当前位置: 仪器信息网 > 行业主题 > >

椰油酰胺丙基氧化胺

仪器信息网椰油酰胺丙基氧化胺专题为您提供2024年最新椰油酰胺丙基氧化胺价格报价、厂家品牌的相关信息, 包括椰油酰胺丙基氧化胺参数、型号等,不管是国产,还是进口品牌的椰油酰胺丙基氧化胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合椰油酰胺丙基氧化胺相关的耗材配件、试剂标物,还有椰油酰胺丙基氧化胺相关的最新资讯、资料,以及椰油酰胺丙基氧化胺相关的解决方案。

椰油酰胺丙基氧化胺相关的论坛

  • 椰油酰胺丙基甜菜碱

    椰油酰胺丙基甜菜碱——两性离子表面活性剂由于两性表面活性剂具有良好的表面活性剂性能、低刺激性以及被称为解毒性的刺激缓和性能(A.L.L. Hunting, 1985 ; G. Panzer, 1980),故它们被广泛地应用于温和的无泪香波和敏感的皮肤清洁剂。然而,在过去几年中,由于对两性表面活性剂基本特性的不断关心,人们进行了深入的研究;其结果显示,除了固有的特性之外,两性表面活性剂有着更多的功能属性。罗地亚公司的研究结果显示,通常被看作是杂质的副产品在控制化妆品配方发泡性和流变性方面发挥着十分重要的作用。从而人们可以通过调整产品组分,提供特制的性能。

  • 椰油酰胺丙基甜菜碱中一氯乙酸、二氯乙酸和羟基乙酸的测定

    椰油酰胺丙基甜菜碱中一氯乙酸、二氯乙酸和羟基乙酸的测定

    [align=center][b]椰油酰胺丙基甜菜碱中一氯乙酸、二氯乙酸和羟基乙酸的测定[/b][/align] 椰油酰胺丙基甜菜碱(CAB)是一种两性表面活性剂,因其对眼睛和皮肤刺激性低,对头发和皮肤有护理效果并产生大量稳定泡沫,在肥皂和硬水中有出色的起泡性和洗涤性,故广泛用于香波和泡沫浴液等洗涤用品中。 在工业生产中,常使用一氯乙酸(MCA)作为原料生产CAB。而工业MCA中含有少量的二氯乙酸(DCA),DCA是生物学证实具有潜在致癌风险的物质,同时在生产过程中残留的MCA对皮肤、黏膜有很强的腐蚀性,通常采用水解法将MCA转化为刺激性更小的羟基乙酸(GCA)。椰油酰胺丙基甜菜碱产品的指标含量分析中,一般要求一氯乙酸<20ppm,二氯乙酸<300ppm,羟基乙酸<0.5%。[b]色谱条件:[/b]色谱柱:[b]Kromasil C8(4.6*250mm,5μm)[/b]柱 温:24℃检测器:紫外检测器波 长:200nm流动相:乙腈:水=10:90(每1000mL中加入2.0mL磷酸)流 速:1ml/min进样体积:20μL采集时间:10min[img=,690,219]https://ng1.17img.cn/bbsfiles/images/2018/10/201810291003374445_9066_2428063_3.png!w690x219.jpg[/img] 图1 :一氯乙酸、二氯乙酸和羟基乙酸混标色谱图[img=,690,328]https://ng1.17img.cn/bbsfiles/images/2018/10/201810291003547039_780_2428063_3.png!w690x328.jpg[/img] 图2 :椰油酰胺丙基甜菜碱样品色谱图[b]总结[/b]参考国标GB/T 28193-2011表面活性剂中氯乙酸(盐)残留量的测定方法,建立高效液相色谱法,一次性测定样品中一氯乙酸、二氯乙酸和羟基乙酸的含量。其优点是以高比例水相作为流动相,样品不需要进行萃取、酯化等前处理,操作方便,快速高效。使用Kromasil C8色谱柱分离样品中一氯乙酸与其余组分,效率高,分离度好,结果可靠,可为椰油酰胺丙基甜菜碱生产厂家提高产品质量提供参考。[b]注:由深圳爱湾医学检验实验室验证 [/b]

  • (分享)表面活性剂常用缩略词释义

    SAA  表面活性剂a-SAA 阴离子表面活性剂n-SAA 非离子表面活性剂c-SAA 阳离子表面活性剂APG 非离子烷基糖苷  CAPG 阳离子烷基糖苷  LAS  直链烷基苯磺酸盐(软性苯磺酸盐)AS   烷基硫酸盐SAS  仲烷基硫酸盐AES  脂肪醇聚氧乙烯醚硫酸盐ABS  硬性苯磺酸盐AOS  烯基磺酸盐MES  脂肪酸甲酯磺酸盐AEC 醇醚羧酸盐  MES 脂肪酸甲酯磺酸盐 K12 脂肪醇硫酸盐(钠)  AESS  脂肪醇聚氧乙烯醚琥珀酸酯磺酸钠AE 脂肪醇聚氧乙烯醚  MAP 单烷基磷酸酯  FMEE 脂肪酸甲酯乙氧基化合物  CMEA 椰油酸单乙醇酰胺 6501 椰油酸二乙醇酰胺  LDEA 月桂基二乙醇酰胺  FMEA 脂肪酸单乙醇酰胺 LAPB 月桂酰胺丙基甜菜碱 CAPB 椰油酰胺丙基甜菜碱 CAB 椰油酰胺甜菜碱CAMA 椰油基咪唑啉甜菜碱 LAPB 月桂酰胺丙基甜菜碱LAPO 月桂酰胺丙基氧化胺 CAPO 椰油酰胺丙基氧化胺

  • 【原创】测益母草中盐酸水苏碱?来看丙基酰胺键合硅胶柱

    【原创】测益母草中盐酸水苏碱?来看丙基酰胺键合硅胶柱

    2010年版药典(一部)中,对益母草中盐酸水苏碱的测定有如下描述(以丙基酰胺键合硅胶为填充剂):http://ng1.17img.cn/bbsfiles/images/2011/01/201101080907_272670_801_3.jpg那么为什么要用丙基酰胺柱来测盐酸水苏碱呢?丙基酰胺硅胶基质的柱子是什么柱子呢? 首先我们要了解盐酸水苏碱的特性,盐酸水苏碱的极性极大,普通的反相色谱对它的保留分离能力较弱,通常在死时间里流出而无法得到分离,而亲水作用色谱HILIC能为极强性的化合物提供良好的保留,在此类化合物上应用广泛。 目前已有多种商品化的HILIC色谱柱,多为硅胶基质,键合不同极性基团,如丙基酰胺基,酰胺基,聚琥珀亚酰胺等极性基团,氨基键合硅胶柱由于使用寿命较短,键合相容易流失,造成保留 丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量;极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.博纳艾杰尔推出的Venusil HILIC (丙基酰胺键合硅胶),就是一样一款非常适合于益母草中盐酸水苏碱测定的柱子,测定方法及谱图如下:色谱柱:Venusil HILIC (丙基酰胺键合硅胶),4.6×250mm,5µm,100Å(订货号:VH952505-0)流动相:乙腈-0.2%冰醋酸(80:20)流速:0.5mL/min柱温:25℃进样体积:20μL检测器:ELSD蒸发光散射检测器http://ng1.17img.cn/bbsfiles/images/2010/11/201011291710_262707_801_3.jpg益母草供试品含量测定色谱图(主峰保留时间:22.697min)

