相与药典规定不符。所以想请教各位液相方面的老师,应如何配制这个18.2mmol/L磷酸盐缓冲液,并能排除碳酸氢根的干扰。[img=对照图,322,343]https://ng1.17img.cn/bbsfiles/images/2021/01/202101251231052446_5785_5184525_3.png!w322x343.jpg[/img]对照品[img=含碳酸氢根供试品,347,339]https://ng1.17img.cn/bbsfiles/images/2021/01/202101251231420152_1348_5184525_3.png!w347x339.jpg[/img]含碳酸氢根供试品[img=不含碳酸氢根供试品,337,347]https://ng1.17img.cn/bbsfiles/images/2021/01/202101251234444981_9266_5184525_3.png!w337x347.jpg[/img]不含碳酸氢根供试品

  • 【金秋计划】白藜芦醇-盐酸巴马汀共晶水合物的制备、晶体结构及溶解性研究

    植物源性多酚由于具有预防和治疗多种疾病的特性,在制药、化工和食品工业等领域引起广泛关注[1-2]。白藜芦醇(resveratrol,图1)是一种天然多酚,存在于葡萄皮、蔓越莓、可可等植物中,具有抗氧化、抗炎、保护心脏和抗癌等生物活性[3-4]。此外,白藜芦醇对阿尔茨海默病、帕金森病和癫痫等神经系统疾病也有神经保护作用[5-6]。该化合物在自然界中以反式和顺式2种异构体的形式存在,但反式异构体更丰富,生物活性更高[7]。然而,白藜芦醇较低的水溶性、生物利用度限制了其在人体中的吸收和生物利用有效性[8]。 药物共晶是活性药物成分和共晶形成物按一定化学计量比在非共价键相互作用下自组装而成的固体结晶材料[9-10],共晶中存在的氢键或其他非共价作用,会改变原药物晶体的结构,通过降低晶格能、提高溶剂的亲和力,从而改善药物在共晶中的溶解度[11]。因此,药物共晶技术成为解决药物生物利用度低的新途径、新领域。通过药物共晶技术提高药物生物利用度是今后药物开发新的研究方向。近年来,白藜芦醇共晶和多晶型用于提高其溶解度和生物利用度已有报道,如氨基苯甲酰胺[12]、异烟肼与烟酰胺[13]、乙烯基二吡啶[14]等共晶。不同共晶之间白藜芦醇的构象和分子堆积是灵活的,且白藜芦醇共晶的物理化学性质与其晶体堆积模式密切相关。基于共晶策略优势,利用高水溶性生物活性药物增强白藜芦醇的溶解度和生物利用度,同时有助于发挥2种药物在抗炎、抗病毒功效等方面协同作用,如白藜芦醇-金刚烷胺盐酸盐共晶[15]。 盐酸巴马汀(palmatine chloride,PCl,图1)又名黄藤素,是一类典型的异喹啉生物碱,主要存在于黄柏、黄连、三棵针、南天竹等天然中草药植物中[16-17]。PCl易溶于热水,具有抗菌、抗炎、抗病毒与抗肿瘤等药用价值,在临床上常用于治疗妇科炎症、菌痢、肠炎、呼吸道和泌尿道感染以及眼结膜炎等症状[16,18-19]。PCl结构中含有1个季铵盐阳离子与氯离子(Cl?),其中Cl?是一类潜在的氢键受体,不仅空间位阻小,还具有良好的空间适应性和几何延展性,可以同时接纳多个氢键给体,与氨基、羧基、羟基等官能团可形成较强的电荷辅助氢键[20-21],利用含Cl?的PCl作为共晶形成物为药物共晶开发提供了新的思路。本课题组前期系统研究了PCl作为共形成物与外消旋橙皮素的药物共晶多晶型,2种共晶均存在O-HCl?氢键相互作用,对温度、湿度和光表现出很高的稳定性,共晶的形成降低了盐酸巴马汀的溶解度,提高了橙皮素的溶解度。同时,在纯水中实现了盐酸巴马汀的缓释和增强橙皮素的释放[22]。本实验基于Cl?与羟基之间易形成O-HCl?氢键作用,研究了白藜芦醇与PCl的共结晶。