当前位置: 仪器信息网 > 行业主题 > >

依托度酸相关化合物

仪器信息网依托度酸相关化合物专题为您提供2024年最新依托度酸相关化合物价格报价、厂家品牌的相关信息, 包括依托度酸相关化合物参数、型号等,不管是国产,还是进口品牌的依托度酸相关化合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合依托度酸相关化合物相关的耗材配件、试剂标物,还有依托度酸相关化合物相关的最新资讯、资料,以及依托度酸相关化合物相关的解决方案。

依托度酸相关化合物相关的方案

  • 全自动在线前处理仪与LC-MS/MS联用系统测定尿液中毒品替代物依托咪酯及其代谢物
    本文建立了一种使用岛津全自动在线前处理仪CLAM-2030和超高效液相色谱三重四极杆质谱仪联用系统测定尿液中毒品替代物依托咪酯及其代谢物的分析方法。此联用系统从吸取样品、沉淀剂,到样品混匀、过滤,以及将处理完的样品输送到LC-MS/MS自动进样器,全部仪器自动完成,不涉及手动前处理操作,减小了人为误差,提高分析的准确度。本方法采用内标法定量,化合物线性、重复性良好,不同浓度水平加标实验考察回收率,各组分的回收率在95.5~115.5%之间,方法可靠性良好,适合尿液中依托咪酯及其代谢物的快速定量检测。
  • LC-MS/MS法测定尿液中毒品替代物依托咪酯及其代谢物
    使用岛津三重四极杆液质联用系统建立了尿液中依托咪酯及其代谢物检测方法。本方法采用内标法定量,化合物线性、重复性良好,不同浓度水平加标实验考察回收率,各组分的回收率在83.3-110.8%之间,方法可靠性良好。
  • 依托泊苷在ChromCorePhenyl上的分离(中国药典2020)
    采用纳谱分析ChromCore Phenyl色谱柱对依托泊苷系统适用性溶液和供试品溶液进行分离和检测, 主峰峰形良好, 周围无干扰杂峰, 该方法操作简单, 灵敏度高, 重复性好, 符合药典要求, 可用于依托泊苷中有效成分的分离和测定, 为该药物的质量保证提供检测依据。
  • 依托泊苷在3μm的ChromCorePhenyl上的分离(中国药典)
    采用纳谱分析ChromCore Phenyl色谱柱对依托泊苷系统适用性溶液和供试品溶液进行分离和检测, 主峰峰形良好, 周围无干扰杂峰, 该方法操作简单, 灵敏度高, 重复性好, 符合药典要求, 可用于依托泊苷中有效成分的分离和测定, 为该药物的质量保证提供检测依据。
  • Detelogy测定血液中依托咪酯的前处理解决方案
    近日,国家药监局、公安部、国家卫生健康委联合发布关于调整麻醉药品和精神药品目录的公告,公告中将依托咪酯列入第二类精神药品目录。这将意味着非法吸食、持有依托咪酯或贩卖依托咪酯烟粉、电子烟等将按涉毒处理。此公告于2023年10月1日起正式开始实施。
  • 是毒不是烟,远离“上头”电子烟!谱育科技GC-MS/MS助力依托咪酯检测分析
    谱育科技基于EXPEC 5231 气相色谱-三重四极杆质谱联用仪(GC-MS/MS)建立了测定电子烟油中依托咪酯定性、定量分析方法。在Full Scan模式下,通过NIST谱库进行定性分析,并计算检出限和定量限;在MRM模式下进行定量测定,同法计算检出限和定量限。结果显示MRM模式灵敏度远高于Full Scan模式,能更有效地检测痕量依托咪酯。
  • 依托咪酯在3μm的ChromCore120C18上的分离(中国药典)
    测试要求:中国药典要求依托咪酯的系统适用性溶液色谱图中, 杂质 I 峰与依托咪酯峰的分离度应符合要求, 理论板数按依托咪酯峰计算不低于2000。
  • GCMS法测定土壤和沉积物中酞酸酯类化合物