  • 【资料】化妆品用增稠剂

    摘要:综述了使用于化妆品的增稠剂:无机盐类、表面活性剂类、水溶性高分子类和脂肪醇脂肪酸类等共200多种。增稠剂通过与表面活性剂形成棒状胶束、与水作用形成三维水化网络结构、或利用自身的大分子长链结构等使体系达到增稠的目的。详细介绍了增稠剂的配伍性能、使用范围、影响因素和增稠机理分类。在产品配方开发过程中根据配方的pH值、稳定性、刺激性、泡沫、配方成本、是否透明、流变形态、外观颜色、电解质稳定性和法规等方面的要求综合进行考虑,才能有效地选用恰当的增稠剂。只有不断在实际中总结经验,才能真正懂得如何有效地选用增稠剂。   关键词:化妆品;增稠剂;水溶性高分子;表面活性剂   配方师在进行配方设计时通常要考虑配方最终产品的流变形态,适当的流变形态能给产品带来美感,便于使用和生产,对配方的稳定性也有一定的影响。有些产品的流变形态甚至对产品的使用起很大作用,比如牙膏,要求产品的触变性好,因为在挤出时要求保持较好的形态,在刷牙时要求牙膏在外力作用下能够迅速变稀分散开来。流体的流变形态分为牛顿流体和非牛顿流体,牛顿流体为剪切应力与剪切速率成正比的流体;非牛顿流体又有假塑性流体、塑性流体和胀流体。假塑性流体和塑性流体都属于剪切变稀的流体,但塑性流体具有屈服值。胀流体属于剪切变稠的流体。要调节产品的流变形态,配方师是在配方中加入增稠剂达到目的。增稠剂简单地说就是提高配方产品黏度或稠度的一类物质,增稠剂加入量不大,但是能够大幅提高产品的黏度或稠度。配方师在选择增稠剂时需要考虑的因素较多:配方主体是选择增稠剂的首要考虑因素,什么样的体系决定采用什么样的增稠剂;其次是产品形态,产品形态要求不同类型的增稠剂,有些要求牛顿流体,有些要求塑性流体,根据不同的需要采用不同的增稠剂;在最终产品中增稠剂的比例、配方的成本也是增稠剂选择的重要因素,如果配方的成本让生产商和消费者都难于承受,那么这配方是没有应用价值的,平衡增稠剂的效果及其成本是非常重要的。另外配方的理化指标也是选择增稠剂必须考虑的,比如配方的稳定性、泡沫等,这些都是配方所关注的一些重要指标,有些增稠剂虽然增稠效果理想,但稳定性差或是消泡太厉害也是没有价值的。一般情况下几种增稠剂的协调增稠比用单一增稠剂对产品的最终流变形态有更好的效果。   1 增稠剂分述   能够作为增稠剂的物质很多,从相对分子质量看有低分子增稠剂,也有高分子增稠剂;从功能团来看有电解质类、醇类、酰胺类、羧酸类和酯类等等。下面按化妆品原料的分类方法对增稠剂进行分类,表l列出了目前使用的增稠剂。   1.1 低分子增稠剂   1.1.1 无机盐类   用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。因此电解质加入量一般质量分数为1%-2%,而且和其他类型的增稠剂共同作用,使体系更加稳定。   1.1.2 脂肪醇、脂肪酸类   脂肪醇、脂肪酸是带极性的有机物,有文章把它们看成为非离子表面活性剂,因为它们既有亲油基团,又有亲水基团。少量的该类有机物的存在对表面活性剂的表面张力、omc及其他性质有显著影响,其作用大小 是随碳链加长而增大,一般来说呈线,陛变化关系。其作用原理是脂肪醇、脂肪酸能插入(参加)表面活性剂胶团,促进胶团的形成,同时由于该极性有机物与表面活性剂的分子间有强烈的相互作用(碳氢链间的疏水作用加极性头间的氢键结合),使两分子在表面上定向排列得很紧密,大大改变了表面活性剂胶束性质,达到增稠的效果。   表1 增稠剂的分类   一、非离子SAA   1、无机盐    氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等   2、脂肪醇和脂肪酸   月桂醇、肉豆蔻醇、C12-15醇、C12-16醇、癸醇、己醇、辛醇、鲸蜡醇、硬脂醇、山嵛醇、月桂酸、C18-36酸、亚油酸、亚麻酸、肉豆蔻酸、硬脂酸、山嵛酸等   3、烷醇酰胺类   椰油二乙醇酰胺、椰油单乙醇酰胺、椰油单异丙醇酰胺、椰油酰胺、月桂酰-亚油酰二乙醇酰胺、月桂酰-豆蔻酰二乙醇酰胺、异硬脂二乙醇酰胺、亚油二乙醇酰胺、豆蔻二乙醇酰胺、豆蔻单乙醇酰胺、油二乙醇酰胺、棕榈单乙醇酰胺、蓖麻油单乙醇酰胺、芝麻二乙醇酰胺、大豆二乙醇酰胺、硬脂二乙醇酰胺、硬脂单乙醇酰胺、硬脂单乙醇酰胺硬脂酸酯、硬脂酰胺、牛脂单乙醇酰胺、小麦胚芽二乙醇酰胺、PEG(聚乙二醇)-3月桂酰胺、PEG-4油酰胺、PEG-50牛脂酰胺等   4、醚类   鲸蜡醇聚氧乙烯(3)醚、异鲸蜡醇聚氧乙烯(10)醚、月桂醇聚氧乙烯(3)醚、月桂醇聚氧乙烯(10)醚、Poloxamer-n(乙氧基化聚氧丙烯醚)(n=105、124、185、237、238、338、407)等   5、酯类    PEG-80甘油基牛油酯、PEC-8PPG(聚丙二醇)-3二异硬脂酸酯、PEG-200氢化甘油基棕榈酸酯、PEG-n(n=6、8、12)蜂蜡、PEG-4异硬脂酸酯、PEG-n(n=3、4、8、150)二硬脂酸酯、PEG-18甘油基油酸酯/椰油酸酯、PEG-8二油酸酯、PEG-200甘油基硬脂酸酯、PEG-n(n=28、200)甘油基牛油酯、PEG-7氢化蓖麻油、PEG-40霍霍巴油、PEG-2月桂酸酯、PEG-120甲基葡萄糖二油酸酯、PEG-150季戊四硬脂酸酯、PEG-55丙二醇油酸酯、PEG-160山梨聚糖三异硬脂酸酯、PEG-n(n=8、75、100)硬脂酸酯、PEG-150/癸基/SMDI共聚物(聚乙二醇-150/癸基/甲基丙烯酸酯共聚物)、PEG-150/硬脂基/SMDI共聚物、PEG-90。异硬脂酸酯、PEG-8PPG-3二月桂酸酯、鲸蜡豆蔻酯、鲸蜡棕榈酯、C18—36酸乙二醇酯、季戊四硬脂酸酯、季戊四山嵛酸酯、丙二醇硬脂酸酯、山嵛酯、鲸蜡酯、三山嵛酸甘油酯、三羟基硬脂酸甘油酯等   6、氧化胺   肉豆蔻氧化胺、异硬脂氨基丙基氧化胺、椰油氨基丙基氧化胺、小麦胚芽氨基丙基氧化胺、大豆氨基丙基氧化胺、PEG—3月桂氧化胺等   二、两性SAA   鲸蜡甜菜碱、椰油氨基羟磺基甜菜碱等   三、阴离子SAA   油酸钾、硬脂酸钾等   四、水溶性高分子   1、纤维素类   纤维素、纤维素胶、羧甲基羟乙基纤维素、鲸蜡羟乙基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、羧甲基纤维素等   2、聚氧乙烯类   PEG-n(n=5M、9M、23M、45M、90M、160M)等

  • 【求助】丙稀酰胺,氧化双三丁基锡怎么不出峰?

    丙烯酰胺(1000ppm左右),氧化双三丁基锡TBTO(800ppm左右)怎么不出峰?用的是DB-XLB非极性的柱子15*0.25*0.25开始丙稀酰胺,氧化双三丁基锡试过几十ppm,没出峰,浓度加大到800-1000还是没出峰。做这些物质有哪些标准啊?升温程序:40度-保持1.5min; 120度/Min-155-保持1min; 20度/min-300度-保持8min; 进样口和传输线分别是270,280度。MS程序:0-18MIN采集信号(其中1.8-2.3关闭灯丝避开溶剂)峰难看一点没关系,但为什么会不出来呢,是分解掉了?还是化合物不稳定?查不到什么资料另外2-甲氧基乙醇和2-乙氧基乙醇虽然出峰了,但峰超级难看,是用DB-XLB这种非极性的柱子做不好吗?哪个做过的,分享下经验和注意事项?http://simg.instrument.com.cn/bbs/images/brow/em09511.gif修改:不好意思,刚才SIM时没把二甲苯麝香的离子加进去,现在出来了,但20ppm峰不高,估计要买固体标物配高浓度的来做