采用溶剂悬浮法成功制备了一种新的白藜芦醇-盐酸巴马汀共晶水合物(RES-2PClH2O),利用单晶X射线衍射、粉末X射线衍射和傅里叶红外光谱对其结构进行表征,并利用差示扫描量热、动态水蒸汽吸附、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分析等对共晶水合物的稳定性、溶解度及溶出速率等进行了考察。 图片 1 仪器与材料 Smart Lab SE型粉末X射线衍射仪,日本理学公司;Super Nova CCD型单晶X射线衍射仪,美国安捷伦科技有限公司;DSC 214 Nevio型差示扫描量热仪、TG 209 F3型热重分析仪,德国耐驰仪器制造有限公司;Intrinsic Plus型动态水蒸汽吸附仪,英国Surface Measurement Systems公司;LC-20AD型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url],日本岛津仪器有限公司;Nicolet iS 50型衰减全反射傅里叶红外光谱仪,美国赛默飞世尔科技公司;LHH-150SD型综合药品稳定性试验箱,上海一恒科学仪器有限公司;RC806ADK型溶出度测试仪,天津市天大天发科技有限公司;SHH-100GD-2型药品强光照射试验箱,重庆市永生实验仪器厂。 盐酸巴马汀三水合物(PCl3H2O)、白藜芦醇,质量分数均为97%,购自大连美仑生物技术有限公司;甲醇为色谱纯,购自上海泰坦科技股份有限公司;磷酸为色谱纯,购自上海阿拉丁试剂有限公司。其他试剂均为分析纯,购自国药集团药业股份有限公司。 2 方法与结果 2.1 样品的制备 2.1.1 白藜芦醇-盐酸巴马汀单晶的制备 取白藜芦醇(22.8 mg,0.1 mmol)与PCl3H2O(44.2 mg,0.1 mmol)混合均匀后加入20 mL甲醇溶液,加热搅拌至完全溶解后滤过。将溶液放于避光环境下缓慢蒸发,2~3 d后有橘红色块状晶体析出,即为白藜芦醇-盐酸巴马汀单晶。 2.1.2 RES-2PClH2O共晶水合物的制备 取白藜芦醇(114.0 mg,0.5 mmol)与盐酸巴马汀三水合物(442.0 mg,1 mmol)混合均匀后加入10 mL的甲醇溶液,在室温条件下密封搅拌48 h后滤过。将固体放于自然条件下干燥即可得到RES-2PClH2O共晶水合物。 2.2 固态表征 2.2.1 单晶X射线衍射(single crystal X-ray diffraction,SC-XRD) 利用Super Nova CCD单晶衍射仪测试待测样品,在100 K条件下收集晶体参数,入射光束为Cu-Kα射线(λ=0.154 184 nm),利用CrysAlisPro程序进行经验吸收校正[23]。采用SHELX程序对晶体结构进行直接法求解,通过全矩阵最小二乘方法对F2进行精修[24-25]。非氢原子在无约束位移参数下进行各向异性细化,氢原子则放置在合适的几何位置上。单晶结构解析表明,RES-2PClH2O为单斜晶系,P21/c空间群,在晶体结构中含有2个PCl分子、1个白藜芦醇分子与1个水分子。如图2所示,白藜芦醇结构中的3个酚羟基均参与了氢键的形成,其中2个酚羟基与2个Cl?形成O-HCl?氢键作用,而另1个酚羟基则与水分子形成O-HO氢键作用。水分子又同时与2个Cl?形成O-HCl?氢键作用。白藜芦醇分子、水分子与Cl?间通过上述的多种氢键作用相连接,形成了一维链状结构。形成的链与链间通过不同白藜芦醇分子间的C-HO作用相连接,进而形成二维层状结构(图3)。在分子间弱作用力下,层与层之进而形成堆积结构(图4)。RES-2PClH2O共晶水合物的晶体学数据见表1,共晶水合物中氢键的参数见表2。 图片 图片 图片 图片 2.2.2 粉末X射线衍射(powder X-ray diffraction,PXRD) 将待测样粉末均匀铺满样品槽后开始测量。