当前位置: 仪器信息网 > 行业主题 > >

对乙氧基甲酰苯丙醛

仪器信息网对乙氧基甲酰苯丙醛专题为您提供2024年最新对乙氧基甲酰苯丙醛价格报价、厂家品牌的相关信息, 包括对乙氧基甲酰苯丙醛参数、型号等,不管是国产,还是进口品牌的对乙氧基甲酰苯丙醛您都可以在这里找到。 除此之外,仪器信息网还免费为您整合对乙氧基甲酰苯丙醛相关的耗材配件、试剂标物,还有对乙氧基甲酰苯丙醛相关的最新资讯、资料,以及对乙氧基甲酰苯丙醛相关的解决方案。

对乙氧基甲酰苯丙醛相关的资讯

  • 日本拟将2-戊醇、丙醛等纳为食品添加剂
    2009年7月22日,日本发布拟修订食品卫生法及食品和食品添加剂标准规范执行条例的通报。   日本健康劳动福利部拟将2-戊醇、丙醛、6-甲基喹啉纳为食品添加剂并制定这些物质的标准规范。
  • 上海伍丰-车内挥发性有机物和醛酮类物质 采样测定方法
    车内挥发性有机物和醛酮类物质 采样测定方法 一、说明 本方法可以测定15 种以上醛酮类化合物,包括:甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等。 二、仪器 等度、紫外、C18柱 固相萃取装置及其附件 超声波清洗器 DNPH 采样管 标准样品:2,4-二硝基苯腙 三、液相色谱分析条件 a) 色谱柱:等效C18 反相高效液相色谱柱; b) 流动相:乙腈/水; c) 洗脱:均相等梯度,60%乙腈/40%水; d) 检测器:紫外检测器360nm,或二极管阵列; e) 流速:1.0 ml/min; f) 进样量:25 &mu l。
  • 中国轻工业联合会发布《香柠檬、柠檬、苦橙和白柠檬精油(已全部除去或部分降低5-甲氧基补骨脂素)中5-甲氧基补骨脂素含量的测定 高效液相色谱法》征求意见稿
    国家标准计划《香柠檬、柠檬、苦橙和白柠檬精油(已全部除去或部分降低5-甲氧基补骨脂素)中5-甲氧基补骨脂素含量的测定 高效液相色谱法》由 TC257(全国香料香精化妆品标准化技术委员会)归口,TC257SC1(全国香料香精化妆品标准化技术委员会香料香精分会)执行 ,主管部门为中国轻工业联合会。主要起草单位 上海香料研究所有限公司等 。附件:征求意见稿编制说明
  • 两项醛酮类化合物环境标准发布 涉及高效液相
    p   为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,规范生态环境监测工作,现批准《固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》等两项标准为国家环境保护标准,并予发布。 /p p   标准名称、编号如下。 /p p   一、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/975321.shtml" target=" _self" title=" 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020).pdf" span style=" font-size: 16px " 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020).pdf /span /a /p p   本标准规定了测定固定污染源废气中醛、酮类化合物的高效液相色谱法。 /p p   本标准适用于固定污染源有组织排放废气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、 2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛共 12 种醛、酮类化合物的测定。 /p p   仪器和设备包括高效液相色谱仪、色谱柱、烟气采样器、连接管、棕色气泡吸收瓶、浓缩装置、分液漏斗、棕色试剂瓶、超声波清洗器等。 /p p   二、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/975320.shtml" target=" _self" title=" 《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020).pdf" span style=" font-size: 16px " 《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020).pdf /span /a /p p   本标准规定了测定环境空气和无组织排放监控点空气中醛、酮类化合物的高效液相色谱法。 /p p   本标准适用于环境空气和无组织排放监控点空气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛、邻甲基苯甲醛、间甲基苯甲醛、对甲基苯甲醛和 2,5-二甲基苯甲醛共 16 种醛、酮类化合物的测定。 /p p   仪器和设备包括高效液相色谱仪、色谱柱、空气采样器、棕色多孔玻板吸收瓶、棕色气泡吸收瓶、浓缩装置、分液漏斗、棕色试剂瓶、超声波清洗器等。 /p p   以上标准自2021年3月15日起实施,由中国环境出版集团有限公司出版,标准内容可在生态环境部网站(http://www.mee.gov.cn)查询。 /p p   特此公告。 /p p style=" text-align: right "   生态环境部 /p p style=" text-align: right "   2020年12月14日 /p p   抄送:各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局,各流域生态环境监督管理局,环境标准研究所,各标准承担单位。 /p p   生态环境部办公厅2020年12月15日印发 /p
  • VOC、VOCS和TVOC傻傻分不清楚?
    相信从事环境监测的各位对于voc、vocs、tvoc都很熟悉,对于概念还是略知一二,但遇到更多理论概念的时候,就会傻傻分不清,只可意会不可言传了...... 下面坛墨质检就带大家一起来深入了解下voc、vocs、tvoc 。voc:voc通常指在常温下容易挥发的有机化物。较常见的有苯、甲苯、二甲苯、乙苯、苯乙烯、甲醛、tvoc(6-16个碳的烷烃)、 酮类等。这些化合物具有易挥发和亲油等特点,被广泛应用于鞋类、玩具、油漆和油墨、粘合剂、化妆品、室内和汽车装饰材料等工业领域。对于挥发性有机物(voc)这一概念,不同的国家不同标准有不同的定义:①世界卫生组织(who)对voc的定义为熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称;②美国astm d3960-98标准将voc定义为任何能参加大气光化学反应的有机化合物;③美国联邦环保署(epa)将voc定义除co、co2、h2co3、金属碳化物、金属碳酸盐和碳酸铵外任何参加大气光化学反应的碳化合物;④欧盟2002/231/ce指令定义挥发性有机化合物是一种在常温常压下,具有高蒸气压和易蒸发性能的有机化学物质;⑤欧盟2004/42/ce指令定义挥发性有机物(voc)是指在101.3kpa标准压力下,任何初沸点低于或等于250℃的有机化合物;⑥gb50325-2001民用建筑工程室内环境污染控制规范定义挥发性有机化合物指可参加气相光化学反应的有机化合物。⑦澳大利亚国家污染物清单中定义在 25℃条件下蒸气压大于 0.27 kpa 的所有有机物。vocs:vocs是挥发性有机化合物(volatile organic compounds)的英文缩写,是指在室温下饱和蒸气压大于70.91pa,常压下沸点小于260℃的有机化合物。voc和vocs其实是同一类物质,即挥发性有机化合物(volatile organic compounds)的英文缩写,由于挥发性有机化合物一般成分不止一种,因此vocs更精准。再者,在日常交流过程中,人们习惯性将s省去,就造成了部分朋友搞不清voc和vocs呢?从环境监测的角度来讲,指以氢火焰离子检测器检出的非甲烷总烃类检出物的总称,主要包括烷烃类、芳烃类、烯烃类、卤烃类、酯类、醛类、酮类和其他有机化合物。tvoc:tvoc是total volatile organic compounds的缩写,即总挥发性有机物。世界卫生组织(who,1989)对tvoc的定义是:熔点低于室温,沸点范围在50~260℃之间的挥发性有机化合物的总称。vocs的三大来源:煤、石油、天然气:vocs的污染源分为固定源和移动源。煤、石油和天然气或以煤、石油和天然气为燃料或原料的工业与它们有关的化学工业是挥发性有机物产生的三大重要来源。分类vocs成分烷烃类乙烷、丙烷、丁烷、戊烷、己烷、环己烷烯烃类乙烯、丙烯、丁烯、丁二烯、异戊二烯、环戊烯芳香烃及其衍生物苯、甲苯、二甲苯、乙苯、异丙苯、苯乙烯、苯酚醛和酮类甲醛、乙醛、丙醛、丁酮、甲基丙酮、乙基丙酮脂肪烃丙烯酸甲酯、邻苯二甲酸二丁酯、醋酸乙烯醇甲醇、乙醇、异戊二醇、丁醇、戊醇乙二醇衍生物甲基溶纤剂、乙基溶纤剂、丁基溶纤剂、甲氧基丙醇酸和酸酐乙酸、丙酸、丁酸、乙二酸、邻苯二甲酸酐胺和酰胺苯胺、二甲基甲酰胺工业生产中排放vocs的种类挥发性有机物的毒害作用:大多数vocs有毒,部分vocs有致癌性。如大气中的某些苯、多环芳烃、芳香胺、树脂化合物、醛和亚硝胺等有害物质对机体有致癌或产生真性瘤作用;某些芳香胺、醛、卤代烷烃及衍生物、氯乙烯等有诱变作用。有机污染物症状影响苯、甲苯、乙苯、环己酮失眠、烦躁、痴呆、没精神神经障碍丙酮运动障碍、四肢末端感觉异常末梢神经障碍甲醛、200#溶剂、甲苯、二甲苯腹泻、便秘、恶心消化器官障碍丁醇、丙酮、烃类出汗异常、手足发冷、易疲劳自律神经障碍氯苯、200#溶剂皮炎、哮喘、自身免疫病变免疫系统障碍200#溶剂、醋酸丁酯、醋酸乙酯、甲醛、丙酮结膜发炎视觉障碍醋酸丁酯、200#溶剂喉痛、口干、咳嗽呼吸道障碍挥发性有机物的毒害作用苯系物苯甲苯邻二甲苯对二甲苯间二甲苯乙基苯刺激度1.05.32.32.52.94.3几种苯系物对眼睛的刺激度了解到了voc对人类有这么多伤害,而它又在咱们生活中频频出现顿感不安。环境监测单位为了人民的健康生活致力于voc监测,坛墨质检助力各地环境监测单位提供voc混合标物。以上为坛墨质检部分voc混合标物,更多产品可详查坛墨质检官网,也可热线咨询:4008-099-669. 整理来源自网络
  • 博纳艾杰尔推出车内空气检测用醛酮采集管
    《汽车内环境质量标准》有望年底实施,DNPH-Silica助您维权   随着车内空气质量引发的维权纠纷日益增多,2008年3月1日,国家颁布了-《HJ/T 400—2007 车内挥发性有机物和醛酮类物质采样测定方法》,迈出了改善车内坏境的第一步;该《方法》规定了测量机动车乘员舱内挥发性有机物和醛酮类物质的采样点设置、采样环境条件技术要求、采样方法和设备、相应的测量方法和设备、数据处理、质量保证等内容,但并未包含如何判定车内空气污染物超标等问题,使消费者在维权的过程中无据可依。日前,该标准有望于今年年底出台。   车内空气污染物主要是含6个碳到16个碳的挥发性有机组分和甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等羰基化合物两类。   车内醛酮类污染物采样利用了羰基化合物和2,4-二硝基苯肼(DNPH)的特异性反应来富集污染物,再经洗脱、浓缩,进行HPLC定量分析。商品化的醛酮采集管DNPH-Silica一直被国公司垄断,而该产品经过进口漫长的运输过程,容易导致醛酮本底值的增加,使检测结果受到影响。   为打破国外产品垄断,克服进口产品货期过长、本底值增加等弊端,北京艾杰尔科技有限公司从2007年初启动了CleanertTM DNPH-Silica醛酮采集管的研发,该研发项目获海淀区科委专项资金资助(项目编号:k2007092);2007年12月,CleanertTM DNPH-Silica醛酮采集管实现产业化生产,产品通过了中国计量科学研究院计量验证;2007年12月,CleanertTM DNPH-Silica醛酮采集管获国家重点新产品证书。   博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管甫一推出,即受好评,国内率先开展车内气体质量检测的单位:北京市劳动保护科学研究所,华测检测技术股份有限公司,美国GD(高迪)深圳检测中心,北京大学环境学院,北京理工大学车辆与交通工程学院,上海市疾病与预防控中心等都选择了博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管。   博纳艾杰尔科技的CleanertTM DNPH-Silica醛酮采集管采用了与国际同步的先进制作生产工艺,更有本土化的供货优势,产品在一周内可到达国内任何手中,避免了长时间运输导致本底值增加的问题。所以,在客户的使用过程中,CleanertTM DNPH-Silica醛酮采集管的性能都优于同类进口产品;使得车内空气质量的检测更加快捷,更加方便,更加准确,为广大车主提供有力的安全保障。   同时,博纳艾杰尔科技联合国内检测专家,为客户提供车内气体质量检测的整体解决方案服务,包括:检测舱建立,实验室仪器配置,采样检测方法培训。 国家重点新产品证书 北京市劳动保护科学研究所使用报告 中国计量科学研究院测试报告
  • 卫生部关于再次公开征求撤销食品添加剂过氧化苯甲酰和过氧化钙意见的函