  • 【第三届原创参赛】C18与丙基酰胺硅胶柱对肌肽分离能力比较

    维权声明:本文为huomeng520原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。本实验建立了一种以牛肉中肌肽为代表,反相分离测定亲水性物质的方法。该方法选用丙基酰胺键合硅胶亲水作用色谱柱,反相分析测定牛肉中亲水性成分—肌肽的含量。该方法操作简单,样品无需衍生处理。通过该法结合 H P L C—M S联用技术确定了保留时间为10.276~10.609min的色谱峰就是肌肽峰。将该色谱柱与常规C18色谱柱进行对比后发现,该色谱柱对L-肌肽的保留能力和分离能力均优于C18柱。此法精密度实验显示其相对标准偏差(RSD%)为1.06%,最低检测限为4.59×10-2mg/L。最后实验结果表明:亲水性色谱柱反相使用时,完全适用强极性物质含量的测定,通过实际样品分析检测,每克牛肉的肌肽含量为0.011克。引言L-肌肽(L-carnosine)是一种水溶性二肽,在1900年由Gulewitsch和Amiradzhibi在牛肉提取物中发现。L-肌肽天然存在于多种脊椎动物的骨骼肌以及新陈代谢旺盛的脑中。它具有广泛的生物活性,如抗氧化、保护膜的完整性、抗糖基化、质子缓冲、调节巨噬细胞活性等,是维持机体正常状态的一种含量很低的物质。L-肌肽的结构为β-丙氨酰—L-组氨酸。L-肌肽的结构如图1所示。从化学结构上看,肌肽由于含有较多的极性基团(-OH、-NH2、-COOH),水溶性特别强。肌肽的正辛醇—水分散系数为-2,远远小于0,理论上说明了L-肌肽的强极性,不溶于任何有机溶剂,属于亲水性成分。近年来,L-肌肽的研究一直受到人们关注。其含量测定方法一直在探索中。目前已报道的L-肌肽的分析方法主要以高效液相色谱法为主,且多采用柱前衍生化法,这种方法试剂成本高,样品预处理繁琐,且分析时间长,不利于对样品的快速检测。也曾有报道将离子色谱和毛细管电泳色谱应用于L-肌肽的测定,但两种方法较为复杂,且仪器操作较为繁琐。将氨基柱应用于反相高效液相色谱,能实现对样品中L-肌肽快速、准确地检测,但氨基柱不耐水解,长时间在反相条件下使用,会缩短氨基柱的使用寿命。所以应选择一款既耐水解,柱效又高的色谱柱对牛肉中L-肌肽进行分析。色谱柱填料通常是以硅胶为载体,在硅胶表面进行修饰。C18色谱填料是在硅胶表面键合非极性的十八烷基碳,属于非极性色谱填料。根据“相似相亲原则”,应选用极性较强的色谱柱分析极性物质,普通的C18反相色谱柱属于非极性色谱柱,对亲水性成分没有保留能力,因此不能满足对此类物质的分析要求。实验中选用丙基酰胺键合硅胶柱,该色谱柱填料以硅胶为载体,表面键合丙基酰胺基团,极性强,耐水解,适用于对极性物质的分离。马婧玮采用此柱,实现了对亲水性井冈霉素A快速准确的定量分析。本次实验从L-肌肽的性质出发,结合色谱柱的性质,将丙烯酰胺键合硅胶色谱柱与常规C18柱进行对比,并借鉴田颖刚等人已发表的L-肌肽质谱分析条件,选择分离效果最好的色谱柱与电喷雾质谱串联使用,对牛肉中肌肽进行了分析鉴定。