    本文建立了气相色谱质谱联用仪测定土壤和沉积物样品中酞酸酯类化合物的分析方法。结果表明:在20~500 μ g/L浓度范围内,各化合物的线性良好,相关系数均在0.999以上。以浓度为50 μ g/L的混合标准溶液重复进样6次,各组分峰面积的相对标准偏差(RSD%)均在4%以下,精密度良好。实际样品中加标,加标浓度为0.2 mg/kg水平下,土壤样品各组分的加标回收率分布在94.4~111.6%之间,沉积物样品各组分的加标回收率分布在96.9~104.0%之间。本方法可为土壤和沉积物样品中的酞酸酯类化合物的测定提供参考。
  • 化合物脱盐方面的应用
    C18AQ柱在Flash制备纯化样品中的一个典型应用是脱盐操作,即除去样品溶剂中的盐或缓冲液组分,以方便样品应用于后续研究中。在本案例中,某大极性化合物作为样品在C18AQ柱上进行了分离纯化,去除了粗品中所含的盐类杂质,且将样品从水相溶剂中转移至有机相体系中,从而方便了后续的旋蒸等操作,节省了溶剂及操作时间。
  • 使用 Poroshell 120 PFP 色谱柱开发 适用于分析紫杉醇中 USP 相关化合物的方法
    采用表面多孔型 Agilent Poroshell 120 PFP 4.6 × 250 mm, 4 µ m 色谱柱运行一种用于分析紫杉醇中 USP 相关化合物的分析方法。本研究采用美国药典介绍的检测紫杉醇中相关化合物的方法。将该分析方法转移至 3.0 × 100 mm,2.7 µ m Poroshell 120 PFP 色谱柱后,可节省大量的溶剂和时间。两种色谱柱均满足所有系统适用性要求。
  • GCMS法测定环境空气中6种羧酸类化合物含量
    本文建立了气相色谱质谱联用仪测定环境空气中羧酸类化合物的分析方法。结果表明:在标准曲线浓度范围内,各化合物的线性良好,相关系数均在0.999以上。以浓度为2.40 mg/L(乙酸)的混合标准溶液重复进样6次,各组分峰面积的相对标准偏差(RSD%)均在3%以下,精密度良好。实际样品中加标,加标浓度为66.667 μ g/m3(乙酸)水平下,环境空气样品各组分的加标回收率分布在100.2~103.7%之间。本方法可为环境空气样品中的羧酸类化合物的测定提供参考。
  • 多酸超分子化合物合成、结构与表征
    设计与合成多酸超分子有机-无机杂化化合物已经引起人们的广泛关注,不仅是由于它们结构的多样性和电子的多功能性,还因为它们在催化、药物、分子磁性和材料科学等领域的潜在应用。当前一个成功的合成策略是以多氧阴离子为无机建筑单元与有机配体构筑新型的杂化材料。本文通过常规方法,采用分子设计原理,调节反应条件和反应原料合成了五个未见文献报道的无机-有机杂化化合物:(C10H18N)4[SiMo12O40]nH2O(1) (C10H18N)4[SiMo12O40]2CH3CN4H2O(2) (C10H18N)6[α-As2W18O62]nH2O(3) (C10H18N)6[α-As2W18O62]6CH3CN6H2O(4)和(C6NO2H6)6[α-P2W18O62]10.5H2O(5)。利用单晶X-射线衍射测定了化合物2,4和5的结构,并初步探讨了它们的IR,NMR,CV等性质。在这些化合物中,质子化的有机配体、多氧阴离子、水分子和溶剂乙腈分子通过静电引力和氢键作用结合在一起,其晶体具有三维超分子结构。有机配体金刚烷胺和异烟酸具有生物活性,将其引入到多金属氧酸盐的骨架中作抗衡阳离子,可望提高多氧阴离子的药物活性。化合物的成功合成提供了Keggin型的[SiMo12O40]4-和Dawson型的[α-As2W18O62]6-与[α-P2W18O62]6-多氧阴离子与有机物质的反应模型,使我们得到杂多阴离子与有机物的反应信息,并且丰富了基于多金属氧酸盐为建筑块的无机-有机杂化物的物种。