    各有关单位:   根据《食品安全法》关于食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠的要求,随着我国小麦粉加工工艺的改进,面粉加工不再需要使用过氧化苯甲酰和过氧化钙。经研究并商相关部门,拟撤销食品添加剂过氧化苯甲酰和过氧化钙。现再次公开征求意见,请于2010年12月30日前按以下方式反馈意见:传真010-68792408或电子信箱gb2760@gmail.com.   附件:   1.关于拟撤销食品添加剂过氧化苯甲酰和过氧化钙的公告   2.关于拟撤销食品添加剂过氧化苯甲酰和过氧化钙的相关情况   二〇一〇年十二月十四日   附件1   公 告   (征求意见稿)   根据《食品安全法》关于食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠的要求,随着我国小麦粉加工工艺的改进,面粉加工不再需要使用过氧化苯甲酰和过氧化钙。经研究,决定撤销食品添加剂过氧化苯甲酰和过氧化钙。现公告如下:   一、自2011年12月1日起,禁止在面粉生产中使用过氧化苯甲酰和过氧化钙。此前按照相关标准使用过氧化苯甲酰和过氧化钙的面粉及其制品,可以销售至产品保质期结束。   二、各级食品安全监管部门要加大执法力度,切实做好过氧化苯甲酰和过氧化钙监督管理,加强面粉生产经营和餐饮服务单位的食品安全监督检查。对面粉中违法使用过氧化苯甲酰和过氧化钙的,要依法予以查处。   特此公告。   二〇一〇年十二月日   附件2   关于拟撤销食品添加剂过氧化苯甲酰和过氧化钙的相关情况   一、关于过氧化苯甲酰   过氧化苯甲酰,化学式[C6H5C(O)O]2,是一种有机过氧化物,白色至微黄色斜方结晶或结晶粉末,常用作乙烯系、丙烯酸系等单体的聚合引发剂、硅树脂及不饱和聚酯的固化剂、食品添加剂等。   二、国内外食品添加剂过氧化苯甲酰的使用规定   国际食品法典委员会(CAC)和美国、加拿大、日本等国家和我国台湾、香港地区允许在面粉加工中使用过氧化苯甲酰。欧盟等地区未允许使用过氧化苯甲酰。国际食品法典委员会规定的面粉中过氧化苯甲酰最大使用限量为75mg/kg.   1986年,根据粮食部门的申请,经全国食品添加剂标准化技术委员会(以下简称标委会)安全评审通过,将过氧化苯甲酰列入《食品添加剂使用卫生标准》(GB2760),允许作为面粉处理剂、漂白剂在小麦粉加工中使用,最大使用限量为60mg/kg.   三、关于食品添加剂过氧化苯甲酰的安全性   据联合国粮农组织(FAO)和世界卫生组织(WHO)联合食品添加剂专家委员会(JECFA)评估,过氧化苯甲酰在面粉中75mg/kg、在乳清粉中100mg/kg的使用限量,不会对人体健康造成危害。   四、我国面粉加工工艺已不再需要使用过氧化苯甲酰   随着我国小麦品种改良和面粉加工工艺水平的提高,现有的加工工艺能够满足面粉白度的需要,很多面粉加工企业已不再使用过氧化苯甲酰。我国粮食主管部门经过调查研究,提出我国面粉加工业已无使用过氧化苯甲酰的必要性,且消费者普遍要求小麦粉能保持其原有的色、香、味和营养成分,追求自然健康,尽量减少化学物质的摄入,普遍不接受含有过氧化苯甲酰的小麦粉。同时,在现有国家标准规定的添加限量下,现有加工工艺很难将其添加均匀,容易造成含量超标,带来质量安全隐患。   根据《食品安全法》第四十五条规定,食品添加剂的使用必须同时符合两个条件,一是技术上确有必要,二是安全可靠。尽管过氧化苯甲酰按规定使用未发现安全性问题,但由于面粉加工行业已无使用过氧化苯甲酰的技术必要性,因此,建议撤销食品添加剂过氧化苯甲酰。   五、撤销食品添加剂过氧化苯甲酰后,加强面粉食品安全监管的措施   为防范撤销过氧化苯甲酰后可能出现的继续添加,甚至添加其他非食用物质或滥用添加剂的情况,我部已向社会公布了四批可能违法添加的非食用物质和易被滥用的食品添加剂“黑名单”,要求各级食品安全监管部门加大对面粉及其制品的食品安全监管,严厉打击违法犯罪行为。相关部门也制定了面粉中钛白粉、吊白块、滑石粉、过氧化苯甲酰等漂白物质的配套检测方法,并且正在研究其他违法添加物质的检验方法,为食品安全监管工作提供技术支持。   六、撤销过程将设置过渡期限   为尽可能降低撤销过氧化苯甲酰对产业影响,我们将设置1年左右的政策调整实施时间,主要考虑面粉生产、销售以及进口周期等情况,同时允许在政策调整日期前生产的、添加了过氧化苯甲酰的食品继续在保质期内销售。   七、关于过氧化钙   过氧化钙,化学式CaO2,是一种白色无气味结晶性粉末,常用作杀菌剂、解酸剂、氧化物阴极材料、食品添加剂、化妆品等。过氧化钙与过氧化苯甲酰作用相似,我国现行GB2760允许其作为面粉处理剂、漂白剂在小麦粉中使用,最大使用限量为500mg/kg.鉴于已无使用的技术必要性,拟在撤销过氧化苯甲酰的同时一并撤销过氧化钙。
  • 内蒙古具备检测乳制品过氧化苯甲酰的能力
    记者9月11日从内蒙古出入境检验检疫局获悉,内蒙古出入境检验检疫局技术中心理化实验室技术人员成功开发出了乳制品中过氧化苯甲酰的高效液相色谱检测方法,具备了检测乳制品中过氧化苯甲酰的技术能力。   今年,美国、澳大利亚等国家的乳制品大量进入中国市场,其质量问题也令人关注。其中,乳清粉中被查出违规使用化学物质苯甲酸和过氧化苯甲酰成为受消费者关注的一件大事。苯甲酸是一种沿用已久的防腐剂,在酱油和果汁等食品中较为常见,而过氧化苯甲酰则是小麦粉处理剂,用于起到增白效果,我国对其添加量有明确的规定,这两种物质在乳制品中则不允许添加。   此次确定的检测方法干扰小、简便、快速,可以在短时间内完成过氧化苯甲酰的检测。
  • 【名家案例】一步到位——醛的直接氧化酯化反应
    【名家案例】一步到位——醛的直接氧化酯化反应康宁反应器技术 2023-05-25 16:43 发表于上海研究背景将醛直接氧化酯化是有机合成的研究热点,但醛直接氧化酯化却常有以下问题:“贵”:氧化醛酯化的典型方法依赖于在不同氧化剂,如H2O2、叔丁基过氧化氢(TBHP)或O2存在下的各种过渡金属催化剂,这种方法通常需要将昂贵的配体与特殊催化剂相结合;“危”:过氧化反应生产的过氧化物都含有过氧基(-O-O-),属含能物质。过氧化反应体系危险度已达到了四级或五级,而采用降低过氧化剂累积度的措施降低危险度很难保证不发生操作失误。欧洲著名连续流专家,奥地利Graz大学C.Oliver Kappe教授开发了一种过硫酸原位生成并在线消耗,直接实现醛的氧化酯化连续流合成的工艺,大大降低了安全隐患。该工艺可扩展到多种脂肪族和芳香族醛的转化,并通过多克级合成验证了其制备能力。研究过程01 过硫酸的生成Oliver教授将H2O2与硫酸混合生成过硫酸。考虑到过硫酸的不稳定性和爆炸性分解的倾向,作者通过连续流反应器,实现过硫酸的原位生成与在线消耗,提高过硫酸的实用性,并将安全风险降至最低。在连续流工艺开发之前,为了表征过硫酸的形成和分解,评估反应过程中潜在的安全隐患,作者使用反应量热仪探究了H2SO4-H2O2反应体系的热行为。图1. 热量滴定试验研究发现过硫酸的形成需要高于70°C (图 1),过硫酸在生成后直接发生降解,反应焓(-271.5±10.1 KJ.mol-1)包括过硫酸的生成和分解。02 氧化醛酯化反应装置搭建:在获得了足够的过硫酸形成与分解的数据后,作者搭建了连续流的反应装置:在甲醇存在下形成过硫酸并随后进行氧化醛酯化反应。图2. 直接氧化酯化的连续流动示意图实验中肉桂醛作为底物溶解在MeOH中,将H2SO4的MeOH溶液与H2O2溶液进行连续混合,分别泵入反应器。经反应器流出的反应液又通过加热且带有背压的反应线圈,最后反应液被导入含有饱和NaHCO3水溶液以及MnO2混合物的烧瓶中,进行反应的在线淬灭。反应优化:作者对反应进行了优化,结果如下。表1. 肉桂醛直接氧化酯化反应的优化在反应温度为100℃,H2SO4和H2O2都只有2eq. 时,转化率可以达到100%,仅检测到少量的副产物氢肉桂酸(2) (table1,entry2);相对于H2O2,使用过量的H2SO4更加有利于反应。推测其原因是更加利于缩二甲酯的形成(table1, entry6, entry7);当H2SO4为2.4eq.,反应器温度达到120°C时,可以实现定量转化和97%的选择性(table 1, entry9 VS entry10)。反应机理研究:通过对反应的研究,作者给出了可能的硫酸醛类氧化酯化反应的反应机理。图3. 可能的反应机理03 过硫酸氧化酯化反应拓展作者进一步研究了多种脂肪醛以及取代芳醛作为底物的反应体系,验证过硫酸氧化酯化反应的实用性。向下滑动查看完整表格表2. 取代芳醛作为底物的拓展研究研究表明,该方法不管是对脂肪醛还是对芳香醛都有着广泛的实用性。04 可持续性和对环境影响的研究为了评估过程的可持续性和对环境的影响,作者研究了著名药物帕罗西汀合成中的关键中间体。帕罗西汀是一种选择性血清素再摄取抑制剂,广泛用于治疗抑郁症和惊恐障碍。图4. 帕罗西汀的合成对γ-硝基醛(5)氧化酯化制γ-硝基酯(6),作者利用连续过硫酸氧化酯化得到的数据和基于N-溴代琥珀酰亚胺(NBS)的氧化的文献数据,进行了分析E因子、过程质量强度(PMI)、反应质量效率(RME)、原子经济性(AE)和最优效率(OE)的比较。表3. 可持续性和对环境影响的研究结果表明,流动过程执行地更好。流动过程对环境更友好、产生的废物更少,因此更可持续。研究小结作者提出了一种过硫酸原位生成并在线消耗,直接实现醛的氧化酯化连续流合成的工艺。将过硫酸的安全隐患降到最低。通过一系列脂肪族和芳香族底物的氧化酯化反应,验证了该工艺的拓展通用性,均实现了良好的转化率和较高的选择性。连续流反应器的应用使过硫酸成为一种简单而有效的氧化剂,它在各种通量规模的合成应用都将成为可能。流动过程对环境更有友好、产生的废物更少,因此更可持续。参考文献:ChemSusChem 2023, 16, e202201868
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中盐酸氨丙啉、乙氧酰胺苯甲酯和磺胺喹噁啉的测定》征求意见稿
    国家标准计划《饲料中盐酸氨丙啉、乙氧酰胺苯甲酯和磺胺喹噁啉的测定》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 中国农业科学院农业质量标准与检测技术研究所[国家饲料质量监督检验中心(北京)] 。征求意见稿.pdf编制说明.pdf
  • CFDA:小麦粉中严禁添加过氧化苯甲酰等非食品原料
    p   为规范生产行为,加强小麦粉质量安全监管,现将有关事项公告如下: /p p   一、取得“小麦粉(通用)”生产许可的企业,不得在小麦粉中添加任何食品辅料。 /p p   二、取得“小麦粉(专用)”生产许可的企业,生产专用小麦粉时,应按照《食品安全国家标准食用淀粉》(GB 31637)、《食品安全国家标准食品加工用植物蛋白》(GB 20371)、《谷朊粉》(GB/T 21924)等相应的标准,添加食用淀粉、大豆蛋白、谷朊粉等食品辅料,并制定相应的企业标准,报省级卫生行政部门备案。 /p p   三、小麦粉生产企业应当按照《中华人民共和国食品安全法》、《食品安全国家标准预包装食品标签通则》(GB 7718)、《食品安全国家标准预包装食品营养标签通则》(GB 28050)等相关法律、法规和标准要求如实标注,不得虚假标注产品成分,不得虚假标注执行标准,不得生产无标识、标识不全或标识信息不真实的小麦粉。 /p p   四、严禁生产企业在小麦粉中添加过氧化苯甲酰、次磷酸钠、硫脲、间苯二酚、过硫酸盐、噻二唑、曲酸等非食品原料。 /p p   五、小麦粉生产企业要严格履行小麦原料进货查验、小麦粉出厂检验,落实质量安全主体责任。 /p p   六、各地食品药品监管部门要加大对小麦粉生产企业的日常监督检查、监督抽检与风险监测,严肃查处在小麦粉中超范围、超限量使用食品添加剂的行为,严肃查处在小麦粉中添加非食品原料的行为,严肃查处标签不如实标注小麦粉成分的行为,涉嫌犯罪的及时移送公安机关追究刑事责任。 /p p br/ /p
  • 卫生部就71项食品安全国家标准征求意见
    卫生部办公厅关于征求《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)意见的函 卫办监督函〔2011〕561号 各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见(征求意见稿可从卫生部网站http://www.moh.gov.cn下载),请于2011年8月16日前以传真或电子邮件形式反馈我部。   传 真:010-67711813   电子信箱:gb2760@gmail.com。   二○一一年六月十四日   附件:   《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿) 序号 标准名称 1 食品添加剂 庚酸烯丙酯 2 食品添加剂 苯甲醛 3 食品添加剂 月桂酸乙酯 4 食品添加剂 肉豆蔻酸乙酯 5 食品添加剂 乙酸香茅酯 6 食品添加剂 丁酸香叶酯 7 食品添加剂 乙酸丁酯 8 食品添加剂 乙酸己酯 9 食品添加剂 乙酸辛酯 10 食品添加剂 乙酸癸酯 11 食品添加剂 顺式-3-己烯-1-醇乙酸酯(又名乙酸叶醇酯) 12 食品添加剂 乙酸异丁酯 13 食品添加剂 丁酸戊酯 14 食品添加剂 丁酸己酯 15 食品添加剂 顺式-3-己烯醇丁酸酯(又名丁酸叶醇酯) 16 食品添加剂 己酸顺式-3-己烯酯(又名己酸叶醇酯) 17 食品添加剂 2-甲基丁酸乙酯 18 食品添加剂 2-甲基丁酸 19 食品添加剂 乙酸薄荷酯 20 食品添加剂 乳酸l-薄荷酯 21 食品添加剂 二甲基硫醚 22 食品添加剂 3-甲硫基丙醇 23 食品添加剂 3-甲硫基丙醛 24 食品添加剂 3-甲硫基丙酸甲酯 25 食品添加剂 3-甲硫基丙酸乙酯 26 食品添加剂 乙酰乙酸乙酯 27 食品添加剂 乙酸肉桂酯 28 食品添加剂 肉桂醛 29 食品添加剂 肉桂酸 30 食品添加剂 肉桂酸甲酯 31 食品添加剂 肉桂酸乙酯 32 食品添加剂 肉桂酸苯乙酯 33 食品添加剂 5-甲基糠醛 34 食品添加剂 苯甲酸甲酯 35 食品添加剂 茴香醇 36 食品添加剂 大茴香醛 37 食品添加剂 水杨酸甲酯(又名柳酸甲酯) 38 食品添加剂 水杨酸乙酯(又名柳酸乙酯) 39 食品添加剂 水杨酸异戊酯(又名柳酸异戊酯) 40 食品添加剂 丁酰乳酸丁酯 41 食品添加剂 乙酸苯乙酯 42 食品添加剂 苯乙酸苯乙酯 43 食品添加剂 苯乙酸乙酯 44 食品添加剂 苯氧乙酸烯丙酯 45 食品添加剂 二氢香豆素 46 食品添加剂 2-甲基-2-戊烯酸(又名草莓酸) 47 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮 48 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮 49 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮(又名菊苣酮) 50 食品添加剂 2,3-戊二酮 51 食品添加剂 靛蓝 52 食品添加剂 靛蓝铝色淀 53 食品添加剂 植物炭黑 54 食品添加剂 酸性红 55 食品添加剂 β-胡萝卜素(发酵法) 56 食品添加剂 栀子蓝 57 食品添加剂 玫瑰茄红 58 食品添加剂 葡萄皮红 59 食品添加剂 辣椒油树脂 60 食品添加剂 紫草红 61 食品添加剂 番茄红(天然) 62 食品添加剂 核黄素磷酸钠 63 食品添加剂 辛癸酸甘油酯 64 食品添加剂 辛烯基琥珀酸淀粉钠 65 食品添加剂 可得然胶 66 食品添加剂 普鲁兰多糖 67 食品添加剂 磷脂 68 食品添加剂 乳酸钾 69 食品添加剂 瓜尔胶 70 食品添加剂 L-精氨酸 71 食品添加剂 麦芽糖醇和麦芽糖醇液
  • 卫生部等7部门关于撤销食品添加剂过氧化苯甲酰、过氧化钙的公告(2011年 第4号)
    卫生部等7部门关于撤销食品添加剂过氧化苯甲酰、过氧化钙的公告(2011年 第4号)   根据《食品安全法》关于食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠,方可列入允许使用范围的规定,经审查,食品添加剂过氧化苯甲酰、过氧化钙已无技术上的必要性,现决定予以撤销并公告如下:   一、自2011年5月1日起,禁止在面粉生产中添加过氧化苯甲酰、过氧化钙,食品添加剂生产企业不得生产、销售食品添加剂过氧化苯甲酰、过氧化钙 有关面粉(小麦粉)中允许添加过氧化苯甲酰、过氧化钙的食品标准内容自行废止。此前按照相关标准使用过氧化苯甲酰和过氧化钙的面粉及其制品,可以销售至保质期结束。   二、面粉生产企业和食品添加剂生产企业要按照本公告要求依法组织生产经营,做好自查自纠工作。相关行业协会要加强行业管理和行业自律,引导企业不断规范面粉和食品添加剂生产经营活动。   三、各级食品安全监管部门要加大监督执法力度,加强食品安全监督检查,依法查处将过氧化苯甲酰、过氧化钙作为食品添加剂进行生产、销售和使用的违法行为。   特此公告。   卫生部   工业和信息化部   商务部   国家工商总局   国家质检总局   国家粮食局   国家食品药品监管局   二○一一年二月十一日
  • 3月15日实施!这两项新标准你注意到了吗?