入射光束为Cu-Kα射线,工作电压为40 kV,工作电流为15 mA,2θ范围取5°~45°,步长0.02°。如图5所示,RES-2PClH2O的PXRD谱图与白藜芦醇、PCl3H2O 2种原料药均不同,在10.6°、13.1°、14.0°、14.5°、16.2°、21.5°、26.7°、28.2°等处出现新的特征峰,且图谱中并未显现PCl3H2O在9.7°、17.8°等处的特征峰,表明所制备的产物形成了新的晶相。此外,RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 图片 2.2.3 衰减全反射傅里叶变换红外光谱(attenuated total reflection fourier transform infrared spectroscopy,ATR-FTIR) 将待测样均匀铺于iD7 ATR附件上,扫描次数为32,分辨率为4 cm?1,波长范围为550~4 000 cm?1。如图6所示,RES-2PClH2O与PCl3H2O的图谱中均存在有水分子的伸缩振动峰,与单晶结构中存在的水分子相对应。在PCl3H2O中,水分子的伸缩振动峰为3 602~3 227 cm?1,而共晶水合物中水分子的伸缩振动峰为3 292 cm?1。在形成强分子间氢键时,-OH伸缩振动峰会发生红移(100~693 cm?1)[26-27]。白藜芦醇中-OH的伸缩振动峰在3 200 cm?1左右,而共晶水合物中-OH的伸缩振动峰显著红移至在3 002 cm?1,表明白藜芦醇和PCl3H2O分子间具有较强的氢键相互作用。同时,在形成共晶水合物后,白藜芦醇中-OH的弯曲振动峰从1 145 cm?1偏移至1 170 cm?1,归因于白藜芦醇上的-OH同PCl、水分子间均存在较强的氢键作用。 图片 2.2.4 差示扫描量热/热重分析(differential scanning calorimetry/thermal gravity analysis,DSC/ TGA) 称取适量白藜芦醇、PCl3H2O、RES- 2PClH2O分别放于铝制坩埚中,密封、扎孔后进行DSC测试。以同样的空坩埚作为参比,将其放置于仪器中预热、平衡至读数稳定后,将待测样品放于空坩埚中进行TGA测试,温度范围为30~300 ℃,升温速率10 K/min,通氮气作为保护气,体积流量为40 mL/min。如图7-a所示,白藜芦醇在268.1 ℃处有1个吸热熔融峰,PCl3H2O在204.2 ℃处出现吸热熔融峰。RES-2PClH2O在136℃附近存在1个宽的脱水吸热峰,在230.5 ℃附近存在熔融吸热峰。共晶水合物的熔点介于2个原料药之间,是不同于原料药的新晶型。由TGA图谱(图7-b)可知,白藜芦醇在30~150 ℃没有明显质量变化,PCl3H2O在105 ℃失重比为11.3%。相较于2原料药,RES-2PClH2O在136 ℃附近的失重比为2.8%,与其理论的失水质量比(2.8%)一致,进一步证实共晶水合物结构中存在1个水分子。 图片 2.3 物理稳定性研究 2.3.1 稳定性分析 根据《中国药典》2020年版药物稳定性试验,评价温度、湿度、光照等环境参数对所制备共晶水合物物理稳定性的影响。将RES- 2PClH2O分别储存于烘箱、湿稳定性箱及光稳定箱中,放置10 d后取出进行PXRD表征。如图8所示,在60 ℃,90%相对湿度(RH),或4 500 lx条件下储存10 d后,RES-2PClH2O的PXRD图谱保持不变,说明所制备共晶水合物在恶劣的储存条件下未发生晶型的变化,具有物理稳定性。 图片 2.3.2 动态水蒸汽吸附(dynamic vapor sorption,DVS)分析 称取适量待测样品置于动态水蒸气吸附仪中,设定温度为25 ℃,在体积流量为200 mL/min氮气下测量,模式选择为0~95%~0相对湿度吸附、脱附水蒸汽全循环,步长5%,平衡标准为粉体质量变化(dm/dt)≤0.002%/min。