  • 合成糖类化合物杂质提纯研究案例
    糖类化合物亦称碳水化合物,是多羟基(2个以上)的醛、酮类化合物或在水解后能产生这类化合物的物质,是自然界数量最多的有机化合物。糖类化合物是植物、动物和微生物的重要组分,与人类生活密切相关,是人体能量的主要来源,当然与药物研究也密不可分,如:葡萄糖注射液、右旋糖酐作血浆制剂等。近年来糖类化合物的研究有两个方向: ①化学家致力于糖类化合物的人工合成,这主要是为社会发展作长远打算,使人类食物将有可能逐步摆脱对农业的依赖。②研究糖类化合物与生命的关系,因为在生命体内糖与蛋白质、核酸常不可分离。
  • 极谱法测定抗坏血酸(维生素C)及其化合物
    极谱法测定抗坏血酸(维生素C)及其化合物摘要 抗坏血酸及其盐和酯类可以用滴定或者极谱方法测定。这里要指出的是,只有双伏安指示法与样品本身的染色无关。上述的方法中,极谱法是选择性最好的,因为其他的氧化还原性物质对测定没有干扰
  • 食品接触材料中全氟化合物的测定
    在食品接触材料领域,全氟化合物广泛用于不粘锅、纸制品等防水防油涂层。随着科学技术的进步,发现FPAS尤其是PFOA和PFOS广泛存在于环境以及生物体中,包括人体的血清、母乳、肝组织中,相关的实验表明,全氟化合物对生物体具有肝脏毒性、遗传毒性、免疫毒性以及致癌性,而膳食摄入是人体全氟化合物暴露的主要途径,因此,食品接触材料中的PFOA和PFOS所带来的食品安全日益受到重视。本文参考《GB 31604.35-2020食品接触材料及制品 全氟辛烷磺酸 (PFOS)和全氟辛酸(PFOA)的测定》提供的方法,使用快速溶剂萃取仪和全自动固相萃取系统,对食品接触材料中的PFOS和PFOA萃取和净化,并用液相色谱分离,电喷雾离子源(ESI)电离,多反应监测模式(MRM)检测。方法中测试的PFOS和PFOA的标准曲线线性相关系数R分别为0.9998和0.9995,加标回收率分别为86.3%和90.7%,RSD分别为6.5%和4.2%,满足标准要求酚A的净化,且效果良好。
  • 碱土金属、稀土金属、过渡金属化合物中的常规阴离子的测定——离子色谱法
    本文采用离子色谱,自再生抑制器,阴离子交换色谱柱,电导检测器测定过渡金属锆盐化合物(硝酸锆、氢氧化锆、醋酸锆、氧氯化锆、碳酸锆)中的常规阴离子,样品预处理简单、方法简便、快捷,能够准确地得到测定结果.
  • Waters:极性化合物合成氨基酸的主要成分含量检测
    本应用文献介绍了在制药、食品、生物分析、临床检测等方面的极性化合物的典型应用,帮助大家理解相关方面的信息
  • 使用 GC/MSD 系统分析透皮贴剂中的可提取化合物/可浸出化合物棕榈酸
    运用两台 Agilent 5977A 系列气质联用系统,通过对利卡多因和离型膜的分析研究透皮给药系统中的可提取化合物和可浸出化合物。使用大体积液体进样技术确定了丙酮、二氯甲烷和己烷提取液中含有塑料和粘合添加剂。使用高温顶空和液体采样技术也鉴定出了药物成分。
  • 天津兰力科:三乙醇胺-多酸分子基化合物的合成表征及性质研究