    2020年12月24日,《固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1153-2020)和《环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法》(HJ 1154-2020)两项标准正式发布,并将于2021年3月15日正式实施。 为了更好地帮助客户深入掌握标准要求,崂应现将标准简析如下:1.标准中规定的醛、酮类化合物有哪些?本标准适用于固定污染源有组织排放废气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛共12 种醛、酮类化合物的测定。2.方法检出限和测定下限为多少?当采集有组织排放废气20L(标准状态下干烟气)时,方法的检出限为0.01mg/m3~0.02mg/m3,测定下限为0.04mg/m3~0.08mg/m3。3.需要哪些采样仪器和设备?1)烟气采样器:具有抗负压功能,采样流量0.2 L/min ~1.5L/min,采样管为硬质玻璃或氟树脂材质,应具备加热和保温功能,加热温度≥120℃。2)连接管:聚四氟乙烯软管或内衬聚四氟乙烯薄膜的硅橡胶管;3)棕色气泡吸收瓶:75mL。4.如何进行现场采样?a)采样位置和采样点1)采样位置:采样位置应避开涡流区,如果同时测定排气流量,采样位置应该优先选择垂直管段,应设置在距弯头、阀门、变径管下游方向不小于6倍直径和距上述部件不小于3倍直径处。2)采样点:由于气态污染物在采样断面内一般混合均匀,可取靠近烟道中心的一点作为采样点。b)采样参数的测定采样参数包括烟温、流速、含湿量,具体测定方法参照HJ 397 标准中“6排气参数的测定”。c)采样方法1)预热采样管,打开采样管加热电源,将采样管加热到≥120℃;2)串联三支各装有50mL DNPH(2,4-二硝基苯肼)饱和溶液的棕色气泡吸收瓶,与烟气采样器连接,如下图所示;3)正式采样前,排气应先通过旁路吸收瓶,将吸收瓶前管路的空气置换干净;4)接通采样管路,设置采样流量,以0.2L/min ~0.5L/min的流量,连续采集1h,或在1h内以等时间间隔采集3个~4个样品,流量波动应不大于±10%;5)采样结束后,切断采样泵和吸收瓶之间气路,抽出采样管,取下吸收瓶6)用密封帽密封吸收瓶,样品应于4℃以下密封避光冷藏保存,样品采集后3日之内完成试样制备,制备好得试样在3日内完成分析。7)将同批采样的三支装有50mL DNPH饱和溶液的棕色气泡吸收瓶带到采样现场但不进行样品采集,随样品一同运回实验室,作为运输空白样品。 1.标准中规定的醛、酮类化合物有哪些? 用于环境空气和无组织监控点空气中甲醛、乙醛、丙烯醛、丙酮、丙醛、丁烯醛、2-丁酮、正丁醛、苯甲醛、异戊醛、正戊醛、正己醛、邻甲基苯甲醛、间甲基苯甲醛、对甲基苯甲醛和2,5-二甲基苯甲醛共16 种醛、酮类化合物的测定。2.方法检出限和测定下限为多少? 当采样体积为20 L(标准状态下)时,方法的检出限为0.002 mg/m3~0.003 mg/m3,测定下限为0.008 mg/m3~0.012 mg/m3。3.需要哪些采样仪器和设备?1)空气采样器:采样流量0.1 L/min ~1.0L/min;2)棕色多孔玻板吸收瓶:25mL;3)棕色气泡吸收瓶:25mL。4.如何进行现场采样?a)采样位置和采样点环境空气采样点位的布设及采样符合HJ 194的要求,无组织排放监控点的布设及采样符合HJ/T 55中的相关规定。b)采样方法 1)按照下图将装有20mL DNPH饱和吸收液的棕色多孔玻板吸收瓶和分别装有20mL、10mL吸收液的棕色气泡吸收瓶串联到空气采样器。 2)设置采样流量,以0.3L/min ~0.5L/min的流量,连续采集1h。如果浓度偏低可适当延长采样时间,但总采样量不超过80L。注:采样时温度低于4℃,吸收瓶应放在恒温箱中。 3)采样结束后,取下吸收瓶,用密封帽密封,避光保存。样品应于4℃以下密封避光冷藏保存,样品采集后3日之内完成试样制备,制备好得试样在3日内完成分析。 4)将同批采样的装有20mL DNPH饱和吸收液的棕色多孔玻板吸收瓶和分别装有20mL、10mL吸收液的棕色气泡吸收瓶带到采样现场但不进行样品采集,随样品一同运回实验室,作为运输空白样品。
  • Sigma-Aldrich提供塑化剂邻苯二甲酸酯(DEHP等)检测的解决方案
    最近台湾出现的塑化剂污染饮料事件备受关注,一些不法商贩为了节约成本,用塑化剂替代棕榈油添加到&ldquo 起云剂&rdquo 中。塑化剂学名叫邻苯二甲酸酯,过多使用的话将影响生殖功能甚至导致癌症。对于塑化剂(邻苯二甲酸酯)的检测,Sigma-aldrich可以提供固相萃取的方法解决这一问题,采用Supelco玻璃管(无邻苯二甲酸酯类杂质干扰)SPE小柱对饮料中的邻苯二甲酸酯进行固相萃取富集,然后进行液相色谱或者GC/MS分析。此外,我们还可提供SPME(固相微萃取)快速检测邻苯二甲酸酯的检测方法。标准品、色谱溶剂、色谱柱等相关产品清单如下: 标准品 英文名 货号 包装 单价 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 280.8 邻苯二甲酸二乙酯DEP Diethyl phthalate36737-1G 1g 267.93 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 533.52 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 267.93 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 341.64 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 1932.84 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 238.68 邻苯二甲酸二环己酯 DCHP Dicyclohexyl phthalate 36908-250MG 250mg 310.05 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 401.31 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 48557 1g 527.67 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 267.93 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 299.52 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 849.42 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 417.69 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 506.61 邻苯二甲酸二异丙酯DIPrP Diisopropyl phthalate 80137-50ML 50ML 2190.24 邻苯二甲酸二烯丙酯DAP Diallyl phthalate 36925-250MG 250MG 341.64 邻苯二甲酸二丙酯DPrP Dipropyl phthalate 45624-250MG 250MG 267.93 邻苯二甲酸二庚酯DHP Diheptyl phthalate 454818-10G 10G 865.80 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml 453.96 BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml 424.71 BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml424.71 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml 464.49 BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml 475.02 DEHP BBP DBP DNOPDEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml 475.02 DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 咨询 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 110 17种邻苯二甲酸酯定制混标 1000ug/ml 溶于正己烷 1 ml 咨询 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 邻苯二甲酸二异壬酯 68515-48-0 DINP 色谱溶剂         正已烷 农残级 34484-2.5L 2.5L 418.86 乙酸乙酯 农残级 31063-2.5L 2.5L 418.86 环己烷 农残级 34496-2.5L 2.5L 528.84 石油醚,40-60 ° C 农残级 34491-2.5L 2.5L 645.84 乙醇 色谱级 34964-2.5L 2.5L 1744.47 乙酸 LC-MS级 49199-50ML-F 50ML 603.72 异辛烷 农残级 34499-2.5L 2.5L 1690.65 甲醇 农残级 34485-2.5L 2.5L 279.63 试剂         无水硫酸钠 农残级 35896-500G 500G 308.88 气相柱         SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.25&mu m 28471-U 1根 4699.89 SLB&trade -5ms Capillary GC 30m× 0.25mm× 0.10&mu m 28467-U 1根 4699.89 液相柱         Ascentis® C18液相柱 5&mu m,25cm× 4.6mm 581325-U 1根 3239.73 Ascentis® C18保护柱 5&mu m,2cm× 4.0mm 581373-U 1kit 1077.57 固相萃取产品         防交叉污染固相萃取装置 12位 57044 1套 5717.79Supelclean&trade LC-Si 500mg/6ml 505374 30支/盒 741.78 Supelclean&trade LC-Si 1g/6ml(玻璃管,PTFE筛板 54335-U 30支/盒 3127.41 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-18 500mg/6ml(玻璃管,PTFE筛板 54331-U 30支/盒 2190.24 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-Florisil® 500mg/3ml(PTFE筛板) 57058 54支/盒 1736.28 装置         Supelco索氏抽提器 200mL 64826 1套 4186.26 产品适用的国家标准: GB/T 21911-2008 食品中邻苯二甲酸酯的测定 GB/T 21928-2008 食品塑料包装材料中邻苯二甲酸酯的测定 GB/T 22048-2008 玩具及儿童用品 聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定 GB/T 20388-2006 纺织品 邻苯二甲酸酯的测定 SN/T 2037-2007 与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定 气相色谱质谱联用法 SN/T 2249-2009 塑料及其制品中邻苯二甲酸酯类增塑剂的测定 气相色谱-质谱法 SN/T 1779-2006 塑料血袋中邻苯二甲酸酯类增塑剂的测定 气相色谱串联质谱法 WS/T 149-1999 作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法
  • 国家药监局综合司关于2024年化妆品标准立项计划公示
    根据《化妆品标准制修订工作程序规定(试行)》,国家药监局化妆品标准化技术委员会(以下简称“标委会”)组织开展了2024年化妆品标准制修订项目立项遴选工作,经公开征集立项、标委会组织审查,确定了2024年55项化妆品标准制修订计划项目,现予公示。公示期间,如有异议,请向国家药监局反馈。公示时间:国家药监局发布该公示之日起7日电子邮箱:hzpjgs@nmpa.gov.cn(邮件主题请注明“2024年化妆品标准立项计划反馈意见”)附件:2024年化妆品标准立项计划序号项目名称制修订类型承担项目的标委会分技术委员会1菌落总数(眼部化妆品、口唇化妆品和儿童化妆品)限值修订通用技术要求分技术委员会2二噁烷限值修订通用技术要求分技术委员会34-甲基苄亚基樟脑修订通用技术要求分技术委员会46-氨基间甲酚修订通用技术要求分技术委员会5丁苯基甲基丙醛(铃兰醛)修订通用技术要求分技术委员会6环四聚二甲基硅氧烷(D4)修订通用技术要求分技术委员会7全氟辛基磺酸及其盐类制定通用技术要求分技术委员会8全氟辛酸及其盐类制定通用技术要求分技术委员会9汞及其化合物(化妆品准用防腐剂中的汞化合物除外)修订通用技术要求分技术委员会10吡硫鎓锌修订通用技术要求分技术委员会11水杨酸(最大允许浓度)修订通用技术要求分技术委员会12氯咪巴唑(最大允许浓度)修订通用技术要求分技术委员会13甲基异噻唑啉酮(最大允许浓度)修订通用技术要求分技术委员会14聚氨丙基双胍(最大允许浓度)修订通用技术要求分技术委员会15二苯酮-3(最大允许浓度)修订通用技术要求分技术委员会16胡莫柳酯(最大允许浓度)修订通用技术要求分技术委员会17奥克立林(最大允许浓度)修订通用技术要求分技术委员会18邻苯基苯酚及其盐类(最大允许浓度)修订通用技术要求分技术委员会19酸性紫43号(最大允许浓度)修订通用技术要求分技术委员会20甲苯-2,5-二胺(最大允许浓度)修订通用技术要求分技术委员会21甲苯-2,5-二胺硫酸盐(最大允许浓度)修订通用技术要求分技术委员会22细菌回复突变试验修订安全评价分技术委员会23体外哺乳动物细胞染色体畸变试验修订安全评价分技术委员会24亚慢性经口毒性试验修订安全评价分技术委员会25亚慢性经皮毒性试验修订安全评价分技术委员会26啮齿动物体内外周血Pig-a基因突变试验方法制定安全评价分技术委员会27体外重建3D模型试验方法制定安全评价分技术委员会28 人体皮肤斑贴试验修订人体安全与功效评价分技术委员会29人体试用试验安全性评价修订人体安全与功效评价分技术委员会30防晒化妆品防晒指数(SPF 值)测定方法修订人体安全与功效评价分技术委员会31防晒化妆品长波紫外线防护指数(PFA 值)测定方法修订人体安全与功效评价分技术委员会32化妆品祛斑美白功效测试方法修订人体安全与功效评价分技术委员会33化妆品防脱发功效测试方法修订人体安全与功效评价分技术委员会34胶原类制定原料和包装材料分技术委员会35透明质酸类制定原料和包装材料分技术委员会36卡波姆制定原料和包装材料分技术委员会37对苯二胺制定原料和包装材料分技术委员会38甲基氯异噻唑啉酮和甲基异噻唑啉酮与氯化镁及硝酸镁的混合物(甲基氯异噻唑啉酮:甲基异噻唑啉酮为3:1 )制定原料和包装材料分技术委员会39珍珠提取物制定原料和包装材料分技术委员会40芦荟类提取物制定原料和包装材料分技术委员会41玫瑰花提取物制定原料和包装材料分技术委员会42石榴提取物类制定原料和包装材料分技术委员会43化妆品产品标准通则制定产品分技术委员会44冻干粉制定产品分技术委员会45次抛型化妆品制定产品分技术委员会46喷雾产品制定产品分技术委员会47气雾产品制定产品分技术委员会48化妆品中N-亚硝基二甲胺等多种亚硝胺组分的检验方法制定检验检测方法分技术委员会49化妆品中32种禁用着色剂的检验方法制定检验检测方法分技术委员会50化妆品中有机溶剂的检验方法(二氯甲烷等15种组分的检验方法、乙醇等37种组分的检验方法)修订检验检测方法分技术委员会51铜绿假单胞菌检验方法修订检验检测方法分技术委员会52牙膏分类目录制定 牙膏通用要求分技术委员会53牙膏中多组分防腐剂的检验方法制定 牙膏检验检测分技术委员会54牙膏中抗感染组分的检验方法制定牙膏检验检测分技术委员会55牙膏中多西拉敏等60种组分的检验方法制定牙膏检验检测分技术委员会