如图9-a所示,PCl3H2O吸湿量随着相对湿度增加而逐步增大。相比于PCl3H2O,白藜芦醇、RES-2PClH2O吸湿量基本不变,说明白藜芦醇可有效减少PCl3H2O吸湿量。根据局部放大图(图9-b),在95%相对湿度下,RES-2PClH2O共晶水合物吸湿量仅为0.16%,吸湿性极低。此外,共晶水合物的吸附与脱附曲线基本重合,表明在吸附过程中仅存在物理吸附水,共晶水合物未发生任何固态变化,具有良好的吸湿稳定性。 图片 2.4 体外溶出度研究 2.4.1 色谱条件 白藜芦醇、PCl的色谱分析采用Kristl等建立的方法[28]及《中国药典》2020年版一部黄藤素含量测定,并进行适当修改。色谱柱为中谱蓝XR-C18柱(150 mm×4.6 mm,5 μm),采用双波长模式,白藜芦醇的吸收波长306 nm,PCl的吸收波长345 nm,体积流量1 mL/min,进样量5 μL,柱温30 ℃,流动相为甲醇-0.2%磷酸水溶液(50∶50),洗脱方式为等度洗脱。 2.4.2 对照品储备液的制备 精密量取250 mg白藜芦醇置于50 mL量瓶中,甲醇定容,摇匀即得5 mg/mL白藜芦醇对照品储备液,同法制备5 mg/mL PCl3H2O对照品储备液。 2.4.3 线性关系考察 采用甲醇将“2.4.2”项下对照储备液分别稀释成5、10、20、50、100、200、500 μg/mL系列对照品溶液,按照“2.4.1”项下色谱条件测定各质量浓度(C)的峰面积(A)。方法学结果表明,PCl的线性回归方程为A=23 744 C+22 055,R2=1.000 0,结果表明PCl在10~500 μg/mL线性关系良好。白藜芦醇的线性回归方程为A=42 114 C?161.8,r=1.000 0,结果表明白藜芦醇在5~100 μg/mL线性关系良好。 2.4.4 供试品溶液的制备 精密量取5 mg RES-2PClH2O至50 mL量瓶中,甲醇定容,摇匀即得RES-2PClH2O供试品溶液。 2.4.5 专属性考察 取稀释后的对照品溶液、供试品溶液,分别按上述色谱条件进样,结果见图10,供试品溶液中白藜芦醇与PCl出峰时间与对照品溶液一致,分离度大于1.5,峰形良好,表明该色谱条件适用性良好。 图片 2.4.6 平衡溶解度实验 选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为缓冲介质[15,29],称取过量待测样品加入少量介质溶液,得到过饱和溶液。37 ℃振荡48 h,取上层液0.45 μm滤膜滤过,纯水稀释后利用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]测量其质量浓度,得到待测样品的饱和平衡溶解度,平行样为3组。实验结束后,收集未溶解的残留固体,室温干燥后进行PXRD表征。结果如表3所示,在纯水中,白藜芦醇的溶解度为(55.100±0.669)μg/mL,PCl3H2O的溶解度(24.130±0.670)mg/mL。与之相比较,白藜芦醇、PCl3H2O在pH 4.5缓冲液中的溶解度基本不变。值得注意的是,共晶水合物中白藜芦醇溶解度在2种介质中均显著提高,尤其在pH 4.5缓冲液中,共晶水合物中白藜芦醇溶解度提高约10倍。而共晶水合物中PCl溶解度在2种介质中均显著降低,在pH 4.5缓冲液中,溶解度降低到(1.760±0.015)mg/mL。上述结果均表明通过白藜芦醇与PCl形成共晶策略极大提高了白藜芦醇溶解度,同时降低了PCl溶解度。此外,溶解度测定后将未溶解的固体残渣收集后进行PXRD表征,图谱结果表明2种介质处理后的残渣与RES-2PClH2O的PXRD图谱基本吻合(图11),未发现明显的相变。 