    本论文以三乙醇胺-多酸分子基化合物为体系,研究该类有机-无机杂化化合物的合成条件及规律,探索三乙醇胺与不同的多阴离子的作用方式。在水溶液中合成了6种有机-无机杂化的多酸分子基化合物,通过X射线单晶衍射确定了化合物的结构,利用XRD、IR、NMR、TG-DTA等测试手段对其进行了表征,对化合物光致变色性质、热稳定性和电化学进行了初步研究。1.在强酸性条件下合成并表征了以质子化的三乙醇胺为反荷离子的同多和杂多金属氧酸盐:Na2(NH(CH2CH2OH)3)5[HMo36O112(H2O)16]?67H2O(1)[(CH2CH2OH)3NH]2HPMo12O40?16H2O(2)[(CH2CH2OH)3NH]6P2Mo18O62?30H2O(3)通过调控化合物(2)的水溶液的pH值,在弱酸性条件下使三乙醇胺去质子化,合成了化合物[(CH2CH2OH)3N]4Na2HPMo12O40?22H2O(4)。2.通过水溶液中的自组装过程,以三乙醇胺为有机成分对高核同多钼酸盐进行功能化,合成并表征了一种有机-无机杂化化合物:Na2[NH(CH2CH2OH)3]4≈72H2O(5)该化合物是已报道的第二例关于的有机-无机杂化化合物,也是首次将有机配体和高核同多酸以共价键连接起来。3.以三乙醇胺为“包裹试剂”合成新型的Dawson结构多钼钒酸盐:[NH(CH2CH2OH)3]6V2Mo18O62ca.3H2O(6)利用质子化的三乙醇胺将多阴离子建筑块包裹起来,达到既限制其快速聚集又能稳定得到的多酸阴离子的目的。化合物6具有未预测到的2:18的V/Mo比,这是首次将非主族元素引入到钼系Dawson结构的杂原子位置。该化合物的合成不仅加深了对Dawson结构的认识,也为未来更多的理论和实验工作奠定了一定的基础。
  • 环境空气中醛、酮类化合物的测定
    环境空气中醛、酮类化合物的测定执行标准:《HJ683-2014 环境空气醛、酮类化合物的测定 高效液相色谱法》仪器配置:福立LC5190低压超高效液相色谱仪,配备有脱气机、二元高压梯度泵、自动进样器、柱温箱及紫外检测器
  • 全自动固相萃取串联质谱法分析人血清中的18种全氟化合物
    全氟及多氟类化合物PFASs从上世纪50 年代开始使用,是一类人为制造的化学品,常作为表面活性剂被用于润滑剂、涂料、洗护用品、纺织品、农药、防火材料等方面。在全球范围内,PFASs 污染非常普遍,据研究报道,在环境介质( 水、土和气)、人体样本、食物和水生生物中均有检出。毒理学研究表明,PFASs 可能导致肝毒性、致癌性、免疫毒性、生殖毒性以及内分泌干扰毒性等,故对全氟化合物的检测显得尤为重要。本方法采用了在线固相萃取-液相色谱/串联质谱(SPE-LC/MS-MS)联用系统对人血清的全氟化合物进行分析。采用在线SPE方法,离心后的400微升血清样品中的目标化合物被浓缩在C18 HD小柱上。然后用流动相(20mM醋酸铵 / 乙腈)在0.6 mL/min的流速下用梯度方式将目标化合物洗脱下来。采用C8反相分析柱在12分钟内实现色谱分离。为了准确定性并进行确证,配合使用MS/MS技术对每个组分采集两种多反应监测(MRM)跃迁数据。对于人血清中的大多数全氟化合物,方法检测限 (LOD)为0.1 ng / mL。这种新开发的方法具有较高的灵敏度和准确性,只需进行最少的样品预处理,并且运用了全自动在线SPE技术,分析通量较高,适用于检测人血清中的全氟化合物。
  • r-亚油酸乙酯 脂肪酸乙酯类化合物的分析
    r-亚油酸乙酯 脂肪酸乙酯类化合物的分析r-亚油酸是月见草油所含的成分,通过发酵生产来制造,发酵产物经过乙酯化后进行了组成分析,分析结果如图所示。
  • Waters:极性化合物抗坏血酸及异抗坏血酸的主要成分含量检测
    本应用文献介绍了在制药、食品、生物分析、临床检测等方面的极性化合物的典型应用,帮助大家理解相关方面的信息
  • GC-FID 分析空气中的酰胺类化合物
    采用胺类分析专用柱TG-5MS AMINE 进行分离,两种酰胺类化合物可以完全分离,且峰形良好,没有明显拖尾现象,分离效果佳。此外,采用赛默飞世尔全新一代TRACE 1310 气相色谱仪,结合其安装快捷方便,测定灵敏度高、重复性好、结果可靠等优点,本文完全满足空气中酰胺类化合物的分析与检测需要。