  • 【转帖】化妆品用增稠剂

    化妆品用增稠剂刘 义,广州市浪奇实业股份有限公司,广东 广州510660高 俊,汽巴精化(中国)有阳公司广州公司,广东 广州510095 摘要:综述了使用于化妆品的增稠剂:无机盐类、表面活性剂类、水溶性高分子类和脂肪醇脂肪酸类等共200多种。增稠剂通过与表面活性剂形成棒状胶束、与水作用形成三维水化网络结构、或利用自身的大分子长链结构等使体系达到增稠的目的。详细介绍了增稠剂的配伍性能、使用范围、影响因素和增稠机理分类。在产品配方开发过程中根据配方的pH值、稳定性、刺激性、泡沫、配方成本、是否透明、流变形态、外观颜色、电解质稳定性和法规等方面的要求综合进行考虑,才能有效地选用恰当的增稠剂。只有不断在实际中总结经验,才能真正懂得如何有效地选用增稠剂。 关键词:化妆品;增稠剂;水溶性高分子;表面活性剂 中图分类号:TQ658 文献标识码:A 文章编号:1001-1803(2003)01-0044-05 配方师在进行配方设计时通常要考虑配方最终产品的流变形态,适当的流变形态能给产品带来美感,便于使用和生产,对配方的稳定性也有一定的影响。有些产品的流变形态甚至对产品的使用起很大作用,比如牙膏,要求产品的触变性好,因为在挤出时要求保持较好的形态,在刷牙时要求牙膏在外力作用下能够迅速变稀分散开来。流体的流变形态分为牛顿流体和非牛顿流体,牛顿流体为剪切应力与剪切速率成正比的流体;非牛顿流体又有假塑性流体、塑性流体和胀流体。假塑性流体和塑性流体都属于剪切变稀的流体,但塑性流体具有屈服值。胀流体属于剪切变稠的流体。要调节产品的流变形态,配方师是在配方中加入增稠剂达到目的。增稠剂简单地说就是提高配方产品黏度或稠度的一类物质,增稠剂加入量不大,但是能够大幅提高产品的黏度或稠度。配方师在选择增稠剂时需要考虑的因素较多:配方主体是选择增稠剂的首要考虑因素,什么样的体系决定采用什么样的增稠剂;其次是产品形态,产品形态要求不同类型的增稠剂,有些要求牛顿流体,有些要求塑性流体,根据不同的需要采用不同的增稠剂;在最终产品中增稠剂的比例、配方的成本也是增稠剂选择的重要因素,如果配方的成本让生产商和消费者都难于承受,那么这配方是没有应用价值的,平衡增稠剂的效果及其成本是非常重要的。另外配方的理化指标也是选择增稠剂必须考虑的,比如配方的稳定性、泡沫等,这些都是配方所关注的一些重要指标,有些增稠剂虽然增稠效果理想,但稳定性差或是消泡太厉害也是没有价值的。一般情况下几种增稠剂的协调增稠比用单一增稠剂对产品的最终流变形态有更好的效果。1 增稠剂分述 能够作为增稠剂的物质很多,从相对分子质量看有低分子增稠剂,也有高分子增稠剂;从功能团来看有电解质类、醇类、酰胺类、羧酸类和酯类等等。下面按化妆品原料的分类方法对增稠剂进行分类,表l列出了目前使用的增稠剂。1.1 低分子增稠剂1.1.1 无机盐类 用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。因此电解质加入量一般质量分数为1%-2%,而且和其他类型的增稠剂共同作用,使体系更加稳定。1.1.2 脂肪醇、脂肪酸类 脂肪醇、脂肪酸是带极性的有机物,有文章把它们看成为非离子表面活性剂,因为它们既有亲油基团,又有亲水基团。少量的该类有机物的存在对表面活性剂的表面张力、omc及其他性质有显著影响,其作用大小是随碳链加长而增大,一般来说呈线,陛变化关系。其作用原理是脂肪醇、脂肪酸能插入(参加)表面活性剂胶团,促进胶团的形成,同时由于该极性有机物与表面活性剂的分子间有强烈的相互作用(碳氢链间的疏水作用加极性头间的氢键结合),使两分子在表面上定向排列得很紧密,大大改变了表面活性剂胶束性质,达到增稠的效果。表1 增稠剂的分类一、非离子SAA 1、无机盐 氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等2、脂肪醇和脂肪酸 月桂醇、肉豆蔻醇、C12-15醇、C12-16醇、癸醇、己醇、辛醇、鲸蜡醇、硬脂醇、山嵛醇、月桂酸、C18-36酸、亚油酸、亚麻酸、肉豆蔻酸、硬脂酸、山嵛酸等3、烷醇酰胺类 椰油二乙醇酰胺、椰油单乙醇酰胺、椰油单异丙醇酰胺、椰油酰胺、月桂酰-亚油酰二乙醇酰胺、月桂酰-豆蔻酰二乙醇酰胺、异硬脂二乙醇酰胺、亚油二乙醇酰胺、豆蔻二乙醇酰胺、豆蔻单乙醇酰胺、油二乙醇酰胺、棕榈单乙醇酰胺、蓖麻油单乙醇酰胺、芝麻二乙醇酰胺、大豆二乙醇酰胺、硬脂二乙醇酰胺、硬脂单乙醇酰胺、硬脂单乙醇酰胺硬脂酸酯、硬脂酰胺、牛脂单乙醇酰胺、小麦胚芽二乙醇酰胺、PEG(聚乙二醇)-3月桂酰胺、PEG-4油酰胺、PEG-50牛脂酰胺等4、醚类 鲸蜡醇聚氧乙烯(3)醚、异鲸蜡醇聚氧乙烯(10)醚、月桂醇聚氧乙烯(3)醚、月桂醇聚氧乙烯(10)醚、Poloxamer-n(乙氧基化聚氧丙烯醚)(n=105、124、185、237、238、338、407)等5、酯类 PEG-80甘油基牛油酯、PEC-8PPG(聚丙二醇)-3二异硬脂酸酯、PEG-200氢化甘油基棕榈酸酯、PEG-n(n=6、8、12)蜂蜡、PEG-4异硬脂酸酯、PEG-n(n=3、4、8、150)二硬脂酸酯、PEG-18甘油基油酸酯/椰油酸酯、PEG-8二油酸酯、PEG-200甘油基硬脂酸酯、PEG-n(n=28、200)甘油基牛油酯、PEG-7氢化蓖麻油、PEG-40霍霍巴油、PEG-2月桂酸酯、PEG-120甲基葡萄糖二油酸酯、PEG-150季戊四硬脂酸酯、PEG-55丙二醇油酸酯、PEG-160山梨聚糖三异硬脂酸酯、PEG-n(n=8、75、100)硬脂酸酯、PEG-150/癸基/SMDI共聚物(聚乙二醇-150/癸基/甲基丙烯酸酯共聚物)、PEG-150/硬脂基/SMDI共聚物、PEG-90。异硬脂酸酯、PEG-8PPG-3二月桂酸酯、鲸蜡豆蔻酯、鲸蜡棕榈酯、C18—36酸乙二醇酯、季戊四硬脂酸酯、季戊四山嵛酸酯、丙二醇硬脂酸酯、山嵛酯、鲸蜡酯、三山嵛酸甘油酯、三羟基硬脂酸甘油酯等6、氧化胺 肉豆蔻氧化胺、异硬脂氨基丙基氧化胺、椰油氨基丙基氧化胺、小麦胚芽氨基丙基氧化胺、大豆氨基丙基氧化胺、PEG—3月桂氧化胺等二、两性SAA 鲸蜡甜菜碱、椰油氨基羟磺基甜菜碱等三、阴离子SAA 油酸钾、硬脂酸钾等四、水溶性高分子 1、纤维素类 纤维素、纤维素胶、羧甲基羟乙基纤维素、鲸蜡羟乙基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、羧甲基纤维素等2、聚氧乙烯类 PEG-n(n=5M、9M、23M、45M、90M、160M)等3、聚丙烯酸类 丙烯酸酯/C10-30烷基丙烯酸酯交联聚合物、丙烯酸酯/十六烷基乙氧基(20)衣康酸酯共聚物、丙烯酸酯/十六烷基乙氧基(20)甲基丙烯酸酯共聚物、丙烯酸酯/十四烷基乙氧基(25)丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基(20)衣康酸酯共聚物、丙烯酯酯/十八烷基乙氧基(20)甲基丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基(50)丙烯酸酯共聚物、丙烯酸酯/VA交联聚合物、PAA(聚丙烯酸)、丙烯酸钠/乙烯异癸酸酯交联聚合物、Carbomer(聚丙烯酸)及其钠盐等 4、天然胶及其改性物 海藻酸及其(铵、钙、钾)盐、果胶、透明质酸钠、瓜尔胶、阳离子瓜尔胶、羟丙基瓜尔胶、黄蓍胶、鹿角菜胶及其(钙、钠)盐、汉生胶、菌核胶等5、无机高分子及其改性物 硅酸铝镁、二氧化硅、硅酸镁钠、水合二氧化硅、蒙脱土、硅酸锂镁钠、水辉石、硬脂铵蒙脱土、硬脂铵水辉石、季铵盐-90蒙脱土、季铵盐-18蒙脱土、季铵盐-18水辉石等6、其他 PVM/MA癸二烯交联聚合物(聚乙烯甲基醚/丙烯酸甲酯与癸二烯的交联聚合物)、PVP(聚乙烯吡咯烷酮)等1.1.4 表面活性剂类1.1.4.1 烷醇酰胺类 最常用的是椰油二乙醇酰胺。烷醇酰胺能与电解质相容共同进行增稠并且能达到最佳效果。烷醇酰胺增稠的机理是与阴离子表面活性剂胶束相互作用,形成非牛顿流体。各种不同的烷醇酰胺在性能上有很大差异,而且单独使用与复配使用其效果也不同,有文章报道了不同烷醇酰胺的增稠及泡沫性能。近来报道烷醇酰胺制成化妆品时有产生致癌物质亚硝胺的潜在危害。烷醇酰胺的杂质中有游离胺,它是亚硝胺的潜在来源。目前个人护理品工业对是否在化妆品中禁用烷醇酰胺还没有官方意见。1.1.4.2 醚类 在以脂肪醇聚氧乙烯醚硫酸盐(AES)为主活性物的配方中,一般仅用无机盐即能调成合适的黏度。研究表明这是由于