  • 吹口气,知健康——GC-MS检测呼气疾病标记物
    p style=" TEXT-ALIGN: left" img style=" FLOAT: left" title=" 01570113923581_meitu_1.jpg" src=" http://img1.17img.cn/17img/images/201508/insimg/9c5158c1-78ff-476a-a0d9-a7249fcc74da.jpg" / strong span style=" COLOR: #00b0f0" 编者注: /span /strong 傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 /p p & nbsp /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20140623/134647.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第一讲:傅若农讲述气相色谱技术发展历史及趋势 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20140714/136528.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20140811/138629.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20140902/140376.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第四讲:傅若农:气相色谱固定液的前世今生 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20141009/143041.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第五讲:傅若农:气-固色谱的魅力 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20141104/145381.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第六讲:傅若农:PLOT气相色谱柱的诱惑力 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20141205/147891.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150106/150406.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150211/153795.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME) /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150312/155171.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150417/158106.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150519/160962.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十二讲:擒魔序曲——脂质组学研究中的样品处理 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150617/164595.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 /span /strong strong span style=" COLOR: #0070c0" /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150716/167186.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十四讲:脂肪酸气相色谱分析的故事 /span /strong strong span style=" COLOR: #0070c0" /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p & nbsp & nbsp & nbsp & nbsp 人体呼吸气体的测试是一种无损伤的检测方法,日益受到重视,它可以评估健康状态、检测疾病类型,呼吸气体的检测可以利用简单的分析仪器进行。古代希腊医生已经知道人类呼吸气体的气味可以用于疾病的诊断,糖尿病人的呼吸气味由于含有丙酮,具有恶臭,呼吸气具有尿骚味预示肾脏有毛病。肺脓肿病人的呼吸气具有下水道的气味,这是由于厌氧菌繁殖而形成的气味。而有肝病的病人呼出气体具有臭鱼烂虾气味。 /p p style=" TEXT-ALIGN: left"   当我们从口中呼出气体,有成千上万的分子排放到空气中,呼出气体样品常常是无机气体(如NO, CO2, 和 CO)、挥发性有机化合物(例如异戊二烯、乙烷、戊烷和丙酮)以及其他典型的非挥发性物质的混合物(例如:异前列素、过氧化亚硝酸盐、细胞激素等)。由于这些分子源于内源性和外源性物质,详细分析这些物质的组成,可以提供多种体内所发生的生理学过程的特征(即呼吸谱),以及摄取和吸收物质的途径。如果获取和分析得到的呼吸谱是正确的,那么他就可以为你提供一个当前的健康状态,以及可预示将来的可能的后果。 /p p style=" TEXT-ALIGN: left"   呼吸气检测相比其他通常医疗检测的最大优点是非侵害性和安全性,由于其在临床诊断和明确的评估方面具有巨大的优势,所以呼吸气检测今天受到极大的重视,这一方法成为一些病人每天控制重要指标的必要测试项目(就像测血糖和尿液一样)。 /p p style=" TEXT-ALIGN: left"   已经开发了多种方法可以检测呼出气体,可以把它们分为几大类: /p p style=" TEXT-ALIGN: left"   1. 基于气相色谱和质谱联用(GC-MS)(或其他类型的质谱方法) /p p style=" TEXT-ALIGN: left"   2. 化学传感器 /p p style=" TEXT-ALIGN: left"   3. 激光-吸收光谱 /p p style=" TEXT-ALIGN: left"   在表 1 中列出这些分析方法以及相关信息。 /p p style=" TEXT-ALIGN: left" 表 1 用于分析呼出气体的一些方法 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 569px HEIGHT: 197px" title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201508/insimg/e4ae96e5-f897-456e-9062-19d09d296e08.jpg" width=" 655" height=" 193" / /p p style=" TEXT-ALIGN: left" 文献: /p p style=" TEXT-ALIGN: left"   1 Cao W,et al, Crit Rev Anal Chem,2007, 37:3. /p p style=" TEXT-ALIGN: left"   1. Pleil J D, et al, Clin Chem, 1997, 43:723. /p p style=" TEXT-ALIGN: left"   2. Smith D, et al, Int Review Phys Chem, 1996,15:231 /p p style=" TEXT-ALIGN: left"   3. McCurdy M R, et al,J Breath Res, 2007,1 : 1. /p p style=" TEXT-ALIGN: left"   4. Pleil J D, et al, J Toxicol Environ Health, B, 2008,11: 613. /p p style=" TEXT-ALIGN: left"   5. Schubert J K, et al, G.F.E. Expert Rev Mol Diag, 2004, 4 : 619. /p p style=" TEXT-ALIGN: left"   6. Zayasu K, et al, Am J Respir Crit Care Med, 1997,156:1140. /p p style=" TEXT-ALIGN: left"   7. Hansel A, et al, Int J Mass Spectrom Ion Processes, 1995, 150: 609. /p p style=" TEXT-ALIGN: left"   8. Boschetti A, et al, Postharv Biol Technol,1999, 17:143. /p p style=" TEXT-ALIGN: left"   10 Huang H H, et al, Sens Actuators, B, 2004,101: 316. /p p style=" TEXT-ALIGN: left" strong 气相色谱分析呼吸气体 /strong /p p style=" TEXT-ALIGN: left"   使用最多的是气相色谱(GC)或者气相色谱与质谱、离子淌度谱(IMS)结合来分析人的呼出气体。用GC直接进行分析,把样品直接注入气相色谱仪的进样口即可,样品混合物经色谱柱分离成单一化合物(或几个化合物),用各种检测器检测其含量,人呼出气多为极性化合物,要用极性色谱柱进行分析。GC-FID是使用最多的模式,因为FID灵敏度高,线性范围宽,噪声低。GC和MS结合是现代分析检测的极为普遍的方法。下面举一个例子说明用GC-MS来对肺癌和其他肺病病人呼吸气进行测定。 /p p style=" TEXT-ALIGN: left"   呼吸气体可以鉴定出由于细胞膜脂质中脂肪酸被过氧化而产生的饱和烃和含氧化合物,用以鉴别肺癌患者。意大利 Diana Poli等(J Chromatogr B,2010,878:2643–2651)研究发现通过呼吸气体中含有的VOCs(脂肪族和芳香族烃)的类别可以区分非小细胞肺癌患者(非小细胞肺癌(Non-small-cell carcinoma )属于肺癌的一种,它包括鳞癌、腺癌、大细胞癌,与小细胞癌相比,其癌细胞生长分裂较慢,扩散转移相对较晚,非小细胞肺癌约占肺癌总敉的80-85% ,目前采用化疗的方式进行治疗 )、慢性阻塞性肺病(COPD)患者、非临床症状吸烟者和健康人,灵敏度达72.2%,特异性达93.6%。在此基础上研究者们进一步寻找呼出气体中的其他物质可以更灵敏地区分健康人和肺病患者,并早期检查出肺癌患者。 /p p style=" TEXT-ALIGN: left"   多种羰基化合物作为二级氧化产物,他们选择挥发性直链醛作为组织破坏的生物标记物,特别是饱和醛像己醛、庚醛和壬醛是n-3和n-6不饱和脂肪酸(PUFAs)的过氧化产物,它们是细胞膜磷脂的主要成分,同时因为挥发性醛不溶解在血液中,所以当它形成时就会进入到呼吸气体中。 /p p style=" TEXT-ALIGN: left"   在呼吸气体中这种物质的浓度在10?12M(pM)和10?9M(nM)之间,所以在测定时需要进行预浓缩。这一研究中使用固相微萃取(SPME)进行预浓缩,用纤维内衍生化方法可以很好地解决呼吸气体中挥发性化合物的浓缩,包括脂肪和芳香烃,以及羰基化合物。但是并非能把所有呼吸气中的各种化合物都直接萃取出来,这决定于吸附剂涂层和萃取化合物的物理化学性质。 /p p style=" TEXT-ALIGN: left"   这一研究的目的是使用SPME上进行衍生化方法结合气相色谱-质谱的方法检测人呼气的最后一部分气体(肺泡气),肺泡气参与肺中的气体交换。 /p p style=" TEXT-ALIGN: left" strong 1. 人体呼气取样 /strong /p p style=" TEXT-ALIGN: left"   取样如图1 所示: /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 284px HEIGHT: 280px" title=" 2.png" src=" http://img1.17img.cn/17img/images/201508/insimg/73c261c9-6342-4ddb-8b29-305dd7d51e26.jpg" width=" 352" height=" 366" / /p p style=" TEXT-ALIGN: center" img title=" 3.png" src=" http://img1.17img.cn/17img/images/201508/insimg/307031d7-8bfe-4c5b-8ec7-b2c5624f1cf6.jpg" width=" 284" height=" 425" / /p p style=" TEXT-ALIGN: left" 图1& nbsp & nbsp & nbsp 人体用Bio-VOC& amp #174 管呼气取样 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp 取样是让进行试验个体进行一次肺活量测试呼吸,以便得到最后150mL呼出气体。加入1& amp #956 L 10 sup ? /sup sup 5 /sup M内标物(IS)(丙醛, n-丁醛, n-戊醛, n-己醛, n-庚醛, n-辛醛,n-壬醛, 2-甲基戊醛),把Bio-VOC& amp #174 管在4℃下保存,在2 h内进行分析。Bio-VOC& amp #174 管在使用前要进行再生,即用氮气彻底吹拂干净。 /p p style=" TEXT-ALIGN: left" strong 2 SPME 进行样品衍生化 /strong /p p style=" TEXT-ALIGN: left"   SPME萃取头保存在图 2 的装置里。 /p p style=" TEXT-ALIGN: left"   醛类用65& amp #956 m PDMS/DVB萃取头进行萃取,新萃取头要先进行老和处理,在气相色谱仪进样口中,在250℃下在氢气气流里加热30 min,每次使用前在气化室里于280℃下加热 1 min,目的是除去可能有的污染物,然后把萃取头插入4ml 带有聚四氟乙烯盖的茶色样品瓶中,瓶内装有浓度为17 mg/mL 的1mL PFBHA(五氟苄基羟胺盐酸盐)水溶液,在室温和电磁搅拌下萃取10 min,然后把此萃取头放入Bio-VOC& amp #174 呼吸气进样装置中于室温下处理45min(进行萃取头上的衍生化), 之后在气相色谱仪的进样口中于280℃下进行热脱附。PFBHA试剂与醛类进行衍生化反应得到两种PFBHA-肟异构体(顺,反异构体)。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 416px HEIGHT: 263px" title=" 4.png" src=" http://img1.17img.cn/17img/images/201508/insimg/2be3e5b2-1340-448c-a51f-4586ba7b2969.jpg" width=" 453" height=" 310" / /p p style=" TEXT-ALIGN: left" 图 2& nbsp & nbsp SPME萃取头保存装置 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 保存管包括上管(A)和密封管(B),萃取头(C)必须旋紧在A管中 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 然后插入到下面的B管中,B管用带弹簧的聚四氟乙烯盖密封 /p p style=" TEXT-ALIGN: left" strong 3 气相色谱-质谱分析(GC-MS) /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp 使用HP 6890 气相色谱仪和HP 5973质谱选择性检测器进行分析。色谱柱使用HP-5MS(30m× 0.25mmID 0.50 & amp #956 m膜厚),氢气作载气,载气流速为1ml/min。 /p p style=" TEXT-ALIGN: left" 色谱条件:柱温:以8℃/min速度从100℃升温到150℃,然后再以30℃/min速度升温到250℃,然后保持1 min。整个分析时间为10.58 min。用选择离子检测(SIM) 进行定量分析。获取质谱碎片m/z181(间隔时间400ms),每个醛的鉴定离子为181,是五氟苄-肟的特征离子碎片。同时以纯化合物的保留时间进行确认。 /p p style=" TEXT-ALIGN: left" strong 4& nbsp 测试对象 /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 40个在接受肺切除治疗之前的非小细胞肺癌(NSCLC)I 或 II期患者,所有患者都进行了胸腹部CT扫描,做了脑CT,腹部超声检测或骨质的闪烁扫描,没有一个患者进行过抗癌治疗。 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 38个对照健康没有临床治疗的人员,他们没有肿瘤或临床肺病历史。 /p p style=" TEXT-ALIGN: left" 研究对象的特点见表 2。 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 吸烟是根据受试者自己讲述目前的吸烟情况,他们报告了吸烟的数量和吸烟的年数,在一年前就停止吸烟者定义为前-吸烟者(ex-smokers)。NSCLC的确认是根据组织学检查确定的,有23个肺腺癌(ADCs)患者,13个鳞状细胞癌(SCCs) 患者,和一个大细胞癌患者,但是所有这些患者都是临床手术前I 或 II期,最后病理学显示I期有29人(18个IA期11个临床IB),6个IIB,5个IIIA。见表2. /p p style=" TEXT-ALIGN: left" 表2. 测试对象特点 /p p style=" TEXT-ALIGN: center" img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201508/insimg/09890691-2141-4f44-970b-bbd4bcbd33c3.jpg" / /p p style=" TEXT-ALIGN: left" strong 5 测试结果探究 /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 肺癌的早期诊断可以提高存活率,呼吸气的检测可以探测出呼吸道肿瘤形成的信息,而且呼吸气体的检测无伤害、安全,有利于在临床实践中的应用。由于肺比其他器官更直接暴露于较高氧气浓度的环境中,所以更容易诱发呼吸道疾病。研究数据显示肺癌是由于脂质被氧化而引起,很少人知道在呼出气体中含有直链醛类,知道在呼出气中含有直链醛类和肺癌有关的人更少。有研究结果显示,在肺癌患者的其他生物样品(如尿样、血液/血浆以及凝缩的呼吸气)中含有醛类。在健康人、哮喘患者和慢性阻塞性肺病(COPD)患者的液态呼吸气体(EBC)中也检测到醛类,特别是丙二酰二醛。 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 呼吸气体分析需要娴熟的技术和昂贵的仪器,因为这些目标化合物来自脂质过氧化过程,含量很低(10 sup ? /sup sup 12 /sup M 到10 sup ? /sup sup 9 /sup M) ,所以需要严格的预浓缩步骤。使用SPME可以简化人呼出气体的分析,而且SPME已经在VOCs分析中有大量应用,而且SPME不会受到大量水分的影响,所以这一方法十分适合于人呼出气体的预浓缩。呼出气体中含有大量水汽,会影响预浓缩和某些化合物的GC-MS分析。不过SPME需要进行严格的操作参数的优化和认证,特别是对痕迹量化合物的情况。并非所有呼出气体的组分都可以轻易地被萃取,这就要选择SPME萃取头的选择性了,在许多情况下就需要进行事先的衍生化处理。 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp SPME萃取头上用PFHBA进行衍生化从生物样品中萃取醛类乙腈有所使用,本研究作者改进了这一方法,使用Bio-VOC& amp #174 能够检测到呼出气体中的痕迹量的醛类,可以无害地从呼吸道中抽取小气泡,除去己醛、庚醛和壬醛(它们是3n和16n不饱和脂肪酸被过氧化产生)外,本研究作者还研究了其他直链醛类,覆盖了整个丙醛(C3)到壬醛(C9),甲醛和乙醛没有包括,因为它们他们存在于户内和户外环境中,是烟草燃烧的产物,而且许多肺癌患者过去吸烟,或者现在还在吸烟。而且呼出气体中乙醛的含量还取决于乙醇的代谢。 /p p style=" TEXT-ALIGN: left" 检测对象的呼出气中的醛含量见表3 /p p style=" TEXT-ALIGN: left" 表3 不同人群呼出气体检测结果 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 536px HEIGHT: 221px" title=" 6.png" src=" http://img1.17img.cn/17img/images/201508/insimg/8c5c169b-7177-4a9f-bd98-26787c3fb459.jpg" width=" 659" height=" 263" / /p p style=" TEXT-ALIGN: left" strong 6 测试中的问题 /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 呼出气体醛类的稳定性,醛是不稳定化合物,在呼出气体中的醛会随时间而降解,但是在SPME上吸附并衍生化的醛要稳定的多,见图3所示 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 434px HEIGHT: 372px" title=" 7.png" src=" http://img1.17img.cn/17img/images/201508/insimg/6017e878-1352-44c4-8312-a7e6f23af89e.jpg" width=" 567" height=" 492" / /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 445px HEIGHT: 405px" title=" 8.png" src=" http://img1.17img.cn/17img/images/201508/insimg/f8ad4a39-89b4-4347-9971-c2fed8a0e18d.jpg" width=" 515" height=" 484" / /p p style=" TEXT-ALIGN: left" & nbsp 图 3& nbsp 呼出气体中醛类随时间降解图(propanal 丙醛,butanal 丁醛,pentanal 戊醛,hexanal己醛,Heptanal庚醛,& nbsp octanal辛醛) /p p style=" TEXT-ALIGN: left" 为了对比外源和内源醛含量,如图 4所示 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 495px HEIGHT: 341px" title=" 9.png" src=" http://img1.17img.cn/17img/images/201508/insimg/ea38f46b-53ef-4901-b398-c6d336e70de4.jpg" width=" 687" height=" 488" / /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 465px HEIGHT: 354px" title=" 10.png" src=" http://img1.17img.cn/17img/images/201508/insimg/cddaa414-9479-4894-a2f0-569187d430e8.jpg" width=" 590" height=" 470" / /p p style=" TEXT-ALIGN: left" 图 4& nbsp 内源和环境中醛类含量测定的对比(Exhaled Air 呼气,Environmant 环境) /p p style=" TEXT-ALIGN: left" strong 小结 /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp 把这一方法用于NSCLC早期患者和一组无临床症状人群,结果证明所择的醛类谱对区分无临床症状不吸烟人群和NSCLC早期患者有效,鉴别NSCLC早期患者成功率为90%。鉴别对照健康人群成功率为92.1%。吸烟或年龄影响不大。 /p p & nbsp /p
  • 聚焦塑化剂——新型SPE法检测邻苯二甲酸酯
    台湾因塑化剂引起的食品、保健品安全风波持续蔓延。最新调查数字显示,台湾受塑化剂污染的产品已增加到945种,涉及运动饮料、果汁饮料、茶饮料、果酱、果浆或果冻、方便面胶囊锭状粉状食品、保健食品、添加剂等类型。   面对日益严重的塑化剂事件,迪马科技技术中心快速做出反应开发出适合油脂性样品分析的SPE前处理方法以及HPLC分析检测方法。该方法采用ProElut PSA玻璃固相萃取小柱进行样品前处理净化,反相高效液相色谱法分离油脂性样品(食用油、方便面、方便面酱包等)中邻苯二甲酸酯。   惰性的玻璃管体完全消除了来自增塑剂,包括苯二甲酸盐的污染,高质量的ProElut吸附剂和PTFE材质筛板更加保证了结果的稳定型和重复性。SPE方法克服了国标方法使用凝胶色谱柱需要仪器(GPC)配套,消耗溶剂多,操作繁琐等缺点。此方法操作简单,快速,为您检测食品中邻苯二甲酸酯工作带来便利。   欲了解详细检测方法,欢迎来电咨询。迪马科技北京:400-608-7719 上海:021-6126 3966 广州:020-8559 3520 沈阳:024-2294 3513 成都:028-8661 2625 青岛:0532-8372 5230更多办事机构联系方式请见:http://www.dikma.com.cn/Catalog/index/cid/35 以下是检测油脂性样品中邻苯二甲酸酯配的色谱耗材,包括邻苯二甲酸酯标准品、HPLC级溶剂、玻璃SPE小柱、色谱柱等。大部分有现货,欢迎您来电咨询。 相关产品订货信息 货号 名称 品牌 规格 63206G ProElut PSA玻璃SPE柱 Dikma ProElut 1000mg / 6ml,30/pkg 99603 Diamonsil C18(2) HPLC柱 Dikma 250×4.6mm,5μm 5323 样品瓶(棕色/螺纹) Dikma 2 mL, 100/pk 5325 样品瓶盖/含垫(已组装) Dikma 100/pk 37177 针头式过滤器 Nylon Dikma 13mm,0.22μm 100/pk 50115 正己烷HPLC级 DikmaPure 4L 50106 丙酮HPLC级 DikmaPure 4L 50102 甲醇HPLC级 DikmaPure 4L 50101 乙腈HPLC级 DikmaPure 4L 邻苯二甲酸酯标准品 邻苯二甲酸酯混标 货号 名称 品牌 规格 12-SP-DC04Z 邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice 1ml,1,000ug/mL在正己烷中 12-PT8061-1JM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 1ml,1,000ug/mL在异辛烷中 12-PT8061-1M 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5ml,1,000ug/mL在异辛烷中 12-PT8061-1RPM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份 Chemservice 5x1mL,1,000ug/mL在异辛烷中 GB/T 21911-2008邻苯二甲酸酯16种组份单标 货号 名称 品牌 规格 12-F71 1.邻苯二甲酸二甲酯(DMP) Chemservice 1g 12-F70 2.邻苯二甲酸二乙酯(DEP) Chemservice 1g 12-F2264 3.邻苯二甲酸二异丁酯(DIBP) Chemservice 5g 12-F68 4.邻苯二甲酸二丁酯(DBP) Chemservice 1g 12-F2268 5.邻苯二甲酸二(2-甲氧基乙基)酯(DMEP) Chemservice 500mg 12-F2309 6.邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP) Chemservice 5g 12-F2312 7.邻苯二甲酸二(2-乙氧基)乙酯(DEEP) Chemservice 500mg 12-F2263 8.邻苯二甲酸二戊酯(DPP) Chemservice 500mg 12-F2314 9.邻苯二甲酸二己酯(DHXP) Chemservice 5g 12-F67 10.邻苯二甲酸丁基苄基酯(BBP) Chemservice 1g 12-F2315 11.邻苯二甲酸二(2-丁氧基)乙酯(DBEP) Chemservice 1g 12-F2262 (DCHP) 12.邻苯二甲酸二环己酯 Chemservice 5g 12-F66 13.邻苯二甲酸二(2-乙基己)酯(DEHP) Chemservice 1g 12-F1091 14.邻苯二甲酸二苯酯 Chemservice 5g 12-F69 15.邻苯二甲酸正二辛酯(DNOP) Chemservice 1g 12-F2317 16.邻苯二甲酸二壬酯(DNP) Chemservice 5g 更多邻苯二甲酸酯单标,请来电咨询。 GB/T 21911-2008方法中相关的耗材: 货号 名称 品牌 规格 65584 无水硫酸钠 Dikma ProElut 500g 8221 毛细管气相色谱柱DM-5MS Dikma 30mm*0.25mm*0.25um 37177 针头式过滤器Nylon Dikma 13mm,0.22μm 100/pk 5323 样品瓶(棕色,螺纹) Dikma 2 mL, 100/pk 5325 样品瓶盖/含垫(已经组装) Dikma 100/pk 50115 正己烷HPLC级 Dikma Pure 4L 50104 乙酸乙酯HPLC级 Dikma Pure 4L 50103 环己烷HPLC级 Dikma Pure 4L 50106 丙酮HPLC级 Dikma Pure 4L 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • GB 5009.271邻苯混标全新上市