图片 图片 2.4.7 溶出速率评估 实验在RC806ADK溶出测试仪上进行,采用小杯桨法,桨转速为75 r/min,温度为37 ℃。选用醋酸/醋酸盐缓冲液(pH 4.5)与纯水作为溶出介质,溶出介质体积为250 mL。精密称取100 mg的RES-2PClH2O粉末,86.5 mg的PCl3H2O粉末以及22.3 mg的白藜芦醇粉末,待介质温度稳定后往介质投料。设置不同时间点进行取样,每次取样1 mL后随即补充1 mL缓冲液。所有样品溶液均过0.45 μm膜后,使用HPLC测量其质量浓度,平行样为3组。如图12-a可知,在2种介质中,白藜芦醇原料药释放缓慢,4 h后最大累积释放仅约45%;形成共晶水合物后,RES-2PClH2O中白藜芦醇在纯水与pH 4.5缓冲液中的溶出行为基本一致,溶出速率均增加,溶出释放量较白藜芦醇原料药显著提高,在1 h附近达到最大值,分别为82.26%与83.43%。与白藜芦醇溶出不同的是,PCl3H2O在2种介质中5 min内几乎完全溶解,共晶水合物中PCl的溶出速率较PCl3H2O有效减缓,1 h后达到最大累积释放量(图12-b)。 图片 综合上述溶出结果表明,相比于白藜芦醇原料药,通过与PCl3H2O形成共晶水合物,可有效促进白藜芦醇的溶出、同时延缓PCl的释放。 3 讨论 将水溶性较高的药物与难溶性药物形成药物-药物共晶,有利于平衡两者的溶解度[11]。利用水溶性较好的PCl[(24.13±0.67)mg/mL]与难溶性白藜芦醇[(55.100±0.669)μg/mL]通过分子间相互作用形成共晶,有望优化两者溶解度和溶出速率。本研究采用溶剂悬浮法成功制备了新的RES- 2PClH2O共晶水合物。RES-2PClH2O的PXRD图谱与其单晶结构的模拟图谱吻合较好,证实所制备的共晶水合物具有较高的纯度和均匀性。 DSC测试结果显示,RES-2PClH2O的熔点介于2个原料药之间,进一步证实该共晶水合物是不同于原料药的新晶型。通过单晶结构分析,该共晶水合物存在O-HCl?氢键作用且含有水分子。白藜芦醇上的2个羟基与2个Cl?形成O-HCl?氢键,而水分子通过O-HO与O-HCl?的氢键作用分别与白藜芦醇、PCl相连并形成一维链状结构。链与链间又通过C-HO作用形成二维层状结构,层与层之间通过分子间弱作用力进而形成堆积结构。 TGA表征结果显示,RES-2PClH2O实际失水质量与理论失水质量相一致,进一步证实该共晶水合物结构中存在1个水分子。ATR-FTIR显示,RES-2PClH2O中,水分子伸缩振动峰和白藜芦醇的-OH伸缩振动峰、弯曲振动峰均发生了明显偏移,表明白藜芦醇中的-OH与PCl、水分子间均存在较强的氢键作用,2原料药间发生了相互作用。 药物稳定性测试证实,RES-2PClH2O在高温、高湿或强光照射等恶劣条件下长期储存具有较好的物理稳定性,与非吸湿性白藜芦醇共结晶后,PCl的抗湿稳定性得到显著提高。为研究PCl对白藜芦醇溶解度影响,评估了共晶水合物在纯水与醋酸/醋酸钠缓冲液介质中的平衡溶解度,并与原料药溶解度对比分析。结果显示,可溶性PCl与不溶性白藜芦醇共结晶同时影响了2种药物的溶解性能。在所制备的共晶水合物中,白藜芦醇溶解度明显提高、PCl溶解度显著降低。 为探究RES-2PClH2O共晶水合物形成后白藜芦醇、PCl溶出速率变化,对比在纯水与pH 4.5缓冲液2种介质中共晶水合物与原料药的溶出速率。溶出结果表明PCl作为白藜芦醇共晶形成的共形成物,显著促进白藜芦醇的释放同时延缓PCl的释放。本研究阐明了PCl作为白藜芦醇药物共晶形成物的可行性,为利用共结晶技术开发白藜芦醇药物共晶提供新的借鉴。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制