  • 【讨论】-丙烯酰胺大讨论

    开始关注丙烯酰胺:2002年4月24日,瑞典国家食品管理局(Swedish National Food Administration)举行记者招待会宣布,一些富含淀粉类的食品在进行高温加工处理后都含有一种有毒的、存在潜在致癌性的化学物质——丙烯酰胺,并向全世界公布了他们的研究结果,立即引起WHO、FAO以及世界各国食品业的广泛关注。随后,挪威、瑞士、英国、美国等各国的科学家均分别进行了试验,取得了与瑞典科学家相同的实验结果,丙烯酰胺的问题进一步引起世界范围的重视。丙烯酰胺的基本性质及其应用: 丙烯酰胺(Acrylamide),CAS的登记号为79-06-1,其分子量71.09,化学分子式CH2CHCONH2。丙烯酰胺是一种不饱和酰胺,其单体为无色透明片状结晶,沸点125℃,熔点84~85℃。能溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中。丙烯酰胺单体在室温下很稳定,但当处于熔点或以上温度、氧化条件以及在紫外线的作用下很容易发生聚合反应。当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物。丙烯酰胺的来源:食品中的丙烯酰胺主要源于高温烹调,饮用水中的丙烯酰胺主要源于污水净化等工业用的聚丙烯酰胺的降解。丙烯酰胺的毒性:1 丙烯酰胺的神经毒性研究丙烯酰胺是一种中等毒性的亲神经毒物,可通过未破损的皮肤、粘膜、肺和消化道吸收入人体,分布于体液中[4]。  丙烯酰胺的神经毒性已经为许多学者所公认,大量的中毒事件也多是围绕其神经毒性方面,但丙烯酰胺导致周围神经和中枢神经系统损伤的机制还不十分清楚。现场劳动卫生学研究和体格检查发现长期职业接触丙烯酰胺的工人主要表现为四肢麻木、乏力、手足多汗、头痛头晕、远端触觉减退等,累及小脑时还会出现步履蹒跚、四肢震颤觉、深反射减退等,并发现外周神经损害多表现为通向胞体的长纤维末端首先受损,逐渐向胞体方向发展,呈“返死现象”[5]。  韩漫夫等[6]发现丙烯酰胺能使脑能量代谢受到影响,脑组织供能代偿潜能损伤,并认为这种对脑能量代谢的影响是丙烯酰胺产生神经元损伤的生化基础。丙烯酰胺中毒致周围神经病时轴突首先受累,当轴突变性时,神经元胞浆中呈持续的逆行改变,故其神经元多可恢复,神经末梢可再生。周梅荣、施建俐、秦小梅等报道了职业性丙烯酰胺中毒致小脑萎缩的案例[8];褚学斌、马佩琛、任冰等报道了丙烯酰胺中毒致视野缺损的案例[9]等。  从现已报道关于丙烯酰胺中毒的案例中可以看出,丙烯酰胺的中毒不仅仅能带来一些神经性伤害,甚至还会导致人体某些脏器发生实质性病变,从而造成严重的后遗症。我国在70年代开始报道丙烯酰胺中毒的病例,并开展了对丙烯酰胺中毒的防治研究,目前已经基本明确了丙烯酰胺毒理及临床表现,并于1996年提出丙烯酰胺中毒诊断标准(GB16370-1996)。  2. 丙烯酰胺的致癌性研究  2.1 丙烯酰胺致癌性的评估状况  大量的实验动物数据证实了丙烯酰胺具有一定的致癌作用,在实验动物的饮用水中每天加入2.0mg/kg体重的丙烯酰胺的剂量,一段时间后就可以在脑部、脊髓或其他组织中发现肿瘤细胞。Bull和Robinson等以6.25,12.5,25mg/kg的丙烯酰胺剂量经口染毒A/J小鼠,发现丙烯酰胺可诱发小鼠皮肤肿瘤,促进肺腺瘤的发展[9]。Damjanov和Friedman在饮水中加丙烯酰胺,以每天0.1、0.5、2.0mg/kg的剂量对大鼠进行104周慢性染毒,发现大鼠睾丸鞘膜肿瘤发生增加,从而认为丙烯酰胺具有一定的多巴胺拮抗作用,该机制可能是导致多种组织细胞异常增生,从而引发癌症的原因之一[10]。  Richard [11]认为,虽然各国对丙烯酰胺进行了大量的研究,并对其毒性、病理变化及毒理学特性有了较好了解,并通过实验动物模型,确认了丙烯酰胺的潜在致癌性和对生殖、神经系统的损伤作用,但是应该强调的是,虽然对丙烯酰胺职业病的流行病学研究发现了它的神经毒理作用,但是并没有说明丙烯酰胺暴露的量与癌症发生之间的联系。所以我们现在应该尽可能的获得更多的关于丙烯酰胺的资料,而不是单单强调丙烯酰胺致癌这一个方面上。  2.2 食品中丙烯酰胺的致癌性研究  食品中存在的丙烯酰胺是否存在致癌作用、多大的剂量会引起癌症,各国的科学家和研究人员存在不同的看法。  评估丙烯酰胺对人体的危险是很重要的。基于一些动物实验的结果,对丙烯酰胺的NOAEL,即最大无作用剂量水平为0.1mg/kg 体重[12]。根据新西兰国家营养机构对具有代表性的西方饮食的调查,出版了关于食品中丙烯酰胺浓度的文章[13]。通过以上文献,Ian等计算了消费者食用热的油炸薯条或油炸薯片,即经常食用的可能产生丙烯酰胺最多的食品,其中每日平均食用的丙烯酰胺的剂量在0.3μg/kg体重,这一数量是NOAEL所规定0.1mg/kg 体的三分之一,这样的话,即使消费者每天食用薯条、薯片等食品致癌的危险也是很低的[14]。虽然现在对丙烯酰胺已经进行了大量的研究,但是关于它的致癌性仍然是各国争论的焦点之一,现有数据并不足以说明食品中的丙烯酰胺可以导致某种癌症,这就需要我们通过多种实验手段、先进的科学技术来进一步深入研究食品中丙烯酰胺的问题,希望在不久的将来能够彻底的解决食品中的丙烯酰胺的问题。  3.丙烯酰胺的其他不良影响  3.1 丙烯酰胺对小鼠抗氧化能力和免疫功能的影响  小鼠经口给予不同剂量(50、100、150 mg/kg)的丙烯酰胺, 5次/7d,42d后断头取血检测指标。结果显示,染毒小鼠体重明显下降,血清脂质过氧化代谢产物(MDA)含量增高(P0 01),超氧化物歧化酶(SOD)及全血谷胱甘肽氧化酶活性于150 mg/kg染毒组降低非常明显(P0 01),150 mg/kg染毒组小鼠血中胶体炭粒清除速度明显降低,胸腺相对质量明显增加[15]。说明丙烯酰胺有抑制机体抗氧化能力和降低机体网状内皮系统吞噬功能的作用。  3.2 丙烯酰胺的基因毒性及DNA损伤作用  丙烯酰胺不能诱导细菌的基因突变,但是丙烯酰胺代谢的环氧化物——环氧丙酰胺在代谢停滞时却能诱导基因突变现象。在诱导哺乳动物细胞基因突变试验中,丙烯酰胺能表现一种很不确定的、很弱的基因突变作用。丙烯酰胺在哺乳动物细胞中可以诱导染色体失常、姊妹染色体互换、染色体倍增现象、染色体非整倍体形成以及其他有丝分裂异常现象。丙烯酰胺不能在小鼠肝细胞中诱导非常规的DNA合成,环氧丙酰胺却能诱导人体乳腺细胞的非常规的DNA合成,但环氧丙酰胺在小鼠肝细胞中的作用却不明显。  关景芳,贾文英,程林等进行了丙烯酰胺单体的细胞染色体实验观察,目的是通过对不同梯度丙烯酰胺进行诱变性实验,观察丙烯酰胺对哺乳类动物细胞遗传毒性的影响。采用细胞培养染色体畸变技术进行实验观察,结果表明,丙烯酰胺单体即诱导染色体结构畸变,又能诱导非整倍体形成。这一研究结果与WHO提出的关于丙烯酰胺的基因毒性一致,同时丙烯酰胺致畸作用有剂量反应关系,高浓度诱发大量非整倍体形成及结构变异,低浓度无诱发CHL细胞染色体畸变的作用[16]。  3.3 丙烯酰胺的生殖毒性[17]  Sickes等研究认为,丙烯酰胺的生殖毒性机制与其神经毒性的机制相似。丙烯酰胺可抑制驱动蛋白样物质的活性,导致细胞有丝分裂和减数分裂障碍,从而引起生殖损伤。  有研究证据表明[18],丙烯酰胺可以影响雄性动物的生育能力。给予雄性大鼠15mg/kg体重的丙烯酰胺,连续5天,或者给予小鼠12mg/kg体重,连续28d,均可发现其生育能力受到损害,具体表现为精子计数减少和精子活动能力减弱。说明丙烯酰胺对动物的生殖系统有一定的损伤作用,但在人类却未发现有此危害

  • 【分享】认识丙烯酰胺

    【分享】认识丙烯酰胺

    [color=#DC143C]丙烯酰胺[/color][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911171718_185078_1610969_3.jpg[/img] [color=#00008B]丙烯酰胺是一种白色晶体化学物质,是生产聚丙烯酰胺的原料。[/color]聚丙烯酰胺主要用于水的净化处理、纸浆的加工及管道的内涂层等。淀粉类食品在高温(120℃)烹调下容易产生丙烯酰胺。  研究表明,人体可通过消化道、呼吸道、皮肤黏膜等多种途径接触丙烯酰胺,饮水是其中的一条重要接触途径。2002年4月瑞典国家食品管理局和斯德哥尔摩大学研究人员率先报道,在一些油炸和烧烤的淀粉类食品,如炸薯条、炸土豆片等中检出丙烯酰胺,而且含量超过饮水中允许最大限量的500多倍。之后挪威、英国、瑞士和美国等国家也相继报道了类似结果。此外,人体还可能通过吸烟等途径接触丙烯酰胺。  丙烯酰胺进入体内又可通过多种途径被人体吸收,其中经消化道吸收最快。进入人体内的丙烯酰胺约90%被代谢,仅少量以原形经尿液排出。丙烯酰胺进入体内后,会在体内与dna上的鸟嘌呤结合形成加合物,导致遗传物质损伤和基因突变。  对接触丙烯酰胺的职业人群和偶然暴露于丙烯酰胺人群的调查表明,丙烯酰胺具有神经毒性作用,但目前还没有充足的证据表明通过食物摄入丙烯酰胺与人类某种肿瘤的发生有明显关系。★  根据香港消费者委员会的研究,含碳水化合物的食物在经油炸之后,都会产生丙烯酰胺。研究已知丙烯酰胺可致癌。但世界卫生组织表示,由于难以统计丙烯酰胺要到哪一个浓度才会致癌,所以难以订立安全标准。  英文名 Acrylamide   分子式 CH2=CHCONH2   分子量71.08  丙烯酰胺是一种不饱和酰胺,别名AM,其单体为无色透明片状结晶,沸点125℃(3325Pa),熔点84~85℃,密度1.122g/cm3。能溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中,在酸碱环境中可水解成丙烯酸。丙烯酰胺单体在室温下很稳定,但当处于熔点或以上温度、氧化条件以及在紫外线的作用下很容易发生聚合反应。当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物。