    GB 5009.271-2016 邻苯混标 《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》,于2017年6月23号开始实施。迪马科技根据此标准,推出了多种邻苯二甲酸酯混标:1、依据此标准第一法:邻苯二甲酸酯混标(16种化合物);2、依据此标准第二法:邻苯二甲酸酯混标(17+1:17种邻苯二甲酸酯混标 + DINP单标);邻苯二甲酸酯混标(18种化合物)。邻苯二甲酸酯混标(16种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第一法,1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 46883序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-8邻苯二甲酸酯混标(1种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。10,000μg/mL在正已烷中, 1 mL/安瓿,Cat. No.: 4688510,000μg/mL在乙腈中, 1 mL/安瓿,Cat. No.: 46901序号中文名称英文名称CAS1邻苯二甲酸二异壬酯Diisononyl phthalate (DINP)28553-12-0邻苯二甲酸酯混标(17种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 468841000 μg/mL 在乙腈中,1 mL/安瓿,Cat. No.: 46900序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-817邻苯二甲酸二烯丙酯Diallylphthalate(DAP)131-17-9邻苯二甲酸酯混标(18种化合物) 适用于《GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定》第二法。1000 μg/mL 在正已烷中,1 mL/安瓿,Cat. No.: 468821000 μg/mL 在乙腈中,1 mL/安瓿,Cat. No.: 46902序号中文名称英文名称CAS1邻苯二甲酸二甲酯Dimethyl phthalate (DMP)131-11-32邻苯二甲酸二乙酯Diethyl phthalate (DEP)84-66-23邻苯二甲酸二异丁酯Diisobutyl phthalate (DIBP)84-69-54邻苯二甲酸二丁酯Dibuthyl phthalate (DBP)84-74-25邻苯二甲酸二(2-甲氧基乙基)酯Bis(2-methoxyethyl) phthalate (DMEP)117-82-86邻苯二甲酸二(4-甲基-2-戊基)酯Bis(4-methyl-2-pentyl) phthalate (BMPP)146-50-97邻苯二甲酸二(2-乙氧基)乙酯Bis(2-ethoxyethyl) phthalate (DEEP)605-54-98邻苯二甲酸二戊酯Dipentyl phthalate (DPP)131-18-09邻苯二甲酸二己酯Dihexyl phthalate (DHXP)84-75-310邻苯二甲酸丁基苄基酯Benzyl butyl phthalate (BBP)85-68-711邻苯二甲酸二(2-丁氧基)乙酯Bis(2-n-butoxyethyl) phthalate (DBEP)117-83-912邻苯二甲酸二环己酯Dicyclohexyl phthalate (DCHP)84-61-713邻苯二甲酸二(2-乙基己)酯Bis(2-ethylhexyl) phthalate (DEHP)117-81-714邻苯二甲酸正二辛酯Di-n-octyl phthalate (DNOP)117-84-015邻苯二甲酸二壬酯Dinonyl phthalate (DNP)84-76-416邻苯二甲酸二异壬酯Diisononyl phthalate (DINP)28553-12-017邻苯二甲酸二苯酯Diphenyl phthalate(DPhP)84-62-818邻苯二甲酸二烯丙酯Diallylphthalate(DAP)131-17-9
  • 博纳艾杰尔提供邻苯二甲算酯标准品
    相关标准品如下,价格请咨询当地销售 中文名称 英文名称 CAS号 邻苯二甲酸二甲酯(DMP) Dimethyl phthalate (DMP) 131-11-3 邻苯二甲酸二乙酯(DEP) Diethyl phthalate(DEP) 84-66-2 邻苯二甲酸二异丁酯(DIBP) Phthalic acid, bis-iso-butyl ester 84-69-5 邻苯二甲酸二丁酯(DBP) Di-n-butyl phthalate 84-74-2 邻苯二甲酸双(2-甲氧基乙)酯(DMEP) Phthalic acid, bis-methylglycol ester 117-82-8 邻苯二甲酸双-4-甲基-2-戊酯 Phthalic acid, bis-4-methyl-2-pentyl ester 146-50-9 邻苯二甲酸双-2-乙氧基乙酯 Phthalic acid, bis-2-ethoxyethyl ester 605-54-9 邻苯二甲酸二戊酯(DPP) Diamyl phthalate 131-18-0 邻苯二甲酸二正己酯(DNHP) Dihexyl phthalate 84-75-3 邻苯二甲酸丁苄酯(BBP) Benzyl butyl phthalate 85-68-7 邻苯二甲酸二丁氧基乙酯 (DBEP) Phthalic acid,bis-butoxyethyl ester 117-83-9 邻苯二甲酸二环己酯(DCHP) Dicyclohexyl phthalate 84-61-7 邻苯二甲酸二(2-乙基)己酯(DEHP) Di(2-ethyl hexyl) phthalate (DEHP) 117-81-7 邻苯二甲酸二苯酯 Diphenyl phthalate 84-62-8 邻苯二甲酸二正辛酯(DNOP) Di-n-octyl phthalate 117-84-0 邻苯二甲酸二壬酯 Phthalic acid, bis-nonyl ester 84-76-4 相关检测方法请登录博纳艾杰尔网站http://www.agela.com.cn/newDetail.aspx?id=59
  • 68岁老人研制出新型色谱仪器 年内出样机
    上海老人退休在家,日子一般都可以过得很滋润,和老邻居打打牌、下下棋,或是尽享天伦之乐。然而68岁的冯国利,似乎对这些都不感兴趣。他把大部分的退休时间,都投入了一个在国内逐渐边缘化甚至快要消失的行业&mdash &mdash 国产科学仪器的制造。2006年起,他和其他两位老工程师一起,拿出退休金和亲戚朋友资助的几十万元,开始研制一种新型的色谱分析仪器,现在已完成实验样机的试制,还申报了两项发明专利,年内将推出正式样机。   &ldquo 万一失败,我就当用多年的积蓄去旅游了。比起旅游,这项工作的意义总归更大些。&rdquo 冯国利说。   &ldquo 科研后勤兵&rdquo ,曾最引以为豪   冯国利说的&ldquo 这项工作&rdquo ,是指科学器材的供应服务。科学技术是第一生产力,科学器材就是最重要的生产资料之一。做好&ldquo 科研后勤兵&rdquo ,是他最引以为豪的事。   1989年,他来到刚成立的上海科学器材商场,负责采购各种稀缺的科学实验器材。那时没有网络、手机,国际、国内交流远不如现在这么便捷,加之国内对进出口管制较严,从事前沿科学技术研究的科学家,经常急缺各种新型实验器材。科学器材商场应运而生,这也是当时国家科委探索科学器材供应市场化的试点。1993年,中科院冶金所承担了一项&ldquo 863计划&rdquo 任务,急需进口砷烷、磷烷等高纯度有机化学试剂。由于这些试剂具有高压、剧毒、易燃易爆等特性,一般的进出口公司都不愿冒险进口。冯国利和同事们知道后,主动接下单子,积极联络国外生产厂商。半年后,装满&ldquo 危险气体&rdquo 的货船缓缓驶入黄浦江,商场专门派车到码头&ldquo 迎接&rdquo ,并小心翼翼一路&ldquo 护送&rdquo 到中科院。同年,这项科研任务顺利结题。   那时候,科学器材商场向几大主要科研机构定点发放的&ldquo 特供卡&rdquo ,成为科研工作者眼中的抢手货。每当有重要学术会议举办,科学器材商场在会场外设摊接受咨询,总是门庭若市&hellip &hellip 1994年,国家科委在北京举办科学器材供应服务经验交流会,冯国利代表上海发言。那份用老式中文打字机敲出来的发言稿,他珍藏至今。   50万欧元&ldquo 图纸费&rdquo 钱,决心自己做   几年后,科学器材商场与上海科学器材公司合并,冯国利继续热心为科研人员解决各种器材问题。不过,时代渐渐和以前&ldquo 不一样&rdquo 了。   随着中外科技交流的深入和频繁,进口实验器材变得越来越简单,&ldquo 科研后勤兵&rdquo 似乎已无存在必要。带着淡淡失落,冯国利2003年从科学器材公司退休。之后他专门对上海科学仪器市场进行了调查,发现这里几乎已成为外国科学仪器公司的天下,有100多家外资公司先后在全市设立经营和生产机构,有的还准备把研发中心搬到上海。而以前经常联系业务的国内器材厂商,几乎被挤到边缘,只能在中低档仪器方面进行低水平重复和低价格恶性竞争。   虽然做了20多年进口器材采购,冯国利始终觉得不妙,科学器材市场,不应全是进口货的天下。曾经有一位法国专家向他介绍过一种新型色谱分析仪器,和传统产品相比,检测效率更高。凭着多年科学器材工作的经验,他判断该仪器特别适用于中药成分的分析和质量控制。国家药监部门的试用效果证实了冯国利的判断。   但这一次,他没有直接进口仪器,而是提出了中法合作加工的设想。一来为降低成本,二来以此提升国内科学仪器行业的制造能力。没想到,谈判还没开始,外商就提出要先收50万欧元的&ldquo 图纸费&rdquo 。&ldquo 难道我们自己就做不出吗?&rdquo 冯国利越想越不服气,2006年,他拉上两位&ldquo 30后&rdquo 、&ldquo 40后&rdquo 工程师,准备自己研究一套国产化技术路径。   白手起家做仪器,没有资金、没有工厂。冯国利退休工资一个月才一千多元,手头不宽裕。好在家人和朋友都支持,大家一起凑了几十万元,合作者之一周海舫的儿子免费提供试验场地。考虑到项目的风险性,他坚决不要另外两位老工程师出钱凑份子。&ldquo 这么大风险,他们比我更承受不起,还是全让我来担。&rdquo 冯国利说。   这些年来,北京东路和虬江路,是冯国利去得最多的地方。在那里,他总能淘到既便宜又有用的东西。分析试纸需要专门薄膜,他从北京路买下一大卷原材料,拿回家剪开用熨斗一张张熨平 仪器减震需要弹簧,他买回大大小小一堆弹簧,逐一比试&hellip &hellip 凭着三位工程师多年积累的技术知识和实践经验,项目艰难而缓慢地推进着。   孤掌难鸣,盼科学家用&ldquo 中国制造&rdquo   2010年,在市科技创业中心&ldquo 创业苗圃&rdquo 的资助下,冯国利的团队获得一笔资助并成立了公司,样机试制得以开展。松江一家工厂的老板,看到一群六七十岁的老人如此执着,感动之下以成本价为他们加工样机。然而,一种孤掌难鸣的无奈情绪始终在他心头挥之不去。   许多样机零部件需要拿到高校、院所的实验室或是工厂委托加工,然而对方一听说加工难度较大,便纷纷摇头,再听到只加工一、两个,就更不乐意了。费尽心力画图纸,又不批量生产,成本高利润小,何苦做赔本买卖?有时候好不容易找到加工单位,产品拿回来一看,全都不合格。更让他伤心的是,拜访过不少实验室,对方一开口就是,&ldquo 我们这里200多台色谱仪,都是进口的!&rdquo 冯国利觉得&ldquo 道不同,不相与谋&rdquo ,立即退了出来。他不明白,为什么用进口器材就值得骄傲,国产科学器材,难道真的到了可有可无的地步?   冯国利说,历数诺奖历史上诸多获奖项目,都和某个特定的、新型实验仪器息息相关。在科学器材上完全依赖现有、进口的产品,也会对研究成果的原创性和突破性带来影响。从这个角度而言,国内科学器材行业,尤其是仪器制造业的萎缩,是一个值得警惕的信号。   还没退休的时候,冯国利曾经考察过美国一家著名的现代化科学器材制造销售公司。那里的产品销售目录比字典还厚,物流配送体系非常先进,供应链遍布全球,工作人员的专业素养也很高。他很想有朝一日,国内也能有这样的公司,把中国设计制造的仪器设备,第一时间送到科学家手上。   不过他也很清楚,对于这支从桑榆之年开始创业的团队来说,很可能等不到这一天的到来。目前他能做的,就是赶紧把正式样机做出来,交给科学家试用。让越来越多的人关注国产科学器材行业,至少,不要让它真的慢慢&ldquo 消失&rdquo 。
  • VOCs监测难点、注意点“一网打尽”!环境空气VOCs分析新技术网络会议回看视频上线