  • GCMS测定水质有机氯农药和氯苯类化合物
    本法参考(HJ 699-2014)《水质有机氯农药和氯苯类化合物的测定气相色谱-质谱法》,采用液液萃取或固相萃取方法,萃取样品中有机氯农药和氯苯类化合物,萃取液经脱水、浓缩、净化、定容后经气相色谱质谱仪分离、检测。根据保留时间、碎片离子质荷比及不同离子丰度比定性,内标法定量。
  • 采用 Agilent Poroshell 120 EC-CN 和 SB-C8 色谱柱及 USP 方法分析华法林钠片中的华法林相关化合物 A
    按照美国药典(USP) 华法林钠片分析方法测定华法林、华法林相关化合物A 和对羟苯甲酸丙酯。与USP 建议的5 μ m 色谱柱相比,使用表面多孔颗粒填料的Agilent Poroshell 120 色谱柱可提高华法林钠片色谱纯度和含量测定分析。为了节约时间和溶剂,本文采用了Poroshell 120 色谱柱并根据USP 第621 章的指导原则对各分析方法进行了调整。结果表明,经改进的表面多孔色谱柱分析方法可满足所有色谱系统要求。
  • 用实时飞行时间质谱直接分析清醒状态果蝇的表皮烃类化合物
    在哺乳动物和昆虫世界里,信息素强烈影响其社会行为,如攻击性和配偶识别。果蝇的信息素以表皮烃类形式存在,在求偶中发挥着重要作用。GC/MS是目前研究果蝇表皮烃类的主要分析工具。虽然其重现性和灵敏度很高,但需要将果蝇放在毁灭性的有机溶剂中,因而无法再对其进一步的行为进行研究。我们提出了一种用实时直接分析(DART)MS分析活体动物烃类和其它表面分子的技术。用一种钢制小探针从清醒状态的果蝇腹部取样进行表面烃类分析。对探针进行DART质谱分析,检测以前鉴定过的许多不饱和烃类化合物质子化分子离子的质荷比(m/z)。与用GC/MS研究的结果一致,雄性和雌性的化学成分有很大差异。 我们还观察到了雄性表达轮廓图的空间差异。首先从一只处子状态的雌性果蝇取样,然后在其成功交配后45分钟和90分钟再取样,结果显示交配后顺vaccenyl醋酸酯、tricosene和pentacosene 的质谱信号强度增加。本方法适用于行为学研究时对个体动物的化学轮廓进行近瞬时分析,扩展了信息素介导的行为学模型。 已有研究表明,许多挥发性化学信号强烈影响着哺乳动物和昆虫的复杂社会行为,包括配偶选择、亲缘识别、攻击与聚集等。在昆虫和节肢动物中,这类信号,许多是表皮烃类化合物,除影响求偶、群体识别和攻击外,还可能标志其在社会网络中的角色。对果蝇的研究文献表明,烃类化合物起着催欲剂或抑制剂的作用。特别是,许多研究都将重点放在z-11-octadecenyl 醋酸酯[顺-vaccenyl 醋酸酯 (cVA)]上,认为其既是配偶识别的介导剂,又是攻击因子。通过提供从感觉输入到行为输出的信息,可以解析信息素受体和上游中性通路,为描绘复杂社会行为通路提供的方法。表征昆虫烃类化合物所用的主要方法一直是GC/MS联用法。GC/MS分析除个别异构体不能分离外,可以定量测定烃类化合物。虽然这种方法重现性和灵敏度很高,但却有三个局限。首先,提取时要把动物放置到己烷或氯仿中,这种条件是毁灭性的,因此已无法在对其下一步的行为进行研究。第二,所用的溶剂和检测条件对表面化合物的类别是有选择性的,其它行为相关的表皮信息将无法用现有方法检测。第三,GC/MS分析时间较长,一般需要几十分钟到1小时以上。针对这些局限,我们提出了一种分析清醒状态果蝇表皮烃类化合物和其它表面分子的方法。常压质谱是最近发展起来的技术,以最少的样品制备进行质荷比(m/z)测定。