  • 丙烯酰胺简介

    丙烯酰胺简介

    丙烯酰胺是一种有机化合物,别名AM;纯品为白色结晶固体,易溶于水、甲醇、乙醇、丙醇,稍溶于乙酸乙酯、氯仿,微溶于苯,在酸碱环境中可水解成丙烯酸。职业性接触主要见于丙烯酰胺生产和树脂、黏合剂等的合成,在地下建筑、改良土壤、油漆、造纸及服装加工等行业也有接触机会。日常生活中,丙烯酰胺可见于吸烟、经高温加工处理的淀粉食品及饮用水中。 丙烯酰胺属中等毒类,对眼睛和皮肤有一定的刺激作用,可经皮肤、呼吸道和消化道吸收,在体内有蓄积作用,主要影响神经系统,急性中毒十分罕见。密切大量接触可出现亚急性中毒,中毒者表现为嗜睡、小脑功能障碍以及感觉运动型多发性周围神经病。长期低浓度接触可引起慢性中毒,中毒者出现头痛、头晕、疲劳、嗜睡、手指刺痛、麻木感,还可伴有两手掌发红、脱屑,手掌、足心多汗,进一步发展可出现四肢无力、肌肉疼痛以及小脑功能障碍等。 丙烯酰胺慢性毒性作用最引人关注的是它的致癌性。丙烯酰胺具有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变和染色体异常。动物试验研究发现,丙烯酰胺可致大鼠多种器官肿瘤,如乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体肿瘤等。但目前还没有充足的人群流行病学证据表明,食物摄入丙烯酰胺与人类某种肿瘤的发生有明显相关性。国际癌症研究机构(IARC)对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A),即人类可能致癌物。其主要依据为,丙烯酰胺在动物和人体均可代谢转化为致癌活性代谢产物环氧丙酰胺。⒈ 业性接触者要通过改革工艺、采取工程技术措施等手段,降低工作场所空气中丙烯酰胺的浓度;同时通过加强个人防护,如戴口罩、手套,穿防护服和鞋等,以防止或减少丙烯酰胺进入体内。 ⒉ 日常生活中尽量避免过度烹饪食品,如温度过高或加热时间太长。提倡平衡膳食,减少油炸和高脂肪食品的摄入,多吃水果和蔬菜,不要吸烟。 ⒊ 由于煎炸食品是我国居民常吃的食物,国家应加强膳食中丙烯酰胺的监测与控制,开展我国人群丙烯酰胺的暴露评估,并研究探索减少加工食品中丙烯酰胺含量的方法。(引自中国CDC网站)附迪马丙烯酰胺检测方案链接:http://www.dikma.com.cn/search.html?keyword=丙烯酰胺http://ng1.17img.cn/bbsfiles/images/2016/05/201605111724_592991_1610895_3.jpg

  • 聚丙烯酰胺在石油开采领域的应用

    [font=&][size=18px]聚丙烯酰胺是一类多功能的油田化学处理剂,广泛用于石油开采的钻井、固井、完井、修井、压裂、酸化、注水、堵水调剖、三次采油作业过程中, 特别是在钻井、堵水调剖和三次采油领域。聚丙烯酰胺水溶液具有较高的粘度, 有较好的增稠、絮凝和流变调节作用, 在石油开采中用作驱油剂和钻井泥浆调节剂。在石油开采的中后期, 为提高原油采收率,我国目前主要推广聚合物驱油和三元复合驱油技术。通过注入聚丙烯酰胺水溶液, 改善油水流速比,使采出物中原油含量提高。在三次采油中加入聚丙烯酰胺, 可增加驱油能力, 避免击穿油层, 提高油床开采收率。中国石油工业是聚丙烯酰胺的最大用户, 聚丙烯酰胺的科技进步促进了中国石油工业的发展, 石油工业的需求又加速了聚丙烯酰胺的科技创新步伐与行业的发展。[/size][/font]

  • 聚丙烯酰胺在哪些情况下适合与聚合硫酸铁配合使用?

    在水处理行业中,有时候为了达到完美的处理结果,就需要多种净水药剂配合使用。其中,最常见的就是聚丙烯酰胺与聚合氯化铝配合使用;或者是聚丙烯酰胺与聚合硫酸铁配合使用。相对来说,大家对于聚丙烯酰胺与聚合硫酸铁配合使用的情况直到的最少,那么,在哪些情况下?聚丙烯酰胺适合与聚合硫酸铁配合使用呢?  聚丙烯酰胺在哪些情况下适合与聚合硫酸铁配合使用?  一、聚丙烯酰胺概述  聚丙烯酰胺简称PAM,俗称絮凝剂或凝聚剂,分子式为:+CH2-CHn线状高分子聚合物,分子量在400-2000万之间,固体产品外观为白色或略带黄色粉末,液态为无色粘稠胶体状,易溶于水,温度超过120℃时易分解。  聚丙烯酰胺分子中具有阳性基团(-CONH2),能与分散于溶液中上悬浮粒子吸附和架桥,有着极强的絮凝作用,因此广泛用于水处理以及治金、造纸、石油、化工、纺织、选矿等领域。  聚丙烯酰胺分为:阳离子聚丙烯酰胺,阴离子聚丙烯酰胺,非离子聚丙烯酰胺,两性离子聚丙烯酰胺。  三、阴离子聚丙烯酰胺概述  阴离子聚丙烯酰胺,外观为白色粉末颗粒,具有絮凝性,增稠性,抗剪切性等多种性能,易溶于水,几乎不溶于有机溶剂,广泛用于采油,造纸,化工,选矿等行业。阴离子聚丙烯酰胺(PAM)产品描述:阴离子聚丙烯酰胺分子量从600万到2500万水溶解性好,能以任意比例溶解于水且不溶于有机溶剂。有效的PH值范围为7到14,在中性碱性介质中呈高聚合物电解质的特性,与盐类电解质敏感,与高价金属离子能交联成不溶性凝胶体。  二、聚合硫酸铁概述  聚合硫酸铁是淡黄色无定型粉状固体,极易溶于水,10%(重量)的水溶液为红棕色透明溶液,具有吸湿性。在水处理行业中,聚合硫酸铁主要的用途包括:饮用水、工业用水、各种工业废水、城市污水、污泥脱水等的净化处理。  聚合硫酸铁作为近年来广泛使用的一种水处理絮凝剂,已经被广大客户所认可,它在水处理中的絮凝兼除铁效果无可替代。我们公司生产的聚合硫酸铁自从投入生产后年产量达到6000吨左右,产品销往全国各大电力,钢铁,冶金行业。因质量好,絮凝快,除铁明显而收到客户高度好评。  液体聚合硫酸铁已经可以处理污水,但由于运输,储藏麻烦,所以要经过干燥聚合成固体的,但现在有客户还是要求液体的,其实只是为了在使用过程中方便加药。其实大可不必,买一套加药设备只需要3000元左右,这样就可以把固体硫酸铁稀释成液体的,而且是自动加药,省时省力。固体硫酸铁运输方便,储存简单,能大大减少客户的费用。生产聚合硫酸铁的工艺方法,以硫酸亚铁、硫酸为原料。硝酸为氧化剂。在常压级慢搅拌的条件下生成液体聚合硫酸铁,最后进入反应釜于50°一100℃进行反应聚合。形成喷雾型聚合硫酸铁。本工艺方法反应时间短,生产周期短,提高了生产效率。产品质量稳定纯净,用途广泛,氧化剂硝酸可循环使用,利用了原料的溶解热和反应热,耗能少,成本低,操作方便,对大气环境没有污染。  四、聚丙烯酰胺在哪些情况下适合与聚合硫酸铁配合使用?  以下是小编为大家总结的几点聚丙烯酰胺与聚合硫酸铁配合使用的情况:  1、当水质条件属于低温低浊时,聚丙烯酰胺配合聚合硫酸铁使用,效果更好。  2、当水中不含氯铝离子时,聚丙烯酰胺配合聚合硫酸铁使用,效果更好。  3、要求沉淀速率快时,聚丙烯酰胺配合聚合硫酸铁使用,效果更好。  4、要求沉淀的污泥密实时,聚丙烯酰胺配合聚合硫酸铁使用,效果更好。  5、对于在哪些情况下该选择聚合硫酸铁,还是其他的净水药剂配合聚丙烯酰胺使用,主要是看处理水的工艺和水质特点。不过需要注意的是,聚丙烯酰胺配合聚合硫酸铁使用的时候,一定要分开溶解,分开投加,不能混用。

  • N,N-二异丙基乙二胺的检测

    各位老师:我在做N,N-二异丙基乙二胺(DIPEA)时,使用Agilent G1888顶空进样器,色谱柱是DB624,进样DIPEA标准溶液时其峰型是好的,但是在将该标液加到样品溶液中以后DIPEA的峰型裂分,裂分后的2个峰的峰面积相加与原峰面积相同。但是同样的溶液在CTC上进样时,加标后的DIPEA的峰型也依然是好的,请问有老师曾遇到过这样的问题么?谢谢!