    VOCs是烟雾细颗粒PM2.5和臭氧形成的重要前体物,也是引起光化学烟雾、灰霾复合污染等大气污染的主要因素之一。《“十四五”生态环境监测规划》中明确提出,要聚焦机动车、挥发性有机物(VOCs)、扬尘等重点领域,并在O3超标和其他VOCs排放量较高城市开展VOCs组分、氮氧化物、紫外辐射强度等光化学监测。但是,据了解,VOCs监测领域仍存在监测数据质量有待提高、设备的便捷性和性能稳定性有待加强等问题;此外,部分化合物(如部分醛、酮化合物)在空气中含量较低、反应活性较高、性质不稳定,因此检出困难;同时,我国相关标准方法体系尚不完善,乙烷、乙炔、丙烷等组分尚无标准分析方法,醛、酮类分析方法尚未建立,自动监测标准方法也有待继续完善。这些都是VOCs监测领域亟待攻破的难点。2023年5月30日,由仪器信息网主办的“环境空气VOCs分析新技术网络研讨会”于线上成功举行。7位环境领域的专家就VOCs监测方面的难点、重点分别进行报告,参会人数再创新高。中国环境监测总站高级工程师周刚首先进行了题为《HJ 1013-2018 固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法标准解读》的报告。报告从VOCs在线监测技术现状及非甲烷总烃CEMS性能检测标准两个方面出发,指出我国VOCs年排放量约为2500万吨,超过了SO2、NOx、细颗粒物的排放量,已成为目前我国大气污染的主要来源。报告提到,VOCs的监测所用到的主流技术包括氢火焰离子化检测器(FID)、气相色谱法(GC)、傅立叶红外(FTIR)等。《HJ 1013-2018 固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法标准解读》(无回放)北京市化学工业研究院高级工程师尹洧分享报告题为《挥发性有机物及监测技术进展》。据其介绍,我国VOCs监测工作起步较晚,存在企业自行监测质量普遍不高、监测点位设置不合理、采样方式不规范、监测时段代表性不强等问题。并且,目前部分重点企业未按要求配备自动监控设施,部分涉VOCs排放工业园区和产业集群缺乏有效的监测溯源与预警措施。此外,从监管方面来看,我国尚缺乏现场快速监测等有效手段,走航监测、网格化监测等方面尚存在不足。《挥发性有机物及监测技术进展》(回放视频)上海市环境科学研究院工程技术中心主任张钢锋随后进行了《挥发性有机物泄漏检测技术的发展及应用》的报告分享。报告聚焦Leak Detection and Repair(LDAR),即泄露监测与修复技术。LDAR是一项对工业生产过程中的物料泄露进行控制的系统工程,该技术需用固定或移动检测仪器,定量或定性检测生产装置中产生的VOCs泄露点,并修复超过一定浓度的泄漏点从而控制物料损失及环境污染。泄露检测主要应用到的技术包括PID、超声检测、红外热成像等。《挥发性有机物泄漏检测技术的发展及应用》(回放视频)山东省生态环境监测中心高级工程师张凤菊报告题为《环境空气VOCs手工监测技术交流》。报告详细介绍了VOCs的手工监测技术方法,包括吸附管采样-热脱附/气相色谱-质谱、苯系物的测定活性炭吸附/二硫化碳解吸-气相色谱法、苯系物的测定固体吸附/热脱附-气相色谱法、挥发性卤代烃的测定活性炭吸附二硫化碳破解吸/气相色谱法、环境空气挥发性有机物的测定罐采样气相色谱-质谱法等等。《环境空气VOCs手工监测技术交流》(回放视频)中国环境科学研究院高锐主任报告题为《环境空气中醛酮类化合物检测方法优化与初步应用》。大气醛酮类化合物包括:常见单醛类(甲醛、乙醛、丙醛、苯甲醛)、二醛类(乙二醛、甲基乙二醛)及酮类(丙酮、丁酮、环己酮)。据介绍,中国和美国标准中规定检出的醛酮类化合物共计16种,但未包含二羰基类化合物 如果采用紫外检测器进行检测,其中部分化合物存在保留时间相近,无法精确的识别等问题。该研究基于污染源便携采样和环境空气连续监测要求,搭建了不同功能类型的醛酮类化合物采样器 并基于商业衍生化标准品建立了单羰基、二羰基、含氧羰基和杂环羰基等30种大气醛酮类化合物的检测方法。《环境空气中醛酮类化合物检测方法优化与初步应用》(无回放)上海市环境监测中心特聘专家林长青报告题为《环境空气中醛酮类监测的注意点》。OVOCs是环境空气中挥发性有机物中特殊的一类,目前城市大气复合污染问题日益突出,研究环境中醛酮类污染物变化状况对制定科学有效的大气污染控制对策有重大科学意义。分析过程中涉及到的方法包括气体直接进样+阀进样、吸附管采样+溶剂解析、吸附管采样+热解析、气袋/苏玛罐采样+ 冷凝预浓缩、在线原位监测等。检测过程中,需要注意不同厂家DNPH柱空白的差别等问题。《环境空气中醛酮类监测的注意点》(无回放)上海市环境科学研究院高级工程师杜天君报告题为《VOCs和温室气体排放量的移动监测初探》。报告提到,目前我国的环境管理存在监测体系不全面、应用方法不支持、响应速度不及时等问题,需要以创新引领监测技术、快速摸清污染分布、真实锁定排放量值、并全面掌握污染变化,准确评判污染程度。VOCs监测技术主要有传感器技术(常用传感器为PID、FID)、色谱技术、质谱技术、光谱技术(常用技术有SOF、FTIR、DOAS、TDLAS)等,其中,只有光谱技术可实现VOCs总量的监测。《VOCs和温室气体排放量的移动监测初探》(无回放)
  • 广州菲罗门酒类专用柱FB-Wine分析中国三大名酒
    广州菲罗门酒类专用柱fb-wine分析中国三大名酒白酒常见的香型有酱香型、浓香型、清香型等,酱香型味最重(高级酯、高级醇等总含量也最高),浓香居中,清香更低(香型物质总含量也是最低的)。本文所介绍的三种名酒:*台,五*液和泸**窖就分属酱香型和浓香型,并对它们进行成分以及主体香源物质进行分析。本应用采用的是直接进样法,气相色谱仪7890-fid分析。检测方法:仪器:agilent 7890 w/ fid柱型:fb-wine, 30m x 0.32mm x 0.40um(p/n: 30m-l101-040)炉温:50°c 5min 5 °c/min 200°c 2min载气:氢气 @ 1.3ml/min (恒定流量)进样口:分流40ml/min @ 240 °c检测器: fid @ 260 °c样品:*台,五*液,泸**窖进样量:1ul 图一*台(酱香型)样品测试图谱 (a)峰1-7放大图 (b)峰11-17放大图 图二 五*液(浓香型)样品测试图谱 (a)峰1-6放大图 (b)峰10-19放大图 图三 泸**窖(浓香型)样品测试图谱表1 *台、五*液、泸**窖酒的峰鉴定峰号*台min五*液 min泸**窖 min1乙醛2.640乙醛2.597乙醛2.6472丙醛3.292丙醛3.2453异丙醛3.365异丙醛3.3184甲酸乙酯3.5955乙酸乙酯4.043乙酸乙酯3.988乙酸乙酯4.0486乙缩醛4.267乙缩醛4.1997甲醇4.555甲醇4.4988乙醇5.263乙醇5.118乙醇5.3029丙酸乙酯5.41910异丁酸乙酯5.567异丁酸乙酯5.80811仲丁醇7.060仲丁醇6.99012丁酸乙酯7.359丁酸乙酯7.291丁酸乙酯7.37413异戊酸乙酯8.23514正丙醇7.497正丙醇7.42215异戊酸乙酯8.30216异丁醇9.322异丁醇9.21217仲戊醇9.94118戊酸乙酯10.096戊酸乙酯10.10619正丁醇10.811正丁醇10.70220异戊醇12.599异戊醇12.53121己酸乙酯13.138己酸乙酯13.134己酸乙酯13.16622己酸丙酯15.119己酸丙酯15.06023庚酸乙酯15.98024乳酸乙酯16.590乳酸乙酯16.542乳酸乙酯16.60525正己醇16.65126己酸丁酯18.67927辛酸乙酯19.869辛酸乙酯19.84228乙酸19.992乙酸20.021乙酸20.08629壬酸乙酯21.633壬酸乙酯21.60230丙酸22.10731己酸己酯22.94932正丁酸24.141正丁酸24.084丁酸24.17933未知杂质24.50434异戊酸25.02735正戊酸26.473正戊酸26.55036正己酸28.754正己酸28.685正己酸28.75937十四酸乙酯30.80138辛酸29.843辛酸32.81839油酸乙酯35.60040亚油酸乙酯35.829图一是*台酒的分析图谱,此酒属于酱香型白酒。从放大图可以看出峰1-7和11-17分离状况详情:图(a)乙酸乙酯和乙缩醛分辨率为3.69;丙醛和异丙醛分辨率为1.82。甲醇的拖尾因子是1.18。 图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。从成分上分析,酱香酒的各种芳香物质含量高种类多,但其中乙酸乙酯起很大的作用,*台酒中乙酸乙酯的含量高于五*液和泸**窖。它的香味分为前香和后香。*台酒的酸度是其它酒的3至5倍,主要以乳酸和乙酸为主。由于乳酸在fid上没有响应,但可以从乙酸的峰看出其含量是大于五*液和泸**窖的。 图二和图三是浓香型白酒泸**窖和五*液的图谱。这种香型的白酒窖香浓郁,绵甜爽净。图二的放大图可以看出峰1-6和10-19的分离情况:图(a)乙酸乙酯和乙缩醛分辨率为3.72;丙醛和异丙醛分辨率为2.17。甲醇峰形较好,拖尾因子是0.94。图(b)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。它的主体香源成分是己酸乙酯和丁酸乙酯。有机酸以乙酸和己酸为主,从图谱中可以看出己酸的含量比其它香型酒要高出几倍,其中乙酸含量在此酒中是要略高于己酸的,但由于乙酸在fid上响应较弱,所以峰面积小。图三中泸**酒的成分相对简单,相比于五*液中还有其它低沸点的醇、酯、醛,泸州老窖只有几种主要成分乙酸乙酯、己酸乙酯、乳酸乙酯、乙酸和正己酸, 这是浓香型酒几种典型的香味成分。白酒中的成分是很复杂的,由于有些成分的含量低或者在fid上响应低,所以在以上的方法中没有列出。订货信息:货号:30m-l101-040;描述:fb-wine 30m*0.32mm*0.4um
  • 欧盟拟放宽洋蓟中氟氯氰菊酯的最大残留限量
    5月13日,欧盟食品安全局就修订菠菜和甜菜叶中氟氯氰菊酯的最大残留限量发表科学意见。此前,西班牙作为评估成员国接受一份申请,建议根据西班牙氟氯氰菊酯的使用情况,放宽洋蓟中的氟氯氰菊酯的最大残留限量。欧盟专家小组经评估后建议将洋蓟中氟氯氰菊酯的最大残留限量由现行的0.02mg/kg放宽至0.2mg/kg,欧盟专家小组认为提高该限量不会对公众健康产生不良影响。
  • 邻苯二甲酸酯,你了解吗?
    邻苯二甲酸酯(PAEs)又称酞酸酯, 大部分常用的邻苯二甲酸酯为邻苯二甲酰酐与醇的反应产物。该类化合物从邻苯二甲酸二甲酯到十三烷基酯共有20多种,大部分为无色液体(个别的为白色固体如二环己酯、二苯酯),无味或略带气味,难溶于水, 易溶于有机溶剂。邻苯二甲酸酯类常用作增塑剂和软化剂, 其含量有时可达高聚体本身的60%,用于增大塑料的可塑性和韧性。 PAEs与塑料本身很难牢固结合,很容易从中溶解出来, 从而进入环境。 为什么我们会摄入邻苯二甲酸酯? 一般人容易会在塑胶制品包装中接触到邻苯二甲酸酯类,在生活中有很多食物在加工、加热、包装、盛装的过程里可能会造成邻苯二甲酸酯的溶出且渗入食物中。例如:塑胶玩具、覆盖食物微波加热的保鲜膜、盛装食物的塑胶容器、室内装潢或家庭产品亦多数属于塑胶材质、吃手扒鸡的塑胶手套、医疗用的塑胶手套或输血袋等,都可见邻苯二甲酸酯类的踪影。 另外,有一些不法厂家,为了达到降低成本的目的,用邻苯二甲酸酯代替起云剂添加到食品当中,以达到增稠效果,将会给消费者带来巨大危害。 邻苯二甲酸酯有哪些危害? 研究表明邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,可干扰内分泌,使男子精液量和精子数量减少,精子运动能力低下,精子形态异常,严重的会导致睾丸癌,是造成男子生殖问题的“罪魁祸首”。 含有邻苯二甲酸酯的软塑料玩具及儿童用品有可能被小孩放进口中,如果放置的时间足够长,就会导致邻苯二甲酸酯的溶出量超过安全水平,会危害儿童的肝脏和肾脏,也可引起儿童性早熟。 在化妆品中,指甲油的邻苯二甲酸酯含量最高,很多化妆品的芳香成分也含有该物质。化妆品中的这种物质会通过女性的呼吸系统和皮肤进入体内,如果过多使用,会增加女性患乳腺癌的几率,还会危害到她们未来生育的男婴的生殖系统。 如何检测邻苯二甲酸酯? 邻苯二甲酸酯检测方法已非常成熟,国内外都发布了检测标准。一般是用有机溶剂萃取后使用气相色谱质谱联用仪(GC)进行检测。 主要检测标准有: ◆ GBT 22048-2008?玩具及儿童用品?聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定◆ EN 14372 儿童产品安全要求及测试方法(欧洲标准,采用索氏提取法)◆ SNT 1779-2006?塑料血袋中邻苯二甲酸酯类增塑剂的测定-气相色谱串联质谱法◆ SNT 2037-2007?与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定?气相色谱质谱联用法◆ SNT 2249-2009?塑料及其制品中邻苯二甲酸酯类增塑剂的测定?气相色谱-质谱法◆ WST 149-1999?作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法◆ GBT20388-2006 纺织品邻苯二甲酸酯的测定◆GBT21911-2008 食品中邻苯二甲酸酯的测定◆GBT21928-2008食品塑料包装材料中邻苯二甲酸酯的测定◆ EN 15777 纺织品.邻苯二甲酸酯测试方法(欧洲标准,采用索氏提取法)◆ CPSC-CH-C1001-09.3 邻苯二甲酸酯测试标准作业程序(美国标准,采用溶解凝固法)◆ Health Canada Method C34 聚氯乙烯产品中邻苯二甲酸酯的测定(加拿大标准,采用溶出法) 阿尔塔科技部分邻苯二甲酸酯产品 货号中文名称英文名称CAS#1ST1111邻苯二甲酸丁苄酯(BBP)Benzyl n-butyl phthalate85-68-71ST1112邻苯二甲酸二苯酯Diphenyl phthalate84-62-81ST1113邻苯二甲酸二丁氧基乙酯Bis(2-butoxyethyl) phthalate 117-83-91ST1114邻苯二甲酸二丁酯Di-n-butyl phthalate84-74-21ST1115邻苯二甲酸二环己酯Dicyclohexyl phthalate84-61-71ST1116邻苯二甲酸二甲酯(DMP)Dimethyl phthalate131-11-31ST1117邻苯二甲酸二戊酯(DPP)Di-n-pentyl phthalate131-18-01ST1118邻苯二甲酸二乙酯(DEP)Diethyl phthalate84-66-21ST1119邻苯二甲酸二异丁酯(DIBP)Diisobutyl phthalate84-69-51ST1120邻苯二甲酸二正己酯(DNHP)Di-n-hexyl phthalate84-75-31ST1121邻苯二甲酸二正辛酯(DNOP)Di-n-octyl phthalate117-84-01ST1122邻苯二甲酸双(2-甲氧基乙)酯Bis(2-methoxyethyl) phthalate117-82-81ST1123邻苯二甲酸双(2-乙氧基乙)酯Bis(2-ethoxyethyl) phthalate605-54-91ST1124邻苯二甲酸双(4-甲基-2-戊)酯Bis(4-methyl-2-pentyl) Phthalate146-50-91ST1125邻苯二甲酸双(2-乙基己)酯Bis(2-ethylhexyl) phthalate117-81-71ST1126邻苯二甲酸二壬酯Di-n-nonyl phthalate84-76-41ST1127邻苯二甲酸二丙酯(DPP)Dipropyl phthalate131-16-81ST1128邻苯二甲酸二异辛酯(DIOP)(异构体混合物)Diisooctyl phthalate (The mixture of isomers)27554-26-4
  • 卫生部发布71项食品安全国标