常压质谱的一种模式就是实时直接分析(DART),采用激发态氦原子使化合物直接从样品表面解吸并离子化,不需要化学提取或高真空条件。用DART MS研究果蝇烃类化合物,较过去的GC/MS方法有了较大改善,在平行进行行为学研究的同时,实现了动物化学轮廓图的快速分析。本方法可以追踪同一动物在其社会交往前后化学轮廓图的变化,控制表皮烃类表达的个体变化,还可以从所观察的个体动物中发现与行为差异相关的化学信号。采用DART MS技术,可以以高重现性对活体果蝇表皮进行化学轮廓分析、检测雄性和雌性轮廓图的差异、检测雄性烃类表达的空间特异性,并监测同一个体社会交往见后烃类化合物的变化。
  • TD-GCMS 法测定固定污染源中酯类化合物的含量
    摘要:本文建立了热脱附-气相色谱质谱联用仪测定固定污染源排气中8种酯类化合物含量的分析方法。结果表明:在5~500 ng浓度范围内,各化合物的线性相关系数R均在0.999以上,线性关系良好。方法检出限为0.014~0.077 ng。取 50 ng 的标准溶液重复进样6次,各组分峰面积的相对标准偏差(RSD%)均在3.87%以下,精密度良好。实际样品在含量为50 ng的加标水平下,各组分的基质加标回收率为70.6~97.8 %。本方法参照HJ732-2014,HJ734-2014,GBZ/T 160.63-2007和GBZ/T160.64-2007等标准,操作简单、灵敏度高,可作为固定污染源中酯类化合物的测定提供参考。
  • 应用于糖类化合物的分离纯化
    糖类化合物是由碳、氢、氧三元素组成的有机物。从化学结构上看,糖类是多羟基醛酮以及它们的多聚体,在化学式的表现上类似于“碳”与“水”的聚合,故又称碳水化合物,根据其结构不同,可分为单糖、双糖和多糖。糖类化合物具有众多的用途,涵盖了食品、医药、能源、工业等多个领域。它们不仅在食品工业中用于调味和增加口感,还在医药领域用于药物生产和治疗疾病,同时也是能源和工业生产中的重要原料。糖类化合物的广泛应用为人类的生活带来了便利,也推动了相关产业的发展。近年来糖类化合物的研究有两个方向: ①化学家致力于糖类化合物的人工合成,这主要是为社会发展作长远打算,使人类食物将有可能逐步摆脱对农业的依赖。②研究糖类化合物与生命的关系,因为在生命体内糖与蛋白质、核酸常不可分离。糖类化合物分离纯化检测由于缺乏发色基团,导致其无紫外吸收或紫外吸收很弱,常规快速液相制备色谱系统通常只配备紫外 (UV) 检测器,不能检测缺乏发色基团的目标化合物。而蒸发光散射检测器(Evaporative Light-scattering Detector)是通用型检测器,可以检测挥发性低于流动相的化合物,特别是没有紫外吸收的有机物质。本案例主要探讨使用SepaBean machine快速液相制备色谱系统搭配ELSD检测器(蒸发光散射检测器)对糖类化合物进行制备纯化,为糖类化合物的制备纯化提供了一种可行的方案。
  • 采用安捷伦单四极杆 LC/MS 系统联用二极管阵列检测器和蒸发光散射检测器对药物发现化合物库中的化合物进行纯度评定
    在进行合成化合物的生物活性筛选之前,支持化学制药的药物学家和分析科学家通常会评定它们的纯度。本文采用通用方法结合多检测器系统,对 30 个库化合物进行了快速、自动化的纯度评定。Agilent 6130 系列单四极杆 LC/MS 系统与紫外 (UV) 和蒸发光散射检测器 (ELSD) 联用,可以检测到单独采用一种检测模式可能丢失的杂质峰。安捷伦 Analytical Studio Reviewer 软件为化合物的确证和纯度的评定提供了更简洁的用户数据处理界面。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制