  • 配制硫代乙酰胺试液加这个有什么用?

    硫代乙酰胺试液 取硫代乙酰胺4g,加水使溶解成100ml,置冰箱中保存。临用前取混合液(由1mol/L氢氧化钠溶液15ml、水5.0ml及甘油20ml组成)5.0ml,加上述硫代乙酰胺溶液1.0ml,置水浴上加热20秒钟,冷却,立即使用。【取混合液(由1mol/L氢氧化钠溶液15ml、水5.0ml及甘油20ml组成)5.0ml】这个是什么原理?如何解释?

  • 丙烯酰胺三个主要来源途径,食品安全法规中规定了吗?

    1、直接从氨基酸生成丙烯酰胺。比如,天门冬酰胺(Asn)在受热之后,脱掉一个CO2和一个NH3,即可转化为丙烯酰胺。凡是富含天门冬酰胺的食物,都非常容易产生丙烯酰胺。比如土豆、麦类、玉米等都是富含天门冬酰胺的食品。 2、氨基酸和淀粉类食物中的微量小分子糖在加热条件下发生美拉德反应,生成丙烯酰胺。在食品中,只要是含淀粉的食品,一般都会同时含有一些蛋白质,比如所有的主食、所有的薯类、所有的淀粉豆类。不过,各种氨基酸合成丙烯酰胺的“能力”有所不同。其中还是以天门冬酰胺独占鳌头,其次是谷氨酰胺(Gln),再次是蛋氨酸(Met)和丙氨酸(Ala)等。淀粉倒是不产生丙烯酰胺,但淀粉分解产生的糖会产生丙烯酰胺,葡萄糖最有效,后面依次是果糖、乳糖和蔗糖。  3、脂肪和糖降解形成丙烯醛,然后和氨基酸分解产生的氨结合,形成丙烯酰胺。凡是油炸的食品,都会发生油脂热氧化反应,而反应产物之一就是丙烯醛,它是一种挥发性小分子物质和油烟的味道有密切关系。油炸食品特别容易产生丙烯酰胺,这是理由之一。此外,蛋白质氨基酸分解也能产生少量的醛类,其中包括丙烯醛。

  • 气相色谱 顶空进样 分析丙烯酰胺 没有出峰 为什么

    气相色谱 顶空进样 分析丙烯酰胺 没有出峰 为什么

    各位,我是新手,最近用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析丙烯酰胺,用微量进样针直接汽化室进样可以看到出峰,顶空进样就很难找到了。详细描述如下,请求指点。因为丙烯酰胺是固体,采用无水乙醇溶解。色谱柱:PEG20M汽化室温度:225检测器温度:250程升: 初温:40,;保持1min 一阶升速5℃/min,一阶终温100℃,一阶终时2min;二阶升速10℃/min,二阶终温220℃,二阶终时4min。一、微量进样针直接汽化室进样,进样量0.2微升(再大乙醇就平顶了) 得到的谱图如下7.015出峰的时乙醇,29.498出峰的是丙烯酰胺,丙烯酰胺用的是色谱纯的,在乙醇中溶解的浓度没有定量,刚开始试过两次都没有出峰,后来又经过两次加大丙烯酰胺的量才出来这个可爱的峰,我估计是接近饱和了。[img=,690,186]https://ng1.17img.cn/bbsfiles/images/2019/08/201908081139443746_7313_1693685_3.png!w690x186.jpg[/img]二、顶空进样 样品:100℃;阀箱:100℃;管线:100℃ 进样量大概10滴①用上面的丙烯酰胺溶液做了一次,没有看到明显的出峰。乙醇达到950mv(1300mv平顶)[img=,690,345]https://ng1.17img.cn/bbsfiles/images/2019/08/201908081140082302_3492_1693685_3.png!w690x345.jpg[/img]②又往顶空瓶里加了些丙烯酰胺固体,熔点是80多度,这样浓度更大,把程升的二阶终时改成了8min,仍然没有明显的出峰。[img=,690,262]https://ng1.17img.cn/bbsfiles/images/2019/08/201908081139592853_2056_1693685_3.png!w690x262.jpg[/img]难道顶空进样的时候没有把足够的丙烯酰胺带进去,丙烯酰胺熔点82-86℃,沸点125℃,顶空的温度设置成100°不够吗。还是因为这个毛细柱对丙烯酰胺不灵敏;请前辈指点,谢谢

  • n-丙基乙二胺(PSA)C18对醛内有吸附作用吗?

    今天使用150mg 无水硫酸镁/50mgN-丙基乙二胺/50mgC18吸附剂(上述三种成分混合在一起,是购买某公司的净化柱产品)对香精样品进行净化处理,发现其中紫苏醛的回收率只有80%左右,比不使用吸附剂的回收率低很多,难道N-丙基乙二胺(PSA)/C18 对其有吸附作用? 该吸附剂的工作原理是什么呢?

  • 【讨论】标题,例如:什么是异丙醇酰胺6508?哪里有得买?

    异丙醇酰胺6508CAS:112-56556+包装规格:200KG类型:石蜡乳化剂型号:乳化剂产品等级:优级品用途、使用范围:清洗剂 除蜡水 除油剂品牌:进口含量≥:99产品规格:铁桶化学名称 异丙醇酰胺别名 稳泡剂 速蜡剂理化指标外 观 浅黄色粘稠液体离 子 型 非离子型PH 值 7.0-10.5(1%水溶液)水 溶 性 易溶于水性能与应用该品具有超强分散、净洗、乳化、柔软等性能,对阴离子表面活性剂有较好的稳泡作。是液体洗涤剂、清洗剂、除蜡水剂等各种产品中不可缺少的原料。与油酸皂一起使用时,耐硬水性好。并广泛用于鞋油,印刷油墨,绘图用品等。在除蜡工业中,作蜡渍的洗涤剂,及具他洗涤剂的配料和增稠剂。超强除蜡水所必须材料之一。与异构醇油酸皂按2:3比例复配即为超级除蜡水。