    根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂核黄素5'-磷酸钠》(GB28301-2012)等71项食品安全国家标准。其编号和名称如下:   GB 28301-2012食品添加剂 核黄素5'—磷酸钠   GB 28302-2012食品添加剂 辛,癸酸甘油酯   GB 28303-2012食品添加剂 辛烯基琥珀酸淀粉钠   GB 28304-2012食品添加剂 可得然胶   GB 28305-2012食品添加剂 乳酸钾   GB 28306-2012食品添加剂 L-精氨酸   GB 28307-2012食品添加剂 麦芽糖醇和麦芽糖醇液   GB 28308-2012食品添加剂 植物炭黑   GB 28309-2012食品添加剂 酸性红(偶氮玉红)   GB 28310-2012食品添加剂 β-胡萝卜素(发酵法)   GB 28311-2012食品添加剂 栀子蓝   GB 28312-2012食品添加剂 玫瑰茄红   GB 28313-2012食品添加剂 葡萄皮红   GB 28314-2012食品添加剂 辣椒油树脂   GB 28315-2012食品添加剂 紫草红   GB 28316-2012食品添加剂 番茄红   GB 28317-2012食品添加剂 靛蓝   GB 28318-2012食品添加剂 靛蓝铝色淀   GB 28319-2012食品添加剂 庚酸烯丙酯   GB 28320-2012 食品添加剂 苯甲醛   GB 28321-2012 食品添加剂 十二酸乙酯(月桂酸乙酯)   GB 28322-2012 食品添加剂 十四酸乙酯(肉豆蔻酸乙酯)   GB 28323-2012 食品添加剂 乙酸香茅酯   GB 28324-2012 食品添加剂 丁酸香叶酯   GB 28325-2012 食品添加剂 乙酸丁酯   GB 28326-2012 食品添加剂 乙酸己酯   GB 28327-2012 食品添加剂 乙酸辛酯   GB 28328-2012 食品添加剂 乙酸癸酯   GB 28329-2012 食品添加剂 顺式-3-己烯醇乙酸酯(乙酸叶醇酯)   GB 28330-2012 食品添加剂 乙酸异丁酯   GB 28331-2012 食品添加剂 丁酸戊酯   GB 28332-2012 食品添加剂 丁酸己酯   GB 28333-2012 食品添加剂 顺式-3-己烯醇丁酸酯(丁酸叶醇酯)   GB 28334-2012 食品添加剂 顺式-3-己烯醇己酸酯(己酸叶醇酯)   GB 28335-2012 食品添加剂 2-甲基丁酸乙酯   GB 28336-2012 食品添加剂 2-甲基丁酸   GB 28337-2012 食品添加剂 乙酸薄荷酯   GB 28338-2012 食品添加剂 乳酸 l-薄荷酯   GB 28339-2012 食品添加剂 二甲基硫醚   GB 28340-2012 食品添加剂 3-甲硫基丙醇   GB 28341-2012 食品添加剂 3-甲硫基丙醛   GB 28342-2012 食品添加剂 3-甲硫基丙酸甲酯   GB 28343-2012 食品添加剂 3-甲硫基丙酸乙酯   GB 28344-2012 食品添加剂 乙酰乙酸乙酯   GB 28345-2012 食品添加剂 乙酸肉桂酯   GB 28346-2012 食品添加剂 肉桂醛   GB 28347-2012 食品添加剂 肉桂酸   GB 28348-2012 食品添加剂 肉桂酸甲酯   GB 28349-2012 食品添加剂 肉桂酸乙酯   GB 28350-2012 食品添加剂 肉桂酸苯乙酯   GB 28351-2012 食品添加剂 5-甲基糠醛   GB 28352-2012 食品添加剂 苯甲酸甲酯   GB 28353-2012 食品添加剂 茴香醇   GB 28354-2012 食品添加剂 大茴香醛   GB 28355-2012 食品添加剂 水杨酸甲酯(柳酸甲酯)   GB 28356-2012 食品添加剂 水杨酸乙酯(柳酸乙酯)   GB 28357-2012 食品添加剂 水杨酸异戊酯(柳酸异戊酯)   GB 28358-2012 食品添加剂 丁酰乳酸丁酯   GB 28359-2012 食品添加剂 乙酸苯乙酯   GB 28360-2012 食品添加剂 苯乙酸苯乙酯   GB 28361-2012 食品添加剂 苯乙酸乙酯   GB 28362-2012 食品添加剂 苯氧乙酸烯丙酯   GB 28363-2012 食品添加剂 二氢香豆素   GB 28364-2012 食品添加剂 2-甲基-2-戊烯酸(草莓酸)   GB 28365-2012 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮   GB 28366-2012 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮   GB 28367-2012 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮   GB 28368-2012 食品添加剂 2,3-戊二酮   GB 14930.2-2012 消毒剂(代替GB14930.2-1994)   GB 11676-2012 有机硅防粘涂料(代替GB11676-1989)   GB 11677-2012 易拉罐内壁水基改性环氧树脂涂料(代替GB11677-1989)   附件:71项食品标准文本.rar
  • 高频熔样机和电热熔样机对比
    -高频感应加热熔样机认知误区在X射线荧光光谱分析中,玻璃熔融法制样技术由于完全消除了样品的矿物效应和粒度效应,样品被熔剂稀释后又能一定程度的降低共存元素引起的基体效应,自1956年被发现以后,该技术经过多年逐渐发展并成熟,现在已被全世界的大量实验室采用,成为X射线荧光光谱分析中的两大样品制备方法之一。早期玻璃熔融法制片常借助于燃气灯或马弗炉,现在已经有大量的专业性强,自动化程度高的熔样机所取代。目前常用的熔样机有按照加热方法分为三种:燃气加热、电阻辐射加热和高频感应加热三种。其中由于燃气加热式熔样机由于对实验室硬件要求过高(需要配套稳定的燃气线路),且高热值燃气具有一定的危险性,在此不做讨论。高频感应加热式熔样机(简称“高频熔样机”)原理是高频电流通过线圈产生的磁场使坩埚自身电阻产生焦耳热,从而使坩埚自身发热达到熔样的目的。电阻辐射加热式熔样机(简称“电热熔样机”)原理是采用镍铬钼电阻丝、硅碳棒或硅钼棒,靠电热辐射加热达到熔样的目的。由于高频熔样机当前使用相对较少,目前在认知上有以下几大误区,我们将对比电热熔样机做对应说明:一、温控精度不能满足要求:和电热熔样机(最高控温达±0.1℃)相比,高频熔样机在温控精度上的确不占优势。但是目前红外测温的应用,已经不需要再采用老式的接触测温,温控精度也越来越高,特别是瑞绅葆FHC-00型高频熔样机已能达到±1℃。在实际熔样温度普遍1000度以上的情况下,已经能够满足日常制样需要。二、每个工位温度不一致:这是由于部分厂家高频熔样机参照电热熔样机的加热及控温系统都采用串联方式,导致没有准确测量各个工位温度,目前瑞绅葆FHC-00型高频熔样机各个工位均采用独立加热,独立测温,真实反馈工位实际温度。三、不适合大批量制样:这是由于多工位会导致两头以上的高频熔样温度可能不一致,现有的高频熔样多是两工位,与电热熔样机的四工位甚至是六工位比是效率低。单实际上解决了工位温度控制问题,也就解决了这个问题,目前瑞绅葆FHC-00型高频熔样机最高能做到六工位,结合高频熔样本身升温速度快的优点,可以达到10min/批。四、坩埚易坏:高频加热坩埚易坏这种说法不正确,实际上坩埚损坏主要是被样品中氧化性物质腐蚀,可以提前熟悉样品性质,通过预氧化来减少氧化物的损坏,同时瑞绅葆FHC-00型高频熔样机采用浇筑法来尽可能的保护坩埚。五、支架掉渣:掉渣主要是合金支架氧化导致的,但是目前瑞绅葆FHC-00型高频熔样机和电热熔样机相比,已经在使用高温陶瓷替换高温合金来做为支架。完全可以避免合金支架氧化掉渣污染样品的情况出现。六、需要外循环水:和电热熔样机相比,高频熔样高频熔样需要配套循环水,但目前可以通过配套特制小型水冷机,一次加入纯净水可以长时间使用,完全不需要外接循环水。实际上,高频熔样机与电热熔样机相比效率更高、速度更快、无需预热、即开即用,自动化程度更高、操作更简单、制样速度更快、使用成本更低,完全符合目前提倡的节能、降耗、减排的环保要求,是应提倡的一种加热方式。 高频熔样机 电加热熔样机
  • 【应用分享】对此欢终宴,倾壶待曙光-三大名酒的检测
    春节将至,大街小巷张灯结彩,年味越来越浓。春节期间,亲朋好友聚餐,饭桌上除了美味的佳肴,必不可少的还有白酒了。今天,我们一起来看下,中国三大名酒的检测吧~图源于网络,如侵联系删除白酒文化中国传统白酒是以粮谷为原料,以酒曲为糖化发酵剂,经蒸煮、糖化发酵、蒸馏、贮存、勾兑而成。不同品牌不同产地的白酒所采用的原材料,发酵等生产工艺都不一样,这就意味着白酒成分非常复杂,主要是醇类,酯类和醛类和其他痕量风味物质。正是由于这些组分含量的区别,所以白酒的香气口感不同。白酒常见的香型有酱香型、浓香型、清香型。酱香型味最重(高级酯、高级醇等总含量也最高),浓香居中,清香更低(香型物质总含量也是最低的)。本文所介绍的三种名酒:茅台,五粮液和泸州老窖就分属酱香型和浓香型,并对它们进行成分以及主体香源物质进行分析。传统上,一般先浓缩进行测定,但由于回收率不稳定,本文所采用的是直接进样法,气相色谱仪Agilent7890+FID分析。01茅台检测从上图茅台酒的分析图谱可见,此酒属于酱香型白酒,因有一种类似豆类发酵时的酱香味。这种酒酒体醇厚,回味悠长。从放大图可以看出峰1-7和11-16分离状况详情:图(A)乙酸乙酯和乙缩醛分离度为3.69;丙醛和异丙醛分离度为1.82。甲醇的拖尾因子是1.18。图(B)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。从成分上分析,酱香酒的各种芳香物质含量高、种类多,但其中乙酸乙酯起很大的作用,茅台酒中乙酸乙酯的含量高于五粮液和泸州老窖。它的香味分为前香和后香。前香是由低沸点的醇、酯、醛类组成,起呈香作用;后香是由高沸点酸组成,起呈味作用,也是大家所说的空杯留香的原因。茅台酒的酸度是其它酒的3至5倍,主要以乳酸和乙酸为主。由于乳酸在FID上没有响应,但可以从乙酸的峰看出其含量是大于五粮液和泸州老窖的。高级醇的种类多含量高,其中正丙醇和异戊醇含量特别高。02五粮液检测从上图五粮液的分析图谱可见,此酒属于浓香型白酒,这种香型的白酒窖香浓郁,绵甜爽净。从放大图可以看出峰1-6和9-16的分离情况:图(A)乙酸乙酯和乙缩醛分离度为3.72;丙醛和异丙醛分离度为2.17。甲醇峰形较好,拖尾因子是0.94。图(B)几种主要醇类仲丁醇、正丙醇、异丁醇和正丁醇的峰形很好。它的主体香源成分是己酸乙酯和丁酸乙酯。有机酸以乙酸和己酸为主,从图谱中可以看出己酸的含量比其它香型酒要高出几倍,其中乙酸含量在此酒中是要略高于己酸的,但由于乙酸在FID上响应较弱,所以峰面积小。五粮液中还有醛类和高级醇。在醛类中,乙缩醛较高,是构成喷香的主要成分。03泸州老窖检测从上图泸州老窖的分析图谱可见,此酒亦属于浓香型白酒,此酒成分相对简单,相比于五粮液中还有其它低沸点的醇、酯、醛,泸州老窖只有几种主要成分乙酸乙酯、己酸乙酯、乳酸乙酯、乙酸和正己酸, 这是浓香型酒几种典型的香味成分, 这几种成分含量明显高于五粮液:乙酸和己酸含量比同属浓香型白酒的五粮液要高,己酸乙酯和丁酸乙酯比酱香型白酒茅台高十倍左右。但其它成分含量很低。这种酒几乎不含除乙醇以外的醇类。结果对比酒中一般含有大量酯类和仅次于酯类含量的酸类。酯类主要影响香气,乙酸乙酯、乳酸乙酯、己酸乙酯这三类起主导作用,其他酯类在呈香过程中起烘托作用。酸在酒中起调味作用需要比例适当,含量少则会导致味道寡淡,但过量会酸味重。不同含量的酯类和酸类再加上一些少量醇、酯、醛类形成了每种白酒的独特风格, 如同为浓香型泸州老窖和五粮液这些成分含量就有显著区别, 在下表中列出了这三种酒的特征组分和含量。*含量是由面积归一法来计算的,由于这与FID响应有关且测试中峰面积计算有一定误差,所以得到的只是估值。乙酸由于在FID中响应低,其计算出来的含量也远低于实际值。三种酒的重要组分及其含量结论在没有浓缩的情况下,30 m的INOWAX气相柱基本能够实现主要成分的分离且分析时间短,如需获得更好的分离效果,可以选择60 m的INOWAX气相柱。为了避免含量低导致未检出,我们可以通过增加进样量,减小分流比的方法,尝试以异辛烷为溶剂来萃取,将酒中风味物质浓缩或者用TCD进行测试来实现检测出更多的物质。详细产品信息:产品描述货号NanoChrom BP-INOWAX, 30m×0.32mm×0.50μmG2032-3005NanoChrom BP-INOWAX, 60m×0.32mm×0.50μmG2032-6005END纳谱分析可提供色谱柱免费试用,申请方法如下:1► 扫描右侧二维码进行试用申请。2► 点击文末“阅读原文”进行试用申请。3► 电话咨询:4008083822,或可在公众号后台留言,直接在线申请试用。
  • 省钱省时绿色快速测“邻苯”——Sigma-Aldrich Supelco 很给力
    省钱省时绿色快速测&ldquo 邻苯&rdquo &mdash &mdash Sigma-Aldrich Supelco 很给力 Sigma-Aldrich 公司的 Supelco 固相微萃取(SPME)摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。不仅仅是在实验室,如此便捷同样可以拓展延伸到户外,便携的采样装置,就是这么简单。(SPME + GCMS 快速、灵敏检测邻苯二甲酸酯) 按照美国环境总署US EPA 8061A, 506和606方法,Supelco的气相色谱柱Equity-1701(cat no. 28372-U)的出色表现邻令人艳羡(请见谱图)。 Sigma-Aldrich 黄金品质的混合标准品,同样一如既往的支持您严谨客观的分析检测工作。即便您有苛刻特殊的要求,我们同样可以为您订制您需要的标品。从前处理到分析耗材,在Sigma-Aldrich都能找到您所需要的。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 图1. Equity-1701分析17种邻苯二甲酸酯 更多相关详细信息请点击以下连接,或至Sigma-Aldrich官方网站。 http://www.instrument.com.cn/netshow/SH101420/download.asp 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318 适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 Equity-1701,30 m× 0.25 mm I.D × df 0.25 &mu m 28372-U PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 482236种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 客服/订购热线:800-819-3336 400-620-3333 客服/订购Email: OrderCN@sial.com
  • 沧县地下水苯胺超标70多倍 涉事工厂被拆除
    4月7日,在河北沧县小朱庄建新化工厂,工人在拆除厂房设备。   据央视报道 经过专家组调查,河北沧县小朱庄红色地下水最严重的区域,苯胺含量超标70多倍。   沧县政府邀请了国家环保部、清华大学的环保专家对当地的水质进行了抽样和初步检测,检测结果显示,小朱庄村养鸡厂内井水苯胺为每升7.33毫克,超出饮用水标准每升0.1毫克70多倍。   据现场的专家清华大学环境系教授张晓健说:“排污沟的土和残液,苯胺浓度都很高。肯定是超标排放,这是个多年的老问题。”专家介绍,至于水中是否还含有其他有害物质,需要进一步检测。   目前,企业正在拆除厂区内的生产设备,并表示将全额承担后续的环境污染治理费用。建新化工常务副总陈学为说:“我代表公司,对由此给村民、给社会、给政府造成的影响,给大家道歉。”   当地已经组织人员抽取排污沟里的超标水,并用土筑坝截流。沧县环保部门承认,监管不到位。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制