  • 【讨论】阳离子聚丙稀酰胺的测定方法

    阳离子型聚丙烯酰胺(CPAM)是一类重要水溶性聚合物,作为絮凝剂、增稠剂,被广泛应用于选煤、冶金、石油开采、印染和纺织等行业[1]。而做为阳离子聚合物的一个重要参数,阳离子度的大小直接影响阳离子聚合物的应用性能,阳离子度的有效测定方法也就是必须解决的问题。目前阳离子度的测定方法报导很多,如AgNO3法[2]、元素分析法[3]等,然而有着过程繁杂或成本较高等问题。本文通过反相微乳法合成阳离子聚丙烯酰胺,采用胶体滴定法测定聚合物阳离子度,从不同角度分析了对阳离子度测试准确性的影响因素,为以后实验室测定聚合物阳离子度提供了一种准确而有效的方法。1 实验部分1.1 实验原料及仪器环己烷,A.R. 丙烯酰胺,聚合纯 DMC,聚合纯 乳化剂,C.P. 引发剂,C.P. 氮气,高纯 PAMPSNa,A.R. 溴代十六烷基吡啶,A.R. 甲苯胺蓝(T.B.),A.R. 红外光谱仪(BIO PADFTS165型)。1.2 实验方法将一定浓度的单体溶液、环己烷和乳化剂混溶,搅拌至混合液澄清透亮,然后将其倒入装有搅拌器、温度计和导气管的四口瓶中,通N2排氧30min后,加引发剂恒温反应。反应3h后取样,用丙酮、乙醇洗涤、沉淀,40℃下真空干燥,得聚合物产品。1.3 红外分析用红外光谱仪,采用KBr压片法对高聚物进行分析。1.4 阳离子度的测定阳离子度的测定采用胶体滴定法。用称量纸称取干燥恒重后的阳离子聚丙烯酰胺(准确至0.0001g)于250mL称量瓶中,加入100mL蒸馏水。搅拌至溶解后,调节pH,加入T.B.指示剂,用已配制好的PAMPSNa标准溶液滴定。当溶液颜色由蓝色变为赤紫色时即为滴定终点。至少做三组平行,取其平均值为PAMPSNa的消耗体积,记为V1 同时做空白实验,所消耗PAMPSNa的体积记为V0.阳离子度计算公式为:Am=207.5C(V-V0)1000m×100%.式中:Am为阳离子聚丙烯酰胺的阳离子度 C为PAMPSNa的摩尔浓度,mol/L V为滴定时消耗的PAMPSNa体积,mL V0为空白时消耗的PAMP SNa体积,mL m为样品的质量,g 207.5为阳离子链节的相对分子质量。2 结果与讨论2.1 红外分析图1、图2分别显示了CPAM均聚物与共聚物的FTIR谱图。其中波数在1660cm-1左右的吸收峰为共聚物中酰胺基的特征吸收峰,而波数在1730cm-1附近的强吸收峰为共聚物中DMC基团的特征吸收峰。因此,FTIR分析证实了共聚物中DMC和AM链节的存在。2.2 影响胶体滴定分析的因素2.2.1 pH值的影响用质量分数为1%的HCl和1%的NaOH溶液调节溶液的pH值,以0.000417mol/L的PAMP SNa标准溶液滴定,其消耗量与溶液pH值的关系如图3所示。由图3可看出,试样溶液的pH值在1~3和9~10时PAMPSNa的消耗量稳定 而在3~9时消耗量变化较大。这主要是因为胶体滴定法是利用胶体离子间的反应,只有在正负胶体相互完全解离的状态下其反应才会很好。而阳离子型聚电解质在酸性条件下才有利于解离。为此,滴定操作应选在pH=2~3时进行。2.2.2 T.B.指示剂加入量的影响胶体滴定如同酸碱中和一样,为了使终点敏锐,溶液颜色不可太深,指示剂的加入量应固定并以少为好,通常加入1~2滴即可。但是在胶体滴定过程中,由于正负胶体离子间的反应生成白色沉淀,此沉淀吸收包埋指示剂,使变色物消失,难以呈现异染现象,终点不易判断。因此当白色沉淀出现后,应及时补加1~2滴指示剂。2.2.3 滴定速度的影响在高分子滴定中,由于结构的复杂性,滴定速度也会影响滴定的准确度,见表1.由表1可看出,当滴定速度增大时,测试值偏离实际值更大。这是由于高聚物结构的复杂性的缘故。相对分子质量大而且具有多分散性,分子的形状、高分子溶液的混合熵以及聚集态的复杂性使得高聚物间的反应分子链被包裹,使测试值偏小,误差较大。可看到当滴定速度慢时可达到较好的效果。2.2.4 溶液浓度的影响实验表明,无论是滴定试剂还是被测试样,溶液的浓度均不易过高 浓度高会使反应生成的沉淀增多,体系变得较为混浊,而且生成的沉淀还会吸附指示剂,使指示剂的颜色在终点时变化不敏锐,甚至不出现颜色的突变,妨碍终点的判断,故溶液浓度不宜太大。实验发现,当溶液浓度在0.001~0.005mol/L范围时,指示剂变色敏锐,终止时易于判断。2.2.5 产品中残余的乳化剂的影响在微乳液聚合中,除了单体,还有油相、乳化剂。最后制出聚合物时如果不能将它们洗净,产物得不到很好的纯化,油相、乳化剂的存在将干扰其后的分析工作。残余乳化剂对阳离子度的影响见表2.由表2可看出,将乳化剂抽提后,滴定结果与给出值比较接近。首先,这是由于乳化剂的存在使得在滴定过程中指示剂受影响而使终点变色不明显。其次,称量时由于多余的乳化剂而存在大的误差,使最终计算结果失真。因此,在对聚合后的产品进行分析时,必须使产品洗涤干净。实验中我们采用抽提法取得了很好的结果。3 结论本文采用反相微乳液聚合方法合成了阳离子聚丙烯酰胺,并用胶体滴定法测试聚合物的阳离子度,结果表明:对于微乳液合成的阳离子产品,阳离子度在测试前应抽提干净 测定时pH应在2~3之间,控制滴定速度应小于0.02mL/s,指示剂量为1~2滴,在溶液变色前需再补加1滴,这样指示变化会很明显。

  • 【求助】求关于四聚乙醛中烟酰胺的测定以及进样口温度设定

    最近有单位来让帮忙检测四聚乙醛样品中的烟酰胺和三聚乙醛的含量,他们提供了厂家制定的标准,我查了相关文献,附件中发表在分析化学2000年28卷第10期1313页上的文章就是该厂的标准,里面的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]条件让我非常纳闷,理论上讲进样口的温度通常要大于被测样品中最高沸点的组分的沸点,但是该标准进样口温度才100度,而待测样品中三聚乙醛沸点128度,四聚乙醛176度,烟酰胺150度,我比较纳闷待测样品都没有气化如何测得的数据,希望各位高手能帮忙解决这个问题。另外还有一个问题,四聚乙醛只溶于氯仿,常规溶剂都不溶,我试过丙酮、THF、乙腈、乙醇、乙酸乙酯、DMF等,而烟酰胺却不溶于氯仿,仅溶于乙醇、甘油等,而文献中在溶解样品时加入一小粒氢氧化钠,不知加碱是什么意思,从结论上来看文献中都能得出烟酰胺的含量,难道氯仿中加入一小粒氢氧化钠就能溶解烟酰胺。还有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]能测含氢氧化钠的样品?我的机子是HP6890 HP101柱子,FID。希望各位老师能帮忙解决上述问题,出于对仪器考虑,我没有敢帮他测,等待大家的支持,谢谢!

  • 攻克“食面埋伏”,让丙烯酰胺无处遁形

    攻克“食面埋伏”,让丙烯酰胺无处遁形

    近日,有消息称,最近英国食物标准局对248份食品样品进行检测,发现13种食品中含有的致癌物质丙烯酰胺含量有上升趋势。其中亨氏、雀巢等许多知名食品公司都遭到英国食物标准局的警告,产品涉及薯条、速溶咖啡和谷类食物等。“丙烯酰胺”广泛存在于许多加工食品中,它不是食品添加剂和配料,而是当富含碳水化合物的食品高温烹调或加热时,以副产物的形式自然形成的。   世卫组织的专家指出,丙烯酰胺已被证实与多种癌症有关联。但是英国食物标准局检测表明,包括薯片、即饮咖啡、面包、饼干、油炸土豆片、早餐麦片、幼儿食品在内的多款食品中的丙烯酰胺含量并未降低。其中被点名的有亨氏的香蕉儿童手指饼干、雀巢的金牌速溶咖啡等。英国食物标准局称这些产品对公众不形成任何实时风险,但长时间地摄取可能会增加患癌风险,因此要求食品公司减少丙烯酰胺含量。 迪马科技早期曾开发过食品中丙烯酰胺的检测解决方案,在原有方法基础上,迪马科技进行了优化,重点对咖啡,饼干基质中的丙烯酰胺进行检测。前处理采用ProElut PLS固相萃取柱进行净化,高效液相色谱法分析。方法简便,结果准确性高,回收率理想,可供分析工作者作为食品中丙烯酰胺检测的参考。以下为详细的解决方案,请您参考。食品中丙烯酰胺检测1 适用范围本方法适用于食品中丙烯酰胺的测定。2 样品准备/提取1、称取已粉碎(已均质)的样品于离心管中,加入提取溶剂,涡旋混合,离心;2、将上清液转移至离心管中,残渣按照步骤1重复提取一次;3、合并两次提取液,再向提取液中加入溶剂除脂;4、浓缩样品,待净化。3 SPE柱净化——ProElut PLS 150mg/6 mL(Cat.#:68004) (1)活 化: 依次6 mL 甲醇、6 mL水,流出液弃去; (2)上 样: 将待净化液加入小柱,收集流出液; (3)淋 洗: 加入2 mL水淋洗小柱,收集流出液; (4)重新溶解: 合并步骤(2)、(3)收集液,并用水定容至5 mL,过微孔滤膜供HPLC分析。 4 分析条件 色谱柱: Diamonsil C18(2) 250 × 4.6 mm,5 μm(Cat.#[font=华文细黑

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制